code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __magic_name__: List[Any] = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None ) -> str: __magic_name__ : List[Any] = None __magic_name__ : Any = os.path.abspath(os.path.join("""examples""" , """by_feature""" ) ) __magic_name__ : Optional[int] = os.path.abspath("""examples""" ) for item in os.listdir(lowerCAmelCase__ ): if item not in EXCLUDE_EXAMPLES: __magic_name__ : Dict = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) if os.path.isfile(lowerCAmelCase__ ) and ".py" in item_path: with self.subTest( tested_script=lowerCAmelCase__ , feature_script=lowerCAmelCase__ , tested_section="""main()""" if parser_only else """training_function()""" , ): __magic_name__ : Optional[Any] = compare_against_test( os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[Any] = """\n""".join(lowerCAmelCase__ ) if special_strings is not None: for string in special_strings: __magic_name__ : List[str] = diff.replace(lowerCAmelCase__ , """""" ) self.assertEqual(lowerCAmelCase__ , """""" ) def __magic_name__ ( self ) -> int: self.one_complete_example("""complete_nlp_example.py""" , lowerCAmelCase__ ) self.one_complete_example("""complete_nlp_example.py""" , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Dict: __magic_name__ : List[Any] = os.path.abspath(os.path.join("""examples""" , """cv_example.py""" ) ) __magic_name__ : Any = [ """ """ * 16 + """{\n\n""", """ """ * 20 + """\"accuracy\": eval_metric[\"accuracy\"],\n\n""", """ """ * 20 + """\"f1\": eval_metric[\"f1\"],\n\n""", """ """ * 20 + """\"train_loss\": total_loss.item() / len(train_dataloader),\n\n""", """ """ * 20 + """\"epoch\": epoch,\n\n""", """ """ * 16 + """},\n\n""", """ """ * 16 + """step=epoch,\n""", """ """ * 12, """ """ * 8 + """for step, batch in enumerate(active_dataloader):\n""", ] self.one_complete_example("""complete_cv_example.py""" , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) self.one_complete_example("""complete_cv_example.py""" , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class snake_case__ ( _lowerCAmelCase ): lowercase__ : Union[str, Any] = False @classmethod def __magic_name__ ( cls ) -> Any: super().setUpClass() __magic_name__ : Optional[Any] = tempfile.mkdtemp() __magic_name__ : str = os.path.join(cls._tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) __magic_name__ : Union[str, Any] = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def __magic_name__ ( cls ) -> List[Any]: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Any = F'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """epoch_0""" ) ) ) def __magic_name__ ( self ) -> Dict: __magic_name__ : int = F'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split() __magic_name__ : Tuple = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """step_2""" ) ) ) def __magic_name__ ( self ) -> str: __magic_name__ : int = F'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}\n '.split() __magic_name__ : int = run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase__ ) self.assertNotIn("""epoch 0:""" , lowerCAmelCase__ ) self.assertIn("""epoch 1:""" , lowerCAmelCase__ ) def __magic_name__ ( self ) -> int: __magic_name__ : int = F'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}\n '.split() __magic_name__ : List[Any] = run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase__ ) if torch.cuda.is_available(): __magic_name__ : Optional[Any] = torch.cuda.device_count() else: __magic_name__ : Optional[Any] = 1 if num_processes > 1: self.assertNotIn("""epoch 0:""" , lowerCAmelCase__ ) self.assertIn("""epoch 1:""" , lowerCAmelCase__ ) else: self.assertIn("""epoch 0:""" , lowerCAmelCase__ ) self.assertIn("""epoch 1:""" , lowerCAmelCase__ ) @slow def __magic_name__ ( self ) -> Tuple: __magic_name__ : List[str] = """ examples/by_feature/cross_validation.py --num_folds 2 """.split() with mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """0"""} ): __magic_name__ : Union[str, Any] = run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase__ ) __magic_name__ : Tuple = re.findall("""({.+})""" , lowerCAmelCase__ ) __magic_name__ : List[str] = [r for r in results if """accuracy""" in r][-1] __magic_name__ : Any = ast.literal_eval(lowerCAmelCase__ ) self.assertGreaterEqual(results["""accuracy"""] , 0.7_5 ) def __magic_name__ ( self ) -> Any: __magic_name__ : Any = ["""examples/by_feature/multi_process_metrics.py"""] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __magic_name__ ( self ) -> Tuple: with tempfile.TemporaryDirectory() as tmpdir: __magic_name__ : Any = F'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , """tracking""" ) ) ) def __magic_name__ ( self ) -> str: __magic_name__ : Optional[Any] = ["""examples/by_feature/gradient_accumulation.py"""] run_command(self._launch_args + testargs ) def __magic_name__ ( self ) -> Any: __magic_name__ : Tuple = ["""examples/by_feature/local_sgd.py"""] run_command(self._launch_args + testargs )
324
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=14 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=99 , lowerCAmelCase__=32 , lowerCAmelCase__=4 , lowerCAmelCase__=4 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_12 , lowerCAmelCase__=0.0_2 , ) -> int: __magic_name__ : List[str] = parent __magic_name__ : Optional[Any] = batch_size __magic_name__ : Any = seq_length __magic_name__ : str = is_training __magic_name__ : List[str] = use_input_mask __magic_name__ : Union[str, Any] = use_token_type_ids __magic_name__ : List[str] = use_labels __magic_name__ : Union[str, Any] = vocab_size __magic_name__ : Union[str, Any] = hidden_size __magic_name__ : List[Any] = rotary_dim __magic_name__ : List[Any] = num_hidden_layers __magic_name__ : Union[str, Any] = num_attention_heads __magic_name__ : Union[str, Any] = intermediate_size __magic_name__ : Optional[Any] = hidden_act __magic_name__ : Union[str, Any] = hidden_dropout_prob __magic_name__ : Optional[int] = attention_probs_dropout_prob __magic_name__ : Any = max_position_embeddings __magic_name__ : List[Any] = initializer_range __magic_name__ : Optional[int] = None __magic_name__ : List[Any] = vocab_size - 1 __magic_name__ : Any = vocab_size - 1 __magic_name__ : List[Any] = vocab_size - 1 def __magic_name__ ( self ) -> List[str]: __magic_name__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Any = None if self.use_input_mask: __magic_name__ : str = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : Optional[int] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def __magic_name__ ( self ) -> str: __magic_name__ : str = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : int = config_and_inputs __magic_name__ : Any = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: __magic_name__ : List[str] = 20 __magic_name__ : Dict = model_class_name(lowerCAmelCase__ ) __magic_name__ : Optional[int] = model.init_cache(input_ids.shape[0] , lowerCAmelCase__ ) __magic_name__ : List[str] = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) __magic_name__ : List[Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __magic_name__ : Optional[Any] = model( input_ids[:, :-1] , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , ) __magic_name__ : List[str] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) __magic_name__ : str = model( input_ids[:, -1:] , attention_mask=lowerCAmelCase__ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCAmelCase__ , ) __magic_name__ : Optional[int] = model(lowerCAmelCase__ ) __magic_name__ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: __magic_name__ : Any = 20 __magic_name__ : Tuple = model_class_name(lowerCAmelCase__ ) __magic_name__ : int = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __magic_name__ : Union[str, Any] = model.init_cache(input_ids.shape[0] , lowerCAmelCase__ ) __magic_name__ : Dict = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __magic_name__ : Dict = model( input_ids[:, :-1] , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , ) __magic_name__ : int = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) __magic_name__ : Union[str, Any] = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , ) __magic_name__ : Union[str, Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) __magic_name__ : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) @require_flax class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : List[Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () lowercase__ : List[str] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : List[str] = FlaxGPTJModelTester(self ) def __magic_name__ ( self ) -> List[str]: for model_class_name in self.all_model_classes: __magic_name__ ,__magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Union[str, Any]: for model_class_name in self.all_model_classes: __magic_name__ ,__magic_name__ ,__magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) @tooslow def __magic_name__ ( self ) -> int: __magic_name__ : Any = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" ) __magic_name__ : Optional[Any] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ ) __magic_name__ : int = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) __magic_name__ : str = False __magic_name__ : str = model.config.eos_token_id __magic_name__ : Optional[int] = jax.jit(model.generate ) __magic_name__ : Tuple = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences __magic_name__ : List[Any] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) __magic_name__ : Any = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @is_pt_flax_cross_test def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __magic_name__ : str = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[str] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __magic_name__ : str = model_class.__name__[4:] # Skip the "Flax" at the beginning __magic_name__ : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ ,__magic_name__ : int = pt_inputs["""input_ids"""].shape __magic_name__ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCAmelCase__ ): __magic_name__ : str = 0 __magic_name__ : Dict = 1 __magic_name__ : str = 0 __magic_name__ : Any = 1 __magic_name__ : Union[str, Any] = pt_model_class(lowerCAmelCase__ ).eval() __magic_name__ : Dict = model_class(lowerCAmelCase__ , dtype=jnp.floataa ) __magic_name__ : int = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCAmelCase__ ) __magic_name__ : List[str] = fx_state with torch.no_grad(): __magic_name__ : Dict = pt_model(**lowerCAmelCase__ ).to_tuple() __magic_name__ : str = fx_model(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCAmelCase__ ) __magic_name__ : str = model_class.from_pretrained(lowerCAmelCase__ , from_pt=lowerCAmelCase__ ) __magic_name__ : List[str] = fx_model_loaded(**lowerCAmelCase__ ).to_tuple() self.assertEqual( len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def __magic_name__ ( self ) -> Tuple: __magic_name__ ,__magic_name__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __magic_name__ : Dict = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __magic_name__ : Tuple = model_class.__name__[4:] # Skip the "Flax" at the beginning __magic_name__ : str = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[str] = pt_model_class(lowerCAmelCase__ ).eval() __magic_name__ : Optional[Any] = model_class(lowerCAmelCase__ , dtype=jnp.floataa ) __magic_name__ : Optional[int] = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , fx_model.params ) __magic_name__ ,__magic_name__ : Union[str, Any] = pt_inputs["""input_ids"""].shape __magic_name__ : List[str] = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCAmelCase__ ): __magic_name__ : str = 0 __magic_name__ : Dict = 1 __magic_name__ : List[Any] = 0 __magic_name__ : int = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __magic_name__ : int = pt_model(**lowerCAmelCase__ ).to_tuple() __magic_name__ : Tuple = fx_model(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCAmelCase__ ) __magic_name__ : List[Any] = pt_model_class.from_pretrained(lowerCAmelCase__ , from_flax=lowerCAmelCase__ ) with torch.no_grad(): __magic_name__ : Tuple = pt_model_loaded(**lowerCAmelCase__ ).to_tuple() self.assertEqual( len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def __magic_name__ ( self ) -> int: for model_class_name in self.all_model_classes: __magic_name__ : Tuple = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) __magic_name__ : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCAmelCase__ )
324
1
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging _A = logging.get_logger(__name__) _A = { 'CarlCochet/trajectory-transformer-halfcheetah-medium-v2': ( 'https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class lowerCamelCase (_SCREAMING_SNAKE_CASE ): '''simple docstring''' a = "trajectory_transformer" a = ["past_key_values"] a = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[str] , _snake_case : Tuple=100 , _snake_case : List[str]=5 , _snake_case : Optional[int]=1 , _snake_case : Optional[int]=1 , _snake_case : Optional[int]=249 , _snake_case : Optional[Any]=6 , _snake_case : Optional[int]=17 , _snake_case : str=25 , _snake_case : Union[str, Any]=4 , _snake_case : Union[str, Any]=4 , _snake_case : Optional[Any]=128 , _snake_case : Any=0.1 , _snake_case : Any=0.1 , _snake_case : Optional[Any]=0.1 , _snake_case : Tuple=0.0006 , _snake_case : List[Any]=512 , _snake_case : Union[str, Any]=0.02 , _snake_case : str=1e-12 , _snake_case : Tuple=1 , _snake_case : Tuple=True , _snake_case : str=1 , _snake_case : Any=50256 , _snake_case : str=50256 , **_snake_case : Dict , ) -> Tuple: SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = action_weight SCREAMING_SNAKE_CASE__ = reward_weight SCREAMING_SNAKE_CASE__ = value_weight SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = block_size SCREAMING_SNAKE_CASE__ = action_dim SCREAMING_SNAKE_CASE__ = observation_dim SCREAMING_SNAKE_CASE__ = transition_dim SCREAMING_SNAKE_CASE__ = learning_rate SCREAMING_SNAKE_CASE__ = n_layer SCREAMING_SNAKE_CASE__ = n_head SCREAMING_SNAKE_CASE__ = n_embd SCREAMING_SNAKE_CASE__ = embd_pdrop SCREAMING_SNAKE_CASE__ = attn_pdrop SCREAMING_SNAKE_CASE__ = resid_pdrop SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = kaiming_initializer_range SCREAMING_SNAKE_CASE__ = use_cache super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case )
538
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME _A = ['small', 'medium', 'large'] _A = 'lm_head.decoder.weight' _A = 'lm_head.weight' def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: SCREAMING_SNAKE_CASE__ = torch.load(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = d.pop(__UpperCAmelCase ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) torch.save(__UpperCAmelCase , os.path.join(__UpperCAmelCase , __UpperCAmelCase ) ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('--dialogpt_path', default='.', type=str) _A = parser.parse_args() for MODEL in DIALOGPT_MODELS: _A = os.path.join(args.dialogpt_path, F'{MODEL}_ft.pkl') _A = F'./DialoGPT-{MODEL}' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
538
1
def _lowercase( __a : List[Any] ): a__ =len(lowerCAmelCase_ ) while cur > 1: # Find the maximum number in arr a__ =arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi a__ =arr[mi::-1] + arr[mi + 1 : len(lowerCAmelCase_ )] # Reverse whole list a__ =arr[cur - 1 :: -1] + arr[cur : len(lowerCAmelCase_ )] cur -= 1 return arr if __name__ == "__main__": _lowerCAmelCase: str = input('Enter numbers separated by a comma:\n').strip() _lowerCAmelCase: List[Any] = [int(item) for item in user_input.split(',')] print(pancake_sort(unsorted))
20
"""simple docstring""" import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Optional[int] = r''' Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. ''' class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" @add_start_docstrings(UpperCAmelCase__ ) def __call__( self : List[str] , UpperCAmelCase__ : torch.LongTensor , UpperCAmelCase__ : torch.FloatTensor , **UpperCAmelCase__ : List[Any] ) -> bool: raise NotImplementedError("StoppingCriteria needs to be subclassed" ) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] = None ) -> Optional[int]: __SCREAMING_SNAKE_CASE = max_length __SCREAMING_SNAKE_CASE = max_position_embeddings @add_start_docstrings(UpperCAmelCase__ ) def __call__( self : List[str] , UpperCAmelCase__ : torch.LongTensor , UpperCAmelCase__ : torch.FloatTensor , **UpperCAmelCase__ : Optional[int] ) -> bool: __SCREAMING_SNAKE_CASE = input_ids.shape[-1] __SCREAMING_SNAKE_CASE = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( "This is a friendly reminder - the current text generation call will exceed the model's predefined " F"""maximum length ({self.max_position_embeddings}). Depending on the model, you may observe """ "exceptions, performance degradation, or nothing at all." ) return is_done class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> str: warnings.warn( "The class `MaxNewTokensCriteria` is deprecated. " F"""Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` """ "with `max_length = start_length + max_new_tokens` instead." , UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = start_length __SCREAMING_SNAKE_CASE = max_new_tokens __SCREAMING_SNAKE_CASE = start_length + max_new_tokens @add_start_docstrings(UpperCAmelCase__ ) def __call__( self : Union[str, Any] , UpperCAmelCase__ : torch.LongTensor , UpperCAmelCase__ : torch.FloatTensor , **UpperCAmelCase__ : Tuple ) -> bool: return input_ids.shape[-1] >= self.max_length class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase__ : float , UpperCAmelCase__ : Optional[float] = None ) -> Dict: __SCREAMING_SNAKE_CASE = max_time __SCREAMING_SNAKE_CASE = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(UpperCAmelCase__ ) def __call__( self : Tuple , UpperCAmelCase__ : torch.LongTensor , UpperCAmelCase__ : torch.FloatTensor , **UpperCAmelCase__ : str ) -> bool: return time.time() - self.initial_timestamp > self.max_time class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" @add_start_docstrings(UpperCAmelCase__ ) def __call__( self : Dict , UpperCAmelCase__ : torch.LongTensor , UpperCAmelCase__ : torch.FloatTensor , **UpperCAmelCase__ : List[str] ) -> bool: return any(criteria(UpperCAmelCase__ , UpperCAmelCase__ ) for criteria in self ) @property def UpperCAmelCase_ ( self : Any ) -> Optional[int]: for stopping_criterium in self: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return stopping_criterium.max_length elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return stopping_criterium.max_length return None def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = stopping_criteria.max_length __SCREAMING_SNAKE_CASE = deepcopy(lowerCAmelCase_ ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("You set different `max_length` for stopping criteria and `max_length` parameter" , lowerCAmelCase_ ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=lowerCAmelCase_ ) ) return new_stopping_criteria
682
0
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging _A = logging.get_logger(__name__) _A = {'vocab_file': 'spiece.model'} _A = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', } } # TODO(PVP) - this should be removed in Transformers v5 _A = { 't5-small': 5_1_2, 't5-base': 5_1_2, 't5-large': 5_1_2, 't5-3b': 5_1_2, 't5-11b': 5_1_2, } _A = '▁' class _lowercase ( __UpperCAmelCase ): lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ['input_ids', 'attention_mask'] def __init__( self , UpperCAmelCase_ , UpperCAmelCase_="</s>" , UpperCAmelCase_="<unk>" , UpperCAmelCase_="<pad>" , UpperCAmelCase_=100 , UpperCAmelCase_=None , UpperCAmelCase_ = None , UpperCAmelCase_=True , **UpperCAmelCase_ , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: lowerCamelCase : Union[str, Any] = [F"""<extra_id_{i}>""" for i in range(UpperCAmelCase_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens lowerCamelCase : Any = len(set(filter(lambda UpperCAmelCase_ : bool('extra_id' in str(UpperCAmelCase_ ) ) , UpperCAmelCase_ ) ) ) if extra_tokens != extra_ids: raise ValueError( F"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( F"""You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to""" ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) lowerCamelCase : List[Any] = legacy lowerCamelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , extra_ids=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , legacy=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase : List[Any] = vocab_file lowerCamelCase : Optional[int] = extra_ids lowerCamelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase_ ) @staticmethod def _UpperCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> Dict: if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: lowerCamelCase : List[Any] = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F""" {pretrained_model_name_or_path} automatically truncating your input to""" F""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" F""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , UpperCAmelCase_ , ) return max_model_length @property def _UpperCamelCase ( self ) -> Tuple: return self.sp_model.get_piece_size() + self._extra_ids def _UpperCamelCase ( self ) -> Any: lowerCamelCase : Union[str, Any] = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(UpperCAmelCase_ )) + [1] return ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1] def _UpperCamelCase ( self ) -> Optional[Any]: return list( set(filter(lambda UpperCAmelCase_ : bool(re.search(r'<extra_id_\d+>' , UpperCAmelCase_ ) ) is not None , self.additional_special_tokens ) ) ) def _UpperCamelCase ( self ) -> List[str]: return [self._convert_token_to_id(UpperCAmelCase_ ) for token in self.get_sentinel_tokens()] def _UpperCamelCase ( self , UpperCAmelCase_ ) -> List[int]: if len(UpperCAmelCase_ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ) -> List[int]: lowerCamelCase : Optional[Any] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ) -> List[int]: lowerCamelCase : Union[str, Any] = self._add_eos_if_not_present(UpperCAmelCase_ ) if token_ids_a is None: return token_ids_a else: lowerCamelCase : Optional[Any] = self._add_eos_if_not_present(UpperCAmelCase_ ) return token_ids_a + token_ids_a def __getstate__( self ) -> Optional[Any]: lowerCamelCase : Tuple = self.__dict__.copy() lowerCamelCase : List[str] = None return state def __setstate__( self , UpperCAmelCase_ ) -> Any: lowerCamelCase : Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCamelCase : Dict = {} lowerCamelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCamelCase ( self , UpperCAmelCase_ , **UpperCAmelCase_ ) -> List[str]: # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: lowerCamelCase : str = SPIECE_UNDERLINE + text.replace(UpperCAmelCase_ , ' ' ) return super().tokenize(UpperCAmelCase_ , **UpperCAmelCase_ ) def _UpperCamelCase ( self , UpperCAmelCase_ , **UpperCAmelCase_ ) -> Optional[int]: if not self.legacy: lowerCamelCase : Union[str, Any] = text.startswith(UpperCAmelCase_ ) if is_first: lowerCamelCase : Optional[Any] = text[1:] lowerCamelCase : str = self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(UpperCAmelCase_ ): lowerCamelCase : Optional[Any] = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def _UpperCamelCase ( self , UpperCAmelCase_ ) -> Any: if token.startswith('<extra_id_' ): lowerCamelCase : Dict = re.match(r'<extra_id_(\d+)>' , UpperCAmelCase_ ) lowerCamelCase : Tuple = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(UpperCAmelCase_ ) def _UpperCamelCase ( self , UpperCAmelCase_ ) -> Union[str, Any]: if index < self.sp_model.get_piece_size(): lowerCamelCase : Any = self.sp_model.IdToPiece(UpperCAmelCase_ ) else: lowerCamelCase : Union[str, Any] = F"""<extra_id_{self.vocab_size - 1 - index}>""" return token def _UpperCamelCase ( self , UpperCAmelCase_ ) -> Optional[int]: lowerCamelCase : Union[str, Any] = [] lowerCamelCase : str = '' lowerCamelCase : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase_ ) + token lowerCamelCase : Optional[int] = True lowerCamelCase : List[str] = [] else: current_sub_tokens.append(UpperCAmelCase_ ) lowerCamelCase : List[Any] = False out_string += self.sp_model.decode(UpperCAmelCase_ ) return out_string.strip() def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase : Dict = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ , 'wb' ) as fi: lowerCamelCase : Any = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,)
721
"""simple docstring""" import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class _lowercase ( unittest.TestCase ): def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> Dict: self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) ) for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertAlmostEqual(UpperCAmelCase_ , UpperCAmelCase_ , delta=UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> int: lowerCamelCase : Optional[int] = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(UpperCAmelCase_ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def _UpperCamelCase ( self ) -> Optional[Any]: lowerCamelCase : int = None ops.enable_eager_execution_internal() lowerCamelCase : List[str] = tf.config.list_physical_devices('CPU' ) if len(UpperCAmelCase_ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowerCamelCase : Optional[int] = tf.config.list_logical_devices(device_type='CPU' ) lowerCamelCase : Optional[int] = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowerCamelCase : Union[str, Any] = GradientAccumulator() lowerCamelCase : Tuple = tf.Variable([4.0, 3.0] ) lowerCamelCase , lowerCamelCase : Any = create_optimizer(5E-5 , 10 , 5 ) lowerCamelCase : Dict = tf.Variable([0.0, 0.0] , trainable=UpperCAmelCase_ ) def accumulate_on_replica(UpperCAmelCase_ ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(UpperCAmelCase_ , UpperCAmelCase_ ): with strategy.scope(): lowerCamelCase : List[str] = strategy.experimental_local_results(UpperCAmelCase_ ) local_variables[0].assign(UpperCAmelCase_ ) local_variables[1].assign(UpperCAmelCase_ ) strategy.run(UpperCAmelCase_ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(UpperCAmelCase_ ) def _check_local_values(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase : str = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , UpperCAmelCase_ , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , UpperCAmelCase_ , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
133
0
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" a : int =JukeboxTokenizer a : Optional[Any] ={ '''artist''': '''Zac Brown Band''', '''genres''': '''Country''', '''lyrics''': '''I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away ''', } @require_torch def _a ( self ): import torch UpperCamelCase_: List[str] = JukeboxTokenizer.from_pretrained('openai/jukebox-1b-lyrics' ) UpperCamelCase_: Optional[Any] = tokenizer(**self.metas )['input_ids'] # fmt: off UpperCamelCase_: Union[str, Any] = [ torch.tensor([[ 0, 0, 0, 7_1_6_9, 5_0_7, 9, 7_6, 3_9, 3_1, 4_6, 7_6, 2_7, 7_6, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_6, 3_2, 4_4, 4_1, 3_9, 7_6, 2_7, 4_0, 7_6, 2_7, 4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_6, 3_8, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 4_1, 7_6, 4_5, 2_7, 3_5, 3_0, 7_6, 7_1, 2_0, 4_9, 4_1, 7_6, 4_8, 2_7, 4_5, 4_6, 7_6, 2_7, 4_0, 3_0, 7_6, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5, 4_5, 7_6, 3_8, 3_1, 3_3, 4_5, 7_6, 4_1, 3_2, 7_6, 4_5, 4_6, 4_1, 4_0, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_9, 4_6, 2_7, 4_0, 3_0, 7_6, 3_5, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_6, 6_3, 7_6, 6_3, 7_6, 6_3, 7_6, 1_4, 3_1, 2_7, 4_4, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_5, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 8, 2_7, 3_8, 3_2, 7_6, 4_5, 4_7, 4_0, 3_7, 7_6, 2_7, 7_6, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_6, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_6, 3_8, 3_5, 3_1, 4_5, 6_4, 7_6, 4_9, 3_4, 4_1, 4_5, 3_1, 7_6, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_6, 3_8, 3_5, 4_2, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 4_5, 4_0, 3_1, 3_1, 4_4, 7_6, 4_1, 3_2, 7_6, 2_9, 4_1, 3_8, 3_0, 7_6, 2_9, 4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_5, 4_6, 4_5, 7_6, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_6, 4_9, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 4_1, 4_5, 3_1, 7_6, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_6, 4_4, 3_1, 2_7, 3_0, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 3_5, 2_9, 3_4, 7_6, 5_1, 3_1, 4_6, 7_6, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_6, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_6, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1, 7_6, 3_4, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_4, 3_1, 2_7, 4_4, 4_6, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_2, 3_1, 3_0, 6_6, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_2, 3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 4_9, 4_1, 4_4, 3_0, 4_5, 7_6, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_3, 5_1, 7_6, 4_0, 2_7, 3_9, 3_1, 7_6, 3_5, 4_5, 7_6, 1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_6, 1_1, 3_5, 4_0, 3_3, 7_6, 4_1, 3_2, 7_6, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_2, 4_1, 4_1, 3_7, 7_6, 4_1, 4_0, 7_6, 3_9, 5_1, 7_6, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4, 7_6, 5_1, 3_1, 7_6, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_6, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_6, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_6, 1_8, 4_1, 4_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 2_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_5, 3_2, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7, 3_8, 7_6, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_6, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_6, 2_7, 4_0, 3_0, 7_6, 2_8, 2_7, 4_4, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1, 7_6, 3_8, 4_1, 4_0, 3_1, 7_6, 2_7, 4_0, 3_0, 7_6, 3_8, 3_1, 4_8, 3_1, 3_8, 7_6, 4_5, 2_7, 4_0, 3_0, 4_5, 7_6, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_6, 3_2, 2_7, 4_4, 7_6, 2_7, 4_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def _a ( self ): import torch UpperCamelCase_: Tuple = JukeboxTokenizer.from_pretrained('openai/jukebox-5b-lyrics' ) UpperCamelCase_: Any = tokenizer(**self.metas )['input_ids'] # fmt: off UpperCamelCase_: Any = [ torch.tensor([[ 0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1, 9, 7_7, 3_9, 3_1, 4_6, 7_7, 2_7, 7_7, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_7, 3_2, 4_4, 4_1, 3_9, 7_7, 2_7, 4_0, 7_7, 2_7, 4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_7, 3_8, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 4_1, 7_7, 4_5, 2_7, 3_5, 3_0, 7_7, 7_2, 2_0, 4_9, 4_1, 7_7, 4_8, 2_7, 4_5, 4_6, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5, 4_5, 7_7, 3_8, 3_1, 3_3, 4_5, 7_7, 4_1, 3_2, 7_7, 4_5, 4_6, 4_1, 4_0, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_9, 4_6, 2_7, 4_0, 3_0, 7_7, 3_5, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 1_4, 3_1, 2_7, 4_4, 7_7, 4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_5, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 8, 2_7, 3_8, 3_2, 7_7, 4_5, 4_7, 4_0, 3_7, 7_7, 2_7, 7_7, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_7, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_7, 3_8, 3_5, 3_1, 4_5, 6_4, 7_7, 4_9, 3_4, 4_1, 4_5, 3_1, 7_7, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1, 4_0, 3_0, 7_7, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_7, 3_8, 3_5, 4_2, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_5, 4_0, 3_1, 3_1, 4_4, 7_7, 4_1, 3_2, 7_7, 2_9, 4_1, 3_8, 3_0, 7_7, 2_9, 4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_5, 4_6, 4_5, 7_7, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_7, 4_9, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 4_1, 4_5, 3_1, 7_7, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_7, 4_4, 3_1, 2_7, 3_0, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 3_5, 2_9, 3_4, 7_7, 5_1, 3_1, 4_6, 7_7, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_7, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7, 3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_7, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_4, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_7, 4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_4, 3_1, 2_7, 4_4, 4_6, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_2, 3_1, 3_0, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1, 4_0, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_2, 3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7, 4_9, 4_1, 4_4, 3_0, 4_5, 7_7, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_3, 5_1, 7_7, 4_0, 2_7, 3_9, 3_1, 7_7, 3_5, 4_5, 7_7, 1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_7, 1_1, 3_5, 4_0, 3_3, 7_7, 4_1, 3_2, 7_7, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_2, 4_1, 4_1, 3_7, 7_7, 4_1, 4_0, 7_7, 3_9, 5_1, 7_7, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4, 7_7, 5_1, 3_1, 7_7, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_7, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_7, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_7, 1_8, 4_1, 4_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 2_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_5, 3_2, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7, 3_8, 7_7, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_7, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_7, 2_7, 4_0, 3_0, 7_7, 2_8, 2_7, 4_4, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_8, 4_1, 4_0, 3_1, 7_7, 2_7, 4_0, 3_0, 7_7, 3_8, 3_1, 4_8, 3_1, 3_8, 7_7, 4_5, 2_7, 4_0, 3_0, 4_5, 7_7, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_7, 3_2, 2_7, 4_4, 7_7, 2_7, 4_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
57
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> int: # Load configuration defined in the metadata file with open(UpperCAmelCase__ ) as metadata_file: UpperCamelCase_: Tuple = json.load(UpperCAmelCase__ ) UpperCamelCase_: List[str] = LukeConfig(use_entity_aware_attention=UpperCAmelCase__ , **metadata['model_config'] ) # Load in the weights from the checkpoint_path UpperCamelCase_: Optional[int] = torch.load(UpperCAmelCase__ , map_location='cpu' )['module'] # Load the entity vocab file UpperCamelCase_: Any = load_original_entity_vocab(UpperCAmelCase__ ) # add an entry for [MASK2] UpperCamelCase_: List[str] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 UpperCamelCase_: Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks UpperCamelCase_: Any = AddedToken('<ent>' , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) UpperCamelCase_: Optional[Any] = AddedToken('<ent2>' , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__ , 'tokenizer_config.json' ) , 'r' ) as f: UpperCamelCase_: Union[str, Any] = json.load(UpperCAmelCase__ ) UpperCamelCase_: str = 'MLukeTokenizer' with open(os.path.join(UpperCAmelCase__ , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__ , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Optional[Any] = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) # Initialize the embeddings of the special tokens UpperCamelCase_: Any = tokenizer.convert_tokens_to_ids(['@'] )[0] UpperCamelCase_: List[str] = tokenizer.convert_tokens_to_ids(['#'] )[0] UpperCamelCase_: Tuple = state_dict['embeddings.word_embeddings.weight'] UpperCamelCase_: int = word_emb[ent_init_index].unsqueeze(0 ) UpperCamelCase_: Any = word_emb[enta_init_index].unsqueeze(0 ) UpperCamelCase_: str = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: UpperCamelCase_: Union[str, Any] = state_dict[bias_name] UpperCamelCase_: Tuple = decoder_bias[ent_init_index].unsqueeze(0 ) UpperCamelCase_: Any = decoder_bias[enta_init_index].unsqueeze(0 ) UpperCamelCase_: Optional[Any] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: UpperCamelCase_: List[Any] = F'''encoder.layer.{layer_index}.attention.self.''' UpperCamelCase_: str = state_dict[prefix + matrix_name] UpperCamelCase_: Dict = state_dict[prefix + matrix_name] UpperCamelCase_: Dict = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks UpperCamelCase_: List[str] = state_dict['entity_embeddings.entity_embeddings.weight'] UpperCamelCase_: int = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) UpperCamelCase_: Tuple = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' UpperCamelCase_: Optional[Any] = state_dict['entity_predictions.bias'] UpperCamelCase_: List[str] = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) UpperCamelCase_: List[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) UpperCamelCase_: List[Any] = LukeForMaskedLM(config=UpperCAmelCase__ ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) UpperCamelCase_: Optional[Any] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): UpperCamelCase_: Union[str, Any] = state_dict[key] else: UpperCamelCase_: Dict = state_dict[key] UpperCamelCase_ ,UpperCamelCase_: Optional[int] = model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ ) if set(UpperCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(UpperCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs UpperCamelCase_: Optional[int] = MLukeTokenizer.from_pretrained(UpperCAmelCase__ , task='entity_classification' ) UpperCamelCase_: Tuple = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' UpperCamelCase_: Optional[int] = (0, 9) UpperCamelCase_: Union[str, Any] = tokenizer(UpperCAmelCase__ , entity_spans=[span] , return_tensors='pt' ) UpperCamelCase_: str = model(**UpperCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base UpperCamelCase_: int = torch.Size((1, 3_3, 7_6_8) ) UpperCamelCase_: Tuple = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base UpperCamelCase_: Dict = torch.Size((1, 1, 7_6_8) ) UpperCamelCase_: Tuple = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction UpperCamelCase_: str = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) UpperCamelCase_: int = 'Tokyo is the capital of <mask>.' UpperCamelCase_: Dict = (2_4, 3_0) UpperCamelCase_: int = tokenizer(UpperCAmelCase__ , entity_spans=[span] , return_tensors='pt' ) UpperCamelCase_: Dict = model(**UpperCAmelCase__ ) UpperCamelCase_: Optional[int] = encoding['input_ids'][0].tolist() UpperCamelCase_: List[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) UpperCamelCase_: Any = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCAmelCase__ ) UpperCamelCase_: Union[str, Any] = outputs.entity_logits[0][0].argmax().item() UpperCamelCase_: Optional[Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(UpperCAmelCase__ ) ) model.save_pretrained(UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ ) -> int: UpperCamelCase_: Optional[Any] = ['[MASK]', '[PAD]', '[UNK]'] UpperCamelCase_: Any = [json.loads(UpperCAmelCase__ ) for line in open(UpperCAmelCase__ )] UpperCamelCase_: Tuple = {} for entry in data: UpperCamelCase_: Optional[int] = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: UpperCamelCase_: Union[str, Any] = entity_id break UpperCamelCase_: Dict = F'''{language}:{entity_name}''' UpperCamelCase_: Optional[int] = entity_id return new_mapping if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) A_ : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
57
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowerCAmelCase = { "configuration_groupvit": [ "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GroupViTConfig", "GroupViTOnnxConfig", "GroupViTTextConfig", "GroupViTVisionConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GroupViTModel", "GroupViTPreTrainedModel", "GroupViTTextModel", "GroupViTVisionModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFGroupViTModel", "TFGroupViTPreTrainedModel", "TFGroupViTTextModel", "TFGroupViTVisionModel", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
318
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class __A ( a ): """simple docstring""" A_ = '' A_ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) A_ = None # compression type in fsspec. ex: "gzip" A_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , _lowerCamelCase = "" , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase )-> List[str]: super().__init__(self , **_lowerCamelCase ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowercase__ = fsspec.open( _lowerCamelCase , mode='''rb''' , protocol=_lowerCamelCase , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowercase__ = os.path.basename(self.file.path.split('''::''' )[0] ) lowercase__ = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) lowercase__ = None @classmethod def snake_case_( cls , _lowerCamelCase )-> List[Any]: # compressed file paths are always relative to the archive root return super()._strip_protocol(_lowerCamelCase ).lstrip('''/''' ) def snake_case_( self )-> List[str]: if self.dir_cache is None: lowercase__ = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} lowercase__ = {f['''name''']: f} def snake_case_( self , _lowerCamelCase )-> List[str]: return self.file.open().read() def snake_case_( self , _lowerCamelCase , _lowerCamelCase = "rb" , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , )-> Tuple: lowercase__ = self._strip_protocol(_lowerCamelCase ) if mode != "rb": raise ValueError(f'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class __A ( a ): """simple docstring""" A_ = 'bz2' A_ = 'bz2' A_ = '.bz2' class __A ( a ): """simple docstring""" A_ = 'gzip' A_ = 'gzip' A_ = '.gz' class __A ( a ): """simple docstring""" A_ = 'lz4' A_ = 'lz4' A_ = '.lz4' class __A ( a ): """simple docstring""" A_ = 'xz' A_ = 'xz' A_ = '.xz' class __A ( a ): """simple docstring""" A_ = 'zstd' A_ = 'zstd' A_ = '.zst' def __init__( self , _lowerCamelCase , _lowerCamelCase = "rb" , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = DEFAULT_BLOCK_SIZE , **_lowerCamelCase , )-> Tuple: super().__init__( fo=_lowerCamelCase , mode=_lowerCamelCase , target_protocol=_lowerCamelCase , target_options=_lowerCamelCase , block_size=_lowerCamelCase , **_lowerCamelCase , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowercase__ = self.file.__enter__ class __A : """simple docstring""" def __init__( self , _lowerCamelCase )-> Union[str, Any]: lowercase__ = file_ def __enter__( self )-> int: self._file.__enter__() return self def __exit__( self , *_lowerCamelCase , **_lowerCamelCase )-> List[str]: self._file.__exit__(*_lowerCamelCase , **_lowerCamelCase ) def __iter__( self )-> int: return iter(self._file ) def snake_case_( self )-> List[Any]: return next(self._file ) def __getattr__( self , _lowerCamelCase )-> Any: return getattr(self._file , _lowerCamelCase ) def fixed_enter(*_lowerCamelCase , **_lowerCamelCase ): return WrappedFile(_enter(*_lowerCamelCase , **_lowerCamelCase ) ) lowercase__ = fixed_enter
318
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } UpperCAmelCase_ : Optional[Any] = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _UpperCamelCase (_lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : List[str] , _lowerCamelCase : str )-> int: '''simple docstring''' for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models __snake_case = '''lm_head''' __snake_case = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: __snake_case = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: __snake_case = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": __snake_case = value elif weight_type == "weight_g": __snake_case = value elif weight_type == "weight_v": __snake_case = value elif weight_type == "bias": __snake_case = value else: __snake_case = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _UpperCamelCase (_lowerCamelCase : Any , _lowerCamelCase : Tuple , _lowerCamelCase : str )-> str: '''simple docstring''' __snake_case = [] __snake_case = fairseq_model.state_dict() __snake_case = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): __snake_case = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == '''group''' , ) __snake_case = True else: for key, mapped_key in MAPPING.items(): __snake_case = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __snake_case = True if "*" in mapped_key: __snake_case = name.split(_lowerCamelCase )[0].split('''.''' )[-2] __snake_case = mapped_key.replace('''*''' , _lowerCamelCase ) if "weight_g" in name: __snake_case = '''weight_g''' elif "weight_v" in name: __snake_case = '''weight_v''' elif "bias" in name: __snake_case = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __snake_case = '''weight''' else: __snake_case = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _UpperCamelCase (_lowerCamelCase : Any , _lowerCamelCase : int , _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[str] )-> List[str]: '''simple docstring''' __snake_case = full_name.split('''conv_layers.''' )[-1] __snake_case = name.split('''.''' ) __snake_case = int(items[0] ) __snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __snake_case = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __snake_case = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __snake_case = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __snake_case = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def _UpperCamelCase (_lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : int=None , _lowerCamelCase : Any=None , _lowerCamelCase : Tuple=True )-> Optional[int]: '''simple docstring''' if config_path is not None: __snake_case = UniSpeechConfig.from_pretrained(_lowerCamelCase ) else: __snake_case = UniSpeechConfig() if is_finetuned: if dict_path: __snake_case = Dictionary.load_from_json(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case = target_dict.pad_index __snake_case = target_dict.bos_index __snake_case = target_dict.eos_index __snake_case = len(target_dict.symbols ) __snake_case = os.path.join(_lowerCamelCase , '''vocab.json''' ) if not os.path.isdir(_lowerCamelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) __snake_case = target_dict.indices # fairseq has the <pad> and <s> switched __snake_case = 42 __snake_case = 43 with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_lowerCamelCase , _lowerCamelCase ) __snake_case = WavaVecaPhonemeCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_lowerCamelCase , ) __snake_case = True if config.feat_extract_norm == '''layer''' else False __snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) __snake_case = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) __snake_case = UniSpeechForCTC(_lowerCamelCase ) else: __snake_case = UniSpeechForPreTraining(_lowerCamelCase ) if is_finetuned: __snake_case , __snake_case , __snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: __snake_case , __snake_case , __snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) __snake_case = model[0].eval() recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) hf_unispeech.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
24
"""simple docstring""" from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _snake_case ( ): """simple docstring""" _lowerCamelCase : Any = HfArgumentParser(__snake_case ) _lowerCamelCase : int = parser.parse_args_into_dataclasses()[0] _lowerCamelCase : Dict = TensorFlowBenchmark(args=__snake_case ) try: _lowerCamelCase : Optional[int] = parser.parse_args_into_dataclasses()[0] except ValueError as e: _lowerCamelCase : Union[str, Any] = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" _lowerCamelCase : List[str] = """ """.join(str(__snake_case ).split(""" """ )[:-1] ) _lowerCamelCase : Dict = """""" _lowerCamelCase : List[Any] = eval(str(__snake_case ).split(""" """ )[-1] ) _lowerCamelCase : Tuple = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__snake_case ) if len(__snake_case ) > 0: _lowerCamelCase : Tuple = full_error_msg + begin_error_msg + str(__snake_case ) raise ValueError(__snake_case ) benchmark.run() if __name__ == "__main__": main()
88
0
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) snake_case__ = '''\\n Text data.\n Second line of data.''' snake_case__ = '''file''' @pytest.fixture(scope="session" ) def lowerCamelCase__ ( a : Optional[int] ) -> Optional[int]: """simple docstring""" a__ :Dict = tmp_path_factory.mktemp("data" ) / (FILE_PATH + """.zstd""") a__ :Tuple = bytes(snake_case_ , "utf-8" ) with zstd.open(snake_case_ , "wb" ) as f: f.write(snake_case_ ) return path @pytest.fixture def lowerCamelCase__ ( a : Union[str, Any] ) -> Optional[int]: """simple docstring""" with open(os.path.join(tmpfs.local_root_dir , snake_case_ ) , "w" ) as f: f.write(snake_case_ ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def lowerCamelCase__ ( a : Tuple , a : int , a : List[str] , a : List[Any] , a : Dict , a : Any ) -> Tuple: """simple docstring""" a__ :Tuple = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} a__ :Optional[int] = input_paths[compression_format] a__ :Any = tmp_path / """cache""" a__ :List[str] = DownloadConfig(cache_dir=snake_case_ , extract_compressed_file=snake_case_ ) a__ :Union[str, Any] = cached_path(snake_case_ , download_config=snake_case_ ) with open(snake_case_ ) as f: a__ :List[Any] = f.read() with open(snake_case_ ) as f: a__ :List[Any] = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def lowerCamelCase__ ( a : str , a : List[Any] , a : Any , a : str , a : Tuple ) -> Dict: """simple docstring""" a__ :Union[str, Any] = """custom_cache""" a__ :Any = """custom_extracted_dir""" a__ :Union[str, Any] = tmp_path / """custom_extracted_path""" if default_extracted: a__ :int = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , snake_case_ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(snake_case_ ) ) a__ :List[Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) a__ :Dict = xz_file a__ :Optional[int] = ( DownloadConfig(extract_compressed_file=snake_case_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=snake_case_ ) ) a__ :int = cached_path(snake_case_ , download_config=snake_case_ ) assert Path(snake_case_ ).parent.parts[-2:] == expected def lowerCamelCase__ ( a : Dict ) -> Tuple: """simple docstring""" # absolute path a__ :int = str(Path(snake_case_ ).resolve() ) assert cached_path(snake_case_ ) == text_file # relative path a__ :str = str(Path(snake_case_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(snake_case_ ) == text_file def lowerCamelCase__ ( a : Tuple ) -> Union[str, Any]: """simple docstring""" # absolute path a__ :Union[str, Any] = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(snake_case_ ): cached_path(snake_case_ ) # relative path a__ :Tuple = """./__missing_file__.txt""" with pytest.raises(snake_case_ ): cached_path(snake_case_ ) def lowerCamelCase__ ( a : Dict ) -> List[str]: """simple docstring""" a__ :List[str] = get_from_cache(F'''tmp://{tmpfs_file}''' ) with open(snake_case_ ) as f: a__ :int = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , snake_case_ ) def lowerCamelCase__ ( ) -> Optional[int]: """simple docstring""" with pytest.raises(snake_case_ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , snake_case_ ) def lowerCamelCase__ ( a : Optional[int] ) -> str: """simple docstring""" a__ :Any = tmp_path_factory.mktemp("data" ) / """file.html""" with pytest.raises(snake_case_ ): http_get("https://huggingface.co" , temp_file=snake_case_ ) with pytest.raises(snake_case_ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , snake_case_ ) def lowerCamelCase__ ( a : List[Any] ) -> Tuple: """simple docstring""" a__ :str = tmp_path_factory.mktemp("data" ) / """file.html""" with pytest.raises(snake_case_ ): ftp_get("ftp://huggingface.co" , temp_file=snake_case_ ) with pytest.raises(snake_case_ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , snake_case_ ) def lowerCamelCase__ ( a : Union[str, Any] ) -> Dict: """simple docstring""" a__ :Optional[int] = tmp_path_factory.mktemp("data" ) / """file.html""" with pytest.raises(snake_case_ ): fsspec_get("s3://huggingface.co" , temp_file=snake_case_ ) with pytest.raises(snake_case_ ): fsspec_head("s3://huggingface.co" )
710
import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput snake_case__ = '''scheduler_config.json''' class lowerCAmelCase_ ( _a): lowerCamelCase_ = 1 lowerCamelCase_ = 2 lowerCamelCase_ = 3 lowerCamelCase_ = 4 lowerCamelCase_ = 5 lowerCamelCase_ = 6 lowerCamelCase_ = 7 lowerCamelCase_ = 8 lowerCamelCase_ = 9 lowerCamelCase_ = 10 lowerCamelCase_ = 11 lowerCamelCase_ = 12 lowerCamelCase_ = 13 lowerCamelCase_ = 14 @dataclass class lowerCAmelCase_ ( _a): lowerCamelCase_ = 42 class lowerCAmelCase_ : lowerCamelCase_ = SCHEDULER_CONFIG_NAME lowerCamelCase_ = [] lowerCamelCase_ = True @classmethod def _snake_case ( cls : Union[str, Any] , __A : Dict[str, Any] = None , __A : Optional[str] = None , __A : Optional[int]=False , **__A : Union[str, Any] , ) ->List[Any]: """simple docstring""" a__ , a__ , a__ :List[Any] = cls.load_config( pretrained_model_name_or_path=__A , subfolder=__A , return_unused_kwargs=__A , return_commit_hash=__A , **__A , ) return cls.from_config(__A , return_unused_kwargs=__A , **__A ) def _snake_case ( self : str , __A : Union[str, os.PathLike] , __A : bool = False , **__A : Optional[Any] ) ->str: """simple docstring""" self.save_config(save_directory=__A , push_to_hub=__A , **__A ) @property def _snake_case ( self : List[Any] ) ->Dict: """simple docstring""" return self._get_compatibles() @classmethod def _snake_case ( cls : Dict ) ->int: """simple docstring""" a__ :Optional[int] = list(set([cls.__name__] + cls._compatibles ) ) a__ :Union[str, Any] = importlib.import_module(__name__.split("." )[0] ) a__ :Optional[int] = [ getattr(__A , __A ) for c in compatible_classes_str if hasattr(__A , __A ) ] return compatible_classes
373
0
'''simple docstring''' import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
350
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = { """configuration_table_transformer""": [ """TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TableTransformerConfig""", """TableTransformerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TableTransformerForObjectDetection""", """TableTransformerModel""", """TableTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
0
'''simple docstring''' import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger UpperCamelCase__ = get_logger(__name__) class _UpperCAmelCase : def __init__( self : List[str] , a : Optional[str] = None ): '''simple docstring''' lowercase_ : Union[str, Any] = ( os.path.join(a , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) lowercase_ : List[str] = Extractor def lowerCAmelCase__ ( self : str , a : str ): '''simple docstring''' from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" lowercase_ : Union[str, Any] = os.path.abspath(a ) return os.path.join(self.extract_dir , hash_url_to_filename(a ) ) def lowerCAmelCase__ ( self : Union[str, Any] , a : str , a : bool ): '''simple docstring''' return force_extract or ( not os.path.isfile(a ) and not (os.path.isdir(a ) and os.listdir(a )) ) def lowerCAmelCase__ ( self : List[Any] , a : str , a : bool = False ): '''simple docstring''' lowercase_ : List[Any] = self.extractor.infer_extractor_format(a ) if not extractor_format: return input_path lowercase_ : str = self._get_output_path(a ) if self._do_extract(a , a ): self.extractor.extract(a , a , a ) return output_path class _UpperCAmelCase ( snake_case ): @classmethod @abstractmethod def lowerCAmelCase__ ( cls : Tuple , a : Union[Path, str] , **a : List[Any] ): '''simple docstring''' ... @staticmethod @abstractmethod def lowerCAmelCase__ ( a : Union[Path, str] , a : Union[Path, str] ): '''simple docstring''' ... class _UpperCAmelCase ( snake_case , snake_case ): __lowerCamelCase: List[bytes] = [] @staticmethod def lowerCAmelCase__ ( a : Union[Path, str] , a : int ): '''simple docstring''' with open(a , "rb" ) as f: return f.read(a ) @classmethod def lowerCAmelCase__ ( cls : Union[str, Any] , a : Union[Path, str] , a : bytes = b"" ): '''simple docstring''' if not magic_number: lowercase_ : int = max(len(a ) for cls_magic_number in cls.magic_numbers ) try: lowercase_ : List[Any] = cls.read_magic_number(a , a ) except OSError: return False return any(magic_number.startswith(a ) for cls_magic_number in cls.magic_numbers ) class _UpperCAmelCase ( snake_case ): @classmethod def lowerCAmelCase__ ( cls : Optional[int] , a : Union[Path, str] , **a : Optional[Any] ): '''simple docstring''' return tarfile.is_tarfile(a ) @staticmethod def lowerCAmelCase__ ( a : List[str] , a : int ): '''simple docstring''' def resolved(a : str ) -> str: return os.path.realpath(os.path.abspath(a ) ) def badpath(a : str , a : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(a , a ) ).startswith(a ) def badlink(a : Any , a : str ) -> bool: # Links are interpreted relative to the directory containing the link lowercase_ : Optional[int] = resolved(os.path.join(a , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=a ) lowercase_ : List[str] = resolved(a ) for finfo in members: if badpath(finfo.name , a ): logger.error(f"""Extraction of {finfo.name} is blocked (illegal path)""" ) elif finfo.issym() and badlink(a , a ): logger.error(f"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" ) elif finfo.islnk() and badlink(a , a ): logger.error(f"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" ) else: yield finfo @staticmethod def lowerCAmelCase__ ( a : Union[Path, str] , a : Union[Path, str] ): '''simple docstring''' os.makedirs(a , exist_ok=a ) lowercase_ : List[str] = tarfile.open(a ) tar_file.extractall(a , members=TarExtractor.safemembers(a , a ) ) tar_file.close() class _UpperCAmelCase ( snake_case ): __lowerCamelCase: Union[str, Any] = [b'\x1F\x8B'] @staticmethod def lowerCAmelCase__ ( a : Union[Path, str] , a : Union[Path, str] ): '''simple docstring''' with gzip.open(a , "rb" ) as gzip_file: with open(a , "wb" ) as extracted_file: shutil.copyfileobj(a , a ) class _UpperCAmelCase ( snake_case ): __lowerCamelCase: str = [ b'PK\x03\x04', b'PK\x05\x06', # empty archive b'PK\x07\x08', # spanned archive ] @classmethod def lowerCAmelCase__ ( cls : Union[str, Any] , a : Union[Path, str] , a : bytes = b"" ): '''simple docstring''' if super().is_extractable(a , magic_number=a ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(a , "rb" ) as fp: lowercase_ : Optional[int] = _EndRecData(a ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: lowercase_ : int = fp.read(a ) # CD is where we expect it to be if len(a ) == sizeCentralDir: lowercase_ : Union[str, Any] = struct.unpack(a , a ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def lowerCAmelCase__ ( a : Union[Path, str] , a : Union[Path, str] ): '''simple docstring''' os.makedirs(a , exist_ok=a ) with zipfile.ZipFile(a , "r" ) as zip_file: zip_file.extractall(a ) zip_file.close() class _UpperCAmelCase ( snake_case ): __lowerCamelCase: List[str] = [b'\xFD\x37\x7A\x58\x5A\x00'] @staticmethod def lowerCAmelCase__ ( a : Union[Path, str] , a : Union[Path, str] ): '''simple docstring''' with lzma.open(a ) as compressed_file: with open(a , "wb" ) as extracted_file: shutil.copyfileobj(a , a ) class _UpperCAmelCase ( snake_case ): __lowerCamelCase: Optional[int] = [b'Rar!\x1a\x07\x00', b'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID @staticmethod def lowerCAmelCase__ ( a : Union[Path, str] , a : Union[Path, str] ): '''simple docstring''' if not config.RARFILE_AVAILABLE: raise ImportError("Please pip install rarfile" ) import rarfile os.makedirs(a , exist_ok=a ) lowercase_ : Union[str, Any] = rarfile.RarFile(a ) rf.extractall(a ) rf.close() class _UpperCAmelCase ( snake_case ): __lowerCamelCase: Any = [b'\x28\xb5\x2F\xFD'] @staticmethod def lowerCAmelCase__ ( a : Union[Path, str] , a : Union[Path, str] ): '''simple docstring''' if not config.ZSTANDARD_AVAILABLE: raise ImportError("Please pip install zstandard" ) import zstandard as zstd lowercase_ : Union[str, Any] = zstd.ZstdDecompressor() with open(a , "rb" ) as ifh, open(a , "wb" ) as ofh: dctx.copy_stream(a , a ) class _UpperCAmelCase ( snake_case ): __lowerCamelCase: Dict = [b'\x42\x5A\x68'] @staticmethod def lowerCAmelCase__ ( a : Union[Path, str] , a : Union[Path, str] ): '''simple docstring''' with bza.open(a , "rb" ) as compressed_file: with open(a , "wb" ) as extracted_file: shutil.copyfileobj(a , a ) class _UpperCAmelCase ( snake_case ): __lowerCamelCase: Union[str, Any] = [b'\x37\x7A\xBC\xAF\x27\x1C'] @staticmethod def lowerCAmelCase__ ( a : Union[Path, str] , a : Union[Path, str] ): '''simple docstring''' if not config.PY7ZR_AVAILABLE: raise ImportError("Please pip install py7zr" ) import pyazr os.makedirs(a , exist_ok=a ) with pyazr.SevenZipFile(a , "r" ) as archive: archive.extractall(a ) class _UpperCAmelCase ( snake_case ): __lowerCamelCase: List[Any] = [b'\x04\x22\x4D\x18'] @staticmethod def lowerCAmelCase__ ( a : Union[Path, str] , a : Union[Path, str] ): '''simple docstring''' if not config.LZ4_AVAILABLE: raise ImportError("Please pip install lz4" ) import lza.frame with lza.frame.open(a , "rb" ) as compressed_file: with open(a , "wb" ) as extracted_file: shutil.copyfileobj(a , a ) class _UpperCAmelCase : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) __lowerCamelCase: Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def lowerCAmelCase__ ( cls : Any ): '''simple docstring''' return max( len(a ) for extractor in cls.extractors.values() if issubclass(a , a ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def lowerCAmelCase__ ( a : Union[Path, str] , a : int ): '''simple docstring''' try: return MagicNumberBaseExtractor.read_magic_number(a , magic_number_length=a ) except OSError: return b"" @classmethod def lowerCAmelCase__ ( cls : int , a : Union[Path, str] , a : bool = False ): '''simple docstring''' warnings.warn( "Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'infer_extractor_format' instead." , category=a , ) lowercase_ : str = cls.infer_extractor_format(a ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def lowerCAmelCase__ ( cls : Tuple , a : Union[Path, str] ): # <Added version="2.4.0"/> '''simple docstring''' lowercase_ : Any = cls._get_magic_number_max_length() lowercase_ : Any = cls._read_magic_number(a , a ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(a , magic_number=a ): return extractor_format @classmethod def lowerCAmelCase__ ( cls : List[str] , a : Union[Path, str] , a : Union[Path, str] , a : Optional[str] = None , a : Optional[BaseExtractor] = "deprecated" , ): '''simple docstring''' os.makedirs(os.path.dirname(a ) , exist_ok=a ) # Prevent parallel extractions lowercase_ : int = str(Path(a ).with_suffix(".lock" ) ) with FileLock(a ): shutil.rmtree(a , ignore_errors=a ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(a , a ): # passed as positional arg warnings.warn( "Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'extractor_format' instead." , category=a , ) lowercase_ : Union[str, Any] = extractor if extractor != "deprecated" else extractor_format else: lowercase_ : Any = cls.extractors[extractor_format] return extractor.extract(a , a ) else: warnings.warn( "Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an " "exception in 3.0.0." , category=a , ) for extractor in cls.extractors.values(): if extractor.is_extractable(a ): return extractor.extract(a , a )
714
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Dict = 0 lowercase_ : Optional[Any] = len(_UpperCamelCase ) # No of vertices in graph lowercase_ : Union[str, Any] = [0] * n lowercase_ : Optional[int] = [False] * n def dfs(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): lowercase_ : Union[str, Any] = True lowercase_ : Dict = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , id_ ) lowercase_ : str = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge lowercase_ : Optional[int] = min(low[at] , low[to] ) lowercase_ : list[tuple[int, int]] = [] for i in range(_UpperCamelCase ): if not visited[i]: dfs(_UpperCamelCase , -1 , _UpperCamelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
640
0
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __A ( UpperCamelCase__ ): def __init__( self :Dict , __snake_case :NestedDataStructureLike[PathLike] , __snake_case :Optional[NamedSplit] = None , __snake_case :Optional[Features] = None , __snake_case :str = None , __snake_case :bool = False , __snake_case :bool = False , __snake_case :Optional[int] = None , **__snake_case :Optional[Any] , ): '''simple docstring''' super().__init__( __snake_case , split=__snake_case , features=__snake_case , cache_dir=__snake_case , keep_in_memory=__snake_case , streaming=__snake_case , num_proc=__snake_case , **__snake_case , ) __magic_name__ : str =path_or_paths if isinstance(__snake_case , __snake_case ) else {self.split: path_or_paths} __magic_name__ : Union[str, Any] =Text( cache_dir=__snake_case , data_files=__snake_case , features=__snake_case , **__snake_case , ) def A__ ( self :str ): '''simple docstring''' if self.streaming: __magic_name__ : Tuple =self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __magic_name__ : List[Any] =None __magic_name__ : int =None __magic_name__ : Optional[Any] =None __magic_name__ : Optional[int] =None self.builder.download_and_prepare( download_config=__snake_case , download_mode=__snake_case , verification_mode=__snake_case , base_path=__snake_case , num_proc=self.num_proc , ) __magic_name__ : Dict =self.builder.as_dataset( split=self.split , verification_mode=__snake_case , in_memory=self.keep_in_memory ) return dataset
21
from typing import List from .keymap import KEYMAP, get_character def lowerCAmelCase_ ( lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : str =getattr(lowerCamelCase , """handle_key""" , [] ) handle += [key] setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator def lowerCAmelCase_ ( *lowerCamelCase ): def decorator(lowerCamelCase ): __magic_name__ : Dict =getattr(lowerCamelCase , """handle_key""" , [] ) handle += keys setattr(lowerCamelCase , """handle_key""" , lowerCamelCase ) return func return decorator class __A ( UpperCamelCase__ ): def __new__( cls :Dict , __snake_case :Optional[Any] , __snake_case :Union[str, Any] , __snake_case :List[str] ): '''simple docstring''' __magic_name__ : int =super().__new__(cls , __snake_case , __snake_case , __snake_case ) if not hasattr(__snake_case , """key_handler""" ): setattr(__snake_case , """key_handler""" , {} ) setattr(__snake_case , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): __magic_name__ : int =getattr(__snake_case , """handle_key""" , [] ) for key in handled_keys: __magic_name__ : List[str] =value return new_cls @staticmethod def A__ ( cls :Optional[int] ): '''simple docstring''' __magic_name__ : Union[str, Any] =get_character() if char != KEYMAP["undefined"]: __magic_name__ : Optional[int] =ord(__snake_case ) __magic_name__ : int =cls.key_handler.get(__snake_case ) if handler: __magic_name__ : Dict =char return handler(cls ) else: return None def lowerCAmelCase_ ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
21
1
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() _lowercase : int = [ "word_embeddings_layernorm.weight", "word_embeddings_layernorm.bias", "input_layernorm.weight", "input_layernorm.bias", "post_attention_layernorm.weight", "post_attention_layernorm.bias", "self_attention.dense.bias", "mlp.dense_4h_to_h.bias", "ln_f.weight", "ln_f.bias", ] _lowercase : List[Any] = [ "mlp.dense_4h_to_h.weight", "self_attention.dense.weight", ] def _lowerCAmelCase ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Dict ) -> List[Any]: """simple docstring""" A = { """word_embeddings.weight""": """word_embeddings.weight""", """word_embeddings.norm.weight""": """word_embeddings_layernorm.weight""", """word_embeddings.norm.bias""": """word_embeddings_layernorm.bias""", """weight""": """ln_f.weight""", """bias""": """ln_f.bias""", } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks A = int(re.match(r""".*layer_(\d*).*""" , UpperCamelCase__ )[1] ) layer_number -= 3 return f'h.{layer_number}.' + key def _lowerCAmelCase ( UpperCamelCase__: List[Any] ) -> Tuple: """simple docstring""" if dtype == torch.bool: return 1 / 8 A = re.search(r"""[^\d](\d+)$""" , str(UpperCamelCase__ ) ) if bit_search is None: raise ValueError(f'`dtype` is not a valid dtype: {dtype}.' ) A = int(bit_search.groups()[0] ) return bit_size // 8 def _lowerCAmelCase ( UpperCamelCase__: str , UpperCamelCase__: Optional[int] , UpperCamelCase__: int , UpperCamelCase__: int , UpperCamelCase__: Union[str, Any] ) -> int: """simple docstring""" if bloom_config_file == "": A = BloomConfig() else: A = BloomConfig.from_json_file(UpperCamelCase__ ) if shard_model: A = os.listdir(UpperCamelCase__ ) A = sorted(filter(lambda UpperCamelCase__ : s.startswith("""layer""" ) and "model_00" in s , UpperCamelCase__ ) ) A = {"""weight_map""": {}, """metadata""": {}} A = 0 A = None A = BloomConfig() for j, file in enumerate(UpperCamelCase__ ): print("""Processing file: {}""".format(UpperCamelCase__ ) ) A = None for i in range(UpperCamelCase__ ): # load all TP files A = file.replace("""model_00""" , f'model_0{i}' ) A = torch.load(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , map_location="""cpu""" ) # Rename keys in the transformers names A = list(temp.keys() ) for key in keys: A = temp.pop(UpperCamelCase__ ) if tensors is None: A = temp else: for key in tensors.keys(): if any(key.endswith(UpperCamelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel A = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks A = torch.cat([tensors[key], temp[key]] , dim=UpperCamelCase__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCamelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): A = tensors[key] / pretraining_tp torch.save( UpperCamelCase__ , os.path.join( UpperCamelCase__ , """pytorch_model_{}-of-{}.bin""".format(str(j + 1 ).zfill(5 ) , str(len(UpperCamelCase__ ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): A = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: A = """pytorch_model_{}-of-{}.bin""".format( str(j + 1 ).zfill(5 ) , str(len(UpperCamelCase__ ) ).zfill(5 ) ) A = BloomConfig() A = pytorch_dump_folder_path + """/""" + CONFIG_NAME A = total_size with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) with open(os.path.join(UpperCamelCase__ , WEIGHTS_NAME + """.index.json""" ) , """w""" , encoding="""utf-8""" ) as f: A = json.dumps(UpperCamelCase__ , indent=2 , sort_keys=UpperCamelCase__ ) + """\n""" f.write(UpperCamelCase__ ) else: A = BloomModel(UpperCamelCase__ ) A = os.listdir(UpperCamelCase__ ) A = sorted(filter(lambda UpperCamelCase__ : s.startswith("""layer""" ) and "model_00" in s , UpperCamelCase__ ) ) A = None for i, file in enumerate(UpperCamelCase__ ): A = None for i in range(UpperCamelCase__ ): # load all TP files A = file.replace("""model_00""" , f'model_0{i}' ) A = torch.load(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , map_location="""cpu""" ) # Rename keys in the transformers names A = list(temp.keys() ) for key in keys: A = temp.pop(UpperCamelCase__ ) if tensors is None: A = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(UpperCamelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel A = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks A = torch.cat([tensors[key], temp[key]] , dim=UpperCamelCase__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCamelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): A = tensors[key] / pretraining_tp A = model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) assert not other_keys.unexpected_keys, f'The keys {other_keys.unexpected_keys} are unexpected' if missing_keys is None: A = set(other_keys.missing_keys ) else: A = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f'The keys {missing_keys} are missing' # Save pytorch-model os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) A = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME A = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(f'Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}' ) if config.torch_dtype is not None: A = model.to(config.torch_dtype ) torch.save(model.state_dict() , UpperCamelCase__ ) print(f'Save configuration file to {pytorch_config_dump_path}' ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowercase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bloom_checkpoint_path", default=None, type=str, required=True, help="Path to the Megatron-LM checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--bloom_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--shard_model", action="store_true", help="An optional setting to shard the output model \nThis enables sharding the converted checkpoint", ) parser.add_argument( "--pretraining_tp", default=4, type=int, help="Pretraining TP rank that has been used when training the model in Megatron-LM \n", ) _lowercase : str = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
546
import sys from collections import defaultdict class _UpperCamelCase : """simple docstring""" def __init__( self ) -> Any: A = [] def _UpperCAmelCase ( self , a__ ) -> List[str]: return self.node_position[vertex] def _UpperCAmelCase ( self , a__ , a__ ) -> Optional[int]: A = pos def _UpperCAmelCase ( self , a__ , a__ , a__ , a__ ) -> Any: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: A = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: A = 2 * start + 1 else: A = 2 * start + 2 if heap[smallest_child] < heap[start]: A , A = heap[smallest_child], positions[smallest_child] A , A = ( heap[start], positions[start], ) A , A = temp, tempa A = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , a__ ) self.top_to_bottom(a__ , a__ , a__ , a__ ) def _UpperCAmelCase ( self , a__ , a__ , a__ , a__ ) -> Dict: A = position[index] while index != 0: A = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: A = heap[parent] A = position[parent] self.set_position(position[parent] , a__ ) else: A = val A = temp self.set_position(a__ , a__ ) break A = parent else: A = val A = temp self.set_position(a__ , 0 ) def _UpperCAmelCase ( self , a__ , a__ ) -> Optional[int]: A = len(a__ ) // 2 - 1 for i in range(a__ , -1 , -1 ): self.top_to_bottom(a__ , a__ , len(a__ ) , a__ ) def _UpperCAmelCase ( self , a__ , a__ ) -> Any: A = positions[0] A = sys.maxsize self.top_to_bottom(a__ , 0 , len(a__ ) , a__ ) return temp def _lowerCAmelCase ( UpperCamelCase__: List[str] ) -> List[str]: """simple docstring""" A = Heap() A = [0] * len(UpperCamelCase__ ) A = [-1] * len(UpperCamelCase__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph A = [] # Heap of Distance of vertices from their neighboring vertex A = [] for vertex in range(len(UpperCamelCase__ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCamelCase__ ) heap.node_position.append(UpperCamelCase__ ) A = [] A = 1 A = sys.maxsize for neighbor, distance in adjacency_list[0]: A = 0 A = distance heap.heapify(UpperCamelCase__ , UpperCamelCase__ ) for _ in range(1 , len(UpperCamelCase__ ) ): A = heap.delete_minimum(UpperCamelCase__ , UpperCamelCase__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) A = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCamelCase__ )] ): A = distance heap.bottom_to_top( UpperCamelCase__ , heap.get_position(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) A = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowercase : Tuple = int(input("Enter number of edges: ").strip()) _lowercase : int = defaultdict(list) for _ in range(edges_number): _lowercase : Optional[Any] = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
546
1
