code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import os from datetime import datetime as dt from github import Github UpperCAmelCase_ : Dict = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def UpperCamelCase ( )-> str: """simple docstring""" A__ = Github(os.environ["GITHUB_TOKEN"] ) A__ = g.get_repo("huggingface/diffusers" ) A__ = repo.get_issues(state="open" ) for issue in open_issues: A__ = sorted(issue.get_comments() , key=lambda _A : i.created_at , reverse=_A ) A__ = comments[0] if len(_A ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="closed" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="open" ) issue.remove_from_labels("stale" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) issue.add_to_labels("stale" ) if __name__ == "__main__": main()
491
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> List[str]: """simple docstring""" # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file __UpperCAmelCase : Optional[Any] = TapasConfig.from_json_file(UpperCamelCase ) # set absolute/relative position embeddings parameter __UpperCAmelCase : Optional[Any] = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __UpperCAmelCase : List[str] = TapasForQuestionAnswering(config=UpperCamelCase ) elif task == "WTQ": # run_task_main.py hparams __UpperCAmelCase : Tuple = 4 __UpperCAmelCase : Any = True # hparam_utils.py hparams __UpperCAmelCase : Union[str, Any] = 0.664694 __UpperCAmelCase : Union[str, Any] = 0.207951 __UpperCAmelCase : int = 0.121194 __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : List[str] = True __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : List[str] = 0.0352513 __UpperCAmelCase : Optional[int] = TapasForQuestionAnswering(config=UpperCamelCase ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __UpperCAmelCase : int = 4 __UpperCAmelCase : Optional[int] = False # hparam_utils.py hparams __UpperCAmelCase : int = 36.4519 __UpperCAmelCase : str = 0.903421 __UpperCAmelCase : Dict = 222.088 __UpperCAmelCase : Dict = True __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : Tuple = True __UpperCAmelCase : Any = 0.763141 __UpperCAmelCase : Optional[Any] = TapasForQuestionAnswering(config=UpperCamelCase ) elif task == "TABFACT": __UpperCAmelCase : Union[str, Any] = TapasForSequenceClassification(config=UpperCamelCase ) elif task == "MLM": __UpperCAmelCase : Tuple = TapasForMaskedLM(config=UpperCamelCase ) elif task == "INTERMEDIATE_PRETRAINING": __UpperCAmelCase : List[str] = TapasModel(config=UpperCamelCase ) else: raise ValueError(f"Task {task} not supported." ) print(f"Building PyTorch model from configuration: {config}" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # Save pytorch-model (weights and configuration) print(f"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(UpperCamelCase ) # Save tokenizer files print(f"Save tokenizer files to {pytorch_dump_path}" ) __UpperCAmelCase : str = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt" , model_max_length=512 ) tokenizer.save_pretrained(UpperCamelCase ) print("Used relative position embeddings:" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) A = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
77
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCamelCase__ ( a ): '''simple docstring''' _snake_case = ['''image_processor''', '''tokenizer'''] _snake_case = '''FlavaImageProcessor''' _snake_case = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ) -> List[str]: __lowerCAmelCase : Tuple = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : int = kwargs.pop('feature_extractor' ) __lowerCAmelCase : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = self.image_processor def __call__( self , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: __lowerCAmelCase : Union[str, Any] = self.tokenizer( text=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , stride=SCREAMING_SNAKE_CASE , pad_to_multiple_of=SCREAMING_SNAKE_CASE , return_token_type_ids=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , return_overflowing_tokens=SCREAMING_SNAKE_CASE , return_special_tokens_mask=SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , return_length=SCREAMING_SNAKE_CASE , verbose=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) if images is not None: __lowerCAmelCase : Optional[int] = self.image_processor( SCREAMING_SNAKE_CASE , return_image_mask=SCREAMING_SNAKE_CASE , return_codebook_pixels=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) if text is not None and images is not None: encoding.update(SCREAMING_SNAKE_CASE ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE ) , tensor_type=SCREAMING_SNAKE_CASE ) def snake_case ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Optional[Any]: return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def snake_case ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Optional[int]: return self.tokenizer.decode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) @property def snake_case ( self ) -> Dict: __lowerCAmelCase : Dict = self.tokenizer.model_input_names __lowerCAmelCase : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def snake_case ( self ) -> Any: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , SCREAMING_SNAKE_CASE , ) return self.image_processor_class @property def snake_case ( self ) -> int: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , SCREAMING_SNAKE_CASE , ) return self.image_processor
123
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase__ ( a , unittest.TestCase ): '''simple docstring''' _snake_case = OpenAIGPTTokenizer _snake_case = OpenAIGPTTokenizerFast _snake_case = True _snake_case = False def snake_case ( self ) -> Optional[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase : Union[str, Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __lowerCAmelCase : Tuple = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) __lowerCAmelCase : Union[str, Any] = ['#version: 0.2', 'l o', 'lo w', 'e r</w>', ''] __lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE ) ) def snake_case ( self , SCREAMING_SNAKE_CASE ) -> Any: return "lower newer", "lower newer" def snake_case ( self ) -> List[str]: __lowerCAmelCase : List[str] = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) __lowerCAmelCase : List[str] = 'lower' __lowerCAmelCase : Union[str, Any] = ['low', 'er</w>'] __lowerCAmelCase : List[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = tokens + ['<unk>'] __lowerCAmelCase : int = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def snake_case ( self , SCREAMING_SNAKE_CASE=15 ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # Simple input __lowerCAmelCase : Optional[Any] = 'This is a simple input' __lowerCAmelCase : Union[str, Any] = ['This is a simple input 1', 'This is a simple input 2'] __lowerCAmelCase : int = ('This is a simple input', 'This is a pair') __lowerCAmelCase : Optional[Any] = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' ) # Simple input self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' ) # Simple input self.assertRaises( SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' , ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' ) # Pair input self.assertRaises( SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' , ) def snake_case ( self ) -> int: pass @require_ftfy @require_spacy @require_tokenizers class UpperCamelCase__ ( a ): '''simple docstring''' pass
123
1
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return abs(__UpperCamelCase ) if a == 0 else greatest_common_divisor(b % a , __UpperCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' while y: # --> when y=0 then loop will terminate and return x as final GCD. _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = y, x % y return abs(__UpperCamelCase ) def A ( ): '''simple docstring''' try: _lowerCAmelCase : int = input("Enter two integers separated by comma (,): " ).split("," ) _lowerCAmelCase : Optional[int] = int(nums[0] ) _lowerCAmelCase : Dict = int(nums[1] ) print( F"greatest_common_divisor({num_a}, {num_a}) = " F"{greatest_common_divisor(__UpperCamelCase , __UpperCamelCase )}" ) print(F"By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__UpperCamelCase , __UpperCamelCase )}" ) except (IndexError, UnboundLocalError, ValueError): print("Wrong input" ) if __name__ == "__main__": main()
500
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a :Dict = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Dict = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :str = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Tuple = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :List[Any] = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Any = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __a :List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
86
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _UpperCamelCase : Tuple = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : List[str] = ["DeiTFeatureExtractor"] _UpperCamelCase : Union[str, Any] = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Union[str, Any] = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Union[str, Any] = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys _UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
721
'''simple docstring''' from manim import * class _snake_case ( a_ ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = Rectangle(height=0.5 , width=0.5 ) lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCAmelCase = Rectangle(height=0.25 , width=0.25 ) lowerCAmelCase = [mem.copy() for i in range(6 )] lowerCAmelCase = [mem.copy() for i in range(6 )] lowerCAmelCase = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) lowerCAmelCase = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) lowerCAmelCase = VGroup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) lowerCAmelCase = Text('CPU' , font_size=24 ) lowerCAmelCase = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = [mem.copy() for i in range(4 )] lowerCAmelCase = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) lowerCAmelCase = Text('GPU' , font_size=24 ) lowerCAmelCase = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) gpu.move_to([-1, -1, 0] ) self.add(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = [mem.copy() for i in range(6 )] lowerCAmelCase = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) lowerCAmelCase = Text('Model' , font_size=24 ) lowerCAmelCase = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) model.move_to([3, -1.0, 0] ) self.add(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = [] lowerCAmelCase = [] for i, rect in enumerate(_SCREAMING_SNAKE_CASE ): lowerCAmelCase = fill.copy().set_fill(_SCREAMING_SNAKE_CASE , opacity=0.8 ) target.move_to(_SCREAMING_SNAKE_CASE ) model_arr.append(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_SCREAMING_SNAKE_CASE , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_SCREAMING_SNAKE_CASE ) self.add(*_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) lowerCAmelCase = [meta_mem.copy() for i in range(6 )] lowerCAmelCase = [meta_mem.copy() for i in range(6 )] lowerCAmelCase = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) lowerCAmelCase = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) lowerCAmelCase = VGroup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) lowerCAmelCase = Text('Disk' , font_size=24 ) lowerCAmelCase = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) disk.move_to([-4, -1.25, 0] ) self.add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(_SCREAMING_SNAKE_CASE , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = MarkupText( F'Now watch as an input is passed through the model\nand how the memory is utilized and handled.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = Square(0.3 ) input.set_fill(_SCREAMING_SNAKE_CASE , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _SCREAMING_SNAKE_CASE , buff=0.5 ) self.play(Write(_SCREAMING_SNAKE_CASE ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_SCREAMING_SNAKE_CASE , buff=0.02 ) self.play(MoveToTarget(_SCREAMING_SNAKE_CASE ) ) self.play(FadeOut(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = Arrow(start=_SCREAMING_SNAKE_CASE , end=_SCREAMING_SNAKE_CASE , color=_SCREAMING_SNAKE_CASE , buff=0.5 ) a.next_to(model_arr[0].get_left() , _SCREAMING_SNAKE_CASE , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCAmelCase = MarkupText( F'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_SCREAMING_SNAKE_CASE , run_time=3 ) ) lowerCAmelCase = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(_SCREAMING_SNAKE_CASE ) , Circumscribe(model_arr[0] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , Circumscribe(model_cpu_arr[0] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , Circumscribe(gpu_rect[0] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCAmelCase = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _SCREAMING_SNAKE_CASE , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCAmelCase = AnimationGroup( FadeOut(_SCREAMING_SNAKE_CASE , run_time=0.5 ) , MoveToTarget(_SCREAMING_SNAKE_CASE , run_time=0.5 ) , FadeIn(_SCREAMING_SNAKE_CASE , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_SCREAMING_SNAKE_CASE ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCAmelCase = 0.7 self.play( Circumscribe(model_arr[i] , **_SCREAMING_SNAKE_CASE ) , Circumscribe(cpu_left_col_base[i] , **_SCREAMING_SNAKE_CASE ) , Circumscribe(cpu_left_col_base[i + 1] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , Circumscribe(gpu_rect[0] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , Circumscribe(model_arr[i + 1] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , Circumscribe(cpu_left_col_base[-1] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , Circumscribe(gpu_rect[0] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCAmelCase = a_c lowerCAmelCase = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_SCREAMING_SNAKE_CASE ) , FadeOut(_SCREAMING_SNAKE_CASE , run_time=0.5 ) , ) lowerCAmelCase = MarkupText(F'Inference on a model too large for GPU memory\nis successfully completed.' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_SCREAMING_SNAKE_CASE , run_time=3 ) , MoveToTarget(_SCREAMING_SNAKE_CASE ) ) self.wait()
514
0
import math import unittest def UpperCamelCase (lowercase_: int ) -> bool: assert isinstance(lowercase_ , lowercase_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class _a (unittest.TestCase ): '''simple docstring''' def __A ( self ): self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def __A ( self ): with self.assertRaises(A__ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , """Zero doesn't have any positive factors, primes must have exactly two.""" , ) self.assertFalse( is_prime(1 ) , """One only has 1 positive factor, primes must have exactly two.""" , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
456
A_ : Union[str, Any] = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' A_ : str = [{'type': 'code', 'content': INSTALL_CONTENT}] A_ : Any = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
456
1
"""simple docstring""" import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self :Optional[int] , __magic_name__ :int , __magic_name__ :int=13 , __magic_name__ :Any=30 , __magic_name__ :Tuple=2 , __magic_name__ :List[str]=3 , __magic_name__ :Tuple=True , __magic_name__ :Optional[Any]=True , __magic_name__ :Union[str, Any]=32 , __magic_name__ :Union[str, Any]=5 , __magic_name__ :List[str]=4 , __magic_name__ :List[Any]=37 , __magic_name__ :str="gelu" , __magic_name__ :List[str]=0.1 , __magic_name__ :str=0.1 , __magic_name__ :Optional[Any]=10 , __magic_name__ :int=0.02 , __magic_name__ :str=None , __magic_name__ :Optional[Any]=2 , ) -> int: '''simple docstring''' a__ = parent a__ = batch_size a__ = image_size a__ = patch_size a__ = num_channels a__ = is_training a__ = use_labels a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = type_sequence_label_size a__ = initializer_range a__ = scope a__ = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a__ = (image_size // patch_size) ** 2 a__ = num_patches + 1 def _UpperCamelCase ( self :List[Any] ) -> str: '''simple docstring''' a__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ = self.get_config() return config, pixel_values, labels def _UpperCamelCase ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__magic_name__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _UpperCamelCase ( self :Any , __magic_name__ :Optional[int] , __magic_name__ :Union[str, Any] , __magic_name__ :Optional[int] ) -> Any: '''simple docstring''' a__ = ViTModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() a__ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self :Any , __magic_name__ :Dict , __magic_name__ :List[Any] , __magic_name__ :List[str] ) -> Optional[int]: '''simple docstring''' a__ = ViTForMaskedImageModeling(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() a__ = model(__magic_name__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images a__ = 1 a__ = ViTForMaskedImageModeling(__magic_name__ ) model.to(__magic_name__ ) model.eval() a__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a__ = model(__magic_name__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _UpperCamelCase ( self :Dict , __magic_name__ :int , __magic_name__ :str , __magic_name__ :Dict ) -> str: '''simple docstring''' a__ = self.type_sequence_label_size a__ = ViTForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() a__ = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a__ = 1 a__ = ViTForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() a__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a__ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _UpperCamelCase ( self :List[str] ) -> Optional[int]: '''simple docstring''' a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' snake_case__ : Union[str, Any] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) snake_case__ : str = ( {'feature-extraction': ViTModel, 'image-classification': ViTForImageClassification} if is_torch_available() else {} ) snake_case__ : List[Any] = True snake_case__ : List[Any] = False snake_case__ : Dict = False snake_case__ : str = False def _UpperCamelCase ( self :Tuple ) -> int: '''simple docstring''' a__ = ViTModelTester(self ) a__ = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def _UpperCamelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def _UpperCamelCase ( self :Tuple ) -> Dict: '''simple docstring''' pass def _UpperCamelCase ( self :Optional[int] ) -> Optional[int]: '''simple docstring''' a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def _UpperCamelCase ( self :str ) -> List[Any]: '''simple docstring''' a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(__magic_name__ ) a__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ = [*signature.parameters.keys()] a__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __magic_name__ ) def _UpperCamelCase ( self :int ) -> Tuple: '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def _UpperCamelCase ( self :Tuple ) -> Optional[int]: '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__magic_name__ ) def _UpperCamelCase ( self :int ) -> List[str]: '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) @slow def _UpperCamelCase ( self :List[Any] ) -> Any: '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = ViTModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def __snake_case ( ) -> Any: """simple docstring""" a__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _UpperCamelCase ( self :Optional[int] ) -> Dict: '''simple docstring''' return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None @slow def _UpperCamelCase ( self :List[Any] ) -> Union[str, Any]: '''simple docstring''' a__ = ViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ).to(__magic_name__ ) a__ = self.default_image_processor a__ = prepare_img() a__ = image_processor(images=__magic_name__ , return_tensors='''pt''' ).to(__magic_name__ ) # forward pass with torch.no_grad(): a__ = model(**__magic_name__ ) # verify the logits a__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) a__ = torch.tensor([-0.2_744, 0.8_215, -0.0_836] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1e-4 ) ) @slow def _UpperCamelCase ( self :str ) -> int: '''simple docstring''' a__ = ViTModel.from_pretrained('''facebook/dino-vits8''' ).to(__magic_name__ ) a__ = ViTImageProcessor.from_pretrained('''facebook/dino-vits8''' , size=480 ) a__ = prepare_img() a__ = image_processor(images=__magic_name__ , return_tensors='''pt''' ) a__ = inputs.pixel_values.to(__magic_name__ ) # forward pass with torch.no_grad(): a__ = model(__magic_name__ , interpolate_pos_encoding=__magic_name__ ) # verify the logits a__ = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , __magic_name__ ) a__ = torch.tensor( [[4.2_340, 4.3_906, -6.6_692], [4.5_463, 1.8_928, -6.7_257], [4.4_429, 0.8_496, -5.8_585]] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def _UpperCamelCase ( self :List[str] ) -> Optional[int]: '''simple docstring''' a__ = ViTModel.from_pretrained('''facebook/dino-vits8''' , torch_dtype=torch.floataa , device_map='''auto''' ) a__ = self.default_image_processor a__ = prepare_img() a__ = image_processor(images=__magic_name__ , return_tensors='''pt''' ) a__ = inputs.pixel_values.to(__magic_name__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): a__ = model(__magic_name__ )
720
"""simple docstring""" import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self :List[str] ) -> List[Any]: '''simple docstring''' a__ = logging.get_logger() # the current default level is logging.WARNING a__ = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(__magic_name__ ) def _UpperCamelCase ( self :Optional[Any] ) -> Tuple: '''simple docstring''' a__ = logging.get_verbosity() a__ = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) a__ = '''Testing 1, 2, 3''' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(__magic_name__ ) as cl: logger.warning(__magic_name__ ) self.assertEqual(cl.out , msg + '''\n''' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(__magic_name__ ) as cl: logger.warning(__magic_name__ ) self.assertEqual(cl.out , '''''' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(__magic_name__ ) as cl: logger.warning(__magic_name__ ) self.assertEqual(cl.out , msg + '''\n''' ) # restore to the original level logging.set_verbosity(__magic_name__ ) @mockenv(TRANSFORMERS_VERBOSITY='''error''' ) def _UpperCamelCase ( self :int ) -> Tuple: '''simple docstring''' transformers.utils.logging._reset_library_root_logger() # this action activates the env var a__ = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) a__ = os.getenv('''TRANSFORMERS_VERBOSITY''' , __magic_name__ ) a__ = logging.log_levels[env_level_str] a__ = logging.get_verbosity() self.assertEqual( __magic_name__ , __magic_name__ , F"TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}" , ) # restore to the original level a__ = '''''' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='''super-error''' ) def _UpperCamelCase ( self :Tuple ) -> Tuple: '''simple docstring''' transformers.utils.logging._reset_library_root_logger() a__ = logging.logging.getLogger() with CaptureLogger(__magic_name__ ) as cl: # this action activates the env var logging.get_logger('''transformers.models.bart.tokenization_bart''' ) self.assertIn('''Unknown option TRANSFORMERS_VERBOSITY=super-error''' , cl.out ) # no need to restore as nothing was changed def _UpperCamelCase ( self :Any ) -> Optional[Any]: '''simple docstring''' transformers.utils.logging._reset_library_root_logger() a__ = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) a__ = '''Testing 1, 2, 3''' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''1''' ): # nothing should be logged as env var disables this method with CaptureLogger(__magic_name__ ) as cl: logger.warning_advice(__magic_name__ ) self.assertEqual(cl.out , '''''' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''''' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(__magic_name__ ) as cl: logger.warning_advice(__magic_name__ ) self.assertEqual(cl.out , msg + '''\n''' ) def __snake_case ( ) -> Optional[int]: """simple docstring""" disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
158
0
'''simple docstring''' import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) UpperCAmelCase_ : Union[str, Any] = logging.getLogger(__name__) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=3_0_5_2_2, type=int) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() logger.info(F"""Loading data from {args.data_file}""") with open(args.data_file, '''rb''') as fp: UpperCAmelCase_ : Optional[int] = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') UpperCAmelCase_ : Union[str, Any] = Counter() for tk_ids in data: counter.update(tk_ids) UpperCAmelCase_ : Dict = [0] * args.vocab_size for k, v in counter.items(): UpperCAmelCase_ : str = v logger.info(F"""Dump to {args.token_counts_dump}""") with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
24
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase_ : List[str] = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys UpperCAmelCase_ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
1
from __future__ import annotations def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" _UpperCAmelCase : str = [True] * limit _UpperCAmelCase : int = False _UpperCAmelCase : List[str] = False _UpperCAmelCase : Optional[Any] = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): _UpperCAmelCase : Optional[int] = i * 2 while index < limit: _UpperCAmelCase : str = False _UpperCAmelCase : str = index + i _UpperCAmelCase : List[Any] = [2] for i in range(3 , _SCREAMING_SNAKE_CASE , 2 ): if is_prime[i]: primes.append(_SCREAMING_SNAKE_CASE ) return primes def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE = 1_0_0_0_0_0_0 ) -> int: """simple docstring""" _UpperCAmelCase : List[Any] = prime_sieve(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : List[Any] = 0 _UpperCAmelCase : int = 0 for i in range(len(_SCREAMING_SNAKE_CASE ) ): for j in range(i + length , len(_SCREAMING_SNAKE_CASE ) ): _UpperCAmelCase : List[str] = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: _UpperCAmelCase : Tuple = j - i _UpperCAmelCase : int = sol return largest if __name__ == "__main__": print(f'''{solution() = }''')
705
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor __lowerCamelCase = logging.get_logger(__name__) class _UpperCamelCase( SCREAMING_SNAKE_CASE ): def __init__( self : Any , *_lowerCamelCase : Any , **_lowerCamelCase : Any ): warnings.warn( "The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ImageGPTImageProcessor instead." , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
328
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase_ = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
132
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class UpperCAmelCase_ ( A ): '''simple docstring''' lowercase_ : torch.FloatTensor class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , snake_case__ : Tuple=3 , snake_case__ : Dict=3 , snake_case__ : Dict=("DownEncoderBlock2D",) , snake_case__ : Optional[Any]=(64,) , snake_case__ : List[Any]=2 , snake_case__ : Any=32 , snake_case__ : Tuple="silu" , snake_case__ : Tuple=True , ): '''simple docstring''' super().__init__() UpperCAmelCase__ : Tuple = layers_per_block UpperCAmelCase__ : Optional[int] = torch.nn.Convad( snake_case__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : Union[str, Any] = nn.ModuleList([] ) # down UpperCAmelCase__ : Any = block_out_channels[0] for i, down_block_type in enumerate(snake_case__ ): UpperCAmelCase__ : List[str] = output_channel UpperCAmelCase__ : Dict = block_out_channels[i] UpperCAmelCase__ : Tuple = i == len(snake_case__ ) - 1 UpperCAmelCase__ : Dict = get_down_block( snake_case__ , num_layers=self.layers_per_block , in_channels=snake_case__ , out_channels=snake_case__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=snake_case__ , resnet_groups=snake_case__ , attention_head_dim=snake_case__ , temb_channels=snake_case__ , ) self.down_blocks.append(snake_case__ ) # mid UpperCAmelCase__ : Optional[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=snake_case__ , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=snake_case__ , temb_channels=snake_case__ , ) # out UpperCAmelCase__ : Tuple = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=snake_case__ , eps=1e-6 ) UpperCAmelCase__ : Union[str, Any] = nn.SiLU() UpperCAmelCase__ : Dict = 2 * out_channels if double_z else out_channels UpperCAmelCase__ : Union[str, Any] = nn.Convad(block_out_channels[-1] , snake_case__ , 3 , padding=1 ) UpperCAmelCase__ : Union[str, Any] = False def UpperCamelCase ( self : int , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = x UpperCAmelCase__ : Dict = self.conv_in(snake_case__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(snake_case__ : Dict ): def custom_forward(*snake_case__ : List[str] ): return module(*snake_case__ ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: UpperCAmelCase__ : List[str] = torch.utils.checkpoint.checkpoint( create_custom_forward(snake_case__ ) , snake_case__ , use_reentrant=snake_case__ ) # middle UpperCAmelCase__ : int = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , snake_case__ , use_reentrant=snake_case__ ) else: for down_block in self.down_blocks: UpperCAmelCase__ : Optional[Any] = torch.utils.checkpoint.checkpoint(create_custom_forward(snake_case__ ) , snake_case__ ) # middle UpperCAmelCase__ : int = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , snake_case__ ) else: # down for down_block in self.down_blocks: UpperCAmelCase__ : Dict = down_block(snake_case__ ) # middle UpperCAmelCase__ : Optional[Any] = self.mid_block(snake_case__ ) # post-process UpperCAmelCase__ : Tuple = self.conv_norm_out(snake_case__ ) UpperCAmelCase__ : List[Any] = self.conv_act(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = self.conv_out(snake_case__ ) return sample class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : str , snake_case__ : int=3 , snake_case__ : str=3 , snake_case__ : Union[str, Any]=("UpDecoderBlock2D",) , snake_case__ : Dict=(64,) , snake_case__ : Optional[Any]=2 , snake_case__ : Dict=32 , snake_case__ : str="silu" , snake_case__ : Any="group" , ): '''simple docstring''' super().__init__() UpperCAmelCase__ : Any = layers_per_block UpperCAmelCase__ : Any = nn.Convad( snake_case__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) UpperCAmelCase__ : str = None UpperCAmelCase__ : Optional[int] = nn.ModuleList([] ) UpperCAmelCase__ : str = in_channels if norm_type == "spatial" else None # mid UpperCAmelCase__ : Optional[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=snake_case__ , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=snake_case__ , temb_channels=snake_case__ , ) # up UpperCAmelCase__ : Tuple = list(reversed(snake_case__ ) ) UpperCAmelCase__ : Optional[Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(snake_case__ ): UpperCAmelCase__ : Dict = output_channel UpperCAmelCase__ : List[Any] = reversed_block_out_channels[i] UpperCAmelCase__ : List[Any] = i == len(snake_case__ ) - 1 UpperCAmelCase__ : Tuple = get_up_block( snake_case__ , num_layers=self.layers_per_block + 1 , in_channels=snake_case__ , out_channels=snake_case__ , prev_output_channel=snake_case__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=snake_case__ , resnet_groups=snake_case__ , attention_head_dim=snake_case__ , temb_channels=snake_case__ , resnet_time_scale_shift=snake_case__ , ) self.up_blocks.append(snake_case__ ) UpperCAmelCase__ : str = output_channel # out if norm_type == "spatial": UpperCAmelCase__ : Optional[Any] = SpatialNorm(block_out_channels[0] , snake_case__ ) else: UpperCAmelCase__ : Optional[int] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=snake_case__ , eps=1e-6 ) UpperCAmelCase__ : Dict = nn.SiLU() UpperCAmelCase__ : Union[str, Any] = nn.Convad(block_out_channels[0] , snake_case__ , 3 , padding=1 ) UpperCAmelCase__ : Union[str, Any] = False def UpperCamelCase ( self : List[str] , snake_case__ : List[str] , snake_case__ : Tuple=None ): '''simple docstring''' UpperCAmelCase__ : str = z UpperCAmelCase__ : List[str] = self.conv_in(snake_case__ ) UpperCAmelCase__ : Tuple = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(snake_case__ : Dict ): def custom_forward(*snake_case__ : List[Any] ): return module(*snake_case__ ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle UpperCAmelCase__ : str = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , snake_case__ , snake_case__ , use_reentrant=snake_case__ ) UpperCAmelCase__ : List[Any] = sample.to(snake_case__ ) # up for up_block in self.up_blocks: UpperCAmelCase__ : Tuple = torch.utils.checkpoint.checkpoint( create_custom_forward(snake_case__ ) , snake_case__ , snake_case__ , use_reentrant=snake_case__ ) else: # middle UpperCAmelCase__ : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , snake_case__ , snake_case__ ) UpperCAmelCase__ : int = sample.to(snake_case__ ) # up for up_block in self.up_blocks: UpperCAmelCase__ : str = torch.utils.checkpoint.checkpoint(create_custom_forward(snake_case__ ) , snake_case__ , snake_case__ ) else: # middle UpperCAmelCase__ : Union[str, Any] = self.mid_block(snake_case__ , snake_case__ ) UpperCAmelCase__ : Optional[Any] = sample.to(snake_case__ ) # up for up_block in self.up_blocks: UpperCAmelCase__ : int = up_block(snake_case__ , snake_case__ ) # post-process if latent_embeds is None: UpperCAmelCase__ : List[Any] = self.conv_norm_out(snake_case__ ) else: UpperCAmelCase__ : Any = self.conv_norm_out(snake_case__ , snake_case__ ) UpperCAmelCase__ : List[Any] = self.conv_act(snake_case__ ) UpperCAmelCase__ : Optional[Any] = self.conv_out(snake_case__ ) return sample class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : str , snake_case__ : str , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Union[str, Any]=None , snake_case__ : Optional[Any]="random" , snake_case__ : Any=False , snake_case__ : Any=True ): '''simple docstring''' super().__init__() UpperCAmelCase__ : Any = n_e UpperCAmelCase__ : str = vq_embed_dim UpperCAmelCase__ : List[Any] = beta UpperCAmelCase__ : List[Any] = legacy UpperCAmelCase__ : Tuple = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) UpperCAmelCase__ : Optional[Any] = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) UpperCAmelCase__ : Optional[Any] = self.used.shape[0] UpperCAmelCase__ : Any = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": UpperCAmelCase__ : Union[str, Any] = self.re_embed UpperCAmelCase__ : Optional[Any] = self.re_embed + 1 print( F"""Remapping {self.n_e} indices to {self.re_embed} indices. """ F"""Using {self.unknown_index} for unknown indices.""" ) else: UpperCAmelCase__ : int = n_e UpperCAmelCase__ : Dict = sane_index_shape def UpperCamelCase ( self : Tuple , snake_case__ : int ): '''simple docstring''' UpperCAmelCase__ : Any = inds.shape assert len(snake_case__ ) > 1 UpperCAmelCase__ : Tuple = inds.reshape(ishape[0] , -1 ) UpperCAmelCase__ : Optional[Any] = self.used.to(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = (inds[:, :, None] == used[None, None, ...]).long() UpperCAmelCase__ : Optional[int] = match.argmax(-1 ) UpperCAmelCase__ : str = match.sum(2 ) < 1 if self.unknown_index == "random": UpperCAmelCase__ : Union[str, Any] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: UpperCAmelCase__ : Tuple = self.unknown_index return new.reshape(snake_case__ ) def UpperCamelCase ( self : int , snake_case__ : str ): '''simple docstring''' UpperCAmelCase__ : List[str] = inds.shape assert len(snake_case__ ) > 1 UpperCAmelCase__ : List[Any] = inds.reshape(ishape[0] , -1 ) UpperCAmelCase__ : int = self.used.to(snake_case__ ) if self.re_embed > self.used.shape[0]: # extra token UpperCAmelCase__ : Any = 0 # simply set to zero UpperCAmelCase__ : List[Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , snake_case__ ) return back.reshape(snake_case__ ) def UpperCamelCase ( self : Any , snake_case__ : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = z.permute(0 , 2 , 3 , 1 ).contiguous() UpperCAmelCase__ : str = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z UpperCAmelCase__ : Dict = torch.argmin(torch.cdist(snake_case__ , self.embedding.weight ) , dim=1 ) UpperCAmelCase__ : Any = self.embedding(snake_case__ ).view(z.shape ) UpperCAmelCase__ : Union[str, Any] = None UpperCAmelCase__ : Any = None # compute loss for embedding if not self.legacy: UpperCAmelCase__ : Optional[int] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: UpperCAmelCase__ : Tuple = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients UpperCAmelCase__ : Any = z + (z_q - z).detach() # reshape back to match original input shape UpperCAmelCase__ : int = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: UpperCAmelCase__ : Dict = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis UpperCAmelCase__ : Optional[int] = self.remap_to_used(snake_case__ ) UpperCAmelCase__ : Optional[Any] = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: UpperCAmelCase__ : Union[str, Any] = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def UpperCamelCase ( self : int , snake_case__ : str , snake_case__ : int ): '''simple docstring''' if self.remap is not None: UpperCAmelCase__ : List[Any] = indices.reshape(shape[0] , -1 ) # add batch axis UpperCAmelCase__ : Dict = self.unmap_to_all(snake_case__ ) UpperCAmelCase__ : Dict = indices.reshape(-1 ) # flatten again # get quantized latent vectors UpperCAmelCase__ : Optional[Any] = self.embedding(snake_case__ ) if shape is not None: UpperCAmelCase__ : List[str] = z_q.view(snake_case__ ) # reshape back to match original input shape UpperCAmelCase__ : List[Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class UpperCAmelCase_ ( A ): '''simple docstring''' def __init__( self : int , snake_case__ : Optional[Any] , snake_case__ : List[str]=False ): '''simple docstring''' UpperCAmelCase__ : Dict = parameters UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = torch.chunk(snake_case__ , 2 , dim=1 ) UpperCAmelCase__ : int = torch.clamp(self.logvar , -30.0 , 20.0 ) UpperCAmelCase__ : Optional[Any] = deterministic UpperCAmelCase__ : Dict = torch.exp(0.5 * self.logvar ) UpperCAmelCase__ : List[str] = torch.exp(self.logvar ) if self.deterministic: UpperCAmelCase__ : Dict = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def UpperCamelCase ( self : List[Any] , snake_case__ : Optional[torch.Generator] = None ): '''simple docstring''' UpperCAmelCase__ : int = randn_tensor( self.mean.shape , generator=snake_case__ , device=self.parameters.device , dtype=self.parameters.dtype ) UpperCAmelCase__ : List[str] = self.mean + self.std * sample return x def UpperCamelCase ( self : Optional[Any] , snake_case__ : Any=None ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def UpperCamelCase ( self : List[Any] , snake_case__ : Tuple , snake_case__ : Tuple=[1, 2, 3] ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) UpperCAmelCase__ : str = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=snake_case__ ) def UpperCamelCase ( self : List[str] ): '''simple docstring''' return self.mean
199
0
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process __lowerCamelCase = logging.getLogger(__name__) __lowerCamelCase = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) __lowerCamelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class a__ : lowerCamelCase__: Optional[str] = field( default=_UpperCAmelCase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) lowerCamelCase__: Optional[str] = field( default=_UpperCAmelCase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(_UpperCAmelCase )} , ) lowerCamelCase__: Optional[str] = field( default=_UpperCAmelCase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) lowerCamelCase__: Optional[str] = field( default=_UpperCAmelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowerCamelCase__: Optional[str] = field( default=_UpperCAmelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowerCamelCase__: Optional[str] = field( default=_UpperCAmelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) lowerCamelCase__: bool = field( default=_UpperCAmelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) lowerCamelCase__: str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) lowerCamelCase__: bool = field( default=_UpperCAmelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def UpperCAmelCase( self : List[str] ): if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( """--config_overrides can't be used in combination with --config_name or --model_name_or_path""" ) @dataclass class a__ : lowerCamelCase__: Optional[str] = field( default=_UpperCAmelCase , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) lowerCamelCase__: Optional[str] = field( default=_UpperCAmelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) lowerCamelCase__: Optional[str] = field(default=_UpperCAmelCase , metadata={"""help""": """The input training data file (a text file)."""} ) lowerCamelCase__: Optional[str] = field( default=_UpperCAmelCase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) lowerCamelCase__: Optional[str] = field( default=_UpperCAmelCase , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) lowerCamelCase__: Optional[str] = field( default=_UpperCAmelCase , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) lowerCamelCase__: bool = field( default=_UpperCAmelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) lowerCamelCase__: Optional[int] = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) lowerCamelCase__: Optional[int] = field( default=_UpperCAmelCase , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) lowerCamelCase__: Optional[int] = field( default=_UpperCAmelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) lowerCamelCase__: float = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) lowerCamelCase__: bool = field( default=_UpperCAmelCase , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def UpperCAmelCase( self : Tuple ): if self.train_file is not None: a_ : Optional[int] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: a_ : List[str] = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def _a ( __UpperCamelCase , __UpperCamelCase ): with open(SCREAMING_SNAKE_CASE__ , """r""" , encoding="""utf-8""" ) as f: a_ : Dict = [json.loads(SCREAMING_SNAKE_CASE__ ) for line in f.read().splitlines() if (len(SCREAMING_SNAKE_CASE__ ) > 0 and not line.isspace())] assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = {c: dataset[c] for c in dataset.column_names} a_ : Union[str, Any] = refs return Dataset.from_dict(SCREAMING_SNAKE_CASE__ ) def _a ( ): a_ : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a_ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a_ : List[str] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. a_ : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: a_ : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , SCREAMING_SNAKE_CASE__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. a_ : Tuple = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): a_ : Optional[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''train[:{data_args.validation_split_percentage}%]''' , ) a_ : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''train[{data_args.validation_split_percentage}%:]''' , ) else: a_ : int = {} if data_args.train_file is not None: a_ : Any = data_args.train_file if data_args.validation_file is not None: a_ : str = data_args.validation_file a_ : Optional[int] = data_args.train_file.split(""".""" )[-1] if extension == "txt": a_ : Union[str, Any] = """text""" a_ : Dict = load_dataset(SCREAMING_SNAKE_CASE__ , data_files=SCREAMING_SNAKE_CASE__ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a_ : Any = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: a_ : Optional[Any] = AutoConfig.from_pretrained(model_args.config_name , **SCREAMING_SNAKE_CASE__ ) elif model_args.model_name_or_path: a_ : Optional[Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE__ ) else: a_ : List[Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) a_ : Any = { """cache_dir""": model_args.cache_dir, """use_fast""": model_args.use_fast_tokenizer, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: a_ : Dict = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **SCREAMING_SNAKE_CASE__ ) elif model_args.model_name_or_path: a_ : Optional[Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE__ ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) if model_args.model_name_or_path: a_ : List[str] = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) a_ : Optional[Any] = AutoModelForMaskedLM.from_config(SCREAMING_SNAKE_CASE__ ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE__ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: a_ : List[Any] = datasets["""train"""].column_names else: a_ : Tuple = datasets["""validation"""].column_names a_ : Union[str, Any] = """text""" if """text""" in column_names else column_names[0] a_ : Optional[Any] = """max_length""" if data_args.pad_to_max_length else False def tokenize_function(__UpperCamelCase ): # Remove empty lines a_ : List[Any] = [line for line in examples["""text"""] if len(SCREAMING_SNAKE_CASE__ ) > 0 and not line.isspace()] return tokenizer(examples["""text"""] , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=data_args.max_seq_length ) a_ : Any = datasets.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: a_ : List[Any] = add_chinese_references(tokenized_datasets["""train"""] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: a_ : Any = add_chinese_references( tokenized_datasets["""validation"""] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer a_ : str = data_args.train_ref_file or data_args.validation_ref_file if has_ref: a_ : List[str] = False # Data collator # This one will take care of randomly masking the tokens. a_ : List[Any] = DataCollatorForWholeWordMask(tokenizer=SCREAMING_SNAKE_CASE__ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer a_ : str = Trainer( model=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , train_dataset=tokenized_datasets["""train"""] if training_args.do_train else None , eval_dataset=tokenized_datasets["""validation"""] if training_args.do_eval else None , tokenizer=SCREAMING_SNAKE_CASE__ , data_collator=SCREAMING_SNAKE_CASE__ , ) # Training if training_args.do_train: if last_checkpoint is not None: a_ : Optional[int] = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): a_ : str = model_args.model_name_or_path else: a_ : Tuple = None a_ : int = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ ) trainer.save_model() # Saves the tokenizer too for easy upload a_ : Optional[Any] = os.path.join(training_args.output_dir , """train_results.txt""" ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE__ , """w""" ) as writer: logger.info("""***** Train results *****""" ) for key, value in sorted(train_result.metrics.items() ): logger.info(F''' {key} = {value}''' ) writer.write(F'''{key} = {value}\n''' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # Evaluation a_ : Tuple = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) a_ : List[Any] = trainer.evaluate() a_ : Optional[Any] = math.exp(eval_output["""eval_loss"""] ) a_ : List[str] = perplexity a_ : List[Any] = os.path.join(training_args.output_dir , """eval_results_mlm_wwm.txt""" ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in sorted(results.items() ): logger.info(F''' {key} = {value}''' ) writer.write(F'''{key} = {value}\n''' ) return results def _a ( __UpperCamelCase ): main() if __name__ == "__main__": main()
704
import os import re import shutil import sys import tempfile import unittest import black __lowerCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. __lowerCamelCase = ''' def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states ''' class a__ ( unittest.TestCase ): def UpperCAmelCase( self : Dict ): a_ : Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) a_ : Optional[Any] = self.transformer_dir shutil.copy( os.path.join(lowerCamelCase_ , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def UpperCAmelCase( self : Dict ): a_ : Any = """src/transformers""" shutil.rmtree(self.transformer_dir ) def UpperCAmelCase( self : Dict , lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : Tuple=None ): a_ : Any = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: a_ : Any = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result a_ : Dict = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 ) a_ : Optional[Any] = black.format_str(lowerCamelCase_ , mode=lowerCamelCase_ ) a_ : Optional[Any] = os.path.join(self.transformer_dir , """new_code.py""" ) with open(lowerCamelCase_ , """w""" , newline="""\n""" ) as f: f.write(lowerCamelCase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCamelCase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowerCamelCase_ ) with open(lowerCamelCase_ , """r""" ) as f: self.assertTrue(f.read() , lowerCamelCase_ ) def UpperCAmelCase( self : Dict ): a_ : Tuple = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase( self : Optional[int] ): # Base copy consistency self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , lowerCamelCase_ , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , lowerCamelCase_ ) , ) # Copy consistency with a really long name a_ : int = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , F'''{long_class_name}LMPredictionHead''' , re.sub("""Bert""" , lowerCamelCase_ , lowerCamelCase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , lowerCamelCase_ , overwrite_result=re.sub("""Bert""" , """TestModel""" , lowerCamelCase_ ) , ) def UpperCAmelCase( self : int ): a_ : Optional[Any] = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] a_ : Tuple = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) a_ : Optional[Any] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) a_ : Any = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) a_ , a_ : Optional[int] = check_copies.convert_to_localized_md( lowerCamelCase_ , lowerCamelCase_ , localized_readme["""format_model_list"""] ) self.assertFalse(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) a_ , a_ : Tuple = check_copies.convert_to_localized_md( lowerCamelCase_ , lowerCamelCase_ , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowerCamelCase_ ) a_ : Optional[int] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) a_ : Union[str, Any] = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) a_ : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) a_ , a_ : Tuple = check_copies.convert_to_localized_md( lowerCamelCase_ , lowerCamelCase_ , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
478
0
_A = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' _A = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] _A = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
258
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a : List[Any] = logging.get_logger(__name__) a : List[Any] = { '''microsoft/unispeech-sat-base-100h-libri-ft''': ( '''https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json''' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class __UpperCamelCase ( a__ ): lowerCamelCase : Tuple ="""unispeech-sat""" def __init__( self , lowerCAmelCase__=32 , lowerCAmelCase__=768 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=3072 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-5 , lowerCAmelCase__="group" , lowerCAmelCase__="gelu" , lowerCAmelCase__=(512, 512, 512, 512, 512, 512, 512) , lowerCAmelCase__=(5, 2, 2, 2, 2, 2, 2) , lowerCAmelCase__=(10, 3, 3, 3, 3, 2, 2) , lowerCAmelCase__=False , lowerCAmelCase__=128 , lowerCAmelCase__=16 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.05 , lowerCAmelCase__=10 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0 , lowerCAmelCase__=10 , lowerCAmelCase__=0 , lowerCAmelCase__=320 , lowerCAmelCase__=2 , lowerCAmelCase__=0.1 , lowerCAmelCase__=100 , lowerCAmelCase__=256 , lowerCAmelCase__=256 , lowerCAmelCase__=0.1 , lowerCAmelCase__="mean" , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=256 , lowerCAmelCase__=(512, 512, 512, 512, 1500) , lowerCAmelCase__=(5, 3, 3, 1, 1) , lowerCAmelCase__=(1, 2, 3, 1, 1) , lowerCAmelCase__=512 , lowerCAmelCase__=0 , lowerCAmelCase__=1 , lowerCAmelCase__=2 , lowerCAmelCase__=504 , **lowerCAmelCase__ , ) -> List[str]: super().__init__(**lowerCAmelCase__ , pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ ) a : Any = hidden_size a : Tuple = feat_extract_norm a : Tuple = feat_extract_activation a : Dict = list(lowerCAmelCase__ ) a : int = list(lowerCAmelCase__ ) a : Optional[Any] = list(lowerCAmelCase__ ) a : int = conv_bias a : str = num_conv_pos_embeddings a : Dict = num_conv_pos_embedding_groups a : Optional[int] = len(self.conv_dim ) a : int = num_hidden_layers a : Any = intermediate_size a : Any = hidden_act a : List[Any] = num_attention_heads a : Any = hidden_dropout a : Union[str, Any] = attention_dropout a : Tuple = activation_dropout a : Dict = feat_proj_dropout a : Optional[Any] = final_dropout a : Union[str, Any] = layerdrop a : str = layer_norm_eps a : Optional[int] = initializer_range a : Optional[int] = vocab_size a : str = num_clusters a : Any = do_stable_layer_norm a : str = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a : List[Any] = apply_spec_augment a : int = mask_time_prob a : Optional[int] = mask_time_length a : Dict = mask_time_min_masks a : Optional[int] = mask_feature_prob a : List[str] = mask_feature_length a : Dict = mask_feature_min_masks # parameters for pretraining with codevector quantized representations a : List[str] = num_codevectors_per_group a : List[Any] = num_codevector_groups a : Tuple = contrastive_logits_temperature a : int = feat_quantizer_dropout a : Optional[Any] = num_negatives a : Optional[int] = codevector_dim a : Tuple = proj_codevector_dim a : Optional[int] = diversity_loss_weight # ctc loss a : Dict = ctc_loss_reduction a : Optional[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. a : Dict = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. a : Union[str, Any] = list(lowerCAmelCase__ ) a : List[str] = list(lowerCAmelCase__ ) a : Tuple = list(lowerCAmelCase__ ) a : Optional[int] = xvector_output_dim @property def __a ( self ) -> Any: return functools.reduce(operator.mul , self.conv_stride , 1 )
633
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : Any ="pegasus" lowerCamelCase__ : Dict =["past_key_values"] lowerCamelCase__ : str ={"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , lowerCamelCase=50265 , lowerCamelCase=1024 , lowerCamelCase=12 , lowerCamelCase=4096 , lowerCamelCase=16 , lowerCamelCase=12 , lowerCamelCase=4096 , lowerCamelCase=16 , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase="gelu" , lowerCamelCase=1024 , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.0_2 , lowerCamelCase=0 , lowerCamelCase=False , lowerCamelCase=0 , lowerCamelCase=1 , lowerCamelCase=1 , **lowerCamelCase , ) -> Optional[int]: """simple docstring""" __magic_name__ : List[str] = vocab_size __magic_name__ : int = max_position_embeddings __magic_name__ : Optional[Any] = d_model __magic_name__ : Dict = encoder_ffn_dim __magic_name__ : int = encoder_layers __magic_name__ : Tuple = encoder_attention_heads __magic_name__ : int = decoder_ffn_dim __magic_name__ : Any = decoder_layers __magic_name__ : Tuple = decoder_attention_heads __magic_name__ : List[Any] = dropout __magic_name__ : str = attention_dropout __magic_name__ : Any = activation_dropout __magic_name__ : Optional[int] = activation_function __magic_name__ : Any = init_std __magic_name__ : Tuple = encoder_layerdrop __magic_name__ : Tuple = decoder_layerdrop __magic_name__ : Union[str, Any] = use_cache __magic_name__ : Tuple = encoder_layers __magic_name__ : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , is_encoder_decoder=lowerCamelCase , decoder_start_token_id=lowerCamelCase , forced_eos_token_id=lowerCamelCase , **lowerCamelCase , ) @property def lowercase ( self ) -> int: """simple docstring""" return self.encoder_attention_heads @property def lowercase ( self ) -> int: """simple docstring""" return self.d_model
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowercase_ = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['''CLIPFeatureExtractor'''] lowercase_ = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
336
0
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : int=13 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : str=True , __lowerCamelCase : Any=True , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Optional[int]=224 , __lowerCamelCase : Any=1000 , __lowerCamelCase : Optional[Any]=[3, 3, 6, 4] , __lowerCamelCase : List[Any]=[48, 56, 112, 220] , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = layer_depths SCREAMING_SNAKE_CASE = embed_dims def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _snake_case ( self : Dict ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=__lowerCamelCase , layer_scale_init_value=1e-5 , ) def _snake_case ( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = SwiftFormerModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _snake_case ( self : Dict , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = SwiftFormerForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) SCREAMING_SNAKE_CASE = SwiftFormerForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : int ): ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () lowerCamelCase__ = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = SwiftFormerModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester( self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _snake_case ( self : List[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="SwiftFormer does not use inputs_embeds" ) def _snake_case ( self : Optional[int] ): pass def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def _snake_case ( self : Tuple ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = SwiftFormerModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @unittest.skip(reason="SwiftFormer does not output attentions" ) def _snake_case ( self : Union[str, Any] ): pass def _snake_case ( self : Optional[Any] ): def check_hidden_states_output(__lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.hidden_states SCREAMING_SNAKE_CASE = 8 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(__lowerCamelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : List[Any] ): def _config_zero_init(__lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = copy.deepcopy(__lowerCamelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(__lowerCamelCase , __lowerCamelCase , 1e-10 ) if isinstance(getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ): SCREAMING_SNAKE_CASE = _config_zero_init(getattr(__lowerCamelCase , __lowerCamelCase ) ) setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return configs_no_init SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = _config_zero_init(__lowerCamelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(config=__lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self : str ): pass def __a ( ): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : List[str] ): return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None @slow def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([[-2.17_03e00, 2.11_07e00, -2.08_11e00]] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
16
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = "hf-internal-testing/tiny-random-t5" SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer("This is me" , return_tensors="pt" ) SCREAMING_SNAKE_CASE = model.to_bettertransformer() self.assertTrue(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) SCREAMING_SNAKE_CASE = model.generate(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.reverse_bettertransformer() self.assertFalse(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) self.assertFalse( any("BetterTransformer" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) SCREAMING_SNAKE_CASE = model_reloaded.generate(**__lowerCamelCase ) self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase ) ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = "hf-internal-testing/tiny-random-t5" SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__lowerCamelCase ): model.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.reverse_bettertransformer() model.save_pretrained(__lowerCamelCase )
16
1
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class _lowerCamelCase : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=9 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0_0_2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , )->List[Any]: '''simple docstring''' A_ : List[str] = parent A_ : List[Any] = batch_size A_ : Dict = encoder_seq_length A_ : Union[str, Any] = decoder_seq_length # For common tests A_ : Union[str, Any] = self.decoder_seq_length A_ : Any = is_training A_ : str = use_attention_mask A_ : Union[str, Any] = use_labels A_ : List[Any] = vocab_size A_ : Dict = hidden_size A_ : Optional[Any] = num_hidden_layers A_ : Union[str, Any] = num_attention_heads A_ : Tuple = d_ff A_ : Optional[Any] = relative_attention_num_buckets A_ : Any = dropout_rate A_ : List[str] = initializer_factor A_ : List[str] = eos_token_id A_ : Dict = pad_token_id A_ : List[Any] = decoder_start_token_id A_ : Optional[Any] = None A_ : List[Any] = decoder_layers def _snake_case ( self )->Any: '''simple docstring''' return TaConfig.from_pretrained('''google/umt5-base''' ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , )->Optional[Any]: '''simple docstring''' if attention_mask is None: A_ : Tuple = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: A_ : Tuple = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: A_ : Any = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=_SCREAMING_SNAKE_CASE ) if decoder_head_mask is None: A_ : str = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=_SCREAMING_SNAKE_CASE ) if cross_attn_head_mask is None: A_ : str = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=_SCREAMING_SNAKE_CASE ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : List[str] = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) A_ : Optional[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input A_ : Union[str, Any] = input_ids.clamp(self.pad_token_id + 1 ) A_ : Optional[Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) A_ : Optional[Any] = self.get_config() A_ : Tuple = config.num_attention_heads A_ : int = self.prepare_inputs_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return config, input_dict def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ , A_ : Dict = self.prepare_config_and_inputs() return config, inputs_dict def _snake_case ( self )->Any: '''simple docstring''' return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _snake_case ( self )->Optional[int]: '''simple docstring''' return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )->Union[str, Any]: '''simple docstring''' A_ : Optional[Any] = UMTaModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ : List[str] = model( input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , decoder_attention_mask=_SCREAMING_SNAKE_CASE , ) A_ : List[str] = model(input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE ) A_ : str = result.last_hidden_state A_ : Tuple = result.past_key_values A_ : Optional[int] = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(_SCREAMING_SNAKE_CASE ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )->int: '''simple docstring''' A_ : Optional[int] = UMTaModel(config=_SCREAMING_SNAKE_CASE ).get_decoder().to(_SCREAMING_SNAKE_CASE ).eval() # first forward pass A_ : Tuple = model(_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) A_ : Dict = model(_SCREAMING_SNAKE_CASE ) A_ : Tuple = model(_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) ) self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) + 1 ) A_ , A_ : str = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A_ : Any = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and A_ : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) A_ : Any = model(_SCREAMING_SNAKE_CASE )['''last_hidden_state'''] A_ : int = model(_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE )['''last_hidden_state'''] # select random slice A_ : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() A_ : List[Any] = output_from_no_past[:, -1, random_slice_idx].detach() A_ : int = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )->Any: '''simple docstring''' A_ : Optional[int] = UMTaModel(config=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ).half().eval() A_ : List[Any] = model(**_SCREAMING_SNAKE_CASE )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(_SCREAMING_SNAKE_CASE ).any().item() ) @require_torch class _lowerCamelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" snake_case = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) snake_case = (UMTaForConditionalGeneration,) if is_torch_available() else () snake_case = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) snake_case = True snake_case = False snake_case = False snake_case = True snake_case = True # The small UMT5 model needs higher percentages for CPU/MP tests snake_case = [0.8, 0.9] def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ : List[str] = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() A_ : int = UMTaModel(config_and_inputs[0] ).to(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( _SCREAMING_SNAKE_CASE , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'''{tmpdirname}/t5_test.onnx''' , export_params=_SCREAMING_SNAKE_CASE , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def _snake_case ( self )->Any: '''simple docstring''' A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : Dict = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] A_ : Tuple = self.model_tester.prepare_config_and_inputs() A_ : Optional[int] = config_and_inputs[0] A_ : Any = UMTaForConditionalGeneration(_SCREAMING_SNAKE_CASE ).eval() model.to(_SCREAMING_SNAKE_CASE ) A_ : Any = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=_SCREAMING_SNAKE_CASE ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=_SCREAMING_SNAKE_CASE ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=_SCREAMING_SNAKE_CASE ), } for attn_name, (name, mask) in zip(_SCREAMING_SNAKE_CASE , head_masking.items() ): A_ : Union[str, Any] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": A_ : Tuple = torch.ones( config.num_decoder_layers , config.num_heads , device=_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=_SCREAMING_SNAKE_CASE , return_dict_in_generate=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # We check the state of decoder_attentions and cross_attentions just from the last step A_ : str = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def _snake_case ( self )->Optional[Any]: '''simple docstring''' pass @require_torch @require_sentencepiece @require_tokenizers class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def _snake_case ( self )->Tuple: '''simple docstring''' A_ : Union[str, Any] = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=_SCREAMING_SNAKE_CASE , legacy=_SCREAMING_SNAKE_CASE ) A_ : Dict = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] A_ : List[Any] = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors='''pt''' , padding=_SCREAMING_SNAKE_CASE ).input_ids # fmt: off A_ : Tuple = torch.tensor( [ [ 3_8530, 21_0703, 25_6299, 1410, 25_6298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 2_5922, 25_6299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 1_9014, 1_0620, 758, 25_6299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 25_6299, 1_4869, 281, 301, 25_6298, 275, 11_9983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 25_6299, 1_4869, 281, 2234, 289, 2275, 333,6_1391, 289, 25_6298, 543, 25_6297, 16_8714, 329, 25_6296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Tuple = model.generate(input_ids.to(_SCREAMING_SNAKE_CASE ) ) A_ : Tuple = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] A_ : Dict = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
701
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { """t5-small""": """https://huggingface.co/t5-small/resolve/main/config.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/config.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/config.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/config.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/config.json""", } class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = "t5" snake_case = ["past_key_values"] snake_case = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , _SCREAMING_SNAKE_CASE=3_2128 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=128 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-6 , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=1 , **_SCREAMING_SNAKE_CASE , )->List[Any]: '''simple docstring''' A_ : str = vocab_size A_ : Tuple = d_model A_ : Tuple = d_kv A_ : str = d_ff A_ : str = num_layers A_ : Dict = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A_ : str = num_heads A_ : Optional[int] = relative_attention_num_buckets A_ : int = relative_attention_max_distance A_ : str = dropout_rate A_ : int = layer_norm_epsilon A_ : List[str] = initializer_factor A_ : Optional[int] = feed_forward_proj A_ : Optional[int] = use_cache A_ : Tuple = self.feed_forward_proj.split('''-''' ) A_ : List[Any] = act_info[-1] A_ : str = act_info[0] == '''gated''' if len(_SCREAMING_SNAKE_CASE ) > 1 and act_info[0] != "gated" or len(_SCREAMING_SNAKE_CASE ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": A_ : List[Any] = '''gelu_new''' super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" @property def _snake_case ( self )->Mapping[str, Mapping[int, str]]: '''simple docstring''' A_ : List[str] = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: A_ : str = '''past_encoder_sequence + sequence''' A_ : Any = {0: '''batch'''} A_ : List[str] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: A_ : List[str] = {0: '''batch''', 1: '''decoder_sequence'''} A_ : Union[str, Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_SCREAMING_SNAKE_CASE , direction='''inputs''' ) return common_inputs @property def _snake_case ( self )->int: '''simple docstring''' return 13
152
0
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase_ ) class _snake_case ( UpperCAmelCase_ ): def __init__( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_) if self.framework == "tf": raise ValueError(f'The {self.__class__} is only available in PyTorch.') requires_backends(self , """vision""") self.check_model_type(SCREAMING_SNAKE_CASE_) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' if "text_queries" in kwargs: lowercase__ : Any = kwargs.pop("""text_queries""") if isinstance(SCREAMING_SNAKE_CASE_ , (str, Image.Image)): lowercase__ : Optional[Any] = {"""image""": image, """candidate_labels""": candidate_labels} else: lowercase__ : int = image lowercase__ : List[str] = super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) return results def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = {} if "threshold" in kwargs: lowercase__ : List[Any] = kwargs["""threshold"""] if "top_k" in kwargs: lowercase__ : int = kwargs["""top_k"""] return {}, {}, postprocess_params def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : str = load_image(inputs["""image"""]) lowercase__ : Any = inputs["""candidate_labels"""] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): lowercase__ : List[str] = candidate_labels.split(""",""") lowercase__ : Tuple = torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework) lowercase__ : Union[str, Any] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework) yield { "is_last": i == len(SCREAMING_SNAKE_CASE_) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : str = model_inputs.pop("""target_size""") lowercase__ : Optional[int] = model_inputs.pop("""candidate_label""") lowercase__ : Dict = model_inputs.pop("""is_last""") lowercase__ : Union[str, Any] = self.model(**SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' lowercase__ : Union[str, Any] = [] for model_output in model_outputs: lowercase__ : Optional[int] = model_output["""candidate_label"""] lowercase__ : Tuple = BaseModelOutput(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = self.image_processor.post_process_object_detection( outputs=SCREAMING_SNAKE_CASE_ , threshold=SCREAMING_SNAKE_CASE_ , target_sizes=model_output["""target_size"""])[0] for index in outputs["scores"].nonzero(): lowercase__ : Optional[Any] = outputs["""scores"""][index].item() lowercase__ : Optional[Any] = self._get_bounding_box(outputs["""boxes"""][index][0]) lowercase__ : Tuple = {"""score""": score, """label""": label, """box""": box} results.append(SCREAMING_SNAKE_CASE_) lowercase__ : int = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: x["score"] , reverse=SCREAMING_SNAKE_CASE_) if top_k: lowercase__ : Any = results[:top_k] return results def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""") lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = box.int().tolist() lowercase__ : Optional[int] = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
12
"""simple docstring""" import string def _UpperCamelCase ( A ): UpperCamelCase_ ="" for i in sequence: UpperCamelCase_ =ord(A ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def _UpperCamelCase ( A ): UpperCamelCase_ =string.ascii_letters UpperCamelCase_ =string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(A )] if c in letters else c for c in sequence ) def _UpperCamelCase ( ): from timeit import timeit print("Running performance benchmarks..." ) UpperCamelCase_ ="from string import printable ; from __main__ import atbash, atbash_slow" print(f"""> atbash_slow(): {timeit("atbash_slow(printable)" , setup=A )} seconds""" ) print(f"""> atbash(): {timeit("atbash(printable)" , setup=A )} seconds""" ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f'''{example} encrypted in atbash: {atbash(example)}''') benchmark()
391
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer UpperCAmelCase__ : str = logging.get_logger(__name__) UpperCAmelCase__ : int = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ : str = { "vocab_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json" ), }, "merges_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt" ), }, "tokenizer_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/tokenizer.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/tokenizer.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json", "roberta-base-openai-detector": ( "https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json" ), "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ : Optional[Any] = { "roberta-base": 512, "roberta-large": 512, "roberta-large-mnli": 512, "distilroberta-base": 512, "roberta-base-openai-detector": 512, "roberta-large-openai-detector": 512, } class a__ ( lowercase__ ): """simple docstring""" UpperCAmelCase__ : Optional[Any] =VOCAB_FILES_NAMES UpperCAmelCase__ : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Dict =["""input_ids""", """attention_mask"""] UpperCAmelCase__ : str =RobertaTokenizer def __init__( self : Tuple , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : str=None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int="replace" , UpperCAmelCase__ : Optional[Any]="<s>" , UpperCAmelCase__ : Any="</s>" , UpperCAmelCase__ : Union[str, Any]="</s>" , UpperCAmelCase__ : Dict="<s>" , UpperCAmelCase__ : Any="<unk>" , UpperCAmelCase__ : str="<pad>" , UpperCAmelCase__ : int="<mask>" , UpperCAmelCase__ : List[str]=False , UpperCAmelCase__ : Tuple=True , **UpperCAmelCase__ : int , ) ->int: """simple docstring""" super().__init__( UpperCAmelCase__ , UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , errors=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , **UpperCAmelCase__ , ) SCREAMING_SNAKE_CASE : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCAmelCase__ ) != add_prefix_space: SCREAMING_SNAKE_CASE : int = getattr(UpperCAmelCase__ , pre_tok_state.pop("""type""" ) ) SCREAMING_SNAKE_CASE : Optional[Any] = add_prefix_space SCREAMING_SNAKE_CASE : List[str] = pre_tok_class(**UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = add_prefix_space SCREAMING_SNAKE_CASE : int = "post_processor" SCREAMING_SNAKE_CASE : Any = getattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE : Optional[int] = tuple(state["""sep"""] ) if "cls" in state: SCREAMING_SNAKE_CASE : Union[str, Any] = tuple(state["""cls"""] ) SCREAMING_SNAKE_CASE : Optional[int] = False if state.get("""add_prefix_space""" , UpperCAmelCase__ ) != add_prefix_space: SCREAMING_SNAKE_CASE : Optional[Any] = add_prefix_space SCREAMING_SNAKE_CASE : Tuple = True if state.get("""trim_offsets""" , UpperCAmelCase__ ) != trim_offsets: SCREAMING_SNAKE_CASE : List[str] = trim_offsets SCREAMING_SNAKE_CASE : str = True if changes_to_apply: SCREAMING_SNAKE_CASE : Optional[int] = getattr(UpperCAmelCase__ , state.pop("""type""" ) ) SCREAMING_SNAKE_CASE : List[Any] = component_class(**UpperCAmelCase__ ) setattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ ) @property def _lowercase ( self : List[str] ) ->str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def _lowercase ( self : Tuple , UpperCAmelCase__ : Optional[Any] ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else value SCREAMING_SNAKE_CASE : List[Any] = value def _lowercase ( self : Union[str, Any] , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : List[Any] ) ->BatchEncoding: """simple docstring""" SCREAMING_SNAKE_CASE : int = kwargs.get("""is_split_into_words""" , UpperCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowercase ( self : List[str] , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : List[str] ) ->BatchEncoding: """simple docstring""" SCREAMING_SNAKE_CASE : int = kwargs.get("""is_split_into_words""" , UpperCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowercase ( self : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) ->Tuple[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ ) def _lowercase ( self : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str=None ) ->Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) ->List[int]: """simple docstring""" SCREAMING_SNAKE_CASE : str = [self.sep_token_id] SCREAMING_SNAKE_CASE : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
704
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCAmelCase__ : int = get_tests_dir("""fixtures""") class a__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Dict ) ->Any: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = mock.Mock() SCREAMING_SNAKE_CASE : Optional[int] = 5_0_0 SCREAMING_SNAKE_CASE : List[str] = {} SCREAMING_SNAKE_CASE : List[Any] = HTTPError SCREAMING_SNAKE_CASE : int = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE : List[Any] = WavaVecaFeatureExtractor.from_pretrained("""hf-internal-testing/tiny-random-wav2vec2""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=UpperCAmelCase__ ) as mock_head: SCREAMING_SNAKE_CASE : Optional[int] = WavaVecaFeatureExtractor.from_pretrained("""hf-internal-testing/tiny-random-wav2vec2""" ) # This check we did call the fake head request mock_head.assert_called() def _lowercase ( self : Optional[Any] ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE : str = WavaVecaFeatureExtractor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json""" ) @is_staging_test class a__ ( unittest.TestCase ): """simple docstring""" @classmethod def _lowercase ( cls : List[str] ) ->Dict: """simple docstring""" SCREAMING_SNAKE_CASE : int = TOKEN HfFolder.save_token(UpperCAmelCase__ ) @classmethod def _lowercase ( cls : List[str] ) ->Optional[int]: """simple docstring""" try: delete_repo(token=cls._token , repo_id="""test-feature-extractor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-feature-extractor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-feature-extractor""" ) except HTTPError: pass def _lowercase ( self : int ) ->Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : int = WavaVecaFeatureExtractor.from_pretrained(UpperCAmelCase__ ) feature_extractor.push_to_hub("""test-feature-extractor""" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE : Any = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-feature-extractor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( UpperCAmelCase__ , repo_id="""test-feature-extractor""" , push_to_hub=UpperCAmelCase__ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE : List[str] = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__ ) ) def _lowercase ( self : List[Any] ) ->List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = WavaVecaFeatureExtractor.from_pretrained(UpperCAmelCase__ ) feature_extractor.push_to_hub("""valid_org/test-feature-extractor""" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained("""valid_org/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-feature-extractor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( UpperCAmelCase__ , repo_id="""valid_org/test-feature-extractor-org""" , push_to_hub=UpperCAmelCase__ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE : List[Any] = WavaVecaFeatureExtractor.from_pretrained("""valid_org/test-feature-extractor-org""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__ ) ) def _lowercase ( self : Optional[Any] ) ->Optional[int]: """simple docstring""" CustomFeatureExtractor.register_for_auto_class() SCREAMING_SNAKE_CASE : Any = CustomFeatureExtractor.from_pretrained(UpperCAmelCase__ ) feature_extractor.push_to_hub("""test-dynamic-feature-extractor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"""AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor"""} , ) SCREAMING_SNAKE_CASE : Any = AutoFeatureExtractor.from_pretrained( f"{USER}/test-dynamic-feature-extractor" , trust_remote_code=UpperCAmelCase__ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , """CustomFeatureExtractor""" )
446
0
import os import sys import unittest a__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path a__ = os.path.join(git_repo_path, '''src''', '''diffusers''') class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> Any: _a : Optional[Any] = find_backend(''' if not is_torch_available():''' ) self.assertEqual(_a , '''torch''' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") _a : str = find_backend(''' if not (is_torch_available() and is_transformers_available()):''' ) self.assertEqual(_a , '''torch_and_transformers''' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") _a : Optional[int] = find_backend( ''' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):''' ) self.assertEqual(_a , '''torch_and_transformers_and_onnx''' ) def __lowercase ( self ) -> List[Any]: _a : List[Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , _a ) self.assertIn('''torch_and_transformers''' , _a ) self.assertIn('''flax_and_transformers''' , _a ) self.assertIn('''torch_and_transformers_and_onnx''' , _a ) # Likewise, we can't assert on the exact content of a key self.assertIn('''UNet2DModel''' , objects['''torch'''] ) self.assertIn('''FlaxUNet2DConditionModel''' , objects['''flax'''] ) self.assertIn('''StableDiffusionPipeline''' , objects['''torch_and_transformers'''] ) self.assertIn('''FlaxStableDiffusionPipeline''' , objects['''flax_and_transformers'''] ) self.assertIn('''LMSDiscreteScheduler''' , objects['''torch_and_scipy'''] ) self.assertIn('''OnnxStableDiffusionPipeline''' , objects['''torch_and_transformers_and_onnx'''] ) def __lowercase ( self ) -> List[str]: _a : Optional[int] = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(_a , '''\nCONSTANT = None\n''' ) _a : int = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( _a , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) _a : Tuple = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, \'torch\') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, \'torch\') ''' _a : Dict = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(_a , _a ) def __lowercase ( self ) -> Union[str, Any]: _a : Dict = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) ''' _a : List[str] = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , _a )
14
import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC lowerCamelCase : Dict =parse(importlib.metadata.version('''torch''')) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) UpperCamelCase__ : Any = STR_OPERATION_TO_FUNC[operation] if isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ : List[str] = parse(importlib.metadata.version(__lowerCAmelCase ) ) return operation(__lowerCAmelCase , parse(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: return compare_versions(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
228
0
'''simple docstring''' from __future__ import annotations def __lowercase ( _A ) -> Optional[int]: return len(set(lowercase__ ) ) == len(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
702
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ : str = {"""processing_layoutxlm""": ["""LayoutXLMProcessor"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Any = ["""LayoutXLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : List[str] = ["""LayoutXLMTokenizerFast"""] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCAmelCase__ : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
446
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class A__ ( a__ ): """simple docstring""" __A : Dict = 4_2 __A : Optional[Any] = 4_2 class A__ ( a__ , a__ ): """simple docstring""" __A : Dict = 1 @register_to_config def __init__( self , lowercase = 2000 , lowercase = 0.15 , lowercase = 0.01 , lowercase = 1348.0 , lowercase = 1e-5 , lowercase = 1 , ) -> List[str]: '''simple docstring''' a__ : Any = sigma_max # setable values a__ : Any = None self.set_sigmas(__a , __a , __a , __a) def __lowercase ( self , lowercase , lowercase = None) -> torch.FloatTensor: '''simple docstring''' return sample def __lowercase ( self , lowercase , lowercase = None , lowercase = None) -> List[str]: '''simple docstring''' a__ : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps a__ : Any = torch.linspace(1 , __a , __a , device=__a) def __lowercase ( self , lowercase , lowercase = None , lowercase = None , lowercase = None) -> Any: '''simple docstring''' a__ : Union[str, Any] = sigma_min if sigma_min is not None else self.config.sigma_min a__ : Optional[Any] = sigma_max if sigma_max is not None else self.config.sigma_max a__ : Dict = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__a , __a) a__ : Optional[Any] = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) a__ : Optional[Any] = torch.exp(torch.linspace(math.log(__a) , math.log(__a) , __a)) a__ : Optional[Any] = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) def __lowercase ( self , lowercase , lowercase) -> Any: '''simple docstring''' return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device)) , self.discrete_sigmas[timesteps - 1].to(timesteps.device) , ) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase = None , lowercase = True , ) -> Union[SdeVeOutput, Tuple]: '''simple docstring''' if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler') a__ : Dict = timestep * torch.ones( sample.shape[0] , device=sample.device) # torch.repeat_interleave(timestep, sample.shape[0]) a__ : List[str] = (timestep * (len(self.timesteps) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda a__ : Optional[Any] = timesteps.to(self.discrete_sigmas.device) a__ : Tuple = self.discrete_sigmas[timesteps].to(sample.device) a__ : int = self.get_adjacent_sigma(__a , __a).to(sample.device) a__ : int = torch.zeros_like(__a) a__ : Any = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods a__ : List[str] = diffusion.flatten() while len(diffusion.shape) < len(sample.shape): a__ : Dict = diffusion.unsqueeze(-1) a__ : Dict = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of a__ : Dict = randn_tensor( sample.shape , layout=sample.layout , generator=__a , device=sample.device , dtype=sample.dtype) a__ : Any = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? a__ : List[str] = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__a , prev_sample_mean=__a) def __lowercase ( self , lowercase , lowercase , lowercase = None , lowercase = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler') # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction a__ : Union[str, Any] = randn_tensor(sample.shape , layout=sample.layout , generator=__a).to(sample.device) # compute step size from the model_output, the noise, and the snr a__ : Optional[int] = torch.norm(model_output.reshape(model_output.shape[0] , -1) , dim=-1).mean() a__ : List[str] = torch.norm(noise.reshape(noise.shape[0] , -1) , dim=-1).mean() a__ : Any = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 a__ : Optional[int] = step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term a__ : Union[str, Any] = step_size.flatten() while len(step_size.shape) < len(sample.shape): a__ : List[Any] = step_size.unsqueeze(-1) a__ : Optional[int] = sample + step_size * model_output a__ : Optional[int] = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__a) def __lowercase ( self , lowercase , lowercase , lowercase , ) -> torch.FloatTensor: '''simple docstring''' a__ : List[Any] = timesteps.to(original_samples.device) a__ : Optional[Any] = self.discrete_sigmas.to(original_samples.device)[timesteps] a__ : Optional[int] = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__a) * sigmas[:, None, None, None] ) a__ : Optional[Any] = noise + original_samples return noisy_samples def __len__( self) -> Any: '''simple docstring''' return self.config.num_train_timesteps
302
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE_ (a__ ): '''simple docstring''' _a = ["image_processor", "tokenizer"] _a = "LayoutLMv2ImageProcessor" _a = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : Any , __a : str=None , __a : List[Any]=None , **__a : Optional[int] ) ->int: if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __a , ) lowerCamelCase_ : str = kwargs.pop("""feature_extractor""" ) lowerCamelCase_ : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__a , __a ) def __call__( self : List[str] , __a : List[Any] , __a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __a : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __a : Union[List[List[int]], List[List[List[int]]]] = None , __a : Optional[Union[List[int], List[List[int]]]] = None , __a : bool = True , __a : Union[bool, str, PaddingStrategy] = False , __a : Union[bool, str, TruncationStrategy] = None , __a : Optional[int] = None , __a : int = 0 , __a : Optional[int] = None , __a : Optional[bool] = None , __a : Optional[bool] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : Optional[Union[str, TensorType]] = None , **__a : Any , ) ->BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes """ """if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("""You cannot return overflowing tokens without returning the offsets mapping.""" ) # first, apply the image processor lowerCamelCase_ : Tuple = self.image_processor(images=__a , return_tensors=__a ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__a , __a ): lowerCamelCase_ : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) lowerCamelCase_ : Dict = features["""words"""] lowerCamelCase_ : int = self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_token_type_ids=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) # add pixel values lowerCamelCase_ : Any = features.pop("""pixel_values""" ) if return_overflowing_tokens is True: lowerCamelCase_ : Dict = self.get_overflowing_images(__a , encoded_inputs["""overflow_to_sample_mapping"""] ) lowerCamelCase_ : Optional[int] = images return encoded_inputs def _lowerCAmelCase ( self : Optional[Any] , __a : str , __a : Union[str, Any] ) ->List[str]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image lowerCamelCase_ : Dict = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__a ) != len(__a ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" F''' {len(__a )} and {len(__a )}''' ) return images_with_overflow def _lowerCAmelCase ( self : Dict , *__a : Dict , **__a : int ) ->int: return self.tokenizer.batch_decode(*__a , **__a ) def _lowerCAmelCase ( self : List[Any] , *__a : List[str] , **__a : int ) ->List[Any]: return self.tokenizer.decode(*__a , **__a ) @property def _lowerCAmelCase ( self : int ) ->List[str]: return ["input_ids", "bbox", "attention_mask", "image"] @property def _lowerCAmelCase ( self : int ) ->str: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __a , ) return self.image_processor_class @property def _lowerCAmelCase ( self : int ) ->List[Any]: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __a , ) return self.image_processor
278
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { 'configuration_jukebox': [ 'JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'JukeboxConfig', 'JukeboxPriorConfig', 'JukeboxVQVAEConfig', ], 'tokenization_jukebox': ['JukeboxTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'JukeboxModel', 'JukeboxPreTrainedModel', 'JukeboxVQVAE', 'JukeboxPrior', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
257
'''simple docstring''' from __future__ import annotations import bisect def __UpperCAmelCase ( a_: list[int], a_: int, a_: int = 0, a_: int = -1 ): if hi < 0: _UpperCAmelCase : int = len(a_ ) while lo < hi: _UpperCAmelCase : Tuple = lo + (hi - lo) // 2 if sorted_collection[mid] < item: _UpperCAmelCase : str = mid + 1 else: _UpperCAmelCase : int = mid return lo def __UpperCAmelCase ( a_: list[int], a_: int, a_: int = 0, a_: int = -1 ): if hi < 0: _UpperCAmelCase : str = len(a_ ) while lo < hi: _UpperCAmelCase : Optional[int] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: _UpperCAmelCase : Tuple = mid + 1 else: _UpperCAmelCase : Union[str, Any] = mid return lo def __UpperCAmelCase ( a_: list[int], a_: int, a_: int = 0, a_: int = -1 ): sorted_collection.insert(bisect_left(a_, a_, a_, a_ ), a_ ) def __UpperCAmelCase ( a_: list[int], a_: int, a_: int = 0, a_: int = -1 ): sorted_collection.insert(bisect_right(a_, a_, a_, a_ ), a_ ) def __UpperCAmelCase ( a_: list[int], a_: int ): _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : Tuple = len(a_ ) - 1 while left <= right: _UpperCAmelCase : List[str] = left + (right - left) // 2 _UpperCAmelCase : List[str] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: _UpperCAmelCase : Optional[int] = midpoint - 1 else: _UpperCAmelCase : Union[str, Any] = midpoint + 1 return None def __UpperCAmelCase ( a_: list[int], a_: int ): _UpperCAmelCase : int = bisect.bisect_left(a_, a_ ) if index != len(a_ ) and sorted_collection[index] == item: return index return None def __UpperCAmelCase ( a_: list[int], a_: int, a_: int, a_: int ): if right < left: return None _UpperCAmelCase : Union[str, Any] = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(a_, a_, a_, midpoint - 1 ) else: return binary_search_by_recursion(a_, a_, midpoint + 1, a_ ) if __name__ == "__main__": __a = input('Enter numbers separated by comma:\n').strip() __a = sorted(int(item) for item in user_input.split(',')) __a = int(input('Enter a single number to be found in the list:\n')) __a = binary_search(collection, target) if result is None: print(f'{target} was not found in {collection}.') else: print(f'{target} was found at position {result} in {collection}.')