"""simple docstring""" from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging snake_case = logging.get_logger(__name__) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): A__ : Any = ['''input_features''', '''attention_mask'''] def __init__( self : List[Any] , __lowerCamelCase : str=8_0 , __lowerCamelCase : str=1_6_0_0_0 , __lowerCamelCase : List[str]=8_0 , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : int=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : Tuple=True , **__lowerCamelCase : List[str] , ): """simple docstring""" super().__init__(feature_size=__lowerCamelCase , sampling_rate=__lowerCamelCase , padding_value=__lowerCamelCase , **__lowerCamelCase ) _snake_case = num_mel_bins _snake_case = do_ceptral_normalize _snake_case = normalize_means _snake_case = normalize_vars _snake_case = True def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : np.ndarray , ): """simple docstring""" _snake_case = waveform * (2**1_5) # Kaldi compliance: 16-bit signed integers _snake_case = torch.from_numpy(__lowerCamelCase ).unsqueeze(0 ) _snake_case = ta_kaldi.fbank(__lowerCamelCase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def __UpperCAmelCase ( __lowerCamelCase : np.ndarray , __lowerCamelCase : int , __lowerCamelCase : Optional[bool] = True , __lowerCamelCase : Optional[bool] = True , __lowerCamelCase : float = 0.0 , ): """simple docstring""" # make sure we normalize float32 arrays if normalize_means: _snake_case = x[:input_length].mean(axis=0 ) _snake_case = np.subtract(__lowerCamelCase , __lowerCamelCase ) if normalize_vars: _snake_case = x[:input_length].std(axis=0 ) _snake_case = np.divide(__lowerCamelCase , __lowerCamelCase ) if input_length < x.shape[0]: _snake_case = padding_value # make sure array is in float32 _snake_case = x.astype(np.floataa ) return x def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : List[np.ndarray] , __lowerCamelCase : Optional[np.ndarray] = None ): """simple docstring""" _snake_case = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(__lowerCamelCase , __lowerCamelCase , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(__lowerCamelCase , __lowerCamelCase ) ] def __call__( self : int , __lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __lowerCamelCase : Union[bool, str, PaddingStrategy] = False , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , **__lowerCamelCase : Dict , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) _snake_case = isinstance(__lowerCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) _snake_case = is_batched_numpy or ( isinstance(__lowerCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _snake_case = [np.asarray(__lowerCamelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__lowerCamelCase , np.ndarray ): _snake_case = np.asarray(__lowerCamelCase , dtype=np.floataa ) elif isinstance(__lowerCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _snake_case = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _snake_case = [raw_speech] # extract fbank features _snake_case = [self._extract_fbank_features(__lowerCamelCase ) for waveform in raw_speech] # convert into correct format for padding _snake_case = BatchFeature({'''input_features''': features} ) _snake_case = self.pad( __lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , truncation=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) # make sure list is in array format _snake_case = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , __lowerCamelCase ): _snake_case = [np.asarray(__lowerCamelCase , dtype=np.floataa ) for feature in input_features] _snake_case = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: _snake_case = [np.asarray(__lowerCamelCase , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: _snake_case = ( np.array(__lowerCamelCase , dtype=np.intaa ) if self._get_padding_strategies(__lowerCamelCase , max_length=__lowerCamelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) _snake_case = self.normalize( padded_inputs['''input_features'''] , attention_mask=__lowerCamelCase ) if return_tensors is not None: _snake_case = padded_inputs.convert_to_tensors(__lowerCamelCase ) return padded_inputs
103
def __lowercase ( snake_case ): """simple docstring""" return "".join([hex(snake_case )[2:].zfill(2 ).upper() for byte in list(snake_case )] ) def __lowercase ( snake_case ): """simple docstring""" if (len(snake_case ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(snake_case ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1], 1_6 ) for i in range(0, len(snake_case ), 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
0
0
import json import sys def A ( snake_case__ : List[Any] , snake_case__ : str ) -> Union[str, Any]: '''simple docstring''' with open(snake_case__ , encoding='utf-8' ) as f: __snake_case = json.load(snake_case__ ) __snake_case = ['<details>', '<summary>Show updated benchmarks!</summary>', ' '] for benchmark_name in sorted(snake_case__ ): __snake_case = results[benchmark_name] __snake_case = benchmark_name.split('/' )[-1] output_md.append(f"### Benchmark: {benchmark_file_name}" ) __snake_case = '| metric |' __snake_case = '|--------|' __snake_case = '| new / old (diff) |' for metric_name in sorted(snake_case__ ): __snake_case = benchmark_res[metric_name] __snake_case = metric_vals['new'] __snake_case = metric_vals.get('old' , snake_case__ ) __snake_case = metric_vals.get('diff' , snake_case__ ) __snake_case = f" {new_val:f}" if isinstance(snake_case__ , (int, float) ) else 'None' if old_val is not None: val_str += f" / {old_val:f}" if isinstance(snake_case__ , (int, float) ) else "None" if dif_val is not None: val_str += f" ({dif_val:f})" if isinstance(snake_case__ , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('</details>' ) with open(snake_case__ , 'w' , encoding='utf-8' ) as f: f.writelines('\n'.join(snake_case__ ) ) if __name__ == "__main__": UpperCAmelCase__ : Optional[Any] = sys.argv[1] UpperCAmelCase__ : Any = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
720
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] ) @pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] ) @pytest.mark.parametrize('revision' , [None, 'v2'] ) def A ( snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Any ) -> Optional[int]: '''simple docstring''' __snake_case = hf_hub_url(repo_id=snake_case__ , path=snake_case__ , revision=snake_case__ ) assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(snake_case__ )}"
676
0
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
120
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : int = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class a ( snake_case__ ): '''simple docstring''' __lowerCAmelCase : List[Any] = """segformer""" def __init__( self , lowerCamelCase_=3 , lowerCamelCase_=4 , lowerCamelCase_=[2, 2, 2, 2] , lowerCamelCase_=[8, 4, 2, 1] , lowerCamelCase_=[3_2, 6_4, 1_6_0, 2_5_6] , lowerCamelCase_=[7, 3, 3, 3] , lowerCamelCase_=[4, 2, 2, 2] , lowerCamelCase_=[1, 2, 5, 8] , lowerCamelCase_=[4, 4, 4, 4] , lowerCamelCase_="gelu" , lowerCamelCase_=0.0 , lowerCamelCase_=0.0 , lowerCamelCase_=0.1 , lowerCamelCase_=0.02 , lowerCamelCase_=0.1 , lowerCamelCase_=1e-6 , lowerCamelCase_=2_5_6 , lowerCamelCase_=2_5_5 , **lowerCamelCase_ , ) -> Union[str, Any]: super().__init__(**lowerCamelCase_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , lowerCamelCase_ , ) _a : Union[str, Any] = num_channels _a : Any = num_encoder_blocks _a : Union[str, Any] = depths _a : int = sr_ratios _a : List[str] = hidden_sizes _a : Tuple = patch_sizes _a : Any = strides _a : List[Any] = mlp_ratios _a : str = num_attention_heads _a : str = hidden_act _a : List[Any] = hidden_dropout_prob _a : int = attention_probs_dropout_prob _a : Any = classifier_dropout_prob _a : Optional[Any] = initializer_range _a : int = drop_path_rate _a : int = layer_norm_eps _a : Optional[Any] = decoder_hidden_size _a : int = kwargs.get('reshape_last_stage' , lowerCamelCase_ ) _a : str = semantic_loss_ignore_index class a ( snake_case__ ): '''simple docstring''' __lowerCAmelCase : Any = version.parse("""1.11""" ) @property def __UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __UpperCamelCase ( self ) -> float: return 1e-4 @property def __UpperCamelCase ( self ) -> int: return 1_2
120
1
from typing import TYPE_CHECKING from ..utils import _LazyModule __lowerCAmelCase = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
703
def _lowercase ( a__ : str ) -> str: """simple docstring""" return " ".join( "".join(word[::-1] ) if len(a__ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("""Hey wollef sroirraw"""))
589
0
'''simple docstring''' def UpperCamelCase_ ( A__ = 10 , A__ = 22 ): a_ = range(1 , A__ ) a_ = range(1 , A__ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"""{solution(10, 22) = }""")
263
'''simple docstring''' import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowercase__ =version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def UpperCamelCase_ ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__=False , ): output_path.parent.mkdir(parents=A__ , exist_ok=A__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( A__ , A__ , f=output_path.as_posix() , input_names=A__ , output_names=A__ , dynamic_axes=A__ , do_constant_folding=A__ , use_external_data_format=A__ , enable_onnx_checker=A__ , opset_version=A__ , ) else: export( A__ , A__ , f=output_path.as_posix() , input_names=A__ , output_names=A__ , dynamic_axes=A__ , do_constant_folding=A__ , opset_version=A__ , ) @torch.no_grad() def UpperCamelCase_ ( A__ , A__ , A__ , A__ = False ): a_ = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): a_ = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: a_ = """cpu""" a_ = Path(A__ ) # VAE DECODER a_ = AutoencoderKL.from_pretrained(model_path + """/vae""" ) a_ = vae_decoder.config.latent_channels # forward only through the decoder part a_ = vae_decoder.decode onnx_export( A__ , model_args=( torch.randn(1 , A__ , 25 , 25 ).to(device=A__ , dtype=A__ ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=A__ , ) del vae_decoder if __name__ == "__main__": lowercase__ =argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=14, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') lowercase__ =parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('SD: Done: ONNX')
263
1
import math def lowerCamelCase ( UpperCAmelCase__ : int ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = 0 SCREAMING_SNAKE_CASE__ :Dict = 0 while num > 0: SCREAMING_SNAKE_CASE__ :Any = num % 8 SCREAMING_SNAKE_CASE__ :Any = octal + (remainder * math.floor(math.pow(1_0 , UpperCAmelCase__ ) )) counter += 1 SCREAMING_SNAKE_CASE__ :List[str] = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F'''0o{int(UpperCAmelCase__ )}''' def lowerCamelCase ( ) -> None: '''simple docstring''' print('\n2 in octal is:' ) print(decimal_to_octal(2 ) ) # = 2 print('\n8 in octal is:' ) print(decimal_to_octal(8 ) ) # = 10 print('\n65 in octal is:' ) print(decimal_to_octal(6_5 ) ) # = 101 print('\n216 in octal is:' ) print(decimal_to_octal(2_1_6 ) ) # = 330 print('\n512 in octal is:' ) print(decimal_to_octal(5_1_2 ) ) # = 1000 print('\n' ) if __name__ == "__main__": main()
700
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _SCREAMING_SNAKE_CASE( _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ : int = LongformerTokenizer A_ : int = True A_ : Optional[Any] = LongformerTokenizerFast A_ : Tuple = True def __lowerCamelCase ( self : int ) -> Tuple: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE__ :Union[str, Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] SCREAMING_SNAKE_CASE__ :Optional[int] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) SCREAMING_SNAKE_CASE__ :Dict = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] SCREAMING_SNAKE_CASE__ :Any = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE__ :Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCamelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCamelCase_ ) ) def __lowerCamelCase ( self : Tuple , **UpperCamelCase_ : Union[str, Any] ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def __lowerCamelCase ( self : Union[str, Any] , **UpperCamelCase_ : Union[str, Any] ) -> Any: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def __lowerCamelCase ( self : List[str] , UpperCamelCase_ : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE__ :Tuple = 'lower newer' SCREAMING_SNAKE_CASE__ :Tuple = 'lower newer' return input_text, output_text def __lowerCamelCase ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ :str = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) SCREAMING_SNAKE_CASE__ :Any = 'lower newer' SCREAMING_SNAKE_CASE__ :Optional[Any] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] SCREAMING_SNAKE_CASE__ :Optional[Any] = tokenizer.tokenize(UpperCamelCase_ ) # , add_prefix_space=True) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :List[Any] = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE__ :List[Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , UpperCamelCase_ ) def __lowerCamelCase ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ :Optional[int] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=UpperCamelCase_ ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=UpperCamelCase_ ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def __lowerCamelCase ( self : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ :int = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = tokenizer.encode('sequence builders' , add_special_tokens=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Dict = tokenizer.encode('multi-sequence build' , add_special_tokens=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Optional[int] = tokenizer.encode( 'sequence builders' , add_special_tokens=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :str = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Dict = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :List[Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __lowerCamelCase ( self : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ :List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE__ :Any = 'Encode this sequence.' SCREAMING_SNAKE_CASE__ :int = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments SCREAMING_SNAKE_CASE__ :str = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :str = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Optional[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) SCREAMING_SNAKE_CASE__ :List[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(UpperCamelCase_ , UpperCamelCase_ ) # Testing spaces after special tokens SCREAMING_SNAKE_CASE__ :Optional[int] = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ )} ) # mask token has a left space SCREAMING_SNAKE_CASE__ :Any = tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :List[Any] = 'Encode <mask> sequence' SCREAMING_SNAKE_CASE__ :Optional[Any] = 'Encode <mask>sequence' SCREAMING_SNAKE_CASE__ :Tuple = tokenizer.encode(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Optional[Any] = encoded.index(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = tokenizer.encode(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Any = encoded.index(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(UpperCamelCase_ , UpperCamelCase_ ) def __lowerCamelCase ( self : Dict ) -> List[str]: pass def __lowerCamelCase ( self : List[Any] ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE__ :Union[str, Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Optional[Any] = self.tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :str = 'A, <mask> AllenNLP sentence.' SCREAMING_SNAKE_CASE__ :str = tokenizer_r.encode_plus(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :List[Any] = tokenizer_p.encode_plus(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) SCREAMING_SNAKE_CASE__ :int = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) SCREAMING_SNAKE_CASE__ :str = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( UpperCamelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( UpperCamelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def __lowerCamelCase ( self : Dict ) -> List[str]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): SCREAMING_SNAKE_CASE__ :int = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Tuple = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) SCREAMING_SNAKE_CASE__ :str = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , UpperCamelCase_ ) self.assertEqual(post_processor_state['add_prefix_space'] , UpperCamelCase_ ) self.assertEqual(post_processor_state['trim_offsets'] , UpperCamelCase_ ) def __lowerCamelCase ( self : Dict ) -> List[Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE__ :Tuple = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE__ :Any = f'''{text_of_1_token} {text_of_1_token}''' SCREAMING_SNAKE_CASE__ :Optional[Any] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Optional[Any] = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase_ ) + 1, len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , ) SCREAMING_SNAKE_CASE__ :Tuple = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase_ ) + 1, len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , ) SCREAMING_SNAKE_CASE__ :str = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Tuple = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase_ ), len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , ) SCREAMING_SNAKE_CASE__ :int = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :str = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase_ ), len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , ) SCREAMING_SNAKE_CASE__ :int = f''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) SCREAMING_SNAKE_CASE__ :int = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Optional[Any] = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase_ ) + 1, 1 + len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , ) SCREAMING_SNAKE_CASE__ :Any = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Dict = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase_ ), 1 + len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , ) SCREAMING_SNAKE_CASE__ :Tuple = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :List[str] = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase_ ), 1 + len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , )
320
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case : Optional[Any] = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Tuple = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys snake_case : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
566
'''simple docstring''' import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def lowercase__ ( *__UpperCamelCase : Optional[Any] ): '''simple docstring''' if not isinstance(__UpperCamelCase , __UpperCamelCase ): __lowercase = list(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): __lowercase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def lowercase__ ( __UpperCamelCase : Exception ): '''simple docstring''' __lowercase = [ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(__UpperCamelCase , __UpperCamelCase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def lowercase__ ( __UpperCamelCase : callable = None , __UpperCamelCase : int = 128 ): '''simple docstring''' if function is None: return functools.partial(__UpperCamelCase , starting_batch_size=__UpperCamelCase ) __lowercase = starting_batch_size def decorator(*__UpperCamelCase : List[Any] , **__UpperCamelCase : Optional[Any] ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() __lowercase = list(inspect.signature(__UpperCamelCase ).parameters.keys() ) # Guard against user error if len(__UpperCamelCase ) < (len(__UpperCamelCase ) + 1): __lowercase = """, """.join([F'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F'''Batch size was passed into `{function.__name__}` as the first argument when called.''' F'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) except Exception as e: if should_reduce_batch_size(__UpperCamelCase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
566
1
"""simple docstring""" def UpperCamelCase_ ( lowerCamelCase : str , lowerCamelCase : str ) -> bool: """simple docstring""" __magic_name__ : str = len(lowerCamelCase ) __magic_name__ : str = len(lowerCamelCase ) __magic_name__ : int = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __magic_name__ : List[Any] = True for i in range(lowerCamelCase ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __magic_name__ : List[str] = True if a[i].islower(): __magic_name__ : Union[str, Any] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
147
"""simple docstring""" from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json""" ), } class _UpperCamelCase ( lowerCamelCase__ ): """simple docstring""" snake_case_ = 'xlm-prophetnet' snake_case_ = ['past_key_values'] snake_case_ = { 'num_attention_heads': 'num_encoder_attention_heads', } def __init__( self : Tuple , snake_case : Optional[float] = 0.1 , snake_case : Optional[Union[str, Callable]] = "gelu" , snake_case : Optional[int] = 3_0522 , snake_case : Optional[int] = 1024 , snake_case : Optional[int] = 4096 , snake_case : Optional[int] = 12 , snake_case : Optional[int] = 16 , snake_case : Optional[int] = 4096 , snake_case : Optional[int] = 12 , snake_case : Optional[int] = 16 , snake_case : Optional[float] = 0.1 , snake_case : Optional[float] = 0.1 , snake_case : Optional[int] = 512 , snake_case : Optional[float] = 0.02 , snake_case : Optional[bool] = True , snake_case : Optional[bool] = True , snake_case : Optional[int] = 0 , snake_case : Optional[int] = 2 , snake_case : Optional[int] = 32 , snake_case : Optional[int] = 128 , snake_case : Optional[bool] = False , snake_case : Optional[float] = 0.0 , snake_case : Optional[bool] = True , snake_case : Optional[int] = 0 , snake_case : Optional[int] = 1 , snake_case : Optional[int] = 2 , **snake_case : List[str] , ) -> str: '''simple docstring''' __magic_name__ : List[str] = vocab_size __magic_name__ : Optional[int] = hidden_size __magic_name__ : Any = encoder_ffn_dim __magic_name__ : str = num_encoder_layers __magic_name__ : List[str] = num_encoder_attention_heads __magic_name__ : Dict = decoder_ffn_dim __magic_name__ : int = num_decoder_layers __magic_name__ : str = num_decoder_attention_heads __magic_name__ : Tuple = max_position_embeddings __magic_name__ : Optional[int] = init_std # Normal(0, this parameter) __magic_name__ : Optional[int] = activation_function # parameters for xlmprophetnet __magic_name__ : int = ngram __magic_name__ : List[Any] = num_buckets __magic_name__ : int = relative_max_distance __magic_name__ : List[str] = disable_ngram_loss __magic_name__ : Union[str, Any] = eps # 3 Types of Dropout __magic_name__ : Tuple = attention_dropout __magic_name__ : List[Any] = activation_dropout __magic_name__ : Optional[int] = dropout __magic_name__ : Dict = use_cache super().__init__( pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , is_encoder_decoder=snake_case , add_cross_attention=snake_case , decoder_start_token_id=snake_case , **snake_case , ) @property def _UpperCAmelCase ( self : Union[str, Any] ) -> int: '''simple docstring''' return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def _UpperCAmelCase ( self : List[Any] , snake_case : List[Any] ) -> Union[str, Any]: '''simple docstring''' raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and''' ''' `num_decoder_layers`.''' )
147
1
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging SCREAMING_SNAKE_CASE :int = ( 'https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py' ) SCREAMING_SNAKE_CASE :Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCAmelCase ( ) -> str: """simple docstring""" __A = "https://pypi.org/pypi/diffusers/json" __A = json.loads(request.urlopen(a_ ).read() )["releases"].keys() return sorted(a_ , key=lambda a_ : version.Version(a_ ) ) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(a_ ) os.makedirs(a_ , exist_ok=a_ ) __A = Path(a_ ) / "__init__.py" if not init_path.exists(): init_path.touch() def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" init_hf_modules() __A = Path(a_ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(a_ , exist_ok=a_ ) __A = dynamic_module_path / "__init__.py" if not init_path.exists(): init_path.touch() def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" with open(a_ , "r" , encoding="utf-8" ) as f: __A = f.read() # Imports of the form `import .xxx` __A = re.findall("^\s*import\s+\.(\S+)\s*$" , a_ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("^\s*from\s+\.(\S+)\s+import" , a_ , flags=re.MULTILINE ) # Unique-ify return list(set(a_ ) ) def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" __A = False __A = [module_file] __A = [] # Let's recurse through all relative imports while not no_change: __A = [] for f in files_to_check: new_imports.extend(get_relative_imports(a_ ) ) __A = Path(a_ ).parent __A = [str(module_path / m ) for m in new_imports] __A = [f for f in new_import_files if f not in all_relative_imports] __A = [F'''{f}.py''' for f in new_import_files] __A = len(a_ ) == 0 all_relative_imports.extend(a_ ) return all_relative_imports def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" with open(a_ , "r" , encoding="utf-8" ) as f: __A = f.read() # Imports of the form `import xxx` __A = re.findall("^\s*import\s+(\S+)\s*$" , a_ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("^\s*from\s+(\S+)\s+import" , a_ , flags=re.MULTILINE ) # Only keep the top-level module __A = [imp.split("." )[0] for imp in imports if not imp.startswith("." )] # Unique-ify and test we got them all __A = list(set(a_ ) ) __A = [] for imp in imports: try: importlib.import_module(a_ ) except ImportError: missing_packages.append(a_ ) if len(a_ ) > 0: raise ImportError( "This modeling file requires the following packages that were not found in your environment: " F'''{', '.join(a_ )}. Run `pip install {' '.join(a_ )}`''' ) return get_relative_imports(a_ ) def UpperCAmelCase ( a_ , a_ ) -> Optional[int]: """simple docstring""" __A = module_path.replace(os.path.sep , "." ) __A = importlib.import_module(a_ ) if class_name is None: return find_pipeline_class(a_ ) return getattr(a_ , a_ ) def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" from ..pipelines import DiffusionPipeline __A = dict(inspect.getmembers(a_ , inspect.isclass ) ) __A = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , a_ ) and cls.__module__.split("." )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'''Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:''' F''' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in''' F''' {loaded_module}.''' ) __A = cls return pipeline_class def UpperCAmelCase ( a_ , a_ , a_ = None , a_ = False , a_ = False , a_ = None , a_ = None , a_ = None , a_ = False , ) -> Optional[Any]: """simple docstring""" __A = str(a_ ) __A = os.path.join(a_ , a_ ) if os.path.isfile(a_ ): __A = module_file_or_url __A = "local" elif pretrained_model_name_or_path.count("/" ) == 0: __A = get_diffusers_versions() # cut ".dev0" __A = "v" + ".".join(__version__.split("." )[:3] ) # retrieve github version that matches if revision is None: __A = latest_version if latest_version[1:] in available_versions else "main" logger.info(F'''Defaulting to latest_version: {revision}.''' ) elif revision in available_versions: __A = F'''v{revision}''' elif revision == "main": __A = revision else: raise ValueError( F'''`custom_revision`: {revision} does not exist. Please make sure to choose one of''' F''' {', '.join(available_versions + ['main'] )}.''' ) # community pipeline on GitHub __A = COMMUNITY_PIPELINES_URL.format(revision=a_ , pipeline=a_ ) try: __A = cached_download( a_ , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , ) __A = "git" __A = pretrained_model_name_or_path + ".py" except EnvironmentError: logger.error(F'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise else: try: # Load from URL or cache if already cached __A = hf_hub_download( a_ , a_ , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , ) __A = os.path.join("local" , "--".join(pretrained_model_name_or_path.split("/" ) ) ) except EnvironmentError: logger.error(F'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise # Check we have all the requirements in our environment __A = check_imports(a_ ) # Now we move the module inside our cached dynamic modules. __A = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(a_ ) __A = Path(a_ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(a_ , submodule_path / module_file ) for module_needed in modules_needed: __A = F'''{module_needed}.py''' shutil.copy(os.path.join(a_ , a_ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(a_ , a_ ): __A = use_auth_token elif use_auth_token is True: __A = HfFolder.get_token() else: __A = None __A = model_info(a_ , revision=a_ , token=a_ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. __A = submodule_path / commit_hash __A = full_submodule + os.path.sep + commit_hash create_dynamic_module(a_ ) if not (submodule_path / module_file).exists(): shutil.copy(a_ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( a_ , F'''{module_needed}.py''' , cache_dir=a_ , force_download=a_ , resume_download=a_ , proxies=a_ , use_auth_token=a_ , revision=a_ , local_files_only=a_ , ) return os.path.join(a_ , a_ ) def UpperCAmelCase ( a_ , a_ , a_ = None , a_ = None , a_ = False , a_ = False , a_ = None , a_ = None , a_ = None , a_ = False , **a_ , ) -> Any: """simple docstring""" __A = get_cached_module_file( a_ , a_ , cache_dir=a_ , force_download=a_ , resume_download=a_ , proxies=a_ , use_auth_token=a_ , revision=a_ , local_files_only=a_ , ) return get_class_in_module(a_ , final_module.replace(".py" , "" ) )
55
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def UpperCamelCase_ ( A__ : str , A__ : str = "cpu" , A__ : Union[str, None] = None ): '''simple docstring''' lowerCAmelCase_ : Dict = torch.load(A__ , map_location=A__ ) for k, v in tqdm(state_dict.items() ): if not isinstance(A__ , torch.Tensor ): raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" ) lowerCAmelCase_ : List[str] = v.half() if save_path is None: # overwrite src_path lowerCAmelCase_ : List[str] = src_path torch.save(A__ , A__ ) if __name__ == "__main__": fire.Fire(convert)
275
0
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( UpperCamelCase__ :str , UpperCamelCase__ :str , UpperCamelCase__ :str ) -> Optional[int]: def get_masked_lm_array(UpperCamelCase__ :str ): snake_case__ : Optional[int] = F'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE''' snake_case__ : str = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ ) if "kernel" in name: snake_case__ : Optional[int] = array.transpose() return torch.from_numpy(UpperCamelCase__ ) def get_encoder_array(UpperCamelCase__ :str ): snake_case__ : Optional[int] = F'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE''' snake_case__ : List[str] = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ ) if "kernel" in name: snake_case__ : Dict = array.transpose() return torch.from_numpy(UpperCamelCase__ ) def get_encoder_layer_array(UpperCamelCase__ :int , UpperCamelCase__ :str ): snake_case__ : Optional[Any] = F'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE''' snake_case__ : Any = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ ) if "kernel" in name: snake_case__ : Any = array.transpose() return torch.from_numpy(UpperCamelCase__ ) def get_encoder_attention_layer_array(UpperCamelCase__ :int , UpperCamelCase__ :str , UpperCamelCase__ :List[str] ): snake_case__ : int = F'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE''' snake_case__ : Tuple = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ ) snake_case__ : int = array.reshape(UpperCamelCase__ ) if "kernel" in name: snake_case__ : List[Any] = array.transpose() return torch.from_numpy(UpperCamelCase__ ) print(F'''Loading model based on config from {config_path}...''' ) snake_case__ : Optional[int] = BertConfig.from_json_file(UpperCamelCase__ ) snake_case__ : Optional[int] = BertForMaskedLM(UpperCamelCase__ ) # Layers for layer_index in range(0 , config.num_hidden_layers ): snake_case__ : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention snake_case__ : BertSelfAttention = layer.attention.self snake_case__ : int = get_encoder_attention_layer_array( UpperCamelCase__ , '''_query_dense/kernel''' , self_attn.query.weight.data.shape ) snake_case__ : Tuple = get_encoder_attention_layer_array( UpperCamelCase__ , '''_query_dense/bias''' , self_attn.query.bias.data.shape ) snake_case__ : List[str] = get_encoder_attention_layer_array( UpperCamelCase__ , '''_key_dense/kernel''' , self_attn.key.weight.data.shape ) snake_case__ : Tuple = get_encoder_attention_layer_array( UpperCamelCase__ , '''_key_dense/bias''' , self_attn.key.bias.data.shape ) snake_case__ : List[str] = get_encoder_attention_layer_array( UpperCamelCase__ , '''_value_dense/kernel''' , self_attn.value.weight.data.shape ) snake_case__ : Union[str, Any] = get_encoder_attention_layer_array( UpperCamelCase__ , '''_value_dense/bias''' , self_attn.value.bias.data.shape ) # Self-attention Output snake_case__ : BertSelfOutput = layer.attention.output snake_case__ : Tuple = get_encoder_attention_layer_array( UpperCamelCase__ , '''_output_dense/kernel''' , self_output.dense.weight.data.shape ) snake_case__ : Dict = get_encoder_attention_layer_array( UpperCamelCase__ , '''_output_dense/bias''' , self_output.dense.bias.data.shape ) snake_case__ : List[Any] = get_encoder_layer_array(UpperCamelCase__ , '''_attention_layer_norm/gamma''' ) snake_case__ : Union[str, Any] = get_encoder_layer_array(UpperCamelCase__ , '''_attention_layer_norm/beta''' ) # Intermediate snake_case__ : BertIntermediate = layer.intermediate snake_case__ : Union[str, Any] = get_encoder_layer_array(UpperCamelCase__ , '''_intermediate_dense/kernel''' ) snake_case__ : Tuple = get_encoder_layer_array(UpperCamelCase__ , '''_intermediate_dense/bias''' ) # Output snake_case__ : BertOutput = layer.output snake_case__ : List[str] = get_encoder_layer_array(UpperCamelCase__ , '''_output_dense/kernel''' ) snake_case__ : int = get_encoder_layer_array(UpperCamelCase__ , '''_output_dense/bias''' ) snake_case__ : List[Any] = get_encoder_layer_array(UpperCamelCase__ , '''_output_layer_norm/gamma''' ) snake_case__ : Dict = get_encoder_layer_array(UpperCamelCase__ , '''_output_layer_norm/beta''' ) # Embeddings snake_case__ : List[str] = get_encoder_array('''_position_embedding_layer/embeddings''' ) snake_case__ : Tuple = get_encoder_array('''_type_embedding_layer/embeddings''' ) snake_case__ : Dict = get_encoder_array('''_embedding_norm_layer/gamma''' ) snake_case__ : str = get_encoder_array('''_embedding_norm_layer/beta''' ) # LM Head snake_case__ : Union[str, Any] = model.cls.predictions.transform snake_case__ : Optional[int] = get_masked_lm_array('''dense/kernel''' ) snake_case__ : Dict = get_masked_lm_array('''dense/bias''' ) snake_case__ : List[Any] = get_masked_lm_array('''layer_norm/gamma''' ) snake_case__ : Tuple = get_masked_lm_array('''layer_norm/beta''' ) snake_case__ : Any = get_masked_lm_array('''embedding_table''' ) # Pooling snake_case__ : int = BertPooler(config=UpperCamelCase__ ) snake_case__ : BertPooler = get_encoder_array('''_pooler_layer/kernel''' ) snake_case__ : BertPooler = get_encoder_array('''_pooler_layer/bias''' ) # Export final model model.save_pretrained(UpperCamelCase__ ) # Integration test - should load without any errors ;) snake_case__ : str = BertForMaskedLM.from_pretrained(UpperCamelCase__ ) print(new_model.eval() ) print('''Model conversion was done sucessfully!''' ) if __name__ == "__main__": _lowercase : Tuple =argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) _lowercase : int =parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
710
'''simple docstring''' import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _lowercase : Tuple ={ "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def __UpperCAmelCase ( UpperCamelCase__ :List[str] , UpperCamelCase__ :Any , UpperCamelCase__ :int , UpperCamelCase__ :Dict=None ) -> int: # Initialise PyTorch model snake_case__ : List[Any] = XLNetConfig.from_json_file(UpperCamelCase__ ) snake_case__ : Optional[Any] = finetuning_task.lower() if finetuning_task is not None else '''''' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' ) snake_case__ : Union[str, Any] = finetuning_task snake_case__ : str = GLUE_TASKS_NUM_LABELS[finetuning_task] snake_case__ : List[Any] = XLNetForSequenceClassification(UpperCamelCase__ ) elif "squad" in finetuning_task: snake_case__ : str = finetuning_task snake_case__ : List[str] = XLNetForQuestionAnswering(UpperCamelCase__ ) else: snake_case__ : Tuple = XLNetLMHeadModel(UpperCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model snake_case__ : str = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) snake_case__ : Tuple = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) print(F'''Save PyTorch model to {os.path.abspath(UpperCamelCase__ )}''' ) torch.save(model.state_dict() , UpperCamelCase__ ) print(F'''Save configuration file to {os.path.abspath(UpperCamelCase__ )}''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowercase : Tuple =argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) _lowercase : Optional[Any] =parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
574
0
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def A_( A : Any , A : List[Any]): UpperCamelCase = int(A) assert noofclusters < len(A) # Find out the dimensionality UpperCamelCase = len(vectors[0]) # Will help select random centroids from among the available vectors UpperCamelCase = list(range(len(A))) shuffle(A) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. UpperCamelCase = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION UpperCamelCase = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points UpperCamelCase = [ tf.Variable(vectors[vector_indices[i]]) for i in range(A) ] ##These nodes will assign the centroid Variables the appropriate ##values UpperCamelCase = tf.placeholder('float64' , [dim]) UpperCamelCase = [] for centroid in centroids: cent_assigns.append(tf.assign(A , A)) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) UpperCamelCase = [tf.Variable(0) for i in range(len(A))] ##These nodes will assign an assignment Variable the appropriate ##value UpperCamelCase = tf.placeholder('int32') UpperCamelCase = [] for assignment in assignments: cluster_assigns.append(tf.assign(A , A)) ##Now lets construct the node that will compute the mean # The placeholder for the input UpperCamelCase = tf.placeholder('float' , [None, dim]) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors UpperCamelCase = tf.reduce_mean(A , 0) ##Node for computing Euclidean distances # Placeholders for input UpperCamelCase = tf.placeholder('float' , [dim]) UpperCamelCase = tf.placeholder('float' , [dim]) UpperCamelCase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(A , A) , 2))) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input UpperCamelCase = tf.placeholder('float' , [noofclusters]) UpperCamelCase = tf.argmin(A , 0) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. UpperCamelCase = tf.initialize_all_variables() # Initialize all variables sess.run(A) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. UpperCamelCase = 100 for _ in range(A): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(A)): UpperCamelCase = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. UpperCamelCase = [ sess.run(A , feed_dict={va: vect, va: sess.run(A)}) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input UpperCamelCase = sess.run( A , feed_dict={centroid_distances: distances}) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment}) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(A): # Collect all the vectors assigned to this cluster UpperCamelCase = [ vectors[i] for i in range(len(A)) if sess.run(assignments[i]) == cluster_n ] # Compute new centroid location UpperCamelCase = sess.run( A , feed_dict={mean_input: array(A)}) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location}) # Return centroids and assignments UpperCamelCase = sess.run(A) UpperCamelCase = sess.run(A) return centroids, assignments
3
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["image_processor", "tokenizer"] _lowerCamelCase ="CLIPImageProcessor" _lowerCamelCase =("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : Tuple , a__ : List[Any]=None , a__ : str=None , **a__ : Tuple ): UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a__ , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a__ , a__ ) def __call__( self : Optional[Any] , a__ : Optional[int]=None , a__ : List[str]=None , a__ : int=None , **a__ : Tuple ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if images is not None: UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def __snake_case ( self : List[str] , *a__ : Union[str, Any] , **a__ : Optional[int] ): return self.tokenizer.batch_decode(*a__ , **a__ ) def __snake_case ( self : int , *a__ : Optional[int] , **a__ : int ): return self.tokenizer.decode(*a__ , **a__ ) @property def __snake_case ( self : str ): UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __snake_case ( self : Optional[int] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , a__ , ) return self.image_processor_class @property def __snake_case ( self : List[Any] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , a__ , ) return self.image_processor
51
0
'''simple docstring''' import re import string import numpy as np import datasets lowercase__ = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" lowercase__ = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" lowercase__ = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase_ ( self : Any ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def UpperCAmelCase_ ( self : int , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : Optional[Any]=None , lowercase_ : Any=False , lowercase_ : Union[str, Any]=False , lowercase_ : str=False , ) -> int: if regexes_to_ignore is not None: for s in regexes_to_ignore: UpperCAmelCase : Optional[int] = np.array([re.sub(lowercase_ , '' , lowercase_ ) for x in predictions] ) UpperCAmelCase : Tuple = np.array([re.sub(lowercase_ , '' , lowercase_ ) for x in references] ) else: UpperCAmelCase : str = np.asarray(lowercase_ ) UpperCAmelCase : List[str] = np.asarray(lowercase_ ) if ignore_case: UpperCAmelCase : Dict = np.char.lower(lowercase_ ) UpperCAmelCase : str = np.char.lower(lowercase_ ) if ignore_punctuation: UpperCAmelCase : Tuple = string.punctuation.maketrans('' , '' , string.punctuation ) UpperCAmelCase : Union[str, Any] = np.char.translate(lowercase_ , table=lowercase_ ) UpperCAmelCase : Optional[int] = np.char.translate(lowercase_ , table=lowercase_ ) if ignore_numbers: UpperCAmelCase : Union[str, Any] = string.digits.maketrans('' , '' , string.digits ) UpperCAmelCase : Tuple = np.char.translate(lowercase_ , table=lowercase_ ) UpperCAmelCase : Any = np.char.translate(lowercase_ , table=lowercase_ ) UpperCAmelCase : Union[str, Any] = predictions == references return {"exact_match": np.mean(lowercase_ ) * 100}
714
'''simple docstring''' import baseaa def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baaencode(string.encode('utf-8' ) ) def UpperCamelCase( UpperCAmelCase_ ): return baseaa.baadecode(UpperCAmelCase_ ).decode('utf-8' ) if __name__ == "__main__": lowercase__ = "Hello World!" lowercase__ = baseaa_encode(test) print(encoded) lowercase__ = baseaa_decode(encoded) print(decoded)
695
0
import random def UpperCAmelCase_ ( _UpperCAmelCase :Any , _UpperCAmelCase :Tuple , _UpperCAmelCase :int ) -> Union[str, Any]: '''simple docstring''' A_ = a[left_index] A_ = left_index + 1 for j in range(left_index + 1 , _UpperCAmelCase ): if a[j] < pivot: A_ , A_ = a[i], a[j] i += 1 A_ , A_ = a[i - 1], a[left_index] return i - 1 def UpperCAmelCase_ ( _UpperCAmelCase :List[Any] , _UpperCAmelCase :int , _UpperCAmelCase :List[Any] ) -> Any: '''simple docstring''' if left < right: A_ = random.randint(_UpperCAmelCase , right - 1 ) A_ , A_ = ( a[left], a[pivot], ) # switches the pivot with the left most bound A_ = partition(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) quick_sort_random( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # recursive quicksort to the left of the pivot point quick_sort_random( _UpperCAmelCase , pivot_index + 1 , _UpperCAmelCase ) # recursive quicksort to the right of the pivot point def UpperCAmelCase_ ( ) -> Union[str, Any]: '''simple docstring''' A_ = input('''Enter numbers separated by a comma:\n''' ).strip() A_ = [int(_UpperCAmelCase ) for item in user_input.split(''',''' )] quick_sort_random(_UpperCAmelCase , 0 , len(_UpperCAmelCase ) ) print(_UpperCAmelCase ) if __name__ == "__main__": main()
188
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) a__ : Any = logging.getLogger() def UpperCAmelCase_ ( ) -> Any: '''simple docstring''' A_ = argparse.ArgumentParser() parser.add_argument('''-f''' ) A_ = parser.parse_args() return args.f def UpperCAmelCase_ ( _UpperCAmelCase :Union[str, Any] ) -> str: '''simple docstring''' A_ = {} A_ = os.path.join(_UpperCAmelCase , '''all_results.json''' ) if os.path.exists(_UpperCAmelCase ): with open(_UpperCAmelCase , '''r''' ) as f: A_ = json.load(_UpperCAmelCase ) else: raise ValueError(f'can\'t find {path}' ) return results def UpperCAmelCase_ ( ) -> Union[str, Any]: '''simple docstring''' A_ = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() a__ : List[Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): @classmethod def __UpperCAmelCase ( cls ): """simple docstring""" A_ = tempfile.mkdtemp() A_ = os.path.join(cls.tmpdir ,'''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) A_ = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def __UpperCAmelCase ( cls ): """simple docstring""" shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = self.get_auto_remove_tmp_dir() A_ = f'\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n '.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) A_ = get_results(__snake_case ) self.assertGreaterEqual(result['''eval_accuracy'''] ,0.75 ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = self.get_auto_remove_tmp_dir() A_ = f'\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n '.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) A_ = get_results(__snake_case ) self.assertLess(result['''perplexity'''] ,1_0_0 ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = self.get_auto_remove_tmp_dir() A_ = f'\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) A_ = get_results(__snake_case ) self.assertLess(result['''perplexity'''] ,4_2 ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = 7 if get_gpu_count() > 1 else 2 A_ = self.get_auto_remove_tmp_dir() A_ = f'\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) A_ = get_results(__snake_case ) self.assertGreaterEqual(result['''eval_accuracy'''] ,0.75 ) self.assertLess(result['''train_loss'''] ,0.5 ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = self.get_auto_remove_tmp_dir() A_ = f'\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) A_ = get_results(__snake_case ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] ,2_8 ) self.assertGreaterEqual(result['''eval_exact'''] ,2_8 ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = self.get_auto_remove_tmp_dir() A_ = f'\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) A_ = get_results(__snake_case ) self.assertGreaterEqual(result['''eval_accuracy'''] ,0.8 ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = self.get_auto_remove_tmp_dir() A_ = f'\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) A_ = get_results(__snake_case ) self.assertGreaterEqual(result['''eval_rouge1'''] ,1_0 ) self.assertGreaterEqual(result['''eval_rouge2'''] ,2 ) self.assertGreaterEqual(result['''eval_rougeL'''] ,7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] ,7 ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = self.get_auto_remove_tmp_dir() A_ = f'\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) A_ = get_results(__snake_case ) self.assertGreaterEqual(result['''eval_bleu'''] ,3_0 ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''translation_no_trainer''' ) ) ) @slow def __UpperCAmelCase ( self ): """simple docstring""" A_ = logging.StreamHandler(sys.stdout ) logger.addHandler(__snake_case ) A_ = self.get_auto_remove_tmp_dir() A_ = f'\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n '.split() run_command(self._launch_args + testargs ) A_ = get_results(__snake_case ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] ,0.10 ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = self.get_auto_remove_tmp_dir() A_ = f'\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n '.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) A_ = get_results(__snake_case ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] ,0.6 ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'''image_classification_no_trainer''' ) ) )
188
1
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge A_ : Any = [ '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the''' ''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe''' ''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''', '''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal''' ''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s''' ''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the''' ''' body.''', '''Amnesty International releases its annual report on the death penalty. The report catalogs the use of''' ''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the''' ''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital''' ''' punishment.''', ] A_ : str = [ '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''' ''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz''' ''' had informed his Lufthansa training school of an episode of severe depression, airline says .''', '''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .''' ''' Israel and the United States opposed the move, which could open the door to war crimes investigations against''' ''' Israelis .''', '''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to''' ''' death . Organization claims that governments around the world are using the threat of terrorism to advance''' ''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death''' ''' sentences up by 28% .''', ] def UpperCAmelCase__ ( ): '''simple docstring''' a = calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , bootstrap_aggregation=UpperCAmelCase__ , rouge_keys=["rouge2", "rougeL"] ) assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) a = calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , bootstrap_aggregation=UpperCAmelCase__ , rouge_keys=["rouge2"] ) assert ( pd.DataFrame(no_aggregation["rouge2"] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["rouge2"] ).fmeasure.mean() ) def UpperCAmelCase__ ( ): '''simple docstring''' a = "rougeLsum" a = calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , newline_sep=UpperCAmelCase__ , rouge_keys=[k] )[k] a = calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , newline_sep=UpperCAmelCase__ , rouge_keys=[k] )[k] assert score > score_no_sep def UpperCAmelCase__ ( ): '''simple docstring''' a = ["rouge1", "rouge2", "rougeL"] a = calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , newline_sep=UpperCAmelCase__ , rouge_keys=UpperCAmelCase__ ) a = calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , newline_sep=UpperCAmelCase__ , rouge_keys=UpperCAmelCase__ ) assert score_sep == score_no_sep def UpperCAmelCase__ ( ): '''simple docstring''' a = [ "Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.", "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .", ] a = [ "Margot Frank, died in 1945, a month earlier than previously thought.", "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of" " the final seconds on board Flight 9525.", ] assert calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , newline_sep=UpperCAmelCase__ ) == calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , newline_sep=UpperCAmelCase__ ) def UpperCAmelCase__ ( ): '''simple docstring''' a = [ "\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" " ] a = [ " Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says ." ] a = calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , rouge_keys=["rougeLsum"] , newline_sep=UpperCAmelCase__ )["rougeLsum"] a = calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , rouge_keys=["rougeLsum"] )["rougeLsum"] assert new_score > prev_score def UpperCAmelCase__ ( ): '''simple docstring''' a = Path("examples/seq2seq/test_data/wmt_en_ro" ) a = calculate_rouge_path(data_dir.joinpath("test.source" ) , data_dir.joinpath("test.target" ) ) assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) a = calculate_rouge_path( data_dir.joinpath("test.source" ) , data_dir.joinpath("test.target" ) , bootstrap_aggregation=UpperCAmelCase__ ) assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ )
32
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class _lowercase : def __init__( self : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any=13 , __lowerCAmelCase : Any=7 , __lowerCAmelCase : int=True , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : Any=True , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : str=99 , __lowerCAmelCase : List[str]=64 , __lowerCAmelCase : Optional[Any]=32 , __lowerCAmelCase : Dict=5 , __lowerCAmelCase : int=4 , __lowerCAmelCase : Optional[Any]=37 , __lowerCAmelCase : Union[str, Any]="gelu" , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : List[str]=0.1 , __lowerCAmelCase : List[str]=512 , __lowerCAmelCase : List[Any]=16 , __lowerCAmelCase : Union[str, Any]=2 , __lowerCAmelCase : Optional[Any]=0.0_2 , __lowerCAmelCase : Dict=3 , __lowerCAmelCase : Optional[int]=4 , __lowerCAmelCase : Union[str, Any]=None , ) -> List[str]: """simple docstring""" a = parent a = batch_size a = seq_length a = is_training a = use_input_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = embedding_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_labels a = num_choices a = scope def A ( self : Optional[int] ) -> Optional[int]: """simple docstring""" a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = None if self.use_input_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a = None a = None a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a = ids_tensor([self.batch_size] , self.num_choices ) a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : int ) -> List[str]: """simple docstring""" return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , ) def A ( self : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict ) -> Union[str, Any]: """simple docstring""" a = MobileBertModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) a = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) a = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A ( self : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : Any ) -> str: """simple docstring""" a = MobileBertForMaskedLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] ) -> List[str]: """simple docstring""" a = MobileBertForNextSentencePrediction(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def A ( self : List[str] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] ) -> List[Any]: """simple docstring""" a = MobileBertForPreTraining(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , next_sentence_label=__lowerCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def A ( self : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ) -> Any: """simple docstring""" a = MobileBertForQuestionAnswering(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" a = self.num_labels a = MobileBertForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ) -> Optional[Any]: """simple docstring""" a = self.num_labels a = MobileBertForTokenClassification(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" a = self.num_choices a = MobileBertForMultipleChoice(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : List[Any] ) -> Dict: """simple docstring""" a = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) = config_and_inputs a = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _lowercase ( UpperCAmelCase__, UpperCAmelCase__, unittest.TestCase ): _UpperCAmelCase = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _UpperCAmelCase = ( { '''feature-extraction''': MobileBertModel, '''fill-mask''': MobileBertForMaskedLM, '''question-answering''': MobileBertForQuestionAnswering, '''text-classification''': MobileBertForSequenceClassification, '''token-classification''': MobileBertForTokenClassification, '''zero-shot''': MobileBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = True def A ( self : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any=False ) -> Any: """simple docstring""" a = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class in get_values(__lowerCAmelCase ): a = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCAmelCase ) a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase ) return inputs_dict def A ( self : Optional[int] ) -> List[Any]: """simple docstring""" a = MobileBertModelTester(self ) a = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def A ( self : int ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def A ( self : str ) -> Dict: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__lowerCAmelCase ) def A ( self : str ) -> str: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__lowerCAmelCase ) def A ( self : List[str] ) -> Dict: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__lowerCAmelCase ) def A ( self : int ) -> Dict: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__lowerCAmelCase ) def A ( self : List[Any] ) -> int: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__lowerCAmelCase ) def A ( self : List[Any] ) -> Dict: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__lowerCAmelCase ) def A ( self : List[Any] ) -> Optional[int]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__lowerCAmelCase ) def A ( self : int ) -> Tuple: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__lowerCAmelCase ) def UpperCAmelCase__ ( UpperCAmelCase__ :Dict ): '''simple docstring''' return torch.tensor( UpperCAmelCase__ , dtype=torch.long , device=UpperCAmelCase__ , ) A_ : Dict = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase ): @slow def A ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" a = MobileBertModel.from_pretrained("google/mobilebert-uncased" ).to(__lowerCAmelCase ) a = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): a = model(__lowerCAmelCase )[0] a = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , __lowerCAmelCase ) a = torch.tensor( [ [ [-2.4_73_65_26E07, 8.2_69_16_56E04, 1.6_52_18_38E05], [-5.7_54_17_04E-01, 3.9_05_60_22E00, 4.4_01_15_07E00], [2.6_04_73_59E00, 1.5_67_76_52E00, -1.7_32_41_88E-01], ] ] , device=__lowerCAmelCase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE a = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) a = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
32
1
'''simple docstring''' from __future__ import annotations import math def UpperCamelCase__ ( _lowercase : int , _lowercase : int , _lowercase : bool , _lowercase : list[int] , _lowercase : float ) -> int: if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if not scores: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , _lowercase , _lowercase , _lowercase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowercase , _lowercase , _lowercase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , _lowercase , _lowercase , _lowercase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowercase , _lowercase , _lowercase ) , ) ) def UpperCamelCase__ ( ) -> None: __UpperCAmelCase: List[str] = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] __UpperCAmelCase: int = math.log(len(_lowercase ) , 2 ) print(F'''Optimal value : {minimax(0 , 0 , _lowercase , _lowercase , _lowercase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
523
'''simple docstring''' from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class a : """simple docstring""" def __init__( self , snake_case_ , ): '''simple docstring''' __UpperCAmelCase: List[Any] = parent __UpperCAmelCase: Dict = 13 __UpperCAmelCase: Optional[int] = 7 __UpperCAmelCase: List[str] = 30 __UpperCAmelCase: List[Any] = self.seq_length + self.mem_len __UpperCAmelCase: int = 15 __UpperCAmelCase: Optional[int] = True __UpperCAmelCase: List[str] = True __UpperCAmelCase: Union[str, Any] = 99 __UpperCAmelCase: Optional[int] = [10, 50, 80] __UpperCAmelCase: str = 32 __UpperCAmelCase: Optional[Any] = 32 __UpperCAmelCase: Union[str, Any] = 4 __UpperCAmelCase: int = 8 __UpperCAmelCase: str = 128 __UpperCAmelCase: str = 2 __UpperCAmelCase: Tuple = 2 __UpperCAmelCase: Union[str, Any] = None __UpperCAmelCase: str = 1 __UpperCAmelCase: Optional[Any] = 0 __UpperCAmelCase: int = 3 __UpperCAmelCase: Dict = self.vocab_size - 1 __UpperCAmelCase: int = 0.0_1 def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase: Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase: List[str] = None if self.use_labels: __UpperCAmelCase: int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase: Optional[int] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def lowercase_ ( self ): '''simple docstring''' random.seed(self.seed ) tf.random.set_seed(self.seed ) def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Dict = TFTransfoXLModel(snake_case_ ) __UpperCAmelCase, __UpperCAmelCase: List[str] = model(snake_case_ ).to_tuple() __UpperCAmelCase: Tuple = {"""input_ids""": input_ids_a, """mems""": mems_a} __UpperCAmelCase, __UpperCAmelCase: Optional[Any] = model(snake_case_ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: str = TFTransfoXLLMHeadModel(snake_case_ ) __UpperCAmelCase, __UpperCAmelCase: Optional[int] = model(snake_case_ ).to_tuple() __UpperCAmelCase: Optional[Any] = {"""input_ids""": input_ids_a, """labels""": lm_labels} __UpperCAmelCase, __UpperCAmelCase: Tuple = model(snake_case_ ).to_tuple() __UpperCAmelCase, __UpperCAmelCase: Dict = model([input_ids_a, mems_a] ).to_tuple() __UpperCAmelCase: Union[str, Any] = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} __UpperCAmelCase, __UpperCAmelCase: List[str] = model(snake_case_ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Optional[int] = TFTransfoXLForSequenceClassification(snake_case_ ) __UpperCAmelCase: List[Any] = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Optional[int] = self.prepare_config_and_inputs() ((__UpperCAmelCase), (__UpperCAmelCase), (__UpperCAmelCase), (__UpperCAmelCase)): Dict = config_and_inputs __UpperCAmelCase: List[str] = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class a ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): """simple docstring""" __lowerCAmelCase = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __lowerCAmelCase = () if is_tf_available() else () __lowerCAmelCase = ( { """feature-extraction""": TFTransfoXLModel, """text-classification""": TFTransfoXLForSequenceClassification, """text-generation""": TFTransfoXLLMHeadModel, """zero-shot""": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Dict = TFTransfoXLModelTester(self ) __UpperCAmelCase: Any = ConfigTester(self , config_class=snake_case_ , d_embed=37 ) def lowercase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ): '''simple docstring''' self.model_tester.set_seed() __UpperCAmelCase: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*snake_case_ ) def lowercase_ ( self ): '''simple docstring''' self.model_tester.set_seed() __UpperCAmelCase: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*snake_case_ ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*snake_case_ ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase, __UpperCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase: str = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: __UpperCAmelCase: int = model_class(snake_case_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: __UpperCAmelCase: Any = model.get_output_embeddings() assert isinstance(snake_case_ , tf.keras.layers.Layer ) __UpperCAmelCase: int = model.get_bias() assert name is None else: __UpperCAmelCase: Optional[int] = model.get_output_embeddings() assert x is None __UpperCAmelCase: str = model.get_bias() assert name is None def lowercase_ ( self ): '''simple docstring''' pass @slow def lowercase_ ( self ): '''simple docstring''' for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase: str = TFTransfoXLModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def lowercase_ ( self ): '''simple docstring''' pass @require_tf class a ( unittest.TestCase ): """simple docstring""" @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off __UpperCAmelCase: str = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off __UpperCAmelCase: Dict = [33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0,33,1,1857,2,1,1009,4,1109,1_1739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> __UpperCAmelCase: Dict = model.generate(snake_case_ , max_length=200 , do_sample=snake_case_ ) self.assertListEqual(output_ids[0].numpy().tolist() , snake_case_ )
523
1
"""simple docstring""" import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() UpperCAmelCase__ =2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model UpperCAmelCase__ ={ # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names UpperCAmelCase__ ={} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: UpperCAmelCase__ ="facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: UpperCAmelCase__ ="allenai" def lowerCAmelCase_ ( UpperCamelCase__ : Optional[int] ): """simple docstring""" __lowercase = dict((re.sub(R"""@@$""" , """""" , UpperCamelCase__ ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" , """</w>""" , UpperCamelCase__ ), v) for k, v in d.items() ) __lowercase = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] __lowercase = d[k] # restore return da def lowerCAmelCase_ ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int ): """simple docstring""" assert os.path.exists(UpperCamelCase__ ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models __lowercase = basename(UpperCamelCase__ ) __lowercase = dirname(UpperCamelCase__ ) __lowercase = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel __lowercase = cls.hub_models() __lowercase = {"""bpe""": """fastbpe""", """tokenizer""": """moses"""} __lowercase = """.""" # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) __lowercase = hub_utils.from_pretrained( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , archive_map=UpperCamelCase__ , **UpperCamelCase__ ) __lowercase = vars(chkpt["""args"""]["""model"""] ) __lowercase = args["""source_lang"""] __lowercase = args["""target_lang"""] __lowercase = dirname(UpperCamelCase__ ) __lowercase = basename(UpperCamelCase__ ) # dicts __lowercase = os.path.join(UpperCamelCase__ , f'''dict.{src_lang}.txt''' ) __lowercase = os.path.join(UpperCamelCase__ , f'''dict.{tgt_lang}.txt''' ) __lowercase = Dictionary.load(UpperCamelCase__ ) __lowercase = rewrite_dict_keys(src_dict.indices ) __lowercase = len(UpperCamelCase__ ) __lowercase = os.path.join(UpperCamelCase__ , """vocab-src.json""" ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase__ , ensure_ascii=UpperCamelCase__ , indent=UpperCamelCase__ ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab __lowercase = True for k in src_vocab.keys(): if not k.islower(): __lowercase = False break __lowercase = Dictionary.load(UpperCamelCase__ ) __lowercase = rewrite_dict_keys(tgt_dict.indices ) __lowercase = len(UpperCamelCase__ ) __lowercase = os.path.join(UpperCamelCase__ , """vocab-tgt.json""" ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase__ , ensure_ascii=UpperCamelCase__ , indent=UpperCamelCase__ ) ) # merges_file (bpecodes) __lowercase = os.path.join(UpperCamelCase__ , VOCAB_FILES_NAMES["""merges_file"""] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" __lowercase = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): break with open(UpperCamelCase__ , encoding="""utf-8""" ) as fin: __lowercase = fin.read() __lowercase = re.sub(R""" \d+$""" , """""" , UpperCamelCase__ , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as fout: fout.write(UpperCamelCase__ ) # model config __lowercase = os.path.join(UpperCamelCase__ , """config.json""" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args['tokenizer']}''' __lowercase = { """architectures""": ["""FSMTForConditionalGeneration"""], """model_type""": """fsmt""", """activation_dropout""": args["""activation_dropout"""], """activation_function""": """relu""", """attention_dropout""": args["""attention_dropout"""], """d_model""": args["""decoder_embed_dim"""], """dropout""": args["""dropout"""], """init_std""": 0.02, """max_position_embeddings""": args["""max_source_positions"""], """num_hidden_layers""": args["""encoder_layers"""], """src_vocab_size""": src_vocab_size, """tgt_vocab_size""": tgt_vocab_size, """langs""": [src_lang, tgt_lang], """encoder_attention_heads""": args["""encoder_attention_heads"""], """encoder_ffn_dim""": args["""encoder_ffn_embed_dim"""], """encoder_layerdrop""": args["""encoder_layerdrop"""], """encoder_layers""": args["""encoder_layers"""], """decoder_attention_heads""": args["""decoder_attention_heads"""], """decoder_ffn_dim""": args["""decoder_ffn_embed_dim"""], """decoder_layerdrop""": args["""decoder_layerdrop"""], """decoder_layers""": args["""decoder_layers"""], """bos_token_id""": 0, """pad_token_id""": 1, """eos_token_id""": 2, """is_encoder_decoder""": True, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_all_embeddings"""], } # good hparam defaults to start with __lowercase = 5 __lowercase = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: __lowercase = best_score_hparams[model_dir]["""length_penalty"""] else: __lowercase = 1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase__ , ensure_ascii=UpperCamelCase__ , indent=UpperCamelCase__ ) ) # tokenizer config __lowercase = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) __lowercase = { """langs""": [src_lang, tgt_lang], """model_max_length""": 1024, """do_lower_case""": do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase__ , ensure_ascii=UpperCamelCase__ , indent=UpperCamelCase__ ) ) # model __lowercase = chkpt["""models"""][0] __lowercase = model.state_dict() # rename keys to start with 'model.' __lowercase = OrderedDict(("""model.""" + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys __lowercase = [ """model.model""", """model.encoder.version""", """model.decoder.version""", """model.encoder_embed_tokens.weight""", """model.decoder_embed_tokens.weight""", """model.encoder.embed_positions._float_tensor""", """model.decoder.embed_positions._float_tensor""", ] for k in ignore_keys: model_state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) __lowercase = FSMTConfig.from_pretrained(UpperCamelCase__ ) __lowercase = FSMTForConditionalGeneration(UpperCamelCase__ ) # check that it loads ok model_new.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) # save __lowercase = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(UpperCamelCase__ , UpperCamelCase__ ) print("""Conversion is done!""" ) print("""\nLast step is to upload the files to s3""" ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": UpperCAmelCase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ =parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
718
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def lowerCAmelCase_ ( ): """simple docstring""" __lowercase = argparse.ArgumentParser() parser.add_argument("""--model_ckpt""" , type=UpperCamelCase__ , default="""microsoft/unixcoder-base-nine""" ) parser.add_argument("""--num_epochs""" , type=UpperCamelCase__ , default=5 ) parser.add_argument("""--batch_size""" , type=UpperCamelCase__ , default=6 ) parser.add_argument("""--gradient_accumulation_steps""" , type=UpperCamelCase__ , default=1 ) parser.add_argument("""--freeze""" , type=UpperCamelCase__ , default=UpperCamelCase__ ) parser.add_argument("""--learning_rate""" , type=UpperCamelCase__ , default=5E-4 ) parser.add_argument("""--seed""" , type=UpperCamelCase__ , default=0 ) parser.add_argument("""--lr_scheduler_type""" , type=UpperCamelCase__ , default="""cosine""" ) parser.add_argument("""--num_warmup_steps""" , type=UpperCamelCase__ , default=10 ) parser.add_argument("""--weight_decay""" , type=UpperCamelCase__ , default=0.01 ) parser.add_argument("""--output_dir""" , type=UpperCamelCase__ , default="""./results""" ) return parser.parse_args() UpperCAmelCase__ =load("accuracy") def lowerCAmelCase_ ( UpperCamelCase__ : List[Any] ): """simple docstring""" __lowercase , __lowercase = eval_pred __lowercase = np.argmax(UpperCamelCase__ , axis=1 ) return metric.compute(predictions=UpperCamelCase__ , references=UpperCamelCase__ ) class lowerCamelCase__ ( _a ): def __init__( self : Any , A_ : int ): '''simple docstring''' super().__init__() __lowercase = trainer def SCREAMING_SNAKE_CASE_ ( self : List[Any] , A_ : int , A_ : str , A_ : Any , **A_ : Optional[int] ): '''simple docstring''' if control.should_evaluate: __lowercase = deepcopy(A_ ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="""train""" ) return control_copy def lowerCAmelCase_ ( ): """simple docstring""" __lowercase = get_args() set_seed(args.seed ) __lowercase = load_dataset("""codeparrot/codecomplex""" , split="""train""" ) __lowercase = dataset.train_test_split(test_size=0.2 ) __lowercase = train_test["""test"""].train_test_split(test_size=0.5 ) __lowercase = DatasetDict( { """train""": train_test["""train"""], """test""": test_validation["""train"""], """valid""": test_validation["""test"""], } ) print("""Loading tokenizer and model""" ) __lowercase = AutoTokenizer.from_pretrained(args.model_ckpt ) __lowercase = tokenizer.eos_token __lowercase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) __lowercase = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): __lowercase = False __lowercase = ClassLabel(num_classes=7 , names=list(set(train_test_validation["""train"""]["""complexity"""] ) ) ) def tokenize(UpperCamelCase__ : Optional[Any] ): __lowercase = tokenizer(example["""src"""] , truncation=UpperCamelCase__ , max_length=1024 ) __lowercase = labels.straint(example["""complexity"""] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } __lowercase = train_test_validation.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=train_test_validation["""train"""].column_names , ) __lowercase = DataCollatorWithPadding(tokenizer=UpperCamelCase__ ) __lowercase = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="""epoch""" , save_strategy="""epoch""" , logging_strategy="""epoch""" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="""accuracy""" , run_name="""complexity-java""" , report_to="""wandb""" , ) __lowercase = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=tokenized_datasets["""train"""] , eval_dataset=tokenized_datasets["""valid"""] , tokenizer=UpperCamelCase__ , data_collator=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , ) print("""Training...""" ) trainer.add_callback(CustomCallback(UpperCamelCase__ ) ) trainer.train() if __name__ == "__main__": main()
442
0
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __lowerCamelCase ( ) -> str: _a : str = '''https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg''' _a : int = Image.open(requests.get(a_ , stream=a_ ).raw ).convert('RGB' ) return image def __lowerCamelCase ( lowerCAmelCase_ ) -> List[str]: _a : Tuple = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.weight""", f"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.bias""", f"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.weight""", f"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.bias""", f"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.qkv.weight""", f"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.weight""", f"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.bias""", f"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.embeddings.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.embeddings.layernorm.bias') ) # fmt: on return rename_keys def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: _a : Optional[Any] = dct.pop(a_ ) _a : List[Any] = val def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _a : Dict = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.q_bias""" ) _a : Optional[int] = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict _a : Union[str, Any] = torch.cat((q_bias, torch.zeros_like(a_ , requires_grad=a_ ), v_bias) ) _a : str = qkv_bias def __lowerCamelCase ( lowerCAmelCase_ ) -> Any: _a : Union[str, Any] = 364 if '''coco''' in model_name else 224 _a : Optional[int] = InstructBlipVisionConfig(image_size=a_ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: _a : Dict = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _a : Union[str, Any] = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: _a : Dict = LlamaConfig.from_pretrained('decapoda-research/llama-7b-hf' , vocab_size=32001 ).to_dict() elif "vicuna-13b" in model_name: _a : Dict = LlamaConfig.from_pretrained('decapoda-research/llama-13b-hf' , vocab_size=32001 ).to_dict() else: raise ValueError('Model name not supported' ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 _a : List[Any] = InstructBlipQFormerConfig(vocab_size=30523 ).to_dict() _a : List[str] = InstructBlipConfig(vision_config=a_ , text_config=a_ , qformer_config=a_ ) return config, image_size @torch.no_grad() def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=False ) -> List[str]: _a : Tuple = AutoTokenizer.from_pretrained('bert-base-uncased' , truncation_side='left' ) qformer_tokenizer.add_special_tokens({'bos_token': '[DEC]'} ) if "t5" in model_name: _a : Optional[int] = TaTokenizerFast.from_pretrained('google/flan-t5-xl' , truncation_side='left' ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) _a : Dict = LlamaTokenizerFast.from_pretrained( 'huggyllama/llama-7b' , truncation_side='left' , bos_token='</s>' , unk_token='</s>' ) tokenizer.add_special_tokens({'pad_token': '[PAD]'} ) _a : int = get_blipa_config(a_ ) _a : Optional[Any] = InstructBlipForConditionalGeneration(a_ ).eval() _a : List[Any] = { '''instructblip-vicuna-7b''': ('''blip2_vicuna_instruct''', '''vicuna7b'''), '''instructblip-vicuna-13b''': ('''blip2_vicuna_instruct''', '''vicuna13b'''), '''instructblip-flan-t5-xl''': ('''blip2_t5_instruct''', '''flant5xl'''), '''instructblip-flan-t5-xxl''': ('''blip2_t5_instruct''', '''flant5xxl'''), } _a : Any = model_name_to_original[model_name] # load original model print('Loading original model...' ) _a : Dict = '''cuda:1''' if torch.cuda.is_available() else '''cpu''' _a : str = '''cuda:2''' if torch.cuda.is_available() else '''cpu''' _a : str = load_model_and_preprocess( name=a_ , model_type=a_ , is_eval=a_ , device=a_ ) original_model.eval() print('Done!' ) # update state dict keys _a : Dict = original_model.state_dict() _a : List[str] = create_rename_keys(a_ ) for src, dest in rename_keys: rename_key(a_ , a_ , a_ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _a : Union[str, Any] = state_dict.pop(a_ ) if key.startswith('Qformer.bert' ): _a : List[str] = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: _a : Tuple = key.replace('self' , 'attention' ) if "llm_proj" in key: _a : Optional[Any] = key.replace('llm_proj' , 'language_projection' ) if "t5_proj" in key: _a : int = key.replace('t5_proj' , 'language_projection' ) if key.startswith('llm_model' ): _a : List[Any] = key.replace('llm_model' , 'language_model' ) if key.startswith('t5' ): _a : Optional[Any] = key.replace('t5' , 'language' ) _a : Union[str, Any] = val # read in qv biases read_in_q_v_bias(a_ , a_ ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(a_ , strict=a_ ) _a : str = load_demo_image() _a : Tuple = '''What is unusual about this image?''' # create processor _a : Union[str, Any] = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=a_ , image_std=a_ ) _a : Optional[int] = InstructBlipProcessor( image_processor=a_ , tokenizer=a_ , qformer_tokenizer=a_ , ) _a : Any = processor(images=a_ , text=a_ , return_tensors='pt' ).to(a_ ) # make sure processor creates exact same pixel values _a : Any = vis_processors['''eval'''](a_ ).unsqueeze(0 ).to(a_ ) _a : Tuple = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , a_ ) original_model.to(a_ ) hf_model.to(a_ ) with torch.no_grad(): if "vicuna" in model_name: _a : Optional[Any] = original_model({'image': original_pixel_values, 'text_input': [prompt]} ).logits _a : List[str] = hf_model(**a_ ).logits else: _a : Union[str, Any] = original_model( {'image': original_pixel_values, 'text_input': [prompt], 'text_output': ['\n']} ).logits _a : Union[str, Any] = tokenizer('\n' , return_tensors='pt' ).input_ids.to(a_ ) _a : Tuple = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) _a : List[Any] = hf_model(**a_ , labels=a_ ).logits print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape _a : List[Any] = 1E-4 if '''vicuna''' in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ) , a_ , atol=a_ ) print('Looks ok!' ) print('Generating with original model...' ) _a : Optional[int] = original_model.generate({'image': original_pixel_values, 'prompt': prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print('Generating with HF model...' ) _a : int = hf_model.generate( **a_ , do_sample=a_ , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? _a : Any = 2 print('Original generation:' , a_ ) _a : List[Any] = processor.batch_decode(a_ , skip_special_tokens=a_ ) _a : Union[str, Any] = [text.strip() for text in output_text] print('HF generation:' , a_ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(a_ ) hf_model.save_pretrained(a_ ) if push_to_hub: processor.push_to_hub(f"""Salesforce/{model_name}""" ) hf_model.push_to_hub(f"""Salesforce/{model_name}""" ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() __lowerCAmelCase = [ '''instructblip-vicuna-7b''', '''instructblip-vicuna-13b''', '''instructblip-flan-t5-xl''', '''instructblip-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''instructblip-flan-t5-xl''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) __lowerCAmelCase = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
358
"""simple docstring""" from bisect import bisect from itertools import accumulate def __lowerCamelCase ( a_ : Optional[int] , a_ : Tuple , a_ : Union[str, Any] , a_ : Union[str, Any] ) -> int: __SCREAMING_SNAKE_CASE :int = sorted(zip(a_ , a_ ) , key=lambda a_ : x[0] / x[1] , reverse=a_ ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Optional[Any] = [i[0] for i in r], [i[1] for i in r] __SCREAMING_SNAKE_CASE :Union[str, Any] = list(accumulate(a_ ) ) __SCREAMING_SNAKE_CASE :Dict = bisect(a_ , a_ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
498
0
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. a :Optional[Any] = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def _lowercase ( __lowerCAmelCase ) -> str: config.addinivalue_line( """markers""" , """is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested""" ) config.addinivalue_line( """markers""" , """is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested""" ) config.addinivalue_line("""markers""" , """is_pipeline_test: mark test to run only when pipelines are tested""" ) config.addinivalue_line("""markers""" , """is_staging_test: mark test to run only in the staging environment""" ) config.addinivalue_line("""markers""" , """accelerate_tests: mark test that require accelerate""" ) config.addinivalue_line("""markers""" , """tool_tests: mark the tool tests that are run on their specific schedule""" ) def _lowercase ( __lowerCAmelCase ) -> List[Any]: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> Tuple: from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE__ : Any = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(__lowerCAmelCase , id=__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> int: # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: SCREAMING_SNAKE_CASE__ : Any = 0 # Doctest custom flag to ignore output. a :Tuple = doctest.register_optionflag("IGNORE_RESULT") a :Optional[int] = doctest.OutputChecker class __a (UpperCamelCase_): '''simple docstring''' def _a ( self , _a , _a , _a ) -> Optional[Any]: """simple docstring""" if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , _a , _a , _a ) a :List[Any] = CustomOutputChecker a :List[Any] = HfDoctestModule a :Tuple = HfDocTestParser
12
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") a :Union[str, Any] = logging.getLogger(__name__) @dataclass class __a : '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[int] = field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _SCREAMING_SNAKE_CASE :bool = field( default=UpperCamelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""}) _SCREAMING_SNAKE_CASE :bool = field( default=UpperCamelCase_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) _SCREAMING_SNAKE_CASE :Optional[int] = field( default=UpperCamelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _SCREAMING_SNAKE_CASE :Optional[int] = field( default=UpperCamelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) _SCREAMING_SNAKE_CASE :Optional[int] = field( default=UpperCamelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) @dataclass class __a : '''simple docstring''' _SCREAMING_SNAKE_CASE :str = field( default=UpperCamelCase_ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""}) _SCREAMING_SNAKE_CASE :str = field( default=UpperCamelCase_ , metadata={"""help""": """Evaluation language. Also train language if `train_language` is set to None."""}) _SCREAMING_SNAKE_CASE :Optional[str] = field( default=UpperCamelCase_ , metadata={"""help""": """Train language if it is different from the evaluation language."""}) _SCREAMING_SNAKE_CASE :Optional[str] = field( default=UpperCamelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""}) _SCREAMING_SNAKE_CASE :Optional[str] = field( default=UpperCamelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""}) _SCREAMING_SNAKE_CASE :Optional[str] = field( default=UpperCamelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) _SCREAMING_SNAKE_CASE :Optional[bool] = field( default=UpperCamelCase_ , metadata={"""help""": """arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"""} , ) _SCREAMING_SNAKE_CASE :bool = field( default=UpperCamelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) _SCREAMING_SNAKE_CASE :str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) _SCREAMING_SNAKE_CASE :bool = field( default=UpperCamelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) _SCREAMING_SNAKE_CASE :bool = field( default=UpperCamelCase_ , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def _lowercase ( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE__ : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_xnli""" , __lowerCAmelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : List[Any] = training_args.get_process_log_level() logger.setLevel(__lowerCAmelCase ) datasets.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE__ : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE__ : Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: SCREAMING_SNAKE_CASE__ : Optional[int] = load_dataset( """xnli""" , model_args.language , split="""train""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: SCREAMING_SNAKE_CASE__ : str = load_dataset( """xnli""" , model_args.train_language , split="""train""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = train_dataset.features["""label"""].names if training_args.do_eval: SCREAMING_SNAKE_CASE__ : int = load_dataset( """xnli""" , model_args.language , split="""validation""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE__ : List[Any] = eval_dataset.features["""label"""].names if training_args.do_predict: SCREAMING_SNAKE_CASE__ : int = load_dataset( """xnli""" , model_args.language , split="""test""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE__ : Tuple = predict_dataset.features["""label"""].names # Labels SCREAMING_SNAKE_CASE__ : Any = len(__lowerCAmelCase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE__ : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCAmelCase , idalabel={str(__lowerCAmelCase ): label for i, label in enumerate(__lowerCAmelCase )} , labelaid={label: i for i, label in enumerate(__lowerCAmelCase )} , finetuning_task="""xnli""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE__ : str = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: SCREAMING_SNAKE_CASE__ : str = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch SCREAMING_SNAKE_CASE__ : Optional[Any] = False def preprocess_function(__lowerCAmelCase ): # Tokenize the texts return tokenizer( examples["""premise"""] , examples["""hypothesis"""] , padding=__lowerCAmelCase , max_length=data_args.max_seq_length , truncation=__lowerCAmelCase , ) if training_args.do_train: if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE__ : Optional[Any] = min(len(__lowerCAmelCase ) , data_args.max_train_samples ) SCREAMING_SNAKE_CASE__ : str = train_dataset.select(range(__lowerCAmelCase ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): SCREAMING_SNAKE_CASE__ : List[str] = train_dataset.map( __lowerCAmelCase , batched=__lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on train dataset""" , ) # Log a few random samples from the training set: for index in random.sample(range(len(__lowerCAmelCase ) ) , 3 ): logger.info(F'''Sample {index} of the training set: {train_dataset[index]}.''' ) if training_args.do_eval: if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE__ : Any = min(len(__lowerCAmelCase ) , data_args.max_eval_samples ) SCREAMING_SNAKE_CASE__ : List[Any] = eval_dataset.select(range(__lowerCAmelCase ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): SCREAMING_SNAKE_CASE__ : List[str] = eval_dataset.map( __lowerCAmelCase , batched=__lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on validation dataset""" , ) if training_args.do_predict: if data_args.max_predict_samples is not None: SCREAMING_SNAKE_CASE__ : int = min(len(__lowerCAmelCase ) , data_args.max_predict_samples ) SCREAMING_SNAKE_CASE__ : List[Any] = predict_dataset.select(range(__lowerCAmelCase ) ) with training_args.main_process_first(desc="""prediction dataset map pre-processing""" ): SCREAMING_SNAKE_CASE__ : Tuple = predict_dataset.map( __lowerCAmelCase , batched=__lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on prediction dataset""" , ) # Get the metric function SCREAMING_SNAKE_CASE__ : Optional[Any] = evaluate.load("""xnli""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Dict = p.predictions[0] if isinstance(p.predictions , __lowerCAmelCase ) else p.predictions SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.argmax(__lowerCAmelCase , axis=1 ) return metric.compute(predictions=__lowerCAmelCase , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: SCREAMING_SNAKE_CASE__ : List[Any] = default_data_collator elif training_args.fpaa: SCREAMING_SNAKE_CASE__ : int = DataCollatorWithPadding(__lowerCAmelCase , pad_to_multiple_of=8 ) else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = None # Initialize our Trainer SCREAMING_SNAKE_CASE__ : Union[str, Any] = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE__ : Dict = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = last_checkpoint SCREAMING_SNAKE_CASE__ : str = trainer.train(resume_from_checkpoint=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = train_result.metrics SCREAMING_SNAKE_CASE__ : Optional[int] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ : Dict = min(__lowerCAmelCase , len(__lowerCAmelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , __lowerCAmelCase ) trainer.save_metrics("""train""" , __lowerCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) SCREAMING_SNAKE_CASE__ : Any = trainer.evaluate(eval_dataset=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = min(__lowerCAmelCase , len(__lowerCAmelCase ) ) trainer.log_metrics("""eval""" , __lowerCAmelCase ) trainer.save_metrics("""eval""" , __lowerCAmelCase ) # Prediction if training_args.do_predict: logger.info("""*** Predict ***""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = trainer.predict(__lowerCAmelCase , metric_key_prefix="""predict""" ) SCREAMING_SNAKE_CASE__ : List[str] = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ : int = min(__lowerCAmelCase , len(__lowerCAmelCase ) ) trainer.log_metrics("""predict""" , __lowerCAmelCase ) trainer.save_metrics("""predict""" , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = np.argmax(__lowerCAmelCase , axis=1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.path.join(training_args.output_dir , """predictions.txt""" ) if trainer.is_world_process_zero(): with open(__lowerCAmelCase , """w""" ) as writer: writer.write("""index\tprediction\n""" ) for index, item in enumerate(__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Optional[int] = label_list[item] writer.write(F'''{index}\t{item}\n''' ) if __name__ == "__main__": main()
12
1
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class __a : """simple docstring""" def __init__( self , snake_case=2 , snake_case=3 , snake_case=64 , snake_case=None ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = np.random.default_rng(__UpperCamelCase ) lowerCAmelCase__ : Dict = length lowerCAmelCase__ : Any = rng.normal(size=(length,) ).astype(np.floataa ) lowerCAmelCase__ : Tuple = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self ): """simple docstring""" return self.length def __getitem__( self , snake_case ): """simple docstring""" return {"x": self.x[i], "y": self.y[i]} class __a ( torch.nn.Module ): """simple docstring""" def __init__( self , snake_case=0 , snake_case=0 , snake_case=False ): """simple docstring""" super().__init__() lowerCAmelCase__ : Dict = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase__ : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase__ : Optional[Any] = True def SCREAMING_SNAKE_CASE_ ( self , snake_case=None ): """simple docstring""" if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCAmelCase__ : str = False return x * self.a[0] + self.b[0] class __a ( torch.nn.Module ): """simple docstring""" def __init__( self , snake_case=0 , snake_case=0 , snake_case=False ): """simple docstring""" super().__init__() lowerCAmelCase__ : List[Any] = torch.nn.Parameter(torch.tensor(__UpperCamelCase ).float() ) lowerCAmelCase__ : int = torch.nn.Parameter(torch.tensor(__UpperCamelCase ).float() ) lowerCAmelCase__ : Optional[int] = True def SCREAMING_SNAKE_CASE_ ( self , snake_case=None ): """simple docstring""" if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCAmelCase__ : int = False return x * self.a + self.b def SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ = 1_6 ) -> Union[str, Any]: from datasets import load_dataset from transformers import AutoTokenizer lowerCAmelCase__ : str = AutoTokenizer.from_pretrained("bert-base-cased" ) lowerCAmelCase__ : str = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} lowerCAmelCase__ : Optional[Any] = load_dataset("csv" , data_files=UpperCamelCase__ ) lowerCAmelCase__ : List[str] = datasets["train"].unique("label" ) lowerCAmelCase__ : int = {v: i for i, v in enumerate(UpperCamelCase__ )} def tokenize_function(lowercase__ ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ : Any = tokenizer( examples["sentence1"] , examples["sentence2"] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length" ) if "label" in examples: lowerCAmelCase__ : Dict = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase__ : str = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=["sentence1", "sentence2", "label"] , ) def collate_fn(lowercase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCamelCase__ , padding="max_length" , max_length=1_2_8 , return_tensors="pt" ) return tokenizer.pad(UpperCamelCase__ , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. lowerCAmelCase__ : Dict = DataLoader(tokenized_datasets["train"] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=2 ) lowerCAmelCase__ : Tuple = DataLoader(tokenized_datasets["validation"] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
453
'''simple docstring''' import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _snake_case ( snake_case_ ): '''simple docstring''' def lowerCAmelCase__ ( self: Tuple ) -> str: __magic_name__ : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCamelCase , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(__UpperCamelCase , "neck_hidden_sizes" ) ) self.parent.assertTrue(hasattr(__UpperCamelCase , "num_attention_heads" ) ) class _snake_case : '''simple docstring''' def __init__( self: List[str] , __UpperCamelCase: Optional[int] , __UpperCamelCase: Optional[int]=13 , __UpperCamelCase: Any=32 , __UpperCamelCase: Dict=2 , __UpperCamelCase: Dict=3 , __UpperCamelCase: Any=640 , __UpperCamelCase: str=4 , __UpperCamelCase: Optional[int]="silu" , __UpperCamelCase: Union[str, Any]=3 , __UpperCamelCase: Optional[int]=32 , __UpperCamelCase: Tuple=0.1 , __UpperCamelCase: List[Any]=0.1 , __UpperCamelCase: Tuple=0.1 , __UpperCamelCase: int=0.0_2 , __UpperCamelCase: Dict=True , __UpperCamelCase: int=True , __UpperCamelCase: Any=10 , __UpperCamelCase: Tuple=None , ) -> Union[str, Any]: __magic_name__ : int = parent __magic_name__ : Dict = batch_size __magic_name__ : Optional[Any] = image_size __magic_name__ : List[str] = patch_size __magic_name__ : Tuple = num_channels __magic_name__ : Optional[Any] = last_hidden_size __magic_name__ : Any = num_attention_heads __magic_name__ : Any = hidden_act __magic_name__ : int = conv_kernel_size __magic_name__ : int = output_stride __magic_name__ : Optional[int] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : Optional[int] = classifier_dropout_prob __magic_name__ : Union[str, Any] = use_labels __magic_name__ : List[str] = is_training __magic_name__ : List[Any] = num_labels __magic_name__ : Union[str, Any] = initializer_range __magic_name__ : Optional[int] = scope def lowerCAmelCase__ ( self: str ) -> Any: __magic_name__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Dict = None __magic_name__ : Optional[int] = None if self.use_labels: __magic_name__ : str = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ : List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __magic_name__ : Optional[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase__ ( self: Optional[int] ) -> Any: return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self: Optional[Any] , __UpperCamelCase: Union[str, Any] , __UpperCamelCase: Tuple , __UpperCamelCase: str , __UpperCamelCase: Optional[int] ) -> Dict: __magic_name__ : Tuple = MobileViTModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __magic_name__ : Optional[int] = model(__UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase__ ( self: Dict , __UpperCamelCase: Any , __UpperCamelCase: Optional[Any] , __UpperCamelCase: Union[str, Any] , __UpperCamelCase: Any ) -> Any: __magic_name__ : List[Any] = self.num_labels __magic_name__ : int = MobileViTForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __magic_name__ : Optional[Any] = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self: Optional[int] , __UpperCamelCase: Union[str, Any] , __UpperCamelCase: List[Any] , __UpperCamelCase: str , __UpperCamelCase: Union[str, Any] ) -> Dict: __magic_name__ : Any = self.num_labels __magic_name__ : List[Any] = MobileViTForSemanticSegmentation(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __magic_name__ : Optional[int] = model(__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __magic_name__ : str = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase__ ( self: int ) -> Union[str, Any]: __magic_name__ : Any = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Optional[Any] = config_and_inputs __magic_name__ : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _snake_case ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' __snake_case = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __snake_case = ( { "feature-extraction": MobileViTModel, "image-classification": MobileViTForImageClassification, "image-segmentation": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __snake_case = False __snake_case = False __snake_case = False __snake_case = False def lowerCAmelCase__ ( self: Optional[int] ) -> Optional[Any]: __magic_name__ : Dict = MobileViTModelTester(self ) __magic_name__ : Tuple = MobileViTConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase ) def lowerCAmelCase__ ( self: Dict ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="MobileViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[int]: pass @unittest.skip(reason="MobileViT does not support input and output embeddings" ) def lowerCAmelCase__ ( self: str ) -> Dict: pass @unittest.skip(reason="MobileViT does not output attentions" ) def lowerCAmelCase__ ( self: Any ) -> Any: pass def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]: __magic_name__ , __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Any = model_class(__UpperCamelCase ) __magic_name__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Any = [*signature.parameters.keys()] __magic_name__ : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase__ ( self: Dict ) -> List[Any]: pass def lowerCAmelCase__ ( self: Optional[int] ) -> str: __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowerCAmelCase__ ( self: int ) -> Dict: def check_hidden_states_output(__UpperCamelCase: Any , __UpperCamelCase: str , __UpperCamelCase: List[Any] ): __magic_name__ : Any = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): __magic_name__ : Tuple = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) __magic_name__ : str = outputs.hidden_states __magic_name__ : Optional[Any] = 5 self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __magic_name__ : List[Any] = 2 for i in range(len(__UpperCamelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __magic_name__ , __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Dict = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase__ ( self: str ) -> List[str]: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) def lowerCAmelCase__ ( self: int ) -> int: __magic_name__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCamelCase ) @slow def lowerCAmelCase__ ( self: Union[str, Any] ) -> str: for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Dict = MobileViTModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def _UpperCamelCase ( ): """simple docstring""" __magic_name__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase__ ( self: Tuple ) -> Optional[Any]: return MobileViTImageProcessor.from_pretrained("apple/mobilevit-xx-small" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self: List[str] ) -> List[str]: __magic_name__ : Tuple = MobileViTForImageClassification.from_pretrained("apple/mobilevit-xx-small" ).to(__UpperCamelCase ) __magic_name__ : Any = self.default_image_processor __magic_name__ : Tuple = prepare_img() __magic_name__ : str = image_processor(images=__UpperCamelCase , return_tensors="pt" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): __magic_name__ : Dict = model(**__UpperCamelCase ) # verify the logits __magic_name__ : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) __magic_name__ : Union[str, Any] = torch.tensor([-1.9_3_6_4, -1.2_3_2_7, -0.4_6_5_3] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1E-4 ) ) @slow def lowerCAmelCase__ ( self: Tuple ) -> Optional[int]: __magic_name__ : Tuple = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) __magic_name__ : Union[str, Any] = model.to(__UpperCamelCase ) __magic_name__ : int = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) __magic_name__ : Union[str, Any] = prepare_img() __magic_name__ : Optional[Any] = image_processor(images=__UpperCamelCase , return_tensors="pt" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): __magic_name__ : int = model(**__UpperCamelCase ) __magic_name__ : List[Any] = outputs.logits # verify the logits __magic_name__ : Dict = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __UpperCamelCase ) __magic_name__ : List[Any] = torch.tensor( [ [[6.9_7_1_3, 6.9_7_8_6, 7.2_4_2_2], [7.2_8_9_3, 7.2_8_2_5, 7.4_4_4_6], [7.6_5_8_0, 7.8_7_9_7, 7.9_4_2_0]], [[-1_0.6_8_6_9, -1_0.3_2_5_0, -1_0.3_4_7_1], [-1_0.4_2_2_8, -9.9_8_6_8, -9.7_1_3_2], [-1_1.0_4_0_5, -1_1.0_2_2_1, -1_0.7_3_1_8]], [[-3.3_0_8_9, -2.8_5_3_9, -2.6_7_4_0], [-3.2_7_0_6, -2.5_6_2_1, -2.5_1_0_8], [-3.2_5_3_4, -2.6_6_1_5, -2.6_6_5_1]], ] , device=__UpperCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCamelCase , atol=1E-4 ) ) @slow def lowerCAmelCase__ ( self: Tuple ) -> List[Any]: __magic_name__ : Tuple = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) __magic_name__ : Union[str, Any] = model.to(__UpperCamelCase ) __magic_name__ : int = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) __magic_name__ : Union[str, Any] = prepare_img() __magic_name__ : int = image_processor(images=__UpperCamelCase , return_tensors="pt" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): __magic_name__ : Optional[int] = model(**__UpperCamelCase ) __magic_name__ : List[str] = outputs.logits.detach().cpu() __magic_name__ : str = image_processor.post_process_semantic_segmentation(outputs=__UpperCamelCase , target_sizes=[(50, 60)] ) __magic_name__ : List[Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __UpperCamelCase ) __magic_name__ : List[str] = image_processor.post_process_semantic_segmentation(outputs=__UpperCamelCase ) __magic_name__ : Any = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __UpperCamelCase )
436
0
from __future__ import annotations def lowercase__( A , A ): snake_case__ , snake_case__ : Optional[Any] = position snake_case__ : int = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] snake_case__ : Optional[Any] = [] for position in positions: snake_case__ , snake_case__ : str = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(A ) return permissible_positions def lowercase__( A ): return not any(elem == 0 for row in board for elem in row ) def lowercase__( A , A , A ): if is_complete(A ): return True for position in get_valid_pos(A , len(A ) ): snake_case__ , snake_case__ : Dict = position if board[y][x] == 0: snake_case__ : Tuple = curr + 1 if open_knight_tour_helper(A , A , curr + 1 ): return True snake_case__ : Tuple = 0 return False def lowercase__( A ): snake_case__ : int = [[0 for i in range(A )] for j in range(A )] for i in range(A ): for j in range(A ): snake_case__ : Union[str, Any] = 1 if open_knight_tour_helper(A , (i, j) , 1 ): return board snake_case__ : Dict = 0 snake_case__ : List[Any] = f'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(A ) if __name__ == "__main__": import doctest doctest.testmod()
303
import sys from collections import defaultdict class snake_case__ : def __init__( self : List[Any] ): snake_case__ : Dict = [] def UpperCAmelCase__ ( self : List[str] , _lowerCamelCase : Tuple ): return self.node_position[vertex] def UpperCAmelCase__ ( self : Union[str, Any] , _lowerCamelCase : int , _lowerCamelCase : str ): snake_case__ : Union[str, Any] = pos def UpperCAmelCase__ ( self : List[str] , _lowerCamelCase : List[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: snake_case__ : str = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: snake_case__ : Optional[int] = 2 * start + 1 else: snake_case__ : str = 2 * start + 2 if heap[smallest_child] < heap[start]: snake_case__ , snake_case__ : int = heap[smallest_child], positions[smallest_child] snake_case__ , snake_case__ : str = ( heap[start], positions[start], ) snake_case__ , snake_case__ : int = temp, tempa snake_case__ : int = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _lowerCamelCase ) self.top_to_bottom(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : List[Any] ): snake_case__ : Optional[Any] = position[index] while index != 0: snake_case__ : Optional[Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: snake_case__ : Optional[Any] = heap[parent] snake_case__ : Dict = position[parent] self.set_position(position[parent] , _lowerCamelCase ) else: snake_case__ : Tuple = val snake_case__ : Optional[Any] = temp self.set_position(_lowerCamelCase , _lowerCamelCase ) break snake_case__ : Optional[int] = parent else: snake_case__ : List[str] = val snake_case__ : List[Any] = temp self.set_position(_lowerCamelCase , 0 ) def UpperCAmelCase__ ( self : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : Dict ): snake_case__ : int = len(_lowerCamelCase ) // 2 - 1 for i in range(_lowerCamelCase , -1 , -1 ): self.top_to_bottom(_lowerCamelCase , _lowerCamelCase , len(_lowerCamelCase ) , _lowerCamelCase ) def UpperCAmelCase__ ( self : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : List[str] ): snake_case__ : Any = positions[0] snake_case__ : List[str] = sys.maxsize self.top_to_bottom(_lowerCamelCase , 0 , len(_lowerCamelCase ) , _lowerCamelCase ) return temp def lowercase__( A ): snake_case__ : int = Heap() snake_case__ : Optional[int] = [0] * len(A ) snake_case__ : Any = [-1] * len(A ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph snake_case__ : Union[str, Any] = [] # Heap of Distance of vertices from their neighboring vertex snake_case__ : Dict = [] for vertex in range(len(A ) ): distance_tv.append(sys.maxsize ) positions.append(A ) heap.node_position.append(A ) snake_case__ : Tuple = [] snake_case__ : int = 1 snake_case__ : int = sys.maxsize for neighbor, distance in adjacency_list[0]: snake_case__ : Optional[int] = 0 snake_case__ : Optional[int] = distance heap.heapify(A , A ) for _ in range(1 , len(A ) ): snake_case__ : Tuple = heap.delete_minimum(A , A ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) snake_case__ : List[str] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(A )] ): snake_case__ : Any = distance heap.bottom_to_top( A , heap.get_position(A ) , A , A ) snake_case__ : Union[str, Any] = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > lowerCamelCase : Union[str, Any] = int(input('Enter number of edges: ').strip()) lowerCamelCase : str = defaultdict(list) for _ in range(edges_number): lowerCamelCase : Any = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
303
1
from math import factorial class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , snake_case_ ): _A = real if isinstance(snake_case_ , snake_case_ ): _A = [1] * rank else: _A = rank def __repr__( self ): return ( F"{self.real}+" F"{'+'.join(str(snake_case_ )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}" ) def lowerCAmelCase__ ( self ): _A = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , snake_case_ ) def __add__( self , snake_case_ ): if not isinstance(snake_case_ , snake_case_ ): return Dual(self.real + other , self.duals ) _A = self.duals.copy() _A = other.duals.copy() if len(snake_case_ ) > len(snake_case_ ): o_dual.extend([1] * (len(snake_case_ ) - len(snake_case_ )) ) elif len(snake_case_ ) < len(snake_case_ ): s_dual.extend([1] * (len(snake_case_ ) - len(snake_case_ )) ) _A = [] for i in range(len(snake_case_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , snake_case_ ) __magic_name__ = __add__ def __sub__( self , snake_case_ ): return self + other * -1 def __mul__( self , snake_case_ ): if not isinstance(snake_case_ , snake_case_ ): _A = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , snake_case_ ) _A = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , snake_case_ ) __magic_name__ = __mul__ def __truediv__( self , snake_case_ ): if not isinstance(snake_case_ , snake_case_ ): _A = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , snake_case_ ) raise ValueError def __floordiv__( self , snake_case_ ): if not isinstance(snake_case_ , snake_case_ ): _A = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , snake_case_ ) raise ValueError def __pow__( self , snake_case_ ): if n < 0 or isinstance(snake_case_ , snake_case_ ): raise ValueError('power must be a positive integer' ) if n == 0: return 1 if n == 1: return self _A = self for _ in range(n - 1 ): x *= self return x def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if not callable(_SCREAMING_SNAKE_CASE ): raise ValueError('differentiate() requires a function as input for func' ) if not isinstance(_SCREAMING_SNAKE_CASE , (float, int) ): raise ValueError('differentiate() requires a float as input for position' ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('differentiate() requires an int as input for order' ) _A = Dual(_SCREAMING_SNAKE_CASE , 1 ) _A = func(_SCREAMING_SNAKE_CASE ) if order == 0: return result.real return result.duals[order - 1] * factorial(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return y**2 * y**4 print(differentiate(f, 9, 2))
27
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class __magic_name__ (unittest.TestCase ): lowerCamelCase__ = StableDiffusionLDMaDPipeline lowerCamelCase__ = TEXT_TO_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def __a ( self ) -> List[Any]: torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) lowerCAmelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=_a , set_alpha_to_one=_a , ) torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase_ = CLIPTextModel(_a ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCAmelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __a ( self , _a , _a=0 ) -> Any: if str(_a ).startswith("mps" ): lowerCAmelCase_ = torch.manual_seed(_a ) else: lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(_a ) lowerCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __a ( self ) -> List[str]: lowerCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = StableDiffusionLDMaDPipeline(**_a ) lowerCAmelCase_ = ldmad_pipe.to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = self.get_dummy_inputs(_a ) lowerCAmelCase_ = ldmad_pipe(**_a ) lowerCAmelCase_ , lowerCAmelCase_ = output.rgb, output.depth lowerCAmelCase_ = rgb[0, -3:, -3:, -1] lowerCAmelCase_ = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) lowerCAmelCase_ = np.array( [0.3_7_3_3_8_1_7_6, 0.7_0_2_4_7, 0.7_4_2_0_3_1_9_3, 0.5_1_6_4_3_6_0_4, 0.5_8_2_5_6_7_9_3, 0.6_0_9_3_2_1_3_6, 0.4_1_8_1_0_9_5, 0.4_8_3_5_5_8_7_7, 0.4_6_5_3_5_2_6_2] ) lowerCAmelCase_ = np.array([1_0_3.4_6_7_2_7, 8_5.8_1_2_0_0_4, 8_7.8_4_9_2_3_6] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2 def __a ( self ) -> Tuple: lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = StableDiffusionLDMaDPipeline(**_a ) lowerCAmelCase_ = ldmad_pipe.to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = self.get_dummy_inputs(_a ) lowerCAmelCase_ = 3 * [inputs["prompt"]] # forward lowerCAmelCase_ = ldmad_pipe(**_a ) lowerCAmelCase_ , lowerCAmelCase_ = output.rgb, output.depth lowerCAmelCase_ = rgb_slice_a[0, -3:, -3:, -1] lowerCAmelCase_ = depth_slice_a[0, -3:, -1] lowerCAmelCase_ = self.get_dummy_inputs(_a ) lowerCAmelCase_ = 3 * [inputs.pop("prompt" )] lowerCAmelCase_ = ldmad_pipe.tokenizer( _a , padding="max_length" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=_a , return_tensors="pt" , ) lowerCAmelCase_ = text_inputs["input_ids"].to(_a ) lowerCAmelCase_ = ldmad_pipe.text_encoder(_a )[0] lowerCAmelCase_ = prompt_embeds # forward lowerCAmelCase_ = ldmad_pipe(**_a ) lowerCAmelCase_ , lowerCAmelCase_ = output.rgb, output.depth lowerCAmelCase_ = rgb_slice_a[0, -3:, -3:, -1] lowerCAmelCase_ = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4 def __a ( self ) -> Optional[int]: lowerCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=_a ) lowerCAmelCase_ = StableDiffusionLDMaDPipeline(**_a ) lowerCAmelCase_ = ldmad_pipe.to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = self.get_dummy_inputs(_a ) lowerCAmelCase_ = "french fries" lowerCAmelCase_ = ldmad_pipe(**_a , negative_prompt=_a ) lowerCAmelCase_ , lowerCAmelCase_ = output.rgb, output.depth lowerCAmelCase_ = rgb[0, -3:, -3:, -1] lowerCAmelCase_ = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) lowerCAmelCase_ = np.array( [0.3_7_0_4_4, 0.7_1_8_1_1_5_0_3, 0.7_2_2_3_2_5_1, 0.4_8_6_0_3_6_7_5, 0.5_6_3_8_3_9_1, 0.6_3_6_4_9_4_8, 0.4_2_8_3_3_7_0_4, 0.4_9_0_1_3_1_5, 0.4_7_9_2_6_2_1_7] ) lowerCAmelCase_ = np.array([1_0_7.8_4_7_3_8, 8_4.6_2_8_0_2, 8_9.9_6_2_1_3_5] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2 @slow @require_torch_gpu class __magic_name__ (unittest.TestCase ): def __a ( self ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self , _a , _a="cpu" , _a=torch.floataa , _a=0 ) -> Dict: lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(_a ) lowerCAmelCase_ = np.random.RandomState(_a ).standard_normal((1, 4, 64, 64) ) lowerCAmelCase_ = torch.from_numpy(_a ).to(device=_a , dtype=_a ) lowerCAmelCase_ = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ) lowerCAmelCase_ = ldmad_pipe.to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = self.get_inputs(_a ) lowerCAmelCase_ = ldmad_pipe(**_a ) lowerCAmelCase_ , lowerCAmelCase_ = output.rgb, output.depth lowerCAmelCase_ = rgb[0, -3:, -3:, -1].flatten() lowerCAmelCase_ = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) lowerCAmelCase_ = np.array( [0.5_3_8_0_5_4_6_5, 0.5_6_7_0_7_3_0_5, 0.5_4_8_6_5_1_5, 0.5_7_0_1_2_2_3_6, 0.5_8_1_4_5_1_1, 0.5_6_2_5_3_4_8_7, 0.5_4_8_4_3_0_1_4, 0.5_5_0_9_2_2_6_3, 0.6_4_5_9_7_0_6] ) lowerCAmelCase_ = np.array( [0.9_2_6_3_7_8_1, 0.6_6_7_8_6_7_2, 0.5_4_8_6_5_1_5, 0.9_2_2_0_2_1_4_5, 0.6_7_8_3_1_1_3_5, 0.5_6_2_5_3_4_8_7, 0.9_2_4_1_6_9_4, 0.7_5_5_1_4_7_8, 0.6_4_5_9_7_0_6] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3 @nightly @require_torch_gpu class __magic_name__ (unittest.TestCase ): def __a ( self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self , _a , _a="cpu" , _a=torch.floataa , _a=0 ) -> Union[str, Any]: lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(_a ) lowerCAmelCase_ = np.random.RandomState(_a ).standard_normal((1, 4, 64, 64) ) lowerCAmelCase_ = torch.from_numpy(_a ).to(device=_a , dtype=_a ) lowerCAmelCase_ = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 50, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def __a ( self ) -> str: lowerCAmelCase_ = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ).to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = self.get_inputs(_a ) lowerCAmelCase_ = ldmad_pipe(**_a ) lowerCAmelCase_ , lowerCAmelCase_ = output.rgb, output.depth lowerCAmelCase_ = 0.4_9_5_5_8_6 lowerCAmelCase_ = 0.3_3_7_9_5_5_1_5 lowerCAmelCase_ = 1_1_2.4_8_5_1_8 lowerCAmelCase_ = 9_8.4_8_9_7_4_6 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3 def __a ( self ) -> Dict: lowerCAmelCase_ = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d-4c" ).to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = self.get_inputs(_a ) lowerCAmelCase_ = ldmad_pipe(**_a ) lowerCAmelCase_ , lowerCAmelCase_ = output.rgb, output.depth lowerCAmelCase_ = 0.4_1_9_4_1_2_7 lowerCAmelCase_ = 0.3_5_3_7_5_5_8_6 lowerCAmelCase_ = 0.5_6_3_8_5_0_2 lowerCAmelCase_ = 0.3_4_6_8_6_1_0_3 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3
122
0
import functools def __lowerCamelCase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] ) -> int: __UpperCamelCase : Tuple = len(__snake_case ) __UpperCamelCase : Optional[Any] = len(__snake_case ) @functools.cache def min_distance(__lowerCAmelCase : List[Any] , __lowerCAmelCase : Any ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa __UpperCamelCase : int = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , __snake_case ) , 1 + min_distance(__snake_case , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
712
def __lowerCamelCase ( __lowerCAmelCase : list ) -> list: __UpperCamelCase : Dict = len(__lowerCAmelCase ) for i in range(1 , __lowerCAmelCase ): __UpperCamelCase : Dict = collection[i] __UpperCamelCase : Optional[Any] = 0 __UpperCamelCase : Dict = i - 1 while low <= high: __UpperCamelCase : int = (low + high) // 2 if val < collection[mid]: __UpperCamelCase : str = mid - 1 else: __UpperCamelCase : str = mid + 1 for j in range(__lowerCAmelCase , __lowerCAmelCase , -1 ): __UpperCamelCase : str = collection[j - 1] __UpperCamelCase : int = val return collection if __name__ == "__main__": UpperCamelCase = input('Enter numbers separated by a comma:\n').strip() UpperCamelCase = [int(item) for item in user_input.split(',')] print(binary_insertion_sort(unsorted))
515
0
def __lowercase ( snake_case ): """simple docstring""" __magic_name__ :int = 0 # if input_string is "aba" than new_input_string become "a|b|a" __magic_name__ :Tuple = '''''' __magic_name__ :Optional[Any] = '''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(snake_case ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring __magic_name__ , __magic_name__ :List[Any] = 0, 0 # length[i] shows the length of palindromic substring with center i __magic_name__ :List[str] = [1 for i in range(len(snake_case ) )] # for each character in new_string find corresponding palindromic string __magic_name__ :Dict = 0 for j in range(len(snake_case ) ): __magic_name__ :Optional[Any] = 1 if j > r else min(length[l + r - j] // 2, r - j + 1 ) while ( j - k >= 0 and j + k < len(snake_case ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 __magic_name__ :Optional[Any] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: __magic_name__ :Optional[Any] = j - k + 1 # noqa: E741 __magic_name__ :Any = j + k - 1 # update max_length and start position if max_length < length[j]: __magic_name__ :Union[str, Any] = length[j] __magic_name__ :Union[str, Any] = j # create that string __magic_name__ :Any = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
0
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers lowerCamelCase = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def _A ( ): """simple docstring""" __lowercase =os.path.dirname(os.path.realpath(_lowerCAmelCase ) ) __lowercase =os.path.join(_lowerCAmelCase , 'words.txt' ) __lowercase ='' with open(_lowerCAmelCase ) as f: __lowercase =f.readline() __lowercase =[word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] __lowercase =[ word for word in [sum(ord(_lowerCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_lowerCAmelCase ) if __name__ == "__main__": print(solution())
474
0
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCamelCase_ ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase = (DPMSolverSDEScheduler,) __UpperCAmelCase = 10 def A ( self , **snake_case_ ) -> Union[str, Any]: '''simple docstring''' __lowercase = { '''num_train_timesteps''': 1_1_0_0, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**snake_case_ ) return config def A ( self ) -> Dict: '''simple docstring''' for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=snake_case_ ) def A ( self ) -> Union[str, Any]: '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=snake_case_ , beta_end=snake_case_ ) def A ( self ) -> Optional[int]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case_ ) def A ( self ) -> Tuple: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def A ( self ) -> List[Any]: '''simple docstring''' __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): __lowercase = scheduler.scale_model_input(snake_case_ , snake_case_ ) __lowercase = model(snake_case_ , snake_case_ ) __lowercase = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) __lowercase = output.prev_sample __lowercase = torch.sum(torch.abs(snake_case_ ) ) __lowercase = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_7_8_2_1_0_4_4_9_2_1_8_7_5 ) < 1e-2 assert abs(result_mean.item() - 0.2_1_7_8_7_0_5_9_6_4_5_6_5_2_7_7 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_2_1_1_1_8_1_6_4_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_6_8_9_2_2_9_9_6_5_2 ) < 1e-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1e-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1e-3 def A ( self ) -> Any: '''simple docstring''' __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(prediction_type='''v_prediction''' ) __lowercase = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): __lowercase = scheduler.scale_model_input(snake_case_ , snake_case_ ) __lowercase = model(snake_case_ , snake_case_ ) __lowercase = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) __lowercase = output.prev_sample __lowercase = torch.sum(torch.abs(snake_case_ ) ) __lowercase = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_2_4.7_7_1_4_9_2_0_0_4_3_9_4_5_3 ) < 1e-2 assert abs(result_mean.item() - 0.1_6_2_2_6_2_8_9_0_1_4_8_1_6_2_8_4 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_2_8.1_6_6_3_3_6_0_5_9_5_7_0_3 ) < 1e-2 assert abs(result_mean.item() - 0.1_6_6_8_8_3_2_6_0_0_1_1_6_7_2_9_7 ) < 1e-3 else: assert abs(result_sum.item() - 1_1_9.8_4_8_7_5_4_8_8_2_8_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.1_5_6_0_5_3_0_6_6_2_5_3_6_6_2_1 ) < 1e-3 def A ( self ) -> int: '''simple docstring''' __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __lowercase = scheduler.scale_model_input(snake_case_ , snake_case_ ) __lowercase = model(snake_case_ , snake_case_ ) __lowercase = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) __lowercase = output.prev_sample __lowercase = torch.sum(torch.abs(snake_case_ ) ) __lowercase = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_6_9_5_7_3_9_7_4_6_0_9_3_8 ) < 1e-2 assert abs(result_mean.item() - 0.2_1_8_0_5_9_3_4_6_0_7_9_8_2_6_3_5 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_3_6_3_7_6_9_5_3_1_2 ) < 1e-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_8_3_8_2_4_1_5_7_7_1 ) < 1e-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1e-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1e-3 def A ( self ) -> Optional[int]: '''simple docstring''' __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**snake_case_ , use_karras_sigmas=snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma __lowercase = sample.to(snake_case_ ) for t in scheduler.timesteps: __lowercase = scheduler.scale_model_input(snake_case_ , snake_case_ ) __lowercase = model(snake_case_ , snake_case_ ) __lowercase = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) __lowercase = output.prev_sample __lowercase = torch.sum(torch.abs(snake_case_ ) ) __lowercase = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_7_6.6_6_9_7_4_1_3_5_7_4_2_1_8_8 ) < 1e-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_7.6_3_6_5_3_5_6_4_4_5_3_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1e-2 else: assert abs(result_sum.item() - 1_7_0.3_1_3_5_2_2_3_3_8_8_6_7_2 ) < 1e-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1e-2
527
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def lowercase_ ( *_UpperCamelCase ): '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ): __lowercase = list(_UpperCamelCase ) for i in range(len(_UpperCamelCase ) ): __lowercase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def lowercase_ ( _UpperCamelCase ): '''simple docstring''' __lowercase = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(_UpperCamelCase , _UpperCamelCase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def lowercase_ ( _UpperCamelCase = None , _UpperCamelCase = 1_28 ): '''simple docstring''' if function is None: return functools.partial(_UpperCamelCase , starting_batch_size=_UpperCamelCase ) __lowercase = starting_batch_size def decorator(*_UpperCamelCase , **_UpperCamelCase ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() __lowercase = list(inspect.signature(_UpperCamelCase ).parameters.keys() ) # Guard against user error if len(_UpperCamelCase ) < (len(_UpperCamelCase ) + 1): __lowercase = ''', '''.join([F'{arg}={value}' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F'Batch size was passed into `{function.__name__}` as the first argument when called.' F'Remove this as the decorator already does so: `{function.__name__}({arg_str})`' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(_UpperCamelCase , *_UpperCamelCase , **_UpperCamelCase ) except Exception as e: if should_reduce_batch_size(_UpperCamelCase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
527
1
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig __lowerCamelCase = logging.get_logger(__name__) # General docstring __lowerCamelCase = """MobileNetV1Config""" # Base docstring __lowerCamelCase = """google/mobilenet_v1_1.0_224""" __lowerCamelCase = [1, 1_0_2_4, 7, 7] # Image classification docstring __lowerCamelCase = """google/mobilenet_v1_1.0_224""" __lowerCamelCase = """tabby, tabby cat""" __lowerCamelCase = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def UpperCAmelCase__ ( __snake_case , __snake_case , __snake_case=None ) -> str: _A = {} if isinstance(__snake_case , __snake_case ): _A = model.mobilenet_va else: _A = model _A = '''MobilenetV1/Conv2d_0/''' _A = backbone.conv_stem.convolution.weight _A = backbone.conv_stem.normalization.bias _A = backbone.conv_stem.normalization.weight _A = backbone.conv_stem.normalization.running_mean _A = backbone.conv_stem.normalization.running_var for i in range(13 ): _A = i + 1 _A = i * 2 _A = backbone.layer[pt_index] _A = F'''MobilenetV1/Conv2d_{tf_index}_depthwise/''' _A = pointer.convolution.weight _A = pointer.normalization.bias _A = pointer.normalization.weight _A = pointer.normalization.running_mean _A = pointer.normalization.running_var _A = backbone.layer[pt_index + 1] _A = F'''MobilenetV1/Conv2d_{tf_index}_pointwise/''' _A = pointer.convolution.weight _A = pointer.normalization.bias _A = pointer.normalization.weight _A = pointer.normalization.running_mean _A = pointer.normalization.running_var if isinstance(__snake_case , __snake_case ): _A = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' _A = model.classifier.weight _A = model.classifier.bias return tf_to_pt_map def UpperCAmelCase__ ( __snake_case , __snake_case , __snake_case ) -> Optional[Any]: try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model _A = tf.train.list_variables(__snake_case ) _A = {} for name, shape in init_vars: logger.info(F'''Loading TF weight {name} with shape {shape}''' ) _A = tf.train.load_variable(__snake_case , __snake_case ) _A = array # Build TF to PyTorch weights loading map _A = _build_tf_to_pytorch_map(__snake_case , __snake_case , __snake_case ) for name, pointer in tf_to_pt_map.items(): logger.info(F'''Importing {name}''' ) if name not in tf_weights: logger.info(F'''{name} not in tf pre-trained weights, skipping''' ) continue _A = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) _A = np.transpose(__snake_case , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer _A = array.squeeze().transpose() else: _A = np.transpose(__snake_case , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''' ) logger.info(F'''Initialize PyTorch weight {name} {array.shape}''' ) _A = torch.from_numpy(__snake_case ) tf_weights.pop(__snake_case , __snake_case ) tf_weights.pop(name + '''/RMSProp''' , __snake_case ) tf_weights.pop(name + '''/RMSProp_1''' , __snake_case ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , __snake_case ) logger.info(F'''Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}''' ) return model def UpperCAmelCase__ ( __snake_case , __snake_case ) -> torch.Tensor: _A , _A = features.shape[-2:] _A , _A = conv_layer.stride _A , _A = conv_layer.kernel_size if in_height % stride_height == 0: _A = max(kernel_height - stride_height , 0 ) else: _A = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: _A = max(kernel_width - stride_width , 0 ) else: _A = max(kernel_width - (in_width % stride_width) , 0 ) _A = pad_along_width // 2 _A = pad_along_width - pad_left _A = pad_along_height // 2 _A = pad_along_height - pad_top _A = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(__snake_case , __snake_case , '''constant''' , 0.0 ) class _snake_case ( nn.Module ): """simple docstring""" def __init__( self , a , a , a , a , a = 1 , a = 1 , a = False , a = True , a = True , ) -> None: """simple docstring""" super().__init__() _A = config if in_channels % groups != 0: raise ValueError(f'''Input channels ({in_channels}) are not divisible by {groups} groups.''' ) if out_channels % groups != 0: raise ValueError(f'''Output channels ({out_channels}) are not divisible by {groups} groups.''' ) _A = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) _A = nn.Convad( in_channels=a , out_channels=a , kernel_size=a , stride=a , padding=a , groups=a , bias=a , padding_mode='''zeros''' , ) if use_normalization: _A = nn.BatchNormad( num_features=a , eps=config.layer_norm_eps , momentum=0.9_997 , affine=a , track_running_stats=a , ) else: _A = None if use_activation: if isinstance(a , a ): _A = ACTaFN[use_activation] elif isinstance(config.hidden_act , a ): _A = ACTaFN[config.hidden_act] else: _A = config.hidden_act else: _A = None def lowercase_ ( self , a ) -> torch.Tensor: """simple docstring""" if self.config.tf_padding: _A = apply_tf_padding(a , self.convolution ) _A = self.convolution(a ) if self.normalization is not None: _A = self.normalization(a ) if self.activation is not None: _A = self.activation(a ) return features class _snake_case ( lowerCamelCase ): """simple docstring""" lowerCamelCase_ = MobileNetVaConfig lowerCamelCase_ = load_tf_weights_in_mobilenet_va lowerCamelCase_ = '''mobilenet_v1''' lowerCamelCase_ = '''pixel_values''' lowerCamelCase_ = False def lowercase_ ( self , a ) -> None: """simple docstring""" if isinstance(a , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(a , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) __lowerCamelCase = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ __lowerCamelCase = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' ,lowerCamelCase ,) class _snake_case ( lowerCamelCase ): """simple docstring""" def __init__( self , a , a = True ) -> int: """simple docstring""" super().__init__(a ) _A = config _A = 3_2 _A = max(int(depth * config.depth_multiplier ) , config.min_depth ) _A = MobileNetVaConvLayer( a , in_channels=config.num_channels , out_channels=a , kernel_size=3 , stride=2 , ) _A = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] _A = nn.ModuleList() for i in range(1_3 ): _A = out_channels if strides[i] == 2 or i == 0: depth *= 2 _A = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( a , in_channels=a , out_channels=a , kernel_size=3 , stride=strides[i] , groups=a , ) ) self.layer.append( MobileNetVaConvLayer( a , in_channels=a , out_channels=a , kernel_size=1 , ) ) _A = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def lowercase_ ( self , a ) -> Dict: """simple docstring""" raise NotImplementedError @add_start_docstrings_to_model_forward(a ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=a , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowercase_ ( self , a = None , a = None , a = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: """simple docstring""" _A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _A = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) _A = self.conv_stem(a ) _A = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): _A = layer_module(a ) if output_hidden_states: _A = all_hidden_states + (hidden_states,) _A = hidden_states if self.pooler is not None: _A = torch.flatten(self.pooler(a ) , start_dim=1 ) else: _A = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=a , pooler_output=a , hidden_states=a , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' ,lowerCamelCase ,) class _snake_case ( lowerCamelCase ): """simple docstring""" def __init__( self , a ) -> None: """simple docstring""" super().__init__(a ) _A = config.num_labels _A = MobileNetVaModel(a ) _A = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head _A = nn.Dropout(config.classifier_dropout_prob , inplace=a ) _A = nn.Linear(a , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(a ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowercase_ ( self , a = None , a = None , a = None , a = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: """simple docstring""" _A = return_dict if return_dict is not None else self.config.use_return_dict _A = self.mobilenet_va(a , output_hidden_states=a , return_dict=a ) _A = outputs.pooler_output if return_dict else outputs[1] _A = self.classifier(self.dropout(a ) ) _A = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _A = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _A = '''single_label_classification''' else: _A = '''multi_label_classification''' if self.config.problem_type == "regression": _A = MSELoss() if self.num_labels == 1: _A = loss_fct(logits.squeeze() , labels.squeeze() ) else: _A = loss_fct(a , a ) elif self.config.problem_type == "single_label_classification": _A = CrossEntropyLoss() _A = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _A = BCEWithLogitsLoss() _A = loss_fct(a , a ) if not return_dict: _A = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=a , logits=a , hidden_states=outputs.hidden_states , )
317
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _snake_case ( lowerCamelCase ,lowerCamelCase ): """simple docstring""" lowerCamelCase_ = '''pixel_values''' lowerCamelCase_ = False lowerCamelCase_ = TimmBackboneConfig def __init__( self , a , **a ) -> Union[str, Any]: """simple docstring""" requires_backends(self , '''timm''' ) super().__init__(a ) _A = config if config.backbone is None: raise ValueError('''backbone is not set in the config. Please set it to a timm model name.''' ) if config.backbone not in timm.list_models(): raise ValueError(f'''backbone {config.backbone} is not supported by timm.''' ) if hasattr(a , '''out_features''' ) and config.out_features is not None: raise ValueError('''out_features is not supported by TimmBackbone. Please use out_indices instead.''' ) _A = getattr(a , '''use_pretrained_backbone''' , a ) if pretrained is None: raise ValueError('''use_pretrained_backbone is not set in the config. Please set it to True or False.''' ) # We just take the final layer by default. This matches the default for the transformers models. _A = config.out_indices if getattr(a , '''out_indices''' , a ) is not None else (-1,) _A = timm.create_model( config.backbone , pretrained=a , features_only=config.features_only , in_chans=config.num_channels , out_indices=a , **a , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. _A = self._backbone.return_layers _A = {layer['''module''']: str(a ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(a ) @classmethod def lowercase_ ( cls , a , *a , **a ) -> int: """simple docstring""" requires_backends(cls , ['''vision''', '''timm'''] ) from ...models.timm_backbone import TimmBackboneConfig _A = kwargs.pop('''config''' , TimmBackboneConfig() ) _A = kwargs.pop('''use_timm_backbone''' , a ) if not use_timm: raise ValueError('''use_timm_backbone must be True for timm backbones''' ) _A = kwargs.pop('''num_channels''' , config.num_channels ) _A = kwargs.pop('''features_only''' , config.features_only ) _A = kwargs.pop('''use_pretrained_backbone''' , config.use_pretrained_backbone ) _A = kwargs.pop('''out_indices''' , config.out_indices ) _A = TimmBackboneConfig( backbone=a , num_channels=a , features_only=a , use_pretrained_backbone=a , out_indices=a , ) return super()._from_config(a , **a ) def lowercase_ ( self , a ) -> Optional[Any]: """simple docstring""" pass def lowercase_ ( self , a , a=None , a=None , a=None , **a ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: """simple docstring""" _A = return_dict if return_dict is not None else self.config.use_return_dict _A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _A = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('''Cannot output attentions for timm backbones at the moment''' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone _A = self._all_layers _A = self._backbone(a , **a ) _A = self._return_layers _A = tuple(hidden_states[i] for i in self.out_indices ) else: _A = self._backbone(a , **a ) _A = None _A = tuple(a ) _A = tuple(a ) if hidden_states is not None else None if not return_dict: _A = (feature_maps,) if output_hidden_states: _A = output + (hidden_states,) return output return BackboneOutput(feature_maps=a , hidden_states=a , attentions=a )
317
1
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class A ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __a : jnp.ndarray __a : jnp.ndarray class A ( nn.Module ): """simple docstring""" __a : int __a : Tuple[int] = (16, 32, 96, 256) __a : jnp.dtype = jnp.floataa def _UpperCAmelCase ( self ): UpperCamelCase_ : Optional[Any] = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) UpperCamelCase_ : Optional[Any] = [] for i in range(len(self.block_out_channels ) - 1 ): UpperCamelCase_ : Tuple = self.block_out_channels[i] UpperCamelCase_ : List[Any] = self.block_out_channels[i + 1] UpperCamelCase_ : Optional[int] = nn.Conv( __lowerCAmelCase , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__lowerCAmelCase ) UpperCamelCase_ : Optional[int] = nn.Conv( __lowerCAmelCase , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__lowerCAmelCase ) UpperCamelCase_ : str = blocks UpperCamelCase_ : str = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , __lowerCAmelCase ): UpperCamelCase_ : Any = self.conv_in(__lowerCAmelCase ) UpperCamelCase_ : List[str] = nn.silu(__lowerCAmelCase ) for block in self.blocks: UpperCamelCase_ : List[Any] = block(__lowerCAmelCase ) UpperCamelCase_ : str = nn.silu(__lowerCAmelCase ) UpperCamelCase_ : Dict = self.conv_out(__lowerCAmelCase ) return embedding @flax_register_to_config class A ( nn.Module, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): """simple docstring""" __a : int = 32 __a : int = 4 __a : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __a : Union[bool, Tuple[bool]] = False __a : Tuple[int] = (320, 640, 1280, 1280) __a : int = 2 __a : Union[int, Tuple[int]] = 8 __a : Optional[Union[int, Tuple[int]]] = None __a : int = 1280 __a : float = 0.0 __a : bool = False __a : jnp.dtype = jnp.floataa __a : bool = True __a : int = 0 __a : str = "rgb" __a : Tuple[int] = (16, 32, 96, 256) def _UpperCAmelCase ( self , __lowerCAmelCase ): # init input tensors UpperCamelCase_ : Optional[Any] = (1, self.in_channels, self.sample_size, self.sample_size) UpperCamelCase_ : str = jnp.zeros(__lowerCAmelCase , dtype=jnp.floataa ) UpperCamelCase_ : Union[str, Any] = jnp.ones((1,) , dtype=jnp.intaa ) UpperCamelCase_ : Union[str, Any] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) UpperCamelCase_ : Optional[int] = (1, 3, self.sample_size * 8, self.sample_size * 8) UpperCamelCase_ : int = jnp.zeros(__lowerCAmelCase , dtype=jnp.floataa ) UpperCamelCase_ , UpperCamelCase_ : Tuple = jax.random.split(__lowerCAmelCase ) UpperCamelCase_ : Union[str, Any] = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )["params"] def _UpperCAmelCase ( self ): UpperCamelCase_ : int = self.block_out_channels UpperCamelCase_ : List[Any] = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. UpperCamelCase_ : Optional[Any] = self.num_attention_heads or self.attention_head_dim # input UpperCamelCase_ : List[str] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time UpperCamelCase_ : Union[str, Any] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) UpperCamelCase_ : str = FlaxTimestepEmbedding(__lowerCAmelCase , dtype=self.dtype ) UpperCamelCase_ : Optional[int] = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) UpperCamelCase_ : Tuple = self.only_cross_attention if isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase_ : List[Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase_ : Dict = (num_attention_heads,) * len(self.down_block_types ) # down UpperCamelCase_ : str = [] UpperCamelCase_ : str = [] UpperCamelCase_ : Optional[Any] = block_out_channels[0] UpperCamelCase_ : Optional[int] = nn.Conv( __lowerCAmelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__lowerCAmelCase ) for i, down_block_type in enumerate(self.down_block_types ): UpperCamelCase_ : Optional[int] = output_channel UpperCamelCase_ : Optional[Any] = block_out_channels[i] UpperCamelCase_ : Optional[Any] = i == len(__lowerCAmelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": UpperCamelCase_ : Any = FlaxCrossAttnDownBlockaD( in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: UpperCamelCase_ : Optional[int] = FlaxDownBlockaD( in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__lowerCAmelCase ) for _ in range(self.layers_per_block ): UpperCamelCase_ : List[Any] = nn.Conv( __lowerCAmelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__lowerCAmelCase ) if not is_final_block: UpperCamelCase_ : str = nn.Conv( __lowerCAmelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__lowerCAmelCase ) UpperCamelCase_ : str = down_blocks UpperCamelCase_ : Optional[int] = controlnet_down_blocks # mid UpperCamelCase_ : Any = block_out_channels[-1] UpperCamelCase_ : Optional[int] = FlaxUNetMidBlockaDCrossAttn( in_channels=__lowerCAmelCase , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) UpperCamelCase_ : Union[str, Any] = nn.Conv( __lowerCAmelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 1.0 , __lowerCAmelCase = True , __lowerCAmelCase = False , ): UpperCamelCase_ : Dict = self.controlnet_conditioning_channel_order if channel_order == "bgr": UpperCamelCase_ : List[str] = jnp.flip(__lowerCAmelCase , axis=1 ) # 1. time if not isinstance(__lowerCAmelCase , jnp.ndarray ): UpperCamelCase_ : List[Any] = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__lowerCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: UpperCamelCase_ : Dict = timesteps.astype(dtype=jnp.floataa ) UpperCamelCase_ : List[Any] = jnp.expand_dims(__lowerCAmelCase , 0 ) UpperCamelCase_ : List[str] = self.time_proj(__lowerCAmelCase ) UpperCamelCase_ : str = self.time_embedding(__lowerCAmelCase ) # 2. pre-process UpperCamelCase_ : Dict = jnp.transpose(__lowerCAmelCase , (0, 2, 3, 1) ) UpperCamelCase_ : List[str] = self.conv_in(__lowerCAmelCase ) UpperCamelCase_ : Optional[Any] = jnp.transpose(__lowerCAmelCase , (0, 2, 3, 1) ) UpperCamelCase_ : Union[str, Any] = self.controlnet_cond_embedding(__lowerCAmelCase ) sample += controlnet_cond # 3. down UpperCamelCase_ : Optional[Any] = (sample,) for down_block in self.down_blocks: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase_ , UpperCamelCase_ : List[str] = down_block(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , deterministic=not train ) else: UpperCamelCase_ , UpperCamelCase_ : List[Any] = down_block(__lowerCAmelCase , __lowerCAmelCase , deterministic=not train ) down_block_res_samples += res_samples # 4. mid UpperCamelCase_ : int = self.mid_block(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , deterministic=not train ) # 5. contronet blocks UpperCamelCase_ : Dict = () for down_block_res_sample, controlnet_block in zip(__lowerCAmelCase , self.controlnet_down_blocks ): UpperCamelCase_ : str = controlnet_block(__lowerCAmelCase ) controlnet_down_block_res_samples += (down_block_res_sample,) UpperCamelCase_ : Dict = controlnet_down_block_res_samples UpperCamelCase_ : Union[str, Any] = self.controlnet_mid_block(__lowerCAmelCase ) # 6. scaling UpperCamelCase_ : Union[str, Any] = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=__lowerCAmelCase , mid_block_res_sample=__lowerCAmelCase )
543
'''simple docstring''' import random def snake_case ( a_ : int , a_ : float , a_ : bool = False ) -> dict: """simple docstring""" UpperCamelCase_ : dict = {i: [] for i in range(a_ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(a_ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(a_ ): for j in range(i + 1 , a_ ): if random.random() < probability: graph[i].append(a_ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(a_ ) return graph def snake_case ( a_ : int ) -> dict: """simple docstring""" return { i: [j for j in range(a_ ) if i != j] for i in range(a_ ) } if __name__ == "__main__": import doctest doctest.testmod()
543
1
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # TODO Update this _SCREAMING_SNAKE_CASE = { "facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json", # See all ESM models at https://huggingface.co/models?filter=esm } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Any = "esm" def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1026 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase="absolute" , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase , ) -> Optional[int]: super().__init__(pad_token_id=_lowerCAmelCase , mask_token_id=_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = use_cache _lowerCAmelCase = emb_layer_norm_before _lowerCAmelCase = token_dropout _lowerCAmelCase = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) _lowerCAmelCase = EsmFoldConfig() elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = EsmFoldConfig(**_lowerCAmelCase ) _lowerCAmelCase = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) _lowerCAmelCase = get_default_vocab_list() else: _lowerCAmelCase = vocab_list else: _lowerCAmelCase = None _lowerCAmelCase = None if self.esmfold_config is not None and getattr(self.esmfold_config , "use_esm_attn_map" , _lowerCAmelCase ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def _snake_case ( self ) -> List[str]: _lowerCAmelCase = super().to_dict() if isinstance(self.esmfold_config , _lowerCAmelCase ): _lowerCAmelCase = self.esmfold_config.to_dict() return output @dataclass class lowerCAmelCase_ : __lowerCamelCase : str = None __lowerCamelCase : bool = True __lowerCamelCase : bool = False __lowerCamelCase : bool = False __lowerCamelCase : bool = False __lowerCamelCase : float = 0 __lowerCamelCase : bool = True __lowerCamelCase : bool = False __lowerCamelCase : int = 128 __lowerCamelCase : "TrunkConfig" = None def _snake_case ( self ) -> Tuple: if self.trunk is None: _lowerCAmelCase = TrunkConfig() elif isinstance(self.trunk , _lowerCAmelCase ): _lowerCAmelCase = TrunkConfig(**self.trunk ) def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = asdict(self ) _lowerCAmelCase = self.trunk.to_dict() return output @dataclass class lowerCAmelCase_ : __lowerCamelCase : int = 48 __lowerCamelCase : int = 1_024 __lowerCamelCase : int = 128 __lowerCamelCase : int = 32 __lowerCamelCase : int = 32 __lowerCamelCase : int = 32 __lowerCamelCase : float = 0 __lowerCamelCase : float = 0 __lowerCamelCase : bool = False __lowerCamelCase : int = 4 __lowerCamelCase : Optional[int] = 128 __lowerCamelCase : "StructureModuleConfig" = None def _snake_case ( self ) -> List[Any]: if self.structure_module is None: _lowerCAmelCase = StructureModuleConfig() elif isinstance(self.structure_module , _lowerCAmelCase ): _lowerCAmelCase = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" f''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" f''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) _lowerCAmelCase = self.sequence_state_dim // self.sequence_head_width _lowerCAmelCase = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" f''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" f''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(f'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = asdict(self ) _lowerCAmelCase = self.structure_module.to_dict() return output @dataclass class lowerCAmelCase_ : __lowerCamelCase : int = 384 __lowerCamelCase : int = 128 __lowerCamelCase : int = 16 __lowerCamelCase : int = 128 __lowerCamelCase : int = 12 __lowerCamelCase : int = 4 __lowerCamelCase : int = 8 __lowerCamelCase : float = 0.1 __lowerCamelCase : int = 8 __lowerCamelCase : int = 1 __lowerCamelCase : int = 2 __lowerCamelCase : int = 7 __lowerCamelCase : int = 10 __lowerCamelCase : float = 1e-8 __lowerCamelCase : float = 1e5 def _snake_case ( self ) -> Union[str, Any]: return asdict(self ) def __a(): '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
18
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : str = "gpt_bigcode" __lowerCamelCase : Optional[int] = ["past_key_values"] __lowerCamelCase : List[str] = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _lowerCAmelCase=50257 , _lowerCAmelCase=1024 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=None , _lowerCAmelCase="gelu_pytorch_tanh" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=50256 , _lowerCAmelCase=50256 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> List[Any]: _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_embd _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = n_inner _lowerCAmelCase = activation_function _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = attn_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = scale_attn_weights _lowerCAmelCase = use_cache _lowerCAmelCase = attention_softmax_in_fpaa _lowerCAmelCase = scale_attention_softmax_in_fpaa _lowerCAmelCase = multi_query _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
18
1