257
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _UpperCamelCase : int = logging.get_logger(__name__) def __UpperCAmelCase ( A : Union[tf.Tensor, np.ndarray] ) -> List[int]: if isinstance(A , np.ndarray ): return list(tensor.shape ) UpperCAmelCase_ : str = tf.shape(A ) if tensor.shape == tf.TensorShape(A ): return dynamic UpperCAmelCase_ : Any = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(A )] def __UpperCAmelCase ( A : tf.Tensor , A : Optional[int] = None , A : Optional[str] = None ) -> tf.Tensor: return tf.nn.softmax(logits=logits + 1e-9 , axis=A , name=A ) def __UpperCAmelCase ( A : List[str] , A : Union[str, Any] , A : List[str] , A : str=1e-5 , A : Dict=-1 ) -> List[Any]: # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(A , A ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized UpperCAmelCase_ , UpperCAmelCase_ : int = tf.nn.moments(A , axes=[axis] , keepdims=A ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis UpperCAmelCase_ : Tuple = [1] * inputs.shape.rank UpperCAmelCase_ : int = shape_list(A )[axis] UpperCAmelCase_ : Dict = tf.reshape(A , A ) UpperCAmelCase_ : Optional[Any] = tf.reshape(A , A ) # Compute layer normalization using the batch_normalization # function. UpperCAmelCase_ : Dict = tf.nn.batch_normalization( A , A , A , offset=A , scale=A , variance_epsilon=A , ) return outputs def __UpperCAmelCase ( A : Dict , A : int=0 , A : Optional[int]=-1 ) -> str: # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input UpperCAmelCase_ : Any = tf.shape(A ) UpperCAmelCase_ : Dict = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) UpperCAmelCase_ : Optional[int] = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(A , A ) def __UpperCAmelCase ( A : tf.Tensor ) -> tf.Tensor: if not isinstance(A , tf.Tensor ): UpperCAmelCase_ : Optional[Any] = tf.convert_to_tensor(A ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: UpperCAmelCase_ : Any = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: UpperCAmelCase_ : Tuple = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) UpperCAmelCase_ : int = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def __UpperCAmelCase ( A : tf.Tensor , A : int , A : str = "input_ids" ) -> None: tf.debugging.assert_less( A , tf.cast(A , dtype=tensor.dtype ) , message=( F"The maximum value of {tensor_name} ({tf.math.reduce_max(A )}) must be smaller than the embedding " F"layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time." ) , ) def __UpperCAmelCase ( A : Dict , A : Tuple , A : List[str] ) -> Union[str, Any]: UpperCAmelCase_ : List[Any] = 6_4_5_1_2 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. UpperCAmelCase_ : Tuple = [x for x in data if len(A ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' F"they are larger than {HDF5_OBJECT_HEADER_LIMIT} " F"bytes: {bad_attributes}" ) UpperCAmelCase_ : Union[str, Any] = np.asarray(A ) UpperCAmelCase_ : Optional[int] = 1 UpperCAmelCase_ : str = np.array_split(A , A ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 UpperCAmelCase_ : Dict = np.array_split(A , A ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(A ): UpperCAmelCase_ : int = chunk_data else: UpperCAmelCase_ : List[Any] = data def __UpperCAmelCase ( A : int , A : Optional[Any] ) -> Tuple: if name in group.attrs: UpperCAmelCase_ : Optional[int] = [n.decode('''utf8''' ) if hasattr(A , '''decode''' ) else n for n in group.attrs[name]] else: UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[int] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(A , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def __UpperCAmelCase ( A : Tuple ) -> str: def _expand_single_ad_tensor(A : int ): if isinstance(A , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(A , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , A )
541
'''simple docstring''' import argparse import os import re import packaging.version _UpperCamelCase : Union[str, Any] = 'examples/' _UpperCamelCase : List[str] = { 'examples': (re.compile(R'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(R'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(R'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), R'\1version="VERSION",'), 'doc': (re.compile(R'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } _UpperCamelCase : Optional[Any] = { 'init': 'src/diffusers/__init__.py', 'setup': 'setup.py', } _UpperCamelCase : Any = 'README.md' def __UpperCAmelCase ( A : Optional[int] , A : List[Any] , A : Tuple ) -> Dict: with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase_ : int = f.read() UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = REPLACE_PATTERNS[pattern] UpperCAmelCase_ : Tuple = replace.replace('''VERSION''' , A ) UpperCAmelCase_ : Tuple = re_pattern.sub(A , A ) with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(A ) def __UpperCAmelCase ( A : List[str] ) -> Any: for folder, directories, fnames in os.walk(A ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(A , A ) , A , pattern='''examples''' ) def __UpperCAmelCase ( A : Tuple , A : Optional[int]=False ) -> Tuple: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(A , A , A ) if not patch: update_version_in_examples(A ) def __UpperCAmelCase ( ) -> int: UpperCAmelCase_ : List[str] = '''🤗 Transformers currently provides the following architectures''' UpperCAmelCase_ : int = '''1. Want to contribute a new model?''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase_ : Optional[int] = f.readlines() # Find the start of the list. UpperCAmelCase_ : List[str] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase_ : Any = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCAmelCase_ : Optional[Any] = lines[index].replace( '''https://huggingface.co/docs/diffusers/main/model_doc''' , '''https://huggingface.co/docs/diffusers/model_doc''' , ) index += 1 with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(A ) def __UpperCAmelCase ( ) -> Dict: with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCAmelCase_ : Any = f.read() UpperCAmelCase_ : Union[str, Any] = REPLACE_PATTERNS['''init'''][0].search(A ).groups()[0] return packaging.version.parse(A ) def __UpperCAmelCase ( A : str=False ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCAmelCase_ : Optional[int] = default_version.base_version elif patch: UpperCAmelCase_ : Any = F"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: UpperCAmelCase_ : Optional[Any] = F"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. UpperCAmelCase_ : List[str] = input(F"Which version are you releasing? [{default_version}]" ) if len(A ) == 0: UpperCAmelCase_ : Tuple = default_version print(F"Updating version to {version}." ) global_version_update(A , patch=A ) def __UpperCAmelCase ( ) -> Optional[int]: UpperCAmelCase_ : str = get_version() UpperCAmelCase_ : Tuple = F"{current_version.major}.{current_version.minor + 1}.0.dev0" UpperCAmelCase_ : Any = current_version.base_version # Check with the user we got that right. UpperCAmelCase_ : List[Any] = input(F"Which version are we developing now? [{dev_version}]" ) if len(A ) == 0: UpperCAmelCase_ : Optional[int] = dev_version print(F"Updating version to {version}." ) global_version_update(A ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": _UpperCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') _UpperCamelCase : Optional[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
541
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'facebook/xlm-roberta-xl': 'https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json', 'facebook/xlm-roberta-xxl': 'https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class A_ ( __lowercase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Dict = "xlm-roberta-xl" def __init__( self , _A=250880 , _A=2560 , _A=36 , _A=32 , _A=10240 , _A="gelu" , _A=0.1 , _A=0.1 , _A=514 , _A=1 , _A=0.02 , _A=1e-05 , _A=1 , _A=0 , _A=2 , _A="absolute" , _A=True , _A=None , **_A , ) -> Any: """simple docstring""" super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A) _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Union[str, Any] = hidden_size _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : Union[str, Any] = num_attention_heads _UpperCAmelCase : str = hidden_act _UpperCAmelCase : Union[str, Any] = intermediate_size _UpperCAmelCase : Any = hidden_dropout_prob _UpperCAmelCase : int = attention_probs_dropout_prob _UpperCAmelCase : int = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : Any = initializer_range _UpperCAmelCase : str = layer_norm_eps _UpperCAmelCase : Any = position_embedding_type _UpperCAmelCase : int = use_cache _UpperCAmelCase : int = classifier_dropout class A_ ( __lowercase ): '''simple docstring''' @property def snake_case__ ( self) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase : List[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _UpperCAmelCase : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ])
713
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin SCREAMING_SNAKE_CASE = '\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n' class A_ ( unittest.TestCase , __lowercase ): '''simple docstring''' def snake_case__ ( self) -> int: """simple docstring""" _UpperCAmelCase : int = load_tool('''text-question-answering''') self.tool.setup() _UpperCAmelCase : Any = load_tool('''text-question-answering''' , remote=_A) def snake_case__ ( self) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.tool(_A , '''What did Hugging Face do in April 2021?''') self.assertEqual(_A , '''launched the BigScience Research Workshop''') def snake_case__ ( self) -> str: """simple docstring""" _UpperCAmelCase : str = self.remote_tool(_A , '''What did Hugging Face do in April 2021?''') self.assertEqual(_A , '''launched the BigScience Research Workshop''') def snake_case__ ( self) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Dict = self.tool(text=_A , question='''What did Hugging Face do in April 2021?''') self.assertEqual(_A , '''launched the BigScience Research Workshop''') def snake_case__ ( self) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[int] = self.remote_tool(text=_A , question='''What did Hugging Face do in April 2021?''') self.assertEqual(_A , '''launched the BigScience Research Workshop''')
186
0
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _lowerCAmelCase = logging.getLogger(__name__) class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : str = '''sequence-classification''' def __init__( self ,__UpperCAmelCase ) -> List[str]: if type(_lowerCAmelCase ) == dict: lowerCAmelCase__ : Optional[int] = Namespace(**_lowerCAmelCase ) lowerCAmelCase__ : int = glue_output_modes[hparams.task] lowerCAmelCase__ : Optional[Any] = glue_tasks_num_labels[hparams.task] super().__init__(_lowerCAmelCase ,_lowerCAmelCase ,self.mode ) def UpperCAmelCase_ ( self ,**__UpperCAmelCase ) -> Optional[int]: return self.model(**_lowerCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> int: lowerCAmelCase__ : Union[str, Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowerCAmelCase__ : str = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None lowerCAmelCase__ : Optional[int] = self(**_lowerCAmelCase ) lowerCAmelCase__ : int = outputs[0] lowerCAmelCase__ : Optional[int] = self.trainer.lr_schedulers[0]["""scheduler"""] lowerCAmelCase__ : List[str] = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : List[Any] = self.hparams lowerCAmelCase__ : str = processors[args.task]() lowerCAmelCase__ : List[str] = processor.get_labels() for mode in ["train", "dev"]: lowerCAmelCase__ : str = self._feature_file(_lowerCAmelCase ) if os.path.exists(_lowerCAmelCase ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" ,_lowerCAmelCase ) else: logger.info("""Creating features from dataset file at %s""" ,args.data_dir ) lowerCAmelCase__ : int = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) lowerCAmelCase__ : List[str] = convert_examples_to_features( _lowerCAmelCase ,self.tokenizer ,max_length=args.max_seq_length ,label_list=self.labels ,output_mode=args.glue_output_mode ,) logger.info("""Saving features into cached file %s""" ,_lowerCAmelCase ) torch.save(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = False ) -> DataLoader: lowerCAmelCase__ : str = """dev""" if mode == """test""" else mode lowerCAmelCase__ : Optional[Any] = self._feature_file(_lowerCAmelCase ) logger.info("""Loading features from cached file %s""" ,_lowerCAmelCase ) lowerCAmelCase__ : List[Any] = torch.load(_lowerCAmelCase ) lowerCAmelCase__ : List[str] = torch.tensor([f.input_ids for f in features] ,dtype=torch.long ) lowerCAmelCase__ : Union[str, Any] = torch.tensor([f.attention_mask for f in features] ,dtype=torch.long ) lowerCAmelCase__ : Optional[Any] = torch.tensor([f.token_type_ids for f in features] ,dtype=torch.long ) if self.hparams.glue_output_mode == "classification": lowerCAmelCase__ : List[Any] = torch.tensor([f.label for f in features] ,dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": lowerCAmelCase__ : str = torch.tensor([f.label for f in features] ,dtype=torch.float ) return DataLoader( TensorDataset(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) ,batch_size=_lowerCAmelCase ,shuffle=_lowerCAmelCase ,) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[Any]: lowerCAmelCase__ : List[str] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowerCAmelCase__ : Dict = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None lowerCAmelCase__ : List[str] = self(**_lowerCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Tuple = outputs[:2] lowerCAmelCase__ : List[str] = logits.detach().cpu().numpy() lowerCAmelCase__ : Tuple = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> tuple: lowerCAmelCase__ : Optional[int] = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() lowerCAmelCase__ : Dict = np.concatenate([x["""pred"""] for x in outputs] ,axis=0 ) if self.hparams.glue_output_mode == "classification": lowerCAmelCase__ : Any = np.argmax(_lowerCAmelCase ,axis=1 ) elif self.hparams.glue_output_mode == "regression": lowerCAmelCase__ : Union[str, Any] = np.squeeze(_lowerCAmelCase ) lowerCAmelCase__ : Tuple = np.concatenate([x["""target"""] for x in outputs] ,axis=0 ) lowerCAmelCase__ : Union[str, Any] = [[] for _ in range(out_label_ids.shape[0] )] lowerCAmelCase__ : Tuple = [[] for _ in range(out_label_ids.shape[0] )] lowerCAmelCase__ : Tuple = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task ,_lowerCAmelCase ,_lowerCAmelCase )} lowerCAmelCase__ : Union[str, Any] = dict(results.items() ) lowerCAmelCase__ : Tuple = results return ret, preds_list, out_label_list def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> dict: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self._eval_end(_lowerCAmelCase ) lowerCAmelCase__ : int = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> dict: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self._eval_end(_lowerCAmelCase ) lowerCAmelCase__ : Any = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCAmelCase_ ( __UpperCAmelCase ,__UpperCAmelCase ) -> Optional[Any]: BaseTransformer.add_model_specific_args(_lowerCAmelCase ,_lowerCAmelCase ) parser.add_argument( """--max_seq_length""" ,default=128 ,type=_lowerCAmelCase ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--task""" ,default="""""" ,type=_lowerCAmelCase ,required=_lowerCAmelCase ,help="""The GLUE task to run""" ,) parser.add_argument( """--gpus""" ,default=0 ,type=_lowerCAmelCase ,help="""The number of GPUs allocated for this, it is by default 0 meaning none""" ,) parser.add_argument( """--overwrite_cache""" ,action="""store_true""" ,help="""Overwrite the cached training and evaluation sets""" ) return parser def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() add_generic_args(lowerCAmelCase_ , os.getcwd() ) lowerCAmelCase__ : Any = GLUETransformer.add_model_specific_args(lowerCAmelCase_ , os.getcwd() ) lowerCAmelCase__ : Optional[int] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: lowerCAmelCase__ : int = os.path.join( """./results""" , f"""{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}""" , ) os.makedirs(args.output_dir ) lowerCAmelCase__ : List[str] = GLUETransformer(lowerCAmelCase_ ) lowerCAmelCase__ : Optional[Any] = generic_train(lowerCAmelCase_ , lowerCAmelCase_ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: lowerCAmelCase__ : Dict = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=lowerCAmelCase_ ) ) lowerCAmelCase__ : List[str] = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(lowerCAmelCase_ ) if __name__ == "__main__": main()
565
from __future__ import annotations def _lowerCAmelCase ( lowerCAmelCase_ :int , lowerCAmelCase_ :int )->list[str]: '''simple docstring''' if partitions <= 0: raise ValueError("partitions must be a positive number!" ) if partitions > number_of_bytes: raise ValueError("partitions can not > number_of_bytes!" ) snake_case_ = number_of_bytes // partitions snake_case_ = [] for i in range(lowerCAmelCase_ ): snake_case_ = i * bytes_per_partition + 1 snake_case_ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(F'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
283
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def __lowerCAmelCase( __UpperCAmelCase ): """simple docstring""" _lowercase : Union[str, Any] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: _lowercase : Union[str, Any] = 192 _lowercase : str = 768 _lowercase : str = 12 _lowercase : int = 3 _lowercase : Tuple = [800, 1_333] _lowercase : Union[str, Any] = False elif yolos_name == "yolos_s_dWr": _lowercase : List[str] = 330 _lowercase : Tuple = 14 _lowercase : Any = 6 _lowercase : Optional[Any] = 1_320 elif "yolos_s" in yolos_name: _lowercase : Optional[int] = 384 _lowercase : int = 1_536 _lowercase : Optional[int] = 12 _lowercase : Dict = 6 elif "yolos_b" in yolos_name: _lowercase : Tuple = [800, 1_344] _lowercase : Any = 91 _lowercase : int = 'huggingface/label-files' _lowercase : int = 'coco-detection-id2label.json' _lowercase : int = json.load(open(hf_hub_download(__UpperCAmelCase ,__UpperCAmelCase ,repo_type='dataset' ) ,'r' ) ) _lowercase : int = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowercase : Optional[int] = idalabel _lowercase : List[str] = {v: k for k, v in idalabel.items()} return config def __lowerCAmelCase( __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = False ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowercase : int = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) _lowercase : Any = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _lowercase : Dict = in_proj_weight[: config.hidden_size, :] _lowercase : Any = in_proj_bias[: config.hidden_size] _lowercase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowercase : Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowercase : Any = in_proj_weight[-config.hidden_size :, :] _lowercase : int = in_proj_bias[-config.hidden_size :] def __lowerCAmelCase( __UpperCAmelCase ): """simple docstring""" if "backbone" in name: _lowercase : Any = name.replace('backbone' ,'vit' ) if "cls_token" in name: _lowercase : int = name.replace('cls_token' ,'embeddings.cls_token' ) if "det_token" in name: _lowercase : int = name.replace('det_token' ,'embeddings.detection_tokens' ) if "mid_pos_embed" in name: _lowercase : Dict = name.replace('mid_pos_embed' ,'encoder.mid_position_embeddings' ) if "pos_embed" in name: _lowercase : List[Any] = name.replace('pos_embed' ,'embeddings.position_embeddings' ) if "patch_embed.proj" in name: _lowercase : Union[str, Any] = name.replace('patch_embed.proj' ,'embeddings.patch_embeddings.projection' ) if "blocks" in name: _lowercase : Optional[Any] = name.replace('blocks' ,'encoder.layer' ) if "attn.proj" in name: _lowercase : Optional[Any] = name.replace('attn.proj' ,'attention.output.dense' ) if "attn" in name: _lowercase : str = name.replace('attn' ,'attention.self' ) if "norm1" in name: _lowercase : Any = name.replace('norm1' ,'layernorm_before' ) if "norm2" in name: _lowercase : Optional[Any] = name.replace('norm2' ,'layernorm_after' ) if "mlp.fc1" in name: _lowercase : str = name.replace('mlp.fc1' ,'intermediate.dense' ) if "mlp.fc2" in name: _lowercase : Any = name.replace('mlp.fc2' ,'output.dense' ) if "class_embed" in name: _lowercase : List[str] = name.replace('class_embed' ,'class_labels_classifier' ) if "bbox_embed" in name: _lowercase : Any = name.replace('bbox_embed' ,'bbox_predictor' ) if "vit.norm" in name: _lowercase : List[str] = name.replace('vit.norm' ,'vit.layernorm' ) return name def __lowerCAmelCase( __UpperCAmelCase ,__UpperCAmelCase ): """simple docstring""" for key in orig_state_dict.copy().keys(): _lowercase : str = orig_state_dict.pop(__UpperCAmelCase ) if "qkv" in key: _lowercase : Any = key.split('.' ) _lowercase : int = int(key_split[2] ) _lowercase : Tuple = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: _lowercase : Tuple = val[:dim, :] _lowercase : Dict = val[ dim : dim * 2, : ] _lowercase : Optional[int] = val[-dim:, :] else: _lowercase : Dict = val[:dim] _lowercase : Optional[Any] = val[dim : dim * 2] _lowercase : List[str] = val[-dim:] else: _lowercase : int = val return orig_state_dict def __lowerCAmelCase( ): """simple docstring""" _lowercase : Any = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowercase : Any = Image.open(requests.get(__UpperCAmelCase ,stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def __lowerCAmelCase( __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = False ): """simple docstring""" _lowercase : Optional[Any] = get_yolos_config(__UpperCAmelCase ) # load original state_dict _lowercase : List[Any] = torch.load(__UpperCAmelCase ,map_location='cpu' )['model'] # load 🤗 model _lowercase : str = YolosForObjectDetection(__UpperCAmelCase ) model.eval() _lowercase : Any = convert_state_dict(__UpperCAmelCase ,__UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image, prepared by YolosImageProcessor _lowercase : Optional[int] = 800 if yolos_name != 'yolos_ti' else 512 _lowercase : str = YolosImageProcessor(format='coco_detection' ,size=__UpperCAmelCase ) _lowercase : Optional[int] = image_processor(images=prepare_img() ,return_tensors='pt' ) _lowercase : str = model(**__UpperCAmelCase ) _lowercase , _lowercase : int = outputs.logits, outputs.pred_boxes _lowercase , _lowercase : Any = None, None if yolos_name == "yolos_ti": _lowercase : Optional[int] = torch.tensor( [[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] ) _lowercase : Dict = torch.tensor( [[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] ) elif yolos_name == "yolos_s_200_pre": _lowercase : Optional[Any] = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] ) _lowercase : Tuple = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] ) elif yolos_name == "yolos_s_300_pre": _lowercase : Optional[Any] = torch.tensor( [[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] ) _lowercase : Optional[Any] = torch.tensor( [[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] ) elif yolos_name == "yolos_s_dWr": _lowercase : int = torch.tensor( [[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] ) _lowercase : Dict = torch.tensor( [[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] ) elif yolos_name == "yolos_base": _lowercase : Dict = torch.tensor( [[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] ) _lowercase : str = torch.tensor( [[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] ) else: raise ValueError(F'''Unknown yolos_name: {yolos_name}''' ) assert torch.allclose(logits[0, :3, :3] ,__UpperCAmelCase ,atol=1E-4 ) assert torch.allclose(pred_boxes[0, :3, :3] ,__UpperCAmelCase ,atol=1E-4 ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(F'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: _lowercase : Tuple = { 'yolos_ti': 'yolos-tiny', 'yolos_s_200_pre': 'yolos-small', 'yolos_s_300_pre': 'yolos-small-300', 'yolos_s_dWr': 'yolos-small-dwr', 'yolos_base': 'yolos-base', } print('Pushing to the hub...' ) _lowercase : str = model_mapping[yolos_name] image_processor.push_to_hub(__UpperCAmelCase ,organization='hustvl' ) model.push_to_hub(__UpperCAmelCase ,organization='hustvl' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--yolos_name', default='yolos_s_200_pre', type=str, help=( 'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',' ' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.' ), ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
283
"""simple docstring""" from __future__ import annotations class _lowerCamelCase : def __init__( self : Any , lowerCamelCase_ : list[list[int]] ): """simple docstring""" _lowercase : Tuple = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.' ) if len(lowerCamelCase_ ) != 0: _lowercase : Dict = len(rows[0] ) if cols == 0: raise error for row in rows: if len(lowerCamelCase_ ) != cols: raise error for value in row: if not isinstance(lowerCamelCase_ , (int, float) ): raise error _lowercase : int = rows else: _lowercase : Optional[Any] = [] def __UpperCAmelCase ( self : List[str] ): """simple docstring""" return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def __UpperCAmelCase ( self : List[str] ): """simple docstring""" return len(self.rows ) @property def __UpperCAmelCase ( self : int ): """simple docstring""" return len(self.rows[0] ) @property def __UpperCAmelCase ( self : Tuple ): """simple docstring""" return (self.num_rows, self.num_columns) @property def __UpperCAmelCase ( self : List[str] ): """simple docstring""" return self.order[0] == self.order[1] def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" _lowercase : Optional[int] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict ): """simple docstring""" if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" return bool(self.determinant() ) def __UpperCAmelCase ( self : int , lowerCamelCase_ : int , lowerCamelCase_ : int ): """simple docstring""" _lowercase : List[str] = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(lowerCamelCase_ ).determinant() def __UpperCAmelCase ( self : str , lowerCamelCase_ : int , lowerCamelCase_ : int ): """simple docstring""" if (row + column) % 2 == 0: return self.get_minor(lowerCamelCase_ , lowerCamelCase_ ) return -1 * self.get_minor(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict ): """simple docstring""" return Matrix( [ [self.get_minor(lowerCamelCase_ , lowerCamelCase_ ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def __UpperCAmelCase ( self : Tuple ): """simple docstring""" return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def __UpperCAmelCase ( self : Tuple ): """simple docstring""" _lowercase : str = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(lowerCamelCase_ ) def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" _lowercase : Dict = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse' ) return self.adjugate() * (1 / determinant) def __repr__( self : List[str] ): """simple docstring""" return str(self.rows ) def __str__( self : str ): """simple docstring""" if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(lowerCamelCase_ ) for value in row] ) + '.]' for row in self.rows ] ) + "]" ) def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : list[int] , lowerCamelCase_ : int | None = None ): """simple docstring""" _lowercase : Union[str, Any] = TypeError('Row must be a list containing all ints and/or floats' ) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise type_error for value in row: if not isinstance(lowerCamelCase_ , (int, float) ): raise type_error if len(lowerCamelCase_ ) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix' ) if position is None: self.rows.append(lowerCamelCase_ ) else: _lowercase : Any = self.rows[0:position] + [row] + self.rows[position:] def __UpperCAmelCase ( self : str , lowerCamelCase_ : list[int] , lowerCamelCase_ : int | None = None ): """simple docstring""" _lowercase : Tuple = TypeError( 'Column must be a list containing all ints and/or floats' ) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise type_error for value in column: if not isinstance(lowerCamelCase_ , (int, float) ): raise type_error if len(lowerCamelCase_ ) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix' ) if position is None: _lowercase : List[Any] = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: _lowercase : Any = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : Union[str, Any] , lowerCamelCase_ : object ): """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): return NotImplemented return self.rows == other.rows def __ne__( self : Any , lowerCamelCase_ : object ): """simple docstring""" return not self == other def __neg__( self : int ): """simple docstring""" return self * -1 def __add__( self : Optional[int] , lowerCamelCase_ : Matrix ): """simple docstring""" if self.order != other.order: raise ValueError('Addition requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : str , lowerCamelCase_ : Matrix ): """simple docstring""" if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : Optional[Any] , lowerCamelCase_ : Matrix | int | float ): """simple docstring""" if isinstance(lowerCamelCase_ , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second' ) return Matrix( [ [Matrix.dot_product(lowerCamelCase_ , lowerCamelCase_ ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix' ) def __pow__( self : Optional[Any] , lowerCamelCase_ : int ): """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError('A Matrix can only be raised to the power of an int' ) if not self.is_square: raise ValueError('Only square matrices can be raised to a power' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power' ) _lowercase : str = self for _ in range(other - 1 ): result *= self return result @classmethod def __UpperCAmelCase ( cls : str , lowerCamelCase_ : list[int] , lowerCamelCase_ : list[int] ): """simple docstring""" return sum(row[i] * column[i] for i in range(len(lowerCamelCase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
283
1
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowerCamelCase_ : Any = HUGGINGFACE_HUB_CACHE lowerCamelCase_ : int = """config.json""" lowerCamelCase_ : Dict = """diffusion_pytorch_model.bin""" lowerCamelCase_ : int = """diffusion_flax_model.msgpack""" lowerCamelCase_ : Union[str, Any] = """model.onnx""" lowerCamelCase_ : int = """diffusion_pytorch_model.safetensors""" lowerCamelCase_ : Any = """weights.pb""" lowerCamelCase_ : Tuple = """https://huggingface.co""" lowerCamelCase_ : Dict = default_cache_path lowerCamelCase_ : List[Any] = """diffusers_modules""" lowerCamelCase_ : str = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) lowerCamelCase_ : str = ["""fp16""", """non-ema"""] lowerCamelCase_ : int = """.self_attn"""
559
from math import pow, sqrt def lowerCAmelCase( *__lowerCamelCase ): __a = len(__lowerCamelCase ) > 0 and all(value > 0.0 for value in values ) return result def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__lowerCamelCase , __lowerCamelCase ) else ValueError('Input Error: Molar mass values must greater than 0.' ) ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) )
559
1
'''simple docstring''' import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def __magic_name__( _A ): '''simple docstring''' UpperCamelCase__ = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: UpperCamelCase__ = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: UpperCamelCase__ = 4 UpperCamelCase__ = 48 UpperCamelCase__ = """pixelshuffle_aux""" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: UpperCamelCase__ = [6, 6, 6, 6] UpperCamelCase__ = 60 UpperCamelCase__ = [6, 6, 6, 6] UpperCamelCase__ = """pixelshuffledirect""" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: UpperCamelCase__ = 4 UpperCamelCase__ = """nearest+conv""" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: UpperCamelCase__ = 1 UpperCamelCase__ = 1 UpperCamelCase__ = 126 UpperCamelCase__ = 7 UpperCamelCase__ = 2_5_5.0 UpperCamelCase__ = """""" return config def __magic_name__( _A , _A ): '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: UpperCamelCase__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: UpperCamelCase__ = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" ) if "layers" in name: UpperCamelCase__ = name.replace("""layers""" , """encoder.stages""" ) if "residual_group.blocks" in name: UpperCamelCase__ = name.replace("""residual_group.blocks""" , """layers""" ) if "attn.proj" in name: UpperCamelCase__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: UpperCamelCase__ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: UpperCamelCase__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: UpperCamelCase__ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: UpperCamelCase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: UpperCamelCase__ = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: UpperCamelCase__ = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: UpperCamelCase__ = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: UpperCamelCase__ = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: UpperCamelCase__ = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if "patch_embed.proj" in name: UpperCamelCase__ = name.replace("""patch_embed.proj""" , """patch_embed.projection""" ) if name == "norm.weight": UpperCamelCase__ = """layernorm.weight""" if name == "norm.bias": UpperCamelCase__ = """layernorm.bias""" if "conv_first" in name: UpperCamelCase__ = name.replace("""conv_first""" , """first_convolution""" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: UpperCamelCase__ = name.replace("""conv_last""" , """final_convolution""" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: UpperCamelCase__ = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" ) if "upsample.0" in name: UpperCamelCase__ = name.replace("""upsample.0""" , """upsample.convolution_0""" ) if "upsample.2" in name: UpperCamelCase__ = name.replace("""upsample.2""" , """upsample.convolution_1""" ) UpperCamelCase__ = """upsample.""" + name elif config.upsampler == "pixelshuffledirect": UpperCamelCase__ = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" ) UpperCamelCase__ = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" ) else: pass else: UpperCamelCase__ = """swin2sr.""" + name return name def __magic_name__( _A , _A ): '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCamelCase__ = orig_state_dict.pop(_A ) if "qkv" in key: UpperCamelCase__ = key.split(""".""" ) UpperCamelCase__ = int(key_split[1] ) UpperCamelCase__ = int(key_split[4] ) UpperCamelCase__ = config.embed_dim if "weight" in key: UpperCamelCase__ = val[:dim, :] UpperCamelCase__ = val[dim : dim * 2, :] UpperCamelCase__ = val[-dim:, :] else: UpperCamelCase__ = val[:dim] UpperCamelCase__ = val[dim : dim * 2] UpperCamelCase__ = val[-dim:] pass else: UpperCamelCase__ = val return orig_state_dict def __magic_name__( _A , _A , _A ): '''simple docstring''' UpperCamelCase__ = get_config(_A ) UpperCamelCase__ = SwinaSRForImageSuperResolution(_A ) model.eval() UpperCamelCase__ = torch.hub.load_state_dict_from_url(_A , map_location="""cpu""" ) UpperCamelCase__ = convert_state_dict(_A , _A ) UpperCamelCase__ , UpperCamelCase__ = model.load_state_dict(_A , strict=_A ) if len(_A ) > 0: raise ValueError("""Missing keys when converting: {}""".format(_A ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f"Unexpected key {key} in state_dict" ) # verify values UpperCamelCase__ = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true""" UpperCamelCase__ = Image.open(requests.get(_A , stream=_A ).raw ).convert("""RGB""" ) UpperCamelCase__ = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values UpperCamelCase__ = 126 if """Jpeg""" in checkpoint_url else 256 UpperCamelCase__ = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) UpperCamelCase__ = transforms(_A ).unsqueeze(0 ) if config.num_channels == 1: UpperCamelCase__ = pixel_values[:, 0, :, :].unsqueeze(1 ) UpperCamelCase__ = model(_A ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: UpperCamelCase__ = torch.Size([1, 3, 512, 512] ) UpperCamelCase__ = torch.tensor( [[-0.7_0_8_7, -0.7_1_3_8, -0.6_7_2_1], [-0.8_3_4_0, -0.8_0_9_5, -0.7_2_9_8], [-0.9_1_4_9, -0.8_4_1_4, -0.7_9_4_0]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: UpperCamelCase__ = torch.Size([1, 3, 1024, 1024] ) UpperCamelCase__ = torch.tensor( [[-0.7_7_7_5, -0.8_1_0_5, -0.8_9_3_3], [-0.7_7_6_4, -0.8_3_5_6, -0.9_2_2_5], [-0.7_9_7_6, -0.8_6_8_6, -0.9_5_7_9]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here UpperCamelCase__ = torch.Size([1, 3, 1024, 1024] ) UpperCamelCase__ = torch.tensor( [[-0.8_0_3_5, -0.7_5_0_4, -0.7_4_9_1], [-0.8_5_3_8, -0.8_1_2_4, -0.7_7_8_2], [-0.8_8_0_4, -0.8_6_5_1, -0.8_4_9_3]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: UpperCamelCase__ = torch.Size([1, 3, 512, 512] ) UpperCamelCase__ = torch.tensor( [[-0.7_6_6_9, -0.8_6_6_2, -0.8_7_6_7], [-0.8_8_1_0, -0.9_9_6_2, -0.9_8_2_0], [-0.9_3_4_0, -1.0_3_2_2, -1.1_1_4_9]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: UpperCamelCase__ = torch.Size([1, 3, 1024, 1024] ) UpperCamelCase__ = torch.tensor( [[-0.5_2_3_8, -0.5_5_5_7, -0.6_3_2_1], [-0.6_0_1_6, -0.5_9_0_3, -0.6_3_9_1], [-0.6_2_4_4, -0.6_3_3_4, -0.6_8_8_9]] ) assert ( outputs.reconstruction.shape == expected_shape ), f"Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , _A , atol=1e-3 ) print("""Looks ok!""" ) UpperCamelCase__ = { """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": ( """swin2SR-classical-sr-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": ( """swin2SR-classical-sr-x4-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": ( """swin2SR-compressed-sr-x4-48""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": ( """swin2SR-lightweight-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": ( """swin2SR-realworld-sr-x4-64-bsrgan-psnr""" ), } UpperCamelCase__ = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_A ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_A ) if push_to_hub: model.push_to_hub(f"caidas/{model_name}" ) processor.push_to_hub(f"caidas/{model_name}" ) if __name__ == "__main__": lowerCamelCase_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') lowerCamelCase_ : Union[str, Any] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
265
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] , lowercase : List[str] , lowercase : List[Any]=1_3 , lowercase : Union[str, Any]=7 , lowercase : Dict=True , lowercase : Optional[int]=True , lowercase : List[Any]=True , lowercase : Dict=True , lowercase : List[str]=9_9 , lowercase : Dict=1_6 , lowercase : Dict=3_6 , lowercase : str=6 , lowercase : List[Any]=6 , lowercase : int=6 , lowercase : Union[str, Any]=3_7 , lowercase : Union[str, Any]="gelu" , lowercase : List[Any]=0.1 , lowercase : List[str]=0.1 , lowercase : str=5_1_2 , lowercase : Any=1_6 , lowercase : str=2 , lowercase : List[Any]=0.0_2 , lowercase : Tuple=3 , lowercase : Dict=4 , lowercase : Dict=None , ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = embedding_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_hidden_groups UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = scope def A ( self : List[str] ) -> str: '''simple docstring''' UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Optional[int] ) -> str: '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def A ( self : List[str] , lowercase : Union[str, Any] , lowercase : Optional[Any] , lowercase : Dict , lowercase : str , lowercase : int , lowercase : List[str] , lowercase : Optional[Any] ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = AlbertModel(config=lowercase ) model.to(lowercase ) model.eval() UpperCamelCase__ = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase ) UpperCamelCase__ = model(lowercase , token_type_ids=lowercase ) UpperCamelCase__ = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A ( self : int , lowercase : List[str] , lowercase : Optional[int] , lowercase : Optional[Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : List[Any] , lowercase : int ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = AlbertForPreTraining(config=lowercase ) model.to(lowercase ) model.eval() UpperCamelCase__ = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , sentence_order_label=lowercase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def A ( self : Optional[int] , lowercase : Dict , lowercase : List[Any] , lowercase : Any , lowercase : List[str] , lowercase : int , lowercase : Any , lowercase : Dict ) -> Any: '''simple docstring''' UpperCamelCase__ = AlbertForMaskedLM(config=lowercase ) model.to(lowercase ) model.eval() UpperCamelCase__ = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Optional[Any] , lowercase : Any , lowercase : Union[str, Any] , lowercase : List[Any] , lowercase : List[Any] , lowercase : List[str] , lowercase : Optional[Any] , lowercase : Optional[Any] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = AlbertForQuestionAnswering(config=lowercase ) model.to(lowercase ) model.eval() UpperCamelCase__ = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , start_positions=lowercase , end_positions=lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Any , lowercase : Optional[Any] , lowercase : Any , lowercase : Dict , lowercase : Any , lowercase : Optional[int] , lowercase : str , lowercase : Dict ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = self.num_labels UpperCamelCase__ = AlbertForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() UpperCamelCase__ = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : List[str] , lowercase : int , lowercase : Any , lowercase : Tuple , lowercase : List[str] , lowercase : Optional[int] , lowercase : List[Any] , lowercase : Dict ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = self.num_labels UpperCamelCase__ = AlbertForTokenClassification(config=lowercase ) model.to(lowercase ) model.eval() UpperCamelCase__ = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : List[Any] , lowercase : Union[str, Any] , lowercase : List[Any] , lowercase : Any , lowercase : List[str] , lowercase : Optional[Any] , lowercase : List[str] , lowercase : List[Any] ) -> str: '''simple docstring''' UpperCamelCase__ = self.num_choices UpperCamelCase__ = AlbertForMultipleChoice(config=lowercase ) model.to(lowercase ) model.eval() UpperCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : Optional[int] ) -> List[str]: '''simple docstring''' UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,unittest.TestCase ): '''simple docstring''' __a : Any = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) __a : List[Any] = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) __a : List[str] = True def A ( self : Any , lowercase : int , lowercase : Dict , lowercase : Optional[Any]=False ) -> Tuple: '''simple docstring''' UpperCamelCase__ = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) if return_labels: if model_class in get_values(lowercase ): UpperCamelCase__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowercase ) UpperCamelCase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) return inputs_dict def A ( self : Any ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = AlbertModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=lowercase , hidden_size=3_7 ) def A ( self : int ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def A ( self : str ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def A ( self : int ) -> Dict: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase ) def A ( self : Tuple ) -> int: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase ) def A ( self : Any ) -> int: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase ) def A ( self : List[str] ) -> int: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase ) def A ( self : int ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase ) def A ( self : Tuple ) -> List[str]: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase__ = type self.model_tester.create_and_check_model(*lowercase ) @slow def A ( self : Optional[int] ) -> Any: '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = AlbertModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def A ( self : List[Any] ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = AlbertModel.from_pretrained("""albert-base-v2""" ) UpperCamelCase__ = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) UpperCamelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCamelCase__ = model(lowercase , attention_mask=lowercase )[0] UpperCamelCase__ = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , lowercase ) UpperCamelCase__ = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase , atol=1e-4 ) )
265
1
import argparse import json from tqdm import tqdm def __snake_case ( ): """simple docstring""" A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--src_path" ,type=__UpperCamelCase ,default="biencoder-nq-dev.json" ,help="Path to raw DPR training data" ,) parser.add_argument( "--evaluation_set" ,type=__UpperCamelCase ,help="where to store parsed evaluation_set file" ,) parser.add_argument( "--gold_data_path" ,type=__UpperCamelCase ,help="where to store parsed gold_data_path file" ,) A_ = parser.parse_args() with open(args.src_path ,"r" ) as src_file, open(args.evaluation_set ,"w" ) as eval_file, open( args.gold_data_path ,"w" ) as gold_file: A_ = json.load(__UpperCamelCase ) for dpr_record in tqdm(__UpperCamelCase ): A_ = dpr_record["question"] A_ = [context["title"] for context in dpr_record["positive_ctxs"]] eval_file.write(question + "\n" ) gold_file.write("\t".join(__UpperCamelCase ) + "\n" ) if __name__ == "__main__": main()
86
from ..utils import DummyObject, requires_backends class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Optional[Any] = ['torch', 'transformers', 'onnx'] def __init__( self : str , *UpperCAmelCase : int , **UpperCAmelCase : List[Any] ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Dict , *UpperCAmelCase : Dict , **UpperCAmelCase : Union[str, Any] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Union[str, Any] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : str = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[int] , *UpperCAmelCase : List[str] , **UpperCAmelCase : int ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : List[str] , *UpperCAmelCase : List[str] , **UpperCAmelCase : List[Any] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[Any] , *UpperCAmelCase : Dict , **UpperCAmelCase : Optional[Any] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Optional[Any] = ['torch', 'transformers', 'onnx'] def __init__( self : Union[str, Any] , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Tuple , *UpperCAmelCase : Dict , **UpperCAmelCase : str ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Dict , *UpperCAmelCase : List[str] , **UpperCAmelCase : List[str] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : int = ['torch', 'transformers', 'onnx'] def __init__( self : List[str] , *UpperCAmelCase : Dict , **UpperCAmelCase : Optional[Any] ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Any , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Dict ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[Any] , *UpperCAmelCase : int , **UpperCAmelCase : Optional[int] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Dict = ['torch', 'transformers', 'onnx'] def __init__( self : List[str] , *UpperCAmelCase : str , **UpperCAmelCase : int ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : List[str] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[int] , *UpperCAmelCase : int , **UpperCAmelCase : List[Any] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : int = ['torch', 'transformers', 'onnx'] def __init__( self : Tuple , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Optional[Any] ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[int] , *UpperCAmelCase : Dict , **UpperCAmelCase : str ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[int] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] )
86
1
'''simple docstring''' import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) def _snake_case ( lowercase , lowercase ) -> Optional[int]: __a : int = nn.functional.normalize(lowercase ) __a : Any = nn.functional.normalize(lowercase ) return torch.mm(lowercase , normalized_text_embeds.t() ) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = CLIPConfig lowercase__ = ["CLIPEncoderLayer"] def __init__( self , __UpperCamelCase ): '''simple docstring''' super().__init__(__UpperCamelCase ) __a : Optional[int] = CLIPVisionModel(config.vision_config ) __a : str = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=__UpperCamelCase ) __a : int = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=__UpperCamelCase ) __a : Union[str, Any] = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=__UpperCamelCase ) __a : Union[str, Any] = nn.Parameter(torch.ones(17 ) , requires_grad=__UpperCamelCase ) __a : Union[str, Any] = nn.Parameter(torch.ones(3 ) , requires_grad=__UpperCamelCase ) @torch.no_grad() def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Optional[int] = self.vision_model(__UpperCamelCase )[1] # pooled_output __a : str = self.visual_projection(__UpperCamelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __a : Optional[Any] = cosine_distance(__UpperCamelCase , self.special_care_embeds ).cpu().float().numpy() __a : Optional[Any] = cosine_distance(__UpperCamelCase , self.concept_embeds ).cpu().float().numpy() __a : Optional[int] = [] __a : Tuple = image_embeds.shape[0] for i in range(__UpperCamelCase ): __a : Optional[Any] = {"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images __a : str = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): __a : Dict = special_cos_dist[i][concept_idx] __a : List[str] = self.special_care_embeds_weights[concept_idx].item() __a : List[str] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) __a : Tuple = 0.0_1 for concept_idx in range(len(cos_dist[0] ) ): __a : List[str] = cos_dist[i][concept_idx] __a : Optional[Any] = self.concept_embeds_weights[concept_idx].item() __a : Union[str, Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(__UpperCamelCase ) result.append(__UpperCamelCase ) __a : Dict = [len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : List[Any] = self.vision_model(__UpperCamelCase )[1] # pooled_output __a : Tuple = self.visual_projection(__UpperCamelCase ) __a : int = cosine_distance(__UpperCamelCase , self.special_care_embeds ) __a : int = cosine_distance(__UpperCamelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images __a : Dict = 0.0 __a : Tuple = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) __a : Any = torch.any(special_scores > 0 , dim=1 ) __a : List[str] = special_care * 0.0_1 __a : List[Any] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) __a : Union[str, Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) __a : Any = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
719
'''simple docstring''' __SCREAMING_SNAKE_CASE : int = 9.80_665 def _snake_case ( lowercase , lowercase , lowercase = g ) -> float: if fluid_density <= 0: raise ValueError("""Impossible fluid density""" ) if volume < 0: raise ValueError("""Impossible Object volume""" ) if gravity <= 0: raise ValueError("""Impossible Gravity""" ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
697
0
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class A ( A_ ): def __init__(self , lowerCAmelCase , lowerCAmelCase ): __lowercase= params __lowercase= np.array(lowerCAmelCase ) __lowercase= np.array([len(lowerCAmelCase ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__(self , lowerCAmelCase ): return (self.token_ids[index], self.lengths[index]) def __len__(self ): return len(self.lengths ) def _A (self ): assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def _A (self ): __lowercase= self.params.max_model_input_size __lowercase= self.lengths > max_len logger.info(f'Splitting {sum(lowerCAmelCase )} too long sequences.' ) def divide_chunks(lowerCAmelCase , lowerCAmelCase ): return [l[i : i + n] for i in range(0 , len(lowerCAmelCase ) , lowerCAmelCase )] __lowercase= [] __lowercase= [] if self.params.mlm: __lowercase, __lowercase= self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: __lowercase, __lowercase= self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: __lowercase= [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: __lowercase= np.insert(lowerCAmelCase , 0 , lowerCAmelCase ) if sub_s[-1] != sep_id: __lowercase= np.insert(lowerCAmelCase , len(lowerCAmelCase ) , lowerCAmelCase ) assert len(lowerCAmelCase ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(lowerCAmelCase ) new_tok_ids.extend(lowerCAmelCase ) new_lengths.extend([len(lowerCAmelCase ) for l in sub_seqs] ) __lowercase= np.array(lowerCAmelCase ) __lowercase= np.array(lowerCAmelCase ) def _A (self ): __lowercase= len(self ) __lowercase= self.lengths > 1_1 __lowercase= self.token_ids[indices] __lowercase= self.lengths[indices] __lowercase= len(self ) logger.info(f'Remove {init_size - new_size} too short (<=11 tokens) sequences.' ) def _A (self ): if "unk_token" not in self.params.special_tok_ids: return else: __lowercase= self.params.special_tok_ids['unk_token'] __lowercase= len(self ) __lowercase= np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) __lowercase= (unk_occs / self.lengths) < 0.5 __lowercase= self.token_ids[indices] __lowercase= self.lengths[indices] __lowercase= len(self ) logger.info(f'Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).' ) def _A (self ): if not self.params.is_master: return logger.info(f'{len(self )} sequences' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def _A (self , lowerCAmelCase ): __lowercase= [t[0] for t in batch] __lowercase= [t[1] for t in batch] assert len(lowerCAmelCase ) == len(lowerCAmelCase ) # Max for paddings __lowercase= max(lowerCAmelCase ) # Pad token ids if self.params.mlm: __lowercase= self.params.special_tok_ids['pad_token'] else: __lowercase= self.params.special_tok_ids['unk_token'] __lowercase= [list(t.astype(lowerCAmelCase ) ) + [pad_idx] * (max_seq_len_ - len(lowerCAmelCase )) for t in token_ids] assert len(tk_ ) == len(lowerCAmelCase ) assert all(len(lowerCAmelCase ) == max_seq_len_ for t in tk_ ) __lowercase= torch.tensor(tk_ ) # (bs, max_seq_len_) __lowercase= torch.tensor(lowerCAmelCase ) # (bs) return tk_t, lg_t
230
from math import ceil def _lowerCamelCase( lowercase__ = 1_0_0_1 ) -> int: '''simple docstring''' __lowercase= 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): __lowercase= 2 * i + 1 __lowercase= 2 * i __lowercase= total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: lowerCAmelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
230
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class __magic_name__ ( _a): def __init__( self : int ,__SCREAMING_SNAKE_CASE : Optional[int] ): UpperCAmelCase = data def __iter__( self : Optional[int] ): for element in self.data: yield element def __UpperCamelCase ( _lowerCAmelCase=True ): """simple docstring""" UpperCAmelCase = Accelerator(even_batches=_lowerCAmelCase ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = False ): """simple docstring""" if iterable: UpperCAmelCase = DummyIterableDataset(torch.as_tensor(range(_lowerCAmelCase ) ) ) else: UpperCAmelCase = TensorDataset(torch.as_tensor(range(_lowerCAmelCase ) ) ) UpperCAmelCase = DataLoader(_lowerCAmelCase , batch_size=_lowerCAmelCase ) UpperCAmelCase = accelerator.prepare(_lowerCAmelCase ) return dl def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): """simple docstring""" UpperCAmelCase = create_dataloader(accelerator=_lowerCAmelCase , dataset_size=_lowerCAmelCase , batch_size=_lowerCAmelCase ) UpperCAmelCase = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def __UpperCamelCase ( ): """simple docstring""" UpperCAmelCase = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( _lowerCAmelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( _lowerCAmelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def __UpperCamelCase ( ): """simple docstring""" UpperCAmelCase = create_accelerator(even_batches=_lowerCAmelCase ) verify_dataloader_batch_sizes( _lowerCAmelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( _lowerCAmelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def __UpperCamelCase ( ): """simple docstring""" UpperCAmelCase = create_accelerator(even_batches=_lowerCAmelCase ) UpperCAmelCase = torch.nn.Linear(1 , 1 ) UpperCAmelCase = accelerator.prepare(_lowerCAmelCase ) UpperCAmelCase = create_dataloader(_lowerCAmelCase , dataset_size=3 , batch_size=1 ) UpperCAmelCase = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(_lowerCAmelCase ): UpperCAmelCase = ddp_model(batch[0].float() ) UpperCAmelCase = output.sum() loss.backward() batch_idxs.append(_lowerCAmelCase ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def __UpperCamelCase ( _lowerCAmelCase ): """simple docstring""" with warnings.catch_warnings(record=_lowerCAmelCase ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , _lowerCAmelCase ) assert "only supported for multi-GPU" in str(w[-1].message ) def __UpperCamelCase ( ): """simple docstring""" UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = create_accelerator(even_batches=_lowerCAmelCase ) UpperCAmelCase = torch.nn.Linear(1 , 1 ) UpperCAmelCase = accelerator.prepare(_lowerCAmelCase ) UpperCAmelCase = create_dataloader(_lowerCAmelCase , dataset_size=3 , batch_size=1 ) UpperCAmelCase = create_dataloader(_lowerCAmelCase , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=_lowerCAmelCase ): UpperCAmelCase = train_dl.batch_sampler.even_batches UpperCAmelCase = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def __UpperCamelCase ( ): """simple docstring""" UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = create_accelerator(even_batches=_lowerCAmelCase ) UpperCAmelCase = torch.nn.Linear(1 , 1 ) UpperCAmelCase = accelerator.prepare(_lowerCAmelCase ) create_dataloader(_lowerCAmelCase , dataset_size=3 , batch_size=1 , iterable=_lowerCAmelCase ) UpperCAmelCase = create_dataloader(_lowerCAmelCase , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("ignore" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=_lowerCAmelCase ): UpperCAmelCase = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def __UpperCamelCase ( ): """simple docstring""" UpperCAmelCase = create_accelerator() UpperCAmelCase = torch.nn.Linear(1 , 1 ) UpperCAmelCase = accelerator.prepare(_lowerCAmelCase ) create_dataloader(_lowerCAmelCase , dataset_size=3 , batch_size=1 , iterable=_lowerCAmelCase ) with warnings.catch_warnings(record=_lowerCAmelCase ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=_lowerCAmelCase ): pass assert issubclass(w[-1].category , _lowerCAmelCase ) assert "only supported for map-style datasets" in str(w[-1].message ) def __UpperCamelCase ( ): """simple docstring""" UpperCAmelCase = create_accelerator() accelerator.print("Test that even_batches variable ensures uniform batches across processes" ) test_default_ensures_even_batch_sizes() accelerator.print("Run tests with even_batches disabled" ) test_can_disable_even_batches() accelerator.print("Test joining uneven inputs" ) test_can_join_uneven_inputs() accelerator.print("Test overriding even_batches when joining uneven inputs" ) test_join_can_override_even_batches() accelerator.print("Test overriding even_batches for mixed dataloader types" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("Test overriding even_batches raises a warning for iterable dataloaders" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("Test join with non DDP distributed raises warning" ) UpperCAmelCase = accelerator.state.distributed_type UpperCAmelCase = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(_lowerCAmelCase ) UpperCAmelCase = original_state if __name__ == "__main__": main()
405
class __magic_name__ ( _a): pass class __magic_name__ ( _a): pass class __magic_name__ : def __init__( self : Optional[int] ): UpperCAmelCase = [ [], [], [], ] def _UpperCAmelCase ( self : Tuple ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : int ): try: if len(self.queues[priority] ) >= 1_0_0: raise OverflowError("Maximum queue size is 100" ) self.queues[priority].append(__SCREAMING_SNAKE_CASE ) except IndexError: raise ValueError("Valid priorities are 0, 1, and 2" ) def _UpperCAmelCase ( self : List[str] ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("All queues are empty" ) def __str__( self : Optional[Any] ): return "\n".join(f'''Priority {i}: {q}''' for i, q in enumerate(self.queues ) ) class __magic_name__ : def __init__( self : Any ): UpperCAmelCase = [] def _UpperCAmelCase ( self : List[str] ,__SCREAMING_SNAKE_CASE : int ): if len(self.queue ) == 1_0_0: raise OverFlowError("Maximum queue size is 100" ) self.queue.append(__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Optional[Any] ): if not self.queue: raise UnderFlowError("The queue is empty" ) else: UpperCAmelCase = min(self.queue ) self.queue.remove(__SCREAMING_SNAKE_CASE ) return data def __str__( self : Optional[Any] ): return str(self.queue ) def __UpperCamelCase ( ): """simple docstring""" UpperCAmelCase = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 1_00 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 1_28 ) print(_lowerCAmelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_lowerCAmelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __UpperCamelCase ( ): """simple docstring""" UpperCAmelCase = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(1_00 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(1_28 ) print(_lowerCAmelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_lowerCAmelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
405
1
'''simple docstring''' import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets UpperCAmelCase = '''\ @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } ''' UpperCAmelCase = '''\ IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. ''' UpperCAmelCase = ''' Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset. Args: predictions: list of predictions to score (as int64), except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32). references: list of ground truth labels corresponding to the predictions (as int64), except for \'cvit-mkb-clsr\' where each reference is a vector (of float32). Returns: depending on the IndicGLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "precision": Precision@10 Examples: >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\') >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'precision@10\': 1.0} ''' def __UpperCamelCase ( lowercase__ : Dict, lowercase__ : Optional[Any] ): '''simple docstring''' return float((preds == labels).mean() ) def __UpperCamelCase ( lowercase__ : Dict, lowercase__ : Optional[Any] ): '''simple docstring''' __lowercase =simple_accuracy(lowercase__, lowercase__ ) __lowercase =float(fa_score(y_true=lowercase__, y_pred=lowercase__ ) ) return { "accuracy": acc, "f1": fa, } def __UpperCamelCase ( lowercase__ : int, lowercase__ : List[Any] ): '''simple docstring''' __lowercase =np.array(lowercase__ ) __lowercase =np.array(lowercase__ ) __lowercase =en_sentvecs.shape[0] # mean centering __lowercase =en_sentvecs - np.mean(lowercase__, axis=0 ) __lowercase =in_sentvecs - np.mean(lowercase__, axis=0 ) __lowercase =cdist(lowercase__, lowercase__, 'cosine' ) __lowercase =np.array(range(lowercase__ ) ) __lowercase =sim.argsort(axis=1 )[:, :10] __lowercase =np.any(preds == actual[:, None], axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def snake_case ( self : str ): """simple docstring""" if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' ) if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32' ) ), 'references': datasets.Value('int64' ) if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32' ) ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' if self.config_name != 'cvit-mkb-clsr' else None , ) def snake_case ( self : Optional[Any] , __lowercase : List[str] , __lowercase : List[Any] ): """simple docstring""" if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(__lowercase , __lowercase )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(__lowercase , __lowercase ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(__lowercase , __lowercase )} else: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]' )
119
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['''OwlViTFeatureExtractor'''] UpperCAmelCase = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
119
1
"""simple docstring""" import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowerCamelCase__ : '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_=1_3 ,lowerCamelCase_=7 ,lowerCamelCase_=True ,lowerCamelCase_=True ,lowerCamelCase_=True ,lowerCamelCase_=True ,lowerCamelCase_=9_9 ,lowerCamelCase_=6_4 ,lowerCamelCase_=3_2 ,lowerCamelCase_=5 ,lowerCamelCase_=4 ,lowerCamelCase_=3_7 ,lowerCamelCase_="gelu" ,lowerCamelCase_=0.1 ,lowerCamelCase_=0.1 ,lowerCamelCase_=5_1_2 ,lowerCamelCase_=1_6 ,lowerCamelCase_=2 ,lowerCamelCase_=0.02 ,lowerCamelCase_=3 ,lowerCamelCase_=4 ,lowerCamelCase_=None ,) -> Any: A = parent A = batch_size A = seq_length A = is_training A = use_input_mask A = use_token_type_ids A = use_labels A = vocab_size A = hidden_size A = embedding_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = type_sequence_label_size A = initializer_range A = num_labels A = num_choices A = scope def UpperCamelCase__ ( self ) -> Union[str, Any]: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,self.num_choices ) A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ) -> Dict: return MegatronBertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,embedding_size=self.embedding_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowerCamelCase_ ,initializer_range=self.initializer_range ,) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> List[str]: A = MegatronBertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() A = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ) A = model(lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ) A = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Optional[Any]: A = MegatronBertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() A = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> List[str]: A = MegatronBertForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() A = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Tuple: A = MegatronBertForNextSentencePrediction(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() A = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> List[str]: A = MegatronBertForPreTraining(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() A = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,next_sentence_label=lowerCamelCase_ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> List[Any]: A = MegatronBertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() A = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,start_positions=lowerCamelCase_ ,end_positions=lowerCamelCase_ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Optional[int]: A = self.num_labels A = MegatronBertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() A = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> List[str]: A = self.num_labels A = MegatronBertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() A = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Union[str, Any]: A = self.num_choices A = MegatronBertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() A = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def UpperCamelCase__ ( self ) -> int: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowerCamelCase = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase = ( { '''feature-extraction''': MegatronBertModel, '''fill-mask''': MegatronBertForMaskedLM, '''question-answering''': MegatronBertForQuestionAnswering, '''text-classification''': MegatronBertForSequenceClassification, '''text-generation''': MegatronBertForCausalLM, '''token-classification''': MegatronBertForTokenClassification, '''zero-shot''': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase = True # test_resize_embeddings = False _lowerCamelCase = False def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_=False ) -> List[str]: A = super()._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ,return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): A = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowerCamelCase_ ) A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowerCamelCase_ ) return inputs_dict def UpperCamelCase__ ( self ) -> str: A = MegatronBertModelTester(self ) A = ConfigTester(self ,config_class=lowerCamelCase_ ,hidden_size=3_7 ) def UpperCamelCase__ ( self ) -> List[Any]: self.config_tester.run_common_tests() def UpperCamelCase__ ( self ) -> Union[str, Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> Union[str, Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> Any: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*lowerCamelCase_ ) def _A ( _a : List[str] ): """simple docstring""" return torch.tensor( _a , dtype=torch.long , device=_a , ) UpperCAmelCase =1E-4 @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip("""Model is not available.""" ) def UpperCamelCase__ ( self ) -> List[str]: A = """nvidia/megatron-bert-uncased-345m""" if "MYDIR" in os.environ: A = os.path.join(os.environ["""MYDIR"""] ,lowerCamelCase_ ) A = MegatronBertModel.from_pretrained(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.half() A = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): A = model(lowerCamelCase_ )[0] A = torch.Size((1, 9, 1_0_2_4) ) self.assertEqual(output.shape ,lowerCamelCase_ ) A = [-0.60_40, -0.25_17, -0.10_25, 0.34_20, -0.67_58, -0.00_17, -0.10_89, -0.19_90, 0.57_28] for ii in range(3 ): for jj in range(3 ): A = output[0, ii, jj] A = expected[3 * ii + jj] A = """ii={} jj={} a={} b={}""".format(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) self.assertTrue(math.isclose(lowerCamelCase_ ,lowerCamelCase_ ,rel_tol=lowerCamelCase_ ,abs_tol=lowerCamelCase_ ) ,msg=lowerCamelCase_ )
255
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase =logging.get_logger(__name__) UpperCAmelCase ="https://openaipublic.azureedge.net/jukebox/models/" UpperCAmelCase ={ "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def _A ( _a : Optional[Any] ): """simple docstring""" if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 1_0: A = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" ) elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 1_0: A = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" ) elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 1_0: A = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" ) elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 1_0: A = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" ) if "conditioner_blocks.0." in key: A = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" ) if "prime_prior" in key: A = key.replace("""prime_prior""" , """encoder""" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: A = key.replace(""".emb.""" , """.""" ) if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(""".k""" , """.codebook""" ) if "y_emb." in key: return key.replace("""y_emb.""" , """metadata_embedding.""" ) if "x_emb.emb." in key: A = key.replace("""0.x_emb.emb""" , """embed_tokens""" ) if "prime_state_ln" in key: return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" ) if ".ln" in key: return key.replace(""".ln""" , """.layer_norm""" ) if "_ln" in key: return key.replace("""_ln""" , """_layer_norm""" ) if "prime_state_proj" in key: return key.replace("""prime_state_proj""" , """encoder.proj_in""" ) if "prime_x_out" in key: return key.replace("""prime_x_out""" , """encoder.lm_head""" ) if "prior.x_out" in key: return key.replace("""x_out""" , """fc_proj_out""" ) if "x_emb" in key: return key.replace("""x_emb""" , """embed_tokens""" ) return key def _A ( _a : Union[str, Any] , _a : Union[str, Any] , _a : Union[str, Any] , _a : List[Any] ): """simple docstring""" A = {} import re A = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) A = re.compile( r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) A = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) A = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) A = re.compile( r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) A = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) A = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" ) A = re.compile( r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) A = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_a ): A = re_encoder_block_conv_in.match(_a ) A = regex_match.groups() A = int(groups[2] ) * 2 + int(groups[3] ) A = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}' A = re_encoder_block_conv_in.sub(_a , _a ) elif re_encoder_block_resnet.fullmatch(_a ): A = re_encoder_block_resnet.match(_a ) A = regex_match.groups() A = int(groups[2] ) * 2 + int(groups[3] ) A = {"""1""": 1, """3""": 2}[groups[-2]] A = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.' A = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' A = prefix + resnet_block A = re_encoder_block_resnet.sub(_a , _a ) elif re_encoder_block_proj_out.fullmatch(_a ): A = re_encoder_block_proj_out.match(_a ) A = regex_match.groups() A = f'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}' A = re_encoder_block_proj_out.sub(_a , _a ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_a ): A = re_decoder_block_conv_out.match(_a ) A = regex_match.groups() A = int(groups[2] ) * 2 + int(groups[3] ) - 2 A = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}' A = re_decoder_block_conv_out.sub(_a , _a ) elif re_decoder_block_resnet.fullmatch(_a ): A = re_decoder_block_resnet.match(_a ) A = regex_match.groups() A = int(groups[2] ) * 2 + int(groups[3] ) - 2 A = {"""1""": 1, """3""": 2}[groups[-2]] A = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.' A = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' A = prefix + resnet_block A = re_decoder_block_resnet.sub(_a , _a ) elif re_decoder_block_proj_in.fullmatch(_a ): A = re_decoder_block_proj_in.match(_a ) A = regex_match.groups() A = f'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}' A = re_decoder_block_proj_in.sub(_a , _a ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_a ): A = re_prior_cond_conv_out.match(_a ) A = regex_match.groups() A = int(groups[1] ) * 2 + int(groups[2] ) - 2 A = f'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}' A = re_prior_cond_conv_out.sub(_a , _a ) elif re_prior_cond_resnet.fullmatch(_a ): A = re_prior_cond_resnet.match(_a ) A = regex_match.groups() A = int(groups[1] ) * 2 + int(groups[2] ) - 2 A = {"""1""": 1, """3""": 2}[groups[-2]] A = f'conditioner_blocks.upsampler.upsample_block.{block_index}.' A = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' A = prefix + resnet_block A = re_prior_cond_resnet.sub(_a , _a ) elif re_prior_cond_proj_in.fullmatch(_a ): A = re_prior_cond_proj_in.match(_a ) A = regex_match.groups() A = f'conditioner_blocks.upsampler.proj_in.{groups[-1]}' A = re_prior_cond_proj_in.sub(_a , _a ) # keep original key else: A = original_key A = replace_key(_a ) if f'{key_prefix}.{key}' not in model_state_dict or key is None: print(f'failed converting {original_key} to {key}, does not match' ) # handle missmatched shape elif value.shape != model_state_dict[f'{key_prefix}.{key}'].shape: A = model_state_dict[f'{key_prefix}.{key}'] print(f'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' ) A = original_key A = original_key A = value return new_dict @torch.no_grad() def _A ( _a : Optional[Any]=None , _a : str=None ): """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ): A = requests.get(f'{PREFIX}{file}' , allow_redirects=_a ) os.makedirs(f'{pytorch_dump_folder_path}/' , exist_ok=_a ) open(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , """wb""" ).write(r.content ) A = MODEL_MAPPING[model_name.split("""/""" )[-1]] A = JukeboxConfig.from_pretrained(_a ) A = JukeboxModel(_a ) A = [] A = {} for i, dict_name in enumerate(_a ): A = torch.load(f'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )["""model"""] A = {} for k in old_dic.keys(): if k.endswith(""".b""" ): A = old_dic[k] elif k.endswith(""".w""" ): A = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: A = old_dic[k] else: A = old_dic[k] A = """vqvae""" if i == 0 else f'priors.{3 - i}' A = fix_jukebox_keys(_a , model.state_dict() , _a , _a ) weight_dict.append(_a ) A = weight_dict.pop(0 ) model.vqvae.load_state_dict(_a ) for i in range(len(_a ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_a ).mkdir(exist_ok=_a ) with open(f'{pytorch_dump_folder_path}/mapping.json' , """w""" ) as txtfile: json.dump(_a , _a ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_a ) return weight_dict if __name__ == "__main__": UpperCAmelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) UpperCAmelCase =parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
255
1
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowerCAmelCase: List[Any] = logging.get_logger(__name__) lowerCAmelCase: List[Any] = {"vocab_file": "spiece.model"} lowerCAmelCase: Union[str, Any] = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class a__( lowerCamelCase__ ): def __init__( self : Optional[Any] , __snake_case : str , __snake_case : List[str]=False , __snake_case : List[Any]=True , __snake_case : Union[str, Any]=False , __snake_case : List[str]="<s>" , __snake_case : List[str]="</s>" , __snake_case : Dict="<unk>" , __snake_case : Tuple="<sep>" , __snake_case : str="<pad>" , __snake_case : str="<cls>" , __snake_case : str="<mask>" , __snake_case : int=["<eop>", "<eod>"] , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : Any , ): a : Optional[int] = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token a : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCamelCase , remove_space=__UpperCamelCase , keep_accents=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , pad_token=__UpperCamelCase , cls_token=__UpperCamelCase , mask_token=__UpperCamelCase , additional_special_tokens=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) a : List[Any] = 3 a : List[Any] = do_lower_case a : Optional[Any] = remove_space a : Optional[Any] = keep_accents a : Any = vocab_file a : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCamelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( 'You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ' 'See https://pypi.org/project/jieba/ for installation.' ) a : Optional[int] = jieba a : Any = str.maketrans(' \n' , '\u2582\u2583' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def lowercase_ ( self : Optional[int] ): return len(self.sp_model ) def lowercase_ ( self : Union[str, Any] ): a : Tuple = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ): a : Optional[int] = self.__dict__.copy() a : List[Any] = None return state def __setstate__( self : List[Any] , __snake_case : str ): a : List[str] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): a : List[str] = {} a : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase_ ( self : Dict , __snake_case : Tuple ): if self.remove_space: a : List[Any] = ' '.join(inputs.strip().split() ) else: a : List[str] = inputs a : Dict = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: a : str = unicodedata.normalize('NFKD' , __UpperCamelCase ) a : Dict = ''.join([c for c in outputs if not unicodedata.combining(__UpperCamelCase )] ) if self.do_lower_case: a : Any = outputs.lower() return outputs def lowercase_ ( self : str , __snake_case : str ): a : Optional[Any] = self.preprocess_text(__UpperCamelCase ) a : str = self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) a : Union[str, Any] = [] for piece in pieces: if len(__UpperCamelCase ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): a : Tuple = self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCamelCase , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: a : List[Any] = cur_pieces[1:] else: a : Optional[Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCamelCase ) else: new_pieces.append(__UpperCamelCase ) return new_pieces def lowercase_ ( self : Any , __snake_case : int ): return self.sp_model.PieceToId(__UpperCamelCase ) def lowercase_ ( self : List[str] , __snake_case : List[Any] ): return self.sp_model.IdToPiece(__UpperCamelCase ) def lowercase_ ( self : Union[str, Any] , __snake_case : List[Any] ): a : Tuple = ''.join(__UpperCamelCase ).replace(__UpperCamelCase , ' ' ).strip() return out_string def lowercase_ ( self : Tuple , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): a : Dict = [self.sep_token_id] a : List[Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowercase_ ( self : Optional[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is not None: return ([0] * len(__UpperCamelCase )) + [1] + ([0] * len(__UpperCamelCase )) + [1, 1] return ([0] * len(__UpperCamelCase )) + [1, 1] def lowercase_ ( self : Union[str, Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): a : List[Any] = [self.sep_token_id] a : int = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowercase_ ( self : List[str] , __snake_case : str , __snake_case : Optional[str] = None ): if not os.path.isdir(__UpperCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a : Any = os.path.join( __UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , 'wb' ) as fi: a : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,) def lowercase_ ( self : Optional[Any] , *__snake_case : Any , **__snake_case : Any ): a : Any = super()._decode(*__UpperCamelCase , **__UpperCamelCase ) a : Tuple = text.replace(' ' , '' ).replace('\u2582' , ' ' ).replace('\u2583' , '\n' ) return text
526
"""simple docstring""" # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] _UpperCAmelCase = { '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } _UpperCAmelCase = f'{src_lang}-{tgt_lang}' _UpperCAmelCase = f'\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "facebook/wmt19-{src_lang}-{tgt_lang}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n' os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , '''README.md''' ) print(f'Generating {path}' ) with open(_SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f: f.write(_SCREAMING_SNAKE_CASE ) # make sure we are under the root of the project __A : int = Path(__file__).resolve().parent.parent.parent __A : List[Any] = repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __A , __A , __A : List[Any] = model_name.split("-") __A : Optional[Any] = model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
602
0
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def lowercase__ ( lowercase_ ,lowercase_=7 ) -> Tuple: """simple docstring""" _UpperCamelCase : Optional[int] = None if token is not None: _UpperCamelCase : Optional[Any] = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} # The id of a workflow (not of a workflow run) _UpperCamelCase : Any = "636036" _UpperCamelCase : Tuple = F'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' _UpperCamelCase : Dict = requests.get(lowercase_ ,headers=lowercase_ ).json() return result["workflow_runs"] def lowercase__ ( lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : List[Any] = get_daily_ci_runs(lowercase_ ) _UpperCamelCase : Tuple = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": _UpperCamelCase : Union[str, Any] = workflow_run["id"] break return workflow_run_id def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : str = get_last_daily_ci_runs(lowercase_ ) if workflow_run_id is not None: _UpperCamelCase : int = get_artifacts_links(worflow_run_id=lowercase_ ,token=lowercase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: _UpperCamelCase : Dict = artifacts_links[artifact_name] download_artifact( artifact_name=lowercase_ ,artifact_url=lowercase_ ,output_dir=lowercase_ ,token=lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> int: """simple docstring""" get_last_daily_ci_artifacts(lowercase_ ,lowercase_ ,lowercase_ ) _UpperCamelCase : Dict = {} for artifact_name in artifact_names: _UpperCamelCase : Union[str, Any] = os.path.join(lowercase_ ,F'''{artifact_name}.zip''' ) if os.path.isfile(lowercase_ ): _UpperCamelCase : int = {} with zipfile.ZipFile(lowercase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowercase_ ): # read the file with z.open(lowercase_ ) as f: _UpperCamelCase : int = f.read().decode("UTF-8" ) return results
51
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path lowerCamelCase__ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) lowerCamelCase__ = [ord(letter) for letter in string.ascii_lowercase] lowerCamelCase__ = {ord(char) for char in VALID_CHARS} lowerCamelCase__ = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowercase__ ( lowercase_ ,lowercase_ ) -> str | None: """simple docstring""" _UpperCamelCase : str = "" _UpperCamelCase : int _UpperCamelCase : int _UpperCamelCase : int for keychar, cipherchar in zip(cycle(lowercase_ ) ,lowercase_ ): _UpperCamelCase : Dict = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(lowercase_ ) return decoded def lowercase__ ( lowercase_ ) -> list[str]: """simple docstring""" _UpperCamelCase : list[str] = [] for key in product(lowercase_ ,repeat=3 ): _UpperCamelCase : int = try_key(lowercase_ ,lowercase_ ) if encoded is not None: possibles.append(lowercase_ ) return possibles def lowercase__ ( lowercase_ ,lowercase_ ) -> list[str]: """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def lowercase__ ( lowercase_ = "p059_cipher.txt" ) -> int: """simple docstring""" _UpperCamelCase : list[int] _UpperCamelCase : list[str] _UpperCamelCase : str _UpperCamelCase : str _UpperCamelCase : str = Path(lowercase_ ).parent.joinpath(lowercase_ ).read_text(encoding="utf-8" ) _UpperCamelCase : Optional[Any] = [int(lowercase_ ) for number in data.strip().split("," )] _UpperCamelCase : List[str] = filter_valid_chars(lowercase_ ) for common_word in COMMON_WORDS: _UpperCamelCase : Union[str, Any] = filter_common_word(lowercase_ ,lowercase_ ) if len(lowercase_ ) == 1: break _UpperCamelCase : Union[str, Any] = possibles[0] return sum(ord(lowercase_ ) for char in decoded_text ) if __name__ == "__main__": print(f"""{solution() = }""")
51
1
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=18 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , ) -> List[str]: __UpperCamelCase = size if size is not None else {'height': 18, 'width': 18} __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = num_channels __UpperCamelCase = image_size __UpperCamelCase = min_resolution __UpperCamelCase = max_resolution __UpperCamelCase = do_resize __UpperCamelCase = size __UpperCamelCase = apply_ocr def __lowercase( self ) -> Tuple: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __lowercase( self ) -> Optional[int]: __UpperCamelCase = LayoutLMvaImageProcessingTester(self ) @property def __lowercase( self ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def __lowercase( self ) -> Optional[Any]: __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'apply_ocr' ) ) def __lowercase( self ) -> int: __UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def __lowercase( self ) -> str: pass def __lowercase( self ) -> List[Any]: # Initialize image_processing __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(encoding.boxes , _SCREAMING_SNAKE_CASE ) # Test batched __UpperCamelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __lowercase( self ) -> Tuple: # Initialize image_processing __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __lowercase( self ) -> List[Any]: # Initialize image_processing __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __lowercase( self ) -> List[Any]: # with apply_OCR = True __UpperCamelCase = LayoutLMvaImageProcessor() from datasets import load_dataset __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ).convert('RGB' ) __UpperCamelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __UpperCamelCase = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __UpperCamelCase = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _SCREAMING_SNAKE_CASE ) self.assertListEqual(encoding.boxes , _SCREAMING_SNAKE_CASE ) # with apply_OCR = False __UpperCamelCase = LayoutLMvaImageProcessor(apply_ocr=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
383
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel _snake_case = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @classmethod def __lowercase( cls ) -> int: __UpperCamelCase = TOKEN HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @classmethod def __lowercase( cls ) -> Union[str, Any]: try: delete_repo(token=cls._token , repo_id='test-model-flax' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-model-flax-org' ) except HTTPError: pass def __lowercase( self ) -> Optional[Any]: __UpperCamelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __UpperCamelCase = FlaxBertModel(_SCREAMING_SNAKE_CASE ) model.push_to_hub('test-model-flax' , use_auth_token=self._token ) __UpperCamelCase = FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""" ) __UpperCamelCase = flatten_dict(unfreeze(model.params ) ) __UpperCamelCase = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __UpperCamelCase = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 , msg=f"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='test-model-flax' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_SCREAMING_SNAKE_CASE , repo_id='test-model-flax' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) __UpperCamelCase = FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""" ) __UpperCamelCase = flatten_dict(unfreeze(model.params ) ) __UpperCamelCase = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __UpperCamelCase = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 , msg=f"""{key} not identical""" ) def __lowercase( self ) -> List[Any]: __UpperCamelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __UpperCamelCase = FlaxBertModel(_SCREAMING_SNAKE_CASE ) model.push_to_hub('valid_org/test-model-flax-org' , use_auth_token=self._token ) __UpperCamelCase = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' ) __UpperCamelCase = flatten_dict(unfreeze(model.params ) ) __UpperCamelCase = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __UpperCamelCase = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 , msg=f"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-model-flax-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id='valid_org/test-model-flax-org' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) __UpperCamelCase = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' ) __UpperCamelCase = flatten_dict(unfreeze(model.params ) ) __UpperCamelCase = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __UpperCamelCase = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 , msg=f"""{key} not identical""" ) def _a ( __lowercase , __lowercase ) -> str: """simple docstring""" __UpperCamelCase = True __UpperCamelCase = flatten_dict(modela.params ) __UpperCamelCase = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: __UpperCamelCase = False return models_are_equal @require_flax class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase( self ) -> List[Any]: __UpperCamelCase = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) __UpperCamelCase = FlaxBertModel(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): __UpperCamelCase = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertTrue(check_models_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __lowercase( self ) -> Union[str, Any]: __UpperCamelCase = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) __UpperCamelCase = FlaxBertModel(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , max_shard_size='10KB' ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): __UpperCamelCase = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertTrue(check_models_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __lowercase( self ) -> Dict: __UpperCamelCase = 'bert' __UpperCamelCase = 'hf-internal-testing/tiny-random-bert-subfolder' with self.assertRaises(_SCREAMING_SNAKE_CASE ): __UpperCamelCase = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __lowercase( self ) -> List[str]: __UpperCamelCase = 'bert' __UpperCamelCase = 'hf-internal-testing/tiny-random-bert-sharded-subfolder' with self.assertRaises(_SCREAMING_SNAKE_CASE ): __UpperCamelCase = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
383
1
__a = """Alexander Joslin""" import operator as op from .stack import Stack def UpperCamelCase_ ( a_ ) ->int: A ={"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub} A =Stack() A =Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(a_ ) ) elif i in operators: # RULE 2 operator_stack.push(a_ ) elif i == ")": # RULE 4 A =operator_stack.peek() operator_stack.pop() A =operand_stack.peek() operand_stack.pop() A =operand_stack.peek() operand_stack.pop() A =operators[opr](a_ , a_ ) operand_stack.push(a_ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __a = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
689
def UpperCamelCase_ ( a_ = 6008_5147_5143 ) ->int: try: A =int(a_ ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) A =2 A =0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 A =i while n % i == 0: A =n // i i += 1 return int(a_ ) if __name__ == "__main__": print(F'''{solution() = }''')
689
1
from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class snake_case__ ( unittest.TestCase): '''simple docstring''' @slow def __lowercase ( self ) -> Optional[Any]: '''simple docstring''' for model_name in ["bert-base-uncased"]: __snake_case :Any = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case :Tuple = TFAutoModel.from_pretrained(a__ , from_pt=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case :Optional[int] = AutoModel.from_pretrained(a__ , from_tf=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def __lowercase ( self ) -> List[Any]: '''simple docstring''' for model_name in ["bert-base-uncased"]: __snake_case :Union[str, Any] = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case :Tuple = TFAutoModelForPreTraining.from_pretrained(a__ , from_pt=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case :Any = AutoModelForPreTraining.from_pretrained(a__ , from_tf=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def __lowercase ( self ) -> Tuple: '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case :str = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case :str = TFAutoModelForCausalLM.from_pretrained(a__ , from_pt=a__ ) __snake_case , __snake_case :str = TFAutoModelForCausalLM.from_pretrained( a__ , output_loading_info=a__ , from_pt=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case :Dict = AutoModelForCausalLM.from_pretrained(a__ , from_tf=a__ ) __snake_case , __snake_case :Optional[int] = AutoModelForCausalLM.from_pretrained( a__ , output_loading_info=a__ , from_tf=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def __lowercase ( self ) -> List[Any]: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case :List[str] = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case :Optional[int] = TFAutoModelWithLMHead.from_pretrained(a__ , from_pt=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case :int = AutoModelWithLMHead.from_pretrained(a__ , from_tf=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def __lowercase ( self ) -> Dict: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case :Tuple = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case :List[str] = TFAutoModelForMaskedLM.from_pretrained(a__ , from_pt=a__ ) __snake_case , __snake_case :Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained( a__ , output_loading_info=a__ , from_pt=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case :Union[str, Any] = AutoModelForMaskedLM.from_pretrained(a__ , from_tf=a__ ) __snake_case , __snake_case :Optional[int] = AutoModelForMaskedLM.from_pretrained( a__ , output_loading_info=a__ , from_tf=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def __lowercase ( self ) -> Any: '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case :List[str] = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case :Any = TFAutoModelForSeqaSeqLM.from_pretrained(a__ , from_pt=a__ ) __snake_case , __snake_case :Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained( a__ , output_loading_info=a__ , from_pt=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case :Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(a__ , from_tf=a__ ) __snake_case , __snake_case :Any = AutoModelForSeqaSeqLM.from_pretrained( a__ , output_loading_info=a__ , from_tf=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def __lowercase ( self ) -> Optional[int]: '''simple docstring''' for model_name in ["bert-base-uncased"]: __snake_case :List[str] = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case :str = TFAutoModelForSequenceClassification.from_pretrained(a__ , from_pt=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case :Dict = AutoModelForSequenceClassification.from_pretrained(a__ , from_tf=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def __lowercase ( self ) -> str: '''simple docstring''' for model_name in ["bert-base-uncased"]: __snake_case :List[str] = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case :Union[str, Any] = TFAutoModelForQuestionAnswering.from_pretrained(a__ , from_pt=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case :str = AutoModelForQuestionAnswering.from_pretrained(a__ , from_tf=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) def __lowercase ( self ) -> Any: '''simple docstring''' __snake_case :str = TFAutoModelWithLMHead.from_pretrained(a__ , from_pt=a__ ) self.assertIsInstance(a__ , a__ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=a__ ) , 1_44_10 ) __snake_case :int = AutoModelWithLMHead.from_pretrained(a__ , from_tf=a__ ) self.assertIsInstance(a__ , a__ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=a__ ) , 1_44_10 ) def __lowercase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case :List[Any] = TFAutoModelWithLMHead.from_pretrained(a__ , from_pt=a__ ) self.assertIsInstance(a__ , a__ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=a__ ) , 1_44_10 ) __snake_case :int = AutoModelWithLMHead.from_pretrained(a__ , from_tf=a__ ) self.assertIsInstance(a__ , a__ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=a__ ) , 1_44_10 )
455
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig lowerCamelCase__ = logging.get_logger(__name__) # General docstring lowerCamelCase__ = """ResNetConfig""" # Base docstring lowerCamelCase__ = """microsoft/resnet-50""" lowerCamelCase__ = [1, 2048, 7, 7] # Image classification docstring lowerCamelCase__ = """microsoft/resnet-50""" lowerCamelCase__ = """tiger cat""" lowerCamelCase__ = [ """microsoft/resnet-50""", # See all resnet models at https://huggingface.co/models?filter=resnet ] class snake_case__ ( nn.Module): '''simple docstring''' def __init__( self , a__ , a__ , a__ = 3 , a__ = 1 , a__ = "relu" ) -> Optional[Any]: '''simple docstring''' super().__init__() __snake_case :Dict = nn.Convad( a__ , a__ , kernel_size=a__ , stride=a__ , padding=kernel_size // 2 , bias=a__ ) __snake_case :str = nn.BatchNormad(a__ ) __snake_case :List[Any] = ACTaFN[activation] if activation is not None else nn.Identity() def __lowercase ( self , a__ ) -> Tensor: '''simple docstring''' __snake_case :int = self.convolution(a__ ) __snake_case :Any = self.normalization(a__ ) __snake_case :Optional[int] = self.activation(a__ ) return hidden_state class snake_case__ ( nn.Module): '''simple docstring''' def __init__( self , a__ ) -> str: '''simple docstring''' super().__init__() __snake_case :Dict = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) __snake_case :List[Any] = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) __snake_case :Tuple = config.num_channels def __lowercase ( self , a__ ) -> Tensor: '''simple docstring''' __snake_case :Optional[Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) __snake_case :Optional[int] = self.embedder(a__ ) __snake_case :int = self.pooler(a__ ) return embedding class snake_case__ ( nn.Module): '''simple docstring''' def __init__( self , a__ , a__ , a__ = 2 ) -> Optional[Any]: '''simple docstring''' super().__init__() __snake_case :Optional[Any] = nn.Convad(a__ , a__ , kernel_size=1 , stride=a__ , bias=a__ ) __snake_case :Tuple = nn.BatchNormad(a__ ) def __lowercase ( self , a__ ) -> Tensor: '''simple docstring''' __snake_case :Any = self.convolution(a__ ) __snake_case :str = self.normalization(a__ ) return hidden_state class snake_case__ ( nn.Module): '''simple docstring''' def __init__( self , a__ , a__ , a__ = 1 , a__ = "relu" ) -> List[str]: '''simple docstring''' super().__init__() __snake_case :int = in_channels != out_channels or stride != 1 __snake_case :Tuple = ( ResNetShortCut(a__ , a__ , stride=a__ ) if should_apply_shortcut else nn.Identity() ) __snake_case :Optional[int] = nn.Sequential( ResNetConvLayer(a__ , a__ , stride=a__ ) , ResNetConvLayer(a__ , a__ , activation=a__ ) , ) __snake_case :Union[str, Any] = ACTaFN[activation] def __lowercase ( self , a__ ) -> Union[str, Any]: '''simple docstring''' __snake_case :int = hidden_state __snake_case :Dict = self.layer(a__ ) __snake_case :Any = self.shortcut(a__ ) hidden_state += residual __snake_case :List[Any] = self.activation(a__ ) return hidden_state class snake_case__ ( nn.Module): '''simple docstring''' def __init__( self , a__ , a__ , a__ = 1 , a__ = "relu" , a__ = 4 ) -> List[Any]: '''simple docstring''' super().__init__() __snake_case :Optional[int] = in_channels != out_channels or stride != 1 __snake_case :List[Any] = out_channels // reduction __snake_case :List[str] = ( ResNetShortCut(a__ , a__ , stride=a__ ) if should_apply_shortcut else nn.Identity() ) __snake_case :int = nn.Sequential( ResNetConvLayer(a__ , a__ , kernel_size=1 ) , ResNetConvLayer(a__ , a__ , stride=a__ ) , ResNetConvLayer(a__ , a__ , kernel_size=1 , activation=a__ ) , ) __snake_case :Dict = ACTaFN[activation] def __lowercase ( self , a__ ) -> Any: '''simple docstring''' __snake_case :List[str] = hidden_state __snake_case :List[Any] = self.layer(a__ ) __snake_case :List[Any] = self.shortcut(a__ ) hidden_state += residual __snake_case :Optional[Any] = self.activation(a__ ) return hidden_state class snake_case__ ( nn.Module): '''simple docstring''' def __init__( self , a__ , a__ , a__ , a__ = 2 , a__ = 2 , ) -> Any: '''simple docstring''' super().__init__() __snake_case :Optional[int] = ResNetBottleNeckLayer if config.layer_type == """bottleneck""" else ResNetBasicLayer __snake_case :Tuple = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(a__ , a__ , stride=a__ , activation=config.hidden_act ) , *[layer(a__ , a__ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def __lowercase ( self , a__ ) -> Tensor: '''simple docstring''' __snake_case :Union[str, Any] = input for layer in self.layers: __snake_case :str = layer(a__ ) return hidden_state class snake_case__ ( nn.Module): '''simple docstring''' def __init__( self , a__ ) -> Union[str, Any]: '''simple docstring''' super().__init__() __snake_case :Optional[int] = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( a__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) __snake_case :Tuple = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(a__ , config.depths[1:] ): self.stages.append(ResNetStage(a__ , a__ , a__ , depth=a__ ) ) def __lowercase ( self , a__ , a__ = False , a__ = True ) -> BaseModelOutputWithNoAttention: '''simple docstring''' __snake_case :Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __snake_case :Optional[int] = hidden_states + (hidden_state,) __snake_case :Tuple = stage_module(a__ ) if output_hidden_states: __snake_case :Optional[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=a__ , hidden_states=a__ , ) class snake_case__ ( lowercase_): '''simple docstring''' lowerCamelCase : List[Any] = ResNetConfig lowerCamelCase : Optional[Any] = "resnet" lowerCamelCase : str = "pixel_values" lowerCamelCase : Optional[int] = True def __lowercase ( self , a__ ) -> Dict: '''simple docstring''' if isinstance(a__ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""" ) elif isinstance(a__ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def __lowercase ( self , a__ , a__=False ) -> Optional[int]: '''simple docstring''' if isinstance(a__ , a__ ): __snake_case :Union[str, Any] = value lowerCamelCase__ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ lowerCamelCase__ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." , lowercase_ , ) class snake_case__ ( lowercase_): '''simple docstring''' def __init__( self , a__ ) -> Tuple: '''simple docstring''' super().__init__(a__ ) __snake_case :int = config __snake_case :Any = ResNetEmbeddings(a__ ) __snake_case :Dict = ResNetEncoder(a__ ) __snake_case :Dict = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(a__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=a__ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __lowercase ( self , a__ , a__ = None , a__ = None ) -> BaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' __snake_case :List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case :List[str] = return_dict if return_dict is not None else self.config.use_return_dict __snake_case :int = self.embedder(a__ ) __snake_case :Any = self.encoder( a__ , output_hidden_states=a__ , return_dict=a__ ) __snake_case :Any = encoder_outputs[0] __snake_case :int = self.pooler(a__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=a__ , pooler_output=a__ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowercase_ , ) class snake_case__ ( lowercase_): '''simple docstring''' def __init__( self , a__ ) -> List[Any]: '''simple docstring''' super().__init__(a__ ) __snake_case :Union[str, Any] = config.num_labels __snake_case :Optional[int] = ResNetModel(a__ ) # classification head __snake_case :List[str] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(a__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=a__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __lowercase ( self , a__ = None , a__ = None , a__ = None , a__ = None , ) -> ImageClassifierOutputWithNoAttention: '''simple docstring''' __snake_case :Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict __snake_case :Tuple = self.resnet(a__ , output_hidden_states=a__ , return_dict=a__ ) __snake_case :Optional[Any] = outputs.pooler_output if return_dict else outputs[1] __snake_case :Optional[Any] = self.classifier(a__ ) __snake_case :Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __snake_case :List[Any] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __snake_case :List[Any] = """single_label_classification""" else: __snake_case :Union[str, Any] = """multi_label_classification""" if self.config.problem_type == "regression": __snake_case :Any = MSELoss() if self.num_labels == 1: __snake_case :Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: __snake_case :Any = loss_fct(a__ , a__ ) elif self.config.problem_type == "single_label_classification": __snake_case :int = CrossEntropyLoss() __snake_case :List[Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __snake_case :List[str] = BCEWithLogitsLoss() __snake_case :int = loss_fct(a__ , a__ ) if not return_dict: __snake_case :int = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=a__ , logits=a__ , hidden_states=outputs.hidden_states ) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " , lowercase_ , ) class snake_case__ ( lowercase_ , lowercase_): '''simple docstring''' def __init__( self , a__ ) -> int: '''simple docstring''' super().__init__(a__ ) super()._init_backbone(a__ ) __snake_case :Optional[int] = [config.embedding_size] + config.hidden_sizes __snake_case :str = ResNetEmbeddings(a__ ) __snake_case :Any = ResNetEncoder(a__ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(a__ ) @replace_return_docstrings(output_type=a__ , config_class=_CONFIG_FOR_DOC ) def __lowercase ( self , a__ , a__ = None , a__ = None ) -> BackboneOutput: '''simple docstring''' __snake_case :int = return_dict if return_dict is not None else self.config.use_return_dict __snake_case :Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case :List[str] = self.embedder(a__ ) __snake_case :List[Any] = self.encoder(a__ , output_hidden_states=a__ , return_dict=a__ ) __snake_case :Optional[int] = outputs.hidden_states __snake_case :Tuple = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: __snake_case :Union[str, Any] = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=a__ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=a__ , )
455