import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class lowerCamelCase ( __snake_case ): """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=None , **__UpperCamelCase ): A_ = parent A_ = config_class A_ = has_text_modality A_ = kwargs A_ = common_properties def lowercase_ ( self ): A_ = self.config_class(**self.inputs_dict ) A_ = ( ["hidden_size", "num_attention_heads", "num_hidden_layers"] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["vocab_size"] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(__UpperCamelCase , __UpperCamelCase ) , msg=f'`{prop}` does not exist' ) # Test that config has the common properties as setter for idx, name in enumerate(__UpperCamelCase ): try: setattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) self.parent.assertEqual( getattr(__UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase , msg=f'`{name} value {idx} expected, but was {getattr(__UpperCamelCase , __UpperCamelCase )}' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(__UpperCamelCase ): try: A_ = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(__UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase , msg=f'`{name} value {idx} expected, but was {getattr(__UpperCamelCase , __UpperCamelCase )}' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def lowercase_ ( self ): A_ = self.config_class(**self.inputs_dict ) A_ = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , __UpperCamelCase ) def lowercase_ ( self ): A_ = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A_ = os.path.join(__UpperCamelCase , "config.json" ) config_first.to_json_file(__UpperCamelCase ) A_ = self.config_class.from_json_file(__UpperCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def lowercase_ ( self ): A_ = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(__UpperCamelCase ) A_ = self.config_class.from_pretrained(__UpperCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def lowercase_ ( self ): A_ = self.config_class(**self.inputs_dict ) A_ = "test" with tempfile.TemporaryDirectory() as tmpdirname: A_ = os.path.join(__UpperCamelCase , __UpperCamelCase ) config_first.save_pretrained(__UpperCamelCase ) A_ = self.config_class.from_pretrained(__UpperCamelCase , subfolder=__UpperCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def lowercase_ ( self ): A_ = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) A_ = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def lowercase_ ( self ): if self.config_class.is_composition: return A_ = self.config_class() self.parent.assertIsNotNone(__UpperCamelCase ) def lowercase_ ( self ): A_ = copy.deepcopy(__UpperCamelCase ) A_ = self.config_class(**__UpperCamelCase ) A_ = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("torch_dtype", config.torch_dtype, torch.floataa) ) elif getattr(__UpperCamelCase , __UpperCamelCase ) != value: wrong_values.append((key, getattr(__UpperCamelCase , __UpperCamelCase ), value) ) if len(__UpperCamelCase ) > 0: A_ = "\n".join([f'- {v[0]}: got {v[1]} instead of {v[2]}' for v in wrong_values] ) raise ValueError(f'The following keys were not properly set in the config:\n{errors}' ) def lowercase_ ( self ): self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
608
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase ( __snake_case ): """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , ): super().__init__() self.register_modules(transformer=__UpperCamelCase , vae=__UpperCamelCase , scheduler=__UpperCamelCase ) # create a imagenet -> id dictionary for easier use A_ = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split("," ): A_ = int(__UpperCamelCase ) A_ = dict(sorted(self.labels.items() ) ) def lowercase_ ( self , __UpperCamelCase ): if not isinstance(__UpperCamelCase , __UpperCamelCase ): A_ = list(__UpperCamelCase ) for l in label: if l not in self.labels: raise ValueError( f'{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , __UpperCamelCase , __UpperCamelCase = 4.0 , __UpperCamelCase = None , __UpperCamelCase = 50 , __UpperCamelCase = "pil" , __UpperCamelCase = True , ): A_ = len(__UpperCamelCase ) A_ = self.transformer.config.sample_size A_ = self.transformer.config.in_channels A_ = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=__UpperCamelCase , device=self.device , dtype=self.transformer.dtype , ) A_ = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents A_ = torch.tensor(__UpperCamelCase , device=self.device ).reshape(-1 ) A_ = torch.tensor([1000] * batch_size , device=self.device ) A_ = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(__UpperCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: A_ = latent_model_input[: len(__UpperCamelCase ) // 2] A_ = torch.cat([half, half] , dim=0 ) A_ = self.scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) A_ = t if not torch.is_tensor(__UpperCamelCase ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) A_ = latent_model_input.device.type == "mps" if isinstance(__UpperCamelCase , __UpperCamelCase ): A_ = torch.floataa if is_mps else torch.floataa else: A_ = torch.intaa if is_mps else torch.intaa A_ = torch.tensor([timesteps] , dtype=__UpperCamelCase , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: A_ = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML A_ = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output A_ = self.transformer( __UpperCamelCase , timestep=__UpperCamelCase , class_labels=__UpperCamelCase ).sample # perform guidance if guidance_scale > 1: A_ , A_ = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] A_ , A_ = torch.split(__UpperCamelCase , len(__UpperCamelCase ) // 2 , dim=0 ) A_ = uncond_eps + guidance_scale * (cond_eps - uncond_eps) A_ = torch.cat([half_eps, half_eps] , dim=0 ) A_ = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: A_ , A_ = torch.split(__UpperCamelCase , __UpperCamelCase , dim=1 ) else: A_ = noise_pred # compute previous image: x_t -> x_t-1 A_ = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample if guidance_scale > 1: A_ , A_ = latent_model_input.chunk(2 , dim=0 ) else: A_ = latent_model_input A_ = 1 / self.vae.config.scaling_factor * latents A_ = self.vae.decode(__UpperCamelCase ).sample A_ = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A_ = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": A_ = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (samples,) return ImagePipelineOutput(images=__UpperCamelCase )
608
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int = 10_00 ) -> int: __lowerCamelCase : Union[str, Any] = 3 __lowerCamelCase : Dict = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'''{solution() = }''')
13
'''simple docstring''' A__ : dict[tuple[int, int, int], int] = {} def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __lowerCamelCase : List[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __lowerCamelCase : Tuple = _calculate(days - 1 , UpperCAmelCase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __lowerCamelCase : int = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __lowerCamelCase : List[Any] = _calculate(days - 1 , UpperCAmelCase_ , 0 ) __lowerCamelCase : Optional[int] = state_late + state_absent + state_ontime __lowerCamelCase : Union[str, Any] = prizestrings return prizestrings def UpperCAmelCase__ ( UpperCAmelCase_ : int = 30 ) -> int: return _calculate(UpperCAmelCase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
13
1
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch __lowercase : Any = logging.get_logger(__name__) class __lowercase : def __init__(self , A = None , A = None , A=None , A=None ): if not conversation_id: lowerCamelCase_ : Any = uuid.uuida() if past_user_inputs is None: lowerCamelCase_ : Optional[Any] = [] if generated_responses is None: lowerCamelCase_ : Optional[Any] = [] lowerCamelCase_ : uuid.UUID = conversation_id lowerCamelCase_ : List[str] = past_user_inputs lowerCamelCase_ : List[str] = generated_responses lowerCamelCase_ : Optional[str] = text def __eq__(self , A ): if not isinstance(A , A ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def UpperCAmelCase__ (self , A , A = False ): if self.new_user_input: if overwrite: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ F"""with: \"{text}\".""" ) lowerCamelCase_ : Optional[Any] = text else: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ F"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: lowerCamelCase_ : Tuple = text def UpperCAmelCase__ (self ): if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) lowerCamelCase_ : Tuple = None def UpperCAmelCase__ (self , A ): self.generated_responses.append(A ) def UpperCAmelCase__ (self ): for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__(self ): lowerCamelCase_ : str = F"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): lowerCamelCase_ : str = '''user''' if is_user else '''bot''' output += F"""{name} >> {text} \n""" return output @add_end_docstrings( _lowercase , R"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , ) class __lowercase ( _lowercase ): def __init__(self , *A , **A ): super().__init__(*A , **A ) if self.tokenizer.pad_token_id is None: lowerCamelCase_ : Optional[Any] = self.tokenizer.eos_token def UpperCAmelCase__ (self , A=None , A=None , A=None , **A ): lowerCamelCase_ : Dict = {} lowerCamelCase_ : int = {} lowerCamelCase_ : Any = {} if min_length_for_response is not None: lowerCamelCase_ : Any = min_length_for_response if minimum_tokens is not None: lowerCamelCase_ : Optional[Any] = minimum_tokens if "max_length" in generate_kwargs: lowerCamelCase_ : Any = generate_kwargs['''max_length'''] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: lowerCamelCase_ : str = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(A ) return preprocess_params, forward_params, postprocess_params def __call__(self , A , A=0 , **A ): lowerCamelCase_ : Optional[Any] = super().__call__(A , num_workers=A , **A ) if isinstance(A , A ) and len(A ) == 1: return outputs[0] return outputs def UpperCAmelCase__ (self , A , A=3_2 ): if not isinstance(A , A ): raise ValueError('''ConversationalPipeline, expects Conversation as inputs''' ) if conversation.new_user_input is None: raise ValueError( F"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ '''Add user inputs with the conversation\'s `add_user_input` method''' ) if hasattr(self.tokenizer , '''_build_conversation_input_ids''' ): lowerCamelCase_ : int = self.tokenizer._build_conversation_input_ids(A ) else: # If the tokenizer cannot handle conversations, we default to only the old version lowerCamelCase_ : int = self._legacy_parse_and_tokenize(A ) if self.framework == "pt": lowerCamelCase_ : Union[str, Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": lowerCamelCase_ : Any = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def UpperCAmelCase__ (self , A , A=1_0 , **A ): lowerCamelCase_ : Dict = generate_kwargs.get('''max_length''' , self.model.config.max_length ) lowerCamelCase_ : int = model_inputs['''input_ids'''].shape[1] if max_length - minimum_tokens < n: logger.warning(F"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) lowerCamelCase_ : Optional[Any] = max_length - minimum_tokens lowerCamelCase_ : Dict = model_inputs['''input_ids'''][:, -trim:] if "attention_mask" in model_inputs: lowerCamelCase_ : Union[str, Any] = model_inputs['''attention_mask'''][:, -trim:] lowerCamelCase_ : Union[str, Any] = model_inputs.pop('''conversation''' ) lowerCamelCase_ : Any = max_length lowerCamelCase_ : Optional[Any] = self.model.generate(**A , **A ) if self.model.config.is_encoder_decoder: lowerCamelCase_ : Tuple = 1 else: lowerCamelCase_ : Any = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def UpperCAmelCase__ (self , A , A=True ): lowerCamelCase_ : int = model_outputs['''output_ids'''] lowerCamelCase_ : Optional[int] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=A , clean_up_tokenization_spaces=A , ) lowerCamelCase_ : str = model_outputs['''conversation'''] conversation.mark_processed() conversation.append_response(A ) return conversation def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Optional[int] = self.tokenizer.eos_token_id lowerCamelCase_ : Tuple = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(A , add_special_tokens=A ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(A , add_special_tokens=A ) ) if len(A ) > self.tokenizer.model_max_length: lowerCamelCase_ : Optional[int] = input_ids[-self.tokenizer.model_max_length :] return input_ids
711
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __lowercase : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any = ['''BartphoTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __lowercase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
357
0
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class A: """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0.2 , SCREAMING_SNAKE_CASE__=0.2 ) -> int: """simple docstring""" _UpperCamelCase :Optional[int] = bp_numa _UpperCamelCase :Optional[int] = bp_numa _UpperCamelCase :Tuple = bp_numa _UpperCamelCase :str = conva_get[:2] _UpperCamelCase :Any = conva_get[2] _UpperCamelCase :Optional[int] = size_pa _UpperCamelCase :Any = rate_w _UpperCamelCase :int = rate_t _UpperCamelCase :Dict = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] _UpperCamelCase :int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) _UpperCamelCase :List[Any] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) _UpperCamelCase :List[str] = -2 * np.random.rand(self.conva[1] ) + 1 _UpperCamelCase :str = -2 * np.random.rand(self.num_bpa ) + 1 _UpperCamelCase :Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 def _UpperCamelCase( self , SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" _UpperCamelCase :Any = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(SCREAMING_SNAKE_CASE__ , '''wb''' ) as f: pickle.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(f"Model saved: {save_path}" ) @classmethod def _UpperCamelCase( cls , SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" with open(SCREAMING_SNAKE_CASE__ , '''rb''' ) as f: _UpperCamelCase :int = pickle.load(SCREAMING_SNAKE_CASE__ ) # noqa: S301 _UpperCamelCase :Dict = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) _UpperCamelCase :Dict = model_dic.get('''size_pooling1''' ) _UpperCamelCase :int = model_dic.get('''num_bp1''' ) _UpperCamelCase :Optional[Any] = model_dic.get('''num_bp2''' ) _UpperCamelCase :int = model_dic.get('''num_bp3''' ) _UpperCamelCase :Union[str, Any] = model_dic.get('''rate_weight''' ) _UpperCamelCase :Union[str, Any] = model_dic.get('''rate_thre''' ) # create model instance _UpperCamelCase :int = CNN(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # modify model parameter _UpperCamelCase :Optional[int] = model_dic.get('''w_conv1''' ) _UpperCamelCase :Union[str, Any] = model_dic.get('''wkj''' ) _UpperCamelCase :int = model_dic.get('''vji''' ) _UpperCamelCase :Union[str, Any] = model_dic.get('''thre_conv1''' ) _UpperCamelCase :List[Any] = model_dic.get('''thre_bp2''' ) _UpperCamelCase :Optional[Any] = model_dic.get('''thre_bp3''' ) return conv_ins def _UpperCamelCase( self , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" return 1 / (1 + np.exp(-1 * x )) def _UpperCamelCase( self , SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" return round(SCREAMING_SNAKE_CASE__ , 3 ) def _UpperCamelCase( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" _UpperCamelCase :Tuple = convs[0] _UpperCamelCase :Tuple = convs[1] _UpperCamelCase :str = np.shape(SCREAMING_SNAKE_CASE__ )[0] # get the data slice of original image data, data_focus _UpperCamelCase :List[Any] = [] for i_focus in range(0 , size_data - size_conv + 1 , SCREAMING_SNAKE_CASE__ ): for j_focus in range(0 , size_data - size_conv + 1 , SCREAMING_SNAKE_CASE__ ): _UpperCamelCase :Any = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(SCREAMING_SNAKE_CASE__ ) # calculate the feature map of every single kernel, and saved as list of matrix _UpperCamelCase :Optional[int] = [] _UpperCamelCase :List[str] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(SCREAMING_SNAKE_CASE__ ): _UpperCamelCase :Union[str, Any] = [] for i_focus in range(len(SCREAMING_SNAKE_CASE__ ) ): _UpperCamelCase :List[str] = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(SCREAMING_SNAKE_CASE__ ) ) _UpperCamelCase :Union[str, Any] = np.asmatrix(SCREAMING_SNAKE_CASE__ ).reshape( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) data_featuremap.append(SCREAMING_SNAKE_CASE__ ) # expanding the data slice to One dimenssion _UpperCamelCase :Union[str, Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(SCREAMING_SNAKE_CASE__ ) ) _UpperCamelCase :str = np.asarray(SCREAMING_SNAKE_CASE__ ) return focus_list, data_featuremap def _UpperCamelCase( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="average_pool" ) -> Tuple: """simple docstring""" _UpperCamelCase :List[str] = len(featuremaps[0] ) _UpperCamelCase :Optional[int] = int(size_map / size_pooling ) _UpperCamelCase :List[Any] = [] for i_map in range(len(SCREAMING_SNAKE_CASE__ ) ): _UpperCamelCase :Optional[int] = featuremaps[i_map] _UpperCamelCase :Union[str, Any] = [] for i_focus in range(0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for j_focus in range(0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _UpperCamelCase :Any = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(SCREAMING_SNAKE_CASE__ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(SCREAMING_SNAKE_CASE__ ) ) _UpperCamelCase :List[Any] = np.asmatrix(SCREAMING_SNAKE_CASE__ ).reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) featuremap_pooled.append(SCREAMING_SNAKE_CASE__ ) return featuremap_pooled def _UpperCamelCase( self , SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" _UpperCamelCase :Optional[Any] = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): _UpperCamelCase :List[str] = np.shape(data[i] ) _UpperCamelCase :List[str] = data[i].reshape(1 , shapes[0] * shapes[1] ) _UpperCamelCase :List[str] = data_listed.getA().tolist()[0] data_expanded.extend(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase :Tuple = np.asarray(SCREAMING_SNAKE_CASE__ ) return data_expanded def _UpperCamelCase( self , SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" _UpperCamelCase :Union[str, Any] = np.asarray(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase :Optional[Any] = np.shape(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase :Dict = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def _UpperCamelCase( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" _UpperCamelCase :Tuple = [] _UpperCamelCase :List[Any] = 0 for i_map in range(SCREAMING_SNAKE_CASE__ ): _UpperCamelCase :Tuple = np.ones((size_map, size_map) ) for i in range(0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for j in range(0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _UpperCamelCase :List[Any] = pd_pool[ i_pool ] _UpperCamelCase :Tuple = i_pool + 1 _UpperCamelCase :str = np.multiply( SCREAMING_SNAKE_CASE__ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(SCREAMING_SNAKE_CASE__ ) return pd_all def _UpperCamelCase( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=bool ) -> Optional[Any]: """simple docstring""" print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(SCREAMING_SNAKE_CASE__ )) ) print((''' - - Shape: Teach_Data ''', np.shape(SCREAMING_SNAKE_CASE__ )) ) _UpperCamelCase :List[str] = 0 _UpperCamelCase :Dict = [] _UpperCamelCase :Tuple = 1_00_00 while rp < n_repeat and mse >= error_accuracy: _UpperCamelCase :str = 0 print(f"-------------Learning Time {rp}--------------" ) for p in range(len(SCREAMING_SNAKE_CASE__ ) ): # print('------------Learning Image: %d--------------'%p) _UpperCamelCase :Any = np.asmatrix(datas_train[p] ) _UpperCamelCase :List[str] = np.asarray(datas_teach[p] ) _UpperCamelCase , _UpperCamelCase :Union[str, Any] = self.convolute( SCREAMING_SNAKE_CASE__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _UpperCamelCase :Union[str, Any] = self.pooling(SCREAMING_SNAKE_CASE__ , self.size_poolinga ) _UpperCamelCase :int = np.shape(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase :Dict = self._expand(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase :Union[str, Any] = data_bp_input _UpperCamelCase :int = np.dot(SCREAMING_SNAKE_CASE__ , self.vji.T ) - self.thre_bpa _UpperCamelCase :Tuple = self.sig(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase :List[str] = np.dot(SCREAMING_SNAKE_CASE__ , self.wkj.T ) - self.thre_bpa _UpperCamelCase :List[Any] = self.sig(SCREAMING_SNAKE_CASE__ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- _UpperCamelCase :Dict = np.multiply( (data_teach - bp_outa) , np.multiply(SCREAMING_SNAKE_CASE__ , (1 - bp_outa) ) ) _UpperCamelCase :str = np.multiply( np.dot(SCREAMING_SNAKE_CASE__ , self.wkj ) , np.multiply(SCREAMING_SNAKE_CASE__ , (1 - bp_outa) ) ) _UpperCamelCase :List[Any] = np.dot(SCREAMING_SNAKE_CASE__ , self.vji ) _UpperCamelCase :str = pd_i_all / (self.size_poolinga * self.size_poolinga) _UpperCamelCase :Tuple = pd_conva_pooled.T.getA().tolist() _UpperCamelCase :Tuple = self._calculate_gradient_from_pool( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): _UpperCamelCase :Optional[int] = self._expand_mat(pd_conva_all[k_conv] ) _UpperCamelCase :int = self.rate_weight * np.dot(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _UpperCamelCase :str = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) _UpperCamelCase :Dict = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer _UpperCamelCase :List[Any] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight _UpperCamelCase :Optional[int] = self.vji + pd_j_all.T * bp_outa * self.rate_weight _UpperCamelCase :Optional[int] = self.thre_bpa - pd_k_all * self.rate_thre _UpperCamelCase :Tuple = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image _UpperCamelCase :Tuple = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) _UpperCamelCase :Optional[int] = rp + 1 _UpperCamelCase :Tuple = error_count / patterns all_mse.append(SCREAMING_SNAKE_CASE__ ) def draw_error(): _UpperCamelCase :Dict = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(SCREAMING_SNAKE_CASE__ , '''+-''' ) plt.plot(SCREAMING_SNAKE_CASE__ , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(SCREAMING_SNAKE_CASE__ , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, f" - - Mse: {mse:.6f}") ) if draw_e: draw_error() return mse def _UpperCamelCase( self , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase :Dict = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(SCREAMING_SNAKE_CASE__ )) ) for p in range(len(SCREAMING_SNAKE_CASE__ ) ): _UpperCamelCase :int = np.asmatrix(datas_test[p] ) _UpperCamelCase , _UpperCamelCase :int = self.convolute( SCREAMING_SNAKE_CASE__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _UpperCamelCase :Union[str, Any] = self.pooling(SCREAMING_SNAKE_CASE__ , self.size_poolinga ) _UpperCamelCase :int = self._expand(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase :List[Any] = data_bp_input _UpperCamelCase :int = bp_outa * self.vji.T - self.thre_bpa _UpperCamelCase :str = self.sig(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase :str = bp_outa * self.wkj.T - self.thre_bpa _UpperCamelCase :int = self.sig(SCREAMING_SNAKE_CASE__ ) produce_out.extend(bp_outa.getA().tolist() ) _UpperCamelCase :Union[str, Any] = [list(map(self.do_round , SCREAMING_SNAKE_CASE__ ) ) for each in produce_out] return np.asarray(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase( self , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase :Any = np.asmatrix(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase , _UpperCamelCase :Tuple = self.convolute( SCREAMING_SNAKE_CASE__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _UpperCamelCase :Optional[Any] = self.pooling(SCREAMING_SNAKE_CASE__ , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
355
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase__ :Optional[int] = logging.get_logger(__name__) UpperCamelCase__ :int = { """post_extract_proj""": """feature_projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.upsample.0""": """encoder.upsample.projection""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def A_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Tuple: for attribute in key.split('''.''' ): _UpperCamelCase :Any = getattr(snake_case__ , snake_case__ ) if weight_type is not None: _UpperCamelCase :Any = getattr(snake_case__ , snake_case__ ).shape else: _UpperCamelCase :Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": _UpperCamelCase :str = value elif weight_type == "weight_g": _UpperCamelCase :Dict = value elif weight_type == "weight_v": _UpperCamelCase :Optional[Any] = value elif weight_type == "bias": _UpperCamelCase :str = value else: _UpperCamelCase :int = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def A_ ( snake_case__ , snake_case__ , snake_case__ ) -> Tuple: _UpperCamelCase :Optional[int] = [] _UpperCamelCase :List[str] = fairseq_model.state_dict() _UpperCamelCase :str = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _UpperCamelCase :Optional[Any] = False if "conv_layers" in name: load_conv_layer( snake_case__ , snake_case__ , snake_case__ , snake_case__ , hf_model.config.feat_extract_norm == '''group''' , ) _UpperCamelCase :Dict = True else: for key, mapped_key in MAPPING.items(): _UpperCamelCase :Optional[int] = '''sew.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _UpperCamelCase :List[str] = True if "*" in mapped_key: _UpperCamelCase :List[str] = name.split(snake_case__ )[0].split('''.''' )[-2] _UpperCamelCase :Tuple = mapped_key.replace('''*''' , snake_case__ ) if "weight_g" in name: _UpperCamelCase :List[Any] = '''weight_g''' elif "weight_v" in name: _UpperCamelCase :Union[str, Any] = '''weight_v''' elif "weight" in name: _UpperCamelCase :List[Any] = '''weight''' elif "bias" in name: _UpperCamelCase :List[Any] = '''bias''' else: _UpperCamelCase :List[Any] = None set_recursively(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) continue if not is_used: unused_weights.append(snake_case__ ) logger.warning(f"Unused weights: {unused_weights}" ) def A_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Optional[Any]: _UpperCamelCase :Optional[int] = full_name.split('''conv_layers.''' )[-1] _UpperCamelCase :Optional[int] = name.split('''.''' ) _UpperCamelCase :Optional[Any] = int(items[0] ) _UpperCamelCase :List[str] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _UpperCamelCase :Optional[int] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _UpperCamelCase :Optional[Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) _UpperCamelCase :int = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) _UpperCamelCase :Dict = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(snake_case__ ) def A_ ( snake_case__ , snake_case__ ) -> List[str]: _UpperCamelCase :str = SEWConfig() if is_finetuned: _UpperCamelCase :Optional[int] = model.wav_encoder.wav_model.cfg else: _UpperCamelCase :Dict = model.cfg _UpperCamelCase :Dict = fs_config.conv_bias _UpperCamelCase :int = eval(fs_config.conv_feature_layers ) _UpperCamelCase :List[Any] = [x[0] for x in conv_layers] _UpperCamelCase :Optional[int] = [x[1] for x in conv_layers] _UpperCamelCase :Optional[int] = [x[2] for x in conv_layers] _UpperCamelCase :str = '''gelu''' _UpperCamelCase :Optional[int] = '''layer''' if fs_config.extractor_mode == '''layer_norm''' else '''group''' _UpperCamelCase :List[Any] = 0.0 _UpperCamelCase :Optional[int] = fs_config.activation_fn.name _UpperCamelCase :str = fs_config.encoder_embed_dim _UpperCamelCase :Dict = 0.02 _UpperCamelCase :Optional[int] = fs_config.encoder_ffn_embed_dim _UpperCamelCase :str = 1E-5 _UpperCamelCase :int = fs_config.encoder_layerdrop _UpperCamelCase :Union[str, Any] = fs_config.encoder_attention_heads _UpperCamelCase :List[str] = fs_config.conv_pos_groups _UpperCamelCase :List[Any] = fs_config.conv_pos _UpperCamelCase :List[str] = len(snake_case__ ) _UpperCamelCase :Optional[int] = fs_config.encoder_layers _UpperCamelCase :Optional[int] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: _UpperCamelCase :List[Any] = model.cfg _UpperCamelCase :List[Any] = fs_config.final_dropout _UpperCamelCase :Dict = fs_config.layerdrop _UpperCamelCase :Any = fs_config.activation_dropout _UpperCamelCase :List[str] = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 _UpperCamelCase :Optional[Any] = fs_config.attention_dropout _UpperCamelCase :List[Any] = fs_config.dropout_input _UpperCamelCase :Dict = fs_config.dropout _UpperCamelCase :int = fs_config.mask_channel_length _UpperCamelCase :Tuple = fs_config.mask_channel_prob _UpperCamelCase :int = fs_config.mask_length _UpperCamelCase :Dict = fs_config.mask_prob _UpperCamelCase :List[Any] = '''Wav2Vec2FeatureExtractor''' _UpperCamelCase :Optional[Any] = '''Wav2Vec2CTCTokenizer''' return config @torch.no_grad() def A_ ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=True ) -> int: if is_finetuned: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase :List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase :str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: _UpperCamelCase :Any = SEWConfig.from_pretrained(snake_case__ ) else: _UpperCamelCase :List[str] = convert_config(model[0] , snake_case__ ) _UpperCamelCase :List[str] = model[0].eval() _UpperCamelCase :Optional[Any] = True if config.feat_extract_norm == '''layer''' else False _UpperCamelCase :str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=snake_case__ , return_attention_mask=snake_case__ , ) if is_finetuned: if dict_path: _UpperCamelCase :int = Dictionary.load(snake_case__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _UpperCamelCase :List[Any] = target_dict.pad_index _UpperCamelCase :str = target_dict.bos_index _UpperCamelCase :int = target_dict.pad_index _UpperCamelCase :Dict = target_dict.bos_index _UpperCamelCase :int = target_dict.eos_index _UpperCamelCase :str = len(target_dict.symbols ) _UpperCamelCase :Optional[int] = os.path.join(snake_case__ , '''vocab.json''' ) if not os.path.isdir(snake_case__ ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(snake_case__ ) ) return os.makedirs(snake_case__ , exist_ok=snake_case__ ) with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , snake_case__ ) _UpperCamelCase :int = WavaVecaCTCTokenizer( snake_case__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=snake_case__ , ) _UpperCamelCase :Dict = WavaVecaProcessor(feature_extractor=snake_case__ , tokenizer=snake_case__ ) processor.save_pretrained(snake_case__ ) _UpperCamelCase :Tuple = SEWForCTC(snake_case__ ) else: _UpperCamelCase :str = SEWModel(snake_case__ ) feature_extractor.save_pretrained(snake_case__ ) recursively_load_weights(snake_case__ , snake_case__ , snake_case__ ) hf_model.save_pretrained(snake_case__ ) if __name__ == "__main__": UpperCamelCase__ :List[str] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) UpperCamelCase__ :Tuple = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
355
1
'''simple docstring''' A_ = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A_ = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A_ = { 0: """Sunday""", 1: """Monday""", 2: """Tuesday""", 3: """Wednesday""", 4: """Thursday""", 5: """Friday""", 6: """Saturday""", } def A_ ( snake_case , snake_case , snake_case ): assert len(str(_lowerCAmelCase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: SCREAMING_SNAKE_CASE:int = year // 100 SCREAMING_SNAKE_CASE:Optional[Any] = (5 * (century % 4) + 2) % 7 SCREAMING_SNAKE_CASE:str = year % 100 SCREAMING_SNAKE_CASE:List[str] = centurian % 12 SCREAMING_SNAKE_CASE:Union[str, Any] = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 SCREAMING_SNAKE_CASE:List[str] = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) SCREAMING_SNAKE_CASE:Dict = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
716
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets A_ = datasets.logging.get_logger(__name__) A_ = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" A_ = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" A_ = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def A_ ( snake_case , snake_case , snake_case=False , snake_case=False , snake_case=True , snake_case=False , snake_case="dummy_doc" ): SCREAMING_SNAKE_CASE:Union[str, Any] = {doc: key_lines} SCREAMING_SNAKE_CASE:Union[str, Any] = {doc: sys_lines} SCREAMING_SNAKE_CASE:Dict = {} SCREAMING_SNAKE_CASE:Optional[int] = 0 SCREAMING_SNAKE_CASE:Dict = 0 SCREAMING_SNAKE_CASE:int = 0 SCREAMING_SNAKE_CASE:int = 0 SCREAMING_SNAKE_CASE:Dict = 0 SCREAMING_SNAKE_CASE:Union[str, Any] = 0 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:List[str] = reader.get_doc_mentions(snake_case , key_doc_lines[doc] , snake_case ) key_singletons_num += singletons_num if NP_only or min_span: SCREAMING_SNAKE_CASE:Dict = reader.set_annotated_parse_trees(snake_case , key_doc_lines[doc] , snake_case , snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Any = reader.get_doc_mentions(snake_case , sys_doc_lines[doc] , snake_case ) sys_singletons_num += singletons_num if NP_only or min_span: SCREAMING_SNAKE_CASE:str = reader.set_annotated_parse_trees(snake_case , key_doc_lines[doc] , snake_case , snake_case ) if remove_nested: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Any = reader.remove_nested_coref_mentions(snake_case , snake_case ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:List[str] = reader.remove_nested_coref_mentions(snake_case , snake_case ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters SCREAMING_SNAKE_CASE:Optional[Any] = reader.get_mention_assignments(snake_case , snake_case ) SCREAMING_SNAKE_CASE:Dict = reader.get_mention_assignments(snake_case , snake_case ) SCREAMING_SNAKE_CASE:List[Any] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( "Number of removed nested coreferring mentions in the key " F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' ) logger.info( "Number of resulting singleton clusters in the key " F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' ) if not keep_singletons: logger.info( F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ''' "files, respectively" ) return doc_coref_infos def A_ ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): SCREAMING_SNAKE_CASE:Tuple = get_coref_infos(snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) SCREAMING_SNAKE_CASE:Optional[int] = {} SCREAMING_SNAKE_CASE:int = 0 SCREAMING_SNAKE_CASE:Union[str, Any] = 0 for name, metric in metrics: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Any = evaluator.evaluate_documents(snake_case , snake_case , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} ) logger.info( name.ljust(10 ) , F'''Recall: {recall * 100:.2f}''' , F''' Precision: {precision * 100:.2f}''' , F''' F1: {fa * 100:.2f}''' , ) if conll_subparts_num == 3: SCREAMING_SNAKE_CASE:Any = (conll / 3) * 100 logger.info(F'''CoNLL score: {conll:.2f}''' ) output_scores.update({"conll_score": conll} ) return output_scores def A_ ( snake_case ): SCREAMING_SNAKE_CASE:Optional[int] = False for line in key_lines: if not line.startswith("#" ): if len(line.split() ) > 6: SCREAMING_SNAKE_CASE:Tuple = line.split()[5] if not parse_col == "-": SCREAMING_SNAKE_CASE:List[str] = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def __UpperCamelCase ( self : Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Sequence(datasets.Value("string" ) ), } ) ,codebase_urls=["https://github.com/ns-moosavi/coval"] ,reference_urls=[ "https://github.com/ns-moosavi/coval", "https://www.aclweb.org/anthology/P16-1060", "http://www.conll.cemantix.org/2012/data.html", ] ,) def __UpperCamelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Optional[Any]=True ,SCREAMING_SNAKE_CASE__ : int=False ,SCREAMING_SNAKE_CASE__ : List[str]=False ,SCREAMING_SNAKE_CASE__ : str=False ): SCREAMING_SNAKE_CASE:Optional[int] = [ ("mentions", evaluator.mentions), ("muc", evaluator.muc), ("bcub", evaluator.b_cubed), ("ceafe", evaluator.ceafe), ("lea", evaluator.lea), ] if min_span: SCREAMING_SNAKE_CASE:Optional[int] = util.check_gold_parse_annotation(SCREAMING_SNAKE_CASE__ ) if not has_gold_parse: raise NotImplementedError("References should have gold parse annotation to use 'min_span'." ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" SCREAMING_SNAKE_CASE:List[Any] = evaluate( key_lines=SCREAMING_SNAKE_CASE__ ,sys_lines=SCREAMING_SNAKE_CASE__ ,metrics=SCREAMING_SNAKE_CASE__ ,NP_only=SCREAMING_SNAKE_CASE__ ,remove_nested=SCREAMING_SNAKE_CASE__ ,keep_singletons=SCREAMING_SNAKE_CASE__ ,min_span=SCREAMING_SNAKE_CASE__ ,) return score
465
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class A_ ( metaclass=_a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self: List[Any] ,*__lowerCAmelCase: List[Any] ,**__lowerCAmelCase: List[Any] ): '''simple docstring''' requires_backends(self ,["torch", "transformers", "onnx"] ) @classmethod def _lowercase ( cls: Dict ,*__lowerCAmelCase: Tuple ,**__lowerCAmelCase: Dict ): '''simple docstring''' requires_backends(cls ,["torch", "transformers", "onnx"] ) @classmethod def _lowercase ( cls: Optional[int] ,*__lowerCAmelCase: Tuple ,**__lowerCAmelCase: Any ): '''simple docstring''' requires_backends(cls ,["torch", "transformers", "onnx"] ) class A_ ( metaclass=_a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self: Union[str, Any] ,*__lowerCAmelCase: Tuple ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' requires_backends(self ,["torch", "transformers", "onnx"] ) @classmethod def _lowercase ( cls: int ,*__lowerCAmelCase: List[str] ,**__lowerCAmelCase: int ): '''simple docstring''' requires_backends(cls ,["torch", "transformers", "onnx"] ) @classmethod def _lowercase ( cls: Optional[Any] ,*__lowerCAmelCase: int ,**__lowerCAmelCase: str ): '''simple docstring''' requires_backends(cls ,["torch", "transformers", "onnx"] ) class A_ ( metaclass=_a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self: List[Any] ,*__lowerCAmelCase: str ,**__lowerCAmelCase: List[str] ): '''simple docstring''' requires_backends(self ,["torch", "transformers", "onnx"] ) @classmethod def _lowercase ( cls: Union[str, Any] ,*__lowerCAmelCase: Union[str, Any] ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' requires_backends(cls ,["torch", "transformers", "onnx"] ) @classmethod def _lowercase ( cls: Union[str, Any] ,*__lowerCAmelCase: str ,**__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' requires_backends(cls ,["torch", "transformers", "onnx"] ) class A_ ( metaclass=_a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self: Optional[Any] ,*__lowerCAmelCase: Union[str, Any] ,**__lowerCAmelCase: str ): '''simple docstring''' requires_backends(self ,["torch", "transformers", "onnx"] ) @classmethod def _lowercase ( cls: List[str] ,*__lowerCAmelCase: Union[str, Any] ,**__lowerCAmelCase: Tuple ): '''simple docstring''' requires_backends(cls ,["torch", "transformers", "onnx"] ) @classmethod def _lowercase ( cls: Tuple ,*__lowerCAmelCase: int ,**__lowerCAmelCase: List[str] ): '''simple docstring''' requires_backends(cls ,["torch", "transformers", "onnx"] ) class A_ ( metaclass=_a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self: Optional[Any] ,*__lowerCAmelCase: Any ,**__lowerCAmelCase: Tuple ): '''simple docstring''' requires_backends(self ,["torch", "transformers", "onnx"] ) @classmethod def _lowercase ( cls: Union[str, Any] ,*__lowerCAmelCase: Union[str, Any] ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' requires_backends(cls ,["torch", "transformers", "onnx"] ) @classmethod def _lowercase ( cls: Dict ,*__lowerCAmelCase: int ,**__lowerCAmelCase: List[str] ): '''simple docstring''' requires_backends(cls ,["torch", "transformers", "onnx"] ) class A_ ( metaclass=_a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self: Optional[Any] ,*__lowerCAmelCase: List[Any] ,**__lowerCAmelCase: Dict ): '''simple docstring''' requires_backends(self ,["torch", "transformers", "onnx"] ) @classmethod def _lowercase ( cls: Dict ,*__lowerCAmelCase: Dict ,**__lowerCAmelCase: int ): '''simple docstring''' requires_backends(cls ,["torch", "transformers", "onnx"] ) @classmethod def _lowercase ( cls: str ,*__lowerCAmelCase: Optional[Any] ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' requires_backends(cls ,["torch", "transformers", "onnx"] )
46
"""simple docstring""" import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : def __init__( self: Dict ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: int=13 ,__lowerCAmelCase: List[str]=30 ,__lowerCAmelCase: List[str]=2 ,__lowerCAmelCase: Dict=3 ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: Optional[Any]=32 ,__lowerCAmelCase: List[Any]=5 ,__lowerCAmelCase: int=4 ,__lowerCAmelCase: Optional[int]=37 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: str=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Optional[Any]=10 ,__lowerCAmelCase: List[str]=0.02 ,__lowerCAmelCase: Union[str, Any]=3 ,__lowerCAmelCase: Tuple=0.6 ,__lowerCAmelCase: Dict=None ,): '''simple docstring''' _lowerCamelCase : Optional[int] = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Any = image_size _lowerCamelCase : List[str] = patch_size _lowerCamelCase : Union[str, Any] = num_channels _lowerCamelCase : List[str] = is_training _lowerCamelCase : str = use_labels _lowerCamelCase : List[Any] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : Dict = mask_ratio _lowerCamelCase : List[Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _lowerCamelCase : str = (image_size // patch_size) ** 2 _lowerCamelCase : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : int = None if self.use_labels: _lowerCamelCase : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCamelCase : str = self.get_config() return config, pixel_values, labels def _lowercase ( self: Union[str, Any] ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def _lowercase ( self: Any ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : Any = ViTMAEModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self: List[str] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : List[Any] = ViTMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Dict = model(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = (self.image_size // self.patch_size) ** 2 _lowerCamelCase : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : Tuple = ViTMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) _lowerCamelCase : Any = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = config_and_inputs _lowerCamelCase : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): lowerCAmelCase__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCAmelCase__ = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = ViTMAEModelTester(self ) _lowerCamelCase : List[str] = ConfigTester(self ,config_class=__lowerCAmelCase ,has_text_modality=__lowerCAmelCase ,hidden_size=37 ) def _lowercase ( self: List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _lowerCamelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase ,nn.Linear ) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Dict = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCamelCase : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase ) def _lowercase ( self: Any ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : Optional[Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _lowerCamelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowerCamelCase : Union[str, Any] = torch.from_numpy(__lowerCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _lowerCamelCase : Dict = pt_noise super().check_pt_tf_models(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[str] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase : int = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) _lowerCamelCase : Any = outputs[0].cpu().numpy() _lowerCamelCase : Union[str, Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : str = model_class.from_pretrained(__lowerCAmelCase ) model.to(__lowerCAmelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase : Dict = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) # Make sure we don't have nans _lowerCamelCase : Union[str, Any] = after_outputs[0].cpu().numpy() _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCAmelCase ,1e-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: str ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: Tuple ): '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def _lowercase ( self: int ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowercase ( self: Dict ): '''simple docstring''' pass @slow def _lowercase ( self: Dict ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Optional[Any] = ViTMAEModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): @cached_property def _lowercase ( self: str ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def _lowercase ( self: int ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : List[str] = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__lowerCAmelCase ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : int = prepare_img() _lowerCamelCase : Tuple = image_processor(images=__lowerCAmelCase ,return_tensors="pt" ).to(__lowerCAmelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _lowerCamelCase : Tuple = ViTMAEConfig() _lowerCamelCase : Union[str, Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _lowerCamelCase : Optional[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__lowerCAmelCase ,noise=torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase ) ) # verify the logits _lowerCamelCase : Any = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape ,__lowerCAmelCase ) _lowerCamelCase : Tuple = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,expected_slice.to(__lowerCAmelCase ) ,atol=1e-4 ) )
46
1
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } SCREAMING_SNAKE_CASE__ = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCamelCase ( _snake_case : Optional[int] ,_snake_case : Any ,_snake_case : Dict ,_snake_case : Union[str, Any] ,_snake_case : Optional[Any] ): '''simple docstring''' for attribute in key.split("." ): lowercase__ = getattr(_snake_case ,_snake_case ) if weight_type is not None: lowercase__ = getattr(_snake_case ,_snake_case ).shape else: lowercase__ = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase__ = value elif weight_type == "weight_g": lowercase__ = value elif weight_type == "weight_v": lowercase__ = value elif weight_type == "bias": lowercase__ = value else: lowercase__ = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def lowerCamelCase ( _snake_case : Optional[int] ,_snake_case : int ): '''simple docstring''' lowercase__ = [] lowercase__ = fairseq_model.state_dict() lowercase__ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowercase__ = None for name, value in fairseq_dict.items(): lowercase__ = False if "conv_layers" in name: load_conv_layer( _snake_case ,_snake_case ,_snake_case ,_snake_case ,hf_model.config.feat_extract_norm == "group" ,) lowercase__ = True elif name.split("." )[0] == "proj": lowercase__ = fairseq_model.proj lowercase__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowercase__ = True if "*" in mapped_key: lowercase__ = name.split(_snake_case )[0].split("." )[-2] lowercase__ = mapped_key.replace("*" ,_snake_case ) if "weight_g" in name: lowercase__ = "weight_g" elif "weight_v" in name: lowercase__ = "weight_v" elif "bias" in name: lowercase__ = "bias" elif "weight" in name: lowercase__ = "weight" else: lowercase__ = None set_recursively(_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ) continue if not is_used: unused_weights.append(_snake_case ) logger.warning(f'''Unused weights: {unused_weights}''' ) return proj_weight def lowerCamelCase ( _snake_case : Tuple ,_snake_case : List[Any] ,_snake_case : Tuple ,_snake_case : Union[str, Any] ,_snake_case : Optional[int] ): '''simple docstring''' lowercase__ = full_name.split("conv_layers." )[-1] lowercase__ = name.split("." ) lowercase__ = int(items[0] ) lowercase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_snake_case ) def lowerCamelCase ( _snake_case : Tuple ): '''simple docstring''' lowercase__ , lowercase__ = emb.weight.shape lowercase__ = nn.Linear(_snake_case ,_snake_case ,bias=_snake_case ) lowercase__ = emb.weight.data return lin_layer def lowerCamelCase ( _snake_case : str ): '''simple docstring''' with open(_snake_case ,"r" ,encoding="utf-8" ) as f: lowercase__ = f.readlines() lowercase__ = [line.split(" " )[0] for line in lines] lowercase__ = len(_snake_case ) lowercase__ = { "<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3, } vocab_dict.update(dict(zip(_snake_case ,range(4 ,num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCamelCase ( _snake_case : int ,_snake_case : Optional[int] ,_snake_case : str ,_snake_case : Tuple ,_snake_case : Dict ,_snake_case : int ,_snake_case : int ,): '''simple docstring''' lowercase__ = WavaVecaConfig.from_pretrained(_snake_case ) lowercase__ = SpeechaTextaConfig.from_pretrained( _snake_case ,vocab_size=_snake_case ,decoder_layers=_snake_case ,do_stable_layer_norm=_snake_case ) lowercase__ = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=_snake_case ,return_attention_mask=_snake_case ,) lowercase__ , lowercase__ , lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) lowercase__ = model[0].eval() # set weights for wav2vec2 encoder lowercase__ = WavaVecaModel(_snake_case ) lowercase__ = recursively_load_weights_wavaveca(model.encoder ,_snake_case ) lowercase__ = SpeechaTextaForCausalLM(_snake_case ) lowercase__ , lowercase__ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() ,strict=_snake_case ) # set output linear layer unexpected_keys.remove("embed_out" ) lowercase__ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(f'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) lowercase__ = SpeechEncoderDecoderModel(encoder=_snake_case ,decoder=_snake_case ) lowercase__ = False # add projection layer lowercase__ = nn.Parameter(projection_layer.weight ) lowercase__ = nn.Parameter(projection_layer.bias ) lowercase__ = create_vocab_dict(_snake_case ) with open(os.path.join(_snake_case ,"vocab.json" ) ,"w" ) as fp: json.dump(_snake_case ,_snake_case ) lowercase__ = SpeechaTextaTokenizer(os.path.join(_snake_case ,"vocab.json" ) ) tokenizer.save_pretrained(_snake_case ) lowercase__ = hf_wavavec.config.to_dict() lowercase__ = tokenizer.pad_token_id lowercase__ = tokenizer.bos_token_id lowercase__ = tokenizer.eos_token_id lowercase__ = "speech_to_text_2" lowercase__ = "wav2vec2" lowercase__ = SpeechEncoderDecoderConfig.from_dict(_snake_case ) hf_wavavec.save_pretrained(_snake_case ) feature_extractor.save_pretrained(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=1_0224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
717
'''simple docstring''' import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class snake_case : def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=100 ,UpperCAmelCase_=13 ,UpperCAmelCase_=30 ,UpperCAmelCase_=2 ,UpperCAmelCase_=3 ,UpperCAmelCase_=True ,UpperCAmelCase_=True ,UpperCAmelCase_=32 ,UpperCAmelCase_=4 ,UpperCAmelCase_=4 ,UpperCAmelCase_=37 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=10 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=3 ,UpperCAmelCase_=None ,UpperCAmelCase_=[0, 1, 2, 3] ,) -> Any: lowercase__ = parent lowercase__ = 100 lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = scope lowercase__ = out_indices lowercase__ = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = num_patches + 1 def _a ( self ) -> str: lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels, pixel_labels def _a ( self ) -> List[str]: return BeitConfig( vocab_size=self.vocab_size ,image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=UpperCAmelCase_ ,initializer_range=self.initializer_range ,out_indices=self.out_indices ,) def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) -> Optional[int]: lowercase__ = BeitModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowercase__ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) -> Tuple: lowercase__ = BeitForMaskedImageModeling(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowercase__ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length - 1, self.vocab_size) ) def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) -> Dict: lowercase__ = self.type_sequence_label_size lowercase__ = BeitForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowercase__ = model(UpperCAmelCase_ ,labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase__ = 1 lowercase__ = BeitForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(UpperCAmelCase_ ,labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) -> Dict: lowercase__ = self.num_labels lowercase__ = BeitForSemanticSegmentation(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowercase__ = model(UpperCAmelCase_ ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) lowercase__ = model(UpperCAmelCase_ ,labels=UpperCAmelCase_ ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def _a ( self ) -> str: lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case (UpperCamelCase , UpperCamelCase , unittest.TestCase ): lowerCAmelCase__ :Optional[Any] = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowerCAmelCase__ :Optional[int] = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase__ :Any = False lowerCAmelCase__ :Optional[Any] = False lowerCAmelCase__ :Optional[Any] = False def _a ( self ) -> Union[str, Any]: lowercase__ = BeitModelTester(self ) lowercase__ = ConfigTester(self ,config_class=UpperCAmelCase_ ,has_text_modality=UpperCAmelCase_ ,hidden_size=37 ) def _a ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def _a ( self ) -> Dict: pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def _a ( self ) -> int: pass def _a ( self ) -> Any: lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ ,nn.Linear ) ) def _a ( self ) -> Tuple: lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCAmelCase_ ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["pixel_values"] self.assertListEqual(arg_names[:1] ,UpperCAmelCase_ ) def _a ( self ) -> Tuple: lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def _a ( self ) -> List[Any]: lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def _a ( self ) -> Any: lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) def _a ( self ) -> str: lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase_ ) def _a ( self ) -> int: if not self.model_tester.is_training: return lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(UpperCAmelCase_ ), BeitForMaskedImageModeling]: continue lowercase__ = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.train() lowercase__ = self._prepare_for_class(UpperCAmelCase_ ,UpperCAmelCase_ ,return_labels=UpperCAmelCase_ ) lowercase__ = model(**UpperCAmelCase_ ).loss loss.backward() def _a ( self ) -> str: lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase__ = False lowercase__ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(UpperCAmelCase_ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue lowercase__ = model_class(UpperCAmelCase_ ) model.gradient_checkpointing_enable() model.to(UpperCAmelCase_ ) model.train() lowercase__ = self._prepare_for_class(UpperCAmelCase_ ,UpperCAmelCase_ ,return_labels=UpperCAmelCase_ ) lowercase__ = model(**UpperCAmelCase_ ).loss loss.backward() def _a ( self ) -> int: lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = _config_zero_init(UpperCAmelCase_ ) for model_class in self.all_model_classes: lowercase__ = model_class(config=UpperCAmelCase_ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() ,[0.0, 1.0] ,msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' ,) @slow def _a ( self ) -> Optional[Any]: for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = BeitModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def lowerCamelCase ( ): '''simple docstring''' lowercase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class snake_case (unittest.TestCase ): @cached_property def _a ( self ) -> Any: return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _a ( self ) -> int: lowercase__ = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(UpperCAmelCase_ ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=UpperCAmelCase_ ,return_tensors="pt" ).pixel_values.to(UpperCAmelCase_ ) # prepare bool_masked_pos lowercase__ = torch.ones((1, 196) ,dtype=torch.bool ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): lowercase__ = model(pixel_values=UpperCAmelCase_ ,bool_masked_pos=UpperCAmelCase_ ) lowercase__ = outputs.logits # verify the logits lowercase__ = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape ,UpperCAmelCase_ ) lowercase__ = torch.tensor( [[-3.24_37, 0.50_72, -13.91_74], [-3.24_56, 0.49_48, -13.94_01], [-3.20_33, 0.51_21, -13.85_50]] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] ,UpperCAmelCase_ ,atol=1E-2 ) ) @slow def _a ( self ) -> Optional[Any]: lowercase__ = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(UpperCAmelCase_ ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=UpperCAmelCase_ ,return_tensors="pt" ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): lowercase__ = model(**UpperCAmelCase_ ) lowercase__ = outputs.logits # verify the logits lowercase__ = torch.Size((1, 1_000) ) self.assertEqual(logits.shape ,UpperCAmelCase_ ) lowercase__ = torch.tensor([-1.23_85, -1.09_87, -1.01_08] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(logits[0, :3] ,UpperCAmelCase_ ,atol=1E-4 ) ) lowercase__ = 281 self.assertEqual(logits.argmax(-1 ).item() ,UpperCAmelCase_ ) @slow def _a ( self ) -> Union[str, Any]: lowercase__ = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( UpperCAmelCase_ ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=UpperCAmelCase_ ,return_tensors="pt" ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): lowercase__ = model(**UpperCAmelCase_ ) lowercase__ = outputs.logits # verify the logits lowercase__ = torch.Size((1, 21_841) ) self.assertEqual(logits.shape ,UpperCAmelCase_ ) lowercase__ = torch.tensor([1.68_81, -0.27_87, 0.59_01] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(logits[0, :3] ,UpperCAmelCase_ ,atol=1E-4 ) ) lowercase__ = 2_396 self.assertEqual(logits.argmax(-1 ).item() ,UpperCAmelCase_ ) @slow def _a ( self ) -> Union[str, Any]: lowercase__ = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) lowercase__ = model.to(UpperCAmelCase_ ) lowercase__ = BeitImageProcessor(do_resize=UpperCAmelCase_ ,size=640 ,do_center_crop=UpperCAmelCase_ ) lowercase__ = load_dataset("hf-internal-testing/fixtures_ade20k" ,split="test" ) lowercase__ = Image.open(ds[0]["file"] ) lowercase__ = image_processor(images=UpperCAmelCase_ ,return_tensors="pt" ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): lowercase__ = model(**UpperCAmelCase_ ) lowercase__ = outputs.logits # verify the logits lowercase__ = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape ,UpperCAmelCase_ ) lowercase__ = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: lowercase__ = torch.tensor( [ [[-4.92_25, -2.39_54, -3.05_22], [-2.88_22, -1.00_46, -1.75_61], [-2.95_49, -1.32_28, -2.13_47]], [[-5.81_68, -3.41_29, -4.07_78], [-3.86_51, -2.22_14, -3.02_77], [-3.83_56, -2.46_43, -3.35_35]], [[-0.00_78, 3.99_52, 4.07_54], [2.98_56, 4.69_44, 5.00_35], [3.24_13, 4.78_13, 4.99_69]], ] ,device=UpperCAmelCase_ ,) else: lowercase__ = torch.tensor( [ [[-4.89_60, -2.36_88, -3.03_55], [-2.84_78, -0.98_36, -1.74_18], [-2.94_49, -1.33_32, -2.14_56]], [[-5.80_81, -3.41_24, -4.10_06], [-3.85_61, -2.20_81, -3.03_23], [-3.83_65, -2.46_01, -3.36_69]], [[-0.03_09, 3.98_68, 4.05_40], [2.96_40, 4.68_77, 4.99_76], [3.20_81, 4.76_90, 4.99_42]], ] ,device=UpperCAmelCase_ ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,UpperCAmelCase_ ,atol=1E-4 ) ) @slow def _a ( self ) -> str: lowercase__ = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) lowercase__ = model.to(UpperCAmelCase_ ) lowercase__ = BeitImageProcessor(do_resize=UpperCAmelCase_ ,size=640 ,do_center_crop=UpperCAmelCase_ ) lowercase__ = load_dataset("hf-internal-testing/fixtures_ade20k" ,split="test" ) lowercase__ = Image.open(ds[0]["file"] ) lowercase__ = image_processor(images=UpperCAmelCase_ ,return_tensors="pt" ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): lowercase__ = model(**UpperCAmelCase_ ) lowercase__ = outputs.logits.detach().cpu() lowercase__ = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase_ ,target_sizes=[(500, 300)] ) lowercase__ = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape ,UpperCAmelCase_ ) lowercase__ = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase_ ) lowercase__ = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape ,UpperCAmelCase_ )
539
0
'''simple docstring''' __UpperCAmelCase = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def _snake_case ( A ) -> str: assert type(A ) in (int, float) and decimal == int(A ) lowerCAmelCase__ = int(A ) lowerCAmelCase__ = '''''' lowerCAmelCase__ = False if decimal < 0: lowerCAmelCase__ = True decimal *= -1 while decimal > 0: lowerCAmelCase__ , lowerCAmelCase__ = divmod(A , 16 ) lowerCAmelCase__ = values[remainder] + hexadecimal lowerCAmelCase__ = '''0x''' + hexadecimal if negative: lowerCAmelCase__ = '''-''' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
90
'''simple docstring''' class a : """simple docstring""" def __init__( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: List[Any] = None __UpperCAmelCase: Tuple = None __UpperCAmelCase: List[Any] = graph self._normalize_graph(snake_case_ , snake_case_ ) __UpperCAmelCase: Union[str, Any] = len(snake_case_ ) __UpperCAmelCase: List[str] = None def lowercase_ ( self , snake_case_ , snake_case_ ): '''simple docstring''' if sources is int: __UpperCAmelCase: List[Any] = [sources] if sinks is int: __UpperCAmelCase: Optional[Any] = [sinks] if len(snake_case_ ) == 0 or len(snake_case_ ) == 0: return __UpperCAmelCase: Any = sources[0] __UpperCAmelCase: int = sinks[0] # make fake vertex if there are more # than one source or sink if len(snake_case_ ) > 1 or len(snake_case_ ) > 1: __UpperCAmelCase: Union[str, Any] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) __UpperCAmelCase: List[Any] = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: __UpperCAmelCase: Tuple = max_input_flow __UpperCAmelCase: Any = 0 __UpperCAmelCase: Tuple = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: __UpperCAmelCase: Tuple = max_input_flow __UpperCAmelCase: Tuple = size - 1 def lowercase_ ( self ): '''simple docstring''' if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowercase_ ( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = algorithm(self ) class a : """simple docstring""" def __init__( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Tuple = flow_network __UpperCAmelCase: Dict = flow_network.verticesCount __UpperCAmelCase: List[Any] = flow_network.sourceIndex __UpperCAmelCase: int = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that __UpperCAmelCase: Dict = flow_network.graph __UpperCAmelCase: Optional[int] = False def lowercase_ ( self ): '''simple docstring''' if not self.executed: self._algorithm() __UpperCAmelCase: str = True def lowercase_ ( self ): '''simple docstring''' pass class a ( __lowerCAmelCase ): """simple docstring""" def __init__( self , snake_case_ ): '''simple docstring''' super().__init__(snake_case_ ) # use this to save your result __UpperCAmelCase: int = -1 def lowercase_ ( self ): '''simple docstring''' if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class a ( __lowerCAmelCase ): """simple docstring""" def __init__( self , snake_case_ ): '''simple docstring''' super().__init__(snake_case_ ) __UpperCAmelCase: Optional[int] = [[0] * self.verticies_count for i in range(self.verticies_count )] __UpperCAmelCase: Union[str, Any] = [0] * self.verticies_count __UpperCAmelCase: Tuple = [0] * self.verticies_count def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Dict = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule __UpperCAmelCase: int = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list __UpperCAmelCase: List[Any] = 0 while i < len(snake_case_ ): __UpperCAmelCase: Optional[int] = vertices_list[i] __UpperCAmelCase: Optional[int] = self.heights[vertex_index] self.process_vertex(snake_case_ ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(snake_case_ ) ) __UpperCAmelCase: Union[str, Any] = 0 else: i += 1 __UpperCAmelCase: Tuple = sum(self.preflow[self.source_index] ) def lowercase_ ( self , snake_case_ ): '''simple docstring''' while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(snake_case_ , snake_case_ ) self.relabel(snake_case_ ) def lowercase_ ( self , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowercase_ ( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): __UpperCAmelCase: str = self.heights[to_index] if min_height is not None: __UpperCAmelCase: Optional[Any] = min_height + 1 if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = [0] SCREAMING_SNAKE_CASE_ = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] SCREAMING_SNAKE_CASE_ = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network SCREAMING_SNAKE_CASE_ = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate SCREAMING_SNAKE_CASE_ = flow_network.find_maximum_flow() print(F"""maximum flow is {maximum_flow}""")
523
0
'''simple docstring''' def snake_case_ (UpperCamelCase : List[str] ): '''simple docstring''' return "".join(chr(ord(UpperCamelCase ) - 32 ) if '''a''' <= char <= '''z''' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
719
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class A ( ctypes.Structure ): # _fields is a specific attr expected by ctypes lowercase_ = [('size', ctypes.c_int), ('visible', ctypes.c_byte)] def snake_case_ (): '''simple docstring''' if os.name == "nt": _a = CursorInfo() _a = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCamelCase , ctypes.byref(UpperCamelCase ) ) _a = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCamelCase , ctypes.byref(UpperCamelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25l''' ) sys.stdout.flush() def snake_case_ (): '''simple docstring''' if os.name == "nt": _a = CursorInfo() _a = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCamelCase , ctypes.byref(UpperCamelCase ) ) _a = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCamelCase , ctypes.byref(UpperCamelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25h''' ) sys.stdout.flush() @contextmanager def snake_case_ (): '''simple docstring''' try: hide_cursor() yield finally: show_cursor()
377
0
import glob import os import random from string import ascii_lowercase, digits import cva SCREAMING_SNAKE_CASE__ : Optional[int] = """""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = """""" SCREAMING_SNAKE_CASE__ : Any = """""" SCREAMING_SNAKE_CASE__ : List[Any] = 1 # (0 is vertical, 1 is horizontal) def _lowerCamelCase ( ) -> None: '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = get_dataset(__lowerCamelCase , __lowerCamelCase ) print("""Processing...""" ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = update_image_and_anno(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for index, image in enumerate(__lowerCamelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' UpperCAmelCase__ : Tuple = random_chars(32 ) UpperCAmelCase__ : List[str] = paths[index].split(os.sep )[-1].rsplit(""".""" , 1 )[0] UpperCAmelCase__ : Optional[Any] = F"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}" cva.imwrite(F"/{file_root}.jpg" , __lowerCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"Success {index+1}/{len(__lowerCamelCase )} with {file_name}" ) UpperCAmelCase__ : str = [] for anno in new_annos[index]: UpperCAmelCase__ : List[str] = F"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}" annos_list.append(__lowerCamelCase ) with open(F"/{file_root}.txt" , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase ) -> tuple[list, list]: '''simple docstring''' UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : Dict = [] for label_file in glob.glob(os.path.join(__lowerCamelCase , """*.txt""" ) ): UpperCAmelCase__ : str = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(__lowerCamelCase ) as in_file: UpperCAmelCase__ : Tuple = in_file.readlines() UpperCAmelCase__ : Optional[Any] = os.path.join(__lowerCamelCase , F"{label_name}.jpg" ) UpperCAmelCase__ : List[str] = [] for obj_list in obj_lists: UpperCAmelCase__ : Optional[int] = obj_list.rstrip("""\n""" ).split(""" """ ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__lowerCamelCase ) labels.append(__lowerCamelCase ) return img_paths, labels def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 1 ) -> tuple[list, list, list]: '''simple docstring''' UpperCAmelCase__ : List[Any] = [] UpperCAmelCase__ : List[Any] = [] UpperCAmelCase__ : Tuple = [] for idx in range(len(__lowerCamelCase ) ): UpperCAmelCase__ : str = [] UpperCAmelCase__ : str = img_list[idx] path_list.append(__lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = anno_list[idx] UpperCAmelCase__ : Any = cva.imread(__lowerCamelCase ) if flip_type == 1: UpperCAmelCase__ : str = cva.flip(__lowerCamelCase , __lowerCamelCase ) for bbox in img_annos: UpperCAmelCase__ : Tuple = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: UpperCAmelCase__ : int = cva.flip(__lowerCamelCase , __lowerCamelCase ) for bbox in img_annos: UpperCAmelCase__ : Any = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__lowerCamelCase ) new_imgs_list.append(__lowerCamelCase ) return new_imgs_list, new_annos_lists, path_list def _lowerCamelCase ( __lowerCamelCase = 32 ) -> str: '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" UpperCAmelCase__ : int = ascii_lowercase + digits return "".join(random.choice(__lowerCamelCase ) for _ in range(__lowerCamelCase ) ) if __name__ == "__main__": main() print("""DONE ✅""")
79
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=30 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=32 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=10 , _lowerCAmelCase=0.0_2 , _lowerCAmelCase=3 , _lowerCAmelCase=None , ): UpperCAmelCase__ : Tuple = parent UpperCAmelCase__ : Optional[int] = batch_size UpperCAmelCase__ : Union[str, Any] = image_size UpperCAmelCase__ : int = patch_size UpperCAmelCase__ : str = num_channels UpperCAmelCase__ : int = is_training UpperCAmelCase__ : List[str] = use_labels UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : Tuple = num_attention_heads UpperCAmelCase__ : Optional[int] = intermediate_size UpperCAmelCase__ : Optional[Any] = hidden_act UpperCAmelCase__ : int = hidden_dropout_prob UpperCAmelCase__ : int = attention_probs_dropout_prob UpperCAmelCase__ : List[str] = type_sequence_label_size UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : Any = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase__ : Any = (image_size // patch_size) ** 2 UpperCAmelCase__ : Tuple = num_patches + 1 def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : List[str] = None if self.use_labels: UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ : str = TFViTModel(config=_lowerCAmelCase ) UpperCAmelCase__ : str = model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase__ : Optional[Any] = self.image_size // 2 UpperCAmelCase__ : List[str] = pixel_values[:, :, :image_size, :image_size] UpperCAmelCase__ : List[Any] = model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) UpperCAmelCase__ : str = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ : Tuple = self.type_sequence_label_size UpperCAmelCase__ : List[Any] = TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase__ : List[str] = model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase__ : Tuple = self.image_size // 2 UpperCAmelCase__ : Union[str, Any] = pixel_values[:, :, :image_size, :image_size] UpperCAmelCase__ : List[str] = model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase__ : Union[str, Any] = 1 UpperCAmelCase__ : Optional[Any] = TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = config_and_inputs UpperCAmelCase__ : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): __lowerCamelCase = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () __lowerCamelCase = ( {'feature-extraction': TFViTModel, 'image-classification': TFViTForImageClassification} if is_tf_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def __UpperCAmelCase ( self ): UpperCAmelCase__ : Any = TFViTModelTester(self ) UpperCAmelCase__ : int = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def __UpperCAmelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def __UpperCAmelCase ( self ): pass @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : str = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , tf.keras.layers.Layer ) ) def __UpperCAmelCase ( self ): UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Optional[int] = model_class(_lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Tuple = [*signature.parameters.keys()] UpperCAmelCase__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[Any] = TFViTModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(_lowerCAmelCase ) def _lowerCamelCase ( ) -> Tuple: '''simple docstring''' UpperCAmelCase__ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCAmelCase_ ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self ): return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def __UpperCAmelCase ( self ): UpperCAmelCase__ : Optional[int] = TFViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ) UpperCAmelCase__ : List[Any] = self.default_image_processor UpperCAmelCase__ : Union[str, Any] = prepare_img() UpperCAmelCase__ : Optional[Any] = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass UpperCAmelCase__ : int = model(**_lowerCAmelCase ) # verify the logits UpperCAmelCase__ : Tuple = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) UpperCAmelCase__ : int = tf.constant([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 )
79
1
def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[int] = generate_pascal_triangle(SCREAMING_SNAKE_CASE ) for row_idx in range(SCREAMING_SNAKE_CASE ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''' ) else: print(triangle[row_idx][col_idx] , end='''''' ) print() def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase :list[list[int]] = [] for current_row_idx in range(SCREAMING_SNAKE_CASE ): __UpperCamelCase :List[Any] = populate_current_row(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) triangle.append(SCREAMING_SNAKE_CASE ) return triangle def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :int = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __UpperCamelCase :int = 1, 1 for current_col_idx in range(1 , SCREAMING_SNAKE_CASE ): calculate_current_element( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return current_row def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ): '''simple docstring''' __UpperCamelCase :Dict = triangle[current_row_idx - 1][current_col_idx - 1] __UpperCamelCase :List[Any] = triangle[current_row_idx - 1][current_col_idx] __UpperCamelCase :List[Any] = above_to_left_elt + above_to_right_elt def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase :list[list[int]] = [[1]] for row_index in range(1 , SCREAMING_SNAKE_CASE ): __UpperCamelCase :Optional[Any] = [0] + result[-1] + [0] __UpperCamelCase :Any = row_index + 1 # Calculate the number of distinct elements in a row __UpperCamelCase :Optional[Any] = sum(divmod(SCREAMING_SNAKE_CASE , 2 ) ) __UpperCamelCase :Union[str, Any] = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __UpperCamelCase :List[Any] = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __UpperCamelCase :List[str] = row_first_half + row_second_half result.append(SCREAMING_SNAKE_CASE ) return result def lowerCamelCase ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: __UpperCamelCase :List[str] = f"""{func.__name__}({value})""" __UpperCamelCase :Optional[int] = timeit(f"""__main__.{call}""" , setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"""{call:38} -- {timing:.4f} seconds""" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
716