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ : Optional[int] = { '''configuration_mobilenet_v2''': [ '''MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileNetV2Config''', '''MobileNetV2OnnxConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = ['''MobileNetV2FeatureExtractor'''] A_ : Tuple = ['''MobileNetV2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple = [ '''MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileNetV2ForImageClassification''', '''MobileNetV2ForSemanticSegmentation''', '''MobileNetV2Model''', '''MobileNetV2PreTrainedModel''', '''load_tf_weights_in_mobilenet_v2''', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys A_ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
32
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : Optional[int] = { '''configuration_instructblip''': [ '''INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InstructBlipConfig''', '''InstructBlipQFormerConfig''', '''InstructBlipVisionConfig''', ], '''processing_instructblip''': ['''InstructBlipProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ '''INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InstructBlipQFormerModel''', '''InstructBlipPreTrainedModel''', '''InstructBlipForConditionalGeneration''', '''InstructBlipVisionModel''', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys A_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
32
1
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu UpperCamelCase = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: UpperCamelCase = json.load(f) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :List[Any] , lowerCamelCase__ :Tuple ): return FSMTTokenizer.from_pretrained(lowerCamelCase__ ) def __a ( self :Any , lowerCamelCase__ :Optional[Any] ): UpperCamelCase__ :Union[str, Any] = FSMTForConditionalGeneration.from_pretrained(lowerCamelCase__ ).to(lowerCamelCase__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ] ) @slow def __a ( self :Dict , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[int] ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality UpperCamelCase__ :Optional[Any] = f"""facebook/wmt19-{pair}""" UpperCamelCase__ :List[str] = self.get_tokenizer(lowerCamelCase__ ) UpperCamelCase__ :List[str] = self.get_model(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = bleu_data[pair]["""src"""] UpperCamelCase__ :Optional[Any] = bleu_data[pair]["""tgt"""] UpperCamelCase__ :Union[str, Any] = tokenizer(lowerCamelCase__ , return_tensors="""pt""" , truncation=lowerCamelCase__ , padding="""longest""" ).to(lowerCamelCase__ ) UpperCamelCase__ :str = model.generate( input_ids=batch.input_ids , num_beams=8 , ) UpperCamelCase__ :Any = tokenizer.batch_decode( lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ ) UpperCamelCase__ :Dict = calculate_bleu(lowerCamelCase__ , lowerCamelCase__ ) print(lowerCamelCase__ ) self.assertGreaterEqual(scores["""bleu"""] , lowerCamelCase__ )
45
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def _UpperCamelCase ( lowerCAmelCase_ ) ->Optional[Any]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4_E_0_0 and cp <= 0x9_F_F_F) or (cp >= 0x3_4_0_0 and cp <= 0x4_D_B_F) # or (cp >= 0x2_0_0_0_0 and cp <= 0x2_A_6_D_F) # or (cp >= 0x2_A_7_0_0 and cp <= 0x2_B_7_3_F) # or (cp >= 0x2_B_7_4_0 and cp <= 0x2_B_8_1_F) # or (cp >= 0x2_B_8_2_0 and cp <= 0x2_C_E_A_F) # or (cp >= 0xF_9_0_0 and cp <= 0xF_A_F_F) or (cp >= 0x2_F_8_0_0 and cp <= 0x2_F_A_1_F) # ): # return True return False def _UpperCamelCase ( lowerCAmelCase_ ) ->List[str]: # word like '180' or '身高' or '神' for char in word: UpperCAmelCase = ord(lowerCAmelCase_ ) if not _is_chinese_char(lowerCAmelCase_ ): return 0 return 1 def _UpperCamelCase ( lowerCAmelCase_ ) ->Optional[int]: UpperCAmelCase = set() for token in tokens: UpperCAmelCase = len(lowerCAmelCase_ ) > 1 and is_chinese(lowerCAmelCase_ ) if chinese_word: word_set.add(lowerCAmelCase_ ) UpperCAmelCase = list(lowerCAmelCase_ ) return word_list def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->Union[str, Any]: if not chinese_word_set: return bert_tokens UpperCAmelCase = max([len(lowerCAmelCase_ ) for w in chinese_word_set] ) UpperCAmelCase = bert_tokens UpperCAmelCase , UpperCAmelCase = 0, len(lowerCAmelCase_ ) while start < end: UpperCAmelCase = True if is_chinese(bert_word[start] ): UpperCAmelCase = min(end - start , lowerCAmelCase_ ) for i in range(lowerCAmelCase_ , 1 , -1 ): UpperCAmelCase = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): UpperCAmelCase = """##""" + bert_word[j] UpperCAmelCase = start + i UpperCAmelCase = False break if single_word: start += 1 return bert_word def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ->Dict: UpperCAmelCase = [] for i in range(0 , len(lowerCAmelCase_ ) , 1_0_0 ): UpperCAmelCase = ltp_tokenizer.pipeline(lines[i : i + 1_0_0] , tasks=["""cws"""] ).cws UpperCAmelCase = [get_chinese_word(lowerCAmelCase_ ) for r in res] ltp_res.extend(lowerCAmelCase_ ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) UpperCAmelCase = [] for i in range(0 , len(lowerCAmelCase_ ) , 1_0_0 ): UpperCAmelCase = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=5_1_2 ) bert_res.extend(res["""input_ids"""] ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) UpperCAmelCase = [] for input_ids, chinese_word in zip(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase = [] for id in input_ids: UpperCAmelCase = bert_tokenizer._convert_id_to_token(lowerCAmelCase_ ) input_tokens.append(lowerCAmelCase_ ) UpperCAmelCase = add_sub_symbol(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowerCAmelCase_ ): if token[:2] == "##": UpperCAmelCase = token[2:] # save chinese tokens' pos if len(lowerCAmelCase_ ) == 1 and _is_chinese_char(ord(lowerCAmelCase_ ) ): ref_id.append(lowerCAmelCase_ ) ref_ids.append(lowerCAmelCase_ ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) return ref_ids def _UpperCamelCase ( lowerCAmelCase_ ) ->int: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: UpperCAmelCase = f.readlines() UpperCAmelCase = [line.strip() for line in data if len(lowerCAmelCase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' UpperCAmelCase = LTP(args.ltp ) # faster in GPU device UpperCAmelCase = BertTokenizer.from_pretrained(args.bert ) UpperCAmelCase = prepare_ref(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: UpperCAmelCase = [json.dumps(lowerCAmelCase_ ) + """\n""" for ref in ref_ids] f.writelines(lowerCAmelCase_ ) if __name__ == "__main__": __a = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) __a = parser.parse_args() main(args)
377
0
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __a ( __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' lowercase_ = [] for part_id in partition_order: lowercase_ = df.where(f'SPARK_PARTITION_ID() = {part_id}' ).collect() for row_idx, row in enumerate(__lowerCamelCase ): expected_row_ids_and_row_dicts.append((f'{part_id}_{row_idx}', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __a ( ) -> Optional[Any]: '''simple docstring''' lowercase_ = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase_ = spark.range(100 ).repartition(1 ) lowercase_ = Spark(__lowerCamelCase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __a ( ) -> Union[str, Any]: '''simple docstring''' lowercase_ = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase_ = spark.range(10 ).repartition(2 ) lowercase_ = [1, 0] lowercase_ = _generate_iterable_examples(__lowerCamelCase , __lowerCamelCase ) # Reverse the partitions. lowercase_ = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCamelCase , __lowerCamelCase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): lowercase_ , lowercase_ = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __a ( ) -> Tuple: '''simple docstring''' lowercase_ = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase_ = spark.range(10 ).repartition(1 ) lowercase_ = SparkExamplesIterable(__lowerCamelCase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__lowerCamelCase ): assert row_id == f'0_{i}' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __a ( ) -> Tuple: '''simple docstring''' lowercase_ = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase_ = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: lowercase_ = lambda __lowerCamelCase : x.reverse() lowercase_ = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCamelCase , [2, 1, 0] ) lowercase_ = SparkExamplesIterable(__lowerCamelCase ).shuffle_data_sources(__lowerCamelCase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__lowerCamelCase ): lowercase_ , lowercase_ = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __a ( ) -> Tuple: '''simple docstring''' lowercase_ = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase_ = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 lowercase_ = SparkExamplesIterable(__lowerCamelCase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 lowercase_ = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCamelCase , [0, 2] ) for i, (row_id, row_dict) in enumerate(__lowerCamelCase ): lowercase_ , lowercase_ = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 lowercase_ = SparkExamplesIterable(__lowerCamelCase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 lowercase_ = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCamelCase , [1, 3] ) for i, (row_id, row_dict) in enumerate(__lowerCamelCase ): lowercase_ , lowercase_ = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __a ( ) -> List[Any]: '''simple docstring''' lowercase_ = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase_ = spark.range(100 ).repartition(1 ) lowercase_ = Spark(__lowerCamelCase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
461
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType lowerCAmelCase_ : Optional[List[str]] = None lowerCAmelCase_ : str = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image lowerCAmelCase_ : Any = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class lowercase : lowerCamelCase_ =True lowerCamelCase_ =None # Automatically constructed lowerCamelCase_ ="PIL.Image.Image" lowerCamelCase_ =pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) lowerCamelCase_ =field(default='Image' , init=__lowerCamelCase , repr=__lowerCamelCase ) def __call__( self : List[Any]) -> List[Any]: return self.pa_type def __UpperCAmelCase ( self : Any , __lowerCAmelCase : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"]) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'.") if isinstance(__lowerCAmelCase , __lowerCAmelCase): lowercase_ = np.array(__lowerCAmelCase) if isinstance(__lowerCAmelCase , __lowerCAmelCase): return {"path": value, "bytes": None} elif isinstance(__lowerCAmelCase , __lowerCAmelCase): return {"path": None, "bytes": value} elif isinstance(__lowerCAmelCase , np.ndarray): # convert the image array to PNG/TIFF bytes return encode_np_array(__lowerCAmelCase) elif isinstance(__lowerCAmelCase , PIL.Image.Image): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(__lowerCAmelCase) elif value.get("path") is not None and os.path.isfile(value["path"]): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("path")} elif value.get("bytes") is not None or value.get("path") is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("bytes"), "path": value.get("path")} else: raise ValueError( F'An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.') def __UpperCAmelCase ( self : Union[str, Any] , __lowerCAmelCase : dict , __lowerCAmelCase : Dict=None) -> "PIL.Image.Image": if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead.") if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support decoding images, please install 'Pillow'.") if token_per_repo_id is None: lowercase_ = {} lowercase_ , lowercase_ = value["path"], value["bytes"] if bytes_ is None: if path is None: raise ValueError(F'An image should have one of \'path\' or \'bytes\' but both are None in {value}.') else: if is_local_path(__lowerCAmelCase): lowercase_ = PIL.Image.open(__lowerCAmelCase) else: lowercase_ = path.split("::")[-1] try: lowercase_ = string_to_dict(__lowerCAmelCase , config.HUB_DATASETS_URL)["repo_id"] lowercase_ = token_per_repo_id.get(__lowerCAmelCase) except ValueError: lowercase_ = None with xopen(__lowerCAmelCase , "rb" , use_auth_token=__lowerCAmelCase) as f: lowercase_ = BytesIO(f.read()) lowercase_ = PIL.Image.open(bytes_) else: lowercase_ = PIL.Image.open(BytesIO(bytes_)) image.load() # to avoid "Too many open files" errors return image def __UpperCAmelCase ( self : Tuple) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return ( self if self.decode else { "bytes": Value("binary"), "path": Value("string"), } ) def __UpperCAmelCase ( self : str , __lowerCAmelCase : Union[pa.StringArray, pa.StructArray, pa.ListArray]) -> pa.StructArray: if pa.types.is_string(storage.type): lowercase_ = pa.array([None] * len(__lowerCAmelCase) , type=pa.binary()) lowercase_ = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): lowercase_ = pa.array([None] * len(__lowerCAmelCase) , type=pa.string()) lowercase_ = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null()) elif pa.types.is_struct(storage.type): if storage.type.get_field_index("bytes") >= 0: lowercase_ = storage.field("bytes") else: lowercase_ = pa.array([None] * len(__lowerCAmelCase) , type=pa.binary()) if storage.type.get_field_index("path") >= 0: lowercase_ = storage.field("path") else: lowercase_ = pa.array([None] * len(__lowerCAmelCase) , type=pa.string()) lowercase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null()) elif pa.types.is_list(storage.type): lowercase_ = pa.array( [encode_np_array(np.array(__lowerCAmelCase))["bytes"] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) lowercase_ = pa.array([None] * len(__lowerCAmelCase) , type=pa.string()) lowercase_ = pa.StructArray.from_arrays( [bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null()) return array_cast(__lowerCAmelCase , self.pa_type) def __UpperCAmelCase ( self : List[Any] , __lowerCAmelCase : pa.StructArray) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(__lowerCAmelCase : int): with xopen(__lowerCAmelCase , "rb") as f: lowercase_ = f.read() return bytes_ lowercase_ = pa.array( [ (path_to_bytes(x["path"]) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowercase_ = pa.array( [os.path.basename(__lowerCAmelCase) if path is not None else None for path in storage.field("path").to_pylist()] , type=pa.string() , ) lowercase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null()) return array_cast(__lowerCAmelCase , self.pa_type) def __a ( ) -> List[str]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() lowercase_ = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def __a ( __lowerCamelCase : "PIL.Image.Image" ) -> bytes: '''simple docstring''' lowercase_ = BytesIO() if image.format in list_image_compression_formats(): lowercase_ = image.format else: lowercase_ = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF" image.save(__lowerCamelCase , format=__lowerCamelCase ) return buffer.getvalue() def __a ( __lowerCamelCase : "PIL.Image.Image" ) -> dict: '''simple docstring''' if hasattr(__lowerCamelCase , "filename" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(__lowerCamelCase )} def __a ( __lowerCamelCase : np.ndarray ) -> dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) lowercase_ = array.dtype lowercase_ = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER lowercase_ = dtype.kind lowercase_ = dtype.itemsize lowercase_ = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: lowercase_ = np.dtype("|u1" ) if dtype_kind not in ["u", "i"]: raise TypeError( f'Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.' ) if dtype is not dest_dtype: warnings.warn(f'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: lowercase_ = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: lowercase_ = dtype_byteorder + dtype_kind + str(__lowerCamelCase ) lowercase_ = np.dtype(__lowerCamelCase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f'Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}' ) lowercase_ = PIL.Image.fromarray(array.astype(__lowerCamelCase ) ) return {"path": None, "bytes": image_to_bytes(__lowerCamelCase )} def __a ( __lowerCamelCase : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if objs: lowercase_ , lowercase_ = first_non_null_value(__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(__lowerCamelCase , np.ndarray ): lowercase_ = no_op_if_value_is_null(__lowerCamelCase ) return [obj_to_image_dict_func(__lowerCamelCase ) for obj in objs] elif isinstance(__lowerCamelCase , PIL.Image.Image ): lowercase_ = no_op_if_value_is_null(__lowerCamelCase ) return [obj_to_image_dict_func(__lowerCamelCase ) for obj in objs] else: return objs else: return objs
461
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : __SCREAMING_SNAKE_CASE : Dict = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __SCREAMING_SNAKE_CASE : List[str] = field( default=__snake_case , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __SCREAMING_SNAKE_CASE : str = field( default="NER" , metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) __SCREAMING_SNAKE_CASE : Optional[Any] = field( default=__snake_case , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __SCREAMING_SNAKE_CASE : Tuple = field(default=__snake_case , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class _UpperCAmelCase : __SCREAMING_SNAKE_CASE : int = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=__snake_case , metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} , ) __SCREAMING_SNAKE_CASE : int = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __SCREAMING_SNAKE_CASE : List[Any] = field( default=__snake_case , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def lowercase__ ( ) -> Any: """simple docstring""" UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ' --overwrite_output_dir to overcome.' ) UpperCAmelCase = import_module('tasks' ) try: UpperCAmelCase = getattr(_lowerCamelCase , model_args.task_type ) UpperCAmelCase = token_classification_task_clazz() except AttributeError: raise ValueError( F"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " F"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task UpperCAmelCase = token_classification_task.get_labels(data_args.labels ) UpperCAmelCase = dict(enumerate(_lowerCamelCase ) ) UpperCAmelCase = len(_lowerCamelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowerCamelCase , idalabel=_lowerCamelCase , labelaid={label: i for i, label in enumerate(_lowerCamelCase )} , cache_dir=model_args.cache_dir , ) UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) UpperCAmelCase = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets UpperCAmelCase = ( TokenClassificationDataset( token_classification_task=_lowerCamelCase , data_dir=data_args.data_dir , tokenizer=_lowerCamelCase , labels=_lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) UpperCAmelCase = ( TokenClassificationDataset( token_classification_task=_lowerCamelCase , data_dir=data_args.data_dir , tokenizer=_lowerCamelCase , labels=_lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(lowerCAmelCase : np.ndarray , lowerCAmelCase : np.ndarray ) -> Tuple[List[int], List[int]]: UpperCAmelCase = np.argmax(_lowerCamelCase , axis=2 ) UpperCAmelCase = preds.shape UpperCAmelCase = [[] for _ in range(_lowerCamelCase )] UpperCAmelCase = [[] for _ in range(_lowerCamelCase )] for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(lowerCAmelCase : EvalPrediction ) -> Dict: UpperCAmelCase = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(_lowerCamelCase , _lowerCamelCase ), "precision": precision_score(_lowerCamelCase , _lowerCamelCase ), "recall": recall_score(_lowerCamelCase , _lowerCamelCase ), "f1": fa_score(_lowerCamelCase , _lowerCamelCase ), } # Data collator UpperCAmelCase = DataCollatorWithPadding(_lowerCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer UpperCAmelCase = Trainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=_lowerCamelCase , eval_dataset=_lowerCamelCase , compute_metrics=_lowerCamelCase , data_collator=_lowerCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) UpperCAmelCase = trainer.evaluate() UpperCAmelCase = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(_lowerCamelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , _lowerCamelCase , _lowerCamelCase ) writer.write('%s = %s\n' % (key, value) ) results.update(_lowerCamelCase ) # Predict if training_args.do_predict: UpperCAmelCase = TokenClassificationDataset( token_classification_task=_lowerCamelCase , data_dir=data_args.data_dir , tokenizer=_lowerCamelCase , labels=_lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) UpperCAmelCase = trainer.predict(_lowerCamelCase ) UpperCAmelCase = align_predictions(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase = os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(_lowerCamelCase , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , _lowerCamelCase , _lowerCamelCase ) writer.write('%s = %s\n' % (key, value) ) # Save predictions UpperCAmelCase = os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(_lowerCamelCase , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return results def lowercase__ ( lowerCAmelCase : List[Any] ) -> Any: """simple docstring""" main() if __name__ == "__main__": main()
373
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType lowercase__ = logging.get_logger(__name__) lowercase__ = { "openai/imagegpt-small": "", "openai/imagegpt-medium": "", "openai/imagegpt-large": "", } class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = "imagegpt" _lowerCAmelCase = ["past_key_values"] _lowerCAmelCase = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__(self , _lowercase=512 + 1 , _lowercase=32 * 32 , _lowercase=512 , _lowercase=24 , _lowercase=8 , _lowercase=None , _lowercase="quick_gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1e-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=False , _lowercase=False , _lowercase=False , **_lowercase , ): '''simple docstring''' __a : int = vocab_size __a : Union[str, Any] = n_positions __a : List[str] = n_embd __a : Union[str, Any] = n_layer __a : List[str] = n_head __a : int = n_inner __a : Any = activation_function __a : List[str] = resid_pdrop __a : str = embd_pdrop __a : str = attn_pdrop __a : Tuple = layer_norm_epsilon __a : str = initializer_range __a : Dict = scale_attn_weights __a : Optional[int] = use_cache __a : Optional[Any] = scale_attn_by_inverse_layer_idx __a : Optional[Any] = reorder_and_upcast_attn __a : Union[str, Any] = tie_word_embeddings super().__init__(tie_word_embeddings=_lowercase , **_lowercase ) class SCREAMING_SNAKE_CASE__ ( __snake_case ): @property def lowerCAmelCase__(self ): '''simple docstring''' return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ] ) def lowerCAmelCase__(self , _lowercase , _lowercase = 1 , _lowercase = -1 , _lowercase = False , _lowercase = None , _lowercase = 3 , _lowercase = 32 , _lowercase = 32 , ): '''simple docstring''' __a : Any = self._generate_dummy_images(_lowercase , _lowercase , _lowercase , _lowercase ) __a : Union[str, Any] = dict(preprocessor(images=_lowercase , return_tensors=_lowercase ) ) return inputs
581
0
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class snake_case__( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = (EulerDiscreteScheduler,) SCREAMING_SNAKE_CASE__ : Optional[Any] = 10 def lowercase_ ( self , **__lowercase ) -> Tuple: lowerCAmelCase_ : Optional[Any] = { '''num_train_timesteps''': 1_1_0_0, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**__lowercase ) return config def lowercase_ ( self ) -> Union[str, Any]: for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__lowercase ) def lowercase_ ( self ) -> str: for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=__lowercase , beta_end=__lowercase ) def lowercase_ ( self ) -> List[str]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__lowercase ) def lowercase_ ( self ) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowercase ) def lowercase_ ( self ) -> Optional[Any]: lowerCAmelCase_ : str = self.scheduler_classes[0] lowerCAmelCase_ : int = self.get_scheduler_config() lowerCAmelCase_ : int = scheduler_class(**__lowercase ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase_ : List[Any] = torch.manual_seed(0 ) lowerCAmelCase_ : List[str] = self.dummy_model() lowerCAmelCase_ : Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase_ : List[Any] = sample.to(__lowercase ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase_ : Dict = scheduler.scale_model_input(__lowercase , __lowercase ) lowerCAmelCase_ : str = model(__lowercase , __lowercase ) lowerCAmelCase_ : str = scheduler.step(__lowercase , __lowercase , __lowercase , generator=__lowercase ) lowerCAmelCase_ : List[str] = output.prev_sample lowerCAmelCase_ : Any = torch.sum(torch.abs(__lowercase ) ) lowerCAmelCase_ : Optional[int] = torch.mean(torch.abs(__lowercase ) ) assert abs(result_sum.item() - 10.08_07 ) < 1e-2 assert abs(result_mean.item() - 0.01_31 ) < 1e-3 def lowercase_ ( self ) -> Dict: lowerCAmelCase_ : str = self.scheduler_classes[0] lowerCAmelCase_ : Union[str, Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCAmelCase_ : Tuple = scheduler_class(**__lowercase ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase_ : Tuple = torch.manual_seed(0 ) lowerCAmelCase_ : int = self.dummy_model() lowerCAmelCase_ : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase_ : List[str] = sample.to(__lowercase ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase_ : List[Any] = scheduler.scale_model_input(__lowercase , __lowercase ) lowerCAmelCase_ : int = model(__lowercase , __lowercase ) lowerCAmelCase_ : str = scheduler.step(__lowercase , __lowercase , __lowercase , generator=__lowercase ) lowerCAmelCase_ : str = output.prev_sample lowerCAmelCase_ : int = torch.sum(torch.abs(__lowercase ) ) lowerCAmelCase_ : Any = torch.mean(torch.abs(__lowercase ) ) assert abs(result_sum.item() - 0.00_02 ) < 1e-2 assert abs(result_mean.item() - 2.2_676e-06 ) < 1e-3 def lowercase_ ( self ) -> Union[str, Any]: lowerCAmelCase_ : Dict = self.scheduler_classes[0] lowerCAmelCase_ : Union[str, Any] = self.get_scheduler_config() lowerCAmelCase_ : Tuple = scheduler_class(**__lowercase ) scheduler.set_timesteps(self.num_inference_steps , device=__lowercase ) lowerCAmelCase_ : Tuple = torch.manual_seed(0 ) lowerCAmelCase_ : Tuple = self.dummy_model() lowerCAmelCase_ : int = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowerCAmelCase_ : Optional[Any] = sample.to(__lowercase ) for t in scheduler.timesteps: lowerCAmelCase_ : Union[str, Any] = scheduler.scale_model_input(__lowercase , __lowercase ) lowerCAmelCase_ : Any = model(__lowercase , __lowercase ) lowerCAmelCase_ : Optional[int] = scheduler.step(__lowercase , __lowercase , __lowercase , generator=__lowercase ) lowerCAmelCase_ : Optional[Any] = output.prev_sample lowerCAmelCase_ : Optional[int] = torch.sum(torch.abs(__lowercase ) ) lowerCAmelCase_ : str = torch.mean(torch.abs(__lowercase ) ) assert abs(result_sum.item() - 10.08_07 ) < 1e-2 assert abs(result_mean.item() - 0.01_31 ) < 1e-3 def lowercase_ ( self ) -> Tuple: lowerCAmelCase_ : Optional[int] = self.scheduler_classes[0] lowerCAmelCase_ : Dict = self.get_scheduler_config() lowerCAmelCase_ : int = scheduler_class(**__lowercase , use_karras_sigmas=__lowercase ) scheduler.set_timesteps(self.num_inference_steps , device=__lowercase ) lowerCAmelCase_ : Dict = torch.manual_seed(0 ) lowerCAmelCase_ : int = self.dummy_model() lowerCAmelCase_ : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowerCAmelCase_ : Union[str, Any] = sample.to(__lowercase ) for t in scheduler.timesteps: lowerCAmelCase_ : List[str] = scheduler.scale_model_input(__lowercase , __lowercase ) lowerCAmelCase_ : List[Any] = model(__lowercase , __lowercase ) lowerCAmelCase_ : Optional[int] = scheduler.step(__lowercase , __lowercase , __lowercase , generator=__lowercase ) lowerCAmelCase_ : Dict = output.prev_sample lowerCAmelCase_ : Optional[Any] = torch.sum(torch.abs(__lowercase ) ) lowerCAmelCase_ : Union[str, Any] = torch.mean(torch.abs(__lowercase ) ) assert abs(result_sum.item() - 1_24.52_29_94_99_51_17_19 ) < 1e-2 assert abs(result_mean.item() - 0.1_62_13_93_26_33_39_99_63 ) < 1e-3
619
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: _UpperCAmelCase : Dict =None _UpperCAmelCase : Tuple =logging.get_logger(__name__) _UpperCAmelCase : Any ={"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : Any ={ """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", }, """tokenizer_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json""", }, } _UpperCAmelCase : Dict ={ """xlnet-base-cased""": None, """xlnet-large-cased""": None, } _UpperCAmelCase : Tuple ="""▁""" # Segments (not really needed) _UpperCAmelCase : str =0 _UpperCAmelCase : List[str] =1 _UpperCAmelCase : int =2 _UpperCAmelCase : Any =3 _UpperCAmelCase : List[Any] =4 class snake_case__( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Dict = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Any = """left""" SCREAMING_SNAKE_CASE__ : List[Any] = XLNetTokenizer def __init__( self , __lowercase=None , __lowercase=None , __lowercase=False , __lowercase=True , __lowercase=False , __lowercase="<s>" , __lowercase="</s>" , __lowercase="<unk>" , __lowercase="<sep>" , __lowercase="<pad>" , __lowercase="<cls>" , __lowercase="<mask>" , __lowercase=["<eop>", "<eod>"] , **__lowercase , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ : Any = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token super().__init__( vocab_file=__lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , remove_space=__lowercase , keep_accents=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , additional_special_tokens=__lowercase , **__lowercase , ) lowerCAmelCase_ : List[Any] = 3 lowerCAmelCase_ : Dict = do_lower_case lowerCAmelCase_ : Dict = remove_space lowerCAmelCase_ : List[str] = keep_accents lowerCAmelCase_ : List[str] = vocab_file lowerCAmelCase_ : str = False if not self.vocab_file else True def lowercase_ ( self , __lowercase , __lowercase = None ) -> List[int]: lowerCAmelCase_ : Tuple = [self.sep_token_id] lowerCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowercase_ ( self , __lowercase , __lowercase = None ) -> List[int]: lowerCAmelCase_ : Optional[Any] = [self.sep_token_id] lowerCAmelCase_ : List[Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowercase_ ( self , __lowercase , __lowercase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__lowercase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase_ : str = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ): copyfile(self.vocab_file , __lowercase ) return (out_vocab_file,)
619
1
'''simple docstring''' import re import string import numpy as np import datasets _a : str = """ Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. """ _a : List[Any] = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 25.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 50.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 75.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results[\"exact_match\"], 1)) 100.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"] >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 33.3 """ _a : List[Any] = """ """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { """predictions""": datasets.Value("""string""",id="""sequence""" ), """references""": datasets.Value("""string""",id="""sequence""" ), } ),reference_urls=[],) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=False,): '''simple docstring''' if regexes_to_ignore is not None: for s in regexes_to_ignore: __lowerCAmelCase = np.array([re.sub(__SCREAMING_SNAKE_CASE,"""""",__SCREAMING_SNAKE_CASE ) for x in predictions] ) __lowerCAmelCase = np.array([re.sub(__SCREAMING_SNAKE_CASE,"""""",__SCREAMING_SNAKE_CASE ) for x in references] ) else: __lowerCAmelCase = np.asarray(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = np.asarray(__SCREAMING_SNAKE_CASE ) if ignore_case: __lowerCAmelCase = np.char.lower(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = np.char.lower(__SCREAMING_SNAKE_CASE ) if ignore_punctuation: __lowerCAmelCase = string.punctuation.maketrans("""""","""""",string.punctuation ) __lowerCAmelCase = np.char.translate(__SCREAMING_SNAKE_CASE,table=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = np.char.translate(__SCREAMING_SNAKE_CASE,table=__SCREAMING_SNAKE_CASE ) if ignore_numbers: __lowerCAmelCase = string.digits.maketrans("""""","""""",string.digits ) __lowerCAmelCase = np.char.translate(__SCREAMING_SNAKE_CASE,table=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = np.char.translate(__SCREAMING_SNAKE_CASE,table=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = predictions == references return {"exact_match": np.mean(__SCREAMING_SNAKE_CASE ) * 1_00}
689
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _UpperCAmelCase ( lowerCAmelCase_ ): a : Union[str, Any] =["""image_processor"""] a : Dict ="""SamImageProcessor""" def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.image_processor __lowerCAmelCase = -10 __lowerCAmelCase = self.image_processor.size["""longest_edge"""] def __call__( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = self.image_processor( __SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) # pop arguments that are not used in the foward but used nevertheless __lowerCAmelCase = encoding_image_processor["""original_sizes"""] if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks if Torch or TF tensor __lowerCAmelCase = original_sizes.numpy() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._check_and_preprocess_points( input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = self._normalize_and_convert( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="pt",): '''simple docstring''' if input_points is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0] ) for point in input_points ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) for point, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __lowerCAmelCase , __lowerCAmelCase = self._pad_points_and_labels(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_labels is not None: __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0],is_bounding_box=__SCREAMING_SNAKE_CASE ) for box in input_boxes ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,is_bounding_box=__SCREAMING_SNAKE_CASE ) for box, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes} ) if input_points is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points} ) if input_labels is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels} ) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = max([point.shape[0] for point in input_points] ) __lowerCAmelCase = [] for i, point in enumerate(__SCREAMING_SNAKE_CASE ): if point.shape[0] != expected_nb_points: __lowerCAmelCase = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value],axis=0 ) __lowerCAmelCase = np.append(input_labels[i],[self.point_pad_value] ) processed_input_points.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = processed_input_points return input_points, input_labels def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = original_size __lowerCAmelCase , __lowerCAmelCase = self.image_processor._get_preprocess_shape(__SCREAMING_SNAKE_CASE,longest_edge=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = deepcopy(__SCREAMING_SNAKE_CASE ).astype(__SCREAMING_SNAKE_CASE ) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,2,2 ) __lowerCAmelCase = coords[..., 0] * (new_w / old_w) __lowerCAmelCase = coords[..., 1] * (new_h / old_h) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,4 ) return coords def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,): '''simple docstring''' if input_points is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks for TF or Torch tensor __lowerCAmelCase = input_points.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_points[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input points must be a list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for input_point in input_points] else: __lowerCAmelCase = None if input_labels is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_labels.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_labels[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input labels must be a list of list integers.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for label in input_labels] else: __lowerCAmelCase = None if input_boxes is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_boxes.numpy().tolist() if ( not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0],__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0][0],__SCREAMING_SNAKE_CASE ) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa ) for box in input_boxes] else: __lowerCAmelCase = None return input_points, input_labels, input_boxes @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.image_processor.post_process_masks(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
689
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def lowercase__ ( __A: List[Any] ,__A: List[Any]=False ,__A: Tuple=False ,__A: Dict=False ): '''simple docstring''' __magic_name__ : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''transformer.blocks.{i}.norm1.weight''', F'''vilt.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.norm1.bias''', F'''vilt.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''transformer.blocks.{i}.attn.proj.weight''', F'''vilt.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''transformer.blocks.{i}.attn.proj.bias''', F'''vilt.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''transformer.blocks.{i}.norm2.weight''', F'''vilt.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.norm2.bias''', F'''vilt.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (F'''transformer.blocks.{i}.mlp.fc1.weight''', F'''vilt.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc1.bias''', F'''vilt.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.weight''', F'''vilt.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.bias''', F'''vilt.encoder.layer.{i}.output.dense.bias''') ) # embeddings rename_keys.extend( [ # text embeddings ('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''), ( '''text_embeddings.position_embeddings.weight''', '''vilt.embeddings.text_embeddings.position_embeddings.weight''', ), ('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''), ( '''text_embeddings.token_type_embeddings.weight''', '''vilt.embeddings.text_embeddings.token_type_embeddings.weight''', ), ('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''), ('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''), # patch embeddings ('''transformer.cls_token''', '''vilt.embeddings.cls_token'''), ('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''), ('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''), ('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''), # token type embeddings ('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''), ] ) # final layernorm + pooler rename_keys.extend( [ ('''transformer.norm.weight''', '''vilt.layernorm.weight'''), ('''transformer.norm.bias''', '''vilt.layernorm.bias'''), ('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''), ('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('''vqa_classifier.0.weight''', '''classifier.0.weight'''), ('''vqa_classifier.0.bias''', '''classifier.0.bias'''), ('''vqa_classifier.1.weight''', '''classifier.1.weight'''), ('''vqa_classifier.1.bias''', '''classifier.1.bias'''), ('''vqa_classifier.3.weight''', '''classifier.3.weight'''), ('''vqa_classifier.3.bias''', '''classifier.3.bias'''), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''), ('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''), ('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''), ('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''), ('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''), ('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''), ] ) else: pass return rename_keys def lowercase__ ( __A: List[Any] ,__A: Any ): '''simple docstring''' for i in range(config.num_hidden_layers ): __magic_name__ : Union[str, Any] = '''vilt.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __magic_name__ : Optional[Any] = state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.weight''' ) __magic_name__ : str = state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __magic_name__ : str = in_proj_weight[ : config.hidden_size, : ] __magic_name__ : Union[str, Any] = in_proj_bias[: config.hidden_size] __magic_name__ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __magic_name__ : Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __magic_name__ : int = in_proj_weight[ -config.hidden_size :, : ] __magic_name__ : Any = in_proj_bias[-config.hidden_size :] def lowercase__ ( __A: Dict ): '''simple docstring''' __magic_name__ : List[Any] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__A ,__A ) def lowercase__ ( __A: List[Any] ,__A: Tuple ,__A: Any ): '''simple docstring''' __magic_name__ : str = dct.pop(__A ) __magic_name__ : Optional[Any] = val @torch.no_grad() def lowercase__ ( __A: str ,__A: Optional[int] ): '''simple docstring''' __magic_name__ : str = ViltConfig(image_size=3_8_4 ,patch_size=3_2 ,tie_word_embeddings=__A ) __magic_name__ : Tuple = False __magic_name__ : Union[str, Any] = False __magic_name__ : Tuple = False __magic_name__ : Optional[Any] = False if "vqa" in checkpoint_url: __magic_name__ : Dict = True __magic_name__ : List[Any] = 3_1_2_9 __magic_name__ : str = '''huggingface/label-files''' __magic_name__ : Tuple = '''vqa2-id2label.json''' __magic_name__ : int = json.load(open(hf_hub_download(__A ,__A ,repo_type='''dataset''' ) ,'''r''' ) ) __magic_name__ : str = {int(__A ): v for k, v in idalabel.items()} __magic_name__ : Optional[Any] = idalabel __magic_name__ : Optional[Any] = {v: k for k, v in idalabel.items()} __magic_name__ : Dict = ViltForQuestionAnswering(__A ) elif "nlvr" in checkpoint_url: __magic_name__ : Optional[Any] = True __magic_name__ : Optional[int] = 2 __magic_name__ : Optional[Any] = {0: '''False''', 1: '''True'''} __magic_name__ : Tuple = {v: k for k, v in config.idalabel.items()} __magic_name__ : Optional[int] = 3 __magic_name__ : int = ViltForImagesAndTextClassification(__A ) elif "irtr" in checkpoint_url: __magic_name__ : int = True __magic_name__ : Dict = ViltForImageAndTextRetrieval(__A ) elif "mlm_itm" in checkpoint_url: __magic_name__ : Any = True __magic_name__ : Optional[int] = ViltForMaskedLM(__A ) else: raise ValueError('''Unknown model type''' ) # load state_dict of original model, remove and rename some keys __magic_name__ : Optional[Any] = torch.hub.load_state_dict_from_url(__A ,map_location='''cpu''' )['''state_dict'''] __magic_name__ : Union[str, Any] = create_rename_keys(__A ,__A ,__A ,__A ) for src, dest in rename_keys: rename_key(__A ,__A ,__A ) read_in_q_k_v(__A ,__A ) if mlm_model or irtr_model: __magic_name__ : List[str] = ['''itm_score.fc.weight''', '''itm_score.fc.bias'''] for k in ignore_keys: state_dict.pop(__A ,__A ) # load state dict into HuggingFace model model.eval() if mlm_model: __magic_name__ : Any = model.load_state_dict(__A ,strict=__A ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(__A ) # Define processor __magic_name__ : Tuple = ViltImageProcessor(size=3_8_4 ) __magic_name__ : Union[str, Any] = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __magic_name__ : Tuple = ViltProcessor(__A ,__A ) # Forward pass on example inputs (image + text) if nlvr_model: __magic_name__ : str = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' ,stream=__A ).raw ) __magic_name__ : int = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' ,stream=__A ).raw ) __magic_name__ : Optional[int] = ( '''The left image contains twice the number of dogs as the right image, and at least two dogs in total are''' ''' standing.''' ) __magic_name__ : int = processor(__A ,__A ,return_tensors='''pt''' ) __magic_name__ : Tuple = processor(__A ,__A ,return_tensors='''pt''' ) __magic_name__ : Union[str, Any] = model( input_ids=encoding_a.input_ids ,pixel_values=encoding_a.pixel_values ,pixel_values_a=encoding_a.pixel_values ,) else: __magic_name__ : Dict = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''' ,stream=__A ).raw ) if mlm_model: __magic_name__ : int = '''a bunch of [MASK] laying on a [MASK].''' else: __magic_name__ : Optional[Any] = '''How many cats are there?''' __magic_name__ : Tuple = processor(__A ,__A ,return_tensors='''pt''' ) __magic_name__ : Any = model(**__A ) # Verify outputs if mlm_model: __magic_name__ : int = torch.Size([1, 1_1, 3_0_5_2_2] ) __magic_name__ : Tuple = torch.tensor([-12.5061, -12.5123, -12.5174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] ,__A ,atol=1e-4 ) # verify masked token prediction equals "cats" __magic_name__ : List[str] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: __magic_name__ : List[Any] = torch.Size([1, 3_1_2_9] ) __magic_name__ : Any = torch.tensor([-15.9495, -18.1472, -10.3041] ) assert torch.allclose(outputs.logits[0, :3] ,__A ,atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] ,__A ,atol=1e-4 ) # verify vqa prediction equals "2" __magic_name__ : int = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: __magic_name__ : List[str] = torch.Size([1, 2] ) __magic_name__ : Optional[Any] = torch.tensor([-2.8721, 2.1291] ) assert torch.allclose(outputs.logits[0, :3] ,__A ,atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(__A ).mkdir(exist_ok=__A ) print(F'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__A ) processor.save_pretrained(__A ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowerCamelCase : List[Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
720
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : Tuple = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class lowerCamelCase ( _lowerCamelCase ,_lowerCamelCase ): '''simple docstring''' UpperCamelCase__ ='''nat''' UpperCamelCase__ ={ '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Union[str, Any] , lowerCamelCase_ : Dict=4 , lowerCamelCase_ : Union[str, Any]=3 , lowerCamelCase_ : List[str]=64 , lowerCamelCase_ : Union[str, Any]=[3, 4, 6, 5] , lowerCamelCase_ : List[Any]=[2, 4, 8, 16] , lowerCamelCase_ : List[Any]=7 , lowerCamelCase_ : Union[str, Any]=3.0 , lowerCamelCase_ : int=True , lowerCamelCase_ : str=0.0 , lowerCamelCase_ : int=0.0 , lowerCamelCase_ : Dict=0.1 , lowerCamelCase_ : Optional[int]="gelu" , lowerCamelCase_ : Tuple=0.0_2 , lowerCamelCase_ : Tuple=1E-5 , lowerCamelCase_ : List[Any]=0.0 , lowerCamelCase_ : str=None , lowerCamelCase_ : Tuple=None , **lowerCamelCase_ : Any , ) -> Any: super().__init__(**lowerCamelCase_ ) __magic_name__ : List[Any] = patch_size __magic_name__ : str = num_channels __magic_name__ : Union[str, Any] = embed_dim __magic_name__ : Dict = depths __magic_name__ : str = len(lowerCamelCase_ ) __magic_name__ : List[str] = num_heads __magic_name__ : Optional[int] = kernel_size __magic_name__ : Any = mlp_ratio __magic_name__ : Any = qkv_bias __magic_name__ : Union[str, Any] = hidden_dropout_prob __magic_name__ : Any = attention_probs_dropout_prob __magic_name__ : List[str] = drop_path_rate __magic_name__ : str = hidden_act __magic_name__ : Tuple = layer_norm_eps __magic_name__ : Any = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __magic_name__ : str = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) ) __magic_name__ : str = layer_scale_init_value __magic_name__ : Dict = ['''stem'''] + [F'''stage{idx}''' for idx in range(1 , len(lowerCamelCase_ ) + 1 )] __magic_name__ , __magic_name__ : int = get_aligned_output_features_output_indices( out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names )
501
0
"""simple docstring""" import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: UpperCamelCase = False UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = """ybelkada/fonts""" def _lowerCamelCase ( ) -> int: """simple docstring""" if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F"""You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use """ "Pix2StructImageProcessor. Please upgrade torch." ) def _lowerCamelCase ( UpperCAmelCase_ : str, UpperCAmelCase_ : Any, UpperCAmelCase_ : Dict ) -> Optional[int]: """simple docstring""" requires_backends(UpperCAmelCase_, ["torch"] ) _check_torch_version() A__ = image_tensor.unsqueeze(0 ) A__ = torch.nn.functional.unfold(UpperCAmelCase_, (patch_height, patch_width), stride=(patch_height, patch_width) ) A__ = patches.reshape(image_tensor.size(0 ), image_tensor.size(1 ), UpperCAmelCase_, UpperCAmelCase_, -1 ) A__ = patches.permute(0, 4, 2, 3, 1 ).reshape( image_tensor.size(2 ) // patch_height, image_tensor.size(3 ) // patch_width, image_tensor.size(1 ) * patch_height * patch_width, ) return patches.unsqueeze(0 ) def _lowerCamelCase ( UpperCAmelCase_ : str, UpperCAmelCase_ : int = 36, UpperCAmelCase_ : str = "black", UpperCAmelCase_ : str = "white", UpperCAmelCase_ : int = 5, UpperCAmelCase_ : int = 5, UpperCAmelCase_ : int = 5, UpperCAmelCase_ : int = 5, UpperCAmelCase_ : Optional[bytes] = None, UpperCAmelCase_ : Optional[str] = None, ) -> Image.Image: """simple docstring""" requires_backends(UpperCAmelCase_, "vision" ) # Add new lines so that each line is no more than 80 characters. A__ = textwrap.TextWrapper(width=80 ) A__ = wrapper.wrap(text=UpperCAmelCase_ ) A__ = "\n".join(UpperCAmelCase_ ) if font_bytes is not None and font_path is None: A__ = io.BytesIO(UpperCAmelCase_ ) elif font_path is not None: A__ = font_path else: A__ = hf_hub_download(UpperCAmelCase_, "Arial.TTF" ) A__ = ImageFont.truetype(UpperCAmelCase_, encoding="UTF-8", size=UpperCAmelCase_ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. A__ = ImageDraw.Draw(Image.new("RGB", (1, 1), UpperCAmelCase_ ) ) A__ , A__ , A__ , A__ = temp_draw.textbbox((0, 0), UpperCAmelCase_, UpperCAmelCase_ ) # Create the actual image with a bit of padding around the text. A__ = text_width + left_padding + right_padding A__ = text_height + top_padding + bottom_padding A__ = Image.new("RGB", (image_width, image_height), UpperCAmelCase_ ) A__ = ImageDraw.Draw(UpperCAmelCase_ ) draw.text(xy=(left_padding, top_padding), text=UpperCAmelCase_, fill=UpperCAmelCase_, font=UpperCAmelCase_ ) return image def _lowerCamelCase ( UpperCAmelCase_ : np.ndarray, UpperCAmelCase_ : str, **UpperCAmelCase_ : Dict ) -> Optional[Any]: """simple docstring""" requires_backends(UpperCAmelCase_, "vision" ) # Convert to PIL image if necessary A__ = to_pil_image(UpperCAmelCase_ ) A__ = render_text(UpperCAmelCase_, **UpperCAmelCase_ ) A__ = max(header_image.width, image.width ) A__ = int(image.height * (new_width / image.width) ) A__ = int(header_image.height * (new_width / header_image.width) ) A__ = Image.new("RGB", (new_width, new_height + new_header_height), "white" ) new_image.paste(header_image.resize((new_width, new_header_height) ), (0, 0) ) new_image.paste(image.resize((new_width, new_height) ), (0, new_header_height) ) # Convert back to the original framework if necessary A__ = to_numpy_array(UpperCAmelCase_ ) if infer_channel_dimension_format(UpperCAmelCase_ ) == ChannelDimension.LAST: A__ = to_channel_dimension_format(UpperCAmelCase_, ChannelDimension.LAST ) return new_image class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : int = ["flattened_patches"] def __init__( self , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 2048 , SCREAMING_SNAKE_CASE__ = False , **SCREAMING_SNAKE_CASE__ , ) -> None: super().__init__(**SCREAMING_SNAKE_CASE__ ) A__ = patch_size if patch_size is not None else {"height": 16, "width": 16} A__ = do_normalize A__ = do_convert_rgb A__ = max_patches A__ = is_vqa def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> np.ndarray: requires_backends(self.extract_flattened_patches , "torch" ) _check_torch_version() # convert to torch A__ = to_channel_dimension_format(SCREAMING_SNAKE_CASE__ , ChannelDimension.FIRST ) A__ = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) A__ , A__ = patch_size["height"], patch_size["width"] A__ , A__ = get_image_size(SCREAMING_SNAKE_CASE__ ) # maximize scale s.t. A__ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) A__ = max(min(math.floor(scale * image_height / patch_height ) , SCREAMING_SNAKE_CASE__ ) , 1 ) A__ = max(min(math.floor(scale * image_width / patch_width ) , SCREAMING_SNAKE_CASE__ ) , 1 ) A__ = max(num_feasible_rows * patch_height , 1 ) A__ = max(num_feasible_cols * patch_width , 1 ) A__ = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="bilinear" , align_corners=SCREAMING_SNAKE_CASE__ , antialias=SCREAMING_SNAKE_CASE__ , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] A__ = torch_extract_patches(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = patches.shape A__ = patches_shape[1] A__ = patches_shape[2] A__ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] A__ = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] A__ = torch.arange(SCREAMING_SNAKE_CASE__ ).reshape([rows, 1] ).repeat(1 , SCREAMING_SNAKE_CASE__ ).reshape([rows * columns, 1] ) A__ = torch.arange(SCREAMING_SNAKE_CASE__ ).reshape([1, columns] ).repeat(SCREAMING_SNAKE_CASE__ , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] A__ = row_ids.to(torch.floataa ) A__ = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] A__ = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] A__ = torch.nn.functional.pad(SCREAMING_SNAKE_CASE__ , [0, 0, 0, max_patches - (rows * columns)] ).float() A__ = to_numpy_array(SCREAMING_SNAKE_CASE__ ) return result def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ ) -> np.ndarray: if image.dtype == np.uinta: A__ = image.astype(np.floataa ) # take mean across the whole `image` A__ = np.mean(SCREAMING_SNAKE_CASE__ ) A__ = np.std(SCREAMING_SNAKE_CASE__ ) A__ = max(SCREAMING_SNAKE_CASE__ , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE__ , ) -> ImageInput: A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A__ = patch_size if patch_size is not None else self.patch_size A__ = max_patches if max_patches is not None else self.max_patches A__ = self.is_vqa if kwargs.get("data_format" , SCREAMING_SNAKE_CASE__ ) is not None: raise ValueError("data_format is not an accepted input as the outputs are " ) A__ = make_list_of_images(SCREAMING_SNAKE_CASE__ ) if not valid_images(SCREAMING_SNAKE_CASE__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) # PIL RGBA images are converted to RGB if do_convert_rgb: A__ = [convert_to_rgb(SCREAMING_SNAKE_CASE__ ) for image in images] # All transformations expect numpy arrays. A__ = [to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images] if is_vqa: if header_text is None: raise ValueError("A header text must be provided for VQA models." ) A__ = kwargs.pop("font_bytes" , SCREAMING_SNAKE_CASE__ ) A__ = kwargs.pop("font_path" , SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A__ = [header_text] * len(SCREAMING_SNAKE_CASE__ ) A__ = [ render_header(SCREAMING_SNAKE_CASE__ , header_text[i] , font_bytes=SCREAMING_SNAKE_CASE__ , font_path=SCREAMING_SNAKE_CASE__ ) for i, image in enumerate(SCREAMING_SNAKE_CASE__ ) ] if do_normalize: A__ = [self.normalize(image=SCREAMING_SNAKE_CASE__ ) for image in images] # convert to torch tensor and permute A__ = [ self.extract_flattened_patches(image=SCREAMING_SNAKE_CASE__ , max_patches=SCREAMING_SNAKE_CASE__ , patch_size=SCREAMING_SNAKE_CASE__ ) for image in images ] # create attention mask in numpy A__ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] A__ = BatchFeature( data={"flattened_patches": images, "attention_mask": attention_masks} , tensor_type=SCREAMING_SNAKE_CASE__ ) return encoded_outputs