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase_ : '''simple docstring''' def __init__( self , __lowercase , __lowercase=2 , __lowercase=8 , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=99 , __lowercase=16 , __lowercase=5 , __lowercase=2 , __lowercase=36 , __lowercase="gelu" , __lowercase=0.0 , __lowercase=0.0 , __lowercase=512 , __lowercase=16 , __lowercase=2 , __lowercase=0.02 , __lowercase=3 , __lowercase=4 , __lowercase=None , ) -> List[str]: __UpperCamelCase :Union[str, Any] = parent __UpperCamelCase :str = batch_size __UpperCamelCase :Union[str, Any] = seq_length __UpperCamelCase :Optional[Any] = is_training __UpperCamelCase :Union[str, Any] = use_input_mask __UpperCamelCase :Any = use_token_type_ids __UpperCamelCase :List[str] = use_labels __UpperCamelCase :Tuple = vocab_size __UpperCamelCase :Tuple = hidden_size __UpperCamelCase :Optional[Any] = num_hidden_layers __UpperCamelCase :Tuple = num_attention_heads __UpperCamelCase :Any = intermediate_size __UpperCamelCase :Optional[Any] = hidden_act __UpperCamelCase :Any = hidden_dropout_prob __UpperCamelCase :str = attention_probs_dropout_prob __UpperCamelCase :Optional[Any] = max_position_embeddings __UpperCamelCase :int = type_vocab_size __UpperCamelCase :Optional[int] = type_sequence_label_size __UpperCamelCase :Any = initializer_range __UpperCamelCase :List[str] = num_labels __UpperCamelCase :Dict = num_choices __UpperCamelCase :Union[str, Any] = scope def UpperCamelCase__ ( self) -> str: __UpperCamelCase :int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCamelCase :List[Any] = None if self.use_input_mask: __UpperCamelCase :Any = random_attention_mask([self.batch_size, self.seq_length]) __UpperCamelCase :Union[str, Any] = None if self.use_token_type_ids: __UpperCamelCase :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCamelCase :List[str] = None __UpperCamelCase :Tuple = None __UpperCamelCase :Union[str, Any] = None if self.use_labels: __UpperCamelCase :Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCamelCase :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCamelCase :List[str] = ids_tensor([self.batch_size] , self.num_choices) __UpperCamelCase :List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self) -> Union[str, Any]: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowercase , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Dict = self.get_config() __UpperCamelCase :List[str] = 300 return config def UpperCamelCase__ ( self) -> int: ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) :Tuple = self.prepare_config_and_inputs() __UpperCamelCase :Union[str, Any] = True __UpperCamelCase :List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) __UpperCamelCase :List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> int: __UpperCamelCase :int = MraModel(config=__lowercase) model.to(__lowercase) model.eval() __UpperCamelCase :str = model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase) __UpperCamelCase :Tuple = model(__lowercase , token_type_ids=__lowercase) __UpperCamelCase :str = model(__lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> List[Any]: __UpperCamelCase :Tuple = True __UpperCamelCase :Dict = MraModel(__lowercase) model.to(__lowercase) model.eval() __UpperCamelCase :int = model( __lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , ) __UpperCamelCase :Any = model( __lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , encoder_hidden_states=__lowercase , ) __UpperCamelCase :str = model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> Union[str, Any]: __UpperCamelCase :Dict = MraForMaskedLM(config=__lowercase) model.to(__lowercase) model.eval() __UpperCamelCase :Optional[Any] = model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> int: __UpperCamelCase :Tuple = MraForQuestionAnswering(config=__lowercase) model.to(__lowercase) model.eval() __UpperCamelCase :Any = model( __lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , start_positions=__lowercase , end_positions=__lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> List[str]: __UpperCamelCase :List[Any] = self.num_labels __UpperCamelCase :str = MraForSequenceClassification(__lowercase) model.to(__lowercase) model.eval() __UpperCamelCase :Dict = model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> Optional[int]: __UpperCamelCase :str = self.num_labels __UpperCamelCase :Optional[int] = MraForTokenClassification(config=__lowercase) model.to(__lowercase) model.eval() __UpperCamelCase :Optional[Any] = model(__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> Optional[Any]: __UpperCamelCase :Optional[Any] = self.num_choices __UpperCamelCase :Dict = MraForMultipleChoice(config=__lowercase) model.to(__lowercase) model.eval() __UpperCamelCase :Tuple = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __UpperCamelCase :int = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __UpperCamelCase :Optional[int] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __UpperCamelCase :Union[str, Any] = model( __lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :str = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) :str = config_and_inputs __UpperCamelCase :List[str] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a__ : List[str] = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) a__ : Optional[int] = False a__ : Optional[int] = False a__ : str = False a__ : Optional[Any] = False a__ : Union[str, Any] = () def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :str = MraModelTester(self) __UpperCamelCase :Tuple = ConfigTester(self , config_class=__lowercase , hidden_size=37) def UpperCamelCase__ ( self) -> Dict: self.config_tester.run_common_tests() def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase) def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCamelCase :Optional[int] = type self.model_tester.create_and_check_model(*__lowercase) def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowercase) def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowercase) def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowercase) def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowercase) def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowercase) @slow def UpperCamelCase__ ( self) -> Dict: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase :List[Any] = MraModel.from_pretrained(__lowercase) self.assertIsNotNone(__lowercase) @unittest.skip(reason='''MRA does not output attentions''') def UpperCamelCase__ ( self) -> Any: return @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :int = MraModel.from_pretrained('''uw-madison/mra-base-512-4''') __UpperCamelCase :Union[str, Any] = torch.arange(256).unsqueeze(0) with torch.no_grad(): __UpperCamelCase :List[Any] = model(__lowercase)[0] __UpperCamelCase :Dict = torch.Size((1, 256, 768)) self.assertEqual(output.shape , __lowercase) __UpperCamelCase :Optional[Any] = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowercase , atol=1E-4)) @slow def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :str = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''') __UpperCamelCase :str = torch.arange(256).unsqueeze(0) with torch.no_grad(): __UpperCamelCase :Optional[Any] = model(__lowercase)[0] __UpperCamelCase :List[str] = 50_265 __UpperCamelCase :List[Any] = torch.Size((1, 256, vocab_size)) self.assertEqual(output.shape , __lowercase) __UpperCamelCase :Optional[Any] = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowercase , atol=1E-4)) @slow def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :Dict = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''') __UpperCamelCase :Optional[int] = torch.arange(4_096).unsqueeze(0) with torch.no_grad(): __UpperCamelCase :Tuple = model(__lowercase)[0] __UpperCamelCase :Optional[int] = 50_265 __UpperCamelCase :Optional[Any] = torch.Size((1, 4_096, vocab_size)) self.assertEqual(output.shape , __lowercase) __UpperCamelCase :List[str] = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowercase , atol=1E-4))
452
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class lowercase_ : '''simple docstring''' def __init__( self : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Any=13 , __UpperCAmelCase : Optional[Any]=30 , __UpperCAmelCase : int=2 , __UpperCAmelCase : List[str]=3 , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Union[str, Any]=32 , __UpperCAmelCase : List[str]=2 , __UpperCAmelCase : List[Any]=4 , __UpperCAmelCase : Optional[Any]=37 , __UpperCAmelCase : Tuple="gelu" , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : Optional[Any]=10 , __UpperCAmelCase : str=0.02 , __UpperCAmelCase : List[str]=3 , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : str=2 , ) ->int: """simple docstring""" a = parent a = batch_size a = image_size a = patch_size a = num_channels a = is_training a = use_labels a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = type_sequence_label_size a = initializer_range a = scope a = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) a = (image_size // patch_size) ** 2 a = num_patches + 2 def __lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self : Optional[int] ) ->str: """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __lowerCAmelCase ( self : int , __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple ) ->Union[str, Any]: """simple docstring""" a = TFDeiTModel(config=_a ) a = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] ) ->List[Any]: """simple docstring""" a = TFDeiTForMaskedImageModeling(config=_a ) a = model(_a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images a = 1 a = TFDeiTForMaskedImageModeling(_a ) a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a = model(_a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str ) ->Any: """simple docstring""" a = self.type_sequence_label_size a = TFDeiTForImageClassification(_a ) a = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a = 1 a = TFDeiTForImageClassification(_a ) a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: """simple docstring""" a = self.prepare_config_and_inputs() a , a , a = config_and_inputs a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowercase_ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) __snake_case = ( { '''feature-extraction''': TFDeiTModel, '''image-classification''': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) __snake_case = False __snake_case = False __snake_case = False __snake_case = False def __lowerCAmelCase ( self : List[str] ) ->str: """simple docstring""" a = TFDeiTModelTester(self ) a = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''DeiT does not use inputs_embeds''' ) def __lowerCAmelCase ( self : str ) ->List[Any]: """simple docstring""" pass def __lowerCAmelCase ( self : str ) ->Dict: """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , tf.keras.layers.Dense ) ) def __lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(_a ) a = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a = [*signature.parameters.keys()] a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __lowerCAmelCase ( self : Optional[int] ) ->List[Any]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_a ) def __lowerCAmelCase ( self : List[str] ) ->List[str]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : int , __UpperCAmelCase : Tuple=False ) ->Union[str, Any]: """simple docstring""" a = super()._prepare_for_class(_a , _a , return_labels=_a ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def __lowerCAmelCase ( self : Optional[int] ) ->Optional[int]: """simple docstring""" for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a = TFDeiTModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def _a ( ) -> Union[str, Any]: a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowercase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def __lowerCAmelCase ( self : str ) ->Any: """simple docstring""" return ( DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self : List[str] ) ->Optional[int]: """simple docstring""" a = TFDeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) a = self.default_image_processor a = prepare_img() a = image_processor(images=_a , return_tensors='''tf''' ) # forward pass a = model(**_a ) # verify the logits a = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , _a ) a = tf.constant([-1.0266, 0.1912, -1.2861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
117
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) snake_case_ : Optional[Any] = logging.getLogger(__name__) class A__ ( UpperCamelCase__ ): def __UpperCamelCase ( self : Optional[int] , _a : Union[str, Any] , _a : List[str] , _a : List[Any]=None , _a : Optional[Any]=None ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.layer[current_layer](_a , _a , head_mask[current_layer] ) _SCREAMING_SNAKE_CASE =layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , UpperCamelCase__ , ) class A__ ( UpperCamelCase__ ): def __init__( self : List[str] , _a : Union[str, Any] ) -> Tuple: """simple docstring""" super().__init__(_a ) _SCREAMING_SNAKE_CASE =BertEncoderWithPabee(_a ) self.init_weights() _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 def __UpperCamelCase ( self : List[str] , _a : Optional[int] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =threshold def __UpperCamelCase ( self : Dict , _a : int ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =patience def __UpperCamelCase ( self : Optional[Any] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.inference_layers_num / self.inference_instances_num _SCREAMING_SNAKE_CASE =( f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(_a ) @add_start_docstrings_to_model_forward(_a ) def __UpperCamelCase ( self : List[Any] , _a : Optional[Any]=None , _a : Optional[int]=None , _a : Any=None , _a : Union[str, Any]=None , _a : Union[str, Any]=None , _a : Union[str, Any]=None , _a : str=None , _a : Any=None , _a : str=None , _a : Optional[Any]=None , _a : Dict=False , ) -> Union[str, Any]: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: _SCREAMING_SNAKE_CASE =input_ids.size() elif inputs_embeds is not None: _SCREAMING_SNAKE_CASE =inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) _SCREAMING_SNAKE_CASE =input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _SCREAMING_SNAKE_CASE =torch.ones(_a , device=_a ) if token_type_ids is None: _SCREAMING_SNAKE_CASE =torch.zeros(_a , dtype=torch.long , device=_a ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _SCREAMING_SNAKE_CASE =self.get_extended_attention_mask(_a , _a , _a ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =encoder_hidden_states.size() _SCREAMING_SNAKE_CASE =(encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: _SCREAMING_SNAKE_CASE =torch.ones(_a , device=_a ) _SCREAMING_SNAKE_CASE =self.invert_attention_mask(_a ) else: _SCREAMING_SNAKE_CASE =None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _SCREAMING_SNAKE_CASE =self.get_head_mask(_a , self.config.num_hidden_layers ) _SCREAMING_SNAKE_CASE =self.embeddings( input_ids=_a , position_ids=_a , token_type_ids=_a , inputs_embeds=_a ) _SCREAMING_SNAKE_CASE =embedding_output if self.training: _SCREAMING_SNAKE_CASE =[] for i in range(self.config.num_hidden_layers ): _SCREAMING_SNAKE_CASE =self.encoder.adaptive_forward( _a , current_layer=_a , attention_mask=_a , head_mask=_a ) _SCREAMING_SNAKE_CASE =self.pooler(_a ) _SCREAMING_SNAKE_CASE =output_layers[i](output_dropout(_a ) ) res.append(_a ) elif self.patience == 0: # Use all layers for inference _SCREAMING_SNAKE_CASE =self.encoder( _a , attention_mask=_a , head_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , ) _SCREAMING_SNAKE_CASE =self.pooler(encoder_outputs[0] ) _SCREAMING_SNAKE_CASE =[output_layers[self.config.num_hidden_layers - 1](_a )] else: _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 _SCREAMING_SNAKE_CASE =self.encoder.adaptive_forward( _a , current_layer=_a , attention_mask=_a , head_mask=_a ) _SCREAMING_SNAKE_CASE =self.pooler(_a ) _SCREAMING_SNAKE_CASE =output_layers[i](_a ) if regression: _SCREAMING_SNAKE_CASE =logits.detach() if patient_result is not None: _SCREAMING_SNAKE_CASE =patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: _SCREAMING_SNAKE_CASE =0 else: _SCREAMING_SNAKE_CASE =logits.detach().argmax(dim=1 ) if patient_result is not None: _SCREAMING_SNAKE_CASE =patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_a ) ): patient_counter += 1 else: _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =logits if patient_counter == self.patience: break _SCREAMING_SNAKE_CASE =[patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , UpperCamelCase__ , ) class A__ ( UpperCamelCase__ ): def __init__( self : Optional[int] , _a : List[Any] ) -> Union[str, Any]: """simple docstring""" super().__init__(_a ) _SCREAMING_SNAKE_CASE =config.num_labels _SCREAMING_SNAKE_CASE =BertModelWithPabee(_a ) _SCREAMING_SNAKE_CASE =nn.Dropout(config.hidden_dropout_prob ) _SCREAMING_SNAKE_CASE =nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_a ) def __UpperCamelCase ( self : List[str] , _a : Optional[Any]=None , _a : List[Any]=None , _a : Union[str, Any]=None , _a : List[str]=None , _a : Dict=None , _a : Optional[Any]=None , _a : Optional[Any]=None , ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.bert( input_ids=_a , attention_mask=_a , token_type_ids=_a , position_ids=_a , head_mask=_a , inputs_embeds=_a , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) _SCREAMING_SNAKE_CASE =(logits[-1],) if labels is not None: _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =0 for ix, logits_item in enumerate(_a ): if self.num_labels == 1: # We are doing regression _SCREAMING_SNAKE_CASE =MSELoss() _SCREAMING_SNAKE_CASE =loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: _SCREAMING_SNAKE_CASE =CrossEntropyLoss() _SCREAMING_SNAKE_CASE =loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: _SCREAMING_SNAKE_CASE =loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 _SCREAMING_SNAKE_CASE =(total_loss / total_weights,) + outputs return outputs
691
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ = { "configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"], "tokenization_lxmert": ["LxmertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["LxmertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "LxmertEncoder", "LxmertForPreTraining", "LxmertForQuestionAnswering", "LxmertModel", "LxmertPreTrainedModel", "LxmertVisualFeatureEncoder", "LxmertXLayer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLxmertForPreTraining", "TFLxmertMainLayer", "TFLxmertModel", "TFLxmertPreTrainedModel", "TFLxmertVisualFeatureEncoder", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
384
'''simple docstring''' import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def _UpperCamelCase ( __UpperCamelCase ) -> Optional[int]: print('Loading config file...' ) def flatten_yaml_as_dict(__UpperCamelCase ,__UpperCamelCase="" ,__UpperCamelCase="." ): lowerCamelCase_ = [] for k, v in d.items(): lowerCamelCase_ = parent_key + sep + k if parent_key else k if isinstance(__UpperCamelCase ,collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(__UpperCamelCase ,__UpperCamelCase ,sep=__UpperCamelCase ).items() ) else: items.append((new_key, v) ) return dict(__UpperCamelCase ) lowerCamelCase_ = argparse.Namespace() with open(__UpperCamelCase ,'r' ) as yaml_file: try: lowerCamelCase_ = yaml.load(__UpperCamelCase ,Loader=yaml.FullLoader ) lowerCamelCase_ = flatten_yaml_as_dict(__UpperCamelCase ) for k, v in flat_cfg.items(): setattr(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) except yaml.YAMLError as exc: logger.error('Error while loading config file: {}. Error message: {}'.format(__UpperCamelCase ,str(__UpperCamelCase ) ) ) return config def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: lowerCamelCase_ = MobileViTVaConfig() lowerCamelCase_ = False # dataset if task_name.startswith('imagenet1k_' ): lowerCamelCase_ = 10_00 if int(task_name.strip().split('_' )[-1] ) == 3_84: lowerCamelCase_ = 3_84 else: lowerCamelCase_ = 2_56 lowerCamelCase_ = 'imagenet-1k-id2label.json' elif task_name.startswith('imagenet21k_to_1k_' ): lowerCamelCase_ = 2_10_00 if int(task_name.strip().split('_' )[-1] ) == 3_84: lowerCamelCase_ = 3_84 else: lowerCamelCase_ = 2_56 lowerCamelCase_ = 'imagenet-22k-id2label.json' elif task_name.startswith('ade20k_' ): lowerCamelCase_ = 1_51 lowerCamelCase_ = 5_12 lowerCamelCase_ = 'ade20k-id2label.json' lowerCamelCase_ = True elif task_name.startswith('voc_' ): lowerCamelCase_ = 21 lowerCamelCase_ = 5_12 lowerCamelCase_ = 'pascal-voc-id2label.json' lowerCamelCase_ = True # orig_config lowerCamelCase_ = load_orig_config_file(__UpperCamelCase ) assert getattr(__UpperCamelCase ,'model.classification.name' ,-1 ) == "mobilevit_v2", "Invalid model" lowerCamelCase_ = getattr(__UpperCamelCase ,'model.classification.mitv2.width_multiplier' ,1.0 ) assert ( getattr(__UpperCamelCase ,'model.classification.mitv2.attn_norm_layer' ,-1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" lowerCamelCase_ = getattr(__UpperCamelCase ,'model.classification.activation.name' ,'swish' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: lowerCamelCase_ = getattr(__UpperCamelCase ,'model.segmentation.output_stride' ,16 ) if "_deeplabv3" in task_name: lowerCamelCase_ = getattr(__UpperCamelCase ,'model.segmentation.deeplabv3.aspp_rates' ,[12, 24, 36] ) lowerCamelCase_ = getattr(__UpperCamelCase ,'model.segmentation.deeplabv3.aspp_out_channels' ,5_12 ) lowerCamelCase_ = getattr(__UpperCamelCase ,'model.segmentation.deeplabv3.aspp_dropout' ,0.1 ) # id2label lowerCamelCase_ = 'huggingface/label-files' lowerCamelCase_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type='dataset' ) ,'r' ) ) lowerCamelCase_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} lowerCamelCase_ = idalabel lowerCamelCase_ = {v: k for k, v in idalabel.items()} return config def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[int]: lowerCamelCase_ = dct.pop(__UpperCamelCase ) lowerCamelCase_ = val def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase=False ) -> int: if base_model: lowerCamelCase_ = '' else: lowerCamelCase_ = 'mobilevitv2.' lowerCamelCase_ = [] for k in state_dict.keys(): if k[:8] == "encoder.": lowerCamelCase_ = k[8:] else: lowerCamelCase_ = k if ".block." in k: lowerCamelCase_ = k_new.replace('.block.' ,'.' ) if ".conv." in k: lowerCamelCase_ = k_new.replace('.conv.' ,'.convolution.' ) if ".norm." in k: lowerCamelCase_ = k_new.replace('.norm.' ,'.normalization.' ) if "conv_1." in k: lowerCamelCase_ = k_new.replace('conv_1.' ,f'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if f'''layer_{i}.''' in k: lowerCamelCase_ = k_new.replace(f'''layer_{i}.''' ,f'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: lowerCamelCase_ = k_new.replace('.exp_1x1.' ,'.expand_1x1.' ) if ".red_1x1." in k: lowerCamelCase_ = k_new.replace('.red_1x1.' ,'.reduce_1x1.' ) for i in [3, 4, 5]: if f'''layer_{i}.0.''' in k: lowerCamelCase_ = k_new.replace(f'''layer_{i}.0.''' ,f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if f'''layer_{i}.1.local_rep.0.''' in k: lowerCamelCase_ = k_new.replace(f'''layer_{i}.1.local_rep.0.''' ,f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if f'''layer_{i}.1.local_rep.1.''' in k: lowerCamelCase_ = k_new.replace(f'''layer_{i}.1.local_rep.1.''' ,f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: lowerCamelCase_ = [0, 1] elif i == 4: lowerCamelCase_ = [0, 1, 2, 3] elif i == 5: lowerCamelCase_ = [0, 1, 2] for j in j_in: if f'''layer_{i}.1.global_rep.{j}.''' in k: lowerCamelCase_ = k_new.replace( f'''layer_{i}.1.global_rep.{j}.''' ,f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if f'''layer_{i}.1.global_rep.{j+1}.''' in k: lowerCamelCase_ = k_new.replace( f'''layer_{i}.1.global_rep.{j+1}.''' ,f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if f'''layer_{i}.1.conv_proj.''' in k: lowerCamelCase_ = k_new.replace(f'''layer_{i}.1.conv_proj.''' ,f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: lowerCamelCase_ = k_new.replace('pre_norm_attn.0.' ,'layernorm_before.' ) if "pre_norm_attn.1." in k: lowerCamelCase_ = k_new.replace('pre_norm_attn.1.' ,'attention.' ) if "pre_norm_ffn.0." in k: lowerCamelCase_ = k_new.replace('pre_norm_ffn.0.' ,'layernorm_after.' ) if "pre_norm_ffn.1." in k: lowerCamelCase_ = k_new.replace('pre_norm_ffn.1.' ,'ffn.conv1.' ) if "pre_norm_ffn.3." in k: lowerCamelCase_ = k_new.replace('pre_norm_ffn.3.' ,'ffn.conv2.' ) if "classifier.1." in k: lowerCamelCase_ = k_new.replace('classifier.1.' ,'classifier.' ) if "seg_head." in k: lowerCamelCase_ = k_new.replace('seg_head.' ,'segmentation_head.' ) if ".aspp_layer." in k: lowerCamelCase_ = k_new.replace('.aspp_layer.' ,'.' ) if ".aspp_pool." in k: lowerCamelCase_ = k_new.replace('.aspp_pool.' ,'.' ) rename_keys.append((k, k_new) ) return rename_keys def _UpperCamelCase ( __UpperCamelCase ) -> Dict: lowerCamelCase_ = [] for k in state_dict.keys(): if k.startswith('seg_head.aux_head.' ): keys_to_ignore.append(__UpperCamelCase ) for k in keys_to_ignore: state_dict.pop(__UpperCamelCase ,__UpperCamelCase ) def _UpperCamelCase ( ) -> Any: lowerCamelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" lowerCamelCase_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[Any]: lowerCamelCase_ = get_mobilevitva_config(__UpperCamelCase ,__UpperCamelCase ) # load original state_dict lowerCamelCase_ = torch.load(__UpperCamelCase ,map_location='cpu' ) # load huggingface model if task_name.startswith('ade20k_' ) or task_name.startswith('voc_' ): lowerCamelCase_ = MobileViTVaForSemanticSegmentation(__UpperCamelCase ).eval() lowerCamelCase_ = False else: lowerCamelCase_ = MobileViTVaForImageClassification(__UpperCamelCase ).eval() lowerCamelCase_ = False # remove and rename some keys of load the original model lowerCamelCase_ = checkpoint remove_unused_keys(__UpperCamelCase ) lowerCamelCase_ = create_rename_keys(__UpperCamelCase ,base_model=__UpperCamelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # load modified state_dict model.load_state_dict(__UpperCamelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor lowerCamelCase_ = MobileViTImageProcessor(crop_size=config.image_size ,size=config.image_size + 32 ) lowerCamelCase_ = image_processor(images=prepare_img() ,return_tensors='pt' ) lowerCamelCase_ = model(**__UpperCamelCase ) # verify classification model if task_name.startswith('imagenet' ): lowerCamelCase_ = outputs.logits lowerCamelCase_ = logits.argmax(-1 ).item() print('Predicted class:' ,model.config.idalabel[predicted_class_idx] ) if task_name.startswith('imagenet1k_256' ) and config.width_multiplier == 1.0: # expected_logits for base variant lowerCamelCase_ = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ) assert torch.allclose(logits[0, :3] ,__UpperCamelCase ,atol=1e-4 ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) A_ = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
384
1
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def __UpperCAmelCase ( __a : List[str] ,__a : Dict ) -> List[str]: """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _a : Tuple = flax_key_tuple[:-1] + ('''weight''',) _a : Union[str, Any] = torch.permute(__a ,(0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__a ): # linear layer _a : Optional[Any] = flax_key_tuple[:-1] + ('''weight''',) _a : Any = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _a : Tuple = flax_key_tuple[:-1] + ('''weight''',) return flax_key_tuple, flax_tensor def __UpperCAmelCase ( __a : int ,__a : List[str] ,__a : List[str] ) -> Optional[int]: """simple docstring""" if "metadata" in layer: _a : Optional[Any] = layer.split('''metadata''' ) _a : Optional[int] = ''''''.join(split_layer[0] )[:-1] _a : Dict = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )] elif "kvstore" in layer: _a : List[Any] = layer.split('''kvstore''' ) _a : List[str] = ''''''.join(split_layer[0] )[:-1] _a : str = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )] else: _a : Tuple = layer.split('''/''' ) _a : Any = '''/'''.join(split_layer[:-1] ) _a : Optional[Any] = (split_layer[-1],) if "kvstore/path" in layer: _a : Tuple = F"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: _a : str = '''file''' else: _a : Optional[Any] = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def __UpperCAmelCase ( __a : Optional[Any] ,__a : int ) -> Optional[Any]: """simple docstring""" _a : int = rename_keys(__a ) _a : Any = {} for k, v in current_block.items(): _a : Dict = v _a : int = new_current_block torch.save(__a ,__a ) def __UpperCAmelCase ( __a : List[Any] ,__a : int ,__a : str ,__a : int ,__a : str = WEIGHTS_NAME ) -> Any: """simple docstring""" _a : Optional[Any] = convert_file_size_to_int(__a ) _a : List[str] = [] _a : List[Any] = {} _a : int = 0 _a : List[Any] = 0 os.makedirs(__a ,exist_ok=__a ) with gfile.GFile(switch_checkpoint_path + '''/checkpoint''' ,'''rb''' ) as fp: _a : List[Any] = serialization.msgpack_restore(fp.read() )['''optimizer''']['''target'''] _a : Union[str, Any] = flatten_dict(__a ,sep='''/''' ) _a : Optional[int] = {} for layer in checkpoint_info.keys(): _a , _a , _a : int = get_key_and_tensorstore_dict( __a ,__a ,__a ) if curr_real_layer_name in all_layers: _a : Any = content else: _a : Dict = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _a : Optional[Any] = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _a : Optional[Any] = torch.tensor(__a ) _a : List[str] = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _a , _a : str = rename_base_flax_keys(tuple(key.split('''/''' ) ) ,__a ) _a : int = '''/'''.join(__a ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _a : Union[str, Any] = os.path.join( __a ,weights_name.replace('''.bin''' ,F"""-{len(__a )+1:05d}-of-???.bin""" ) ) rename_and_save_block(__a ,__a ) sharded_state_dicts.append(current_block.keys() ) del current_block _a : List[Any] = {} _a : Optional[int] = 0 _a : Dict = raw_weights.to(getattr(__a ,__a ) ) current_block_size += weight_size total_size += weight_size # Add the last block _a : Dict = os.path.join(__a ,weights_name.replace('''.bin''' ,F"""-{len(__a )+1:05d}-of-???.bin""" ) ) rename_and_save_block(__a ,__a ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(__a ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _a : int = {} _a : Any = {} for idx, shard in enumerate(__a ): _a : int = weights_name.replace( '''.bin''' ,F"""-{idx+1:05d}-of-{len(__a ):05d}.bin""" ) # len(sharded_state_dicts):05d} _a : Optional[Any] = os.path.join(__a ,weights_name.replace('''.bin''' ,F"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(__a ,os.path.join(__a ,__a ) ) _a : Optional[Any] = shard for key in shard: _a : str = shard_file # Add the metadata _a : str = {'''total_size''': total_size} _a : str = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(__a ,__a ) ,'''w''' ,encoding='''utf-8''' ) as f: _a : Optional[int] = json.dumps(__a ,indent=2 ,sort_keys=__a ) + '''\n''' f.write(__a ) return metadata, index if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--max_shard_size''', default='''10GB''', required=False, help='''Max shard size''') parser.add_argument('''--dtype''', default='''bfloat16''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted''', type=str, required=False, help='''Path to the output pytorch model.''', ) a__ = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def __UpperCAmelCase ( ) -> Dict: """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _a : Optional[Any] = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' ) config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' ) _a : Tuple = SwitchTransformersForConditionalGeneration.from_pretrained( '''/home/arthur_huggingface_co/transformers/switch_converted''' ,device_map='''auto''' ) _a : Any = TaTokenizer.from_pretrained('''t5-small''' ) _a : Optional[int] = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''' _a : str = tokenizer(__a ,return_tensors='''pt''' ).input_ids _a : Any = model.generate(__a ,decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
14
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __UpperCAmelCase ( __a : Tuple ,__a : Dict ,__a : List[str] ,__a : Optional[Any] ,__a : Tuple ) -> Dict: """simple docstring""" with open(__a ) as metadata_file: _a : Optional[Any] = json.load(__a ) _a : List[Any] = LukeConfig(use_entity_aware_attention=__a ,**metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _a : Optional[Any] = torch.load(__a ,map_location='''cpu''' )['''module'''] # Load the entity vocab file _a : Any = load_original_entity_vocab(__a ) # add an entry for [MASK2] _a : Union[str, Any] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _a : Dict = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _a : Optional[int] = AddedToken('''<ent>''' ,lstrip=__a ,rstrip=__a ) _a : Tuple = AddedToken('''<ent2>''' ,lstrip=__a ,rstrip=__a ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(__a ) with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''r''' ) as f: _a : List[str] = json.load(__a ) _a : Tuple = '''MLukeTokenizer''' with open(os.path.join(__a ,'''tokenizer_config.json''' ) ,'''w''' ) as f: json.dump(__a ,__a ) with open(os.path.join(__a ,MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) ,'''w''' ) as f: json.dump(__a ,__a ) _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) # Initialize the embeddings of the special tokens _a : str = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _a : Tuple = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _a : Any = state_dict['''embeddings.word_embeddings.weight'''] _a : Optional[int] = word_emb[ent_init_index].unsqueeze(0 ) _a : Any = word_emb[enta_init_index].unsqueeze(0 ) _a : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _a : Tuple = state_dict[bias_name] _a : Optional[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) _a : Optional[int] = decoder_bias[enta_init_index].unsqueeze(0 ) _a : Dict = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _a : Tuple = F"""encoder.layer.{layer_index}.attention.self.""" _a : List[Any] = state_dict[prefix + matrix_name] _a : Dict = state_dict[prefix + matrix_name] _a : List[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _a : Union[str, Any] = state_dict['''entity_embeddings.entity_embeddings.weight'''] _a : Optional[int] = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _a : int = state_dict['''entity_predictions.bias'''] _a : int = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _a : Optional[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) _a : Optional[int] = LukeForMaskedLM(config=__a ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _a : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _a : Optional[int] = state_dict[key] else: _a : Tuple = state_dict[key] _a , _a : int = model.load_state_dict(__a ,strict=__a ) if set(__a ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(__a ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ,task='''entity_classification''' ) _a : int = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _a : List[Any] = (0, 9) _a : Tuple = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : int = model(**__a ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _a : List[str] = torch.Size((1, 33, 768) ) _a : Union[str, Any] = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _a : str = torch.Size((1, 1, 768) ) _a : List[Any] = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,__a ,atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _a : Optional[int] = MLukeTokenizer.from_pretrained(__a ) _a : Dict = '''Tokyo is the capital of <mask>.''' _a : List[str] = (24, 30) _a : Optional[int] = tokenizer(__a ,entity_spans=[span] ,return_tensors='''pt''' ) _a : Optional[Any] = model(**__a ) _a : Any = encoding['''input_ids'''][0].tolist() _a : Optional[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _a : Any = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__a ) _a : Any = outputs.entity_logits[0][0].argmax().item() _a : Optional[Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(__a ) ) model.save_pretrained(__a ) def __UpperCAmelCase ( __a : List[Any] ) -> int: """simple docstring""" _a : Union[str, Any] = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _a : int = [json.loads(__a ) for line in open(__a )] _a : List[Any] = {} for entry in data: _a : int = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _a : List[Any] = entity_id break _a : Dict = F"""{language}:{entity_name}""" _a : int = entity_id return new_mapping if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) a__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
14
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : int = logging.get_logger(__name__) lowercase_ : Dict = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = '''rwkv''' __A = {'''max_position_embeddings''': '''context_length'''} def __init__( self , _lowerCAmelCase=5_0277 , _lowerCAmelCase=1024 , _lowerCAmelCase=4096 , _lowerCAmelCase=32 , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0 , _lowerCAmelCase=0 , _lowerCAmelCase=6 , _lowerCAmelCase=False , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> Union[str, Any]: '''simple docstring''' lowercase = vocab_size lowercase = context_length lowercase = hidden_size lowercase = num_hidden_layers lowercase = attention_hidden_size if attention_hidden_size is not None else hidden_size lowercase = intermediate_size if intermediate_size is not None else 4 * hidden_size lowercase = layer_norm_epsilon lowercase = rescale_every lowercase = use_cache lowercase = bos_token_id lowercase = eos_token_id super().__init__( tie_word_embeddings=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
653
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : Optional[int] ): lowercase = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality lowercase = len(vectors[0] ) # Will help select random centroids from among the available vectors lowercase = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. lowercase = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION lowercase = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points lowercase = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values lowercase = tf.placeholder("""float64""" , [dim] ) lowercase = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) lowercase = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value lowercase = tf.placeholder("""int32""" ) lowercase = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input lowercase = tf.placeholder("""float""" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors lowercase = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input lowercase = tf.placeholder("""float""" , [dim] ) lowercase = tf.placeholder("""float""" , [dim] ) lowercase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input lowercase = tf.placeholder("""float""" , [noofclusters] ) lowercase = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. lowercase = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. lowercase = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): lowercase = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. lowercase = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input lowercase = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster lowercase = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location lowercase = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments lowercase = sess.run(lowercase_ ) lowercase = sess.run(lowercase_ ) return centroids, assignments
653
1
from math import sqrt def _a ( a :int ) -> bool: assert isinstance(snake_case_ , snake_case_ ) and ( number >= 0 ), "'number' must been an int and positive" a = True # 0 and 1 are none primes. if number <= 1: a = False for divisor in range(2 , int(round(sqrt(snake_case_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: a = False break # precondition assert isinstance(snake_case_ , snake_case_ ), "'status' must been from type bool" return status def _a ( a :Tuple ) -> int: assert isinstance(snake_case_ , snake_case_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N a = list(range(2 , n + 1 ) ) a = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(snake_case_ ) ): for j in range(i + 1 , len(snake_case_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): a = 0 # filters actual prime numbers. a = [x for x in begin_list if x != 0] # precondition assert isinstance(snake_case_ , snake_case_ ), "'ans' must been from type list" return ans def _a ( a :List[Any] ) -> List[str]: assert isinstance(snake_case_ , snake_case_ ) and (n > 2), "'N' must been an int and > 2" a = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(snake_case_ ): ans.append(snake_case_ ) # precondition assert isinstance(snake_case_ , snake_case_ ), "'ans' must been from type list" return ans def _a ( a :Dict ) -> List[Any]: assert isinstance(snake_case_ , snake_case_ ) and number >= 0, "'number' must been an int and >= 0" a = [] # this list will be returns of the function. # potential prime number factors. a = 2 a = number if number == 0 or number == 1: ans.append(snake_case_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(snake_case_ ): while quotient != 1: if is_prime(snake_case_ ) and (quotient % factor == 0): ans.append(snake_case_ ) quotient /= factor else: factor += 1 else: ans.append(snake_case_ ) # precondition assert isinstance(snake_case_ , snake_case_ ), "'ans' must been from type list" return ans def _a ( a :Optional[int] ) -> int: assert isinstance(snake_case_ , snake_case_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" a = 0 # prime factorization of 'number' a = prime_factorization(snake_case_ ) a = max(snake_case_ ) # precondition assert isinstance(snake_case_ , snake_case_ ), "'ans' must been from type int" return ans def _a ( a :Optional[Any] ) -> List[Any]: assert isinstance(snake_case_ , snake_case_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" a = 0 # prime factorization of 'number' a = prime_factorization(snake_case_ ) a = min(snake_case_ ) # precondition assert isinstance(snake_case_ , snake_case_ ), "'ans' must been from type int" return ans def _a ( a :int ) -> Optional[Any]: assert isinstance(snake_case_ , snake_case_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , snake_case_ ), "compare bust been from type bool" return number % 2 == 0 def _a ( a :Optional[int] ) -> Any: assert isinstance(snake_case_ , snake_case_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , snake_case_ ), "compare bust been from type bool" return number % 2 != 0 def _a ( a :str ) -> Tuple: assert ( isinstance(snake_case_ , snake_case_ ) and (number > 2) and is_even(snake_case_ ) ), "'number' must been an int, even and > 2" a = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' a = get_prime_numbers(snake_case_ ) a = len(snake_case_ ) # run variable for while-loops. a = 0 a = None # exit variable. for break up the loops a = True while i < len_pn and loop: a = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: a = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(snake_case_ , snake_case_ ) and (len(snake_case_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _a ( a :Tuple , a :List[Any] ) -> Optional[Any]: assert ( isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." a = 0 while numbera != 0: a = numbera % numbera a = numbera a = rest # precondition assert isinstance(snake_case_ , snake_case_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _a ( a :Optional[Any] , a :str ) -> Optional[Any]: assert ( isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." a = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' a = prime_factorization(snake_case_ ) a = prime_factorization(snake_case_ ) elif numbera == 1 or numbera == 1: a = [] a = [] a = max(snake_case_ , snake_case_ ) a = 0 a = 0 a = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: a = prime_fac_a.count(snake_case_ ) a = prime_fac_a.count(snake_case_ ) for _ in range(max(snake_case_ , snake_case_ ) ): ans *= n else: a = prime_fac_a.count(snake_case_ ) for _ in range(snake_case_ ): ans *= n done.append(snake_case_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: a = prime_fac_a.count(snake_case_ ) for _ in range(snake_case_ ): ans *= n done.append(snake_case_ ) # precondition assert isinstance(snake_case_ , snake_case_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _a ( a :Tuple ) -> Optional[int]: assert isinstance(snake_case_ , snake_case_ ) and (n >= 0), "'number' must been a positive int" a = 0 a = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(snake_case_ ): ans += 1 # precondition assert isinstance(snake_case_ , snake_case_ ) and is_prime( snake_case_ ), "'ans' must been a prime number and from type int" return ans def _a ( a :int , a :List[str] ) -> Dict: assert ( is_prime(snake_case_ ) and is_prime(snake_case_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" a = p_number_a + 1 # jump to the next number a = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(snake_case_ ): number += 1 while number < p_number_a: ans.append(snake_case_ ) number += 1 # fetch the next prime number. while not is_prime(snake_case_ ): number += 1 # precondition assert ( isinstance(snake_case_ , snake_case_ ) and ans[0] != p_number_a and ans[len(snake_case_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _a ( a :Tuple ) -> Tuple: assert isinstance(snake_case_ , snake_case_ ) and (n >= 1), "'n' must been int and >= 1" a = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(snake_case_ ) # precondition assert ans[0] == 1 and ans[len(snake_case_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def _a ( a :Union[str, Any] ) -> List[Any]: assert isinstance(snake_case_ , snake_case_ ) and ( number > 1 ), "'number' must been an int and >= 1" a = get_divisors(snake_case_ ) # precondition assert ( isinstance(snake_case_ , snake_case_ ) and (divisors[0] == 1) and (divisors[len(snake_case_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _a ( a :int , a :Optional[int] ) -> Optional[Any]: assert ( isinstance(snake_case_ , snake_case_ ) and isinstance(snake_case_ , snake_case_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. a = gcd(abs(snake_case_ ) , abs(snake_case_ ) ) # precondition assert ( isinstance(snake_case_ , snake_case_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _a ( a :int ) -> Optional[Any]: assert isinstance(snake_case_ , snake_case_ ) and (n >= 0), "'n' must been a int and >= 0" a = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _a ( a :Optional[Any] ) -> str: assert isinstance(snake_case_ , snake_case_ ) and (n >= 0), "'n' must been an int and >= 0" a = 0 a = 1 a = 1 # this will be return for _ in range(n - 1 ): a = ans ans += fiba a = tmp return ans
117
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : int = { '''facebook/wav2vec2-base-960h''': '''https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json''', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'wav2vec2' def __init__(self , lowerCamelCase=32 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3_072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.02 , lowerCamelCase=1e-5 , lowerCamelCase="group" , lowerCamelCase="gelu" , lowerCamelCase=(512, 512, 512, 512, 512, 512, 512) , lowerCamelCase=(5, 2, 2, 2, 2, 2, 2) , lowerCamelCase=(10, 3, 3, 3, 3, 2, 2) , lowerCamelCase=False , lowerCamelCase=128 , lowerCamelCase=16 , lowerCamelCase=False , lowerCamelCase=True , lowerCamelCase=0.05 , lowerCamelCase=10 , lowerCamelCase=2 , lowerCamelCase=0.0 , lowerCamelCase=10 , lowerCamelCase=0 , lowerCamelCase=320 , lowerCamelCase=2 , lowerCamelCase=0.1 , lowerCamelCase=100 , lowerCamelCase=256 , lowerCamelCase=256 , lowerCamelCase=0.1 , lowerCamelCase="sum" , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=256 , lowerCamelCase=(512, 512, 512, 512, 1_500) , lowerCamelCase=(5, 3, 3, 1, 1) , lowerCamelCase=(1, 2, 3, 1, 1) , lowerCamelCase=512 , lowerCamelCase=0 , lowerCamelCase=1 , lowerCamelCase=2 , lowerCamelCase=False , lowerCamelCase=3 , lowerCamelCase=2 , lowerCamelCase=3 , lowerCamelCase=None , lowerCamelCase=None , **lowerCamelCase , ): '''simple docstring''' super().__init__(**lowerCamelCase , pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase ) _lowerCAmelCase = hidden_size _lowerCAmelCase = feat_extract_norm _lowerCAmelCase = feat_extract_activation _lowerCAmelCase = list(lowerCamelCase ) _lowerCAmelCase = list(lowerCamelCase ) _lowerCAmelCase = list(lowerCamelCase ) _lowerCAmelCase = conv_bias _lowerCAmelCase = num_conv_pos_embeddings _lowerCAmelCase = num_conv_pos_embedding_groups _lowerCAmelCase = len(self.conv_dim ) _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = feat_proj_dropout _lowerCAmelCase = final_dropout _lowerCAmelCase = layerdrop _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range _lowerCAmelCase = vocab_size _lowerCAmelCase = do_stable_layer_norm _lowerCAmelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase = apply_spec_augment _lowerCAmelCase = mask_time_prob _lowerCAmelCase = mask_time_length _lowerCAmelCase = mask_time_min_masks _lowerCAmelCase = mask_feature_prob _lowerCAmelCase = mask_feature_length _lowerCAmelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCAmelCase = num_codevectors_per_group _lowerCAmelCase = num_codevector_groups _lowerCAmelCase = contrastive_logits_temperature _lowerCAmelCase = feat_quantizer_dropout _lowerCAmelCase = num_negatives _lowerCAmelCase = codevector_dim _lowerCAmelCase = proj_codevector_dim _lowerCAmelCase = diversity_loss_weight # ctc loss _lowerCAmelCase = ctc_loss_reduction _lowerCAmelCase = ctc_zero_infinity # adapter _lowerCAmelCase = add_adapter _lowerCAmelCase = adapter_kernel_size _lowerCAmelCase = adapter_stride _lowerCAmelCase = num_adapter_layers _lowerCAmelCase = output_hidden_size or hidden_size _lowerCAmelCase = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase = list(lowerCamelCase ) _lowerCAmelCase = list(lowerCamelCase ) _lowerCAmelCase = list(lowerCamelCase ) _lowerCAmelCase = xvector_output_dim @property def A__ (self ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
156
0
def __UpperCamelCase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ): return int(input_a == input_a == 0 ) def __UpperCamelCase ( ): print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(f"| 0 | 0 | {nor_gate(0 , 0 )} |" ) print(f"| 0 | 1 | {nor_gate(0 , 1 )} |" ) print(f"| 1 | 0 | {nor_gate(1 , 0 )} |" ) print(f"| 1 | 1 | {nor_gate(1 , 1 )} |" ) if __name__ == "__main__": import doctest doctest.testmod() main()
708
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase__ =logging.get_logger(__name__) lowercase__ ={ 'microsoft/focalnet-tiny': 'https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json', } class UpperCamelCase__ ( __lowercase ,__lowercase ): _SCREAMING_SNAKE_CASE : str = "focalnet" def __init__(self : str , snake_case_ : List[str]=2_2_4 , snake_case_ : Dict=4 , snake_case_ : Union[str, Any]=3 , snake_case_ : int=9_6 , snake_case_ : Tuple=False , snake_case_ : Union[str, Any]=[1_9_2, 3_8_4, 7_6_8, 7_6_8] , snake_case_ : int=[2, 2, 6, 2] , snake_case_ : List[str]=[2, 2, 2, 2] , snake_case_ : Any=[3, 3, 3, 3] , snake_case_ : Optional[Any]="gelu" , snake_case_ : Optional[int]=4.0 , snake_case_ : List[str]=0.0 , snake_case_ : Optional[int]=0.1 , snake_case_ : Optional[Any]=False , snake_case_ : int=1E-4 , snake_case_ : Dict=False , snake_case_ : Optional[Any]=False , snake_case_ : List[str]=False , snake_case_ : str=0.02 , snake_case_ : List[str]=1E-5 , snake_case_ : Tuple=3_2 , snake_case_ : str=None , snake_case_ : Dict=None , **snake_case_ : Tuple , ): super().__init__(**snake_case_ ) __a : Tuple = image_size __a : List[str] = patch_size __a : List[str] = num_channels __a : Any = embed_dim __a : List[Any] = use_conv_embed __a : Any = hidden_sizes __a : Optional[Any] = depths __a : Tuple = focal_levels __a : Optional[Any] = focal_windows __a : List[Any] = hidden_act __a : Dict = mlp_ratio __a : Tuple = hidden_dropout_prob __a : List[Any] = drop_path_rate __a : List[Any] = use_layerscale __a : Optional[int] = layerscale_value __a : Any = use_post_layernorm __a : List[Any] = use_post_layernorm_in_modulation __a : Any = normalize_modulator __a : List[Any] = initializer_range __a : List[Any] = layer_norm_eps __a : List[Any] = encoder_stride __a : Union[str, Any] = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )] __a , __a : List[str] = get_aligned_output_features_output_indices( out_features=snake_case_ , out_indices=snake_case_ , stage_names=self.stage_names )
326
0
def _lowerCAmelCase ( UpperCamelCase__: str ) -> str: """simple docstring""" return " ".join( """""".join(word[::-1] ) if len(UpperCamelCase__ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
641
from ..utils import DummyObject, requires_backends class _UpperCamelCase ( metaclass=__snake_case ): """simple docstring""" lowerCAmelCase = ['note_seq'] def __init__( self , *a__ , **a__ ) -> Optional[int]: requires_backends(self , ["""note_seq"""] ) @classmethod def _UpperCAmelCase ( cls , *a__ , **a__ ) -> Dict: requires_backends(cls , ["""note_seq"""] ) @classmethod def _UpperCAmelCase ( cls , *a__ , **a__ ) -> Optional[int]: requires_backends(cls , ["""note_seq"""] )
641
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__: List[str] = logging.get_logger(__name__) A__: Optional[Any] = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class A__ ( UpperCAmelCase__ ): __UpperCamelCase : int = "trocr" __UpperCamelCase : int = ["past_key_values"] __UpperCamelCase : List[str] = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self :List[str] , SCREAMING_SNAKE_CASE :Optional[Any]=5_0_2_6_5 , SCREAMING_SNAKE_CASE :Tuple=1_0_2_4 , SCREAMING_SNAKE_CASE :Optional[Any]=1_2 , SCREAMING_SNAKE_CASE :Optional[int]=1_6 , SCREAMING_SNAKE_CASE :Any=4_0_9_6 , SCREAMING_SNAKE_CASE :Optional[int]="gelu" , SCREAMING_SNAKE_CASE :Tuple=5_1_2 , SCREAMING_SNAKE_CASE :List[Any]=0.1 , SCREAMING_SNAKE_CASE :Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE :Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE :List[Any]=2 , SCREAMING_SNAKE_CASE :Optional[Any]=0.02 , SCREAMING_SNAKE_CASE :Any=0.0 , SCREAMING_SNAKE_CASE :List[Any]=True , SCREAMING_SNAKE_CASE :str=False , SCREAMING_SNAKE_CASE :Tuple=True , SCREAMING_SNAKE_CASE :str=True , SCREAMING_SNAKE_CASE :Tuple=1 , SCREAMING_SNAKE_CASE :List[Any]=0 , SCREAMING_SNAKE_CASE :int=2 , **SCREAMING_SNAKE_CASE :Any , ) -> Any: '''simple docstring''' _a : Optional[Any] =vocab_size _a : Optional[int] =d_model _a : Union[str, Any] =decoder_layers _a : Optional[int] =decoder_attention_heads _a : Any =decoder_ffn_dim _a : Union[str, Any] =activation_function _a : Dict =max_position_embeddings _a : Union[str, Any] =dropout _a : Union[str, Any] =attention_dropout _a : int =activation_dropout _a : Optional[Any] =init_std _a : Optional[int] =decoder_layerdrop _a : Optional[Any] =use_cache _a : Tuple =scale_embedding _a : int =use_learned_position_embeddings _a : Union[str, Any] =layernorm_embedding super().__init__( pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , decoder_start_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
506
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() A__: Any = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) A__: Any = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"transformer.encoder.layers.{i}.self_attn.out_proj.weight", F"encoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (F"transformer.encoder.layers.{i}.self_attn.out_proj.bias", F"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"encoder.layers.{i}.fc1.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"encoder.layers.{i}.fc1.bias")) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"encoder.layers.{i}.fc2.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"encoder.layers.{i}.fc2.bias")) rename_keys.append( (F"transformer.encoder.layers.{i}.norm1.weight", F"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.bias", F"encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.weight", F"encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"encoder.layers.{i}.final_layer_norm.bias")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"transformer.decoder.layers.{i}.self_attn.out_proj.weight", F"decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( F"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight", F"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( F"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias", F"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"decoder.layers.{i}.fc1.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"decoder.layers.{i}.fc1.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"decoder.layers.{i}.fc2.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"decoder.layers.{i}.fc2.bias")) rename_keys.append( (F"transformer.decoder.layers.{i}.norm1.weight", F"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.bias", F"decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append( (F"transformer.decoder.layers.{i}.norm2.weight", F"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm2.bias", F"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.weight", F"decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"decoder.layers.{i}.final_layer_norm.bias")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.encoder.norm.weight''', '''encoder.layernorm.weight'''), ('''transformer.encoder.norm.bias''', '''encoder.layernorm.bias'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Any ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Dict ) -> Optional[Any]: _a : List[str] =state_dict.pop(_UpperCAmelCase ) _a : Tuple =val def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ) -> List[str]: _a : Optional[Any] =OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: _a : List[str] =key.replace("""backbone.0.body""" ,"""backbone.conv_encoder.model""" ) _a : int =value else: _a : Any =value return new_state_dict def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[Any] ) -> int: _a : List[str] ="""""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _a : int =state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) _a : Optional[Any] =state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict _a : str =in_proj_weight[:256, :] _a : List[str] =in_proj_bias[:256] _a : Optional[int] =in_proj_weight[256:512, :] _a : List[str] =in_proj_bias[256:512] _a : Optional[int] =in_proj_weight[-256:, :] _a : Tuple =in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _a : Tuple =state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) _a : str =state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict _a : Optional[int] =in_proj_weight[:256, :] _a : List[Any] =in_proj_bias[:256] _a : Tuple =in_proj_weight[256:512, :] _a : str =in_proj_bias[256:512] _a : Any =in_proj_weight[-256:, :] _a : int =in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention _a : Any =state_dict.pop( F"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight" ) _a : int =state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) of cross-attention to the state dict _a : int =in_proj_weight_cross_attn[:256, :] _a : Any =in_proj_bias_cross_attn[:256] _a : str =in_proj_weight_cross_attn[256:512, :] _a : Dict =in_proj_bias_cross_attn[256:512] _a : Any =in_proj_weight_cross_attn[-256:, :] _a : Union[str, Any] =in_proj_bias_cross_attn[-256:] def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : Any ) -> int: _a , _a : Union[str, Any] =image.size _a : Dict =max(_UpperCAmelCase ,_UpperCAmelCase ) _a : Union[str, Any] =800 if """detection""" in checkpoint_url else 1000 _a : Any =target_max_size / current_max_size _a : int =image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Union[str, Any] ) -> int: _a : Optional[Any] =F.to_tensor(_UpperCAmelCase ) _a : Tuple =F.normalize(_UpperCAmelCase ,mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] ,std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ) return image @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[str] ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : str ) -> Optional[int]: logger.info("""Converting model...""" ) # load original state dict _a : Dict =torch.hub.load_state_dict_from_url(_UpperCAmelCase ,map_location="""cpu""" ) # rename keys for src, dest in rename_keys: rename_key(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) _a : List[Any] =rename_backbone_keys(_UpperCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(_UpperCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _a : Dict ="""model.""" for key in state_dict.copy().keys(): if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): _a : Any =state_dict.pop(_UpperCAmelCase ) _a : List[Any] =val # create HuggingFace model and load state dict _a : int =TableTransformerConfig( backbone="""resnet18""" ,mask_loss_coefficient=1 ,dice_loss_coefficient=1 ,ce_loss_coefficient=1 ,bbox_loss_coefficient=5 ,giou_loss_coefficient=2 ,eos_coefficient=0.4 ,class_cost=1 ,bbox_cost=5 ,giou_cost=2 ,) if "detection" in checkpoint_url: _a : Union[str, Any] =15 _a : Tuple =2 _a : Optional[Any] ={0: """table""", 1: """table rotated"""} _a : Tuple =idalabel _a : List[Any] ={v: k for k, v in idalabel.items()} else: _a : Union[str, Any] =125 _a : int =6 _a : int ={ 0: """table""", 1: """table column""", 2: """table row""", 3: """table column header""", 4: """table projected row header""", 5: """table spanning cell""", } _a : List[str] =idalabel _a : Optional[int] ={v: k for k, v in idalabel.items()} _a : Optional[int] =DetrImageProcessor( format="""coco_detection""" ,max_size=800 if """detection""" in checkpoint_url else 1000 ) _a : Optional[Any] =TableTransformerForObjectDetection(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() # verify our conversion _a : List[Any] ="""example_pdf.png""" if """detection""" in checkpoint_url else """example_table.png""" _a : str =hf_hub_download(repo_id="""nielsr/example-pdf""" ,repo_type="""dataset""" ,filename=_UpperCAmelCase ) _a : Tuple =Image.open(_UpperCAmelCase ).convert("""RGB""" ) _a : Dict =normalize(resize(_UpperCAmelCase ,_UpperCAmelCase ) ).unsqueeze(0 ) _a : List[str] =model(_UpperCAmelCase ) if "detection" in checkpoint_url: _a : Any =(1, 15, 3) _a : int =torch.tensor( [[-6.7_8_9_7, -1_6.9_9_8_5, 6.7_9_3_7], [-8.0_1_8_6, -2_2.2_1_9_2, 6.9_6_7_7], [-7.3_1_1_7, -2_1.0_7_0_8, 7.4_0_5_5]] ) _a : str =torch.tensor([[0.4_8_6_7, 0.1_7_6_7, 0.6_7_3_2], [0.6_7_1_8, 0.4_4_7_9, 0.3_8_3_0], [0.4_7_1_6, 0.1_7_6_0, 0.6_3_6_4]] ) else: _a : str =(1, 125, 7) _a : str =torch.tensor( [[-1_8.1_4_3_0, -8.3_2_1_4, 4.8_2_7_4], [-1_8.4_6_8_5, -7.1_3_6_1, -4.2_6_6_7], [-2_6.3_6_9_3, -9.3_4_2_9, -4.9_9_6_2]] ) _a : int =torch.tensor([[0.4_9_8_3, 0.5_5_9_5, 0.9_4_4_0], [0.4_9_1_6, 0.6_3_1_5, 0.5_9_5_4], [0.6_1_0_8, 0.8_6_3_7, 0.1_1_3_5]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] ,_UpperCAmelCase ,atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] ,_UpperCAmelCase ,atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) image_processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: # Push model to HF hub logger.info("""Pushing model to the hub...""" ) _a : Dict =( """microsoft/table-transformer-detection""" if """detection""" in checkpoint_url else """microsoft/table-transformer-structure-recognition""" ) model.push_to_hub(_UpperCAmelCase ) image_processor.push_to_hub(_UpperCAmelCase ) if __name__ == "__main__": A__: int = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', type=str, choices=[ '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth''', ], help='''URL of the Table Transformer checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) A__: Dict = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
506
1
'''simple docstring''' def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Optional[Any]: # noqa: E741 __A : Tuple = len(__snake_case ) __A : Optional[int] = 0 __A : str = [0] * n __A : int = [False] * n __A : Tuple = [False] * n def dfs(__snake_case : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : int ): if parent == root: out_edge_count += 1 __A : str = True __A : Tuple = at for to in l[at]: if to == parent: pass elif not visited[to]: __A : Optional[int] = dfs(__snake_case , __snake_case , __snake_case , __snake_case ) __A : int = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __A : Tuple = True # AP found via cycle if at == low[to]: __A : Optional[Any] = True else: __A : Any = min(low[at] , __snake_case ) return out_edge_count for i in range(__snake_case ): if not visited[i]: __A : Tuple = 0 __A : List[Any] = dfs(__snake_case , __snake_case , -1 , __snake_case ) __A : Union[str, Any] = out_edge_count > 1 for x in range(len(__snake_case ) ): if is_art[x] is True: print(__snake_case ) # Adjacency list of graph lowercase__ : Tuple = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
8
"""simple docstring""" import math import qiskit def lowercase ( __snake_case : int = 1 , __snake_case : int = 1 , __snake_case : int = 1 ): if ( isinstance(__snake_case , __snake_case ) or isinstance(__snake_case , __snake_case ) or isinstance(__snake_case , __snake_case ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(__snake_case ) != input_a) or (math.floor(__snake_case ) != input_a) or (math.floor(__snake_case ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers lowercase_ : List[Any] = qiskit.QuantumRegister(4 , '''qr''' ) lowercase_ : Dict = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries lowercase_ : Optional[Any] = [input_a, input_a, carry_in] lowercase_ : List[str] = qiskit.QuantumCircuit(__snake_case , __snake_case ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__snake_case ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__snake_case ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__snake_case ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __snake_case ) # measure the last two qbits lowercase_ : List[str] = qiskit.Aer.get_backend('''aer_simulator''' ) lowercase_ : Optional[int] = qiskit.execute(__snake_case , __snake_case , shots=1_0_0_0 ) return job.result().get_counts(__snake_case ) if __name__ == "__main__": print(F"""Total sum count for state is: {quantum_full_adder(1, 1, 1)}""")
231
0
"""simple docstring""" import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __a = Mapping[str, np.ndarray] __a = Mapping[str, Any] # Is a nested dict. __a = 0.01 @dataclasses.dataclass(frozen=_lowerCAmelCase ) class lowerCamelCase : '''simple docstring''' _A : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. _A : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. _A : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. _A : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. _A : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions _A : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files _A : Optional[str] = None # Templates used to generate this protein (prediction-only) _A : Optional[Sequence[str]] = None # Chain corresponding to each parent _A : Optional[Sequence[int]] = None def A_ ( _lowercase ): '''simple docstring''' snake_case_ :Optional[int] = r"""(\[[A-Z]+\]\n)""" snake_case_ :List[str] = [tag.strip() for tag in re.split(_lowercase, _lowercase ) if len(_lowercase ) > 0] snake_case_ :Iterator[Tuple[str, List[str]]] = zip(tags[0::2], [l.split("""\n""" ) for l in tags[1::2]] ) snake_case_ :List[str] = ["N", "CA", "C"] snake_case_ :Tuple = None snake_case_ :str = None snake_case_ :str = None for g in groups: if "[PRIMARY]" == g[0]: snake_case_ :Optional[Any] = g[1][0].strip() for i in range(len(_lowercase ) ): if seq[i] not in residue_constants.restypes: snake_case_ :Optional[Any] = """X""" # FIXME: strings are immutable snake_case_ :str = np.array( [residue_constants.restype_order.get(_lowercase, residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: snake_case_ :List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(_lowercase, g[1][axis].split() ) ) ) snake_case_ :int = np.array(_lowercase ) snake_case_ :int = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(_lowercase ): snake_case_ :Tuple = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: snake_case_ :Any = np.array(list(map({"""-""": 0, """+""": 1}.get, g[1][0].strip() ) ) ) snake_case_ :List[str] = np.zeros( ( len(_lowercase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(_lowercase ): snake_case_ :str = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=_lowercase, atom_mask=_lowercase, aatype=_lowercase, residue_index=np.arange(len(_lowercase ) ), b_factors=_lowercase, ) def A_ ( _lowercase, _lowercase = 0 ): '''simple docstring''' snake_case_ :List[str] = [] snake_case_ :int = prot.remark if remark is not None: pdb_headers.append(f"""REMARK {remark}""" ) snake_case_ :Union[str, Any] = prot.parents snake_case_ :List[str] = prot.parents_chain_index if parents is not None and parents_chain_index is not None: snake_case_ :List[Any] = [p for i, p in zip(_lowercase, _lowercase ) if i == chain_id] if parents is None or len(_lowercase ) == 0: snake_case_ :Dict = ["""N/A"""] pdb_headers.append(f"""PARENT {' '.join(_lowercase )}""" ) return pdb_headers def A_ ( _lowercase, _lowercase ): '''simple docstring''' snake_case_ :List[str] = [] snake_case_ :str = pdb_str.split("""\n""" ) snake_case_ :List[Any] = prot.remark if remark is not None: out_pdb_lines.append(f"""REMARK {remark}""" ) snake_case_ :List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: snake_case_ :Optional[int] = [] if prot.parents_chain_index is not None: snake_case_ :Dict[str, List[str]] = {} for p, i in zip(prot.parents, prot.parents_chain_index ): parent_dict.setdefault(str(_lowercase ), [] ) parent_dict[str(_lowercase )].append(_lowercase ) snake_case_ :List[str] = max([int(_lowercase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): snake_case_ :str = parent_dict.get(str(_lowercase ), ["""N/A"""] ) parents_per_chain.append(_lowercase ) else: parents_per_chain.append(list(prot.parents ) ) else: snake_case_ :Any = [["""N/A"""]] def make_parent_line(_lowercase ) -> str: return f"""PARENT {' '.join(_lowercase )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) snake_case_ :List[str] = 0 for i, l in enumerate(_lowercase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(_lowercase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(_lowercase ): snake_case_ :Dict = parents_per_chain[chain_counter] else: snake_case_ :Optional[int] = ["""N/A"""] out_pdb_lines.append(make_parent_line(_lowercase ) ) return "\n".join(_lowercase ) def A_ ( _lowercase ): '''simple docstring''' snake_case_ :Optional[Any] = residue_constants.restypes + ["""X"""] def res_atoa(_lowercase ) -> str: return residue_constants.restype_atoa.get(restypes[r], """UNK""" ) snake_case_ :Tuple = residue_constants.atom_types snake_case_ :List[str] = [] snake_case_ :Dict = prot.atom_mask snake_case_ :Optional[int] = prot.aatype snake_case_ :Union[str, Any] = prot.atom_positions snake_case_ :List[Any] = prot.residue_index.astype(np.intaa ) snake_case_ :int = prot.b_factors snake_case_ :int = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("""Invalid aatypes.""" ) snake_case_ :Any = get_pdb_headers(_lowercase ) if len(_lowercase ) > 0: pdb_lines.extend(_lowercase ) snake_case_ :Optional[int] = aatype.shape[0] snake_case_ :Any = 1 snake_case_ :Any = 0 snake_case_ :str = string.ascii_uppercase snake_case_ :Optional[Any] = None # Add all atom sites. for i in range(_lowercase ): snake_case_ :Tuple = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(_lowercase, atom_positions[i], atom_mask[i], b_factors[i] ): if mask < 0.5: continue snake_case_ :Optional[Any] = """ATOM""" snake_case_ :List[Any] = atom_name if len(_lowercase ) == 4 else f""" {atom_name}""" snake_case_ :Dict = """""" snake_case_ :Any = """""" snake_case_ :List[str] = 1.00 snake_case_ :Any = atom_name[0] # Protein supports only C, N, O, S, this works. snake_case_ :Tuple = """""" snake_case_ :Any = """A""" if chain_index is not None: snake_case_ :Tuple = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! snake_case_ :str = ( f"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" f"""{res_name_a:>3} {chain_tag:>1}""" f"""{residue_index[i]:>4}{insertion_code:>1} """ f"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" f"""{occupancy:>6.2f}{b_factor:>6.2f} """ f"""{element:>2}{charge:>2}""" ) pdb_lines.append(_lowercase ) atom_index += 1 snake_case_ :int = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: snake_case_ :List[Any] = True snake_case_ :Tuple = chain_index[i + 1] if should_terminate: # Close the chain. snake_case_ :Union[str, Any] = """TER""" snake_case_ :Any = ( f"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(_lowercase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(_lowercase, _lowercase ) ) pdb_lines.append("""END""" ) pdb_lines.append("""""" ) return "\n".join(_lowercase ) def A_ ( _lowercase ): '''simple docstring''' return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def A_ ( _lowercase, _lowercase, _lowercase = None, _lowercase = None, _lowercase = None, _lowercase = None, _lowercase = None, ): '''simple docstring''' return Protein( aatype=features["""aatype"""], atom_positions=result["""final_atom_positions"""], atom_mask=result["""final_atom_mask"""], residue_index=features["""residue_index"""] + 1, b_factors=b_factors if b_factors is not None else np.zeros_like(result["""final_atom_mask"""] ), chain_index=_lowercase, remark=_lowercase, parents=_lowercase, parents_chain_index=_lowercase, )
310
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __a = { "configuration_vivit": ["VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "VivitConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["VivitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "VivitModel", "VivitPreTrainedModel", "VivitForVideoClassification", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
310
1