104
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal _lowerCAmelCase : Any = datasets.utils.logging.get_logger(__name__) _lowerCAmelCase : Any = ["names", "prefix"] _lowerCAmelCase : str = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] _lowerCAmelCase : List[str] = ["encoding_errors", "on_bad_lines"] _lowerCAmelCase : int = ["date_format"] @dataclass class __snake_case ( datasets.BuilderConfig ): SCREAMING_SNAKE_CASE__ = "," SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = "infer" SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = "." SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = '"' SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = 10000 SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = "strict" SCREAMING_SNAKE_CASE__ = "error" SCREAMING_SNAKE_CASE__ = None def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" if self.delimiter is not None: lowerCAmelCase__ = self.delimiter if self.column_names is not None: lowerCAmelCase__ = self.column_names @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = { 'sep': self.sep, 'header': self.header, 'names': self.names, 'index_col': self.index_col, 'usecols': self.usecols, 'prefix': self.prefix, 'mangle_dupe_cols': self.mangle_dupe_cols, 'engine': self.engine, 'converters': self.converters, 'true_values': self.true_values, 'false_values': self.false_values, 'skipinitialspace': self.skipinitialspace, 'skiprows': self.skiprows, 'nrows': self.nrows, 'na_values': self.na_values, 'keep_default_na': self.keep_default_na, 'na_filter': self.na_filter, 'verbose': self.verbose, 'skip_blank_lines': self.skip_blank_lines, 'thousands': self.thousands, 'decimal': self.decimal, 'lineterminator': self.lineterminator, 'quotechar': self.quotechar, 'quoting': self.quoting, 'escapechar': self.escapechar, 'comment': self.comment, 'encoding': self.encoding, 'dialect': self.dialect, 'error_bad_lines': self.error_bad_lines, 'warn_bad_lines': self.warn_bad_lines, 'skipfooter': self.skipfooter, 'doublequote': self.doublequote, 'memory_map': self.memory_map, 'float_precision': self.float_precision, 'chunksize': self.chunksize, 'encoding_errors': self.encoding_errors, 'on_bad_lines': self.on_bad_lines, 'date_format': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() ,a_ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class __snake_case ( datasets.ArrowBasedBuilder ): SCREAMING_SNAKE_CASE__ = CsvConfig def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE_ ( self ,a_ ): """simple docstring""" if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) lowerCAmelCase__ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(a_ ,(str, list, tuple) ): lowerCAmelCase__ = data_files if isinstance(a_ ,a_ ): lowerCAmelCase__ = [files] lowerCAmelCase__ = [dl_manager.iter_files(a_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN ,gen_kwargs={'files': files} )] lowerCAmelCase__ = [] for split_name, files in data_files.items(): if isinstance(a_ ,a_ ): lowerCAmelCase__ = [files] lowerCAmelCase__ = [dl_manager.iter_files(a_ ) for file in files] splits.append(datasets.SplitGenerator(name=a_ ,gen_kwargs={'files': files} ) ) return splits def SCREAMING_SNAKE_CASE_ ( self ,a_ ): """simple docstring""" if self.config.features is not None: lowerCAmelCase__ = self.config.features.arrow_schema if all(not require_storage_cast(a_ ) for feature in self.config.features.values() ): # cheaper cast lowerCAmelCase__ = pa.Table.from_arrays([pa_table[field.name] for field in schema] ,schema=a_ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example lowerCAmelCase__ = table_cast(a_ ,a_ ) return pa_table def SCREAMING_SNAKE_CASE_ ( self ,a_ ): """simple docstring""" lowerCAmelCase__ = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str lowerCAmelCase__ = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(a_ ) else object for name, dtype, feature in zip(schema.names ,schema.types ,self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(a_ ) ): lowerCAmelCase__ = pd.read_csv(a_ ,iterator=a_ ,dtype=a_ ,**self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(a_ ): lowerCAmelCase__ = pa.Table.from_pandas(a_ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(a_ ) except ValueError as e: logger.error(f'Failed to read file \'{file}\' with error {type(a_ )}: {e}' ) raise
193
0
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class _UpperCAmelCase : """simple docstring""" a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 a_ = 42 a_ = 42 a_ = 42 a_ = 42 def lowercase ( self : Optional[int] ) -> int: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def lowercase ( self : List[str] ) -> List[Any]: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def lowercase ( self : Any ) -> Optional[Any]: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def lowercase ( self : List[str] ) -> torch.Tensor: __lowerCAmelCase = torch.arange(self.height * self.width ) __lowerCAmelCase = torch.stack( [ pixel_indices % self.width, torch.div(lowerCAmelCase_ , self.width , rounding_mode='trunc' ), ] , axis=1 , ) return coords @property def lowercase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase , *__lowerCAmelCase = self.shape __lowerCAmelCase = int(np.prod(lowerCAmelCase_ ) ) __lowerCAmelCase = self.get_image_coords() __lowerCAmelCase = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) __lowerCAmelCase = self.get_camera_rays(lowerCAmelCase_ ) __lowerCAmelCase = rays.view(lowerCAmelCase_ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def lowercase ( self : Optional[int] , lowerCAmelCase_ : torch.Tensor ) -> torch.Tensor: __lowerCAmelCase , *__lowerCAmelCase , __lowerCAmelCase = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] __lowerCAmelCase = coords.view(lowerCAmelCase_ , -1 , 2 ) __lowerCAmelCase = self.resolution() __lowerCAmelCase = self.fov() __lowerCAmelCase = (flat.float() / (res - 1)) * 2 - 1 __lowerCAmelCase = fracs * torch.tan(fov / 2 ) __lowerCAmelCase = fracs.view(lowerCAmelCase_ , -1 , 2 ) __lowerCAmelCase = ( self.z.view(lowerCAmelCase_ , 1 , 3 ) + self.x.view(lowerCAmelCase_ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(lowerCAmelCase_ , 1 , 3 ) * fracs[:, :, 1:] ) __lowerCAmelCase = directions / directions.norm(dim=-1 , keepdim=lowerCAmelCase_ ) __lowerCAmelCase = torch.stack( [ torch.broadcast_to(self.origin.view(lowerCAmelCase_ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(lowerCAmelCase_ , *lowerCAmelCase_ , 2 , 3 ) def lowercase ( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=lowerCAmelCase_ , height=lowerCAmelCase_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def a_ ( lowerCAmelCase_ : int ): __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = [] for theta in np.linspace(0, 2 * np.pi, num=20 ): __lowerCAmelCase = np.array([np.sin(lowerCAmelCase_ ), np.cos(lowerCAmelCase_ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) __lowerCAmelCase = -z * 4 __lowerCAmelCase = np.array([np.cos(lowerCAmelCase_ ), -np.sin(lowerCAmelCase_ ), 0.0] ) __lowerCAmelCase = np.cross(lowerCAmelCase_, lowerCAmelCase_ ) origins.append(lowerCAmelCase_ ) xs.append(lowerCAmelCase_ ) ys.append(lowerCAmelCase_ ) zs.append(lowerCAmelCase_ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(lowerCAmelCase_, axis=0 ) ).float(), x=torch.from_numpy(np.stack(lowerCAmelCase_, axis=0 ) ).float(), y=torch.from_numpy(np.stack(lowerCAmelCase_, axis=0 ) ).float(), z=torch.from_numpy(np.stack(lowerCAmelCase_, axis=0 ) ).float(), width=lowerCAmelCase_, height=lowerCAmelCase_, x_fov=0.7, y_fov=0.7, shape=(1, len(lowerCAmelCase_ )), )
421
def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : str ): if not (isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and isinstance(lowerCAmelCase_, lowerCAmelCase_ )): raise ValueError('longest_common_substring() takes two strings for inputs' ) __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] __lowerCAmelCase = 0 __lowerCAmelCase = 0 for i in range(1, texta_length + 1 ): for j in range(1, texta_length + 1 ): if texta[i - 1] == texta[j - 1]: __lowerCAmelCase = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: __lowerCAmelCase = i __lowerCAmelCase = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
421
1
import datasets from .evaluate import evaluate _a : str = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' _a : Union[str, Any] = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' _a : List[str] = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): """simple docstring""" def lowerCamelCase_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} __lowerCamelCase = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] __lowerCamelCase = evaluate(dataset=UpperCAmelCase , predictions=UpperCAmelCase ) return score
479
import math import flax.linen as nn import jax.numpy as jnp def UpperCamelCase__ ( _A: jnp.ndarray , _A: int , _A: float = 1 , _A: float = 1 , _A: float = 1.0e4 , _A: bool = False , _A: float = 1.0 , ): '''simple docstring''' assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f'''Embedding dimension {embedding_dim} should be even''' __lowerCamelCase = float(embedding_dim // 2 ) __lowerCamelCase = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) __lowerCamelCase = min_timescale * jnp.exp(jnp.arange(_A , dtype=jnp.floataa ) * -log_timescale_increment ) __lowerCamelCase = jnp.expand_dims(_A , 1 ) * jnp.expand_dims(_A , 0 ) # scale embeddings __lowerCamelCase = scale * emb if flip_sin_to_cos: __lowerCamelCase = jnp.concatenate([jnp.cos(_A ), jnp.sin(_A )] , axis=1 ) else: __lowerCamelCase = jnp.concatenate([jnp.sin(_A ), jnp.cos(_A )] , axis=1 ) __lowerCamelCase = jnp.reshape(_A , [jnp.shape(_A )[0], embedding_dim] ) return signal class UpperCamelCase_ ( nn.Module ): """simple docstring""" A = 32 A = jnp.floataa @nn.compact def __call__( self , UpperCAmelCase ): __lowerCamelCase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_1""" )(UpperCAmelCase ) __lowerCamelCase = nn.silu(UpperCAmelCase ) __lowerCamelCase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_2""" )(UpperCAmelCase ) return temb class UpperCamelCase_ ( nn.Module ): """simple docstring""" A = 32 A = False A = 1 @nn.compact def __call__( self , UpperCAmelCase ): return get_sinusoidal_embeddings( UpperCAmelCase , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
479
1
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer __A = logging.getLogger(__name__) def lowerCamelCase_ ( ) -> Any: """simple docstring""" __lowerCamelCase = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=UpperCamelCase__ , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=UpperCamelCase__ , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=UpperCamelCase__ , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=UpperCamelCase__ , default=1000 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=UpperCamelCase__ , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=UpperCamelCase__ , type=UpperCamelCase__ , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=UpperCamelCase__ , default=512 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=UpperCamelCase__ , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) __lowerCamelCase = parser.parse_args() return args def lowerCamelCase_ ( UpperCamelCase__ : Tuple ) -> str: """simple docstring""" def fn(UpperCamelCase__ : Union[str, Any] ): return tokenizer(examples['text'] ) return fn def lowerCamelCase_ ( UpperCamelCase__ : int ) -> Dict: """simple docstring""" __lowerCamelCase = [] for i in range(len(tokenized_data['input_ids'] ) ): __lowerCamelCase = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } __lowerCamelCase = tf.train.Features(feature=UpperCamelCase__ ) __lowerCamelCase = tf.train.Example(features=UpperCamelCase__ ) __lowerCamelCase = example.SerializeToString() records.append(UpperCamelCase__ ) return records def lowerCamelCase_ ( UpperCamelCase__ : List[str] ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: __lowerCamelCase = min(len(UpperCamelCase__ ) , args.limit ) __lowerCamelCase = dataset.select(range(UpperCamelCase__ ) ) print(F"""Limiting the dataset to {args.limit} entries.""" ) __lowerCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) __lowerCamelCase = os.path.join(args.output_dir , args.split ) if not os.path.exists(UpperCamelCase__ ): os.makedirs(UpperCamelCase__ ) else: __lowerCamelCase = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. __lowerCamelCase = tokenize_function(UpperCamelCase__ ) __lowerCamelCase = dataset.map(UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(UpperCamelCase__ : List[str] ): # Concatenate all texts. __lowerCamelCase = {k: sum(examples[k] , [] ) for k in examples.keys()} __lowerCamelCase = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 __lowerCamelCase = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. __lowerCamelCase = { k: [t[i : i + args.max_length] for i in range(0 , UpperCamelCase__ , args.max_length )] for k, t in concatenated_examples.items() } return result __lowerCamelCase = dataset_tokenized.map(UpperCamelCase__ , batched=UpperCamelCase__ , batch_size=1000 , num_proc=4 ) __lowerCamelCase = 0 __lowerCamelCase = 0 for shard in range(0 , len(UpperCamelCase__ ) , args.shard_size ): __lowerCamelCase = grouped_dataset[shard : shard + args.shard_size] __lowerCamelCase = len(dataset_snapshot['input_ids'] ) __lowerCamelCase = os.path.join(UpperCamelCase__ , F"""dataset-{shard_count}-{records_containing}.tfrecord""" ) __lowerCamelCase = get_serialized_examples(UpperCamelCase__ ) with tf.io.TFRecordWriter(UpperCamelCase__ ) as out_file: for i in range(len(UpperCamelCase__ ) ): __lowerCamelCase = serialized_examples[i] out_file.write(UpperCamelCase__ ) print('Wrote file {} containing {} records'.format(UpperCamelCase__ , UpperCamelCase__ ) ) shard_count += 1 total_records += records_containing with open(F"""split-{args.split}-records-count.txt""" , 'w' ) as f: print(F"""Total {args.split} records: {total_records}""" , file=UpperCamelCase__ ) if __name__ == "__main__": __A = parse_args() main(args)
167
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase__ , 'width_multiplier' ) ) class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=64 , lowerCamelCase__=2 , lowerCamelCase__=3 , lowerCamelCase__="swish" , lowerCamelCase__=3 , lowerCamelCase__=32 , lowerCamelCase__=0.1 , lowerCamelCase__=0.02 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=10 , lowerCamelCase__=None , lowerCamelCase__=0.25 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , ) -> int: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = make_divisible(512 * width_multiplier , divisor=8 ) __lowerCamelCase = hidden_act __lowerCamelCase = conv_kernel_size __lowerCamelCase = output_stride __lowerCamelCase = classifier_dropout_prob __lowerCamelCase = use_labels __lowerCamelCase = is_training __lowerCamelCase = num_labels __lowerCamelCase = initializer_range __lowerCamelCase = scope __lowerCamelCase = width_multiplier __lowerCamelCase = ffn_dropout __lowerCamelCase = attn_dropout def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowerCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase_ ( self ) -> Dict: '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = MobileViTVaModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = MobileViTVaForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = MobileViTVaForSemanticSegmentation(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowerCamelCase = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) snake_case_ = ( { '''feature-extraction''': MobileViTVaModel, '''image-classification''': MobileViTVaForImageClassification, '''image-segmentation''': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = MobileViTVaModelTester(self ) __lowerCamelCase = MobileViTVaConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='MobileViTV2 does not use inputs_embeds' ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='MobileViTV2 does not support input and output embeddings' ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='MobileViTV2 does not output attentions' ) def lowercase_ ( self ) -> Dict: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.' ) def lowercase_ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self ) -> int: '''simple docstring''' pass def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(lowerCamelCase__ ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' def check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase = outputs.hidden_states __lowerCamelCase = 5 self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __lowerCamelCase = 2 for i in range(len(lowerCamelCase__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase__ ) @slow def lowercase_ ( self ) -> str: '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = MobileViTVaModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def lowerCamelCase_ ( ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ) -> List[Any]: '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ) if is_vision_available() else None ) @slow def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ).to( lowerCamelCase__ ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(images=lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) # verify the logits __lowerCamelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) __lowerCamelCase = torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) ) @slow def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) __lowerCamelCase = model.to(lowerCamelCase__ ) __lowerCamelCase = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(images=lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) __lowerCamelCase = outputs.logits # verify the logits __lowerCamelCase = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , lowerCamelCase__ ) __lowerCamelCase = torch.tensor( [ [[7.08_63, 7.15_25, 6.82_01], [6.69_31, 6.87_70, 6.89_33], [6.29_78, 7.03_66, 6.96_36]], [[-3.71_34, -3.67_12, -3.66_75], [-3.58_25, -3.35_49, -3.47_77], [-3.34_35, -3.39_79, -3.28_57]], [[-2.93_29, -2.80_03, -2.73_69], [-3.05_64, -2.47_80, -2.02_07], [-2.68_89, -1.92_98, -1.76_40]], ] , device=lowerCamelCase__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase__ , atol=1e-4 ) ) @slow def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) __lowerCamelCase = model.to(lowerCamelCase__ ) __lowerCamelCase = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(images=lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) __lowerCamelCase = outputs.logits.detach().cpu() __lowerCamelCase = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase__ , target_sizes=[(50, 60)] ) __lowerCamelCase = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , lowerCamelCase__ ) __lowerCamelCase = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase__ ) __lowerCamelCase = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , lowerCamelCase__ )
167
1
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class A__ : @property def UpperCamelCase__ ( self ): return self.get_dummy_input() @property def UpperCamelCase__ ( self ): if self.block_type == "down": return (4, 3_2, 1_6, 1_6) elif self.block_type == "mid": return (4, 3_2, 3_2, 3_2) elif self.block_type == "up": return (4, 3_2, 6_4, 6_4) raise ValueError(F'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def UpperCamelCase__ ( self , __magic_name__=True , __magic_name__=False , __magic_name__=False , __magic_name__=False , ): lowerCamelCase : str = 4 lowerCamelCase : Tuple = 3_2 lowerCamelCase : Union[str, Any] = (3_2, 3_2) lowerCamelCase : Optional[Any] = torch.manual_seed(0 ) lowerCamelCase : Dict = torch.device(_a ) lowerCamelCase : Optional[int] = (batch_size, num_channels) + sizes lowerCamelCase : List[str] = randn_tensor(_a , generator=_a , device=_a ) lowerCamelCase : str = {"""hidden_states""": hidden_states} if include_temb: lowerCamelCase : List[str] = 1_2_8 lowerCamelCase : str = randn_tensor((batch_size, temb_channels) , generator=_a , device=_a ) if include_res_hidden_states_tuple: lowerCamelCase : List[str] = torch.manual_seed(1 ) lowerCamelCase : Union[str, Any] = (randn_tensor(_a , generator=_a , device=_a ),) if include_encoder_hidden_states: lowerCamelCase : List[Any] = floats_tensor((batch_size, 3_2, 3_2) ).to(_a ) if include_skip_sample: lowerCamelCase : Any = randn_tensor(((batch_size, 3) + sizes) , generator=_a , device=_a ) return dummy_input def UpperCamelCase__ ( self ): lowerCamelCase : Optional[int] = { """in_channels""": 3_2, """out_channels""": 3_2, """temb_channels""": 1_2_8, } if self.block_type == "up": lowerCamelCase : int = 3_2 if self.block_type == "mid": init_dict.pop("""out_channels""" ) lowerCamelCase : Optional[int] = self.dummy_input return init_dict, inputs_dict def UpperCamelCase__ ( self , __magic_name__ ): lowerCamelCase : Union[str, Any] = self.prepare_init_args_and_inputs_for_common() lowerCamelCase : Optional[Any] = self.block_class(**_a ) unet_block.to(_a ) unet_block.eval() with torch.no_grad(): lowerCamelCase : Union[str, Any] = unet_block(**_a ) if isinstance(_a , _a ): lowerCamelCase : Union[str, Any] = output[0] self.assertEqual(output.shape , self.output_shape ) lowerCamelCase : Any = output[0, -1, -3:, -3:] lowerCamelCase : str = torch.tensor(_a ).to(_a ) assert torch_all_close(output_slice.flatten() , _a , atol=5e-3 ) @unittest.skipIf(torch_device == """mps""" , """Training is not supported in mps""" ) def UpperCamelCase__ ( self ): lowerCamelCase : List[Any] = self.prepare_init_args_and_inputs_for_common() lowerCamelCase : str = self.block_class(**_a ) model.to(_a ) model.train() lowerCamelCase : int = model(**_a ) if isinstance(_a , _a ): lowerCamelCase : str = output[0] lowerCamelCase : Dict = torch.device(_a ) lowerCamelCase : List[str] = randn_tensor(output.shape , device=_a ) lowerCamelCase : Tuple = torch.nn.functional.mse_loss(_a , _a ) loss.backward()
681
'''simple docstring''' def lowerCamelCase ( lowerCamelCase : int = 10**9): A_ : Optional[int] = 1 A_ : int = 2 A_ : List[Any] = 0 A_ : Optional[Any] = 0 A_ : str = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value A_ : Optional[Any] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"""{solution() = }""")
665
0
'''simple docstring''' def lowerCamelCase__ ( UpperCamelCase__ : Any = 1_000 ) -> int: '''simple docstring''' _snake_case = 2**power _snake_case = 0 while n: _snake_case , _snake_case = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
703
def lowerCamelCase__ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : str ) -> List[Any]: '''simple docstring''' if index == r: for j in range(UpperCamelCase__ ): print(data[j] , end=' ' ) print(' ' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location _snake_case = arr[i] combination_util(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , index + 1 , UpperCamelCase__ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCamelCase__ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] ) -> Tuple: '''simple docstring''' _snake_case = [0] * r # Print all combination using temporary array 'data[]' combination_util(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , 0 , UpperCamelCase__ , 0 ) if __name__ == "__main__": # Driver code to check the function above UpperCAmelCase_ = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
541
0
from manim import * class lowercase ( snake_case__): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: UpperCAmelCase_= Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase_= Rectangle(height=0.25 , width=0.25 ) UpperCAmelCase_= Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase_= [mem.copy() for i in range(6 )] UpperCAmelCase_= [mem.copy() for i in range(6 )] UpperCAmelCase_= VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) UpperCAmelCase_= VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) UpperCAmelCase_= VGroup(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) UpperCAmelCase_= Text("""CPU""" , font_size=24 ) UpperCAmelCase_= Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__UpperCAmelCase ) UpperCAmelCase_= [mem.copy() for i in range(4 )] UpperCAmelCase_= VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) UpperCAmelCase_= Text("""GPU""" , font_size=24 ) UpperCAmelCase_= Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(__UpperCAmelCase ) UpperCAmelCase_= [mem.copy() for i in range(6 )] UpperCAmelCase_= VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) UpperCAmelCase_= Text("""Model""" , font_size=24 ) UpperCAmelCase_= Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(__UpperCAmelCase ) UpperCAmelCase_= [] UpperCAmelCase_= [] UpperCAmelCase_= [] for i, rect in enumerate(__UpperCAmelCase ): rect.set_stroke(__UpperCAmelCase ) UpperCAmelCase_= Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__UpperCAmelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__UpperCAmelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=__UpperCAmelCase , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=__UpperCAmelCase , buff=0.0 ) self.add(__UpperCAmelCase ) model_cpu_arr.append(__UpperCAmelCase ) self.add(*__UpperCAmelCase , *__UpperCAmelCase , *__UpperCAmelCase ) UpperCAmelCase_= [mem.copy() for i in range(6 )] UpperCAmelCase_= VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) UpperCAmelCase_= Text("""Loaded Checkpoint""" , font_size=24 ) UpperCAmelCase_= Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) checkpoint.move_to([3, 0.5, 0] ) self.add(__UpperCAmelCase ) UpperCAmelCase_= [] UpperCAmelCase_= [] for i, rect in enumerate(__UpperCAmelCase ): UpperCAmelCase_= fill.copy().set_fill(__UpperCAmelCase , opacity=0.7 ) target.move_to(__UpperCAmelCase ) ckpt_arr.append(__UpperCAmelCase ) UpperCAmelCase_= target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(__UpperCAmelCase ) self.add(*__UpperCAmelCase , *__UpperCAmelCase ) UpperCAmelCase_= Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase_= MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_= MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(__UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(__UpperCAmelCase ) UpperCAmelCase_= MarkupText( F"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) UpperCAmelCase_= [meta_mem.copy() for i in range(6 )] UpperCAmelCase_= [meta_mem.copy() for i in range(6 )] UpperCAmelCase_= VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) UpperCAmelCase_= VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) UpperCAmelCase_= VGroup(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) UpperCAmelCase_= Text("""Disk""" , font_size=24 ) UpperCAmelCase_= Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(__UpperCAmelCase , run_time=3 ) , Write(__UpperCAmelCase , run_time=1 ) , Create(__UpperCAmelCase , run_time=1 ) ) UpperCAmelCase_= [] for i, rect in enumerate(__UpperCAmelCase ): UpperCAmelCase_= rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(__UpperCAmelCase , run_time=1.5 ) ) self.play(*__UpperCAmelCase ) self.play(FadeOut(__UpperCAmelCase ) ) UpperCAmelCase_= MarkupText(F"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__UpperCAmelCase , run_time=3 ) ) self.play( FadeOut(__UpperCAmelCase , __UpperCAmelCase , *__UpperCAmelCase , *__UpperCAmelCase ) , ) self.wait()
593
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class lowercase ( unittest.TestCase): """simple docstring""" @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: UpperCAmelCase_= ort.SessionOptions() UpperCAmelCase_= False return options def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: UpperCAmelCase_= load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) UpperCAmelCase_= load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) UpperCAmelCase_= load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" ) # using the PNDM scheduler by default UpperCAmelCase_= OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCAmelCase_= """A red cat sitting on a park bench""" UpperCAmelCase_= np.random.RandomState(0 ) UpperCAmelCase_= pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , mask_image=__UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=__UpperCAmelCase , output_type="""np""" , ) UpperCAmelCase_= output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-2
593
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): A : List[str] = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right A : Union[str, Any] = 1_2_8_0_2_2 A : Any = 1_2_8_0_2_8 @require_sentencepiece class A (__lowerCAmelCase , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[str] = MaMaaaTokenizer __lowerCamelCase : Tuple = False __lowerCamelCase : Optional[int] = False __lowerCamelCase : int = True def a_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" super().setUp() A__ = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] A__ = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) A__ = Path(self.tmpdirname ) save_json(lowerCamelCase__ , save_dir / VOCAB_FILES_NAMES["""vocab_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(lowerCamelCase__ , save_dir / VOCAB_FILES_NAMES["""spm_file"""] ) A__ = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def a_ ( self : Any , **__lowerCAmelCase : Optional[Any] ) -> int: """simple docstring""" return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def a_ ( self : Dict , __lowerCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" return ( "This is a test", "This is a test", ) def a_ ( self : str ) -> Optional[Any]: """simple docstring""" A__ = '''</s>''' A__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def a_ ( self : str ) -> List[str]: """simple docstring""" A__ = self.get_tokenizer() A__ = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<s>""" ) self.assertEqual(len(lowerCamelCase__ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("""Skip this test while all models are still to be uploaded.""" ) def a_ ( self : Dict ) -> str: """simple docstring""" pass def a_ ( self : int ) -> Union[str, Any]: """simple docstring""" A__ = self.get_tokenizer() A__ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [2, 3, 4, 5, 6] , ) A__ = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(lowerCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) A__ = tokenizer.convert_tokens_to_string(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , """This is a test""" ) @slow def a_ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" A__ = {'''input_ids''': [[12_80_22, 11_01_08, 3_97, 11, 3_82_72, 22_47, 12_48_11, 2_85, 1_81_05, 15_86, 2_07, 7, 3_95_34, 44_28, 3_97, 10_19, 1_81_05, 15_86, 2_07, 7, 4_13_37, 1_67_86, 2_41, 7, 2_02_14, 17, 12_56_90, 1_03_98, 7, 4_43_78, 5_80_69, 6_83_42, 77_98, 73_43, 11, 2_99, 3_33_10, 4, 1_58, 3_73_50, 9_40_77, 45_69, 2_99, 3_33_10, 90, 4, 5_28_40, 2_90, 4, 3_12_70, 1_12, 2_99, 6_82, 4, 5_28_40, 3_99_53, 1_40_79, 1_93, 5_25_19, 9_08_94, 1_78_94, 12_06_97, 11, 4_04_45, 5_51, 17, 10_19, 5_25_19, 9_08_94, 1_77_56, 9_63, 11, 4_04_45, 4_80, 17, 97_92, 11_20, 51_73, 13_93, 62_40, 1_67_86, 2_41, 12_09_96, 28, 12_45, 13_93, 11_82_40, 1_11_23, 10_19, 9_36_12, 26_91, 1_06_18, 9_80_58, 12_04_09, 19_28, 2_79, 4, 4_06_83, 3_67, 1_78, 2_07, 10_19, 1_03, 10_31_21, 5_06, 6_52_96, 5, 2], [12_80_22, 2_12_17, 3_67, 1_17, 12_54_50, 1_28, 7_19, 7, 73_08, 40, 9_36_12, 1_26_69, 11_16, 1_67_04, 71, 1_77_85, 36_99, 1_55_92, 35, 1_44, 95_84, 2_41, 1_19_43, 7_13, 9_50, 7_99, 22_47, 8_84_27, 1_50, 1_49, 11_88_13, 12_07_06, 10_19, 10_69_06, 8_15_18, 28, 12_24, 2_27_99, 3_97, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [12_80_22, 16_58, 12_33_11, 51_55, 55_78, 47_22, 2_79, 1_49_47, 23_66, 11_20, 11_97, 14, 13_48, 92_32, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name="""facebook/m2m100_418M""" , revision="""c168bae485c864188cf9aa0e4108b0b6934dc91e""" , ) @require_torch @require_sentencepiece @require_tokenizers class A (unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Dict = "facebook/m2m100_418M" __lowerCamelCase : Any = [ "In my opinion, there are two levels of response from the French government.", "NSA Affair Emphasizes Complete Lack of Debate on Intelligence", ] __lowerCamelCase : Optional[Any] = [ "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "L'affaire NSA souligne l'absence totale de débat sur le renseignement", ] # fmt: off __lowerCamelCase : List[Any] = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2] @classmethod def a_ ( cls : Tuple ) -> Tuple: """simple docstring""" A__ = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en""" , tgt_lang="""fr""" ) A__ = 1 return cls def a_ ( self : str ) -> Optional[int]: """simple docstring""" self.assertEqual(self.tokenizer.get_lang_id("""ar""" ) , 12_80_06 ) self.assertEqual(self.tokenizer.get_lang_id("""en""" ) , 12_80_22 ) self.assertEqual(self.tokenizer.get_lang_id("""ro""" ) , 12_80_76 ) self.assertEqual(self.tokenizer.get_lang_id("""mr""" ) , 12_80_63 ) def a_ ( self : int ) -> Optional[int]: """simple docstring""" A__ = self.tokenizer.get_vocab() self.assertEqual(len(lowerCamelCase__ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["""<unk>"""] , 3 ) self.assertIn(self.tokenizer.get_lang_token("""en""" ) , lowerCamelCase__ ) def a_ ( self : Any ) -> List[Any]: """simple docstring""" A__ = '''en''' A__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase__ ) def a_ ( self : List[str] ) -> Dict: """simple docstring""" self.assertIn(lowerCamelCase__ , self.tokenizer.all_special_ids ) # fmt: off A__ = [FR_CODE, 53_64, 82, 86_42, 4, 2_94, 47, 8, 1_40_28, 1_36, 32_86, 97_06, 6, 9_07_97, 6, 14_40_12, 1_62, 8_81_28, 3_00_61, 5, 2] # fmt: on A__ = self.tokenizer.decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) A__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertNotIn(self.tokenizer.eos_token , lowerCamelCase__ ) def a_ ( self : Any ) -> Optional[Any]: """simple docstring""" A__ = tempfile.mkdtemp() A__ = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(lowerCamelCase__ ) A__ = MaMaaaTokenizer.from_pretrained(lowerCamelCase__ ) self.assertDictEqual(new_tok.lang_token_to_id , lowerCamelCase__ ) @require_torch def a_ ( self : Optional[int] ) -> List[str]: """simple docstring""" A__ = '''en''' A__ = '''fr''' A__ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCamelCase__ , return_tensors="""pt""" ) A__ = shift_tokens_right( batch["""labels"""] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: A__ = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def a_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" A__ = '''mr''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""mr""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) A__ = '''zh''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""zh""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def a_ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" A__ = '''mr''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""mr""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) A__ = '''zh''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""zh""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def a_ ( self : int ) -> Optional[int]: """simple docstring""" A__ = self.tokenizer._build_translation_inputs("""A test""" , return_tensors="""pt""" , src_lang="""en""" , tgt_lang="""ar""" ) self.assertEqual( nested_simplify(lowerCamelCase__ ) , { # en_XX, A, test, EOS """input_ids""": [[12_80_22, 58, 41_83, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 12_80_06, } , )
718
from __future__ import annotations A : List[Any] = 1_0 def __lowerCamelCase ( __a :list[int] ) -> list[int]: """simple docstring""" A__ = 1 A__ = max(__a ) while placement <= max_digit: # declare and initialize empty buckets A__ = [[] for _ in range(__a )] # split list_of_ints between the buckets for i in list_of_ints: A__ = int((i / placement) % RADIX ) buckets[tmp].append(__a ) # put each buckets' contents into list_of_ints A__ = 0 for b in range(__a ): for i in buckets[b]: A__ = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
247
0
"""simple docstring""" import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets a_ = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' a_ = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' a_ = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __lowercase ( datasets.Metric): """simple docstring""" def __UpperCamelCase (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/google-research/google-research/tree/master/rouge"""] , reference_urls=[ """https://en.wikipedia.org/wiki/ROUGE_(metric)""", """https://github.com/google-research/google-research/tree/master/rouge""", ] , ) def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__=None , lowercase__=True , lowercase__=False ): if rouge_types is None: snake_case_ : str = ["""rouge1""", """rouge2""", """rougeL""", """rougeLsum"""] snake_case_ : Union[str, Any] = rouge_scorer.RougeScorer(rouge_types=lowercase__ , use_stemmer=lowercase__ ) if use_aggregator: snake_case_ : Tuple = scoring.BootstrapAggregator() else: snake_case_ : Any = [] for ref, pred in zip(lowercase__ , lowercase__ ): snake_case_ : Dict = scorer.score(lowercase__ , lowercase__ ) if use_aggregator: aggregator.add_scores(lowercase__ ) else: scores.append(lowercase__ ) if use_aggregator: snake_case_ : Union[str, Any] = aggregator.aggregate() else: snake_case_ : Union[str, Any] = {} for key in scores[0]: snake_case_ : Dict = [score[key] for score in scores] return result
480
"""simple docstring""" from math import factorial def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int = 2_0 ): """simple docstring""" snake_case_ : int = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... snake_case_ : Tuple = n // 2 return int(factorial(SCREAMING_SNAKE_CASE__ ) / (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: a_ = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number.''')
480
1
"""simple docstring""" import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Dict = (CMStochasticIterativeScheduler,) UpperCAmelCase_ :Any = 10 def __lowerCAmelCase ( self , **__A ) -> Dict: lowerCAmelCase_ :Optional[int] = { """num_train_timesteps""": 201, """sigma_min""": 0.0_0_2, """sigma_max""": 8_0.0, } config.update(**__A ) return config def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :List[str] = 10 lowerCAmelCase_ :Tuple = self.get_scheduler_config() lowerCAmelCase_ :str = self.scheduler_classes[0](**__A ) scheduler.set_timesteps(__A ) lowerCAmelCase_ :int = scheduler.timesteps[0] lowerCAmelCase_ :int = scheduler.timesteps[1] lowerCAmelCase_ :Optional[int] = self.dummy_sample lowerCAmelCase_ :Dict = 0.1 * sample lowerCAmelCase_ :Tuple = scheduler.step(__A , __A , __A ).prev_sample lowerCAmelCase_ :List[str] = scheduler.step(__A , __A , __A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __lowerCAmelCase ( self ) -> Any: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__A ) def __lowerCAmelCase ( self ) -> Dict: for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=__A ) def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :List[str] = self.scheduler_classes[0] lowerCAmelCase_ :Optional[Any] = self.get_scheduler_config() lowerCAmelCase_ :Tuple = scheduler_class(**__A ) lowerCAmelCase_ :str = 1 scheduler.set_timesteps(__A ) lowerCAmelCase_ :Dict = scheduler.timesteps lowerCAmelCase_ :Any = torch.manual_seed(0 ) lowerCAmelCase_ :Any = self.dummy_model() lowerCAmelCase_ :List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(__A ): # 1. scale model input lowerCAmelCase_ :Optional[int] = scheduler.scale_model_input(__A , __A ) # 2. predict noise residual lowerCAmelCase_ :Union[str, Any] = model(__A , __A ) # 3. predict previous sample x_t-1 lowerCAmelCase_ :Tuple = scheduler.step(__A , __A , __A , generator=__A ).prev_sample lowerCAmelCase_ :Optional[Any] = pred_prev_sample lowerCAmelCase_ :Tuple = torch.sum(torch.abs(__A ) ) lowerCAmelCase_ :List[str] = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 1_9_2.7_6_1_4 ) < 1E-2 assert abs(result_mean.item() - 0.2_5_1_0 ) < 1E-3 def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase_ :Dict = self.get_scheduler_config() lowerCAmelCase_ :Any = scheduler_class(**__A ) lowerCAmelCase_ :Dict = [106, 0] scheduler.set_timesteps(timesteps=__A ) lowerCAmelCase_ :List[Any] = scheduler.timesteps lowerCAmelCase_ :Union[str, Any] = torch.manual_seed(0 ) lowerCAmelCase_ :List[str] = self.dummy_model() lowerCAmelCase_ :str = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input lowerCAmelCase_ :Optional[Any] = scheduler.scale_model_input(__A , __A ) # 2. predict noise residual lowerCAmelCase_ :Tuple = model(__A , __A ) # 3. predict previous sample x_t-1 lowerCAmelCase_ :Tuple = scheduler.step(__A , __A , __A , generator=__A ).prev_sample lowerCAmelCase_ :str = pred_prev_sample lowerCAmelCase_ :Tuple = torch.sum(torch.abs(__A ) ) lowerCAmelCase_ :int = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 3_4_7.6_3_5_7 ) < 1E-2 assert abs(result_mean.item() - 0.4_5_2_7 ) < 1E-3 def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :Optional[int] = self.scheduler_classes[0] lowerCAmelCase_ :Optional[int] = self.get_scheduler_config() lowerCAmelCase_ :List[str] = scheduler_class(**__A ) lowerCAmelCase_ :Optional[Any] = [39, 30, 12, 15, 0] with self.assertRaises(__A , msg="""`timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=__A ) def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :str = self.scheduler_classes[0] lowerCAmelCase_ :int = self.get_scheduler_config() lowerCAmelCase_ :Optional[int] = scheduler_class(**__A ) lowerCAmelCase_ :int = [39, 30, 12, 1, 0] lowerCAmelCase_ :List[str] = len(__A ) with self.assertRaises(__A , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=__A , timesteps=__A ) def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :Dict = self.scheduler_classes[0] lowerCAmelCase_ :int = self.get_scheduler_config() lowerCAmelCase_ :Any = scheduler_class(**__A ) lowerCAmelCase_ :Any = [scheduler.config.num_train_timesteps] with self.assertRaises( __A , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=__A )
256
"""simple docstring""" __UpperCAmelCase = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def _snake_case ( lowercase__ : int ) -> int: '''simple docstring''' lowerCAmelCase_ :str = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution __UpperCAmelCase = [None] * 10_00_00_00 __UpperCAmelCase = True __UpperCAmelCase = False def _snake_case ( lowercase__ : int ) -> bool: '''simple docstring''' if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowerCAmelCase_ :Optional[int] = chain(next_number(lowercase__ ) ) lowerCAmelCase_ :Tuple = number_chain while number < 1_0_0_0_0_0_0_0: lowerCAmelCase_ :List[Any] = number_chain number *= 1_0 return number_chain def _snake_case ( lowercase__ : int = 1_0_0_0_0_0_0_0 ) -> int: '''simple docstring''' for i in range(1 , lowercase__ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution() = }""")
256
1
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''', } class __lowerCAmelCase ( _a ): lowerCamelCase_ : List[Any] = '''efficientnet''' def __init__(self , __magic_name__ = 3 , __magic_name__ = 600 , __magic_name__ = 2.0 , __magic_name__ = 3.1 , __magic_name__ = 8 , __magic_name__ = [3, 3, 5, 3, 5, 5, 3] , __magic_name__ = [32, 16, 24, 40, 80, 112, 192] , __magic_name__ = [16, 24, 40, 80, 112, 192, 320] , __magic_name__ = [] , __magic_name__ = [1, 2, 2, 2, 1, 2, 1] , __magic_name__ = [1, 2, 2, 3, 3, 4, 1] , __magic_name__ = [1, 6, 6, 6, 6, 6, 6] , __magic_name__ = 0.25 , __magic_name__ = "swish" , __magic_name__ = 2560 , __magic_name__ = "mean" , __magic_name__ = 0.02 , __magic_name__ = 0.001 , __magic_name__ = 0.99 , __magic_name__ = 0.5 , __magic_name__ = 0.2 , **__magic_name__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**__magic_name__ ) snake_case_ : List[str] = num_channels snake_case_ : Tuple = image_size snake_case_ : Union[str, Any] = width_coefficient snake_case_ : Tuple = depth_coefficient snake_case_ : Optional[Any] = depth_divisor snake_case_ : Optional[int] = kernel_sizes snake_case_ : str = in_channels snake_case_ : Optional[Any] = out_channels snake_case_ : int = depthwise_padding snake_case_ : Optional[Any] = strides snake_case_ : Any = num_block_repeats snake_case_ : Optional[Any] = expand_ratios snake_case_ : Union[str, Any] = squeeze_expansion_ratio snake_case_ : Union[str, Any] = hidden_act snake_case_ : Union[str, Any] = hidden_dim snake_case_ : Any = pooling_type snake_case_ : List[str] = initializer_range snake_case_ : str = batch_norm_eps snake_case_ : Optional[int] = batch_norm_momentum snake_case_ : Optional[Any] = dropout_rate snake_case_ : List[str] = drop_connect_rate snake_case_ : Union[str, Any] = sum(__magic_name__ ) * 4 class __lowerCAmelCase ( _a ): lowerCamelCase_ : Union[str, Any] = version.parse('''1.11''' ) @property def lowerCamelCase (self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowerCamelCase (self ) -> float: '''simple docstring''' return 1e-5
60
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device __UpperCAmelCase =False class lowerCAmelCase__ ( unittest.TestCase ): pass @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def lowercase_ ( self ): '''simple docstring''' A__ = VersatileDiffusionImageVariationPipeline.from_pretrained("shi-labs/versatile-diffusion" ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) A__ = torch.manual_seed(0 ) A__ = pipe( image=UpperCamelCase__ , generator=UpperCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" , ).images A__ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) A__ = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
337
0
'''simple docstring''' from __future__ import annotations from fractions import Fraction def snake_case_ (_a : int , _a : int ): return ( num != den and num % 1_0 == den // 1_0 and (num // 1_0) / (den % 1_0) == num / den ) def snake_case_ (_a : int ): UpperCAmelCase = [] UpperCAmelCase = 1_1 UpperCAmelCase = int('''1''' + '''0''' * digit_len ) for num in range(_a , _a ): while den <= 9_9: if (num != den) and (num % 1_0 == den // 1_0) and (den % 1_0 != 0): if is_digit_cancelling(_a , _a ): solutions.append(F"{num}/{den}" ) den += 1 num += 1 UpperCAmelCase = 1_0 return solutions def snake_case_ (_a : int = 2 ): UpperCAmelCase = 1.0 for fraction in fraction_list(_a ): UpperCAmelCase = Fraction(_a ) result *= frac.denominator / frac.numerator return int(_a ) if __name__ == "__main__": print(solution())
358
'''simple docstring''' def snake_case_ (_a : list[list[int]] , _a : int , _a : int , _a : list[int] ): # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def snake_case_ (_a : list[list[int]] , _a : list[int] , _a : int ): # Base Case if curr_ind == len(_a ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(_a ) ): if valid_connection(_a , _a , _a , _a ): # Insert current vertex into path as next transition UpperCAmelCase = next_ver # Validate created path if util_hamilton_cycle(_a , _a , curr_ind + 1 ): return True # Backtrack UpperCAmelCase = -1 return False def snake_case_ (_a : list[list[int]] , _a : int = 0 ): UpperCAmelCase = [-1] * (len(_a ) + 1) # initialize start and end of path with starting index UpperCAmelCase = UpperCAmelCase = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(_a , _a , 1 ) else []
358
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , ) -> Tuple: _lowercase : List[str] = {} if train_file is not None: _lowercase : Tuple = [train_file] if eval_file is not None: _lowercase : Optional[Any] = [eval_file] if test_file is not None: _lowercase : Dict = [test_file] _lowercase : Dict = datasets.load_dataset('csv' , data_files=SCREAMING_SNAKE_CASE ) _lowercase : Dict = list(ds[list(files.keys() )[0]].features.keys() ) _lowercase : List[Any] = features_name.pop(SCREAMING_SNAKE_CASE ) _lowercase : Any = list(set(ds[list(files.keys() )[0]][label_name] ) ) _lowercase : Dict = {label: i for i, label in enumerate(SCREAMING_SNAKE_CASE )} _lowercase : Tuple = tokenizer.model_input_names _lowercase : int = {} if len(SCREAMING_SNAKE_CASE ) == 1: for k in files.keys(): _lowercase : List[str] = ds[k].map( lambda SCREAMING_SNAKE_CASE : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' ) , batched=SCREAMING_SNAKE_CASE , ) elif len(SCREAMING_SNAKE_CASE ) == 2: for k in files.keys(): _lowercase : Tuple = ds[k].map( lambda SCREAMING_SNAKE_CASE : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding='max_length' , ) , batched=SCREAMING_SNAKE_CASE , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: _lowercase : str = {k: v for k, v in ex.items() if k in input_names} _lowercase : List[str] = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: _lowercase : str = {k: v for k, v in ex.items() if k in input_names} _lowercase : Tuple = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: _lowercase : int = {k: v for k, v in ex.items() if k in input_names} _lowercase : str = labelaid[ex[label_name]] yield (d, label) _lowercase : str = ( tf.data.Dataset.from_generator( SCREAMING_SNAKE_CASE , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: _lowercase : Optional[int] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) _lowercase : int = ( tf.data.Dataset.from_generator( SCREAMING_SNAKE_CASE , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: _lowercase : str = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) _lowercase : List[str] = ( tf.data.Dataset.from_generator( SCREAMING_SNAKE_CASE , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: _lowercase : Optional[Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid UpperCamelCase = logging.getLogger(__name__) @dataclass class lowerCAmelCase_ : _UpperCamelCase : int = field(metadata={"help": "Which column contains the label"} ) _UpperCamelCase : str = field(default=__snake_case , metadata={"help": "The path of the training file"} ) _UpperCamelCase : Optional[str] = field(default=__snake_case , metadata={"help": "The path of the development file"} ) _UpperCamelCase : Optional[str] = field(default=__snake_case , metadata={"help": "The path of the test file"} ) _UpperCamelCase : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _UpperCamelCase : bool = field( default=__snake_case , metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class lowerCAmelCase_ : _UpperCamelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _UpperCamelCase : Optional[str] = field( default=__snake_case , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _UpperCamelCase : Optional[str] = field( default=__snake_case , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _UpperCamelCase : bool = field(default=__snake_case , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _UpperCamelCase : Optional[str] = field( default=__snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def __magic_name__ ( ) -> str: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _lowercase : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) _lowercase , _lowercase , _lowercase : Optional[int] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info( F"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ F"""16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowercase : List[str] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowercase , _lowercase , _lowercase , _lowercase : int = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=SCREAMING_SNAKE_CASE , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) _lowercase : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(SCREAMING_SNAKE_CASE ) , labelaid=SCREAMING_SNAKE_CASE , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='text-classification' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): _lowercase : List[str] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('.bin' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) def compute_metrics(SCREAMING_SNAKE_CASE ) -> Dict: _lowercase : Optional[int] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer _lowercase : Optional[Any] = TFTrainer( model=SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , train_dataset=SCREAMING_SNAKE_CASE , eval_dataset=SCREAMING_SNAKE_CASE , compute_metrics=SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _lowercase : Dict = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _lowercase : int = trainer.evaluate() _lowercase : List[Any] = os.path.join(training_args.output_dir , 'eval_results.txt' ) with open(SCREAMING_SNAKE_CASE , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) results.update(SCREAMING_SNAKE_CASE ) return results if __name__ == "__main__": main()
66