'''simple docstring''' import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed SCREAMING_SNAKE_CASE_: Union[str, Any] =logging.getLogger(__name__) def lowerCAmelCase_ ( snake_case_ : List[str]=2 , snake_case_ : Tuple=3 , snake_case_ : Optional[int]=16 , snake_case_ : Union[str, Any] = 10 , snake_case_ : Tuple = 2 ) -> Optional[int]: '''simple docstring''' def get_dataset(snake_case_ : Any ): UpperCAmelCase_ = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(A_ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) UpperCAmelCase_ = get_dataset(A_ ) UpperCAmelCase_ = get_dataset(A_ ) UpperCAmelCase_ = DataLoader(A_ , shuffle=A_ , batch_size=A_ , num_workers=4 ) UpperCAmelCase_ = DataLoader(A_ , shuffle=A_ , batch_size=A_ , num_workers=4 ) return (train_dataloader, valid_dataloader) def lowerCAmelCase_ ( snake_case_ : List[str] , snake_case_ : Any , snake_case_ : int , snake_case_ : int , snake_case_ : List[Any] , snake_case_ : str=None ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = [] for epoch in range(A_ ): # Train quickly model.train() for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ = batch UpperCAmelCase_ = model(A_ ) UpperCAmelCase_ = torch.nn.functional.mse_loss(A_ , A_ ) accelerator.backward(A_ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class __A ( nn.Module ): def __init__(self : Any ): super().__init__() UpperCAmelCase_ = nn.Parameter(torch.randn(1 ) ) UpperCAmelCase_ = nn.Parameter(torch.randn(1 ) ) def _lowercase (self : List[Any] , __a : str ): return x * self.a + self.b class __A ( unittest.TestCase ): def _lowercase (self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCAmelCase_ = DummyModel() UpperCAmelCase_ = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ = dummy_dataloaders() UpperCAmelCase_ = ProjectConfiguration(total_limit=1 , project_dir=__A , automatic_checkpoint_naming=__A ) # Train baseline UpperCAmelCase_ = Accelerator(project_config=__A ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare( __A , __A , __A , __A ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def _lowercase (self : List[Any] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCAmelCase_ = DummyModel() UpperCAmelCase_ = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ = dummy_dataloaders() # Train baseline UpperCAmelCase_ = Accelerator() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare( __A , __A , __A , __A ) # Save initial UpperCAmelCase_ = os.path.join(__A , "initial" ) accelerator.save_state(__A ) ((UpperCAmelCase_) , (UpperCAmelCase_)) = model.a.item(), model.b.item() UpperCAmelCase_ = optimizer.state_dict() UpperCAmelCase_ = train(3 , __A , __A , __A , __A ) ((UpperCAmelCase_) , (UpperCAmelCase_)) = model.a.item(), model.b.item() UpperCAmelCase_ = optimizer.state_dict() # Train partially set_seed(42 ) UpperCAmelCase_ = DummyModel() UpperCAmelCase_ = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ = dummy_dataloaders() UpperCAmelCase_ = Accelerator() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare( __A , __A , __A , __A ) accelerator.load_state(__A ) ((UpperCAmelCase_) , (UpperCAmelCase_)) = model.a.item(), model.b.item() UpperCAmelCase_ = optimizer.state_dict() self.assertEqual(__A , __A ) self.assertEqual(__A , __A ) self.assertEqual(__A , __A ) UpperCAmelCase_ = train(2 , __A , __A , __A , __A ) # Save everything UpperCAmelCase_ = os.path.join(__A , "checkpoint" ) accelerator.save_state(__A ) # Load everything back in and make sure all states work accelerator.load_state(__A ) test_rands += train(1 , __A , __A , __A , __A ) ((UpperCAmelCase_) , (UpperCAmelCase_)) = model.a.item(), model.b.item() UpperCAmelCase_ = optimizer.state_dict() self.assertEqual(__A , __A ) self.assertEqual(__A , __A ) self.assertEqual(__A , __A ) self.assertEqual(__A , __A ) def _lowercase (self : Optional[int] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCAmelCase_ = DummyModel() UpperCAmelCase_ = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ = dummy_dataloaders() UpperCAmelCase_ = ProjectConfiguration(automatic_checkpoint_naming=__A ) # Train baseline UpperCAmelCase_ = Accelerator(project_dir=__A , project_config=__A ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare( __A , __A , __A , __A ) # Save initial accelerator.save_state() ((UpperCAmelCase_) , (UpperCAmelCase_)) = model.a.item(), model.b.item() UpperCAmelCase_ = optimizer.state_dict() UpperCAmelCase_ = train(3 , __A , __A , __A , __A ) ((UpperCAmelCase_) , (UpperCAmelCase_)) = model.a.item(), model.b.item() UpperCAmelCase_ = optimizer.state_dict() # Train partially set_seed(42 ) UpperCAmelCase_ = DummyModel() UpperCAmelCase_ = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ = dummy_dataloaders() UpperCAmelCase_ = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=__A ) UpperCAmelCase_ = Accelerator(project_dir=__A , project_config=__A ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare( __A , __A , __A , __A ) accelerator.load_state(os.path.join(__A , "checkpoints" , "checkpoint_0" ) ) ((UpperCAmelCase_) , (UpperCAmelCase_)) = model.a.item(), model.b.item() UpperCAmelCase_ = optimizer.state_dict() self.assertEqual(__A , __A ) self.assertEqual(__A , __A ) self.assertEqual(__A , __A ) UpperCAmelCase_ = train(2 , __A , __A , __A , __A ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__A , "checkpoints" , "checkpoint_1" ) ) test_rands += train(1 , __A , __A , __A , __A ) ((UpperCAmelCase_) , (UpperCAmelCase_)) = model.a.item(), model.b.item() UpperCAmelCase_ = optimizer.state_dict() self.assertEqual(__A , __A ) self.assertEqual(__A , __A ) self.assertEqual(__A , __A ) self.assertEqual(__A , __A ) def _lowercase (self : Tuple ): UpperCAmelCase_ = torch.tensor([1, 2, 3] ) UpperCAmelCase_ = torch.tensor([2, 3, 4] ) UpperCAmelCase_ = DummyModel() UpperCAmelCase_ = torch.optim.Adam(net.parameters() ) UpperCAmelCase_ = Accelerator() with self.assertRaises(__A ) as ve: accelerator.register_for_checkpointing(__A , __A , __A , __A ) UpperCAmelCase_ = str(ve.exception ) self.assertTrue("Item at index 0" in message ) self.assertTrue("Item at index 1" in message ) self.assertFalse("Item at index 2" in message ) self.assertFalse("Item at index 3" in message ) def _lowercase (self : int ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCAmelCase_ = DummyModel() UpperCAmelCase_ = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ = torch.optim.lr_scheduler.StepLR(__A , step_size=1 , gamma=0.99 ) UpperCAmelCase_ , UpperCAmelCase_ = dummy_dataloaders() UpperCAmelCase_ = ProjectConfiguration(automatic_checkpoint_naming=__A ) # Train baseline UpperCAmelCase_ = Accelerator(project_dir=__A , project_config=__A ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare( __A , __A , __A , __A , __A ) # Save initial accelerator.save_state() UpperCAmelCase_ = scheduler.state_dict() train(3 , __A , __A , __A , __A , __A ) self.assertNotEqual(__A , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__A , "checkpoints" , "checkpoint_0" ) ) self.assertEqual(__A , scheduler.state_dict() ) def _lowercase (self : str ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCAmelCase_ = DummyModel() UpperCAmelCase_ = ProjectConfiguration(automatic_checkpoint_naming=__A , total_limit=2 ) # Train baseline UpperCAmelCase_ = Accelerator(project_dir=__A , project_config=__A ) UpperCAmelCase_ = accelerator.prepare(__A ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(__A , "checkpoints" , "checkpoint_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(__A , "checkpoints" , "checkpoint_9" ) ) ) self.assertTrue(os.path.exists(os.path.join(__A , "checkpoints" , "checkpoint_10" ) ) ) @require_cuda def _lowercase (self : Tuple ): UpperCAmelCase_ = ["torchrun", f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(__A , env=os.environ.copy() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Dict ='''/tmp/accelerate/state_checkpointing''' SCREAMING_SNAKE_CASE_: int =DummyModel() SCREAMING_SNAKE_CASE_: Optional[int] =torch.optim.Adam(params=model.parameters(), lr=1E-3) SCREAMING_SNAKE_CASE_: Union[str, Any] =torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) SCREAMING_SNAKE_CASE_: str =dummy_dataloaders() SCREAMING_SNAKE_CASE_: List[Any] =ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline SCREAMING_SNAKE_CASE_: int =Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) SCREAMING_SNAKE_CASE_: Optional[Any] =accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) SCREAMING_SNAKE_CASE_: int =accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: SCREAMING_SNAKE_CASE_: str =group['''params'''][0].device break assert param_device.type == accelerator.device.type SCREAMING_SNAKE_CASE_: List[Any] =model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: SCREAMING_SNAKE_CASE_: Tuple =group['''params'''][0].device break assert ( param_device.type == torch.device('cpu').type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: SCREAMING_SNAKE_CASE_: int =group['''params'''][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
78
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def A__ ( A_ ) -> List[str]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False def A__ ( A_ ) -> str: # word like '180' or '身高' or '神' for char in word: _lowercase = ord(A_ ) if not _is_chinese_char(A_ ): return 0 return 1 def A__ ( A_ ) -> int: _lowercase = set() for token in tokens: _lowercase = len(A_ ) > 1 and is_chinese(A_ ) if chinese_word: word_set.add(A_ ) _lowercase = list(A_ ) return word_list def A__ ( A_ , A_ ) -> Optional[int]: if not chinese_word_set: return bert_tokens _lowercase = max([len(A_ ) for w in chinese_word_set] ) _lowercase = bert_tokens _lowercase , _lowercase = 0, len(A_ ) while start < end: _lowercase = True if is_chinese(bert_word[start] ): _lowercase = min(end - start , A_ ) for i in range(A_ , 1 , -1 ): _lowercase = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _lowercase = "##" + bert_word[j] _lowercase = start + i _lowercase = False break if single_word: start += 1 return bert_word def A__ ( A_ , A_ , A_ ) -> Dict: _lowercase = [] for i in range(0 , len(A_ ) , 100 ): _lowercase = ltp_tokenizer.seg(lines[i : i + 100] )[0] _lowercase = [get_chinese_word(A_ ) for r in res] ltp_res.extend(A_ ) assert len(A_ ) == len(A_ ) _lowercase = [] for i in range(0 , len(A_ ) , 100 ): _lowercase = bert_tokenizer(lines[i : i + 100] , add_special_tokens=A_ , truncation=A_ , max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(A_ ) == len(A_ ) _lowercase = [] for input_ids, chinese_word in zip(A_ , A_ ): _lowercase = [] for id in input_ids: _lowercase = bert_tokenizer._convert_id_to_token(A_ ) input_tokens.append(A_ ) _lowercase = add_sub_symbol(A_ , A_ ) _lowercase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(A_ ): if token[:2] == "##": _lowercase = token[2:] # save chinese tokens' pos if len(A_ ) == 1 and _is_chinese_char(ord(A_ ) ): ref_id.append(A_ ) ref_ids.append(A_ ) assert len(A_ ) == len(A_ ) return ref_ids def A__ ( A_ ) -> str: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , "r" , encoding="utf-8" ) as f: _lowercase = f.readlines() _lowercase = [line.strip() for line in data if len(A_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _lowercase = LTP(args.ltp ) # faster in GPU device _lowercase = BertTokenizer.from_pretrained(args.bert ) _lowercase = prepare_ref(A_ , A_ , A_ ) with open(args.save_path , "w" , encoding="utf-8" ) as f: _lowercase = [json.dumps(A_ ) + "\n" for ref in ref_ids] f.writelines(A_ ) if __name__ == "__main__": __magic_name__ : Optional[Any] = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') __magic_name__ : Dict = parser.parse_args() main(args)
497
0
"""simple docstring""" from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase ( a__ ): def __a ( self ) -> Optional[Any]: a : Tuple = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , "embed_dim" ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , "num_heads" ) ) class __UpperCamelCase : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=64 , lowerCAmelCase__=3 , lowerCAmelCase__=[16, 48, 96] , lowerCAmelCase__=[1, 3, 6] , lowerCAmelCase__=[1, 2, 10] , lowerCAmelCase__=[7, 3, 3] , lowerCAmelCase__=[4, 2, 2] , lowerCAmelCase__=[2, 1, 1] , lowerCAmelCase__=[2, 2, 2] , lowerCAmelCase__=[False, False, True] , lowerCAmelCase__=[0.0, 0.0, 0.0] , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=2 , ) -> List[Any]: a : List[str] = parent a : Tuple = batch_size a : str = image_size a : List[Any] = patch_sizes a : List[Any] = patch_stride a : int = patch_padding a : int = is_training a : str = use_labels a : List[str] = num_labels a : str = num_channels a : Optional[int] = embed_dim a : Optional[Any] = num_heads a : Tuple = stride_kv a : Union[str, Any] = depth a : Optional[Any] = cls_token a : List[Any] = attention_drop_rate a : List[str] = initializer_range a : str = layer_norm_eps def __a ( self ) -> Any: a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a : Any = None if self.use_labels: # create a random int32 tensor of given shape a : Dict = ids_tensor([self.batch_size] , self.num_labels ) a : int = self.get_config() return config, pixel_values, labels def __a ( self ) -> List[Any]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: a : List[str] = TFCvtModel(config=lowerCAmelCase__ ) a : Optional[Any] = model(lowerCAmelCase__ , training=lowerCAmelCase__ ) a : List[str] = (self.image_size, self.image_size) a : List[str] = image_size[0], image_size[1] for i in range(len(self.depth ) ): a : Union[str, Any] = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) a : List[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: a : Tuple = self.num_labels a : Any = TFCvtForImageClassification(lowerCAmelCase__ ) a : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ , training=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self ) -> Tuple: a : List[str] = self.prepare_config_and_inputs() a : Optional[int] = config_and_inputs a : int = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( a__ , a__ , unittest.TestCase ): lowerCamelCase : List[str] =(TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () lowerCamelCase : List[Any] =( {"""feature-extraction""": TFCvtModel, """image-classification""": TFCvtForImageClassification} if is_tf_available() else {} ) lowerCamelCase : Optional[Any] =False lowerCamelCase : List[str] =False lowerCamelCase : Optional[Any] =False lowerCamelCase : int =False lowerCamelCase : Dict =False def __a ( self ) -> Optional[int]: a : Dict = TFCvtModelTester(self ) a : List[Any] = TFCvtConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def __a ( self ) -> Optional[Any]: self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="Cvt does not output attentions" ) def __a ( self ) -> Dict: pass @unittest.skip(reason="Cvt does not use inputs_embeds" ) def __a ( self ) -> Union[str, Any]: pass @unittest.skip(reason="Cvt does not support input and output embeddings" ) def __a ( self ) -> Union[str, Any]: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) def __a ( self ) -> List[Any]: super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def __a ( self ) -> Optional[int]: super().test_keras_fit() @unittest.skip(reason="Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8" ) def __a ( self ) -> int: a : Optional[int] = tf.keras.mixed_precision.Policy("mixed_float16" ) tf.keras.mixed_precision.set_global_policy(lowerCAmelCase__ ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("float32" ) def __a ( self ) -> Any: a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : List[str] = model_class(lowerCAmelCase__ ) a : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a : Dict = [*signature.parameters.keys()] a : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __a ( self ) -> int: def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): a : Union[str, Any] = model_class(lowerCAmelCase__ ) a : Union[str, Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) a : Dict = outputs.hidden_states a : Any = len(self.model_tester.depth ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Dict = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a : Optional[int] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self ) -> Union[str, Any]: a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __a ( self ) -> Any: a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def __a ( self ) -> str: for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Tuple = TFCvtModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( ) ->int: '''simple docstring''' a : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def __a ( self ) -> Optional[Any]: return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __a ( self ) -> Optional[Any]: a : Union[str, Any] = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) a : Any = self.default_image_processor a : Any = prepare_img() a : str = image_processor(images=lowerCAmelCase__ , return_tensors="tf" ) # forward pass a : List[str] = model(**lowerCAmelCase__ ) # verify the logits a : Dict = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) a : str = tf.constant([0.9_285, 0.9_015, -0.3_150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowerCAmelCase__ , atol=1E-4 ) )
721
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer a : List[Any] = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast a : Union[str, Any] = TaTokenizerFast a : Union[str, Any] = {'''configuration_mt5''': ['''MT5Config''', '''MT5OnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = [ '''MT5EncoderModel''', '''MT5ForConditionalGeneration''', '''MT5ForQuestionAnswering''', '''MT5Model''', '''MT5PreTrainedModel''', '''MT5Stack''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = ['''TFMT5EncoderModel''', '''TFMT5ForConditionalGeneration''', '''TFMT5Model'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = ['''FlaxMT5EncoderModel''', '''FlaxMT5ForConditionalGeneration''', '''FlaxMT5Model'''] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys a : List[Any] = _LazyModule( __name__, globals()['''__file__'''], _import_structure, extra_objects={'''MT5Tokenizer''': MTaTokenizer, '''MT5TokenizerFast''': MTaTokenizerFast}, module_spec=__spec__, )
31
0
"""simple docstring""" def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = len(_snake_case ) for i in range(_snake_case ): for j in range(i + 1 , _snake_case ): if numbers[j] < numbers[i]: UpperCAmelCase , UpperCAmelCase = numbers[j], numbers[i] return numbers if __name__ == "__main__": _UpperCamelCase = input("""Enter numbers separated by a comma:\n""").strip() _UpperCamelCase = [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
341
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(""".""") def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( """`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got """ F'''{test_file} instead.''' ) UpperCAmelCase = components[-1] if not test_fn.endswith("""py""" ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith("""test_modeling_""" ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) UpperCAmelCase = components[:-1] + [test_fn.replace(""".py""" , """""" )] UpperCAmelCase = """.""".join(_snake_case ) return test_module_path def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = get_module_path(_snake_case ) UpperCAmelCase = importlib.import_module(_snake_case ) return test_module def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = get_test_module(_snake_case ) for attr in dir(_snake_case ): if attr.endswith("""ModelTester""" ): tester_classes.append(getattr(_snake_case , _snake_case ) ) # sort with class names return sorted(_snake_case , key=lambda _snake_case : x.__name__ ) def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = get_test_module(_snake_case ) for attr in dir(_snake_case ): UpperCAmelCase = getattr(_snake_case , _snake_case ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). UpperCAmelCase = getattr(_snake_case , """all_model_classes""" , [] ) if len(_snake_case ) > 0: test_classes.append(_snake_case ) # sort with class names return sorted(_snake_case , key=lambda _snake_case : x.__name__ ) def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = get_test_classes(_snake_case ) UpperCAmelCase = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(_snake_case , key=lambda _snake_case : x.__name__ ) def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = test_class() if hasattr(_snake_case , """setUp""" ): test.setUp() UpperCAmelCase = None if hasattr(_snake_case , """model_tester""" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: UpperCAmelCase = test.model_tester.__class__ return model_tester def _a ( _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = get_test_classes(_snake_case ) UpperCAmelCase = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(_snake_case ) # sort with class names return sorted(_snake_case , key=lambda _snake_case : x.__name__ ) def _a ( _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = get_test_classes_for_model(_snake_case , _snake_case ) UpperCAmelCase = [] for test_class in test_classes: UpperCAmelCase = get_model_tester_from_test_class(_snake_case ) if tester_class is not None: tester_classes.append(_snake_case ) # sort with class names return sorted(_snake_case , key=lambda _snake_case : x.__name__ ) def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = get_test_classes(_snake_case ) UpperCAmelCase = {test_class: get_model_tester_from_test_class(_snake_case ) for test_class in test_classes} return test_tester_mapping def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = get_model_classes(_snake_case ) UpperCAmelCase = { model_class: get_test_classes_for_model(_snake_case , _snake_case ) for model_class in model_classes } return model_test_mapping def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = get_model_classes(_snake_case ) UpperCAmelCase = { model_class: get_tester_classes_for_model(_snake_case , _snake_case ) for model_class in model_classes } return model_to_tester_mapping def _a ( _snake_case ): """simple docstring""" if isinstance(_snake_case , _snake_case ): return o elif isinstance(_snake_case , _snake_case ): return o.__name__ elif isinstance(_snake_case , (list, tuple) ): return [to_json(_snake_case ) for x in o] elif isinstance(_snake_case , _snake_case ): return {to_json(_snake_case ): to_json(_snake_case ) for k, v in o.items()} else: return o
341
1
'''simple docstring''' import json import sys def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" with open(lowerCamelCase_ , encoding="""utf-8""" ) as f: SCREAMING_SNAKE_CASE : Union[str, Any] = json.load(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = ["""<details>""", """<summary>Show updated benchmarks!</summary>""", """ """] for benchmark_name in sorted(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : str = results[benchmark_name] SCREAMING_SNAKE_CASE : Union[str, Any] = benchmark_name.split("""/""" )[-1] output_md.append(f'''### Benchmark: {benchmark_file_name}''' ) SCREAMING_SNAKE_CASE : Optional[Any] = """| metric |""" SCREAMING_SNAKE_CASE : Dict = """|--------|""" SCREAMING_SNAKE_CASE : int = """| new / old (diff) |""" for metric_name in sorted(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Optional[Any] = benchmark_res[metric_name] SCREAMING_SNAKE_CASE : Tuple = metric_vals["""new"""] SCREAMING_SNAKE_CASE : Optional[int] = metric_vals.get("""old""" , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = metric_vals.get("""diff""" , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = f''' {new_val:f}''' if isinstance(lowerCamelCase_ , (int, float) ) else """None""" if old_val is not None: val_str += f''' / {old_val:f}''' if isinstance(lowerCamelCase_ , (int, float) ) else "None" if dif_val is not None: val_str += f''' ({dif_val:f})''' if isinstance(lowerCamelCase_ , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("""</details>""" ) with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" ) as f: f.writelines("""\n""".join(lowerCamelCase_ ) ) if __name__ == "__main__": __UpperCAmelCase = sys.argv[1] __UpperCAmelCase = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
79
'''simple docstring''' __UpperCAmelCase = [ """Audio""", """Array2D""", """Array3D""", """Array4D""", """Array5D""", """ClassLabel""", """Features""", """Sequence""", """Value""", """Image""", """Translation""", """TranslationVariableLanguages""", ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
79
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case = { "configuration_nllb_moe": [ "NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP", "NllbMoeConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ "NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST", "NllbMoeForConditionalGeneration", "NllbMoeModel", "NllbMoePreTrainedModel", "NllbMoeTop2Router", "NllbMoeSparseMLP", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
424
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __A : '''simple docstring''' def __init__( self , _snake_case , _snake_case=99 , _snake_case=13 , _snake_case=7 , _snake_case=9 , _snake_case=True , _snake_case=True , _snake_case=False , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case=8 , _snake_case=0.1 , _snake_case=0.002 , _snake_case=1 , _snake_case=0 , _snake_case=0 , _snake_case=None , _snake_case=None , ): _lowerCAmelCase : Tuple = parent _lowerCAmelCase : List[str] = batch_size _lowerCAmelCase : str = encoder_seq_length _lowerCAmelCase : List[Any] = decoder_seq_length # For common tests _lowerCAmelCase : Dict = self.decoder_seq_length _lowerCAmelCase : int = is_training _lowerCAmelCase : List[Any] = use_attention_mask _lowerCAmelCase : str = use_labels _lowerCAmelCase : Union[str, Any] = vocab_size _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : Tuple = num_attention_heads _lowerCAmelCase : Tuple = d_ff _lowerCAmelCase : int = relative_attention_num_buckets _lowerCAmelCase : str = dropout_rate _lowerCAmelCase : Optional[int] = initializer_factor _lowerCAmelCase : str = eos_token_id _lowerCAmelCase : Tuple = pad_token_id _lowerCAmelCase : Union[str, Any] = decoder_start_token_id _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[int] = decoder_layers def SCREAMING_SNAKE_CASE__ ( self ): return TaConfig.from_pretrained("google/umt5-base" ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , ): if attention_mask is None: _lowerCAmelCase : Tuple = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _lowerCAmelCase : Optional[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _lowerCAmelCase : int = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=_snake_case ) if decoder_head_mask is None: _lowerCAmelCase : List[Any] = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=_snake_case ) if cross_attn_head_mask is None: _lowerCAmelCase : Dict = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=_snake_case ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _lowerCAmelCase : Tuple = input_ids.clamp(self.pad_token_id + 1 ) _lowerCAmelCase : int = decoder_input_ids.clamp(self.pad_token_id + 1 ) _lowerCAmelCase : Dict = self.get_config() _lowerCAmelCase : Optional[int] = config.num_attention_heads _lowerCAmelCase : Any = self.prepare_inputs_dict(_snake_case , _snake_case , _snake_case ) return config, input_dict def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self ): return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def SCREAMING_SNAKE_CASE__ ( self ): return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): _lowerCAmelCase : Optional[int] = UMTaModel(config=_snake_case ) model.to(_snake_case ) model.eval() _lowerCAmelCase : int = model( input_ids=_snake_case , decoder_input_ids=_snake_case , attention_mask=_snake_case , decoder_attention_mask=_snake_case , ) _lowerCAmelCase : Union[str, Any] = model(input_ids=_snake_case , decoder_input_ids=_snake_case ) _lowerCAmelCase : Optional[int] = result.last_hidden_state _lowerCAmelCase : Tuple = result.past_key_values _lowerCAmelCase : Optional[Any] = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(_snake_case ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): _lowerCAmelCase : int = UMTaModel(config=_snake_case ).get_decoder().to(_snake_case ).eval() # first forward pass _lowerCAmelCase : Optional[Any] = model(_snake_case , use_cache=_snake_case ) _lowerCAmelCase : Union[str, Any] = model(_snake_case ) _lowerCAmelCase : Union[str, Any] = model(_snake_case , use_cache=_snake_case ) self.parent.assertTrue(len(_snake_case ) == len(_snake_case ) ) self.parent.assertTrue(len(_snake_case ) == len(_snake_case ) + 1 ) _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and _lowerCAmelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCAmelCase : Optional[Any] = model(_snake_case )["last_hidden_state"] _lowerCAmelCase : int = model(_snake_case , past_key_values=_snake_case )["last_hidden_state"] # select random slice _lowerCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCAmelCase : int = output_from_no_past[:, -1, random_slice_idx].detach() _lowerCAmelCase : List[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-3 ) ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , ): _lowerCAmelCase : Optional[int] = UMTaModel(config=_snake_case ).to(_snake_case ).half().eval() _lowerCAmelCase : int = model(**_snake_case )["last_hidden_state"] self.parent.assertFalse(torch.isnan(_snake_case ).any().item() ) @require_torch class __A ( snake_case__ ,snake_case__ ,snake_case__ ,unittest.TestCase ): '''simple docstring''' a_ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) a_ = (UMTaForConditionalGeneration,) if is_torch_available() else () a_ = ( { '''conversational''': UMTaForConditionalGeneration, '''feature-extraction''': UMTaModel, '''summarization''': UMTaForConditionalGeneration, '''text2text-generation''': UMTaForConditionalGeneration, '''translation''': UMTaForConditionalGeneration, '''question-answering''': UMTaForQuestionAnswering, } if is_torch_available() else {} ) a_ = True a_ = False a_ = False a_ = True a_ = True # The small UMT5 model needs higher percentages for CPU/MP tests a_ = [0.8, 0.9] def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Tuple = UMTaModelTester(self ) @unittest.skip("Test has a segmentation fault on torch 1.8.0" ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() _lowerCAmelCase : str = UMTaModel(config_and_inputs[0] ).to(_snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( _snake_case , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F"""{tmpdirname}/t5_test.onnx""" , export_params=_snake_case , opset_version=9 , input_names=["input_ids", "decoder_input_ids"] , ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*_snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Union[str, Any] = ["encoder_attentions", "decoder_attentions", "cross_attentions"] _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() _lowerCAmelCase : Tuple = config_and_inputs[0] _lowerCAmelCase : List[str] = UMTaForConditionalGeneration(_snake_case ).eval() model.to(_snake_case ) _lowerCAmelCase : Any = { "head_mask": torch.zeros(config.num_layers , config.num_heads , device=_snake_case ), "decoder_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=_snake_case ), "cross_attn_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=_snake_case ), } for attn_name, (name, mask) in zip(_snake_case , head_masking.items() ): _lowerCAmelCase : Dict = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _lowerCAmelCase : Any = torch.ones( config.num_decoder_layers , config.num_heads , device=_snake_case ) _lowerCAmelCase : str = model.generate( config_and_inputs[1]["input_ids"] , num_beams=1 , max_length=3 , output_attentions=_snake_case , return_dict_in_generate=_snake_case , **_snake_case , ) # We check the state of decoder_attentions and cross_attentions just from the last step _lowerCAmelCase : List[Any] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("Does not work on the tiny model as we keep hitting edge cases." ) def SCREAMING_SNAKE_CASE__ ( self ): pass @require_torch @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip( "Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged" ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : int = UMTaForConditionalGeneration.from_pretrained("google/umt5-small" , return_dict=_snake_case ).to(_snake_case ) _lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("google/umt5-small" , use_fast=_snake_case , legacy=_snake_case ) _lowerCAmelCase : Tuple = [ "Bonjour monsieur <extra_id_0> bien <extra_id_1>.", "No se como puedo <extra_id_0>.", "This is the reason why we <extra_id_0> them.", "The <extra_id_0> walks in <extra_id_1>, seats", "A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.", ] _lowerCAmelCase : Tuple = tokenizer(_snake_case , return_tensors="pt" , padding=_snake_case ).input_ids # fmt: off _lowerCAmelCase : List[Any] = torch.tensor( [ [ 3_8530, 21_0703, 25_6299, 1410, 25_6298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 2_5922, 25_6299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 1_9014, 1_0620, 758, 25_6299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 25_6299, 1_4869, 281, 301, 25_6298, 275, 11_9983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 25_6299, 1_4869, 281, 2234, 289, 2275, 333,6_1391, 289, 25_6298, 543, 25_6297, 16_8714, 329, 25_6296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(_snake_case , _snake_case ) _lowerCAmelCase : Tuple = model.generate(input_ids.to(_snake_case ) ) _lowerCAmelCase : Dict = [ "<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>", "<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", ] _lowerCAmelCase : List[str] = tokenizer.batch_decode(_snake_case ) self.assertEqual(_snake_case , _snake_case )
424
1
'''simple docstring''' from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCAmelCase__ : """simple docstring""" def __init__( self : Tuple ,_a : Collection[float] | None = None ): '''simple docstring''' if components is None: _a : List[Any] = [] _a : str = list(_a ) def __len__( self : Dict ): '''simple docstring''' return len(self.__components ) def __str__( self : Any ): '''simple docstring''' return "(" + ",".join(map(_a ,self.__components ) ) + ")" def __add__( self : List[Any] ,_a : Vector ): '''simple docstring''' _a : Tuple = len(self ) if size == len(_a ): _a : Tuple = [self.__components[i] + other.component(_a ) for i in range(_a )] return Vector(_a ) else: raise Exception('must have the same size' ) def __sub__( self : List[Any] ,_a : Vector ): '''simple docstring''' _a : Any = len(self ) if size == len(_a ): _a : List[str] = [self.__components[i] - other.component(_a ) for i in range(_a )] return Vector(_a ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self : Union[str, Any] ,_a : float ): '''simple docstring''' ... @overload def __mul__( self : Optional[Any] ,_a : Vector ): '''simple docstring''' ... def __mul__( self : List[str] ,_a : float | Vector ): '''simple docstring''' if isinstance(_a ,(float, int) ): _a : List[str] = [c * other for c in self.__components] return Vector(_a ) elif isinstance(_a ,_a ) and len(self ) == len(_a ): _a : List[str] = len(self ) _a : List[str] = [self.__components[i] * other.component(_a ) for i in range(_a )] return sum(_a ) else: # error case raise Exception('invalid operand!' ) def __lowercase ( self : str ): '''simple docstring''' return Vector(self.__components ) def __lowercase ( self : int ,_a : int ): '''simple docstring''' if isinstance(_a ,_a ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def __lowercase ( self : int ,_a : int ,_a : float ): '''simple docstring''' assert -len(self.__components ) <= pos < len(self.__components ) _a : List[str] = value def __lowercase ( self : Tuple ): '''simple docstring''' if len(self.__components ) == 0: raise Exception('Vector is empty' ) _a : List[Any] = [c**2 for c in self.__components] return math.sqrt(sum(_a ) ) def __lowercase ( self : Union[str, Any] ,_a : Vector ,_a : bool = False ): '''simple docstring''' _a : Optional[int] = self * other _a : int = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def UpperCAmelCase_ (__a : int ): """simple docstring""" assert isinstance(__a , __a ) return Vector([0] * dimension ) def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" assert isinstance(__a , __a ) and (isinstance(__a , __a )) _a : List[Any] = [0] * dimension _a : Dict = 1 return Vector(__a ) def UpperCAmelCase_ (__a : float , __a : Vector , __a : Vector ): """simple docstring""" assert ( isinstance(__a , __a ) and isinstance(__a , __a ) and (isinstance(__a , (int, float) )) ) return x * scalar + y def UpperCAmelCase_ (__a : int , __a : int , __a : int ): """simple docstring""" random.seed(__a ) _a : Dict = [random.randint(__a , __a ) for _ in range(__a )] return Vector(__a ) class UpperCAmelCase__ : """simple docstring""" def __init__( self : Optional[Any] ,_a : list[list[float]] ,_a : int ,_a : int ): '''simple docstring''' _a : Any = matrix _a : Dict = w _a : Optional[Any] = h def __str__( self : str ): '''simple docstring''' _a : Dict = '' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : str ,_a : Matrix ): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): _a : Union[str, Any] = [] for i in range(self.__height ): _a : Dict = [ self.__matrix[i][j] + other.component(_a ,_a ) for j in range(self.__width ) ] matrix.append(_a ) return Matrix(_a ,self.__width ,self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self : Dict ,_a : Matrix ): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): _a : List[Any] = [] for i in range(self.__height ): _a : str = [ self.__matrix[i][j] - other.component(_a ,_a ) for j in range(self.__width ) ] matrix.append(_a ) return Matrix(_a ,self.__width ,self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self : Dict ,_a : float ): '''simple docstring''' ... @overload def __mul__( self : Any ,_a : Vector ): '''simple docstring''' ... def __mul__( self : Tuple ,_a : float | Vector ): '''simple docstring''' if isinstance(_a ,_a ): # matrix-vector if len(_a ) == self.__width: _a : str = zero_vector(self.__height ) for i in range(self.__height ): _a : Union[str, Any] = [ self.__matrix[i][j] * other.component(_a ) for j in range(self.__width ) ] ans.change_component(_a ,sum(_a ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(_a ,(int, float) ): # matrix-scalar _a : Tuple = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(_a ,self.__width ,self.__height ) return None def __lowercase ( self : Optional[int] ): '''simple docstring''' return self.__height def __lowercase ( self : List[Any] ): '''simple docstring''' return self.__width def __lowercase ( self : List[str] ,_a : int ,_a : int ): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def __lowercase ( self : List[str] ,_a : int ,_a : int ,_a : float ): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: _a : List[Any] = value else: raise Exception('change_component: indices out of bounds' ) def __lowercase ( self : str ,_a : int ,_a : int ): '''simple docstring''' if self.__height != self.__width: raise Exception('Matrix is not square' ) _a : Tuple = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(_a ) ): _a : str = minor[i][:y] + minor[i][y + 1 :] return Matrix(_a ,self.__width - 1 ,self.__height - 1 ).determinant() def __lowercase ( self : Union[str, Any] ,_a : int ,_a : int ): '''simple docstring''' if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(_a ,_a ) else: raise Exception('Indices out of bounds' ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: _a : str = [ self.__matrix[0][y] * self.cofactor(0 ,_a ) for y in range(self.__width ) ] return sum(_a ) def UpperCAmelCase_ (__a : int ): """simple docstring""" _a : list[list[float]] = [[0] * n for _ in range(__a )] return Matrix(__a , __a , __a ) def UpperCAmelCase_ (__a : int , __a : int , __a : int , __a : int ): """simple docstring""" random.seed(__a ) _a : list[list[float]] = [ [random.randint(__a , __a ) for _ in range(__a )] for _ in range(__a ) ] return Matrix(__a , __a , __a )
319
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ : """simple docstring""" def __init__( self : Optional[Any] ,_a : Union[str, Any] ,_a : Union[str, Any]=13 ,_a : Any=32 ,_a : Optional[Any]=2 ,_a : Any=3 ,_a : str=16 ,_a : Tuple=[1, 2, 1] ,_a : Tuple=[2, 2, 4] ,_a : Any=2 ,_a : Optional[int]=2.0 ,_a : List[Any]=True ,_a : str=0.0 ,_a : Tuple=0.0 ,_a : Optional[Any]=0.1 ,_a : Dict="gelu" ,_a : Union[str, Any]=False ,_a : Any=True ,_a : Any=0.02 ,_a : List[Any]=1E-5 ,_a : Any=True ,_a : List[str]=None ,_a : str=True ,_a : Optional[int]=10 ,_a : List[str]=8 ,): '''simple docstring''' _a : Dict = parent _a : str = batch_size _a : Optional[int] = image_size _a : str = patch_size _a : Optional[int] = num_channels _a : List[Any] = embed_dim _a : Optional[Any] = depths _a : Optional[int] = num_heads _a : str = window_size _a : Any = mlp_ratio _a : Optional[Any] = qkv_bias _a : Optional[Any] = hidden_dropout_prob _a : Union[str, Any] = attention_probs_dropout_prob _a : Union[str, Any] = drop_path_rate _a : Union[str, Any] = hidden_act _a : Union[str, Any] = use_absolute_embeddings _a : str = patch_norm _a : Tuple = layer_norm_eps _a : List[Any] = initializer_range _a : Optional[int] = is_training _a : str = scope _a : List[str] = use_labels _a : int = type_sequence_label_size _a : List[str] = encoder_stride def __lowercase ( self : List[str] ): '''simple docstring''' _a : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : List[Any] = None if self.use_labels: _a : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _a : Optional[Any] = self.get_config() return config, pixel_values, labels def __lowercase ( self : str ): '''simple docstring''' return SwinvaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def __lowercase ( self : str ,_a : Tuple ,_a : Tuple ,_a : Any ): '''simple docstring''' _a : List[Any] = SwinvaModel(config=_a ) model.to(_a ) model.eval() _a : Optional[Any] = model(_a ) _a : Any = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _a : Any = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def __lowercase ( self : Union[str, Any] ,_a : List[str] ,_a : Tuple ,_a : List[Any] ): '''simple docstring''' _a : int = SwinvaForMaskedImageModeling(config=_a ) model.to(_a ) model.eval() _a : List[str] = model(_a ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _a : List[Any] = 1 _a : str = SwinvaForMaskedImageModeling(_a ) model.to(_a ) model.eval() _a : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a : Optional[Any] = model(_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def __lowercase ( self : Any ,_a : List[Any] ,_a : Optional[int] ,_a : List[Any] ): '''simple docstring''' _a : Optional[Any] = self.type_sequence_label_size _a : str = SwinvaForImageClassification(_a ) model.to(_a ) model.eval() _a : List[str] = model(_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def __lowercase ( self : Tuple ): '''simple docstring''' _a : Any = self.prepare_config_and_inputs() _a, _a, _a : int = config_and_inputs _a : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __UpperCAmelCase : Any = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : Dict = False __UpperCAmelCase : Any = False __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Any = False def __lowercase ( self : int ): '''simple docstring''' _a : Optional[int] = SwinvaModelTester(self ) _a : Any = ConfigTester(self ,config_class=_a ,embed_dim=37 ) def __lowercase ( self : str ): '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowercase ( self : Dict ): '''simple docstring''' _a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def __lowercase ( self : int ): '''simple docstring''' pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def __lowercase ( self : Tuple ): '''simple docstring''' pass def __lowercase ( self : Tuple ): '''simple docstring''' _a, _a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _a : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a ,nn.Linear ) ) def __lowercase ( self : Optional[int] ): '''simple docstring''' _a, _a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = model_class(_a ) _a : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Tuple = [*signature.parameters.keys()] _a : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_a ) def __lowercase ( self : List[str] ): '''simple docstring''' _a, _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _a : int = True for model_class in self.all_model_classes: _a : Optional[Any] = True _a : List[str] = False _a : Tuple = True _a : Dict = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Tuple = model(**self._prepare_for_class(_a ,_a ) ) _a : Any = outputs.attentions _a : Optional[int] = len(self.model_tester.depths ) self.assertEqual(len(_a ) ,_a ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _a : Optional[int] = True _a : Dict = config.window_size**2 _a : Optional[int] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Union[str, Any] = model(**self._prepare_for_class(_a ,_a ) ) _a : Union[str, Any] = outputs.attentions self.assertEqual(len(_a ) ,_a ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) _a : str = len(_a ) # Check attention is always last and order is fine _a : int = True _a : int = True _a : Union[str, Any] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Optional[int] = model(**self._prepare_for_class(_a ,_a ) ) if hasattr(self.model_tester ,'num_hidden_states_types' ): _a : Any = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states _a : Optional[Any] = 2 self.assertEqual(out_len + added_hidden_states ,len(_a ) ) _a : str = outputs.attentions self.assertEqual(len(_a ) ,_a ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) def __lowercase ( self : Optional[int] ,_a : str ,_a : Union[str, Any] ,_a : Any ,_a : Union[str, Any] ): '''simple docstring''' _a : int = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Optional[int] = model(**self._prepare_for_class(_a ,_a ) ) _a : Any = outputs.hidden_states _a : str = getattr( self.model_tester ,'expected_num_hidden_layers' ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_a ) ,_a ) # Swinv2 has a different seq_length _a : List[str] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _a : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) _a : Optional[int] = outputs.reshaped_hidden_states self.assertEqual(len(_a ) ,_a ) _a, _a, _a, _a : Optional[int] = reshaped_hidden_states[0].shape _a : str = ( reshaped_hidden_states[0].view(_a ,_a ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def __lowercase ( self : Dict ): '''simple docstring''' _a, _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _a : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _a : List[Any] = True self.check_hidden_states_output(_a ,_a ,_a ,_a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : Any = True self.check_hidden_states_output(_a ,_a ,_a ,_a ) def __lowercase ( self : Dict ): '''simple docstring''' _a, _a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _a : List[Any] = 3 _a : int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _a : Union[str, Any] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _a : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _a : Optional[int] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _a : int = True self.check_hidden_states_output(_a ,_a ,_a ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : Optional[Any] = True self.check_hidden_states_output(_a ,_a ,_a ,(padded_height, padded_width) ) def __lowercase ( self : str ): '''simple docstring''' _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_a ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __lowercase ( self : Optional[Any] ): '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : str = SwinvaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def __lowercase ( self : List[str] ): '''simple docstring''' _a, _a : Any = self.model_tester.prepare_config_and_inputs_for_common() _a : int = _config_zero_init(_a ) for model_class in self.all_model_classes: _a : int = model_class(config=_a ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() ,[0.0, 1.0] ,msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" ,) @require_vision @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self : Tuple ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def __lowercase ( self : int ): '''simple docstring''' _a : Optional[Any] = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( _a ) _a : Union[str, Any] = self.default_image_processor _a : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _a : Dict = image_processor(images=_a ,return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): _a : Dict = model(**_a ) # verify the logits _a : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,_a ) _a : int = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_a ,atol=1E-4 ) )
319
1
import numpy class lowerCamelCase : def __init__( self : Optional[int] , __snake_case : numpy.ndarray , __snake_case : numpy.ndarray ) -> None: _a : List[str] = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _a : Union[str, Any] = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _a : Any = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _a : Optional[int] = numpy.random.rand(3 , 1 ) # Real output values provided. _a : Any = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _a : List[Any] = numpy.zeros(output_array.shape ) def snake_case_ ( self : List[str] ) -> numpy.ndarray: _a : List[Any] = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _a : Optional[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _a : List[Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def snake_case_ ( self : Union[str, Any] ) -> None: _a : Optional[Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) _a : Optional[Any] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) _a : str = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def snake_case_ ( self : List[str] , __snake_case : numpy.ndarray , __snake_case : int , __snake_case : bool ) -> None: for iteration in range(1 , iterations + 1 ): _a : Dict = self.feedforward() self.back_propagation() if give_loss: _a : int = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f"""Iteration {iteration} Loss: {loss}""" ) def snake_case_ ( self : Optional[int] , __snake_case : numpy.ndarray ) -> int: _a : Union[str, Any] = input_arr _a : Tuple = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) _a : Tuple = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) _a : str = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowerCamelCase_ ( UpperCamelCase_ ): return 1 / (1 + numpy.exp(-value )) def lowerCamelCase_ ( UpperCamelCase_ ): return (value) * (1 - (value)) def lowerCamelCase_ ( ): _a : Any = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. _a : Optional[Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. _a : List[str] = TwoHiddenLayerNeuralNetwork( input_array=UpperCamelCase_ , output_array=UpperCamelCase_ ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=UpperCamelCase_ , iterations=10 , give_loss=UpperCamelCase_ ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
471
import math from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : int = logging.get_logger(__name__) __UpperCAmelCase : Dict = { 'facebook/data2vec-base-960h': 'https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCamelCase ( SCREAMING_SNAKE_CASE ): UpperCAmelCase : Tuple = 'data2vec-audio' def __init__( self : int , __snake_case : Optional[int]=32 , __snake_case : Tuple=768 , __snake_case : List[str]=12 , __snake_case : Any=12 , __snake_case : Optional[int]=3072 , __snake_case : List[str]="gelu" , __snake_case : str=0.1 , __snake_case : Any=0.1 , __snake_case : int=0.1 , __snake_case : Optional[Any]=0.0 , __snake_case : str=0.1 , __snake_case : int=0.1 , __snake_case : List[str]=0.02 , __snake_case : int=1E-5 , __snake_case : List[str]="gelu" , __snake_case : Any=(512, 512, 512, 512, 512, 512, 512) , __snake_case : Tuple=(5, 2, 2, 2, 2, 2, 2) , __snake_case : Dict=(10, 3, 3, 3, 3, 2, 2) , __snake_case : Any=False , __snake_case : Tuple=16 , __snake_case : List[Any]=19 , __snake_case : Optional[int]=5 , __snake_case : List[Any]=0.05 , __snake_case : Union[str, Any]=10 , __snake_case : List[str]=2 , __snake_case : Tuple=0.0 , __snake_case : int=10 , __snake_case : Union[str, Any]=0 , __snake_case : int="sum" , __snake_case : Dict=False , __snake_case : Dict=False , __snake_case : Optional[int]=256 , __snake_case : Optional[int]=(512, 512, 512, 512, 1500) , __snake_case : Union[str, Any]=(5, 3, 3, 1, 1) , __snake_case : int=(1, 2, 3, 1, 1) , __snake_case : Optional[int]=512 , __snake_case : str=0 , __snake_case : Optional[int]=1 , __snake_case : Optional[int]=2 , __snake_case : Optional[int]=False , __snake_case : Union[str, Any]=3 , __snake_case : Union[str, Any]=2 , __snake_case : List[Any]=3 , __snake_case : List[str]=None , **__snake_case : List[str] , ) -> Tuple: super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case ) _a : List[Any] = hidden_size _a : List[str] = feat_extract_activation _a : Optional[int] = list(__snake_case ) _a : List[Any] = list(__snake_case ) _a : Dict = list(__snake_case ) _a : List[Any] = conv_bias _a : List[Any] = num_conv_pos_embeddings _a : Optional[Any] = num_conv_pos_embedding_groups _a : Dict = conv_pos_kernel_size _a : List[Any] = len(self.conv_dim ) _a : Any = num_hidden_layers _a : Any = intermediate_size _a : List[Any] = hidden_act _a : List[Any] = num_attention_heads _a : Union[str, Any] = hidden_dropout _a : Dict = attention_dropout _a : List[Any] = activation_dropout _a : str = feat_proj_dropout _a : Optional[int] = final_dropout _a : str = layerdrop _a : Optional[int] = layer_norm_eps _a : Any = initializer_range _a : Optional[int] = vocab_size _a : Union[str, Any] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a : List[Any] = mask_time_prob _a : Optional[int] = mask_time_length _a : Any = mask_time_min_masks _a : Optional[Any] = mask_feature_prob _a : List[Any] = mask_feature_length _a : Optional[Any] = mask_feature_min_masks # ctc loss _a : Optional[Any] = ctc_loss_reduction _a : Tuple = ctc_zero_infinity # adapter _a : Tuple = add_adapter _a : Optional[int] = adapter_kernel_size _a : Any = adapter_stride _a : List[str] = num_adapter_layers _a : Any = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _a : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _a : Optional[int] = list(__snake_case ) _a : Union[str, Any] = list(__snake_case ) _a : Tuple = list(__snake_case ) _a : str = xvector_output_dim @property def snake_case_ ( self : Optional[int] ) -> Dict: return math.prod(self.conv_stride )
471
1
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() snake_case : str = logging.get_logger(__name__) snake_case : Union[str, Any] = {name: getattr(transformers, name + 'Fast') for name in SLOW_TO_FAST_CONVERTERS} def snake_case__ ( __lowercase , __lowercase , __lowercase , __lowercase ) -> List[Any]: """simple docstring""" if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: A__ : Dict = TOKENIZER_CLASSES else: A__ : Tuple = {tokenizer_name: getattr(__lowercase , tokenizer_name + "Fast" )} logger.info(F'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: A__ : Optional[int] = TOKENIZER_CLASSES[tokenizer_name] A__ : str = True if checkpoint_name is None: A__ : str = list(tokenizer_class.max_model_input_sizes.keys() ) else: A__ : Union[str, Any] = [checkpoint_name] logger.info(F'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(F'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer A__ : Optional[int] = tokenizer_class.from_pretrained(__lowercase , force_download=__lowercase ) # Save fast tokenizer logger.info(F'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: A__ , A__ : Tuple = checkpoint.split("/" ) A__ : int = os.path.join(__lowercase , __lowercase ) elif add_prefix: A__ : List[Any] = checkpoint A__ : Optional[Any] = dump_path else: A__ : str = None A__ : int = dump_path logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: A__ : Optional[int] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] A__ : Optional[int] = file_path.split(__lowercase )[-1][0] if next_char == "/": A__ : Any = os.path.join(__lowercase , __lowercase ) A__ : Dict = None logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) A__ : List[str] = tokenizer.save_pretrained( __lowercase , legacy_format=__lowercase , filename_prefix=__lowercase ) logger.info(F'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(__lowercase ) logger.info(F'=> removing {file_name}' ) if __name__ == "__main__": snake_case : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output generated fast tokenizer files.' ) parser.add_argument( '--tokenizer_name', default=None, type=str, help=( f"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ 'download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--checkpoint_name', default=None, type=str, help='Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.', ) parser.add_argument( '--force_download', action='store_true', help='Re-download checkpoints.', ) snake_case : Union[str, Any] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
182
def snake_case__ ( ) -> Union[str, Any]: """simple docstring""" A__ : Tuple = [] A__ : Optional[int] = 1 while len(__lowercase ) < 1E6: constant.append(str(__lowercase ) ) i += 1 A__ : Any = "".join(__lowercase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[9_9] ) * int(constant[9_9_9] ) * int(constant[9_9_9_9] ) * int(constant[9_9_9_9_9] ) * int(constant[9_9_9_9_9_9] ) ) if __name__ == "__main__": print(solution())
182
1
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig UpperCAmelCase_ = logging.get_logger(__name__) # General docstring UpperCAmelCase_ = "PoolFormerConfig" # Base docstring UpperCAmelCase_ = "sail/poolformer_s12" UpperCAmelCase_ = [1, 5_12, 7, 7] # Image classification docstring UpperCAmelCase_ = "sail/poolformer_s12" UpperCAmelCase_ = "tabby, tabby cat" UpperCAmelCase_ = [ "sail/poolformer_s12", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def A__ ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : float = 0.0 , SCREAMING_SNAKE_CASE_ : bool = False ) -> str: """simple docstring""" if drop_prob == 0.0 or not training: return input _UpperCAmelCase = 1 - drop_prob _UpperCAmelCase = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets _UpperCAmelCase = keep_prob + torch.rand(SCREAMING_SNAKE_CASE_ , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize _UpperCAmelCase = input.div(SCREAMING_SNAKE_CASE_ ) * random_tensor return output class __UpperCamelCase ( nn.Module ): def __init__( self , _UpperCamelCase = None ): super().__init__() _UpperCAmelCase = drop_prob def UpperCamelCase( self , _UpperCamelCase ): return drop_path(_UpperCamelCase , self.drop_prob , self.training ) def UpperCamelCase( self ): return "p={}".format(self.drop_prob ) class __UpperCamelCase ( nn.Module ): def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): super().__init__() _UpperCAmelCase = patch_size if isinstance(_UpperCamelCase , collections.abc.Iterable ) else (patch_size, patch_size) _UpperCAmelCase = stride if isinstance(_UpperCamelCase , collections.abc.Iterable ) else (stride, stride) _UpperCAmelCase = padding if isinstance(_UpperCamelCase , collections.abc.Iterable ) else (padding, padding) _UpperCAmelCase = nn.Convad(_UpperCamelCase , _UpperCamelCase , kernel_size=_UpperCamelCase , stride=_UpperCamelCase , padding=_UpperCamelCase ) _UpperCAmelCase = norm_layer(_UpperCamelCase ) if norm_layer else nn.Identity() def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = self.projection(_UpperCamelCase ) _UpperCAmelCase = self.norm(_UpperCamelCase ) return embeddings class __UpperCamelCase ( nn.GroupNorm ): def __init__( self , _UpperCamelCase , **_UpperCamelCase ): super().__init__(1 , _UpperCamelCase , **_UpperCamelCase ) class __UpperCamelCase ( nn.Module ): def __init__( self , _UpperCamelCase ): super().__init__() _UpperCAmelCase = nn.AvgPoolad(_UpperCamelCase , stride=1 , padding=pool_size // 2 , count_include_pad=_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase ): return self.pool(_UpperCamelCase ) - hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): super().__init__() _UpperCAmelCase = nn.Convad(_UpperCamelCase , _UpperCamelCase , 1 ) _UpperCAmelCase = nn.Convad(_UpperCamelCase , _UpperCamelCase , 1 ) _UpperCAmelCase = PoolFormerDropPath(_UpperCamelCase ) if isinstance(config.hidden_act , _UpperCamelCase ): _UpperCAmelCase = ACTaFN[config.hidden_act] else: _UpperCAmelCase = config.hidden_act def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = self.conva(_UpperCamelCase ) _UpperCAmelCase = self.act_fn(_UpperCamelCase ) _UpperCAmelCase = self.drop(_UpperCamelCase ) _UpperCAmelCase = self.conva(_UpperCamelCase ) _UpperCAmelCase = self.drop(_UpperCamelCase ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): super().__init__() _UpperCAmelCase = PoolFormerPooling(_UpperCamelCase ) _UpperCAmelCase = PoolFormerOutput(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase = PoolFormerGroupNorm(_UpperCamelCase ) _UpperCAmelCase = PoolFormerGroupNorm(_UpperCamelCase ) # Useful for training neural nets _UpperCAmelCase = PoolFormerDropPath(_UpperCamelCase ) if drop_path > 0.0 else nn.Identity() _UpperCAmelCase = config.use_layer_scale if config.use_layer_scale: _UpperCAmelCase = nn.Parameter( config.layer_scale_init_value * torch.ones((_UpperCamelCase) ) , requires_grad=_UpperCamelCase ) _UpperCAmelCase = nn.Parameter( config.layer_scale_init_value * torch.ones((_UpperCamelCase) ) , requires_grad=_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase ): if self.use_layer_scale: _UpperCAmelCase = self.pooling(self.before_norm(_UpperCamelCase ) ) _UpperCAmelCase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection _UpperCAmelCase = hidden_states + self.drop_path(_UpperCamelCase ) _UpperCAmelCase = () _UpperCAmelCase = self.output(self.after_norm(_UpperCamelCase ) ) _UpperCAmelCase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection _UpperCAmelCase = hidden_states + self.drop_path(_UpperCamelCase ) _UpperCAmelCase = (output,) + outputs return outputs else: _UpperCAmelCase = self.drop_path(self.pooling(self.before_norm(_UpperCamelCase ) ) ) # First residual connection _UpperCAmelCase = pooling_output + hidden_states _UpperCAmelCase = () # Second residual connection inside the PoolFormerOutput block _UpperCAmelCase = self.drop_path(self.output(self.after_norm(_UpperCamelCase ) ) ) _UpperCAmelCase = hidden_states + layer_output _UpperCAmelCase = (output,) + outputs return outputs class __UpperCamelCase ( nn.Module ): def __init__( self , _UpperCamelCase ): super().__init__() _UpperCAmelCase = config # stochastic depth decay rule _UpperCAmelCase = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings _UpperCAmelCase = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) _UpperCAmelCase = nn.ModuleList(_UpperCamelCase ) # Transformer blocks _UpperCAmelCase = [] _UpperCAmelCase = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers _UpperCAmelCase = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( _UpperCamelCase , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(_UpperCamelCase ) ) _UpperCAmelCase = nn.ModuleList(_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=False , _UpperCamelCase=True ): _UpperCAmelCase = () if output_hidden_states else None _UpperCAmelCase = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): _UpperCAmelCase , _UpperCAmelCase = layers # Get patch embeddings from hidden_states _UpperCAmelCase = embedding_layer(_UpperCamelCase ) # Send the embeddings through the blocks for _, blk in enumerate(_UpperCamelCase ): _UpperCAmelCase = blk(_UpperCamelCase ) _UpperCAmelCase = layer_outputs[0] if output_hidden_states: _UpperCAmelCase = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_UpperCamelCase , hidden_states=_UpperCamelCase ) class __UpperCamelCase ( A__ ): __A : Tuple = PoolFormerConfig __A : int = """poolformer""" __A : Tuple = """pixel_values""" __A : Optional[Any] = True def UpperCamelCase( self , _UpperCamelCase ): if isinstance(_UpperCamelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_UpperCamelCase , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=False ): if isinstance(_UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = value UpperCAmelCase_ = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" UpperCAmelCase_ = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n" @add_start_docstrings( """The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.""" , A__ , ) class __UpperCamelCase ( A__ ): def __init__( self , _UpperCamelCase ): super().__init__(_UpperCamelCase ) _UpperCAmelCase = config _UpperCAmelCase = PoolFormerEncoder(_UpperCamelCase ) # Initialize weights and apply final processing self.post_init() def UpperCamelCase( self ): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(_UpperCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase( self , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , ): _UpperCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) _UpperCAmelCase = self.encoder( _UpperCamelCase , output_hidden_states=_UpperCamelCase , return_dict=_UpperCamelCase , ) _UpperCAmelCase = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=_UpperCamelCase , hidden_states=encoder_outputs.hidden_states , ) class __UpperCamelCase ( nn.Module ): def __init__( self , _UpperCamelCase ): super().__init__() _UpperCAmelCase = nn.Linear(config.hidden_size , config.hidden_size ) def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = self.dense(_UpperCamelCase ) return output @add_start_docstrings( """ PoolFormer Model transformer with an image classification head on top """ , A__ , ) class __UpperCamelCase ( A__ ): def __init__( self , _UpperCamelCase ): super().__init__(_UpperCamelCase ) _UpperCAmelCase = config.num_labels _UpperCAmelCase = PoolFormerModel(_UpperCamelCase ) # Final norm _UpperCAmelCase = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head _UpperCAmelCase = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_UpperCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase( self , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , ): _UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase = self.poolformer( _UpperCamelCase , output_hidden_states=_UpperCamelCase , return_dict=_UpperCamelCase , ) _UpperCAmelCase = outputs[0] _UpperCAmelCase = self.classifier(self.norm(_UpperCamelCase ).mean([-2, -1] ) ) _UpperCAmelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _UpperCAmelCase = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _UpperCAmelCase = '''single_label_classification''' else: _UpperCAmelCase = '''multi_label_classification''' if self.config.problem_type == "regression": _UpperCAmelCase = MSELoss() if self.num_labels == 1: _UpperCAmelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: _UpperCAmelCase = loss_fct(_UpperCamelCase , _UpperCamelCase ) elif self.config.problem_type == "single_label_classification": _UpperCAmelCase = CrossEntropyLoss() _UpperCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _UpperCAmelCase = BCEWithLogitsLoss() _UpperCAmelCase = loss_fct(_UpperCamelCase , _UpperCamelCase ) if not return_dict: _UpperCAmelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_UpperCamelCase , logits=_UpperCamelCase , hidden_states=outputs.hidden_states )
32
UpperCAmelCase_ = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/" } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def A__ ( SCREAMING_SNAKE_CASE_ : str ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def A__ ( ) -> None: """simple docstring""" _UpperCAmelCase = '''Morse code here!''' print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = encrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = decrypt(SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
32
1
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase = 1_000_000 ) ->int: """simple docstring""" a_ = limit + 1 a_ = [0] * limit for first_term in range(1 , UpperCAmelCase ): for n in range(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): a_ = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a a_ = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"""{solution() = }""")
210
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
210
1
"""simple docstring""" UpperCAmelCase = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ UpperCAmelCase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] UpperCAmelCase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
420
"""simple docstring""" from math import factorial, pi def lowercase ( a__ : float , a__ : int = 30 ) -> float: if not isinstance(a__ , (int, float) ): raise ValueError('''maclaurin_sin() requires either an int or float for theta''' ) if not isinstance(a__ , a__ ) or accuracy <= 0: raise ValueError('''maclaurin_sin() requires a positive int for accuracy''' ) _UpperCamelCase = float(a__ ) _UpperCamelCase = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(a__ ) ) def lowercase ( a__ : float , a__ : int = 30 ) -> float: if not isinstance(a__ , (int, float) ): raise ValueError('''maclaurin_cos() requires either an int or float for theta''' ) if not isinstance(a__ , a__ ) or accuracy <= 0: raise ValueError('''maclaurin_cos() requires a positive int for accuracy''' ) _UpperCamelCase = float(a__ ) _UpperCamelCase = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(a__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
420
1
'''simple docstring''' import string def lowerCAmelCase_ ( a : str ): a__ = '' for i in sequence: a__ = ord(a ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def lowerCAmelCase_ ( a : str ): a__ = string.ascii_letters a__ = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(a )] if c in letters else c for c in sequence ) def lowerCAmelCase_ ( ): from timeit import timeit print('Running performance benchmarks...' ) a__ = 'from string import printable ; from __main__ import atbash, atbash_slow' print(f'''> atbash_slow(): {timeit('atbash_slow(printable)' , setup=a )} seconds''' ) print(f'''> atbash(): {timeit('atbash(printable)' , setup=a )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F"""{example} encrypted in atbash: {atbash(example)}""") benchmark()
126
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __A : int = get_logger() __A : Optional[dict] = None class _UpperCamelCase ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): '''simple docstring''' def __init__( self , _a=None , _a=None , **_a ): """simple docstring""" super().__init__(features=_a ) import jax from jaxlib.xla_client import Device if isinstance(_a , _a ): raise ValueError( F'''Expected {device} to be a `str` not {type(_a )}, as `jaxlib.xla_extension.Device` ''' 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) a__ = device if isinstance(_a , _a ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: a__ = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F'''Device with string identifier {self.device} not listed among the available ''' F'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' F'''device: {str(jax.devices()[0] )}.''' ) a__ = str(jax.devices()[0] ) a__ = jnp_array_kwargs @staticmethod def lowercase__ ( ): """simple docstring""" import jax return {str(_a ): device for device in jax.devices()} def lowercase__ ( self , _a ): """simple docstring""" import jax import jax.numpy as jnp if isinstance(_a , _a ) and column: if all( isinstance(_a , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_a , axis=0 ) return column def lowercase__ ( self , _a ): """simple docstring""" import jax import jax.numpy as jnp if isinstance(_a , (str, bytes, type(_a )) ): return value elif isinstance(_a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() a__ = {} if isinstance(_a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: a__ = {'dtype': jnp.intaa} else: a__ = {'dtype': jnp.intaa} elif isinstance(_a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): a__ = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_a , PIL.Image.Image ): a__ = np.asarray(_a ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: a__ = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_a , **{**default_dtype, **self.jnp_array_kwargs} ) def lowercase__ ( self , _a ): """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_a , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_a , '__array__' ) and not isinstance(_a , jax.Array ): a__ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_a , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_a ) for substruct in data_struct] ) elif isinstance(_a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_a ) for substruct in data_struct] ) return self._tensorize(_a ) def lowercase__ ( self , _a ): """simple docstring""" return map_nested(self._recursive_tensorize , _a , map_list=_a ) def lowercase__ ( self , _a ): """simple docstring""" a__ = self.numpy_arrow_extractor().extract_row(_a ) a__ = self.python_features_decoder.decode_row(_a ) return self.recursive_tensorize(_a ) def lowercase__ ( self , _a ): """simple docstring""" a__ = self.numpy_arrow_extractor().extract_column(_a ) a__ = self.python_features_decoder.decode_column(_a , pa_table.column_names[0] ) a__ = self.recursive_tensorize(_a ) a__ = self._consolidate(_a ) return column def lowercase__ ( self , _a ): """simple docstring""" a__ = self.numpy_arrow_extractor().extract_batch(_a ) a__ = self.python_features_decoder.decode_batch(_a ) a__ = self.recursive_tensorize(_a ) for column_name in batch: a__ = self._consolidate(batch[column_name] ) return batch
126
1
"""simple docstring""" import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 _lowerCAmelCase : List[str] = get_tests_dir('''fixtures/dummy-config.json''') class A_ ( unittest.TestCase ): def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : List[Any] = 0 def _lowercase ( self: Dict ): '''simple docstring''' self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Dict = AutoConfig.from_pretrained("bert-base-uncased" ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = AutoConfig.for_model("roberta" ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. _lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,"fake-roberta" ) os.makedirs(__lowerCAmelCase ,exist_ok=__lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase ,"config.json" ) ,"w" ) as f: f.write(json.dumps({} ) ) _lowerCamelCase : List[Any] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertEqual(type(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' try: AutoConfig.register("custom" ,__lowerCAmelCase ) # Wrong model type will raise an error with self.assertRaises(__lowerCAmelCase ): AutoConfig.register("model" ,__lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCAmelCase ): AutoConfig.register("bert" ,__lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API _lowerCamelCase : Any = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : List[str] = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def _lowercase ( self: Dict ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,"bert-base is not a local folder and is not a valid model identifier" ): _lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained("bert-base" ) def _lowercase ( self: Dict ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,revision="aaaaaa" ) def _lowercase ( self: Tuple ): '''simple docstring''' with self.assertRaisesRegex( __lowerCAmelCase ,"hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." ,): _lowerCamelCase : List[str] = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" ) def _lowercase ( self: List[Any] ): '''simple docstring''' with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCAmelCase ): _lowerCamelCase : Any = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfig" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : str = AutoConfig.from_pretrained(__lowerCAmelCase ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(reloaded_config.__class__.__name__ ,"NewModelConfig" ) def _lowercase ( self: Dict ): '''simple docstring''' class A_ ( _a ): lowerCAmelCase__ = 'new-model' try: AutoConfig.register("new-model" ,__lowerCAmelCase ) # If remote code is not set, the default is to use local _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" ) # If remote code is disabled, we load the local one. _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfigLocal" ) # If remote is enabled, we load from the Hub _lowerCamelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ,trust_remote_code=__lowerCAmelCase ) self.assertEqual(config.__class__.__name__ ,"NewModelConfig" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
46
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _a ( unittest.TestCase ): """simple docstring""" A_ = MODEL_FOR_MASKED_LM_MAPPING A_ = TF_MODEL_FOR_MASKED_LM_MAPPING def _UpperCAmelCase ( self ) -> List[str]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='tf' ) UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is grouped', 'score': 2.1e-05, 'token': 38015, 'token_str': ' grouped'}, {'sequence': 'My name is accuser', 'score': 2.1e-05, 'token': 25506, 'token_str': ' accuser'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ { 'sequence': 'The largest city in France is grouped', 'score': 2.1e-05, 'token': 38015, 'token_str': ' grouped', }, { 'sequence': 'The largest city in France is accuser', 'score': 2.1e-05, 'token': 25506, 'token_str': ' accuser', }, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Patrick', 'score': 2e-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 1.9e-05, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='pt' ) UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Maul', 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul'}, {'sequence': 'My name isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ { 'sequence': 'The largest city in France is Maul', 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', }, {'sequence': 'The largest city in France isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'}, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Patrick', 'score': 2.1e-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 2e-05, 'token': 2941, 'token_str': ' Te'}, {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'}, ] , ) UpperCamelCase_ = unmasker('My name is <mask> <mask>' , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ [ { 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is Maul<mask></s>', }, {'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'}, ], [ { 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is<mask> Maul</s>', }, {'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'}, ], ] , ) @require_torch_gpu def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = pipeline('fill-mask' , model='hf-internal-testing/tiny-random-distilbert' , device=0 , framework='pt' ) # convert model to fp16 pipe.model.half() UpperCamelCase_ = pipe('Paris is the [MASK] of France.' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) @slow @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='pt' ) self.run_large_test(_UpperCAmelCase ) @slow @require_tf def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='tf' ) self.run_large_test(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ {'sequence': 'My name is John', 'score': 0.0_0_8, 'token': 610, 'token_str': ' John'}, {'sequence': 'My name is Chris', 'score': 0.0_0_7, 'token': 1573, 'token_str': ' Chris'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ { 'sequence': 'The largest city in France is Paris', 'score': 0.2_5_1, 'token': 2201, 'token_str': ' Paris', }, { 'sequence': 'The largest city in France is Lyon', 'score': 0.2_1_4, 'token': 12790, 'token_str': ' Lyon', }, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ {'sequence': 'My name is Patrick', 'score': 0.0_0_5, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Clara', 'score': 0.0_0_0, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Te', 'score': 0.0_0_0, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='pt' ) UpperCamelCase_ = None UpperCamelCase_ = None self.run_pipeline_test(_UpperCAmelCase , [] ) @require_tf def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='tf' ) UpperCamelCase_ = None UpperCamelCase_ = None self.run_pipeline_test(_UpperCAmelCase , [] ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)' ) UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = [ f"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: UpperCamelCase_ = fill_masker.tokenizer UpperCamelCase_ = fill_masker.model UpperCamelCase_ = fill_masker( f"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}""", f"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( _UpperCAmelCase , [ [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], ] , ) with self.assertRaises(_UpperCAmelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_UpperCAmelCase ): fill_masker('This is' ) self.run_test_top_k(_UpperCAmelCase , _UpperCAmelCase ) self.run_test_targets(_UpperCAmelCase , _UpperCAmelCase ) self.run_test_top_k_targets(_UpperCAmelCase , _UpperCAmelCase ) self.fill_mask_with_duplicate_targets_and_top_k(_UpperCAmelCase , _UpperCAmelCase ) self.fill_mask_with_multiple_masks(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: UpperCamelCase_ = tokenizer.get_vocab() UpperCamelCase_ = sorted(vocab.keys() )[:2] # Pipeline argument UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , targets=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase ) UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) ) # Call argument UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase ) UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) ) # Score equivalence UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) UpperCamelCase_ = [top_mask['token_str'] for top_mask in outputs] UpperCamelCase_ = [top_mask['score'] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_UpperCAmelCase ) == set(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) UpperCamelCase_ = [top_mask['score'] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) # Raises with invalid with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[''] ) with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets='' ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , top_k=2 ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: UpperCamelCase_ = tokenizer.get_vocab() UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) # top_k=2, ntargets=3 UpperCamelCase_ = sorted(vocab.keys() )[:3] UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=_UpperCAmelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results UpperCamelCase_ = [el['token_str'] for el in sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x["score"] , reverse=_UpperCAmelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_UpperCAmelCase ).issubset(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=_UpperCAmelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = tokenizer.get_vocab() # String duplicates + id duplicates UpperCamelCase_ = sorted(vocab.keys() )[:3] UpperCamelCase_ = [targets[0], targets[1], targets[0], targets[2], targets[1]] UpperCamelCase_ = fill_masker(f"""My name is {tokenizer.mask_token}""" , targets=_UpperCAmelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_UpperCAmelCase ) , 3 ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker( f"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( _UpperCAmelCase , [ [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], ] , )