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class UpperCamelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self : str , _lowerCamelCase : str , _lowerCamelCase : Optional[Any]=7 , _lowerCamelCase : Optional[int]=3 , _lowerCamelCase : List[Any]=18 , _lowerCamelCase : Union[str, Any]=30 , _lowerCamelCase : Tuple=4_00 , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : int=True , _lowerCamelCase : Dict=[0.5, 0.5, 0.5] , _lowerCamelCase : Dict=[0.5, 0.5, 0.5] , ) -> Dict: __magic_name__ = size if size is not None else {"height": 18, "width": 18} __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = num_channels __magic_name__ = image_size __magic_name__ = min_resolution __magic_name__ = max_resolution __magic_name__ = do_resize __magic_name__ = size __magic_name__ = do_normalize __magic_name__ = image_mean __magic_name__ = image_std def __A ( self : int ) -> List[str]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class UpperCamelCase_ ( A , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = DPTImageProcessor if is_vision_available() else None def __A ( self : Dict ) -> Any: __magic_name__ = DPTImageProcessingTester(self ) @property def __A ( self : str ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self : Tuple ) -> List[str]: __magic_name__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(_lowerCamelCase , "image_std" ) ) self.assertTrue(hasattr(_lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(_lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(_lowerCamelCase , "size" ) ) def __A ( self : List[str] ) -> List[Any]: __magic_name__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) __magic_name__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def __A ( self : Union[str, Any] ) -> List[str]: # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched __magic_name__ = image_processing(_lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __A ( self : Dict ) -> Optional[Any]: # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched __magic_name__ = image_processing(_lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __A ( self : Optional[int] ) -> Dict: # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched __magic_name__ = image_processing(_lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , )
664
0
'''simple docstring''' import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger UpperCAmelCase_ : Any = get_logger(__name__) class UpperCAmelCase__ : def __init__( self : Optional[Any],__A : Optional[str] = None ): _lowerCamelCase : List[str] = ( os.path.join(__A,config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) _lowerCamelCase : int = Extractor def lowerCamelCase_ ( self : List[str],__A : str ): from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" _lowerCamelCase : str = os.path.abspath(__A ) return os.path.join(self.extract_dir,hash_url_to_filename(__A ) ) def lowerCamelCase_ ( self : Optional[int],__A : str,__A : bool ): return force_extract or ( not os.path.isfile(__A ) and not (os.path.isdir(__A ) and os.listdir(__A )) ) def lowerCamelCase_ ( self : Tuple,__A : str,__A : bool = False ): _lowerCamelCase : Tuple = self.extractor.infer_extractor_format(__A ) if not extractor_format: return input_path _lowerCamelCase : int = self._get_output_path(__A ) if self._do_extract(__A,__A ): self.extractor.extract(__A,__A,__A ) return output_path class UpperCAmelCase__ ( A ): @classmethod @abstractmethod def lowerCamelCase_ ( cls : Union[str, Any],__A : Union[Path, str],**__A : int ): ... @staticmethod @abstractmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): ... class UpperCAmelCase__ ( A , A ): lowerCAmelCase_ = [] @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : int ): with open(__A,"rb" ) as f: return f.read(__A ) @classmethod def lowerCamelCase_ ( cls : int,__A : Union[Path, str],__A : bytes = b"" ): if not magic_number: _lowerCamelCase : int = max(len(__A ) for cls_magic_number in cls.magic_numbers ) try: _lowerCamelCase : Any = cls.read_magic_number(__A,__A ) except OSError: return False return any(magic_number.startswith(__A ) for cls_magic_number in cls.magic_numbers ) class UpperCAmelCase__ ( A ): @classmethod def lowerCamelCase_ ( cls : Union[str, Any],__A : Union[Path, str],**__A : Optional[int] ): return tarfile.is_tarfile(__A ) @staticmethod def lowerCamelCase_ ( __A : Optional[Any],__A : Dict ): def resolved(__A : str ) -> str: return os.path.realpath(os.path.abspath(__A ) ) def badpath(__A : str,__A : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(__A,__A ) ).startswith(__A ) def badlink(__A : int,__A : str ) -> bool: # Links are interpreted relative to the directory containing the link _lowerCamelCase : Union[str, Any] = resolved(os.path.join(__A,os.path.dirname(info.name ) ) ) return badpath(info.linkname,base=__A ) _lowerCamelCase : Optional[Any] = resolved(__A ) for finfo in members: if badpath(finfo.name,__A ): logger.error(f'Extraction of {finfo.name} is blocked (illegal path)' ) elif finfo.issym() and badlink(__A,__A ): logger.error(f'Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}' ) elif finfo.islnk() and badlink(__A,__A ): logger.error(f'Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}' ) else: yield finfo @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): os.makedirs(__A,exist_ok=__A ) _lowerCamelCase : int = tarfile.open(__A ) tar_file.extractall(__A,members=TarExtractor.safemembers(__A,__A ) ) tar_file.close() class UpperCAmelCase__ ( A ): lowerCAmelCase_ = [B'\x1F\x8B'] @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): with gzip.open(__A,"rb" ) as gzip_file: with open(__A,"wb" ) as extracted_file: shutil.copyfileobj(__A,__A ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = [ B'PK\x03\x04', B'PK\x05\x06', # empty archive B'PK\x07\x08', # spanned archive ] @classmethod def lowerCamelCase_ ( cls : Union[str, Any],__A : Union[Path, str],__A : bytes = b"" ): if super().is_extractable(__A,magic_number=__A ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(__A,"rb" ) as fp: _lowerCamelCase : Optional[Any] = _EndRecData(__A ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: _lowerCamelCase : List[Any] = fp.read(__A ) # CD is where we expect it to be if len(__A ) == sizeCentralDir: _lowerCamelCase : List[Any] = struct.unpack(__A,__A ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): os.makedirs(__A,exist_ok=__A ) with zipfile.ZipFile(__A,"r" ) as zip_file: zip_file.extractall(__A ) zip_file.close() class UpperCAmelCase__ ( A ): lowerCAmelCase_ = [B'\xFD\x37\x7A\x58\x5A\x00'] @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): with lzma.open(__A ) as compressed_file: with open(__A,"wb" ) as extracted_file: shutil.copyfileobj(__A,__A ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = [B'Rar!\x1a\x07\x00', B'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): if not config.RARFILE_AVAILABLE: raise ImportError("Please pip install rarfile" ) import rarfile os.makedirs(__A,exist_ok=__A ) _lowerCamelCase : int = rarfile.RarFile(__A ) rf.extractall(__A ) rf.close() class UpperCAmelCase__ ( A ): lowerCAmelCase_ = [B'\x28\xb5\x2F\xFD'] @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): if not config.ZSTANDARD_AVAILABLE: raise ImportError("Please pip install zstandard" ) import zstandard as zstd _lowerCamelCase : Optional[Any] = zstd.ZstdDecompressor() with open(__A,"rb" ) as ifh, open(__A,"wb" ) as ofh: dctx.copy_stream(__A,__A ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = [B'\x42\x5A\x68'] @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): with bza.open(__A,"rb" ) as compressed_file: with open(__A,"wb" ) as extracted_file: shutil.copyfileobj(__A,__A ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = [B'\x37\x7A\xBC\xAF\x27\x1C'] @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): if not config.PY7ZR_AVAILABLE: raise ImportError("Please pip install py7zr" ) import pyazr os.makedirs(__A,exist_ok=__A ) with pyazr.SevenZipFile(__A,"r" ) as archive: archive.extractall(__A ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = [B'\x04\x22\x4D\x18'] @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : Union[Path, str] ): if not config.LZ4_AVAILABLE: raise ImportError("Please pip install lz4" ) import lza.frame with lza.frame.open(__A,"rb" ) as compressed_file: with open(__A,"wb" ) as extracted_file: shutil.copyfileobj(__A,__A ) class UpperCAmelCase__ : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) lowerCAmelCase_ = { 'tar': TarExtractor, 'gzip': GzipExtractor, 'zip': ZipExtractor, 'xz': XzExtractor, 'rar': RarExtractor, 'zstd': ZstdExtractor, 'bz2': BzipaExtractor, '7z': SevenZipExtractor, # <Added version="2.4.0"/> 'lz4': LzaExtractor, # <Added version="2.4.0"/> } @classmethod def lowerCamelCase_ ( cls : Optional[Any] ): return max( len(__A ) for extractor in cls.extractors.values() if issubclass(__A,__A ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def lowerCamelCase_ ( __A : Union[Path, str],__A : int ): try: return MagicNumberBaseExtractor.read_magic_number(__A,magic_number_length=__A ) except OSError: return b"" @classmethod def lowerCamelCase_ ( cls : List[str],__A : Union[Path, str],__A : bool = False ): warnings.warn( "Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'infer_extractor_format' instead.",category=__A,) _lowerCamelCase : Optional[Any] = cls.infer_extractor_format(__A ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def lowerCamelCase_ ( cls : Optional[int],__A : Union[Path, str] ): # <Added version="2.4.0"/> _lowerCamelCase : Optional[int] = cls._get_magic_number_max_length() _lowerCamelCase : Union[str, Any] = cls._read_magic_number(__A,__A ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(__A,magic_number=__A ): return extractor_format @classmethod def lowerCamelCase_ ( cls : List[Any],__A : Union[Path, str],__A : Union[Path, str],__A : Optional[str] = None,__A : Optional[BaseExtractor] = "deprecated",): os.makedirs(os.path.dirname(__A ),exist_ok=__A ) # Prevent parallel extractions _lowerCamelCase : Union[str, Any] = str(Path(__A ).with_suffix(".lock" ) ) with FileLock(__A ): shutil.rmtree(__A,ignore_errors=__A ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(__A,__A ): # passed as positional arg warnings.warn( "Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'extractor_format' instead.",category=__A,) _lowerCamelCase : Dict = extractor if extractor != "deprecated" else extractor_format else: _lowerCamelCase : str = cls.extractors[extractor_format] return extractor.extract(__A,__A ) else: warnings.warn( "Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an " "exception in 3.0.0.",category=__A,) for extractor in cls.extractors.values(): if extractor.is_extractable(__A ): return extractor.extract(__A,__A )
703
'''simple docstring''' import random from typing import Any def A_ ( _lowerCAmelCase : list ): """simple docstring""" for _ in range(len(_lowerCAmelCase ) ): _lowerCamelCase : Any = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase : List[str] = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = data[b], data[a] return data if __name__ == "__main__": UpperCAmelCase_ : Any = [0, 1, 2, 3, 4, 5, 6, 7] UpperCAmelCase_ : Dict = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
11
0
def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: __a = mf_knapsack(i - 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: __a = max( mf_knapsack(i - 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , mf_knapsack(i - 1 , lowerCAmelCase__ , lowerCAmelCase__ , j - wt[i - 1] ) + val[i - 1] , ) __a = val return f[i][j] def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __a = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: __a = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: __a = dp[i - 1][w_] return dp[n][w_], dp def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if not (isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(lowerCAmelCase__ , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) __a = len(lowerCAmelCase__ ) if num_items != len(lowerCAmelCase__ ): __a = ( """The number of weights must be the same as the number of values.\n""" f'''But got {num_items} weights and {len(lowerCAmelCase__ )} values''' ) raise ValueError(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ ): if not isinstance(wt[i] , lowerCAmelCase__ ): __a = ( """All weights must be integers but got weight of """ f'''type {type(wt[i] )} at index {i}''' ) raise TypeError(lowerCAmelCase__ ) __a , __a = knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __a = set() _construct_solution(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return optimal_val, example_optional_set def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(lowerCAmelCase__ , lowerCAmelCase__ , i - 1 , lowerCAmelCase__ , lowerCAmelCase__ ) else: optimal_set.add(lowerCAmelCase__ ) _construct_solution(lowerCAmelCase__ , lowerCAmelCase__ , i - 1 , j - wt[i - 1] , lowerCAmelCase__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = [3, 2, 4, 4] SCREAMING_SNAKE_CASE = [4, 3, 2, 3] SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = 6 SCREAMING_SNAKE_CASE = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print('optimal_value = ', optimal_solution) print('An optimal subset corresponding to the optimal value', optimal_subset)
99
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class a__ ( unittest.TestCase ): def lowercase__ (self : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = [[1, 2, 4], [1, 2, 3, 4]] SCREAMING_SNAKE_CASE : Tuple = DisjunctiveConstraint(__UpperCAmelCase ) self.assertTrue(isinstance(dc.token_ids, __UpperCAmelCase ) ) with self.assertRaises(__UpperCAmelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__UpperCAmelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def lowercase__ (self : Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__UpperCAmelCase ): DisjunctiveConstraint(__UpperCAmelCase ) # fails here def lowercase__ (self : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [[1, 2, 3], [1, 2, 4]] SCREAMING_SNAKE_CASE : List[Any] = DisjunctiveConstraint(__UpperCAmelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = dc.update(1 ) SCREAMING_SNAKE_CASE : Any = stepped is True and completed is False and reset is False self.assertTrue(__UpperCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = dc.update(2 ) SCREAMING_SNAKE_CASE : Any = stepped is True and completed is False and reset is False self.assertTrue(__UpperCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = dc.update(3 ) SCREAMING_SNAKE_CASE : List[Any] = stepped is True and completed is True and reset is False self.assertTrue(__UpperCAmelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def lowercase__ (self : Tuple ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] SCREAMING_SNAKE_CASE : Union[str, Any] = DisjunctiveConstraint(__UpperCAmelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
507
0
"""simple docstring""" def UpperCamelCase_ ( lowerCAmelCase__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase_ : Any = [0] * len(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = [] lowerCAmelCase_ : str = [] lowerCAmelCase_ : List[Any] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowerCAmelCase__ ) ): if indegree[i] == 0: queue.append(lowerCAmelCase__ ) while queue: lowerCAmelCase_ : Optional[int] = queue.pop(0 ) cnt += 1 topo.append(lowerCAmelCase__ ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(lowerCAmelCase__ ) if cnt != len(lowerCAmelCase__ ): print('Cycle exists' ) else: print(lowerCAmelCase__ ) # Adjacency List of Graph lowercase__ : Optional[int] = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
317
"""simple docstring""" def UpperCamelCase_ ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : int ) -> bool: """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCAmelCase__ ) ) def UpperCamelCase_ ( lowerCAmelCase__ : list[list[int]] , lowerCAmelCase__ : int , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : int ) -> bool: """simple docstring""" if index == len(lowerCAmelCase__ ): return True # Recursive Step for i in range(lowerCAmelCase__ ): if valid_coloring(graph[index] , lowerCAmelCase__ , lowerCAmelCase__ ): # Color current vertex lowerCAmelCase_ : List[str] = i # Validate coloring if util_color(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , index + 1 ): return True # Backtrack lowerCAmelCase_ : Dict = -1 return False def UpperCamelCase_ ( lowerCAmelCase__ : list[list[int]] , lowerCAmelCase__ : int ) -> list[int]: """simple docstring""" lowerCAmelCase_ : str = [-1] * len(lowerCAmelCase__ ) if util_color(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , 0 ): return colored_vertices return []
317
1
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ : Optional[int] = logging.get_logger(__name__) lowercase_ : Dict = {'vocab_file': 'vocab.txt'} lowercase_ : Optional[int] = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } lowercase_ : Optional[Any] = { 'openbmb/cpm-ant-10b': 1_0_2_4, } def A__ ( snake_case_ : Tuple ): SCREAMING_SNAKE_CASE__: List[str]= collections.OrderedDict() with open(UpperCAmelCase_ , '''r''' , encoding='''utf-8''' ) as reader: SCREAMING_SNAKE_CASE__: Union[str, Any]= reader.readlines() for index, token in enumerate(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__: Tuple= token.rstrip('''\n''' ) SCREAMING_SNAKE_CASE__: Union[str, Any]= index return vocab class _lowerCamelCase ( UpperCamelCase_ ): def __init__( self , lowerCAmelCase , lowerCAmelCase="<unk>" , lowerCAmelCase=200 ) -> str: SCREAMING_SNAKE_CASE__: List[Any]= vocab SCREAMING_SNAKE_CASE__: List[str]= unk_token SCREAMING_SNAKE_CASE__: List[Any]= max_input_chars_per_word def UpperCamelCase_ ( self , lowerCAmelCase ) -> int: SCREAMING_SNAKE_CASE__: Optional[Any]= list(__A ) if len(__A ) > self.max_input_chars_per_word: return [self.unk_token] SCREAMING_SNAKE_CASE__: Optional[Any]= 0 SCREAMING_SNAKE_CASE__: Tuple= [] while start < len(__A ): SCREAMING_SNAKE_CASE__: int= len(__A ) SCREAMING_SNAKE_CASE__: Optional[int]= None while start < end: SCREAMING_SNAKE_CASE__: Union[str, Any]= ''''''.join(chars[start:end] ) if substr in self.vocab: SCREAMING_SNAKE_CASE__: Any= substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__A ) SCREAMING_SNAKE_CASE__: Optional[int]= end return sub_tokens class _lowerCamelCase ( UpperCamelCase_ ): __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = ["input_ids", "attention_mask"] __a = False def __init__( self , lowerCAmelCase , lowerCAmelCase="<d>" , lowerCAmelCase="</d>" , lowerCAmelCase="<s>" , lowerCAmelCase="</s>" , lowerCAmelCase="<pad>" , lowerCAmelCase="<unk>" , lowerCAmelCase="</n>" , lowerCAmelCase="</_>" , lowerCAmelCase="left" , **lowerCAmelCase , ) -> str: requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=__A , eod_token=__A , bos_token=__A , eos_token=__A , pad_token=__A , unk_token=__A , line_token=__A , space_token=__A , padding_side=__A , **__A , ) SCREAMING_SNAKE_CASE__: Union[str, Any]= bod_token SCREAMING_SNAKE_CASE__: str= eod_token SCREAMING_SNAKE_CASE__: Union[str, Any]= load_vocab(__A ) SCREAMING_SNAKE_CASE__: List[str]= self.encoder[space_token] SCREAMING_SNAKE_CASE__: str= self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] SCREAMING_SNAKE_CASE__: Any= collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCAmelCase : x[1] ) ) SCREAMING_SNAKE_CASE__: Optional[int]= {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE__: Optional[int]= WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def UpperCamelCase_ ( self ) -> Dict: return self.encoder[self.bod_token] @property def UpperCamelCase_ ( self ) -> int: return self.encoder[self.eod_token] @property def UpperCamelCase_ ( self ) -> Optional[int]: return self.encoder["\n"] @property def UpperCamelCase_ ( self ) -> int: return len(self.encoder ) def UpperCamelCase_ ( self ) -> str: return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase_ ( self , lowerCAmelCase ) -> Optional[int]: SCREAMING_SNAKE_CASE__: Any= [] for x in jieba.cut(__A , cut_all=__A ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__A ) ) return output_tokens def UpperCamelCase_ ( self , lowerCAmelCase , **lowerCAmelCase ) -> Dict: SCREAMING_SNAKE_CASE__: Tuple= [i for i in token_ids if i >= 0] SCREAMING_SNAKE_CASE__: int= [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__A , **__A ) def UpperCamelCase_ ( self , lowerCAmelCase ) -> List[Any]: return token in self.encoder def UpperCamelCase_ ( self , lowerCAmelCase ) -> str: return "".join(__A ) def UpperCamelCase_ ( self , lowerCAmelCase ) -> Union[str, Any]: return self.encoder.get(__A , self.encoder.get(self.unk_token ) ) def UpperCamelCase_ ( self , lowerCAmelCase ) -> Tuple: return self.decoder.get(__A , self.unk_token ) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase = None ) -> Tuple[str]: if os.path.isdir(__A ): SCREAMING_SNAKE_CASE__: Dict= os.path.join( __A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: SCREAMING_SNAKE_CASE__: Tuple= (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory SCREAMING_SNAKE_CASE__: List[Any]= 0 if " " in self.encoder: SCREAMING_SNAKE_CASE__: int= self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: SCREAMING_SNAKE_CASE__: Any= self.encoder['''\n'''] del self.encoder["\n"] SCREAMING_SNAKE_CASE__: Tuple= collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCAmelCase : x[1] ) ) with open(__A , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''' ) SCREAMING_SNAKE_CASE__: Union[str, Any]= token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is not None: return [1] + ([0] * len(__A )) + [1] + ([0] * len(__A )) return [1] + ([0] * len(__A ))
64
def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : int | float | str ) -> tuple[int, int]: try: SCREAMING_SNAKE_CASE_ : int =float(UpperCAmelCase_ ) except ValueError: raise ValueError('''Please enter a valid number''' ) SCREAMING_SNAKE_CASE_ : Any =decimal - int(UpperCAmelCase_ ) if fractional_part == 0: return int(UpperCAmelCase_ ), 1 else: SCREAMING_SNAKE_CASE_ : Any =len(str(UpperCAmelCase_ ).split('''.''' )[1] ) SCREAMING_SNAKE_CASE_ : str =int(decimal * (1_0**number_of_frac_digits) ) SCREAMING_SNAKE_CASE_ : Any =1_0**number_of_frac_digits SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple =denominator, numerator while True: SCREAMING_SNAKE_CASE_ : Any =dividend % divisor if remainder == 0: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] =divisor, remainder SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] =numerator / divisor, denominator / divisor return int(UpperCAmelCase_ ), int(UpperCAmelCase_ ) if __name__ == "__main__": print(F"{decimal_to_fraction(2) = }") print(F"{decimal_to_fraction(89.0) = }") print(F"{decimal_to_fraction('67') = }") print(F"{decimal_to_fraction('45.0') = }") print(F"{decimal_to_fraction(1.5) = }") print(F"{decimal_to_fraction('6.25') = }") print(F"{decimal_to_fraction('78td') = }")
443
0
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets __A : Tuple = '\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' __A : int = '\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' __A : Dict = R'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _SCREAMING_SNAKE_CASE ( datasets.Metric): def _snake_case ( self )-> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/hendrycks/math""" , codebase_urls=["""https://github.com/hendrycks/math"""] , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> str: lowerCamelCase_ =0.0 for i, j in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): n_correct += 1.0 if math_equivalence.is_equiv(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else 0.0 lowerCamelCase_ =n_correct / len(_SCREAMING_SNAKE_CASE ) return { "accuracy": accuracy, }
75
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase): def _snake_case ( self )-> List[str]: lowerCamelCase_ =torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowerCamelCase_ =get_activation("""gelu""" ) self.assertTrue(torch.allclose(gelu_python(_SCREAMING_SNAKE_CASE ) , torch_builtin(_SCREAMING_SNAKE_CASE ) ) ) self.assertFalse(torch.allclose(gelu_python(_SCREAMING_SNAKE_CASE ) , gelu_new(_SCREAMING_SNAKE_CASE ) ) ) def _snake_case ( self )-> int: lowerCamelCase_ =torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowerCamelCase_ =get_activation("""gelu""" ) lowerCamelCase_ =get_activation("""gelu_10""" ) lowerCamelCase_ =torch_builtin(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =geluaa(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(_SCREAMING_SNAKE_CASE ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _snake_case ( self )-> Dict: get_activation("""gelu""" ) get_activation("""gelu_10""" ) get_activation("""gelu_fast""" ) get_activation("""gelu_new""" ) get_activation("""gelu_python""" ) get_activation("""gelu_pytorch_tanh""" ) get_activation("""linear""" ) get_activation("""mish""" ) get_activation("""quick_gelu""" ) get_activation("""relu""" ) get_activation("""sigmoid""" ) get_activation("""silu""" ) get_activation("""swish""" ) get_activation("""tanh""" ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): get_activation("""bogus""" ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): get_activation(_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Any: lowerCamelCase_ =get_activation("""gelu""" ) lowerCamelCase_ =1 lowerCamelCase_ =get_activation("""gelu""" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): lowerCamelCase_ =acta.a
75
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class _lowerCamelCase( _a ): lowercase_ : int = """ctrl""" lowercase_ : List[Any] = ["""past_key_values"""] lowercase_ : Any = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self, lowerCamelCase=24_65_34, lowerCamelCase=2_56, lowerCamelCase=12_80, lowerCamelCase=81_92, lowerCamelCase=48, lowerCamelCase=16, lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=1E-6, lowerCamelCase=0.0_2, lowerCamelCase=True, **lowerCamelCase, ) -> Dict: """simple docstring""" _lowercase : Optional[int] = vocab_size _lowercase : Optional[Any] = n_positions _lowercase : int = n_embd _lowercase : Union[str, Any] = n_layer _lowercase : Tuple = n_head _lowercase : Any = dff _lowercase : Tuple = resid_pdrop _lowercase : List[str] = embd_pdrop _lowercase : Dict = layer_norm_epsilon _lowercase : Optional[int] = initializer_range _lowercase : Tuple = use_cache super().__init__(**lowerCamelCase)
89
"""simple docstring""" def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->list[str]: """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(_SCREAMING_SNAKE_CASE ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
93
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer __A ={"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A ={ "vocab_file": { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt", }, "tokenizer_file": { "unc-nlp/lxmert-base-uncased": ( "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json" ), }, } __A ={ "unc-nlp/lxmert-base-uncased": 5_1_2, } __A ={ "unc-nlp/lxmert-base-uncased": {"do_lower_case": True}, } class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_INIT_CONFIGURATION UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = LxmertTokenizer def __init__( self : Optional[int] , a_ : Optional[int]=None , a_ : List[Any]=None , a_ : List[Any]=True , a_ : List[str]="[UNK]" , a_ : int="[SEP]" , a_ : Optional[Any]="[PAD]" , a_ : int="[CLS]" , a_ : int="[MASK]" , a_ : Optional[Any]=True , a_ : Tuple=None , **a_ : Dict , ): '''simple docstring''' super().__init__( a_ , tokenizer_file=a_ , do_lower_case=a_ , unk_token=a_ , sep_token=a_ , pad_token=a_ , cls_token=a_ , mask_token=a_ , tokenize_chinese_chars=a_ , strip_accents=a_ , **a_ , ) __UpperCAmelCase : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , a_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , a_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , a_ ) != tokenize_chinese_chars ): __UpperCAmelCase : Optional[int] = getattr(a_ , normalizer_state.pop('''type''' ) ) __UpperCAmelCase : List[str] = do_lower_case __UpperCAmelCase : Union[str, Any] = strip_accents __UpperCAmelCase : Union[str, Any] = tokenize_chinese_chars __UpperCAmelCase : str = normalizer_class(**a_ ) __UpperCAmelCase : List[Any] = do_lower_case def snake_case__ ( self : Optional[Any] , a_ : Optional[int] , a_ : str=None ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self : List[Any] , a_ : List[int] , a_ : Optional[List[int]] = None ): '''simple docstring''' __UpperCAmelCase : str = [self.sep_token_id] __UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self : Dict , a_ : str , a_ : Optional[str] = None ): '''simple docstring''' __UpperCAmelCase : Dict = self._tokenizer.model.save(a_ , name=a_ ) return tuple(a_ )
702
def a ( _UpperCAmelCase : list[int] , _UpperCAmelCase : list[int] ): '''simple docstring''' __UpperCAmelCase : Dict = len(_UpperCAmelCase ) print('''The following activities are selected:''' ) # The first activity is always selected __UpperCAmelCase : str = 0 print(_UpperCAmelCase , end=''',''' ) # Consider rest of the activities for j in range(_UpperCAmelCase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(_UpperCAmelCase , end=''',''' ) __UpperCAmelCase : int = j if __name__ == "__main__": import doctest doctest.testmod() __A =[1, 3, 0, 5, 8, 5] __A =[2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
241
0
"""simple docstring""" import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ :Union[str, Any] = logging.get_logger(__name__) UpperCamelCase__ :Any = { """kakaobrain/align-base""": """https://huggingface.co/kakaobrain/align-base/resolve/main/config.json""", } class A( lowerCamelCase__ ): """simple docstring""" A = "align_text_model" def __init__( self , SCREAMING_SNAKE_CASE__=3_05_22 , SCREAMING_SNAKE_CASE__=7_68 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=30_72 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=5_12 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.0_2 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__="absolute" , SCREAMING_SNAKE_CASE__=True , **SCREAMING_SNAKE_CASE__ , ) -> str: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE_ ) _UpperCamelCase :str = vocab_size _UpperCamelCase :str = hidden_size _UpperCamelCase :List[Any] = num_hidden_layers _UpperCamelCase :Dict = num_attention_heads _UpperCamelCase :Any = hidden_act _UpperCamelCase :Any = intermediate_size _UpperCamelCase :int = hidden_dropout_prob _UpperCamelCase :int = attention_probs_dropout_prob _UpperCamelCase :str = max_position_embeddings _UpperCamelCase :str = type_vocab_size _UpperCamelCase :str = initializer_range _UpperCamelCase :List[Any] = layer_norm_eps _UpperCamelCase :List[Any] = position_embedding_type _UpperCamelCase :int = use_cache _UpperCamelCase :List[Any] = pad_token_id @classmethod def _UpperCamelCase( cls , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE_ ) _UpperCamelCase , _UpperCamelCase :Optional[int] = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # get the text config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": _UpperCamelCase :Optional[Any] = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class A( lowerCamelCase__ ): """simple docstring""" A = "align_vision_model" def __init__( self , SCREAMING_SNAKE_CASE__ = 3 , SCREAMING_SNAKE_CASE__ = 6_00 , SCREAMING_SNAKE_CASE__ = 2.0 , SCREAMING_SNAKE_CASE__ = 3.1 , SCREAMING_SNAKE_CASE__ = 8 , SCREAMING_SNAKE_CASE__ = [3, 3, 5, 3, 5, 5, 3] , SCREAMING_SNAKE_CASE__ = [32, 16, 24, 40, 80, 1_12, 1_92] , SCREAMING_SNAKE_CASE__ = [16, 24, 40, 80, 1_12, 1_92, 3_20] , SCREAMING_SNAKE_CASE__ = [] , SCREAMING_SNAKE_CASE__ = [1, 2, 2, 2, 1, 2, 1] , SCREAMING_SNAKE_CASE__ = [1, 2, 2, 3, 3, 4, 1] , SCREAMING_SNAKE_CASE__ = [1, 6, 6, 6, 6, 6, 6] , SCREAMING_SNAKE_CASE__ = 0.2_5 , SCREAMING_SNAKE_CASE__ = "swish" , SCREAMING_SNAKE_CASE__ = 25_60 , SCREAMING_SNAKE_CASE__ = "mean" , SCREAMING_SNAKE_CASE__ = 0.0_2 , SCREAMING_SNAKE_CASE__ = 0.0_0_1 , SCREAMING_SNAKE_CASE__ = 0.9_9 , SCREAMING_SNAKE_CASE__ = 0.2 , **SCREAMING_SNAKE_CASE__ , ) -> Union[str, Any]: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE_ ) _UpperCamelCase :Any = num_channels _UpperCamelCase :Optional[Any] = image_size _UpperCamelCase :Dict = width_coefficient _UpperCamelCase :int = depth_coefficient _UpperCamelCase :List[Any] = depth_divisor _UpperCamelCase :Optional[Any] = kernel_sizes _UpperCamelCase :Optional[int] = in_channels _UpperCamelCase :Dict = out_channels _UpperCamelCase :Union[str, Any] = depthwise_padding _UpperCamelCase :List[Any] = strides _UpperCamelCase :str = num_block_repeats _UpperCamelCase :str = expand_ratios _UpperCamelCase :Optional[Any] = squeeze_expansion_ratio _UpperCamelCase :List[Any] = hidden_act _UpperCamelCase :List[str] = hidden_dim _UpperCamelCase :List[str] = pooling_type _UpperCamelCase :Union[str, Any] = initializer_range _UpperCamelCase :int = batch_norm_eps _UpperCamelCase :Dict = batch_norm_momentum _UpperCamelCase :Optional[int] = drop_connect_rate _UpperCamelCase :Tuple = sum(SCREAMING_SNAKE_CASE_ ) * 4 @classmethod def _UpperCamelCase( cls , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE_ ) _UpperCamelCase , _UpperCamelCase :Any = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": _UpperCamelCase :Tuple = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class A( lowerCamelCase__ ): """simple docstring""" A = "align" A = True def __init__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=6_40 , SCREAMING_SNAKE_CASE__=1.0 , SCREAMING_SNAKE_CASE__=0.0_2 , **SCREAMING_SNAKE_CASE__ , ) -> List[str]: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE_ ) if text_config is None: _UpperCamelCase :int = {} logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''' ) if vision_config is None: _UpperCamelCase :Any = {} logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''' ) _UpperCamelCase :Any = AlignTextConfig(**SCREAMING_SNAKE_CASE_ ) _UpperCamelCase :Any = AlignVisionConfig(**SCREAMING_SNAKE_CASE_ ) _UpperCamelCase :Dict = projection_dim _UpperCamelCase :Optional[int] = temperature_init_value _UpperCamelCase :Dict = initializer_range @classmethod def _UpperCamelCase( cls , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **SCREAMING_SNAKE_CASE_ ) def _UpperCamelCase( self ) -> Tuple: """simple docstring""" _UpperCamelCase :List[Any] = copy.deepcopy(self.__dict__ ) _UpperCamelCase :List[Any] = self.text_config.to_dict() _UpperCamelCase :Optional[Any] = self.vision_config.to_dict() _UpperCamelCase :str = self.__class__.model_type return output
355
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowercase_ = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. lowercase_ = direct_transformers_import(PATH_TO_TRANSFORMERS) lowercase_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING lowercase_ = { # used to compute the property `self.chunk_length` 'EncodecConfig': ['overlap'], # used as `self.bert_model = BertModel(config, ...)` 'DPRConfig': True, # not used in modeling files, but it's an important information 'FSMTConfig': ['langs'], # used internally in the configuration class file 'GPTNeoConfig': ['attention_types'], # used internally in the configuration class file 'EsmConfig': ['is_folding_model'], # used during training (despite we don't have training script for these models yet) 'Mask2FormerConfig': ['ignore_value'], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) 'OneFormerConfig': ['ignore_value', 'norm'], # used during preprocessing and collation, see `collating_graphormer.py` 'GraphormerConfig': ['spatial_pos_max'], # used internally in the configuration class file 'T5Config': ['feed_forward_proj'], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally 'MT5Config': ['feed_forward_proj', 'tokenizer_class'], 'UMT5Config': ['feed_forward_proj', 'tokenizer_class'], # used internally in the configuration class file 'LongT5Config': ['feed_forward_proj'], # used internally in the configuration class file 'SwitchTransformersConfig': ['feed_forward_proj'], # having default values other than `1e-5` - we can't fix them without breaking 'BioGptConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'GLPNConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'SegformerConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'CvtConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'PerceiverConfig': ['layer_norm_eps'], # used internally to calculate the feature size 'InformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'TimeSeriesTransformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'AutoformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate `mlp_dim` 'SamVisionConfig': ['mlp_ratio'], # For (head) training, but so far not implemented 'ClapAudioConfig': ['num_classes'], # Not used, but providing useful information to users 'SpeechT5HifiGanConfig': ['sampling_rate'], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { 'CLIPSegConfig': True, 'DeformableDetrConfig': True, 'DetaConfig': True, 'DinatConfig': True, 'DonutSwinConfig': True, 'EfficientFormerConfig': True, 'FSMTConfig': True, 'JukeboxConfig': True, 'LayoutLMv2Config': True, 'MaskFormerSwinConfig': True, 'MT5Config': True, 'NatConfig': True, 'OneFormerConfig': True, 'PerceiverConfig': True, 'RagConfig': True, 'SpeechT5Config': True, 'SwinConfig': True, 'Swin2SRConfig': True, 'Swinv2Config': True, 'SwitchTransformersConfig': True, 'TableTransformerConfig': True, 'TapasConfig': True, 'TransfoXLConfig': True, 'UniSpeechConfig': True, 'UniSpeechSatConfig': True, 'WavLMConfig': True, 'WhisperConfig': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) 'JukeboxPriorConfig': True, # TODO: @Younes (for `is_decoder`) 'Pix2StructTextConfig': True, } ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> str: _a = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f"""config.{attribute}""" in modeling_source or f"""getattr(config, \"{attribute}\"""" in modeling_source or f"""getattr(self.config, \"{attribute}\"""" in modeling_source ): _a = True # Deal with multi-line cases elif ( re.search( Rf"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , _UpperCAmelCase , ) is not None ): _a = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: _a = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files _a = [ 'bos_index', 'eos_index', 'pad_index', 'unk_index', 'mask_index', 'image_size', 'use_cache', 'out_features', 'out_indices', ] _a = ['encoder_no_repeat_ngram_size'] # Special cases to be allowed _a = True if not attribute_used: _a = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: _a = True elif attribute in ["tie_word_embeddings"] and default_value is False: _a = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: _a = True elif attribute.endswith('_token_id' ): _a = True # configuration class specific cases if not case_allowed: _a = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) _a = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Dict: _a = dict(inspect.signature(config_class.__init__ ).parameters ) _a = [x for x in list(signature.keys() ) if x not in ['self', 'kwargs']] _a = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass _a = {} if len(config_class.attribute_map ) > 0: _a = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files _a = inspect.getsourcefile(_UpperCAmelCase ) _a = os.path.dirname(_UpperCAmelCase ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. _a = [os.path.join(_UpperCAmelCase , _UpperCAmelCase ) for fn in os.listdir(_UpperCAmelCase ) if fn.startswith('modeling_' )] # Get the source code strings _a = [] for path in modeling_paths: if os.path.isfile(_UpperCAmelCase ): with open(_UpperCAmelCase ) as fp: modeling_sources.append(fp.read() ) _a = [] for config_param, default_value in zip(_UpperCAmelCase , _UpperCAmelCase ): # `attributes` here is all the variant names for `config_param` _a = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): unused_attributes.append(attributes[0] ) return sorted(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> str: _a = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) _a = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda _UpperCAmelCase : inspect.isclass(_UpperCAmelCase ) and issubclass(_UpperCAmelCase , _UpperCAmelCase ) and inspect.getmodule(_UpperCAmelCase ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: _a = check_config_attributes_being_used(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: _a = unused_attributes if len(_UpperCAmelCase ) > 0: _a = 'The following configuration classes contain unused attributes in the corresponding modeling files:\n' for name, attributes in configs_with_unused_attributes.items(): error += f"""{name}: {attributes}\n""" raise ValueError(_UpperCAmelCase ) if __name__ == "__main__": check_config_attributes()
562
0
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> str: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if num == 0: return "0b0" SCREAMING_SNAKE_CASE_ : Optional[Any] = False if num < 0: SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : Optional[Any] = -num SCREAMING_SNAKE_CASE_ : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(SCREAMING_SNAKE_CASE ) for e in binary ) return "0b" + "".join(str(SCREAMING_SNAKE_CASE ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
719
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) lowerCAmelCase__: Tuple = logging.getLogger() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: SCREAMING_SNAKE_CASE_ : Any = '\n'.join(SCREAMING_SNAKE_CASE ) Path(SCREAMING_SNAKE_CASE ).open('w' ).writelines(SCREAMING_SNAKE_CASE ) lowerCAmelCase__: Any = "patrickvonplaten/t5-tiny-random" lowerCAmelCase__: Tuple = "sshleifer/bart-tiny-random" lowerCAmelCase__: Dict = "sshleifer/tiny-mbart" lowerCAmelCase__: Dict = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class snake_case_ ( lowerCAmelCase ): def __A ( self , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Tuple = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' SCREAMING_SNAKE_CASE_ : Tuple = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() SCREAMING_SNAKE_CASE_ : Dict = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) SCREAMING_SNAKE_CASE_ : List[str] = 'translation_en_to_de' if model == T5_TINY else 'summarization' SCREAMING_SNAKE_CASE_ : List[Any] = F'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(__lowerCAmelCase , 'argv' , __lowerCAmelCase ): run_generate() assert Path(__lowerCAmelCase ).exists() # os.remove(Path(output_file_name)) def __A ( self ): self.run_eval_tester(__lowerCAmelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def __A ( self , __lowerCAmelCase ): self.run_eval_tester(__lowerCAmelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def __A ( self , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' SCREAMING_SNAKE_CASE_ : Dict = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() SCREAMING_SNAKE_CASE_ : str = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } SCREAMING_SNAKE_CASE_ : Union[str, Any] = Path(self.get_auto_remove_tmp_dir() ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = str(tmp_dir / 'scores.json' ) SCREAMING_SNAKE_CASE_ : List[str] = str(tmp_dir / 'val.target' ) _dump_articles(__lowerCAmelCase , text['en'] ) _dump_articles(__lowerCAmelCase , text['de'] ) SCREAMING_SNAKE_CASE_ : Optional[int] = 'translation_en_to_de' if model == T5_TINY else 'summarization' SCREAMING_SNAKE_CASE_ : List[str] = F'\n run_eval_search.py\n {model}\n {str(__lowerCAmelCase )}\n {str(__lowerCAmelCase )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(__lowerCAmelCase , 'argv' , __lowerCAmelCase ): with CaptureStdout() as cs: run_search() SCREAMING_SNAKE_CASE_ : Dict = [' num_beams | length_penalty', model, 'Best score args'] SCREAMING_SNAKE_CASE_ : Dict = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(__lowerCAmelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(__lowerCAmelCase ).exists() os.remove(Path(__lowerCAmelCase ) )
311
0
"""simple docstring""" import argparse import struct import unittest class __magic_name__ : def __init__( self : List[Any] , snake_case_ : bytes ): __snake_case = data # Initialize hash values __snake_case = [ 0x6A_09_E6_67, 0xBB_67_AE_85, 0x3C_6E_F3_72, 0xA5_4F_F5_3A, 0x51_0E_52_7F, 0x9B_05_68_8C, 0x1F_83_D9_AB, 0x5B_E0_CD_19, ] # Initialize round constants __snake_case = [ 0x42_8A_2F_98, 0x71_37_44_91, 0xB5_C0_FB_CF, 0xE9_B5_DB_A5, 0x39_56_C2_5B, 0x59_F1_11_F1, 0x92_3F_82_A4, 0xAB_1C_5E_D5, 0xD8_07_AA_98, 0x12_83_5B_01, 0x24_31_85_BE, 0x55_0C_7D_C3, 0x72_BE_5D_74, 0x80_DE_B1_FE, 0x9B_DC_06_A7, 0xC1_9B_F1_74, 0xE4_9B_69_C1, 0xEF_BE_47_86, 0x0F_C1_9D_C6, 0x24_0C_A1_CC, 0x2D_E9_2C_6F, 0x4A_74_84_AA, 0x5C_B0_A9_DC, 0x76_F9_88_DA, 0x98_3E_51_52, 0xA8_31_C6_6D, 0xB0_03_27_C8, 0xBF_59_7F_C7, 0xC6_E0_0B_F3, 0xD5_A7_91_47, 0x06_CA_63_51, 0x14_29_29_67, 0x27_B7_0A_85, 0x2E_1B_21_38, 0x4D_2C_6D_FC, 0x53_38_0D_13, 0x65_0A_73_54, 0x76_6A_0A_BB, 0x81_C2_C9_2E, 0x92_72_2C_85, 0xA2_BF_E8_A1, 0xA8_1A_66_4B, 0xC2_4B_8B_70, 0xC7_6C_51_A3, 0xD1_92_E8_19, 0xD6_99_06_24, 0xF4_0E_35_85, 0x10_6A_A0_70, 0x19_A4_C1_16, 0x1E_37_6C_08, 0x27_48_77_4C, 0x34_B0_BC_B5, 0x39_1C_0C_B3, 0x4E_D8_AA_4A, 0x5B_9C_CA_4F, 0x68_2E_6F_F3, 0x74_8F_82_EE, 0x78_A5_63_6F, 0x84_C8_78_14, 0x8C_C7_02_08, 0x90_BE_FF_FA, 0xA4_50_6C_EB, 0xBE_F9_A3_F7, 0xC6_71_78_F2, ] __snake_case = self.preprocessing(self.data ) self.final_hash() @staticmethod def lowerCAmelCase ( snake_case_ : bytes ): __snake_case = b"\x80" + (b"\x00" * (63 - (len(snake_case_ ) + 8) % 64)) __snake_case = struct.pack(">Q" , (len(snake_case_ ) * 8) ) return data + padding + big_endian_integer def lowerCAmelCase ( self : Tuple ): # Convert into blocks of 64 bytes __snake_case = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers __snake_case = list(struct.unpack(">16L" , snake_case_ ) ) # add 48 0-ed integers words += [0] * 48 __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array __snake_case = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) __snake_case = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) __snake_case = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_00_00_00_00 # Compression __snake_case = self.ror(snake_case_ , 6 ) ^ self.ror(snake_case_ , 11 ) ^ self.ror(snake_case_ , 25 ) __snake_case = (e & f) ^ ((~e & 0xFF_FF_FF_FF) & g) __snake_case = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_00_00_00_00 __snake_case = self.ror(snake_case_ , 2 ) ^ self.ror(snake_case_ , 13 ) ^ self.ror(snake_case_ , 22 ) __snake_case = (a & b) ^ (a & c) ^ (b & c) __snake_case = (sa + maj) % 0x1_00_00_00_00 __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = ( g, f, e, ((d + tempa) % 0x1_00_00_00_00), c, b, a, ((tempa + tempa) % 0x1_00_00_00_00), ) __snake_case = [a, b, c, d, e, f, g, h] # Modify final values __snake_case = [ ((element + mutated_hash_values[index]) % 0x1_00_00_00_00) for index, element in enumerate(self.hashes ) ] __snake_case = "".join([hex(snake_case_ )[2:].zfill(8 ) for value in self.hashes] ) def lowerCAmelCase ( self : List[Any] , snake_case_ : int , snake_case_ : int ): return 0xFF_FF_FF_FF & (value << (32 - rotations)) | (value >> rotations) class __magic_name__ ( unittest.TestCase ): def lowerCAmelCase ( self : List[str] ): import hashlib __snake_case = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(snake_case_ ).hash , hashlib.shaaaa(snake_case_ ).hexdigest() ) def __UpperCamelCase ( ) -> None: """simple docstring""" import doctest doctest.testmod() __snake_case = argparse.ArgumentParser() parser.add_argument( "-s" , "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument( "-f" , "--file" , dest="input_file" , help="Hash contents of a file" ) __snake_case = parser.parse_args() __snake_case = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , "rb" ) as f: __snake_case = f.read() else: __snake_case = bytes(SCREAMING_SNAKE_CASE , "utf-8" ) print(SHAaaa(SCREAMING_SNAKE_CASE ).hash ) if __name__ == "__main__": main()
163
"""simple docstring""" import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __magic_name__ : @staticmethod def lowerCAmelCase ( *snake_case_ : Dict , **snake_case_ : List[Any] ): pass @is_pipeline_test @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCAmelCase ( self : List[Any] , snake_case_ : Optional[Any] , snake_case_ : int , snake_case_ : Dict ): __snake_case = pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) __snake_case = [ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def lowerCAmelCase ( self : str , snake_case_ : List[Any] , snake_case_ : str ): __snake_case = vqa_pipeline(snake_case_ , top_k=1 ) self.assertEqual( snake_case_ , [ [{"score": ANY(snake_case_ ), "answer": ANY(snake_case_ )}], [{"score": ANY(snake_case_ ), "answer": ANY(snake_case_ )}], ] , ) @require_torch def lowerCAmelCase ( self : Tuple ): __snake_case = pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) __snake_case = "./tests/fixtures/tests_samples/COCO/000000039769.png" __snake_case = "How many cats are there?" __snake_case = vqa_pipeline(image=snake_case_ , question="How many cats are there?" , top_k=2 ) self.assertEqual( snake_case_ , [{"score": ANY(snake_case_ ), "answer": ANY(snake_case_ )}, {"score": ANY(snake_case_ ), "answer": ANY(snake_case_ )}] ) __snake_case = vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( snake_case_ , [{"score": ANY(snake_case_ ), "answer": ANY(snake_case_ )}, {"score": ANY(snake_case_ ), "answer": ANY(snake_case_ )}] ) @slow @require_torch def lowerCAmelCase ( self : List[Any] ): __snake_case = pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) __snake_case = "./tests/fixtures/tests_samples/COCO/000000039769.png" __snake_case = "How many cats are there?" __snake_case = vqa_pipeline(image=snake_case_ , question=snake_case_ , top_k=2 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}] ) __snake_case = vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}] ) __snake_case = vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [[{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def lowerCAmelCase ( self : Dict ): pass
163
1
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case=5 ) -> List[Any]: '''simple docstring''' assert masked_input.count("<mask>" ) == 1 UpperCAmelCase_ : List[Any] = torch.tensor(tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) ).unsqueeze(0 ) # Batch size 1 UpperCAmelCase_ : Tuple = model(__snake_case )[0] # The last hidden-state is the first element of the output tuple UpperCAmelCase_ : Tuple = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() UpperCAmelCase_ : str = logits[0, masked_index, :] UpperCAmelCase_ : Optional[int] = logits.softmax(dim=0 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = prob.topk(k=__snake_case , dim=0 ) UpperCAmelCase_ : int = " ".join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(__snake_case ) )] ) UpperCAmelCase_ : Tuple = tokenizer.mask_token UpperCAmelCase_ : Optional[int] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(" " ) ): UpperCAmelCase_ : Optional[Any] = predicted_token_bpe.replace("\u2581" , " " ) if " {0}".format(__snake_case ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(" {0}".format(__snake_case ) , __snake_case ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(__snake_case , __snake_case ), values[index].item(), predicted_token, ) ) return topk_filled_outputs __lowerCamelCase = CamembertTokenizer.from_pretrained('''camembert-base''') __lowerCamelCase = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() __lowerCamelCase = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
455
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class snake_case_ (lowercase__ ): """simple docstring""" _lowerCamelCase = """lxmert""" _lowerCamelCase = {} def __init__( self ,lowercase=30522 ,lowercase=768 ,lowercase=12 ,lowercase=9500 ,lowercase=1600 ,lowercase=400 ,lowercase=3072 ,lowercase="gelu" ,lowercase=0.1 ,lowercase=0.1 ,lowercase=512 ,lowercase=2 ,lowercase=0.02 ,lowercase=1E-12 ,lowercase=9 ,lowercase=5 ,lowercase=5 ,lowercase=2048 ,lowercase=4 ,lowercase=6.67 ,lowercase=True ,lowercase=True ,lowercase=True ,lowercase=True ,lowercase=True ,lowercase=True ,lowercase=True ,**lowercase ,): """simple docstring""" UpperCAmelCase_ : List[str] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : List[str] = num_attention_heads UpperCAmelCase_ : Dict = hidden_act UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Any = max_position_embeddings UpperCAmelCase_ : str = type_vocab_size UpperCAmelCase_ : Any = initializer_range UpperCAmelCase_ : Optional[Any] = layer_norm_eps UpperCAmelCase_ : Any = num_qa_labels UpperCAmelCase_ : str = num_object_labels UpperCAmelCase_ : Dict = num_attr_labels UpperCAmelCase_ : Tuple = l_layers UpperCAmelCase_ : Tuple = x_layers UpperCAmelCase_ : int = r_layers UpperCAmelCase_ : Optional[Any] = visual_feat_dim UpperCAmelCase_ : List[Any] = visual_pos_dim UpperCAmelCase_ : int = visual_loss_normalizer UpperCAmelCase_ : str = task_matched UpperCAmelCase_ : str = task_mask_lm UpperCAmelCase_ : int = task_obj_predict UpperCAmelCase_ : List[str] = task_qa UpperCAmelCase_ : Optional[int] = visual_obj_loss UpperCAmelCase_ : List[str] = visual_attr_loss UpperCAmelCase_ : str = visual_feat_loss UpperCAmelCase_ : List[Any] = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers} super().__init__(**lowercase)
455
1
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ = 3 , SCREAMING_SNAKE_CASE__ = 7 , SCREAMING_SNAKE_CASE__ = 100_0000 ) -> int: '''simple docstring''' snake_case : str = 0 snake_case : Tuple = 1 for current_denominator in range(1 , limit + 1 ): snake_case : Union[str, Any] = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: snake_case : Optional[int] = current_numerator snake_case : int = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_0_0_0_0_0_0))
638
'''simple docstring''' import os from collections.abc import Iterator def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ = "." ) -> Iterator[str]: '''simple docstring''' for dir_path, dir_names, filenames in os.walk(SCREAMING_SNAKE_CASE__ ): snake_case : Optional[Any] = [d for d in dir_names if d != '''scripts''' and d[0] not in '''._'''] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(SCREAMING_SNAKE_CASE__ )[1] in (".py", ".ipynb"): yield os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).lstrip('''./''' ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> List[str]: '''simple docstring''' return F'{i * " "}*' if i else "\n##" def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: '''simple docstring''' snake_case : Union[str, Any] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(SCREAMING_SNAKE_CASE__ ) or old_parts[i] != new_part) and new_part: print(F'{md_prefix(SCREAMING_SNAKE_CASE__ )} {new_part.replace("_" , " " ).title()}' ) return new_path def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ = "." ) -> None: '''simple docstring''' snake_case : List[Any] = '''''' for filepath in sorted(good_file_paths(SCREAMING_SNAKE_CASE__ ) ): snake_case ,snake_case : Optional[Any] = os.path.split(SCREAMING_SNAKE_CASE__ ) if filepath != old_path: snake_case : Dict = print_path(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case : int = (filepath.count(os.sep ) + 1) if filepath else 0 snake_case : int = F'{filepath}/{filename}'.replace(''' ''' , '''%20''' ) snake_case : int = os.path.splitext(filename.replace('''_''' , ''' ''' ).title() )[0] print(F'{md_prefix(SCREAMING_SNAKE_CASE__ )} [{filename}]({url})' ) if __name__ == "__main__": print_directory_md(".")