23
0
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=None , ) -> List[Any]: """simple docstring""" A : List[str] = parent A : Dict = batch_size A : str = seq_length A : Any = is_training A : Union[str, Any] = use_input_mask A : List[str] = use_token_type_ids A : Any = use_labels A : Optional[Any] = vocab_size A : Any = hidden_size A : Optional[Any] = num_hidden_layers A : str = num_attention_heads A : int = intermediate_size A : str = hidden_act A : int = hidden_dropout_prob A : Any = attention_probs_dropout_prob A : Tuple = max_position_embeddings A : List[str] = type_vocab_size A : int = type_sequence_label_size A : List[Any] = initializer_range A : Union[str, Any] = num_labels A : Tuple = num_choices A : Any = scope def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : Optional[Any] = None if self.use_input_mask: A : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) A : Optional[Any] = None if self.use_token_type_ids: A : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A : List[str] = None A : Tuple = None A : Dict = None if self.use_labels: A : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A : int = ids_tensor([self.batch_size] , self.num_choices ) A : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , use_stable_embedding=SCREAMING_SNAKE_CASE , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" A : List[Any] = OpenLlamaModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : List[str] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE ) A : Dict = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> Dict: """simple docstring""" A : Optional[int] = True A : str = OpenLlamaModel(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : List[str] = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , ) A : Tuple = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , ) A : Tuple = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" A : List[Any] = OpenLlamaForCausalLM(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : Tuple = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> Dict: """simple docstring""" A : str = True A : int = True A : Dict = OpenLlamaForCausalLM(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() # first forward pass A : Optional[Any] = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , use_cache=SCREAMING_SNAKE_CASE , ) A : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) A : Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) A : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) A : List[Any] = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , )['''hidden_states'''][0] A : Optional[Any] = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , past_key_values=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , )['''hidden_states'''][0] # select random slice A : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() A : int = output_from_no_past[:, -3:, random_slice_idx].detach() A : Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 ) ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : Optional[int] = self.prepare_config_and_inputs() ( ( A ), ( A ), ( A ), ( A ), ( A ), ( A ), ( A ), ) : Optional[Any] = config_and_inputs A : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class A ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): __magic_name__ = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __magic_name__ = (OpenLlamaForCausalLM,) if is_torch_available() else () __magic_name__ = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : Any = OpenLlamaModelTester(self ) A : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A : Tuple = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A, A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() A : List[str] = 3 A : List[str] = input_dict['''input_ids'''] A : Dict = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE ) A : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A : int = OpenLlamaForSequenceClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : Union[str, Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A, A : Dict = self.model_tester.prepare_config_and_inputs_for_common() A : Any = 3 A : Tuple = '''single_label_classification''' A : Dict = input_dict['''input_ids'''] A : List[str] = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE ) A : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A : List[str] = OpenLlamaForSequenceClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : Union[str, Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A, A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() A : str = 3 A : Any = '''multi_label_classification''' A : Any = input_dict['''input_ids'''] A : List[Any] = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE ) A : List[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) A : Any = OpenLlamaForSequenceClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : Optional[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" A, A : Tuple = self.model_tester.prepare_config_and_inputs_for_common() A : str = ids_tensor([1, 10] , config.vocab_size ) A : List[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A : str = OpenLlamaModel(SCREAMING_SNAKE_CASE ) original_model.to(SCREAMING_SNAKE_CASE ) original_model.eval() A : List[str] = original_model(SCREAMING_SNAKE_CASE ).last_hidden_state A : List[str] = original_model(SCREAMING_SNAKE_CASE ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A : Optional[Any] = {'''type''': scaling_type, '''factor''': 10.0} A : Optional[int] = OpenLlamaModel(SCREAMING_SNAKE_CASE ) scaled_model.to(SCREAMING_SNAKE_CASE ) scaled_model.eval() A : List[str] = scaled_model(SCREAMING_SNAKE_CASE ).last_hidden_state A : List[str] = scaled_model(SCREAMING_SNAKE_CASE ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-5 ) )
343
'''simple docstring''' from typing import Dict from .base import GenericTensor, Pipeline class A ( __snake_case ): def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if tokenize_kwargs is None: A : str = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) A : Any = truncation A : Dict = tokenize_kwargs A : int = {} if return_tensors is not None: A : Optional[int] = return_tensors return preprocess_params, {}, postprocess_params def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Dict[str, GenericTensor]: """simple docstring""" A : List[str] = self.framework A : Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) return model_inputs def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" A : int = self.model(**SCREAMING_SNAKE_CASE ) return model_outputs def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> List[str]: """simple docstring""" if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" return super().__call__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
343
1
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin _a = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class _UpperCAmelCase: def __init__( self , __a , __a=16 , __a=13 , __a=7 , __a=14 , __a=10 , __a=19 , __a=5 , __a=4 , __a=True , __a=16 , __a=2 , __a=4 , __a=4 , __a="gelu" , __a=0.1 , __a=0.1 , __a=[1, 2, 3, 4, 5] , __a=25 , __a=5 , ) -> Tuple: '''simple docstring''' _UpperCamelCase = d_model _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = prediction_length _UpperCamelCase = context_length _UpperCamelCase = cardinality _UpperCamelCase = num_time_features _UpperCamelCase = lags_sequence _UpperCamelCase = embedding_dimension _UpperCamelCase = is_training _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = context_length _UpperCamelCase = prediction_length + label_length _UpperCamelCase = label_length _UpperCamelCase = moving_average _UpperCamelCase = autocorrelation_factor def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def UpperCAmelCase ( self , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = config.context_length + max(config.lags_sequence) _UpperCamelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0]) _UpperCamelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features]) _UpperCamelCase = floats_tensor([self.batch_size, _past_length]) _UpperCamelCase = floats_tensor([self.batch_size, _past_length]) > 0.5 # decoder inputs _UpperCamelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features]) _UpperCamelCase = floats_tensor([self.batch_size, config.prediction_length]) _UpperCamelCase = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = self.get_config() _UpperCamelCase = self.prepare_autoformer_inputs_dict(__a) return config, inputs_dict def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase ( self , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = AutoformerModel(config=__a).to(__a).eval() _UpperCamelCase = model(**__a) _UpperCamelCase = outputs.encoder_last_hidden_state _UpperCamelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = model.get_encoder() encoder.save_pretrained(__a) _UpperCamelCase = AutoformerEncoder.from_pretrained(__a).to(__a) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = model.create_network_inputs(**__a) _UpperCamelCase , _UpperCamelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...]) _UpperCamelCase = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _UpperCamelCase = encoder(inputs_embeds=__a)[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3) _UpperCamelCase = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1) .unsqueeze(1) .repeat(1 , config.prediction_length , 1) ) _UpperCamelCase = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _UpperCamelCase = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _UpperCamelCase = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = model.get_decoder() decoder.save_pretrained(__a) _UpperCamelCase = AutoformerDecoder.from_pretrained(__a).to(__a) _UpperCamelCase = decoder( trend=__a , inputs_embeds=__a , encoder_hidden_states=__a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3) @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () lowercase__ = (AutoformerForPrediction,) if is_torch_available() else () lowercase__ = {'feature-extraction': AutoformerModel} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = AutoformerModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a) _UpperCamelCase , _UpperCamelCase = model_class.from_pretrained(__a , output_loading_info=__a) self.assertEqual(info['''missing_keys'''] , []) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a) @unittest.skip(reason='''Model has no tokens embeddings''') def UpperCAmelCase ( self) -> Any: '''simple docstring''' pass def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = inspect.signature(getattr(__a , '''forward''')) # The main input is the name of the argument after `self` _UpperCamelCase = list(model_signature.parameters.keys())[1] self.assertEqual(AutoformerModel.main_input_name , __a) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''') expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ]) self.assertListEqual(arg_names[: len(__a)] , __a) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = True _UpperCamelCase = getattr(self.model_tester , '''seq_length''' , __a) _UpperCamelCase = getattr(self.model_tester , '''decoder_seq_length''' , __a) _UpperCamelCase = getattr(self.model_tester , '''encoder_seq_length''' , __a) _UpperCamelCase = getattr(self.model_tester , '''d_model''' , __a) _UpperCamelCase = getattr(self.model_tester , '''num_attention_heads''' , __a) _UpperCamelCase = d_model // num_attention_heads for model_class in self.all_model_classes: _UpperCamelCase = True _UpperCamelCase = False _UpperCamelCase = True _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) _UpperCamelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCamelCase = True _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) _UpperCamelCase = outputs.encoder_attentions self.assertEqual(len(__a) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _UpperCamelCase = len(__a) _UpperCamelCase = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__a , __a) # decoder attentions _UpperCamelCase = outputs.decoder_attentions self.assertIsInstance(__a , (list, tuple)) self.assertEqual(len(__a) , self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _UpperCamelCase = outputs.cross_attentions self.assertIsInstance(__a , (list, tuple)) self.assertEqual(len(__a) , self.model_tester.num_hidden_layers) self.assertListEqual( list(cross_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) self.assertEqual(out_len + 2 , len(__a)) _UpperCamelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' super().test_retain_grad_hidden_states_attentions() def lowerCamelCase__ ( __snake_case="train-batch.pt" ) -> Tuple: """simple docstring""" _UpperCamelCase = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''', filename=__snake_case, repo_type='''dataset''' ) _UpperCamelCase = torch.load(__snake_case, map_location=__snake_case ) return batch @require_torch @slow class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''').to(__a) _UpperCamelCase = prepare_batch() with torch.no_grad(): _UpperCamelCase = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] _UpperCamelCase = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size)) self.assertEqual(output.shape , __a) _UpperCamelCase = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=__a) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a)) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''').to(__a) _UpperCamelCase = prepare_batch('''val-batch.pt''') with torch.no_grad(): _UpperCamelCase = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state _UpperCamelCase = torch.Size((64, model.config.context_length, model.config.d_model)) self.assertEqual(output.shape , __a) _UpperCamelCase = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=__a) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a)) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''').to(__a) _UpperCamelCase = prepare_batch('''val-batch.pt''') with torch.no_grad(): _UpperCamelCase = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) _UpperCamelCase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length)) self.assertEqual(outputs.sequences.shape , __a) _UpperCamelCase = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=__a) _UpperCamelCase = outputs.sequences.mean(dim=1) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __a , rtol=1e-1))
19
import cva import numpy as np class snake_case : '''simple docstring''' def __init__( self : Any , lowerCAmelCase_ : float , lowerCAmelCase_ : int ) -> List[Any]: """simple docstring""" if k in (0.04, 0.06): SCREAMING_SNAKE_CASE_ = k SCREAMING_SNAKE_CASE_ = window_size else: raise ValueError('''invalid k value''' ) def __str__( self : Tuple ) -> str: """simple docstring""" return str(self.k ) def _lowercase ( self : List[str] , lowerCAmelCase_ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" SCREAMING_SNAKE_CASE_ = cva.imread(lowerCAmelCase_ , 0 ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = img.shape SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = img.copy() SCREAMING_SNAKE_CASE_ = cva.cvtColor(lowerCAmelCase_ , cva.COLOR_GRAY2RGB ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = np.gradient(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = dx**2 SCREAMING_SNAKE_CASE_ = dy**2 SCREAMING_SNAKE_CASE_ = dx * dy SCREAMING_SNAKE_CASE_ = 0.04 SCREAMING_SNAKE_CASE_ = self.window_size // 2 for y in range(lowerCAmelCase_ , h - offset ): for x in range(lowerCAmelCase_ , w - offset ): SCREAMING_SNAKE_CASE_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ = (wxx * wyy) - (wxy**2) SCREAMING_SNAKE_CASE_ = wxx + wyy SCREAMING_SNAKE_CASE_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": A_ = HarrisCorner(0.04, 3) A_ ,A_ = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
393
0
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests _snake_case : int = open # noqa: we just need to have a builtin inside this module to test it properly
711
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): a : Optional[int] = KandinskyImgaImgPipeline a : Union[str, Any] = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image"""] a : Union[str, Any] = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", ] a : int = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a : Tuple = False @property def lowercase ( self ): return 32 @property def lowercase ( self ): return 32 @property def lowercase ( self ): return self.time_input_dim @property def lowercase ( self ): return self.time_input_dim * 4 @property def lowercase ( self ): return 100 @property def lowercase ( self ): _SCREAMING_SNAKE_CASE = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def lowercase ( self ): torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) _SCREAMING_SNAKE_CASE = MultilingualCLIP(UpperCamelCase ) _SCREAMING_SNAKE_CASE = text_encoder.eval() return text_encoder @property def lowercase ( self ): torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } _SCREAMING_SNAKE_CASE = UNetaDConditionModel(**UpperCamelCase ) return model @property def lowercase ( self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase ( self ): torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = VQModel(**self.dummy_movq_kwargs ) return model def lowercase ( self ): _SCREAMING_SNAKE_CASE = self.dummy_text_encoder _SCREAMING_SNAKE_CASE = self.dummy_tokenizer _SCREAMING_SNAKE_CASE = self.dummy_unet _SCREAMING_SNAKE_CASE = self.dummy_movq _SCREAMING_SNAKE_CASE = { "num_train_timesteps": 1_000, "beta_schedule": "linear", "beta_start": 0.0_00_85, "beta_end": 0.0_12, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } _SCREAMING_SNAKE_CASE = DDIMScheduler(**UpperCamelCase ) _SCREAMING_SNAKE_CASE = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowercase ( self , UpperCamelCase , UpperCamelCase=0 ): _SCREAMING_SNAKE_CASE = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) _SCREAMING_SNAKE_CASE = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(UpperCamelCase ) # create init_image _SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) _SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 )[0] _SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(UpperCamelCase ) ).convert("RGB" ).resize((256, 256) ) if str(UpperCamelCase ).startswith("mps" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCamelCase ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) _SCREAMING_SNAKE_CASE = { "prompt": "horse", "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowercase ( self ): _SCREAMING_SNAKE_CASE = "cpu" _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = self.pipeline_class(**UpperCamelCase ) _SCREAMING_SNAKE_CASE = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(UpperCamelCase ) ) _SCREAMING_SNAKE_CASE = output.images _SCREAMING_SNAKE_CASE = pipe( **self.get_dummy_inputs(UpperCamelCase ) , return_dict=UpperCamelCase , )[0] _SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _SCREAMING_SNAKE_CASE = np.array( [0.61_47_49_43, 0.6_07_35_39, 0.43_30_85_44, 0.5_92_82_69, 0.47_49_35_95, 0.46_75_59_73, 0.4_61_38_38, 0.45_36_87_97, 0.50_11_92_33] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self ): _SCREAMING_SNAKE_CASE = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_img2img_frog.npy" ) _SCREAMING_SNAKE_CASE = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) _SCREAMING_SNAKE_CASE = "A red cartoon frog, 4k" _SCREAMING_SNAKE_CASE = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase ) _SCREAMING_SNAKE_CASE = KandinskyImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1" , torch_dtype=torch.floataa ) _SCREAMING_SNAKE_CASE = pipeline.to(UpperCamelCase ) pipeline.set_progress_bar_config(disable=UpperCamelCase ) _SCREAMING_SNAKE_CASE = torch.Generator(device="cpu" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = pipe_prior( UpperCamelCase , generator=UpperCamelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() _SCREAMING_SNAKE_CASE = pipeline( UpperCamelCase , image=UpperCamelCase , image_embeds=UpperCamelCase , negative_image_embeds=UpperCamelCase , generator=UpperCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) _SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
493
0
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) _a = """https://openaipublic.azureedge.net/jukebox/models/""" _a = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def lowerCamelCase__ ( __snake_case ) -> Tuple: """simple docstring""" if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: _UpperCamelCase = key.replace('''.model.1.bias''', '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: _UpperCamelCase = key.replace('''.model.1.weight''', '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: _UpperCamelCase = key.replace('''.model.3.bias''', '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: _UpperCamelCase = key.replace('''.model.3.weight''', '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: _UpperCamelCase = key.replace('''conditioner_blocks.0''', '''conditioner_blocks''' ) if "prime_prior" in key: _UpperCamelCase = key.replace('''prime_prior''', '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _UpperCamelCase = key.replace('''.emb.''', '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''', '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''', '''metadata_embedding.''' ) if "x_emb.emb." in key: _UpperCamelCase = key.replace('''0.x_emb.emb''', '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''', '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''', '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''', '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''', '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''', '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''', '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''', '''embed_tokens''' ) return key def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = {} import re _UpperCamelCase = re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) _UpperCamelCase = re.compile( r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) _UpperCamelCase = re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) _UpperCamelCase = re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) _UpperCamelCase = re.compile( r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) _UpperCamelCase = re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) _UpperCamelCase = re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) _UpperCamelCase = re.compile( r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) _UpperCamelCase = re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(a_ ): _UpperCamelCase = re_encoder_block_conv_in.match(a_ ) _UpperCamelCase = regex_match.groups() _UpperCamelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCamelCase = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' _UpperCamelCase = re_encoder_block_conv_in.sub(a_, a_ ) elif re_encoder_block_resnet.fullmatch(a_ ): _UpperCamelCase = re_encoder_block_resnet.match(a_ ) _UpperCamelCase = regex_match.groups() _UpperCamelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCamelCase = {'''1''': 1, '''3''': 2}[groups[-2]] _UpperCamelCase = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' _UpperCamelCase = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' _UpperCamelCase = prefix + resnet_block _UpperCamelCase = re_encoder_block_resnet.sub(a_, a_ ) elif re_encoder_block_proj_out.fullmatch(a_ ): _UpperCamelCase = re_encoder_block_proj_out.match(a_ ) _UpperCamelCase = regex_match.groups() _UpperCamelCase = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' _UpperCamelCase = re_encoder_block_proj_out.sub(a_, a_ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(a_ ): _UpperCamelCase = re_decoder_block_conv_out.match(a_ ) _UpperCamelCase = regex_match.groups() _UpperCamelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCamelCase = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' _UpperCamelCase = re_decoder_block_conv_out.sub(a_, a_ ) elif re_decoder_block_resnet.fullmatch(a_ ): _UpperCamelCase = re_decoder_block_resnet.match(a_ ) _UpperCamelCase = regex_match.groups() _UpperCamelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCamelCase = {'''1''': 1, '''3''': 2}[groups[-2]] _UpperCamelCase = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' _UpperCamelCase = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' _UpperCamelCase = prefix + resnet_block _UpperCamelCase = re_decoder_block_resnet.sub(a_, a_ ) elif re_decoder_block_proj_in.fullmatch(a_ ): _UpperCamelCase = re_decoder_block_proj_in.match(a_ ) _UpperCamelCase = regex_match.groups() _UpperCamelCase = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' _UpperCamelCase = re_decoder_block_proj_in.sub(a_, a_ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(a_ ): _UpperCamelCase = re_prior_cond_conv_out.match(a_ ) _UpperCamelCase = regex_match.groups() _UpperCamelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCamelCase = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' _UpperCamelCase = re_prior_cond_conv_out.sub(a_, a_ ) elif re_prior_cond_resnet.fullmatch(a_ ): _UpperCamelCase = re_prior_cond_resnet.match(a_ ) _UpperCamelCase = regex_match.groups() _UpperCamelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCamelCase = {'''1''': 1, '''3''': 2}[groups[-2]] _UpperCamelCase = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' _UpperCamelCase = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' _UpperCamelCase = prefix + resnet_block _UpperCamelCase = re_prior_cond_resnet.sub(a_, a_ ) elif re_prior_cond_proj_in.fullmatch(a_ ): _UpperCamelCase = re_prior_cond_proj_in.match(a_ ) _UpperCamelCase = regex_match.groups() _UpperCamelCase = F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' _UpperCamelCase = re_prior_cond_proj_in.sub(a_, a_ ) # keep original key else: _UpperCamelCase = original_key _UpperCamelCase = replace_key(a_ ) if F'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(F'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape: _UpperCamelCase = model_state_dict[F'''{key_prefix}.{key}'''] print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) _UpperCamelCase = original_key _UpperCamelCase = original_key _UpperCamelCase = value return new_dict @torch.no_grad() def lowerCamelCase__ ( __snake_case=None, __snake_case=None ) -> Optional[int]: """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' ): _UpperCamelCase = requests.get(F'''{PREFIX}{file}''', allow_redirects=a_ ) os.makedirs(F'''{pytorch_dump_folder_path}/''', exist_ok=a_ ) open(F'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''', '''wb''' ).write(r.content ) _UpperCamelCase = MODEL_MAPPING[model_name.split('''/''' )[-1]] _UpperCamelCase = JukeboxConfig.from_pretrained(a_ ) _UpperCamelCase = JukeboxModel(a_ ) _UpperCamelCase = [] _UpperCamelCase = {} for i, dict_name in enumerate(a_ ): _UpperCamelCase = torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}''' )['''model'''] _UpperCamelCase = {} for k in old_dic.keys(): if k.endswith('''.b''' ): _UpperCamelCase = old_dic[k] elif k.endswith('''.w''' ): _UpperCamelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _UpperCamelCase = old_dic[k] else: _UpperCamelCase = old_dic[k] _UpperCamelCase = '''vqvae''' if i == 0 else F'''priors.{3 - i}''' _UpperCamelCase = fix_jukebox_keys(a_, model.state_dict(), a_, a_ ) weight_dict.append(a_ ) _UpperCamelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(a_ ) for i in range(len(a_ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(a_ ).mkdir(exist_ok=a_ ) with open(F'''{pytorch_dump_folder_path}/mapping.json''', '''w''' ) as txtfile: json.dump(a_, a_ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(a_ ) return weight_dict if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) _a = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
19
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __magic_name__ ( __UpperCAmelCase ): __A : Tuple = ["image_processor", "tokenizer"] __A : Dict = "BlipImageProcessor" __A : Dict = "AutoTokenizer" def __init__( self : Any , snake_case__ : Union[str, Any] , snake_case__ : str ): '''simple docstring''' lowercase :Dict = False super().__init__(snake_case__ , snake_case__ ) lowercase :Union[str, Any] = self.image_processor def __call__( self : Optional[int] , snake_case__ : ImageInput = None , snake_case__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , snake_case__ : bool = True , snake_case__ : Union[bool, str, PaddingStrategy] = False , snake_case__ : Union[bool, str, TruncationStrategy] = None , snake_case__ : Optional[int] = None , snake_case__ : int = 0 , snake_case__ : Optional[int] = None , snake_case__ : Optional[bool] = None , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : bool = True , snake_case__ : Optional[Union[str, TensorType]] = None , **snake_case__ : Optional[Any] , ): '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: lowercase :List[Any] = self.tokenizer lowercase :str = self.tokenizer( text=snake_case__ , add_special_tokens=snake_case__ , padding=snake_case__ , truncation=snake_case__ , max_length=snake_case__ , stride=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , return_overflowing_tokens=snake_case__ , return_special_tokens_mask=snake_case__ , return_offsets_mapping=snake_case__ , return_token_type_ids=snake_case__ , return_length=snake_case__ , verbose=snake_case__ , return_tensors=snake_case__ , **snake_case__ , ) return text_encoding # add pixel_values lowercase :Union[str, Any] = self.image_processor(snake_case__ , return_tensors=snake_case__ ) if text is not None: lowercase :int = self.tokenizer( text=snake_case__ , add_special_tokens=snake_case__ , padding=snake_case__ , truncation=snake_case__ , max_length=snake_case__ , stride=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , return_overflowing_tokens=snake_case__ , return_special_tokens_mask=snake_case__ , return_offsets_mapping=snake_case__ , return_token_type_ids=snake_case__ , return_length=snake_case__ , verbose=snake_case__ , return_tensors=snake_case__ , **snake_case__ , ) else: lowercase :Optional[int] = None if text_encoding is not None: encoding_image_processor.update(snake_case__ ) return encoding_image_processor def __snake_case ( self : Tuple , *snake_case__ : List[Any] , **snake_case__ : Tuple ): '''simple docstring''' return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def __snake_case ( self : List[str] , *snake_case__ : Dict , **snake_case__ : List[Any] ): '''simple docstring''' return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase :List[Any] = self.tokenizer.model_input_names lowercase :List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
677
0
"""simple docstring""" from functools import lru_cache @lru_cache def A_ ( _lowercase ): '''simple docstring''' if num < 0: raise ValueError("""Number should not be negative.""" ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
706
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration __a = [ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] __a = [ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] __a = ( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) __a = ( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) __a = [ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def A_ ( _lowercase, _lowercase ): '''simple docstring''' for tf_name, hf_name in patterns: snake_case_ :Any = k.replace(_lowercase, _lowercase ) return k def A_ ( _lowercase, _lowercase ): '''simple docstring''' snake_case_ :int = BigBirdPegasusConfig(**_lowercase ) snake_case_ :int = BigBirdPegasusForConditionalGeneration(_lowercase ) snake_case_ :List[str] = torch_model.state_dict() snake_case_ :Dict = {} # separating decoder weights snake_case_ :Optional[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("""pegasus/decoder""" )} snake_case_ :int = {k: tf_weights[k] for k in tf_weights if not k.startswith("""pegasus/decoder""" )} for k, v in tqdm(decoder_weights.items(), """tf -> hf conversion""" ): snake_case_ :List[str] = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue snake_case_ :Optional[int] = DECODER_PATTERNS snake_case_ :int = rename_state_dict_key(_lowercase, _lowercase ) if new_k not in state_dict: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): snake_case_ :Any = v.T snake_case_ :Tuple = torch.from_numpy(_lowercase ) assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items(), """tf -> hf conversion""" ): snake_case_ :int = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue snake_case_ :int = REMAINING_PATTERNS snake_case_ :Optional[int] = rename_state_dict_key(_lowercase, _lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): snake_case_ :Tuple = v.T snake_case_ :str = torch.from_numpy(_lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" snake_case_ :Union[str, Any] = mapping["""model.embed_positions.weight"""] snake_case_ :List[str] = mapping.pop("""model.embed_positions.weight""" ) snake_case_, snake_case_ :Optional[Any] = torch_model.load_state_dict(_lowercase, strict=_lowercase ) snake_case_ :Any = [ k for k in missing if k not in [ """final_logits_bias""", """model.encoder.embed_tokens.weight""", """model.decoder.embed_tokens.weight""", """lm_head.weight""", ] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def A_ ( _lowercase ): '''simple docstring''' snake_case_ :List[Any] = tf.train.list_variables(_lowercase ) snake_case_ :Union[str, Any] = {} snake_case_ :Any = ["""global_step"""] for name, shape in tqdm(_lowercase, desc="""converting tf checkpoint to dict""" ): snake_case_ :int = any(pat in name for pat in ignore_name ) if skip_key: continue snake_case_ :List[Any] = tf.train.load_variable(_lowercase, _lowercase ) snake_case_ :str = array return tf_weights def A_ ( _lowercase, _lowercase, _lowercase ): '''simple docstring''' snake_case_ :Any = get_tf_weights_as_numpy(_lowercase ) snake_case_ :Any = convert_bigbird_pegasus(_lowercase, _lowercase ) torch_model.save_pretrained(_lowercase ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.") __a = parser.parse_args() __a = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
310
0
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : int , a : Callable , a : Optional[Features] = None , a : str = None , a : bool = False , a : bool = False , a : Optional[dict] = None , a : Optional[int] = None , **a : Union[str, Any] , ) -> int: """simple docstring""" super().__init__( features=a , cache_dir=a , keep_in_memory=a , streaming=a , num_proc=a , **a , ) SCREAMING_SNAKE_CASE : Tuple = Generator( cache_dir=a , features=a , generator=a , gen_kwargs=a , **a , ) def __UpperCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" if self.streaming: SCREAMING_SNAKE_CASE : Dict = self.builder.as_streaming_dataset(split="train" ) # Build regular (map-style) dataset else: SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : Any = None self.builder.download_and_prepare( download_config=a , download_mode=a , verification_mode=a , base_path=a , num_proc=self.num_proc , ) SCREAMING_SNAKE_CASE : int = self.builder.as_dataset( split="train" , verification_mode=a , in_memory=self.keep_in_memory ) return dataset
25
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a_ = get_logger() a_ = None class _UpperCamelCase ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): '''simple docstring''' def __init__( self : Optional[Any] , a : str=None , a : List[Any]=None , **a : Any ) -> Optional[Any]: """simple docstring""" super().__init__(features=a ) import jax from jaxlib.xla_client import Device if isinstance(a , a ): raise ValueError( F"Expected {device} to be a `str` not {type(a )}, as `jaxlib.xla_extension.Device` " "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) SCREAMING_SNAKE_CASE : List[str] = device if isinstance(a , a ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE : str = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"Device with string identifier {self.device} not listed among the available " F"devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default " F"device: {str(jax.devices()[0] )}." ) SCREAMING_SNAKE_CASE : Any = str(jax.devices()[0] ) SCREAMING_SNAKE_CASE : Any = jnp_array_kwargs @staticmethod def __UpperCamelCase ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: """simple docstring""" import jax return {str(a ): device for device in jax.devices()} def __UpperCamelCase ( self : Dict , a : Tuple ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a , a ) and column: if all( isinstance(a , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(a , axis=0 ) return column def __UpperCamelCase ( self : Dict , a : str ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(a , (str, bytes, type(a )) ): return value elif isinstance(a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() SCREAMING_SNAKE_CASE : Union[str, Any] = {} if isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: SCREAMING_SNAKE_CASE : Dict = {"dtype": jnp.intaa} else: SCREAMING_SNAKE_CASE : str = {"dtype": jnp.intaa} elif isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): SCREAMING_SNAKE_CASE : int = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(a , PIL.Image.Image ): SCREAMING_SNAKE_CASE : Dict = np.asarray(a ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(a , **{**default_dtype, **self.jnp_array_kwargs} ) def __UpperCamelCase ( self : Any , a : List[str] ) -> Dict: """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(a , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(a , "__array__" ) and not isinstance(a , jax.Array ): SCREAMING_SNAKE_CASE : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(a , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) elif isinstance(a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) return self._tensorize(a ) def __UpperCamelCase ( self : Optional[Any] , a : dict ) -> Dict: """simple docstring""" return map_nested(self._recursive_tensorize , a , map_list=a ) def __UpperCamelCase ( self : Dict , a : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.numpy_arrow_extractor().extract_row(a ) SCREAMING_SNAKE_CASE : List[Any] = self.python_features_decoder.decode_row(a ) return self.recursive_tensorize(a ) def __UpperCamelCase ( self : Optional[int] , a : pa.Table ) -> "jax.Array": """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.numpy_arrow_extractor().extract_column(a ) SCREAMING_SNAKE_CASE : Optional[Any] = self.python_features_decoder.decode_column(a , pa_table.column_names[0] ) SCREAMING_SNAKE_CASE : Tuple = self.recursive_tensorize(a ) SCREAMING_SNAKE_CASE : Optional[int] = self._consolidate(a ) return column def __UpperCamelCase ( self : List[Any] , a : pa.Table ) -> Mapping: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.numpy_arrow_extractor().extract_batch(a ) SCREAMING_SNAKE_CASE : str = self.python_features_decoder.decode_batch(a ) SCREAMING_SNAKE_CASE : List[Any] = self.recursive_tensorize(a ) for column_name in batch: SCREAMING_SNAKE_CASE : List[Any] = self._consolidate(batch[column_name] ) return batch
25
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : List[Any] = logging.get_logger(__name__) lowerCamelCase_ : Any = {"""ctrl""": """https://huggingface.co/ctrl/resolve/main/config.json"""} class a__ ( lowercase__ ): A__ : Optional[int] = 'ctrl' A__ : Dict = ['past_key_values'] A__ : List[str] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , UpperCAmelCase=2_4_6_5_3_4 , UpperCAmelCase=2_5_6 , UpperCAmelCase=1_2_8_0 , UpperCAmelCase=8_1_9_2 , UpperCAmelCase=4_8 , UpperCAmelCase=1_6 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1e-6 , UpperCAmelCase=0.02 , UpperCAmelCase=True , **UpperCAmelCase , ) -> int: __a = vocab_size __a = n_positions __a = n_embd __a = n_layer __a = n_head __a = dff __a = resid_pdrop __a = embd_pdrop __a = layer_norm_epsilon __a = initializer_range __a = use_cache super().__init__(**UpperCAmelCase__ )
700
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase_ : Optional[int] = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCamelCase_ : Union[str, Any] = 250_004 lowerCamelCase_ : List[str] = 250_020 @require_sentencepiece @require_tokenizers class a__ ( __snake_case , unittest.TestCase ): A__ : Optional[Any] = MBartTokenizer A__ : Optional[Any] = MBartTokenizerFast A__ : Dict = True A__ : Dict = True def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing __a = MBartTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self ) -> str: __a = MBartTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) __a = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) __a = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __a = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __a = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __a = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) __a = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) __a = tempfile.mkdtemp() __a = tokenizer_r.save_pretrained(UpperCAmelCase ) __a = tokenizer_p.save_pretrained(UpperCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) __a = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(UpperCAmelCase , UpperCAmelCase ) # Checks everything loads correctly in the same way __a = tokenizer_r.from_pretrained(UpperCAmelCase ) __a = tokenizer_p.from_pretrained(UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase , UpperCAmelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(UpperCAmelCase ) # Save tokenizer rust, legacy_format=True __a = tempfile.mkdtemp() __a = tokenizer_r.save_pretrained(UpperCAmelCase , legacy_format=UpperCAmelCase ) __a = tokenizer_p.save_pretrained(UpperCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(UpperCAmelCase , UpperCAmelCase ) # Checks everything loads correctly in the same way __a = tokenizer_r.from_pretrained(UpperCAmelCase ) __a = tokenizer_p.from_pretrained(UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase , UpperCAmelCase ) ) shutil.rmtree(UpperCAmelCase ) # Save tokenizer rust, legacy_format=False __a = tempfile.mkdtemp() __a = tokenizer_r.save_pretrained(UpperCAmelCase , legacy_format=UpperCAmelCase ) __a = tokenizer_p.save_pretrained(UpperCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __a = tokenizer_r.from_pretrained(UpperCAmelCase ) __a = tokenizer_p.from_pretrained(UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase , UpperCAmelCase ) ) shutil.rmtree(UpperCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class a__ ( unittest.TestCase ): A__ : Optional[Any] = 'facebook/mbart-large-en-ro' A__ : Union[str, Any] = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] A__ : Tuple = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] A__ : Dict = [82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2, EN_CODE] @classmethod def __SCREAMING_SNAKE_CASE ( cls ) -> Optional[Any]: __a = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) __a = 1 return cls def __SCREAMING_SNAKE_CASE ( self ) -> str: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 2_5_0_0_2_0 ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: __a = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: self.assertIn(UpperCAmelCase , self.tokenizer.all_special_ids ) __a = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] __a = self.tokenizer.decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) __a = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: __a = ['this is gunna be a long sentence ' * 2_0] assert isinstance(src_text[0] , UpperCAmelCase ) __a = 1_0 __a = self.tokenizer(UpperCAmelCase , max_length=UpperCAmelCase , truncation=UpperCAmelCase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , UpperCAmelCase ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [2_5_0_0_2_6, 2_5_0_0_0_1] ) def __SCREAMING_SNAKE_CASE ( self ) -> str: __a = tempfile.mkdtemp() __a = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCAmelCase ) __a = MBartTokenizer.from_pretrained(UpperCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCAmelCase ) @require_torch def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: __a = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase , return_tensors='pt' ) __a = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: __a = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) __a = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) __a = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: __a = self.tokenizer(self.src_text , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=3 , return_tensors='pt' ) __a = self.tokenizer( text_target=self.tgt_text , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=1_0 , return_tensors='pt' ) __a = targets['input_ids'] __a = shift_tokens_right(UpperCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: __a = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { # A, test, EOS, en_XX 'input_ids': [[6_2, 3_0_3_4, 2, 2_5_0_0_0_4]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 2_5_0_0_0_1, } , )
246
0
from math import sqrt def lowerCamelCase__ ( _a): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(_a) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase__ ( _a = 10001): SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : List[Any] = 1 while count != nth and number < 3: number += 1 if is_prime(_a): count += 1 while count != nth: number += 2 if is_prime(_a): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
25
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _A = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
159
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() A : Any = logging.get_logger(__name__) def lowercase_ ( lowercase__ , lowercase__=False ) ->Tuple: _snake_case: str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _snake_case: int = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def lowercase_ ( lowercase__ , lowercase__ , lowercase__=False ) ->Optional[Any]: for i in range(config.num_hidden_layers ): if base_model: _snake_case: Union[str, Any] = '' else: _snake_case: Optional[Any] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _snake_case: Optional[Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) _snake_case: Dict = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case: str = in_proj_weight[ : config.hidden_size, : ] _snake_case: Optional[Any] = in_proj_bias[: config.hidden_size] _snake_case: List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _snake_case: List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _snake_case: Dict = in_proj_weight[ -config.hidden_size :, : ] _snake_case: str = in_proj_bias[-config.hidden_size :] def lowercase_ ( lowercase__ ) ->Union[str, Any]: _snake_case: Union[str, Any] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def lowercase_ ( lowercase__ , lowercase__ , lowercase__ ) ->str: _snake_case: str = dct.pop(lowercase__ ) _snake_case: Any = val def lowercase_ ( ) ->int: _snake_case: Dict = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case: str = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def lowercase_ ( lowercase__ , lowercase__ , lowercase__=True ) ->Dict: _snake_case: Union[str, Any] = ViTConfig() # patch_size if model_name[-1] == "8": _snake_case: List[str] = 8 # set labels if required if not base_model: _snake_case: List[Any] = 1000 _snake_case: Union[str, Any] = 'huggingface/label-files' _snake_case: Optional[int] = 'imagenet-1k-id2label.json' _snake_case: Optional[Any] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='dataset' ) , 'r' ) ) _snake_case: Union[str, Any] = {int(lowercase__ ): v for k, v in idalabel.items()} _snake_case: Dict = idalabel _snake_case: Optional[int] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _snake_case: str = 384 _snake_case: str = 1536 _snake_case: Any = 12 _snake_case: List[Any] = 6 # load original model from torch hub _snake_case: List[str] = torch.hub.load('facebookresearch/dino:main' , lowercase__ ) original_model.eval() # load state_dict of original model, remove and rename some keys _snake_case: Any = original_model.state_dict() if base_model: remove_classification_head_(lowercase__ ) _snake_case: List[str] = create_rename_keys(lowercase__ , base_model=lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ ) # load HuggingFace model if base_model: _snake_case: int = ViTModel(lowercase__ , add_pooling_layer=lowercase__ ).eval() else: _snake_case: Tuple = ViTForImageClassification(lowercase__ ).eval() model.load_state_dict(lowercase__ ) # Check outputs on an image, prepared by ViTImageProcessor _snake_case: int = ViTImageProcessor() _snake_case: Dict = image_processor(images=prepare_img() , return_tensors='pt' ) _snake_case: Dict = encoding['pixel_values'] _snake_case: Optional[int] = model(lowercase__ ) if base_model: _snake_case: List[str] = original_model(lowercase__ ) assert torch.allclose(lowercase__ , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: _snake_case: Any = original_model(lowercase__ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1e-3 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) A : Tuple = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
718
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available A : Dict = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys A : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
273
0
from pathlib import Path import fire from tqdm import tqdm def lowerCamelCase_(lowerCamelCase_="ro" , lowerCamelCase_="en" , lowerCamelCase_="wmt16" , lowerCamelCase_=None ) -> None: try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("run pip install datasets" ) UpperCAmelCase = F'{src_lang}-{tgt_lang}' print(F'Converting {dataset}-{pair}' ) UpperCAmelCase = datasets.load_dataset(lowerCamelCase_ , lowerCamelCase_ ) if save_dir is None: UpperCAmelCase = F'{dataset}-{pair}' UpperCAmelCase = Path(lowerCamelCase_ ) save_dir.mkdir(exist_ok=lowerCamelCase_ ) for split in ds.keys(): print(F'Splitting {split} with {ds[split].num_rows} records' ) # to save to val.source, val.target like summary datasets UpperCAmelCase = "val" if split == "validation" else split UpperCAmelCase = save_dir.joinpath(F'{fn}.source' ) UpperCAmelCase = save_dir.joinpath(F'{fn}.target' ) UpperCAmelCase = src_path.open("w+" ) UpperCAmelCase = tgt_path.open("w+" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): UpperCAmelCase = x["translation"] src_fp.write(ex[src_lang] + "\n" ) tgt_fp.write(ex[tgt_lang] + "\n" ) print(F'Saved {dataset} dataset to {save_dir}' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
323
__lowerCamelCase : str = [ (1_000, "M"), (900, "CM"), (500, "D"), (400, "CD"), (100, "C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def lowerCamelCase_(lowerCamelCase_ ) -> int: UpperCAmelCase = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1_000} UpperCAmelCase = 0 UpperCAmelCase = 0 while place < len(lowerCamelCase_ ): if (place + 1 < len(lowerCamelCase_ )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def lowerCamelCase_(lowerCamelCase_ ) -> str: UpperCAmelCase = [] for arabic, roman in ROMAN: ((UpperCAmelCase) , (UpperCAmelCase)) = divmod(lowerCamelCase_ , lowerCamelCase_ ) result.append(roman * factor ) if number == 0: break return "".join(lowerCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
323
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : Tuple = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """pix2struct_text_model""" UpperCamelCase__ = ["""past_key_values"""] UpperCamelCase__ = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : int , __UpperCamelCase : Dict=5_0_2_4_4 , __UpperCamelCase : int=7_6_8 , __UpperCamelCase : Optional[Any]=6_4 , __UpperCamelCase : Any=2_0_4_8 , __UpperCamelCase : Tuple=1_2 , __UpperCamelCase : List[str]=1_2 , __UpperCamelCase : int=3_2 , __UpperCamelCase : Tuple=1_2_8 , __UpperCamelCase : Union[str, Any]=0.1 , __UpperCamelCase : List[str]=1e-6 , __UpperCamelCase : Tuple=1.0 , __UpperCamelCase : str="gelu_new" , __UpperCamelCase : Optional[int]=0 , __UpperCamelCase : int=False , __UpperCamelCase : Optional[int]=0 , __UpperCamelCase : List[Any]=1 , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : Optional[Any]=True , **__UpperCamelCase : Optional[int] , )->List[Any]: _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = d_kv _UpperCAmelCase = d_ff _UpperCAmelCase = num_layers _UpperCAmelCase = num_heads _UpperCAmelCase = relative_attention_num_buckets _UpperCAmelCase = relative_attention_max_distance _UpperCAmelCase = dropout_rate _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_factor _UpperCAmelCase = use_cache _UpperCAmelCase = eos_token_id _UpperCAmelCase = decoder_start_token_id # for backwards compatibility _UpperCAmelCase = dense_act_fn super().__init__( pad_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , decoder_start_token_id=__UpperCamelCase , tie_word_embeddings=__UpperCamelCase , is_decoder=__UpperCamelCase , **__UpperCamelCase , ) @classmethod def lowercase__ ( cls : str , __UpperCamelCase : Union[str, os.PathLike] , **__UpperCamelCase : Dict )->"PretrainedConfig": cls._set_token_in_kwargs(__UpperCamelCase ) _UpperCAmelCase , _UpperCAmelCase = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": _UpperCAmelCase = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__UpperCamelCase , **__UpperCamelCase ) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """pix2struct_vision_model""" def __init__( self : Optional[Any] , __UpperCamelCase : Optional[Any]=7_6_8 , __UpperCamelCase : Any=7_6_8 , __UpperCamelCase : Tuple=2_0_4_8 , __UpperCamelCase : List[Any]=6_4 , __UpperCamelCase : Dict=1_2 , __UpperCamelCase : Dict=1_2 , __UpperCamelCase : Union[str, Any]="gelu_new" , __UpperCamelCase : Optional[int]=1e-6 , __UpperCamelCase : str=0.0 , __UpperCamelCase : int=0.0 , __UpperCamelCase : Optional[int]=1e-10 , __UpperCamelCase : Any=1.0 , __UpperCamelCase : List[str]=4_0_9_6 , __UpperCamelCase : Any=3_2 , __UpperCamelCase : List[Any]=1_2_8 , **__UpperCamelCase : Union[str, Any] , )->Tuple: super().__init__(**__UpperCamelCase ) _UpperCAmelCase = hidden_size _UpperCAmelCase = patch_embed_hidden_size _UpperCAmelCase = d_ff _UpperCAmelCase = dropout_rate _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = initializer_range _UpperCAmelCase = initializer_factor _UpperCAmelCase = attention_dropout _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = dense_act_fn _UpperCAmelCase = seq_len _UpperCAmelCase = relative_attention_num_buckets _UpperCAmelCase = relative_attention_max_distance _UpperCAmelCase = d_kv @classmethod def lowercase__ ( cls : Optional[Any] , __UpperCamelCase : Union[str, os.PathLike] , **__UpperCamelCase : List[Any] )->"PretrainedConfig": cls._set_token_in_kwargs(__UpperCamelCase ) _UpperCAmelCase , _UpperCAmelCase = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": _UpperCAmelCase = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__UpperCamelCase , **__UpperCamelCase ) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """pix2struct""" UpperCamelCase__ = True def __init__( self : Optional[Any] , __UpperCamelCase : int=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Dict=1.0 , __UpperCamelCase : List[Any]=0.0_2 , __UpperCamelCase : Dict=False , __UpperCamelCase : Tuple=False , __UpperCamelCase : int=True , **__UpperCamelCase : int , )->Union[str, Any]: super().__init__(tie_word_embeddings=__UpperCamelCase , is_encoder_decoder=__UpperCamelCase , **__UpperCamelCase ) if text_config is None: _UpperCAmelCase = {} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' ) if vision_config is None: _UpperCAmelCase = {} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' ) _UpperCAmelCase = PixaStructTextConfig(**__UpperCamelCase ) _UpperCAmelCase = PixaStructVisionConfig(**__UpperCamelCase ) _UpperCAmelCase = self.text_config.decoder_start_token_id _UpperCAmelCase = self.text_config.pad_token_id _UpperCAmelCase = self.text_config.eos_token_id _UpperCAmelCase = initializer_factor _UpperCAmelCase = initializer_range _UpperCAmelCase = self.initializer_range _UpperCAmelCase = self.initializer_range _UpperCAmelCase = is_vqa @classmethod def lowercase__ ( cls : List[str] , __UpperCamelCase : PixaStructTextConfig , __UpperCamelCase : PixaStructVisionConfig , **__UpperCamelCase : int )->int: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->List[Any]: _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.text_config.to_dict() _UpperCAmelCase = self.vision_config.to_dict() _UpperCAmelCase = self.__class__.model_type return output
713
"""simple docstring""" import functools def lowercase ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : list[int] ): '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(_SCREAMING_SNAKE_CASE ) != 3 or not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(_SCREAMING_SNAKE_CASE ) == 0: return 0 if min(_SCREAMING_SNAKE_CASE ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(_SCREAMING_SNAKE_CASE ) >= 366: raise ValueError('''All days elements should be less than 366''' ) _UpperCAmelCase = set(_SCREAMING_SNAKE_CASE ) @functools.cache def dynamic_programming(_SCREAMING_SNAKE_CASE : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
95
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Union[str, Any]=False ): SCREAMING_SNAKE_CASE__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" SCREAMING_SNAKE_CASE__ = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[Any]=False ): for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE__ = """""" else: SCREAMING_SNAKE_CASE__ = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE__ = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: List[str] , UpperCamelCase__: List[str] ): SCREAMING_SNAKE_CASE__ = dct.pop(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = val def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE__ = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: Tuple ): SCREAMING_SNAKE_CASE__ = DeiTConfig() # all deit models have fine-tuned heads SCREAMING_SNAKE_CASE__ = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size SCREAMING_SNAKE_CASE__ = 1_000 SCREAMING_SNAKE_CASE__ = """huggingface/label-files""" SCREAMING_SNAKE_CASE__ = """imagenet-1k-id2label.json""" SCREAMING_SNAKE_CASE__ = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE__ = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ = idalabel SCREAMING_SNAKE_CASE__ = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ = int(deit_name[-6:-4] ) SCREAMING_SNAKE_CASE__ = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): SCREAMING_SNAKE_CASE__ = 192 SCREAMING_SNAKE_CASE__ = 768 SCREAMING_SNAKE_CASE__ = 12 SCREAMING_SNAKE_CASE__ = 3 elif deit_name[9:].startswith("""small""" ): SCREAMING_SNAKE_CASE__ = 384 SCREAMING_SNAKE_CASE__ = 1_536 SCREAMING_SNAKE_CASE__ = 12 SCREAMING_SNAKE_CASE__ = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): SCREAMING_SNAKE_CASE__ = 1_024 SCREAMING_SNAKE_CASE__ = 4_096 SCREAMING_SNAKE_CASE__ = 24 SCREAMING_SNAKE_CASE__ = 16 # load original model from timm SCREAMING_SNAKE_CASE__ = timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys SCREAMING_SNAKE_CASE__ = timm_model.state_dict() SCREAMING_SNAKE_CASE__ = create_rename_keys(UpperCamelCase__ , UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # load HuggingFace model SCREAMING_SNAKE_CASE__ = DeiTForImageClassificationWithTeacher(UpperCamelCase__ ).eval() model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image, prepared by DeiTImageProcessor SCREAMING_SNAKE_CASE__ = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 SCREAMING_SNAKE_CASE__ = DeiTImageProcessor(size=UpperCamelCase__ , crop_size=config.image_size ) SCREAMING_SNAKE_CASE__ = image_processor(images=prepare_img() , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ = encoding["""pixel_values"""] SCREAMING_SNAKE_CASE__ = model(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = timm_model(UpperCamelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCamelCase__ , outputs.logits , atol=1e-3 ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(f'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _lowerCamelCase = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
6
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = ["image_processor", "tokenizer"] lowerCamelCase_ = "AutoImageProcessor" lowerCamelCase_ = "AutoTokenizer" def __init__( self :Optional[int] , __A :Optional[Any] , __A :Dict ) -> Dict: """simple docstring""" super().__init__(__A , __A ) SCREAMING_SNAKE_CASE__ = self.image_processor def __call__( self :int , __A :str=None , __A :int=None , __A :Union[str, Any]=None , **__A :str ) -> Optional[Any]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def _snake_case ( self :str , *__A :List[str] , **__A :List[str] ) -> List[Any]: """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def _snake_case ( self :List[str] , *__A :Any , **__A :Any ) -> Tuple: """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def _snake_case ( self :Dict ) -> List[Any]: """simple docstring""" return ["input_ids", "attention_mask", "pixel_values"]
6
1
"""simple docstring""" from collections.abc import Callable import numpy as np def _lowerCamelCase ( __a, __a, __a, __a, __a ): SCREAMING_SNAKE_CASE_ = int(np.ceil((x_end - xa) / step_size ) ) SCREAMING_SNAKE_CASE_ = np.zeros((n + 1,) ) SCREAMING_SNAKE_CASE_ = ya SCREAMING_SNAKE_CASE_ = xa for k in range(__a ): SCREAMING_SNAKE_CASE_ = y[k] + step_size * ode_func(__a, y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
628
"""simple docstring""" from __future__ import annotations def _lowerCamelCase ( __a, __a ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(__a ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: SCREAMING_SNAKE_CASE_ = i + 1 else: SCREAMING_SNAKE_CASE_ = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'''{two_pointer([2, 7, 11, 15], 9) = }''')
628
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__: List[Any] = logging.get_logger(__name__) UpperCamelCase__: Optional[int] = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = "data2vec-vision" def __init__( self : Dict , __snake_case : Any=768 , __snake_case : Dict=12 , __snake_case : Dict=12 , __snake_case : List[Any]=3072 , __snake_case : int="gelu" , __snake_case : Dict=0.0 , __snake_case : List[str]=0.0 , __snake_case : List[Any]=0.02 , __snake_case : Optional[Any]=1E-12 , __snake_case : List[Any]=224 , __snake_case : Dict=16 , __snake_case : Optional[Any]=3 , __snake_case : int=False , __snake_case : str=False , __snake_case : Optional[int]=False , __snake_case : Dict=False , __snake_case : Optional[int]=0.1 , __snake_case : Optional[Any]=0.1 , __snake_case : Optional[Any]=True , __snake_case : Optional[Any]=[3, 5, 7, 11] , __snake_case : int=[1, 2, 3, 6] , __snake_case : Union[str, Any]=True , __snake_case : Tuple=0.4 , __snake_case : str=256 , __snake_case : int=1 , __snake_case : int=False , __snake_case : List[Any]=255 , **__snake_case : int , ) -> Optional[int]: super().__init__(**__snake_case ) UpperCAmelCase : Any = hidden_size UpperCAmelCase : Optional[Any] = num_hidden_layers UpperCAmelCase : int = num_attention_heads UpperCAmelCase : Any = intermediate_size UpperCAmelCase : Tuple = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : Any = initializer_range UpperCAmelCase : Tuple = layer_norm_eps UpperCAmelCase : str = image_size UpperCAmelCase : List[str] = patch_size UpperCAmelCase : Dict = num_channels UpperCAmelCase : str = use_mask_token UpperCAmelCase : Union[str, Any] = use_absolute_position_embeddings UpperCAmelCase : Tuple = use_relative_position_bias UpperCAmelCase : List[str] = use_shared_relative_position_bias UpperCAmelCase : Dict = layer_scale_init_value UpperCAmelCase : int = drop_path_rate UpperCAmelCase : List[Any] = use_mean_pooling # decode head attributes (semantic segmentation) UpperCAmelCase : Tuple = out_indices UpperCAmelCase : Dict = pool_scales # auxiliary head attributes (semantic segmentation) UpperCAmelCase : Optional[int] = use_auxiliary_head UpperCAmelCase : Optional[int] = auxiliary_loss_weight UpperCAmelCase : Optional[Any] = auxiliary_channels UpperCAmelCase : int = auxiliary_num_convs UpperCAmelCase : List[str] = auxiliary_concat_input UpperCAmelCase : str = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = version.parse("""1.11""" ) @property def A ( self : Union[str, Any] ) -> List[str]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def A ( self : Any ) -> str: return 1E-4
127
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) class __lowerCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase : Union[str, Any] =["pixel_values"] def __init__( self : Optional[int] , lowerCAmelCase : bool = True , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase : bool = True , lowerCAmelCase : Union[int, float] = 1 / 2_55 , lowerCAmelCase : bool = True , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : bool = True , **lowerCAmelCase : List[Any] , ): super().__init__(**lowerCAmelCase ) A_ = size if size is not None else {"height": 3_84, "width": 3_84} A_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) A_ = do_resize A_ = size A_ = resample A_ = do_rescale A_ = rescale_factor A_ = do_normalize A_ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A_ = image_std if image_std is not None else OPENAI_CLIP_STD A_ = do_convert_rgb def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : np.ndarray , lowerCAmelCase : Dict[str, int] , lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : Tuple , ): A_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}" ) A_ = (size["height"], size["width"]) return resize(lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def _UpperCAmelCase ( self : str , lowerCAmelCase : np.ndarray , lowerCAmelCase : Union[int, float] , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : str , ): return rescale(lowerCAmelCase , scale=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : np.ndarray , lowerCAmelCase : Union[float, List[float]] , lowerCAmelCase : Union[float, List[float]] , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : Dict , ): return normalize(lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def _UpperCAmelCase ( self : Tuple , lowerCAmelCase : ImageInput , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[Dict[str, int]] = None , lowerCAmelCase : PILImageResampling = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[float] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : Optional[Union[str, TensorType]] = None , lowerCAmelCase : bool = None , lowerCAmelCase : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase : List[str] , ): A_ = do_resize if do_resize is not None else self.do_resize A_ = resample if resample is not None else self.resample A_ = do_rescale if do_rescale is not None else self.do_rescale A_ = rescale_factor if rescale_factor is not None else self.rescale_factor A_ = do_normalize if do_normalize is not None else self.do_normalize A_ = image_mean if image_mean is not None else self.image_mean A_ = image_std if image_std is not None else self.image_std A_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A_ = size if size is not None else self.size A_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) A_ = make_list_of_images(lowerCAmelCase ) if not valid_images(lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: A_ = [convert_to_rgb(lowerCAmelCase ) for image in images] # All transformations expect numpy arrays. A_ = [to_numpy_array(lowerCAmelCase ) for image in images] if do_resize: A_ = [self.resize(image=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase ) for image in images] if do_rescale: A_ = [self.rescale(image=lowerCAmelCase , scale=lowerCAmelCase ) for image in images] if do_normalize: A_ = [self.normalize(image=lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase ) for image in images] A_ = [to_channel_dimension_format(lowerCAmelCase , lowerCAmelCase ) for image in images] A_ = BatchFeature(data={"pixel_values": images} , tensor_type=lowerCAmelCase ) return encoded_outputs
452
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class _UpperCAmelCase ( lowercase ): lowerCamelCase_ : Union[str, Any] = """xmod""" def __init__( self : Tuple , UpperCAmelCase : Tuple=3_05_22 , UpperCAmelCase : Any=7_68 , UpperCAmelCase : Any=12 , UpperCAmelCase : Union[str, Any]=12 , UpperCAmelCase : List[str]=30_72 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Any=0.1 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Tuple=5_12 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Dict=1E-12 , UpperCAmelCase : List[str]=1 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : Tuple="absolute" , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Any=None , UpperCAmelCase : str=False , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : int=False , UpperCAmelCase : Any=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Any=("en_XX",) , UpperCAmelCase : Optional[int]=None , **UpperCAmelCase : Union[str, Any] , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase) SCREAMING_SNAKE_CASE_ :List[Any] = vocab_size SCREAMING_SNAKE_CASE_ :Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE_ :Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ :Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ :Any = hidden_act SCREAMING_SNAKE_CASE_ :Dict = intermediate_size SCREAMING_SNAKE_CASE_ :Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ :List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ :List[str] = max_position_embeddings SCREAMING_SNAKE_CASE_ :Tuple = type_vocab_size SCREAMING_SNAKE_CASE_ :List[str] = initializer_range SCREAMING_SNAKE_CASE_ :Any = layer_norm_eps SCREAMING_SNAKE_CASE_ :str = position_embedding_type SCREAMING_SNAKE_CASE_ :Any = use_cache SCREAMING_SNAKE_CASE_ :str = classifier_dropout SCREAMING_SNAKE_CASE_ :List[str] = pre_norm SCREAMING_SNAKE_CASE_ :List[str] = adapter_reduction_factor SCREAMING_SNAKE_CASE_ :int = adapter_layer_norm SCREAMING_SNAKE_CASE_ :Dict = adapter_reuse_layer_norm SCREAMING_SNAKE_CASE_ :Optional[Any] = ln_before_adapter SCREAMING_SNAKE_CASE_ :List[Any] = list(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :List[Any] = default_language class _UpperCAmelCase ( lowercase ): @property def _snake_case ( self : Any): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ :Dict = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE_ :Any = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
140
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class _UpperCAmelCase ( lowercase ): lowerCamelCase_ : Union[str, Any] = """xmod""" def __init__( self : Tuple , UpperCAmelCase : Tuple=3_05_22 , UpperCAmelCase : Any=7_68 , UpperCAmelCase : Any=12 , UpperCAmelCase : Union[str, Any]=12 , UpperCAmelCase : List[str]=30_72 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Any=0.1 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Tuple=5_12 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Dict=1E-12 , UpperCAmelCase : List[str]=1 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : Tuple="absolute" , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Any=None , UpperCAmelCase : str=False , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : int=False , UpperCAmelCase : Any=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Any=("en_XX",) , UpperCAmelCase : Optional[int]=None , **UpperCAmelCase : Union[str, Any] , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase) SCREAMING_SNAKE_CASE_ :List[Any] = vocab_size SCREAMING_SNAKE_CASE_ :Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE_ :Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ :Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ :Any = hidden_act SCREAMING_SNAKE_CASE_ :Dict = intermediate_size SCREAMING_SNAKE_CASE_ :Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ :List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ :List[str] = max_position_embeddings SCREAMING_SNAKE_CASE_ :Tuple = type_vocab_size SCREAMING_SNAKE_CASE_ :List[str] = initializer_range SCREAMING_SNAKE_CASE_ :Any = layer_norm_eps SCREAMING_SNAKE_CASE_ :str = position_embedding_type SCREAMING_SNAKE_CASE_ :Any = use_cache SCREAMING_SNAKE_CASE_ :str = classifier_dropout SCREAMING_SNAKE_CASE_ :List[str] = pre_norm SCREAMING_SNAKE_CASE_ :List[str] = adapter_reduction_factor SCREAMING_SNAKE_CASE_ :int = adapter_layer_norm SCREAMING_SNAKE_CASE_ :Dict = adapter_reuse_layer_norm SCREAMING_SNAKE_CASE_ :Optional[Any] = ln_before_adapter SCREAMING_SNAKE_CASE_ :List[Any] = list(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :List[Any] = default_language class _UpperCAmelCase ( lowercase ): @property def _snake_case ( self : Any): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ :Dict = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE_ :Any = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
140
1
"""simple docstring""" from __future__ import annotations def lowercase__ ( lowerCamelCase : list[int] , lowerCamelCase : int ) -> list[int]: lowerCAmelCase__ : int = 0 lowerCAmelCase__ : Optional[int] = len(lowerCamelCase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowerCAmelCase__ : Dict = i + 1 else: lowerCAmelCase__ : Any = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
308
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'microsoft/conditional-detr-resnet-50': ( 'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json' ), } class a ( UpperCAmelCase ): _lowercase = "conditional_detr" _lowercase = ["past_key_values"] _lowercase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , A_=True , A_=None , A_=3 , A_=300 , A_=6 , A_=2048 , A_=8 , A_=6 , A_=2048 , A_=8 , A_=0.0 , A_=0.0 , A_=True , A_="relu" , A_=256 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.02 , A_=1.0 , A_=False , A_="sine" , A_="resnet50" , A_=True , A_=False , A_=2 , A_=5 , A_=2 , A_=1 , A_=1 , A_=2 , A_=5 , A_=2 , A_=0.25 , **A_ , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) _UpperCAmelCase : Tuple = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(A_ , A_ ): _UpperCAmelCase : Optional[Any] = backbone_config.get("model_type" ) _UpperCAmelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type] _UpperCAmelCase : Dict = config_class.from_dict(A_ ) _UpperCAmelCase : Any = use_timm_backbone _UpperCAmelCase : List[Any] = backbone_config _UpperCAmelCase : Dict = num_channels _UpperCAmelCase : int = num_queries _UpperCAmelCase : Union[str, Any] = d_model _UpperCAmelCase : Dict = encoder_ffn_dim _UpperCAmelCase : Any = encoder_layers _UpperCAmelCase : List[str] = encoder_attention_heads _UpperCAmelCase : Optional[int] = decoder_ffn_dim _UpperCAmelCase : str = decoder_layers _UpperCAmelCase : Optional[Any] = decoder_attention_heads _UpperCAmelCase : Optional[int] = dropout _UpperCAmelCase : List[Any] = attention_dropout _UpperCAmelCase : List[Any] = activation_dropout _UpperCAmelCase : List[str] = activation_function _UpperCAmelCase : Optional[int] = init_std _UpperCAmelCase : List[Any] = init_xavier_std _UpperCAmelCase : Optional[int] = encoder_layerdrop _UpperCAmelCase : List[str] = decoder_layerdrop _UpperCAmelCase : Optional[int] = encoder_layers _UpperCAmelCase : Union[str, Any] = auxiliary_loss _UpperCAmelCase : str = position_embedding_type _UpperCAmelCase : str = backbone _UpperCAmelCase : int = use_pretrained_backbone _UpperCAmelCase : Optional[int] = dilation # Hungarian matcher _UpperCAmelCase : Optional[int] = class_cost _UpperCAmelCase : Tuple = bbox_cost _UpperCAmelCase : Dict = giou_cost # Loss coefficients _UpperCAmelCase : Any = mask_loss_coefficient _UpperCAmelCase : int = dice_loss_coefficient _UpperCAmelCase : Any = cls_loss_coefficient _UpperCAmelCase : Any = bbox_loss_coefficient _UpperCAmelCase : Optional[int] = giou_loss_coefficient _UpperCAmelCase : List[Any] = focal_alpha super().__init__(is_encoder_decoder=A_ , **A_ ) @property def _UpperCAmelCase ( self ): '''simple docstring''' return self.encoder_attention_heads @property def _UpperCAmelCase ( self ): '''simple docstring''' return self.d_model def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Dict = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _UpperCAmelCase : Tuple = self.backbone_config.to_dict() _UpperCAmelCase : Tuple = self.__class__.model_type return output class a ( UpperCAmelCase ): _lowercase = version.parse("1.11" ) @property def _UpperCAmelCase ( self ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _UpperCAmelCase ( self ): '''simple docstring''' return 1e-5 @property def _UpperCAmelCase ( self ): '''simple docstring''' return 12
300
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _lowercase: Any = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: Any = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: Any = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: Any = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: Tuple = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _lowercase: Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
700
from __future__ import annotations class lowerCamelCase__ : def __init__( self : List[str] , lowercase__ : list[list[int]] ): _lowerCAmelCase = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.' ) if len(lowercase__ ) != 0: _lowerCAmelCase = len(rows[0] ) if cols == 0: raise error for row in rows: if len(lowercase__ ) != cols: raise error for value in row: if not isinstance(lowercase__ , (int, float) ): raise error _lowerCAmelCase = rows else: _lowerCAmelCase = [] def SCREAMING_SNAKE_CASE__ ( self : int ): return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): return len(self.rows ) @property def SCREAMING_SNAKE_CASE__ ( self : Dict ): return len(self.rows[0] ) @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return (self.num_rows, self.num_columns) @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return self.order[0] == self.order[1] def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): return bool(self.determinant() ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , lowercase__ : int , lowercase__ : int ): _lowerCAmelCase = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(lowercase__ ).determinant() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , lowercase__ : int , lowercase__ : int ): if (row + column) % 2 == 0: return self.get_minor(lowercase__ , lowercase__ ) return -1 * self.get_minor(lowercase__ , lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): return Matrix( [ [self.get_minor(lowercase__ , lowercase__ ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): _lowerCAmelCase = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): _lowerCAmelCase = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse' ) return self.adjugate() * (1 / determinant) def __repr__( self : List[Any] ): return str(self.rows ) def __str__( self : List[Any] ): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(lowercase__ ) for value in row] ) + '.]' for row in self.rows ] ) + "]" ) def SCREAMING_SNAKE_CASE__ ( self : Any , lowercase__ : list[int] , lowercase__ : int | None = None ): _lowerCAmelCase = TypeError('Row must be a list containing all ints and/or floats' ) if not isinstance(lowercase__ , lowercase__ ): raise type_error for value in row: if not isinstance(lowercase__ , (int, float) ): raise type_error if len(lowercase__ ) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix' ) if position is None: self.rows.append(lowercase__ ) else: _lowerCAmelCase = self.rows[0:position] + [row] + self.rows[position:] def SCREAMING_SNAKE_CASE__ ( self : Tuple , lowercase__ : list[int] , lowercase__ : int | None = None ): _lowerCAmelCase = TypeError( 'Column must be a list containing all ints and/or floats' ) if not isinstance(lowercase__ , lowercase__ ): raise type_error for value in column: if not isinstance(lowercase__ , (int, float) ): raise type_error if len(lowercase__ ) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix' ) if position is None: _lowerCAmelCase = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: _lowerCAmelCase = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : str , lowercase__ : object ): if not isinstance(lowercase__ , lowercase__ ): return NotImplemented return self.rows == other.rows def __ne__( self : List[str] , lowercase__ : object ): return not self == other def __neg__( self : Any ): return self * -1 def __add__( self : Tuple , lowercase__ : Matrix ): if self.order != other.order: raise ValueError('Addition requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : Any , lowercase__ : Matrix ): if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : Union[str, Any] , lowercase__ : Matrix | int | float ): if isinstance(lowercase__ , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(lowercase__ , lowercase__ ): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second' ) return Matrix( [ [Matrix.dot_product(lowercase__ , lowercase__ ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix' ) def __pow__( self : List[str] , lowercase__ : int ): if not isinstance(lowercase__ , lowercase__ ): raise TypeError('A Matrix can only be raised to the power of an int' ) if not self.is_square: raise ValueError('Only square matrices can be raised to a power' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power' ) _lowerCAmelCase = self for _ in range(other - 1 ): result *= self return result @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Union[str, Any] , lowercase__ : list[int] , lowercase__ : list[int] ): return sum(row[i] * column[i] for i in range(len(lowercase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
225
0
from decimal import Decimal, getcontext from math import ceil, factorial def A(__a: int ): if not isinstance(__a , __a ): raise TypeError("Undefined for non-integers" ) elif precision < 1: raise ValueError("Undefined for non-natural numbers" ) lowerCAmelCase_ = precision lowerCAmelCase_ = ceil(precision / 14 ) lowerCAmelCase_ = 42_6880 * Decimal(1_0005 ).sqrt() lowerCAmelCase_ = 1 lowerCAmelCase_ = 1359_1409 lowerCAmelCase_ = Decimal(__a ) for k in range(1 , __a ): lowerCAmelCase_ = factorial(6 * k ) // (factorial(3 * k ) * factorial(__a ) ** 3) linear_term += 5_4514_0134 exponential_term *= -26_2537_4126_4076_8000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": lowerCamelCase__ = 50 print(F'''The first {n} digits of pi is: {pi(n)}''')
122
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __magic_name__ : def __init__( self , _a , _a=2 , _a=True , _a=False , _a=10 , _a=3 , _a=32 * 8 , _a=32 * 8 , _a=4 , _a=64 , ) -> List[str]: lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = is_training lowerCAmelCase_ = use_auxiliary_loss lowerCAmelCase_ = num_queries lowerCAmelCase_ = num_channels lowerCAmelCase_ = min_size lowerCAmelCase_ = max_size lowerCAmelCase_ = num_labels lowerCAmelCase_ = hidden_dim lowerCAmelCase_ = hidden_dim def __a ( self ) -> List[Any]: lowerCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _a ) lowerCAmelCase_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_a ) lowerCAmelCase_ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_a ) > 0.5 ).float() lowerCAmelCase_ = (torch.rand((self.batch_size, self.num_labels) , device=_a ) > 0.5).long() lowerCAmelCase_ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __a ( self ) -> int: lowerCAmelCase_ = MaskaFormerConfig( hidden_size=self.hidden_dim , ) lowerCAmelCase_ = self.num_queries lowerCAmelCase_ = self.num_labels lowerCAmelCase_ = [1, 1, 1, 1] lowerCAmelCase_ = self.num_channels lowerCAmelCase_ = 64 lowerCAmelCase_ = 128 lowerCAmelCase_ = self.hidden_dim lowerCAmelCase_ = self.hidden_dim lowerCAmelCase_ = self.hidden_dim return config def __a ( self ) -> str: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self.prepare_config_and_inputs() lowerCAmelCase_ = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def __a ( self , _a , _a ) -> Optional[Any]: lowerCAmelCase_ = output.encoder_hidden_states lowerCAmelCase_ = output.pixel_decoder_hidden_states lowerCAmelCase_ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) , config.decoder_layers ) def __a ( self , _a , _a , _a , _a=False ) -> int: with torch.no_grad(): lowerCAmelCase_ = MaskaFormerModel(config=_a ) model.to(_a ) model.eval() lowerCAmelCase_ = model(pixel_values=_a , pixel_mask=_a ) lowerCAmelCase_ = model(_a , output_hidden_states=_a ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_a , _a ) def __a ( self , _a , _a , _a , _a , _a ) -> List[Any]: lowerCAmelCase_ = MaskaFormerForUniversalSegmentation(config=_a ) model.to(_a ) model.eval() def comm_check_on_output(_a ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowerCAmelCase_ = model(pixel_values=_a , pixel_mask=_a ) lowerCAmelCase_ = model(_a ) comm_check_on_output(_a ) lowerCAmelCase_ = model( pixel_values=_a , pixel_mask=_a , mask_labels=_a , class_labels=_a ) comm_check_on_output(_a ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __magic_name__ (__lowercase , __lowercase , unittest.TestCase ): lowerCamelCase__ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () lowerCamelCase__ = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __a ( self ) -> Tuple: lowerCAmelCase_ = MaskaFormerModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=_a , has_text_modality=_a ) def __a ( self ) -> List[str]: self.config_tester.run_common_tests() def __a ( self ) -> str: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_a , **_a , output_hidden_states=_a ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_a ) @unittest.skip(reason="Mask2Former does not use inputs_embeds" ) def __a ( self ) -> Any: pass @unittest.skip(reason="Mask2Former does not have a get_input_embeddings method" ) def __a ( self ) -> Optional[int]: pass @unittest.skip(reason="Mask2Former is not a generative model" ) def __a ( self ) -> str: pass @unittest.skip(reason="Mask2Former does not use token embeddings" ) def __a ( self ) -> List[Any]: pass @require_torch_multi_gpu @unittest.skip( reason="Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def __a ( self ) -> Any: pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __a ( self ) -> List[str]: pass def __a ( self ) -> Any: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = model_class(_a ) lowerCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ = [*signature.parameters.keys()] lowerCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _a ) @slow def __a ( self ) -> int: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: lowerCAmelCase_ = MaskaFormerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = (self.model_tester.min_size,) * 2 lowerCAmelCase_ = { "pixel_values": torch.randn((2, 3, *size) , device=_a ), "mask_labels": torch.randn((2, 10, *size) , device=_a ), "class_labels": torch.zeros(2 , 10 , device=_a ).long(), } lowerCAmelCase_ = self.model_tester.get_config() lowerCAmelCase_ = MaskaFormerForUniversalSegmentation(_a ).to(_a ) lowerCAmelCase_ = model(**_a ) self.assertTrue(outputs.loss is not None ) def __a ( self ) -> str: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_a , **_a , output_hidden_states=_a ) def __a ( self ) -> List[Any]: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = model_class(_a ).to(_a ) lowerCAmelCase_ = model(**_a , output_attentions=_a ) self.assertTrue(outputs.attentions is not None ) def __a ( self ) -> List[str]: if not self.model_tester.is_training: return lowerCAmelCase_ = self.all_model_classes[1] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() lowerCAmelCase_ = model_class(_a ) model.to(_a ) model.train() lowerCAmelCase_ = model(_a , mask_labels=_a , class_labels=_a ).loss loss.backward() def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.all_model_classes[1] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = model_class(_a ).to(_a ) model.train() lowerCAmelCase_ = model(_a , mask_labels=_a , class_labels=_a ) lowerCAmelCase_ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowerCAmelCase_ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() lowerCAmelCase_ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowerCAmelCase_ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_a ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowerCamelCase__ = 1e-4 def A(): lowerCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class __magic_name__ (unittest.TestCase ): @cached_property def __a ( self ) -> Dict: return "facebook/mask2former-swin-small-coco-instance" @cached_property def __a ( self ) -> Optional[Any]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def __a ( self ) -> int: lowerCAmelCase_ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_a ) lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(_a , return_tensors="pt" ).to(_a ) lowerCAmelCase_ = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_a , (1, 3, 384, 384) ) with torch.no_grad(): lowerCAmelCase_ = model(**_a ) lowerCAmelCase_ = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(_a ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _a , atol=_a ) ) lowerCAmelCase_ = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(_a ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _a , atol=_a ) ) lowerCAmelCase_ = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(_a ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _a , atol=_a ) ) def __a ( self ) -> str: lowerCAmelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_a ).eval() lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(_a , return_tensors="pt" ).to(_a ) lowerCAmelCase_ = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_a , (1, 3, 384, 384) ) with torch.no_grad(): lowerCAmelCase_ = model(**_a ) # masks_queries_logits lowerCAmelCase_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) lowerCAmelCase_ = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] lowerCAmelCase_ = torch.tensor(_a ).to(_a ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _a , atol=_a ) ) # class_queries_logits lowerCAmelCase_ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) lowerCAmelCase_ = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(_a ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _a , atol=_a ) ) def __a ( self ) -> Tuple: lowerCAmelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_a ).eval() lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="pt" , ) lowerCAmelCase_ = inputs["pixel_values"].to(_a ) lowerCAmelCase_ = [el.to(_a ) for el in inputs["mask_labels"]] lowerCAmelCase_ = [el.to(_a ) for el in inputs["class_labels"]] with torch.no_grad(): lowerCAmelCase_ = model(**_a ) self.assertTrue(outputs.loss is not None )
122
1
'''simple docstring''' from __future__ import annotations def __UpperCamelCase( _A : int ): '''simple docstring''' UpperCAmelCase__ : Tuple = 2 UpperCAmelCase__ : List[Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_A ) if n > 1: factors.append(_A ) return factors if __name__ == "__main__": import doctest doctest.testmod()
715
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def __UpperCamelCase( _A : str ): '''simple docstring''' return 1 / (1 + np.exp(-z )) def __UpperCamelCase( _A : int , _A : str ): '''simple docstring''' return (-y * np.log(_A ) - (1 - y) * np.log(1 - h )).mean() def __UpperCamelCase( _A : Optional[Any] , _A : Tuple , _A : Any ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = np.dot(_A , _A ) return np.sum(y * scores - np.log(1 + np.exp(_A ) ) ) def __UpperCamelCase( _A : Dict , _A : Optional[int] , _A : List[Any] , _A : str=7_00_00 ): '''simple docstring''' UpperCAmelCase__ : List[Any] = np.zeros(x.shape[1] ) for iterations in range(_A ): UpperCAmelCase__ : Tuple = np.dot(_A , _A ) UpperCAmelCase__ : Optional[Any] = sigmoid_function(_A ) UpperCAmelCase__ : Optional[int] = np.dot(x.T , h - y ) / y.size UpperCAmelCase__ : List[Any] = theta - alpha * gradient # updating the weights UpperCAmelCase__ : Tuple = np.dot(_A , _A ) UpperCAmelCase__ : Tuple = sigmoid_function(_A ) UpperCAmelCase__ : Optional[int] = cost_function(_A , _A ) if iterations % 1_00 == 0: print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCamelCase__ : str = datasets.load_iris() UpperCamelCase__ : Tuple = iris.data[:, :2] UpperCamelCase__ : str = (iris.target != 0) * 1 UpperCamelCase__ : Any = 0.1 UpperCamelCase__ : List[str] = logistic_reg(alpha, x, y, max_iterations=70_000) print('theta: ', theta) # printing the theta i.e our weights vector def __UpperCamelCase( _A : Any ): '''simple docstring''' return sigmoid_function( np.dot(_A , _A ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((UpperCamelCase__) , (UpperCamelCase__)) : Any = (x[:, 0].min(), x[:, 0].max()) ((UpperCamelCase__) , (UpperCamelCase__)) : Optional[Any] = (x[:, 1].min(), x[:, 1].max()) ((UpperCamelCase__) , (UpperCamelCase__)) : Any = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCamelCase__ : str = np.c_[xxa.ravel(), xxa.ravel()] UpperCamelCase__ : Union[str, Any] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
496
0
'''simple docstring''' import math import sys def _snake_case ( A ) -> str: lowerCAmelCase__ = '''''' try: with open(A , '''rb''' ) as binary_file: lowerCAmelCase__ = binary_file.read() for dat in data: lowerCAmelCase__ = F"""{dat:08b}""" result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def _snake_case ( A ) -> str: lowerCAmelCase__ = {'''0''': '''0''', '''1''': '''1'''} lowerCAmelCase__ , lowerCAmelCase__ = '''''', '''''' lowerCAmelCase__ = len(A ) for i in range(len(A ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowerCAmelCase__ = lexicon[curr_string] result += last_match_id lowerCAmelCase__ = last_match_id + '''0''' if math.loga(A ).is_integer(): lowerCAmelCase__ = {} for curr_key in list(A ): lowerCAmelCase__ = lexicon.pop(A ) lowerCAmelCase__ = new_lex lowerCAmelCase__ = last_match_id + '''1''' index += 1 lowerCAmelCase__ = '''''' return result def _snake_case ( A , A ) -> None: lowerCAmelCase__ = 8 try: with open(A , '''wb''' ) as opened_file: lowerCAmelCase__ = [ to_write[i : i + byte_length] for i in range(0 , len(A ) , A ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(A , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def _snake_case ( A ) -> str: lowerCAmelCase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 lowerCAmelCase__ = data_bits[counter:] lowerCAmelCase__ = data_bits[counter + 1 :] return data_bits def _snake_case ( A , A ) -> None: lowerCAmelCase__ = read_file_binary(A ) lowerCAmelCase__ = remove_prefix(A ) lowerCAmelCase__ = decompress_data(A ) write_file_binary(A , A ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
90
'''simple docstring''' import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder _UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name _UpperCamelCase = 256 class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ =["""melgan"""] def __init__( self : Dict , _a : SpectrogramNotesEncoder , _a : SpectrogramContEncoder , _a : TaFilmDecoder , _a : DDPMScheduler , _a : OnnxRuntimeModel if is_onnx_available() else Any , ) -> None: super().__init__() # From MELGAN __lowerCamelCase : Any = math.log(1e-5 ) # Matches MelGAN training. __lowerCamelCase : List[Any] = 4.0 # Largest value for most examples __lowerCamelCase : Tuple = 128 self.register_modules( notes_encoder=_a , continuous_encoder=_a , decoder=_a , scheduler=_a , melgan=_a , ) def _lowercase ( self : Tuple , _a : int , _a : List[Any]=(-1.0, 1.0) , _a : Any=False ) -> Dict: __lowerCamelCase ,__lowerCamelCase : Any = output_range if clip: __lowerCamelCase : List[Any] = torch.clip(_a , self.min_value , self.max_value ) # Scale to [0, 1]. __lowerCamelCase : Union[str, Any] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def _lowercase ( self : Dict , _a : List[str] , _a : int=(-1.0, 1.0) , _a : Dict=False ) -> List[str]: __lowerCamelCase ,__lowerCamelCase : List[Any] = input_range __lowerCamelCase : Optional[Any] = torch.clip(_a , _a , _a ) if clip else outputs # Scale to [0, 1]. __lowerCamelCase : str = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def _lowercase ( self : int , _a : Dict , _a : List[str] , _a : Tuple ) -> Any: __lowerCamelCase : Tuple = input_tokens > 0 __lowerCamelCase ,__lowerCamelCase : int = self.notes_encoder( encoder_input_tokens=_a , encoder_inputs_mask=_a ) __lowerCamelCase ,__lowerCamelCase : Tuple = self.continuous_encoder( encoder_inputs=_a , encoder_inputs_mask=_a ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def _lowercase ( self : Tuple , _a : Tuple , _a : List[Any] , _a : int ) -> Dict: __lowerCamelCase : Any = noise_time if not torch.is_tensor(_a ): __lowerCamelCase : Union[str, Any] = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(_a ) and len(timesteps.shape ) == 0: __lowerCamelCase : List[str] = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __lowerCamelCase : Tuple = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) __lowerCamelCase : int = self.decoder( encodings_and_masks=_a , decoder_input_tokens=_a , decoder_noise_time=_a ) return logits @torch.no_grad() def __call__( self : Optional[int] , _a : List[List[int]] , _a : Optional[torch.Generator] = None , _a : int = 100 , _a : bool = True , _a : str = "numpy" , _a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _a : int = 1 , ) -> Union[AudioPipelineOutput, Tuple]: if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_a , _a ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(_a )}.' ) __lowerCamelCase : Optional[int] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) __lowerCamelCase : Dict = np.zeros([1, 0, self.n_dims] , np.floataa ) __lowerCamelCase : List[Any] = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_a , device=self.device ) for i, encoder_input_tokens in enumerate(_a ): if i == 0: __lowerCamelCase : List[str] = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. __lowerCamelCase : List[Any] = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_a , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. __lowerCamelCase : int = ones __lowerCamelCase : int = self.scale_features( _a , output_range=[-1.0, 1.0] , clip=_a ) __lowerCamelCase : Tuple = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_a , continuous_mask=_a , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop __lowerCamelCase : Optional[int] = randn_tensor( shape=encoder_continuous_inputs.shape , generator=_a , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(_a ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __lowerCamelCase : List[Any] = self.decode( encodings_and_masks=_a , input_tokens=_a , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 __lowerCamelCase : Optional[int] = self.scheduler.step(_a , _a , _a , generator=_a ).prev_sample __lowerCamelCase : List[Any] = self.scale_to_features(_a , input_range=[-1.0, 1.0] ) __lowerCamelCase : Union[str, Any] = mel[:1] __lowerCamelCase : Union[str, Any] = mel.cpu().float().numpy() __lowerCamelCase : Dict = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_a , _a ) logger.info('Generated segment' , _a ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( 'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( 'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.' ) if output_type == "numpy": __lowerCamelCase : Tuple = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: __lowerCamelCase : List[str] = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=_a )
459
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCamelCase =1 @register_to_config def __init__( self : Union[str, Any] , snake_case__ : Any=2_0_0_0 , snake_case__ : Optional[int]=0.1 , snake_case__ : List[Any]=2_0 , snake_case__ : Dict=1E-3 ): """simple docstring""" SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self : Optional[int] , snake_case__ : str , snake_case__ : Union[str, torch.device] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = torch.linspace(1 , self.config.sampling_eps , snake_case__ , device=snake_case__ ) def UpperCamelCase ( self : str , snake_case__ : str , snake_case__ : int , snake_case__ : int , snake_case__ : List[Any]=None ): """simple docstring""" if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score SCREAMING_SNAKE_CASE = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) SCREAMING_SNAKE_CASE = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) SCREAMING_SNAKE_CASE = std.flatten() while len(std.shape ) < len(score.shape ): SCREAMING_SNAKE_CASE = std.unsqueeze(-1 ) SCREAMING_SNAKE_CASE = -score / std # compute SCREAMING_SNAKE_CASE = -1.0 / len(self.timesteps ) SCREAMING_SNAKE_CASE = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) SCREAMING_SNAKE_CASE = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): SCREAMING_SNAKE_CASE = beta_t.unsqueeze(-1 ) SCREAMING_SNAKE_CASE = -0.5 * beta_t * x SCREAMING_SNAKE_CASE = torch.sqrt(snake_case__ ) SCREAMING_SNAKE_CASE = drift - diffusion**2 * score SCREAMING_SNAKE_CASE = x + drift * dt # add noise SCREAMING_SNAKE_CASE = randn_tensor(x.shape , layout=x.layout , generator=snake_case__ , device=x.device , dtype=x.dtype ) SCREAMING_SNAKE_CASE = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Any ): """simple docstring""" return self.config.num_train_timesteps
718
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
673
0
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCAmelCase_ ( _snake_case : str , _snake_case : int , _snake_case : int ) -> Any: '''simple docstring''' if isinstance(_snake_case , torch.Tensor ): return image elif isinstance(_snake_case , PIL.Image.Image ): __magic_name__ : Dict = [image] if isinstance(image[0] , PIL.Image.Image ): __magic_name__ : List[Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image] __magic_name__ : str = np.concatenate(_snake_case , axis=0 ) __magic_name__ : str = np.array(_snake_case ).astype(np.floataa ) / 255.0 __magic_name__ : Any = image.transpose(0 , 3 , 1 , 2 ) __magic_name__ : Any = 2.0 * image - 1.0 __magic_name__ : Dict = torch.from_numpy(_snake_case ) elif isinstance(image[0] , torch.Tensor ): __magic_name__ : Optional[int] = torch.cat(_snake_case , dim=0 ) return image def lowerCAmelCase_ ( _snake_case : Optional[int] , _snake_case : List[str] , _snake_case : List[str] , _snake_case : str=0.9_995 ) -> Optional[int]: '''simple docstring''' if not isinstance(_snake_case , np.ndarray ): __magic_name__ : Dict = True __magic_name__ : Optional[int] = va.device __magic_name__ : Tuple = va.cpu().numpy() __magic_name__ : int = va.cpu().numpy() __magic_name__ : Optional[int] = np.sum(va * va / (np.linalg.norm(_snake_case ) * np.linalg.norm(_snake_case )) ) if np.abs(_snake_case ) > DOT_THRESHOLD: __magic_name__ : List[Any] = (1 - t) * va + t * va else: __magic_name__ : Any = np.arccos(_snake_case ) __magic_name__ : Dict = np.sin(_snake_case ) __magic_name__ : Tuple = theta_a * t __magic_name__ : Any = np.sin(_snake_case ) __magic_name__ : Optional[Any] = np.sin(theta_a - theta_t ) / sin_theta_a __magic_name__ : List[Any] = sin_theta_t / sin_theta_a __magic_name__ : Dict = sa * va + sa * va if inputs_are_torch: __magic_name__ : Dict = torch.from_numpy(_snake_case ).to(_snake_case ) return va def lowerCAmelCase_ ( _snake_case : Tuple , _snake_case : int ) -> Union[str, Any]: '''simple docstring''' __magic_name__ : Union[str, Any] = F.normalize(_snake_case , dim=-1 ) __magic_name__ : List[str] = F.normalize(_snake_case , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def lowerCAmelCase_ ( _snake_case : str , _snake_case : Union[str, Any] ) -> str: '''simple docstring''' for param in model.parameters(): __magic_name__ : List[str] = value class _snake_case ( snake_case ): def __init__( self , _a , _a , _a , _a , _a , _a , _a , _a=None , _a=None , _a=None , ): super().__init__() self.register_modules( vae=_a , text_encoder=_a , clip_model=_a , tokenizer=_a , unet=_a , scheduler=_a , feature_extractor=_a , coca_model=_a , coca_tokenizer=_a , coca_transform=_a , ) __magic_name__ : Dict = ( feature_extractor.size if isinstance(feature_extractor.size , _a ) else feature_extractor.size["shortest_edge"] ) __magic_name__ : int = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , _a ) set_requires_grad(self.clip_model , _a ) def SCREAMING_SNAKE_CASE ( self , _a = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __magic_name__ : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_a ) def SCREAMING_SNAKE_CASE ( self ): self.enable_attention_slicing(_a ) def SCREAMING_SNAKE_CASE ( self ): set_requires_grad(self.vae , _a ) def SCREAMING_SNAKE_CASE ( self ): set_requires_grad(self.vae , _a ) def SCREAMING_SNAKE_CASE ( self ): set_requires_grad(self.unet , _a ) def SCREAMING_SNAKE_CASE ( self ): set_requires_grad(self.unet , _a ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a ): # get the original timestep using init_timestep __magic_name__ : Optional[Any] = min(int(num_inference_steps * strength ) , _a ) __magic_name__ : Any = max(num_inference_steps - init_timestep , 0 ) __magic_name__ : Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a , _a=None ): if not isinstance(_a , torch.Tensor ): raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(_a )}''' ) __magic_name__ : int = image.to(device=_a , dtype=_a ) if isinstance(_a , _a ): __magic_name__ : Union[str, Any] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_a ) ] __magic_name__ : Any = torch.cat(_a , dim=0 ) else: __magic_name__ : str = self.vae.encode(_a ).latent_dist.sample(_a ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __magic_name__ : int = 0.1_82_15 * init_latents __magic_name__ : List[Any] = init_latents.repeat_interleave(_a , dim=0 ) __magic_name__ : List[str] = randn_tensor(init_latents.shape , generator=_a , device=_a , dtype=_a ) # get latents __magic_name__ : List[str] = self.scheduler.add_noise(_a , _a , _a ) __magic_name__ : List[str] = init_latents return latents def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Dict = self.coca_transform(_a ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): __magic_name__ : List[Any] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) __magic_name__ : Any = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("<end_of_text>" )[0].replace("<start_of_text>" , "" ).rstrip(" .," ) def SCREAMING_SNAKE_CASE ( self , _a , _a ): __magic_name__ : int = self.feature_extractor.preprocess(_a ) __magic_name__ : Union[str, Any] = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half() __magic_name__ : List[str] = self.clip_model.get_image_features(_a ) __magic_name__ : Dict = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_a ) __magic_name__ : List[str] = image_embeddings_clip.repeat_interleave(_a , dim=0 ) return image_embeddings_clip @torch.enable_grad() def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a , _a , _a , ): __magic_name__ : Dict = latents.detach().requires_grad_() __magic_name__ : int = self.scheduler.scale_model_input(_a , _a ) # predict the noise residual __magic_name__ : Optional[Any] = self.unet(_a , _a , encoder_hidden_states=_a ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): __magic_name__ : Union[str, Any] = self.scheduler.alphas_cumprod[timestep] __magic_name__ : Union[str, Any] = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __magic_name__ : Union[str, Any] = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 __magic_name__ : List[Any] = torch.sqrt(_a ) __magic_name__ : Optional[Any] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , _a ): __magic_name__ : Any = self.scheduler.sigmas[index] __magic_name__ : Any = latents - sigma * noise_pred else: raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __magic_name__ : List[Any] = 1 / 0.1_82_15 * sample __magic_name__ : Optional[Any] = self.vae.decode(_a ).sample __magic_name__ : int = (image / 2 + 0.5).clamp(0 , 1 ) __magic_name__ : Optional[int] = transforms.Resize(self.feature_extractor_size )(_a ) __magic_name__ : Tuple = self.normalize(_a ).to(latents.dtype ) __magic_name__ : List[Any] = self.clip_model.get_image_features(_a ) __magic_name__ : List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_a ) __magic_name__ : str = spherical_dist_loss(_a , _a ).mean() * clip_guidance_scale __magic_name__ : List[str] = -torch.autograd.grad(_a , _a )[0] if isinstance(self.scheduler , _a ): __magic_name__ : Any = latents.detach() + grads * (sigma**2) __magic_name__ : Optional[int] = noise_pred_original else: __magic_name__ : Optional[Any] = noise_pred_original - torch.sqrt(_a ) * grads return noise_pred, latents @torch.no_grad() def __call__( self , _a , _a , _a = None , _a = None , _a = 512 , _a = 512 , _a = 0.6 , _a = 50 , _a = 7.5 , _a = 1 , _a = 0.0 , _a = 100 , _a = None , _a = "pil" , _a = True , _a = 0.8 , _a = 0.1 , _a = 0.1 , ): if isinstance(_a , _a ) and len(_a ) != batch_size: raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(_a )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(_a , torch.Generator ) and batch_size > 1: __magic_name__ : List[Any] = [generator] + [None] * (batch_size - 1) __magic_name__ : Any = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] __magic_name__ : Optional[Any] = [x[0] for x in coca_is_none if x[1]] __magic_name__ : str = ", ".join(_a ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(_a ): raise ValueError( f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) __magic_name__ : int = self.get_image_description(_a ) if style_prompt is None: if len(_a ): raise ValueError( f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) __magic_name__ : str = self.get_image_description(_a ) # get prompt text embeddings for content and style __magic_name__ : Optional[int] = self.tokenizer( _a , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=_a , return_tensors="pt" , ) __magic_name__ : Optional[int] = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] __magic_name__ : Tuple = self.tokenizer( _a , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=_a , return_tensors="pt" , ) __magic_name__ : Optional[Any] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] __magic_name__ : Optional[Any] = slerp(_a , _a , _a ) # duplicate text embeddings for each generation per prompt __magic_name__ : Union[str, Any] = text_embeddings.repeat_interleave(_a , dim=0 ) # set timesteps __magic_name__ : Union[str, Any] = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) __magic_name__ : Dict = {} if accepts_offset: __magic_name__ : int = 1 self.scheduler.set_timesteps(_a , **_a ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) __magic_name__ , __magic_name__ : List[str] = self.get_timesteps(_a , _a , self.device ) __magic_name__ : Optional[Any] = timesteps[:1].repeat(_a ) # Preprocess image __magic_name__ : int = preprocess(_a , _a , _a ) __magic_name__ : Tuple = self.prepare_latents( _a , _a , _a , text_embeddings.dtype , self.device , _a ) __magic_name__ : Any = preprocess(_a , _a , _a ) __magic_name__ : Dict = self.prepare_latents( _a , _a , _a , text_embeddings.dtype , self.device , _a ) __magic_name__ : Optional[Any] = slerp(_a , _a , _a ) if clip_guidance_scale > 0: __magic_name__ : Dict = self.get_clip_image_embeddings(_a , _a ) __magic_name__ : Optional[Any] = self.get_clip_image_embeddings(_a , _a ) __magic_name__ : List[Any] = slerp( _a , _a , _a ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __magic_name__ : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __magic_name__ : str = content_text_input.input_ids.shape[-1] __magic_name__ : Optional[Any] = self.tokenizer([""] , padding="max_length" , max_length=_a , return_tensors="pt" ) __magic_name__ : str = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt __magic_name__ : Union[str, Any] = uncond_embeddings.repeat_interleave(_a , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __magic_name__ : Optional[int] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __magic_name__ : Any = (batch_size, self.unet.config.in_channels, height // 8, width // 8) __magic_name__ : List[str] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps __magic_name__ : Tuple = torch.randn(_a , generator=_a , device="cpu" , dtype=_a ).to( self.device ) else: __magic_name__ : Tuple = torch.randn(_a , generator=_a , device=self.device , dtype=_a ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) __magic_name__ : str = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __magic_name__ : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __magic_name__ : str = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __magic_name__ : Tuple = {} if accepts_eta: __magic_name__ : List[Any] = eta # check if the scheduler accepts generator __magic_name__ : int = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: __magic_name__ : Tuple = generator with self.progress_bar(total=_a ): for i, t in enumerate(_a ): # expand the latents if we are doing classifier free guidance __magic_name__ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __magic_name__ : Optional[int] = self.scheduler.scale_model_input(_a , _a ) # predict the noise residual __magic_name__ : Optional[int] = self.unet(_a , _a , encoder_hidden_states=_a ).sample # perform classifier free guidance if do_classifier_free_guidance: __magic_name__ , __magic_name__ : Union[str, Any] = noise_pred.chunk(2 ) __magic_name__ : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: __magic_name__ : str = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) __magic_name__ , __magic_name__ : str = self.cond_fn( _a , _a , _a , _a , _a , _a , _a , ) # compute the previous noisy sample x_t -> x_t-1 __magic_name__ : Optional[int] = self.scheduler.step(_a , _a , _a , **_a ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __magic_name__ : List[Any] = 1 / 0.1_82_15 * latents __magic_name__ : Optional[int] = self.vae.decode(_a ).sample __magic_name__ : int = (image / 2 + 0.5).clamp(0 , 1 ) __magic_name__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __magic_name__ : str = self.numpy_to_pil(_a ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=_a , nsfw_content_detected=_a )
124
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case : Optional[int] = logging.get_logger(__name__) snake_case : Optional[Any] = {"vocab_file": "spiece.model"} snake_case : Optional[Any] = { "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } snake_case : Union[str, Any] = { "AI-Sweden/gpt-sw3-126m": 2_048, "AI-Sweden/gpt-sw3-350m": 2_048, "AI-Sweden/gpt-sw3-1.6b": 2_048, "AI-Sweden/gpt-sw3-6.7b": 2_048, "AI-Sweden/gpt-sw3-20b": 2_048, } class _snake_case ( snake_case ): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = ['input_ids', 'attention_mask'] def __init__( self , _a , _a=False , _a=False , _a=False , _a=None , _a=None , _a=None , _a=None , _a = None , **_a , ): __magic_name__ : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs __magic_name__ : int = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) __magic_name__ : Optional[int] = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing __magic_name__ : List[Any] = "<|endoftext|>" if eos_token is None else eos_token __magic_name__ : str = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: __magic_name__ : Dict = unk_token if pad_token is None else pad_token __magic_name__ : Optional[Any] = eos_token if bos_token is None else bos_token else: __magic_name__ : Optional[Any] = "<pad>" if pad_token is None else pad_token __magic_name__ : Tuple = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , pad_token=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) __magic_name__ : Dict = do_lower_case __magic_name__ : List[str] = remove_space __magic_name__ : Tuple = keep_accents __magic_name__ : Optional[Any] = vocab_file __magic_name__ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_a ) # Used for whitespace normalization in input texts # fmt : off __magic_name__ : Any = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing __magic_name__ : Tuple = re.compile( f'''[{"".join(map(_a , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8_203] ) )}]''' ) def __getstate__( self ): __magic_name__ : str = self.__dict__.copy() __magic_name__ : str = None return state def __setstate__( self , _a ): __magic_name__ : Tuple = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __magic_name__ : int = {} __magic_name__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def SCREAMING_SNAKE_CASE ( self ): return len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Union[str, Any] = self.non_printing_characters_re.sub("" , _a ) # Normalize whitespaces __magic_name__ : Any = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization __magic_name__ : Dict = unicodedata.normalize("NFC" , _a ) return text def SCREAMING_SNAKE_CASE ( self , _a , **_a ): __magic_name__ : str = self.preprocess_text(_a ) return self.sp_model.encode(_a , out_type=_a ) def SCREAMING_SNAKE_CASE ( self , _a ): return self.sp_model.PieceToId(_a ) def SCREAMING_SNAKE_CASE ( self , _a ): return self.sp_model.IdToPiece(_a ) @staticmethod def SCREAMING_SNAKE_CASE ( _a ): return out_string def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Union[str, Any] = [] __magic_name__ : Optional[int] = "" __magic_name__ : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_a ) + token __magic_name__ : Optional[Any] = True __magic_name__ : List[Any] = [] else: current_sub_tokens.append(_a ) __magic_name__ : str = False out_string += self.sp_model.decode(_a ) return out_string def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[Any] = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self , _a , _a = None ): if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __magic_name__ : Dict = os.path.join( _a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , "wb" ) as fi: __magic_name__ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE ( self , _a , _a = False ): if isinstance(_a , _a ): __magic_name__ : Optional[Any] = self.preprocess_text(_a ) __magic_name__ : Any = self.sp_model.encode(_a ) else: __magic_name__ : Union[str, Any] = [self.preprocess_text(_a ) for t in text] __magic_name__ : List[str] = self.sp_model.encode(_a ) if return_tensors is True or return_tensors == "pt": __magic_name__ : Any = torch.tensor(_a ) return token_ids def SCREAMING_SNAKE_CASE ( self , _a ): return self.sp_model.decode(_a ) def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Optional[Any] = [f'''User: {text}''' if is_user else f'''Bot: {text}''' for is_user, text in conversation.iter_texts()] __magic_name__ : Union[str, Any] = ( f'''{self.eos_token}{self.bos_token}''' + f'''{self.bos_token}'''.join(_a ) + f'''{self.bos_token}Bot:''' ) return self.encode(text=_a )
124
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def a_ ( _A ) -> Dict: """simple docstring""" snake_case__ = filter(lambda _A : p.requires_grad , model.parameters() ) snake_case__ = sum([np.prod(p.size() ) for p in model_parameters] ) return params __UpperCamelCase : Any = logging.getLogger(__name__) def a_ ( _A , _A ) -> Optional[int]: """simple docstring""" if metric == "rouge2": snake_case__ = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": snake_case__ = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": snake_case__ = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": snake_case__ = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ' function.' ) snake_case__ = ModelCheckpoint( dirpath=_A , filename=_A , monitor=f'''val_{metric}''' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def a_ ( _A , _A ) -> Optional[Any]: """simple docstring""" return EarlyStopping( monitor=f'''val_{metric}''' , mode='min' if 'loss' in metric else 'max' , patience=_A , verbose=_A , ) class __SCREAMING_SNAKE_CASE( pl.Callback ): def lowerCAmelCase_ ( self: Any , UpperCamelCase: List[Any] , UpperCamelCase: Tuple ) -> Union[str, Any]: snake_case__ = {F'''lr_group_{i}''': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(UpperCamelCase ) @rank_zero_only def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: pl.Trainer , UpperCamelCase: pl.LightningModule , UpperCamelCase: str , UpperCamelCase: Optional[Any]=True ) -> None: logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) snake_case__ = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results snake_case__ = Path(pl_module.hparams.output_dir ) if type_path == "test": snake_case__ = od / 'test_results.txt' snake_case__ = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. snake_case__ = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' snake_case__ = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=UpperCamelCase ) generations_file.parent.mkdir(exist_ok=UpperCamelCase ) with open(UpperCamelCase , 'a+' ) as writer: for key in sorted(UpperCamelCase ): if key in ["log", "progress_bar", "preds"]: continue snake_case__ = metrics[key] if isinstance(UpperCamelCase , torch.Tensor ): snake_case__ = val.item() snake_case__ = F'''{key}: {val:.6f}\n''' writer.write(UpperCamelCase ) if not save_generations: return if "preds" in metrics: snake_case__ = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(UpperCamelCase ) @rank_zero_only def lowerCAmelCase_ ( self: str , UpperCamelCase: Union[str, Any] , UpperCamelCase: Union[str, Any] ) -> Optional[Any]: try: snake_case__ = pl_module.model.model.num_parameters() except AttributeError: snake_case__ = pl_module.model.num_parameters() snake_case__ = count_trainable_parameters(UpperCamelCase ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1e6, 'grad_mp': n_trainable_pars / 1e6} ) @rank_zero_only def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: pl.Trainer , UpperCamelCase: pl.LightningModule ) -> Dict: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(UpperCamelCase , UpperCamelCase , 'test' ) @rank_zero_only def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: pl.Trainer , UpperCamelCase: Union[str, Any] ) -> Optional[int]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
372
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : int = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = "roformer" def __init__( self: Tuple , UpperCamelCase: Optional[Any]=5_00_00 , UpperCamelCase: str=None , UpperCamelCase: Any=7_68 , UpperCamelCase: Dict=12 , UpperCamelCase: List[Any]=12 , UpperCamelCase: List[str]=30_72 , UpperCamelCase: int="gelu" , UpperCamelCase: str=0.1 , UpperCamelCase: Union[str, Any]=0.1 , UpperCamelCase: Any=15_36 , UpperCamelCase: Dict=2 , UpperCamelCase: Dict=0.02 , UpperCamelCase: List[str]=1e-12 , UpperCamelCase: int=0 , UpperCamelCase: Any=False , UpperCamelCase: int=True , **UpperCamelCase: List[Any] , ) -> List[str]: super().__init__(pad_token_id=UpperCamelCase , **UpperCamelCase ) snake_case__ = vocab_size snake_case__ = hidden_size if embedding_size is None else embedding_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = hidden_act snake_case__ = intermediate_size snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = type_vocab_size snake_case__ = initializer_range snake_case__ = layer_norm_eps snake_case__ = rotary_value snake_case__ = use_cache class __SCREAMING_SNAKE_CASE( a_ ): @property def lowerCAmelCase_ ( self: Any ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case__ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case__ = {0: 'batch', 1: 'sequence'} snake_case__ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
372
1
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig __A : List[Any] = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = question_encoder SCREAMING_SNAKE_CASE = generator SCREAMING_SNAKE_CASE = self.question_encoder def _snake_case ( self : Union[str, Any] , __lowerCamelCase : List[str] ): if os.path.isfile(__lowerCamelCase ): raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , "question_encoder_tokenizer" ) SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , "generator_tokenizer" ) self.question_encoder.save_pretrained(__lowerCamelCase ) self.generator.save_pretrained(__lowerCamelCase ) @classmethod def _snake_case ( cls : Tuple , __lowerCamelCase : str , **__lowerCamelCase : Optional[Any] ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer SCREAMING_SNAKE_CASE = kwargs.pop("config" , __lowerCamelCase ) if config is None: SCREAMING_SNAKE_CASE = RagConfig.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( __lowerCamelCase , config=config.question_encoder , subfolder="question_encoder_tokenizer" ) SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( __lowerCamelCase , config=config.generator , subfolder="generator_tokenizer" ) return cls(question_encoder=__lowerCamelCase , generator=__lowerCamelCase ) def __call__( self : int , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Any ): return self.current_tokenizer(*__lowerCamelCase , **__lowerCamelCase ) def _snake_case ( self : Union[str, Any] , *__lowerCamelCase : Dict , **__lowerCamelCase : Union[str, Any] ): return self.generator.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def _snake_case ( self : List[str] , *__lowerCamelCase : Any , **__lowerCamelCase : Optional[int] ): return self.generator.decode(*__lowerCamelCase , **__lowerCamelCase ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.question_encoder def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = self.generator def _snake_case ( self : str , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[List[str]] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : str = "longest" , __lowerCamelCase : str = None , __lowerCamelCase : bool = True , **__lowerCamelCase : List[str] , ): warnings.warn( "`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the " "regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` " "context manager to prepare your targets. See the documentation of your specific tokenizer for more " "details" , __lowerCamelCase , ) if max_length is None: SCREAMING_SNAKE_CASE = self.current_tokenizer.model_max_length SCREAMING_SNAKE_CASE = self( __lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , max_length=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , **__lowerCamelCase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: SCREAMING_SNAKE_CASE = self.current_tokenizer.model_max_length SCREAMING_SNAKE_CASE = self( text_target=__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , truncation=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE = labels["input_ids"] return model_inputs
16
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( lowerCamelCase_ : list , lowerCamelCase_ : int | None = None , lowerCamelCase_ : int | None = None ): if start is None: __lowercase = 0 if end is None: __lowercase = len(lowerCamelCase_ ) - 1 if start >= end: return __lowercase = (start + end) // 2 slowsort(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) slowsort(lowerCamelCase_ , mid + 1 , lowerCamelCase_ ) if sequence[end] < sequence[mid]: __lowercase , __lowercase = sequence[mid], sequence[end] slowsort(lowerCamelCase_ , lowerCamelCase_ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
502
0
'''simple docstring''' from __future__ import annotations import requests __snake_case: Optional[int] = set( "approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports".split() ) def _snake_case ( A_ : str , A_ : int = 1 , A_ : str = "new" , A_ : list | None = None ): """simple docstring""" a_ : List[str] = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(A_ ) - valid_terms ) ): a_ : Union[str, Any] = f'''Invalid search term: {invalid_search_terms}''' raise ValueError(A_ ) a_ : Any = requests.get( f'''https://reddit.com/r/{subreddit}/{age}.json?limit={limit}''' , headers={"""User-agent""": """A random string"""} , ) if response.status_code == 429: raise requests.HTTPError a_ : Any = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(A_ )} a_ : str = {} for id_ in range(A_ ): a_ : Tuple = { item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("learnpython", wanted_data=["title", "url", "selftext"]))
460
'''simple docstring''' def _snake_case ( A_ : int , A_ : Optional[Any] , A_ : Optional[int] , A_ : Dict ): """simple docstring""" a_ : Optional[int] = [False] * len(A_ ) a_ : List[str] = [] queue.append(A_ ) a_ : Union[str, Any] = True while queue: a_ : List[Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(A_ ) a_ : Any = True a_ : List[Any] = u return visited[t] def _snake_case ( A_ : Union[str, Any] , A_ : Union[str, Any] , A_ : List[Any] ): """simple docstring""" a_ : Dict = [-1] * (len(A_ )) a_ : List[str] = 0 while bfs(A_ , A_ , A_ , A_ ): a_ : Any = float("""Inf""" ) a_ : Any = sink while s != source: # Find the minimum value in select path a_ : Any = min(A_ , graph[parent[s]][s] ) a_ : List[Any] = parent[s] max_flow += path_flow a_ : Tuple = sink while v != source: a_ : Tuple = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow a_ : List[Any] = parent[v] return max_flow __snake_case: List[str] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] __snake_case ,__snake_case: int = 0, 5 print(ford_fulkerson(graph, source, sink))
460
1
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: A_ = u for i in range(1, UpperCAmelCase__ ): A_ = temp * (u - i) return temp def UpperCAmelCase__ ( ) -> None: A_ = int(input("""enter the numbers of values: """ ) ) A_ = [] for _ in range(UpperCAmelCase__ ): y.append([] ) for i in range(UpperCAmelCase__ ): for j in range(UpperCAmelCase__ ): y[i].append(UpperCAmelCase__ ) A_ = 0 print("""enter the values of parameters in a list: """ ) A_ = list(map(UpperCAmelCase__, input().split() ) ) print("""enter the values of corresponding parameters: """ ) for i in range(UpperCAmelCase__ ): A_ = float(input() ) A_ = int(input("""enter the value to interpolate: """ ) ) A_ = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1, UpperCAmelCase__ ): for j in range(n - i ): A_ = y[j + 1][i - 1] - y[j][i - 1] A_ = y[0][0] for i in range(1, UpperCAmelCase__ ): summ += (ucal(UpperCAmelCase__, UpperCAmelCase__ ) * y[0][i]) / math.factorial(UpperCAmelCase__ ) print(F'''the value at {value} is {summ}''' ) if __name__ == "__main__": main()
288
'''simple docstring''' import pytest import datasets # Import fixture modules as plugins __lowerCamelCase = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec'''] def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[int]: # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ["""integration""", """unit"""] ): continue item.add_marker(pytest.mark.unit ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: config.addinivalue_line("""markers""", """torchaudio_latest: mark test to run with torchaudio>=0.12""" ) @pytest.fixture(autouse=UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> int: # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? A_ = tmp_path_factory.getbasetemp() / """cache""" A_ = test_hf_cache_home / """datasets""" A_ = test_hf_cache_home / """metrics""" A_ = test_hf_cache_home / """modules""" monkeypatch.setattr("""datasets.config.HF_DATASETS_CACHE""", str(UpperCAmelCase__ ) ) monkeypatch.setattr("""datasets.config.HF_METRICS_CACHE""", str(UpperCAmelCase__ ) ) monkeypatch.setattr("""datasets.config.HF_MODULES_CACHE""", str(UpperCAmelCase__ ) ) A_ = test_hf_datasets_cache / """downloads""" monkeypatch.setattr("""datasets.config.DOWNLOADED_DATASETS_PATH""", str(UpperCAmelCase__ ) ) A_ = test_hf_datasets_cache / """downloads""" / """extracted""" monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""", str(UpperCAmelCase__ ) ) @pytest.fixture(autouse=UpperCAmelCase__, scope="""session""" ) def UpperCAmelCase__ ( ) -> str: datasets.disable_progress_bar() @pytest.fixture(autouse=UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: # don't take tests into account when counting downloads monkeypatch.setattr("""datasets.config.HF_UPDATE_DOWNLOAD_COUNTS""", UpperCAmelCase__ ) @pytest.fixture def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Any: # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr("""sqlalchemy.util.deprecations.SILENCE_UBER_WARNING""", UpperCAmelCase__ )
288
1
'''simple docstring''' import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class _A ( UpperCamelCase ): '''simple docstring''' def __lowerCAmelCase ( self : Tuple )-> Optional[Any]: snake_case__ : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(lowerCamelCase , """num_attention_heads""" ) ) self.parent.assertTrue(hasattr(lowerCamelCase , """num_encoder_blocks""" ) ) class _A : '''simple docstring''' def __init__( self : Dict , lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any]=13 , lowerCamelCase : Union[str, Any]=64 , lowerCamelCase : Union[str, Any]=3 , lowerCamelCase : List[Any]=4 , lowerCamelCase : Optional[int]=[2, 2, 2, 2] , lowerCamelCase : Union[str, Any]=[8, 4, 2, 1] , lowerCamelCase : Tuple=[16, 32, 64, 128] , lowerCamelCase : Any=[1, 4, 8, 16] , lowerCamelCase : Any=[1, 2, 4, 8] , lowerCamelCase : Dict=True , lowerCamelCase : List[str]=True , lowerCamelCase : Dict="gelu" , lowerCamelCase : Dict=0.1 , lowerCamelCase : int=0.1 , lowerCamelCase : Dict=0.02 , lowerCamelCase : Union[str, Any]=3 , lowerCamelCase : List[str]=None , )-> Optional[int]: snake_case__ : List[Any] = parent snake_case__ : List[Any] = batch_size snake_case__ : Optional[Any] = image_size snake_case__ : str = num_channels snake_case__ : int = num_encoder_blocks snake_case__ : List[str] = sr_ratios snake_case__ : List[Any] = depths snake_case__ : str = hidden_sizes snake_case__ : int = downsampling_rates snake_case__ : str = num_attention_heads snake_case__ : Optional[int] = is_training snake_case__ : Union[str, Any] = use_labels snake_case__ : Optional[int] = hidden_act snake_case__ : Optional[int] = hidden_dropout_prob snake_case__ : str = attention_probs_dropout_prob snake_case__ : Optional[Any] = initializer_range snake_case__ : Dict = num_labels snake_case__ : Dict = scope def __lowerCAmelCase ( self : Dict )-> Optional[Any]: snake_case__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Optional[Any] = None if self.use_labels: snake_case__ : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case__ : Optional[int] = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self : Any )-> Optional[Any]: return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self : Any , lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : int )-> str: snake_case__ : Optional[Any] = SegformerModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case__ : Optional[int] = model(lowerCamelCase ) snake_case__ : Dict = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def __lowerCAmelCase ( self : Dict , lowerCamelCase : List[str] , lowerCamelCase : List[str] , lowerCamelCase : Dict )-> List[Any]: snake_case__ : Optional[Any] = self.num_labels snake_case__ : Union[str, Any] = SegformerForSemanticSegmentation(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case__ : Tuple = model(lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) snake_case__ : Union[str, Any] = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def __lowerCAmelCase ( self : str , lowerCamelCase : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : int )-> Union[str, Any]: snake_case__ : Optional[int] = 1 snake_case__ : List[Any] = SegformerForSemanticSegmentation(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case__ : Any = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(lowerCamelCase ) snake_case__ : List[str] = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertGreater(result.loss , 0.0 ) def __lowerCAmelCase ( self : Optional[Any] )-> List[str]: snake_case__ : Any = self.prepare_config_and_inputs() snake_case__ : List[Any] = config_and_inputs snake_case__ : Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _A ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' _lowercase = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) _lowercase = ( { 'feature-extraction': SegformerModel, 'image-classification': SegformerForImageClassification, 'image-segmentation': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) _lowercase = True _lowercase = False _lowercase = False _lowercase = False def __lowerCAmelCase ( self : Dict )-> str: snake_case__ : Optional[Any] = SegformerModelTester(self ) snake_case__ : Optional[int] = SegformerConfigTester(self , config_class=lowerCamelCase ) def __lowerCAmelCase ( self : Dict )-> int: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Tuple )-> List[str]: snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def __lowerCAmelCase ( self : str )-> Tuple: snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*lowerCamelCase ) def __lowerCAmelCase ( self : Optional[Any] )-> int: snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*lowerCamelCase ) @unittest.skip("""SegFormer does not use inputs_embeds""" ) def __lowerCAmelCase ( self : List[Any] )-> int: pass @unittest.skip("""SegFormer does not have get_input_embeddings method and get_output_embeddings methods""" ) def __lowerCAmelCase ( self : List[Any] )-> List[str]: pass def __lowerCAmelCase ( self : str )-> List[str]: snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : str = model_class(lowerCamelCase ) snake_case__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Tuple = [*signature.parameters.keys()] snake_case__ : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def __lowerCAmelCase ( self : List[str] )-> int: snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : str = True for model_class in self.all_model_classes: snake_case__ : Union[str, Any] = True snake_case__ : int = False snake_case__ : List[str] = True snake_case__ : Dict = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): snake_case__ : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) snake_case__ : Optional[int] = outputs.attentions snake_case__ : Union[str, Any] = sum(self.model_tester.depths ) self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case__ : Union[str, Any] = True snake_case__ : List[Any] = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): snake_case__ : str = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) snake_case__ : Union[str, Any] = outputs.attentions self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) # verify the first attentions (first block, first layer) snake_case__ : int = (self.model_tester.image_size // 4) ** 2 snake_case__ : int = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) snake_case__ : int = (self.model_tester.image_size // 32) ** 2 snake_case__ : List[str] = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) snake_case__ : List[Any] = len(lowerCamelCase ) # Check attention is always last and order is fine snake_case__ : Optional[Any] = True snake_case__ : Any = True snake_case__ : Tuple = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): snake_case__ : Any = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) self.assertEqual(out_len + 1 , len(lowerCamelCase ) ) snake_case__ : List[str] = outputs.attentions self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) # verify the first attentions (first block, first layer) snake_case__ : str = (self.model_tester.image_size // 4) ** 2 snake_case__ : Tuple = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def __lowerCAmelCase ( self : Any )-> List[str]: def check_hidden_states_output(lowerCamelCase : List[str] , lowerCamelCase : List[str] , lowerCamelCase : List[str] ): snake_case__ : Union[str, Any] = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): snake_case__ : List[Any] = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) snake_case__ : Any = outputs.hidden_states snake_case__ : Optional[int] = self.model_tester.num_encoder_blocks self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : int = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : Dict = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def __lowerCAmelCase ( self : Union[str, Any] )-> List[Any]: if not self.model_tester.is_training: return snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : str = True for model_class in self.all_model_classes: if model_class in get_values(lowerCamelCase ): continue snake_case__ : Tuple = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.train() snake_case__ : Any = self._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) snake_case__ : Optional[Any] = model(**lowerCamelCase ).loss loss.backward() @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __lowerCAmelCase ( self : int )-> Union[str, Any]: pass @slow def __lowerCAmelCase ( self : int )-> Union[str, Any]: for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : List[str] = SegformerModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def lowerCAmelCase__ ( ): """simple docstring""" snake_case__ : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class _A ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : str )-> List[Any]: snake_case__ : Union[str, Any] = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowerCamelCase , align=lowerCamelCase , do_random_crop=lowerCamelCase ) snake_case__ : Optional[Any] = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( lowerCamelCase ) snake_case__ : str = prepare_img() snake_case__ : Tuple = image_processor(images=lowerCamelCase , return_tensors="""pt""" ) snake_case__ : List[str] = encoded_inputs.pixel_values.to(lowerCamelCase ) with torch.no_grad(): snake_case__ : Optional[Any] = model(lowerCamelCase ) snake_case__ : Union[str, Any] = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) snake_case__ : List[Any] = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowerCamelCase , atol=1e-4 ) ) @slow def __lowerCAmelCase ( self : Optional[int] )-> Dict: snake_case__ : List[str] = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowerCamelCase , align=lowerCamelCase , do_random_crop=lowerCamelCase ) snake_case__ : int = SegformerForSemanticSegmentation.from_pretrained( """nvidia/segformer-b1-finetuned-cityscapes-1024-1024""" ).to(lowerCamelCase ) snake_case__ : Dict = prepare_img() snake_case__ : List[Any] = image_processor(images=lowerCamelCase , return_tensors="""pt""" ) snake_case__ : Any = encoded_inputs.pixel_values.to(lowerCamelCase ) with torch.no_grad(): snake_case__ : Optional[Any] = model(lowerCamelCase ) snake_case__ : Optional[Any] = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) snake_case__ : Optional[Any] = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowerCamelCase , atol=1e-1 ) ) @slow def __lowerCAmelCase ( self : Optional[Any] )-> Dict: snake_case__ : str = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowerCamelCase , align=lowerCamelCase , do_random_crop=lowerCamelCase ) snake_case__ : Optional[int] = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( lowerCamelCase ) snake_case__ : Tuple = prepare_img() snake_case__ : Dict = image_processor(images=lowerCamelCase , return_tensors="""pt""" ) snake_case__ : Any = encoded_inputs.pixel_values.to(lowerCamelCase ) with torch.no_grad(): snake_case__ : List[Any] = model(lowerCamelCase ) snake_case__ : Dict = outputs.logits.detach().cpu() snake_case__ : int = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase , target_sizes=[(500, 300)] ) snake_case__ : List[Any] = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , lowerCamelCase ) snake_case__ : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase ) snake_case__ : Any = torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape , lowerCamelCase )
703
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class _A ( UpperCamelCase ): '''simple docstring''' _lowercase = 42 _lowercase = 42 class _A ( nn.Module ): '''simple docstring''' _lowercase = 42 _lowercase = (16, 32, 96, 256) _lowercase = jnp.floataa def __lowerCAmelCase ( self : Tuple )-> Any: snake_case__ : Union[str, Any] = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) snake_case__ : List[str] = [] for i in range(len(self.block_out_channels ) - 1 ): snake_case__ : List[str] = self.block_out_channels[i] snake_case__ : Union[str, Any] = self.block_out_channels[i + 1] snake_case__ : Optional[int] = nn.Conv( lowerCamelCase , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(lowerCamelCase ) snake_case__ : int = nn.Conv( lowerCamelCase , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(lowerCamelCase ) snake_case__ : Any = blocks snake_case__ : Union[str, Any] = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Union[str, Any] , lowerCamelCase : Any )-> Tuple: snake_case__ : int = self.conv_in(lowerCamelCase ) snake_case__ : Dict = nn.silu(lowerCamelCase ) for block in self.blocks: snake_case__ : Dict = block(lowerCamelCase ) snake_case__ : str = nn.silu(lowerCamelCase ) snake_case__ : Union[str, Any] = self.conv_out(lowerCamelCase ) return embedding @flax_register_to_config class _A ( nn.Module , UpperCamelCase , UpperCamelCase ): '''simple docstring''' _lowercase = 32 _lowercase = 4 _lowercase = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _lowercase = False _lowercase = (320, 640, 1280, 1280) _lowercase = 2 _lowercase = 8 _lowercase = None _lowercase = 1280 _lowercase = 0.0 _lowercase = False _lowercase = jnp.floataa _lowercase = True _lowercase = 0 _lowercase = "rgb" _lowercase = (16, 32, 96, 256) def __lowerCAmelCase ( self : Optional[int] , lowerCamelCase : jax.random.KeyArray )-> FrozenDict: # init input tensors snake_case__ : Union[str, Any] = (1, self.in_channels, self.sample_size, self.sample_size) snake_case__ : Dict = jnp.zeros(lowerCamelCase , dtype=jnp.floataa ) snake_case__ : str = jnp.ones((1,) , dtype=jnp.intaa ) snake_case__ : str = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) snake_case__ : Dict = (1, 3, self.sample_size * 8, self.sample_size * 8) snake_case__ : Optional[Any] = jnp.zeros(lowerCamelCase , dtype=jnp.floataa ) snake_case__ , snake_case__ : List[Any] = jax.random.split(lowerCamelCase ) snake_case__ : Optional[Any] = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )["params"] def __lowerCAmelCase ( self : int )-> int: snake_case__ : List[Any] = self.block_out_channels snake_case__ : Union[str, Any] = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. snake_case__ : Any = self.num_attention_heads or self.attention_head_dim # input snake_case__ : Any = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time snake_case__ : List[str] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) snake_case__ : Union[str, Any] = FlaxTimestepEmbedding(lowerCamelCase , dtype=self.dtype ) snake_case__ : Tuple = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) snake_case__ : Union[str, Any] = self.only_cross_attention if isinstance(lowerCamelCase , lowerCamelCase ): snake_case__ : Dict = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowerCamelCase , lowerCamelCase ): snake_case__ : Union[str, Any] = (num_attention_heads,) * len(self.down_block_types ) # down snake_case__ : Optional[Any] = [] snake_case__ : str = [] snake_case__ : Tuple = block_out_channels[0] snake_case__ : Tuple = nn.Conv( lowerCamelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowerCamelCase ) for i, down_block_type in enumerate(self.down_block_types ): snake_case__ : Optional[int] = output_channel snake_case__ : int = block_out_channels[i] snake_case__ : Union[str, Any] = i == len(lowerCamelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": snake_case__ : int = FlaxCrossAttnDownBlockaD( in_channels=lowerCamelCase , out_channels=lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: snake_case__ : Any = FlaxDownBlockaD( in_channels=lowerCamelCase , out_channels=lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(lowerCamelCase ) for _ in range(self.layers_per_block ): snake_case__ : str = nn.Conv( lowerCamelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowerCamelCase ) if not is_final_block: snake_case__ : Tuple = nn.Conv( lowerCamelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowerCamelCase ) snake_case__ : Optional[Any] = down_blocks snake_case__ : List[str] = controlnet_down_blocks # mid snake_case__ : Union[str, Any] = block_out_channels[-1] snake_case__ : Optional[int] = FlaxUNetMidBlockaDCrossAttn( in_channels=lowerCamelCase , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) snake_case__ : Tuple = nn.Conv( lowerCamelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Optional[int] , lowerCamelCase : int , lowerCamelCase : List[Any] , lowerCamelCase : Dict , lowerCamelCase : Optional[int] , lowerCamelCase : float = 1.0 , lowerCamelCase : bool = True , lowerCamelCase : bool = False , )-> Union[FlaxControlNetOutput, Tuple]: snake_case__ : int = self.controlnet_conditioning_channel_order if channel_order == "bgr": snake_case__ : Union[str, Any] = jnp.flip(lowerCamelCase , axis=1 ) # 1. time if not isinstance(lowerCamelCase , jnp.ndarray ): snake_case__ : List[Any] = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(lowerCamelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: snake_case__ : Optional[int] = timesteps.astype(dtype=jnp.floataa ) snake_case__ : Optional[int] = jnp.expand_dims(lowerCamelCase , 0 ) snake_case__ : Any = self.time_proj(lowerCamelCase ) snake_case__ : List[Any] = self.time_embedding(lowerCamelCase ) # 2. pre-process snake_case__ : Dict = jnp.transpose(lowerCamelCase , (0, 2, 3, 1) ) snake_case__ : Any = self.conv_in(lowerCamelCase ) snake_case__ : Dict = jnp.transpose(lowerCamelCase , (0, 2, 3, 1) ) snake_case__ : str = self.controlnet_cond_embedding(lowerCamelCase ) sample += controlnet_cond # 3. down snake_case__ : Any = (sample,) for down_block in self.down_blocks: if isinstance(lowerCamelCase , lowerCamelCase ): snake_case__ , snake_case__ : List[str] = down_block(lowerCamelCase , lowerCamelCase , lowerCamelCase , deterministic=not train ) else: snake_case__ , snake_case__ : List[str] = down_block(lowerCamelCase , lowerCamelCase , deterministic=not train ) down_block_res_samples += res_samples # 4. mid snake_case__ : Optional[Any] = self.mid_block(lowerCamelCase , lowerCamelCase , lowerCamelCase , deterministic=not train ) # 5. contronet blocks snake_case__ : List[str] = () for down_block_res_sample, controlnet_block in zip(lowerCamelCase , self.controlnet_down_blocks ): snake_case__ : List[str] = controlnet_block(lowerCamelCase ) controlnet_down_block_res_samples += (down_block_res_sample,) snake_case__ : Optional[Any] = controlnet_down_block_res_samples snake_case__ : Optional[int] = self.controlnet_mid_block(lowerCamelCase ) # 6. scaling snake_case__ : Optional[Any] = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowerCamelCase , mid_block_res_sample=lowerCamelCase )
172
0