638
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
711
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __SCREAMING_SNAKE_CASE : snake_case : int snake_case : Node | None = None snake_case : Node | None = None def _UpperCamelCase (): """simple docstring""" UpperCamelCase__ = Node(1 ) UpperCamelCase__ = Node(2 ) UpperCamelCase__ = Node(3 ) UpperCamelCase__ = Node(4 ) UpperCamelCase__ = Node(5 ) return tree def _UpperCamelCase (a__ :Node | None ): """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def _UpperCamelCase (a__ :Node | None ): """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def _UpperCamelCase (a__ :Node | None ): """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def _UpperCamelCase (a__ :Node | None ): """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def _UpperCamelCase (a__ :Node | None ): """simple docstring""" UpperCamelCase__ = [] if root is None: return output UpperCamelCase__ = deque([root] ) while process_queue: UpperCamelCase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def _UpperCamelCase (a__ :Node | None , a__ :int ): """simple docstring""" UpperCamelCase__ = [] def populate_output(a__ :Node | None , a__ :int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(a__ , a__ ) return output def _UpperCamelCase (a__ :Node | None , a__ :int ): """simple docstring""" UpperCamelCase__ = [] def populate_output(a__ :Node | None , a__ :int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(a__ , a__ ) return output def _UpperCamelCase (a__ :Node | None ): """simple docstring""" if root is None: return [] UpperCamelCase__ = [] UpperCamelCase__ = 0 UpperCamelCase__ = height(a__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(a__ , a__ ) ) UpperCamelCase__ = 1 else: output.append(get_nodes_from_right_to_left(a__ , a__ ) ) UpperCamelCase__ = 0 return output def _UpperCamelCase (): # Main function for testing. """simple docstring""" UpperCamelCase__ = make_tree() print(f"""In-order Traversal: {inorder(a__ )}""" ) print(f"""Pre-order Traversal: {preorder(a__ )}""" ) print(f"""Post-order Traversal: {postorder(a__ )}""" , """\n""" ) print(f"""Height of Tree: {height(a__ )}""" , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(a__ ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(a__ ) + 1 ): print(f"""Level {level}:""" , get_nodes_from_left_to_right(a__ , level=a__ ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(a__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
548
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) SCREAMING_SNAKE_CASE : List[Any] = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[int] = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
89
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class a__ ( nn.Module ): _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Tuple = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _UpperCamelCase ): """simple docstring""" _lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = hidden_states.shape _lowercase : Dict = jax.image.resize( _UpperCamelCase , shape=(batch, height * 2, width * 2, channels) , method="nearest" , ) _lowercase : str = self.conv(_UpperCamelCase ) return hidden_states class a__ ( nn.Module ): _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Union[str, Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _UpperCamelCase ): """simple docstring""" _lowercase : Union[str, Any] = self.conv(_UpperCamelCase ) return hidden_states class a__ ( nn.Module ): _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : int = None _SCREAMING_SNAKE_CASE : float = 0.0 _SCREAMING_SNAKE_CASE : bool = None _SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[int] = self.in_channels if self.out_channels is None else self.out_channels _lowercase : Union[str, Any] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) _lowercase : Dict = nn.Conv( _UpperCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _lowercase : Optional[Any] = nn.Dense(_UpperCamelCase , dtype=self.dtype ) _lowercase : Union[str, Any] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) _lowercase : Tuple = nn.Dropout(self.dropout_prob ) _lowercase : Any = nn.Conv( _UpperCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _lowercase : List[str] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut _lowercase : Optional[int] = None if use_nin_shortcut: _lowercase : Any = nn.Conv( _UpperCamelCase , kernel_size=(1, 1) , strides=(1, 1) , padding="VALID" , dtype=self.dtype , ) def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=True ): """simple docstring""" _lowercase : Any = hidden_states _lowercase : Optional[Any] = self.norma(_UpperCamelCase ) _lowercase : str = nn.swish(_UpperCamelCase ) _lowercase : Any = self.conva(_UpperCamelCase ) _lowercase : Union[str, Any] = self.time_emb_proj(nn.swish(_UpperCamelCase ) ) _lowercase : Tuple = jnp.expand_dims(jnp.expand_dims(_UpperCamelCase , 1 ) , 1 ) _lowercase : Union[str, Any] = hidden_states + temb _lowercase : Any = self.norma(_UpperCamelCase ) _lowercase : str = nn.swish(_UpperCamelCase ) _lowercase : int = self.dropout(_UpperCamelCase , _UpperCamelCase ) _lowercase : Union[str, Any] = self.conva(_UpperCamelCase ) if self.conv_shortcut is not None: _lowercase : Any = self.conv_shortcut(_UpperCamelCase ) return hidden_states + residual
245
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _A = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
711
import sys _A = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def lowercase_ ( A__ ) -> int: """simple docstring""" snake_case = 1 for digit in s: product *= int(A__ ) return product def lowercase_ ( A__ = N ) -> int: """simple docstring""" snake_case = -sys.maxsize - 1 snake_case = n[:13] snake_case = 13 while cur_index < len(A__ ) - 13: if int(n[cur_index] ) >= int(substr[0] ): snake_case = substr[1:] + n[cur_index] cur_index += 1 else: snake_case = max(A__ , str_eval(A__ ) ) snake_case = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f"{solution() = }")
294
0
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class snake_case__ (A__ ): """simple docstring""" def __init__( self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = True , __lowercase = None , __lowercase = False , __lowercase = None , __lowercase = True , __lowercase = "arrow" , **__lowercase , ) -> Optional[Any]: """simple docstring""" super().__init__( split=__UpperCAmelCase , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase , streaming=__UpperCAmelCase , **__UpperCAmelCase , ) a__ : Dict = load_from_cache_file a__ : int = file_format a__ : int = Spark( df=__UpperCAmelCase , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase , working_dir=__UpperCAmelCase , **__UpperCAmelCase , ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) a__ : Dict = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=__UpperCAmelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
136
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" __magic_name__ :int = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def snake_case ( self , __UpperCAmelCase=0 ): '''simple docstring''' lowerCAmelCase__ :List[str] = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(__UpperCAmelCase ) ) lowerCAmelCase__ :List[str] = np.random.RandomState(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = self.get_dummy_inputs() lowerCAmelCase__ :Optional[int] = pipe(**__UpperCAmelCase ).images lowerCAmelCase__ :Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_2_8, 1_2_8, 3) lowerCAmelCase__ :Union[str, Any] = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowerCAmelCase__ :str = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :Tuple = self.get_dummy_inputs() lowerCAmelCase__ :Optional[Any] = pipe(**__UpperCAmelCase ).images lowerCAmelCase__ :Any = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) lowerCAmelCase__ :int = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowerCAmelCase__ :List[str] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) # warmup pass to apply optimizations lowerCAmelCase__ :List[Any] = pipe(**self.get_dummy_inputs() ) lowerCAmelCase__ :Tuple = self.get_dummy_inputs() lowerCAmelCase__ :int = pipe(**__UpperCAmelCase ).images lowerCAmelCase__ :Any = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) lowerCAmelCase__ :Union[str, Any] = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowerCAmelCase__ :Dict = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :Any = self.get_dummy_inputs() lowerCAmelCase__ :List[str] = pipe(**__UpperCAmelCase ).images lowerCAmelCase__ :List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) lowerCAmelCase__ :Optional[int] = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowerCAmelCase__ :str = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :Tuple = self.get_dummy_inputs() lowerCAmelCase__ :Any = pipe(**__UpperCAmelCase ).images lowerCAmelCase__ :Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) lowerCAmelCase__ :int = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowerCAmelCase__ :List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :Any = self.get_dummy_inputs() lowerCAmelCase__ :List[Any] = pipe(**__UpperCAmelCase ).images lowerCAmelCase__ :int = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) lowerCAmelCase__ :Optional[Any] = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def snake_case ( self ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = ort.SessionOptions() lowerCAmelCase__ :Optional[int] = False return options def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) lowerCAmelCase__ :Any = init_image.resize((7_6_8, 5_1_2) ) # using the PNDM scheduler by default lowerCAmelCase__ :Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = 'A fantasy landscape, trending on artstation' lowerCAmelCase__ :Optional[Any] = np.random.RandomState(0 ) lowerCAmelCase__ :List[str] = pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=1_0 , generator=__UpperCAmelCase , output_type='np' , ) lowerCAmelCase__ :Any = output.images lowerCAmelCase__ :List[str] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) lowerCAmelCase__ :List[Any] = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) lowerCAmelCase__ :Optional[Any] = init_image.resize((7_6_8, 5_1_2) ) lowerCAmelCase__ :List[Any] = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) lowerCAmelCase__ :Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=__UpperCAmelCase , safety_checker=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = 'A fantasy landscape, trending on artstation' lowerCAmelCase__ :List[Any] = np.random.RandomState(0 ) lowerCAmelCase__ :List[Any] = pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=2_0 , generator=__UpperCAmelCase , output_type='np' , ) lowerCAmelCase__ :Optional[Any] = output.images lowerCAmelCase__ :int = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) lowerCAmelCase__ :List[Any] = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
93
0
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def lowerCAmelCase_( lowercase_ : Any="ro" , lowercase_ : Optional[int]="en" , lowercase_ : int="wmt16" , lowercase_ : int=None ) -> None: try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('''run pip install datasets''' ) _lowerCamelCase = F"""{src_lang}-{tgt_lang}""" print(F"""Converting {dataset}-{pair}""" ) _lowerCamelCase = datasets.load_dataset(lowercase_ , lowercase_ ) if save_dir is None: _lowerCamelCase = F"""{dataset}-{pair}""" _lowerCamelCase = Path(lowercase_ ) save_dir.mkdir(exist_ok=lowercase_ ) for split in ds.keys(): print(F"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets _lowerCamelCase = '''val''' if split == '''validation''' else split _lowerCamelCase = save_dir.joinpath(F"""{fn}.source""" ) _lowerCamelCase = save_dir.joinpath(F"""{fn}.target""" ) _lowerCamelCase = src_path.open('''w+''' ) _lowerCamelCase = tgt_path.open('''w+''' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): _lowerCamelCase = x['''translation'''] src_fp.write(ex[src_lang] + '''\n''' ) tgt_fp.write(ex[tgt_lang] + '''\n''' ) print(F"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
623
"""simple docstring""" import warnings from .generation import TFGenerationMixin class lowerCamelCase_( A__ ): '''simple docstring''' warnings.warn( 'Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ' 'be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.', A__, )
623
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class UpperCAmelCase ( unittest.TestCase ): def __init__( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any]=7 , __lowerCamelCase : Tuple=3 , __lowerCamelCase : int=3_0 , __lowerCamelCase : Union[str, Any]=4_0_0 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Tuple=0.9 , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : str=[0.5, 0.5, 0.5] , __lowerCamelCase : Union[str, Any]=[0.5, 0.5, 0.5] , ): """simple docstring""" _snake_case = size if size is not None else {'''shortest_edge''': 3_0} _snake_case = crop_size if crop_size is not None else {'''height''': 3_0, '''width''': 3_0} _snake_case = parent _snake_case = batch_size _snake_case = num_channels _snake_case = min_resolution _snake_case = max_resolution _snake_case = do_resize_and_center_crop _snake_case = size _snake_case = crop_pct _snake_case = crop_size _snake_case = do_normalize _snake_case = image_mean _snake_case = image_std def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE,unittest.TestCase ): A__ : Optional[Any] = PoolFormerImageProcessor if is_vision_available() else None def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" _snake_case = PoolFormerImageProcessingTester(self ) @property def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self : List[str] ): """simple docstring""" _snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , '''do_resize_and_center_crop''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''size''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''crop_pct''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''image_std''' ) ) def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 3_0} ) self.assertEqual(image_processor.crop_size , {'''height''': 3_0, '''width''': 3_0} ) _snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2} ) self.assertEqual(image_processor.crop_size , {'''height''': 8_4, '''width''': 8_4} ) def __UpperCAmelCase ( self : Dict ): """simple docstring""" pass def __UpperCAmelCase ( self : Tuple ): """simple docstring""" # Initialize image_processing _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _snake_case = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __UpperCAmelCase ( self : Tuple ): """simple docstring""" # Initialize image_processing _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _snake_case = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" # Initialize image_processing _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _snake_case = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
103
"""simple docstring""" def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> int: return 1 if input_a == input_a else 0 def snake_case ( ) -> None: assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
103
1
def snake_case__ ( __lowercase = 5_0 ) -> int: """simple docstring""" A__ : Any = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f"""{solution() = }""")
182
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib snake_case : Optional[int] = get_logger() snake_case : Optional[dict] = None class lowerCAmelCase__ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self : Optional[Any] , _A : Optional[int]=None , _A : str=None , **_A : Tuple): super().__init__(features=_A) import jax from jaxlib.xla_client import Device if isinstance(_A , _A): raise ValueError( F'Expected {device} to be a `str` not {type(_A)}, as `jaxlib.xla_extension.Device` ' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`.") A__ : Union[str, Any] = device if isinstance(_A , _A) else str(jax.devices()[0]) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: A__ : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys()): logger.warning( F'Device with string identifier {self.device} not listed among the available ' F'devices: {list(DEVICE_MAPPING.keys())}, so falling back to the default ' F'device: {str(jax.devices()[0])}.') A__ : str = str(jax.devices()[0]) A__ : List[Any] = jnp_array_kwargs @staticmethod def _lowercase ( ): import jax return {str(_A): device for device in jax.devices()} def _lowercase ( self : Tuple , _A : int): import jax import jax.numpy as jnp if isinstance(_A , _A) and column: if all( isinstance(_A , jax.Array) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column): return jnp.stack(_A , axis=0) return column def _lowercase ( self : List[str] , _A : Union[str, Any]): import jax import jax.numpy as jnp if isinstance(_A , (str, bytes, type(_A))): return value elif isinstance(_A , (np.character, np.ndarray)) and np.issubdtype(value.dtype , np.character): return value.tolist() A__ : Dict = {} if isinstance(_A , (np.number, np.ndarray)) and np.issubdtype(value.dtype , np.integer): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: A__ : Union[str, Any] = {"dtype": jnp.intaa} else: A__ : int = {"dtype": jnp.intaa} elif isinstance(_A , (np.number, np.ndarray)) and np.issubdtype(value.dtype , np.floating): A__ : str = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_A , PIL.Image.Image): A__ : Any = np.asarray(_A) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: A__ : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device]): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_A , **{**default_dtype, **self.jnp_array_kwargs}) def _lowercase ( self : Dict , _A : Any): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_A , torch.Tensor): return self._tensorize(data_struct.detach().cpu().numpy()[()]) if hasattr(_A , "__array__") and not isinstance(_A , jax.Array): A__ : Any = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_A , np.ndarray): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_A) for substruct in data_struct]) elif isinstance(_A , (list, tuple)): return self._consolidate([self.recursive_tensorize(_A) for substruct in data_struct]) return self._tensorize(_A) def _lowercase ( self : Optional[Any] , _A : dict): return map_nested(self._recursive_tensorize , _A , map_list=_A) def _lowercase ( self : List[str] , _A : pa.Table): A__ : Dict = self.numpy_arrow_extractor().extract_row(_A) A__ : int = self.python_features_decoder.decode_row(_A) return self.recursive_tensorize(_A) def _lowercase ( self : int , _A : pa.Table): A__ : int = self.numpy_arrow_extractor().extract_column(_A) A__ : Optional[int] = self.python_features_decoder.decode_column(_A , pa_table.column_names[0]) A__ : Dict = self.recursive_tensorize(_A) A__ : List[Any] = self._consolidate(_A) return column def _lowercase ( self : Tuple , _A : pa.Table): A__ : Any = self.numpy_arrow_extractor().extract_batch(_A) A__ : str = self.python_features_decoder.decode_batch(_A) A__ : Optional[Any] = self.recursive_tensorize(_A) for column_name in batch: A__ : Optional[int] = self._consolidate(batch[column_name]) return batch
182
1
def __A ( _lowercase ): '''simple docstring''' _A = [0] * len(_lowercase ) _A = [] _A = [1] * len(_lowercase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_lowercase ) ): if indegree[i] == 0: queue.append(_lowercase ) while queue: _A = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: _A = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_lowercase ) print(max(_lowercase ) ) # Adjacency list of Graph __A = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
484
from typing import Union import fire import torch from tqdm import tqdm def __A ( _lowercase , _lowercase = "cpu" , _lowercase = None ): '''simple docstring''' _A = torch.load(_lowercase , map_location=_lowercase ) for k, v in tqdm(state_dict.items() ): if not isinstance(_lowercase , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) _A = v.half() if save_path is None: # overwrite src_path _A = src_path torch.save(_lowercase , _lowercase ) if __name__ == "__main__": fire.Fire(convert)
484
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCamelCase : def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=[10, 20, 30, 40] , SCREAMING_SNAKE_CASE_=[2, 2, 3, 2] , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=["stage2", "stage3", "stage4"] , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=None , ): __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = num_channels __snake_case = num_stages __snake_case = hidden_sizes __snake_case = depths __snake_case = is_training __snake_case = use_labels __snake_case = intermediate_size __snake_case = hidden_act __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = out_features __snake_case = num_labels __snake_case = scope __snake_case = num_stages def __lowerCamelCase ( self ): __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def __lowerCamelCase ( self ): return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=__lowerCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=__lowerCamelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __snake_case = UperNetForSemanticSegmentation(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __snake_case = model(__lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowerCamelCase ( self ): __snake_case = self.prepare_config_and_inputs() ( __snake_case ) = config_and_inputs __snake_case = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase (lowercase__ , lowercase__ , unittest.TestCase ): lowercase__ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase__ = {"""image-segmentation""": UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def __lowerCamelCase ( self ): __snake_case = UperNetModelTester(self ) __snake_case = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def __lowerCamelCase ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self ): return def __lowerCamelCase ( self ): __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(__lowerCamelCase ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def __lowerCamelCase ( self ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowerCamelCase ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def __lowerCamelCase ( self ): pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def __lowerCamelCase ( self ): pass @unittest.skip(reason='UperNet does not have a base model' ) def __lowerCamelCase ( self ): pass @unittest.skip(reason='UperNet does not have a base model' ) def __lowerCamelCase ( self ): pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def __lowerCamelCase ( self ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): def check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __snake_case = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) __snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __snake_case = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def __lowerCamelCase ( self ): __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = _config_zero_init(__lowerCamelCase ) __snake_case = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __snake_case = model_class(config=__lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason='UperNet does not have tied weights' ) def __lowerCamelCase ( self ): pass @slow def __lowerCamelCase ( self ): for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = UperNetForSemanticSegmentation.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def __lowercase( ) -> Union[str, Any]: __snake_case = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k' ,repo_type='dataset' ,filename='ADE_val_00000001.jpg' ) __snake_case = Image.open(_A ).convert('RGB' ) return image @require_torch @require_vision @slow class _lowerCamelCase (unittest.TestCase ): def __lowerCamelCase ( self ): __snake_case = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) __snake_case = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(__lowerCamelCase ) __snake_case = prepare_img() __snake_case = processor(images=__lowerCamelCase , return_tensors='pt' ).to(__lowerCamelCase ) with torch.no_grad(): __snake_case = model(**__lowerCamelCase ) __snake_case = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) __snake_case = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCamelCase , atol=1E-4 ) ) def __lowerCamelCase ( self ): __snake_case = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) __snake_case = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(__lowerCamelCase ) __snake_case = prepare_img() __snake_case = processor(images=__lowerCamelCase , return_tensors='pt' ).to(__lowerCamelCase ) with torch.no_grad(): __snake_case = model(**__lowerCamelCase ) __snake_case = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) __snake_case = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCamelCase , atol=1E-4 ) )
705
from __future__ import annotations from typing import Any def __lowercase( __snake_case : list ) -> int: if not postfix_notation: return 0 __snake_case = {'+', '-', '*', '/'} __snake_case = [] for token in postfix_notation: if token in operations: __snake_case , __snake_case = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(__snake_case ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
345
0
"""simple docstring""" def snake_case_ ( A_ : int = 1_00_00_00 ): '''simple docstring''' _lowerCamelCase : str = set(range(3, A_, 2 ) ) primes.add(2 ) for p in range(3, A_, 2 ): if p not in primes: continue primes.difference_update(set(range(p * p, A_, A_ ) ) ) _lowerCamelCase : Tuple = [float(A_ ) for n in range(limit + 1 )] for p in primes: for n in range(A_, limit + 1, A_ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"""{solution() = }""")
83
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : str = 'Salesforce/blip-image-captioning-base' _snake_case : Union[str, Any] = ( 'This is a tool that generates a description of an image. It takes an input named `image` which should be the ' 'image to caption, and returns a text that contains the description in English.' ) _snake_case : List[Any] = 'image_captioner' _snake_case : Union[str, Any] = AutoModelForVisionaSeq _snake_case : Dict = ['image'] _snake_case : Optional[int] = ['text'] def __init__( self : Union[str, Any] , *lowerCAmelCase__ : Optional[Any] , **lowerCAmelCase__ : Optional[int] ) -> Tuple: '''simple docstring''' requires_backends(self , ['''vision'''] ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : Tuple , lowerCAmelCase__ : "Image" ) -> Optional[int]: '''simple docstring''' return self.pre_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ) def snake_case__ ( self : Any , lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return self.model.generate(**lowerCAmelCase__ ) def snake_case__ ( self : int , lowerCAmelCase__ : List[str] ) -> List[str]: '''simple docstring''' return self.pre_processor.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )[0].strip()
98
0
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge lowerCAmelCase : Optional[int] = [ 'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the' ' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe' ' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.', 'The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal' ' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s' ' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the' ' body.', 'Amnesty International releases its annual report on the death penalty. The report catalogs the use of' ' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the' ' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital' ' punishment.', ] lowerCAmelCase : List[str] = [ 'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .' ' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz' ' had informed his Lufthansa training school of an episode of severe depression, airline says .', 'Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .' ' Israel and the United States opposed the move, which could open the door to war crimes investigations against' ' Israelis .', 'Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to' ' death . Organization claims that governments around the world are using the threat of terrorism to advance' ' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death' ' sentences up by 28% .', ] def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = calculate_rouge(a , a , bootstrap_aggregation=a , rouge_keys=['rouge2', 'rougeL'] ) assert isinstance(a , a ) SCREAMING_SNAKE_CASE_ : Any = calculate_rouge(a , a , bootstrap_aggregation=a , rouge_keys=['rouge2'] ) assert ( pd.DataFrame(no_aggregation['rouge2'] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['rouge2'] ).fmeasure.mean() ) def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = 'rougeLsum' SCREAMING_SNAKE_CASE_ : int = calculate_rouge(a , a , newline_sep=a , rouge_keys=[k] )[k] SCREAMING_SNAKE_CASE_ : Any = calculate_rouge(a , a , newline_sep=a , rouge_keys=[k] )[k] assert score > score_no_sep def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ['rouge1', 'rouge2', 'rougeL'] SCREAMING_SNAKE_CASE_ : Dict = calculate_rouge(a , a , newline_sep=a , rouge_keys=a ) SCREAMING_SNAKE_CASE_ : List[Any] = calculate_rouge(a , a , newline_sep=a , rouge_keys=a ) assert score_sep == score_no_sep def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = [ 'Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.', 'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .', ] SCREAMING_SNAKE_CASE_ : List[Any] = [ 'Margot Frank, died in 1945, a month earlier than previously thought.', 'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of' ' the final seconds on board Flight 9525.', ] assert calculate_rouge(a , a , newline_sep=a ) == calculate_rouge(a , a , newline_sep=a ) def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [ '" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ' ] SCREAMING_SNAKE_CASE_ : List[str] = [ ' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .' ] SCREAMING_SNAKE_CASE_ : List[Any] = calculate_rouge(a , a , rouge_keys=['rougeLsum'] , newline_sep=a )['rougeLsum'] SCREAMING_SNAKE_CASE_ : Dict = calculate_rouge(a , a , rouge_keys=['rougeLsum'] )['rougeLsum'] assert new_score > prev_score def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = Path('examples/seq2seq/test_data/wmt_en_ro' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = calculate_rouge_path(data_dir.joinpath('test.source' ) , data_dir.joinpath('test.target' ) ) assert isinstance(a , a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = calculate_rouge_path( data_dir.joinpath('test.source' ) , data_dir.joinpath('test.target' ) , bootstrap_aggregation=a ) assert isinstance(a , a )
353
def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def A_ ( a = 1_0_0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 2 for i in range(2 , max_n + 1 ): SCREAMING_SNAKE_CASE_ : List[str] = pre_numerator SCREAMING_SNAKE_CASE_ : str = 2 * i // 3 if i % 3 == 0 else 1 SCREAMING_SNAKE_CASE_ : Tuple = cur_numerator SCREAMING_SNAKE_CASE_ : Tuple = e_cont * pre_numerator + temp return sum_digits(a ) if __name__ == "__main__": print(F'{solution() = }')
353
1
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _lowerCAmelCase ( _lowercase , _lowercase , _lowercase ): A__ = [R'h\.\d+\.attn\.bias', R'h\.\d+\.attn\.masked_bias'] @register_to_config def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = 5_0257 , __UpperCAmelCase = 1024 , __UpperCAmelCase = 768 , __UpperCAmelCase = 12 , __UpperCAmelCase = 12 , __UpperCAmelCase = None , __UpperCAmelCase = "gelu_new" , __UpperCAmelCase = 0.1 , __UpperCAmelCase = 0.1 , __UpperCAmelCase = 0.1 , __UpperCAmelCase = 1e-5 , __UpperCAmelCase = 0.02 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = False , ): super().__init__() lowerCAmelCase__ : int = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f"""`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and""" f""" `n_embd`: {n_embd} are not equal.""" ) lowerCAmelCase__ : Tuple = prefix_inner_dim lowerCAmelCase__ : str = prefix_hidden_dim lowerCAmelCase__ : List[Any] = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowerCAmelCase__ : Union[str, Any] = ( nn.Linear(self.prefix_hidden_dim , __UpperCAmelCase ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowerCAmelCase__ : List[str] = GPTaConfig( vocab_size=__UpperCAmelCase , n_positions=__UpperCAmelCase , n_embd=__UpperCAmelCase , n_layer=__UpperCAmelCase , n_head=__UpperCAmelCase , n_inner=__UpperCAmelCase , activation_function=__UpperCAmelCase , resid_pdrop=__UpperCAmelCase , embd_pdrop=__UpperCAmelCase , attn_pdrop=__UpperCAmelCase , layer_norm_epsilon=__UpperCAmelCase , initializer_range=__UpperCAmelCase , scale_attn_weights=__UpperCAmelCase , use_cache=__UpperCAmelCase , scale_attn_by_inverse_layer_idx=__UpperCAmelCase , reorder_and_upcast_attn=__UpperCAmelCase , ) lowerCAmelCase__ : str = GPTaLMHeadModel(__UpperCAmelCase ) def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , ): lowerCAmelCase__ : int = self.transformer.transformer.wte(__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = self.encode_prefix(__UpperCAmelCase ) lowerCAmelCase__ : Tuple = self.decode_prefix(__UpperCAmelCase ) lowerCAmelCase__ : List[str] = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: lowerCAmelCase__ : Dict = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) lowerCAmelCase__ : List[str] = torch.cat((dummy_token, input_ids) , dim=1 ) lowerCAmelCase__ : Optional[Any] = self.transformer(inputs_embeds=__UpperCAmelCase , labels=__UpperCAmelCase , attention_mask=__UpperCAmelCase ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase ): return torch.zeros(__UpperCAmelCase , self.prefix_length , dtype=torch.intaa , device=__UpperCAmelCase ) def __magic_name__( self , __UpperCAmelCase ): return self.encode_prefix(__UpperCAmelCase ) @torch.no_grad() def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ : Union[str, Any] = torch.split(__UpperCAmelCase , 1 , dim=0 ) lowerCAmelCase__ : Union[str, Any] = [] lowerCAmelCase__ : List[str] = [] for feature in features: lowerCAmelCase__ : int = self.decode_prefix(feature.to(__UpperCAmelCase ) ) # back to the clip feature # Only support beam search for now lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.generate_beam( input_embeds=__UpperCAmelCase , device=__UpperCAmelCase , eos_token_id=__UpperCAmelCase ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) lowerCAmelCase__ : Optional[int] = torch.stack(__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = torch.stack(__UpperCAmelCase ) return generated_tokens, generated_seq_lengths @torch.no_grad() def __magic_name__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase = 5 , __UpperCAmelCase = 67 , __UpperCAmelCase = 1.0 , __UpperCAmelCase = None , ): lowerCAmelCase__ : List[Any] = eos_token_id lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : int = None lowerCAmelCase__ : Union[str, Any] = torch.ones(__UpperCAmelCase , device=__UpperCAmelCase , dtype=torch.int ) lowerCAmelCase__ : Tuple = torch.zeros(__UpperCAmelCase , device=__UpperCAmelCase , dtype=torch.bool ) if input_embeds is not None: lowerCAmelCase__ : int = input_embeds else: lowerCAmelCase__ : str = self.transformer.transformer.wte(__UpperCAmelCase ) for i in range(__UpperCAmelCase ): lowerCAmelCase__ : Optional[int] = self.transformer(inputs_embeds=__UpperCAmelCase ) lowerCAmelCase__ : Tuple = outputs.logits lowerCAmelCase__ : str = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) lowerCAmelCase__ : int = logits.softmax(-1 ).log() if scores is None: lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = logits.topk(__UpperCAmelCase , -1 ) lowerCAmelCase__ : Any = generated.expand(__UpperCAmelCase , *generated.shape[1:] ) lowerCAmelCase__ , lowerCAmelCase__ : str = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: lowerCAmelCase__ : Optional[Any] = next_tokens else: lowerCAmelCase__ : List[Any] = tokens.expand(__UpperCAmelCase , *tokens.shape[1:] ) lowerCAmelCase__ : Dict = torch.cat((tokens, next_tokens) , dim=1 ) else: lowerCAmelCase__ : Optional[Any] = -float(np.inf ) lowerCAmelCase__ : Dict = 0 lowerCAmelCase__ : List[Any] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 lowerCAmelCase__ : Tuple = scores_sum / seq_lengths[:, None] lowerCAmelCase__ , lowerCAmelCase__ : int = scores_sum_average.view(-1 ).topk(__UpperCAmelCase , -1 ) lowerCAmelCase__ : Tuple = next_tokens // scores_sum.shape[1] lowerCAmelCase__ : str = seq_lengths[next_tokens_source] lowerCAmelCase__ : Any = next_tokens % scores_sum.shape[1] lowerCAmelCase__ : Union[str, Any] = next_tokens.unsqueeze(1 ) lowerCAmelCase__ : List[Any] = tokens[next_tokens_source] lowerCAmelCase__ : Any = torch.cat((tokens, next_tokens) , dim=1 ) lowerCAmelCase__ : List[Any] = generated[next_tokens_source] lowerCAmelCase__ : Union[str, Any] = scores_sum_average * seq_lengths lowerCAmelCase__ : str = is_stopped[next_tokens_source] lowerCAmelCase__ : Optional[Any] = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) lowerCAmelCase__ : Union[str, Any] = torch.cat((generated, next_token_embed) , dim=1 ) lowerCAmelCase__ : int = is_stopped + next_tokens.eq(__UpperCAmelCase ).squeeze() if is_stopped.all(): break lowerCAmelCase__ : Any = scores / seq_lengths lowerCAmelCase__ : str = scores.argsort(descending=__UpperCAmelCase ) # tokens tensors are already padded to max_seq_length lowerCAmelCase__ : int = [tokens[i] for i in order] lowerCAmelCase__ : Dict = torch.stack(__UpperCAmelCase , dim=0 ) lowerCAmelCase__ : Union[str, Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
678
from manim import * class _lowerCAmelCase ( _lowercase ): def __magic_name__( self ): lowerCAmelCase__ : Tuple = Rectangle(height=0.5 , width=0.5 ) lowerCAmelCase__ : Dict = Rectangle(height=0.25 , width=0.25 ) lowerCAmelCase__ : Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCAmelCase__ : Optional[Any] = [mem.copy() for i in range(6 )] lowerCAmelCase__ : int = [mem.copy() for i in range(6 )] lowerCAmelCase__ : Optional[Any] = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) lowerCAmelCase__ : str = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) lowerCAmelCase__ : List[str] = VGroup(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) lowerCAmelCase__ : int = Text('''CPU''' , font_size=24 ) lowerCAmelCase__ : int = Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = [mem.copy() for i in range(4 )] lowerCAmelCase__ : Tuple = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) lowerCAmelCase__ : Tuple = Text('''GPU''' , font_size=24 ) lowerCAmelCase__ : int = Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(__UpperCAmelCase ) lowerCAmelCase__ : int = [mem.copy() for i in range(6 )] lowerCAmelCase__ : List[Any] = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) lowerCAmelCase__ : Tuple = Text('''Model''' , font_size=24 ) lowerCAmelCase__ : List[Any] = Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(__UpperCAmelCase ) lowerCAmelCase__ : Dict = [] lowerCAmelCase__ : List[str] = [] lowerCAmelCase__ : Optional[Any] = [] for i, rect in enumerate(__UpperCAmelCase ): rect.set_stroke(__UpperCAmelCase ) lowerCAmelCase__ : Any = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__UpperCAmelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__UpperCAmelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=__UpperCAmelCase , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=__UpperCAmelCase , buff=0.0 ) self.add(__UpperCAmelCase ) model_cpu_arr.append(__UpperCAmelCase ) self.add(*__UpperCAmelCase , *__UpperCAmelCase , *__UpperCAmelCase ) lowerCAmelCase__ : Any = [mem.copy() for i in range(6 )] lowerCAmelCase__ : Optional[Any] = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) lowerCAmelCase__ : Any = Text('''Loaded Checkpoint''' , font_size=24 ) lowerCAmelCase__ : Optional[Any] = Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) checkpoint.move_to([3, 0.5, 0] ) self.add(__UpperCAmelCase ) lowerCAmelCase__ : Dict = [] lowerCAmelCase__ : str = [] for i, rect in enumerate(__UpperCAmelCase ): lowerCAmelCase__ : Union[str, Any] = fill.copy().set_fill(__UpperCAmelCase , opacity=0.7 ) target.move_to(__UpperCAmelCase ) ckpt_arr.append(__UpperCAmelCase ) lowerCAmelCase__ : List[str] = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(__UpperCAmelCase ) self.add(*__UpperCAmelCase , *__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase__ : List[Any] = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ : List[str] = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(__UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(__UpperCAmelCase ) lowerCAmelCase__ : str = MarkupText( f"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) lowerCAmelCase__ : Optional[Any] = [meta_mem.copy() for i in range(6 )] lowerCAmelCase__ : Dict = [meta_mem.copy() for i in range(6 )] lowerCAmelCase__ : Union[str, Any] = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) lowerCAmelCase__ : Dict = VGroup(*__UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) lowerCAmelCase__ : str = VGroup(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0 ) lowerCAmelCase__ : List[str] = Text('''Disk''' , font_size=24 ) lowerCAmelCase__ : Any = Group(__UpperCAmelCase , __UpperCAmelCase ).arrange(__UpperCAmelCase , buff=0.5 , aligned_edge=__UpperCAmelCase ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(__UpperCAmelCase , run_time=3 ) , Write(__UpperCAmelCase , run_time=1 ) , Create(__UpperCAmelCase , run_time=1 ) ) lowerCAmelCase__ : str = [] for i, rect in enumerate(__UpperCAmelCase ): lowerCAmelCase__ : Dict = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(__UpperCAmelCase , run_time=1.5 ) ) self.play(*__UpperCAmelCase ) self.play(FadeOut(__UpperCAmelCase ) ) lowerCAmelCase__ : int = MarkupText(f"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__UpperCAmelCase , run_time=3 ) ) self.play( FadeOut(__UpperCAmelCase , __UpperCAmelCase , *__UpperCAmelCase , *__UpperCAmelCase ) , ) self.wait()
678
1
'''simple docstring''' def UpperCamelCase__ ( _lowercase : list ) -> float: __UpperCAmelCase: Union[str, Any] = 0 while len(_lowercase ) > 1: __UpperCAmelCase: Dict = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): __UpperCAmelCase: Any = files.index(min(_lowercase ) ) temp += files[min_index] files.pop(_lowercase ) files.append(_lowercase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
466
'''simple docstring''' def UpperCamelCase__ ( _lowercase : list[int] , _lowercase : list[int] ) -> None: __UpperCAmelCase: Dict = len(_lowercase ) print("""The following activities are selected:""" ) # The first activity is always selected __UpperCAmelCase: Dict = 0 print(_lowercase , end=""",""" ) # Consider rest of the activities for j in range(_lowercase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(_lowercase , end=""",""" ) __UpperCAmelCase: Optional[int] = j if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE_ = [1, 3, 0, 5, 8, 5] SCREAMING_SNAKE_CASE_ = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
466
1
UpperCamelCase = range(2, 20 + 1) UpperCamelCase = [10**k for k in range(ks[-1] + 1)] UpperCamelCase = {} def A ( lowercase__ : List[Any] , lowercase__ : Tuple , lowercase__ : str , lowercase__ : Optional[Any] ) -> Any: UpperCamelCase__ :List[Any] = sum(a_i[j] for j in range(lowercase__ , len(lowercase__ ) ) ) UpperCamelCase__ :str = sum(a_i[j] * base[j] for j in range(min(len(lowercase__ ) , lowercase__ ) ) ) UpperCamelCase__ , UpperCamelCase__ :List[str] = 0, 0 UpperCamelCase__ :Union[str, Any] = n - i UpperCamelCase__ :str = memo.get(lowercase__ ) if sub_memo is not None: UpperCamelCase__ :Tuple = sub_memo.get(lowercase__ ) if jumps is not None and len(lowercase__ ) > 0: # find and make the largest jump without going over UpperCamelCase__ :List[Any] = -1 for _k in range(len(lowercase__ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: UpperCamelCase__ :str = _k break if max_jump >= 0: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Dict = jumps[max_jump] # since the difference between jumps is cached, add c UpperCamelCase__ :Tuple = diff + c for j in range(min(lowercase__ , len(lowercase__ ) ) ): UpperCamelCase__ , UpperCamelCase__ :Any = divmod(lowercase__ , 10 ) if new_c > 0: add(lowercase__ , lowercase__ , lowercase__ ) else: UpperCamelCase__ :Dict = [] else: UpperCamelCase__ :int = {c: []} UpperCamelCase__ :int = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps UpperCamelCase__ , UpperCamelCase__ :Dict = next_term(lowercase__ , k - 1 , i + dn , lowercase__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead UpperCamelCase__ , UpperCamelCase__ :Dict = compute(lowercase__ , lowercase__ , i + dn , lowercase__ ) diff += _diff dn += terms_jumped UpperCamelCase__ :Union[str, Any] = sub_memo[c] # keep jumps sorted by # of terms skipped UpperCamelCase__ :Optional[Any] = 0 while j < len(lowercase__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowercase__ , (diff, dn, k) ) return (diff, dn) def A ( lowercase__ : List[str] , lowercase__ : Optional[int] , lowercase__ : Tuple , lowercase__ : int ) -> Tuple: if i >= n: return 0, i if k > len(lowercase__ ): a_i.extend([0 for _ in range(k - len(lowercase__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) UpperCamelCase__ :Optional[Any] = i UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[int] = 0, 0, 0 for j in range(len(lowercase__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 UpperCamelCase__ :Any = ds_c + ds_b diff += addend UpperCamelCase__ :int = 0 for j in range(lowercase__ ): UpperCamelCase__ :Union[str, Any] = a_i[j] + addend UpperCamelCase__ , UpperCamelCase__ :str = divmod(lowercase__ , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowercase__ , lowercase__ , lowercase__ ) return diff, i - start_i def A ( lowercase__ : Optional[Any] , lowercase__ : Tuple , lowercase__ : List[str] ) -> Any: for j in range(lowercase__ , len(lowercase__ ) ): UpperCamelCase__ :Union[str, Any] = digits[j] + addend if s >= 10: UpperCamelCase__ , UpperCamelCase__ :int = divmod(lowercase__ , 10 ) UpperCamelCase__ :Optional[int] = addend // 10 + quotient else: UpperCamelCase__ :Union[str, Any] = s UpperCamelCase__ :Dict = addend // 10 if addend == 0: break while addend > 0: UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = divmod(lowercase__ , 10 ) digits.append(lowercase__ ) def A ( lowercase__ : int = 10**15 ) -> int: UpperCamelCase__ :Any = [1] UpperCamelCase__ :Any = 1 UpperCamelCase__ :Dict = 0 while True: UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = next_term(lowercase__ , 20 , i + dn , lowercase__ ) dn += terms_jumped if dn == n - i: break UpperCamelCase__ :Tuple = 0 for j in range(len(lowercase__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
45
from __future__ import annotations def A ( lowercase__ : int ) -> list[int]: UpperCamelCase__ :Union[str, Any] = [True] * limit UpperCamelCase__ :int = False UpperCamelCase__ :Optional[Any] = False UpperCamelCase__ :str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): UpperCamelCase__ :List[Any] = i * 2 while index < limit: UpperCamelCase__ :Tuple = False UpperCamelCase__ :Tuple = index + i UpperCamelCase__ :str = [2] for i in range(3 , lowercase__ , 2 ): if is_prime[i]: primes.append(lowercase__ ) return primes def A ( lowercase__ : int = 100_0000 ) -> int: UpperCamelCase__ :Any = prime_sieve(lowercase__ ) UpperCamelCase__ :Optional[int] = 0 UpperCamelCase__ :Optional[Any] = 0 for i in range(len(lowercase__ ) ): for j in range(i + length , len(lowercase__ ) ): UpperCamelCase__ :Any = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: UpperCamelCase__ :Union[str, Any] = j - i UpperCamelCase__ :Any = sol return largest if __name__ == "__main__": print(f'''{solution() = }''')
45
1
"""simple docstring""" def a__ ( __lowercase , __lowercase , __lowercase , __lowercase ) -> str: # Return True if there is node that has not iterated. _A = [False] * len(__lowercase ) _A = [] queue.append(__lowercase ) _A = True while queue: _A = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__lowercase ) _A = True _A = u return visited[t] def a__ ( __lowercase , __lowercase , __lowercase ) -> int: # This array is filled by BFS and to store path _A = [-1] * (len(__lowercase )) _A = 0 while bfs(__lowercase , __lowercase , __lowercase , __lowercase ): _A = float("Inf" ) _A = sink while s != source: # Find the minimum value in select path _A = min(__lowercase , graph[parent[s]][s] ) _A = parent[s] max_flow += path_flow _A = sink while v != source: _A = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _A = parent[v] return max_flow a_ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] a_ , a_ = 0, 5 print(ford_fulkerson(graph, source, sink))
621
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase): __UpperCamelCase = StableDiffusionInpaintPipeline __UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCamelCase = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __UpperCamelCase = frozenset([]) def a_ ( self : Dict ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) _A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a__ , ) _A = PNDMScheduler(skip_prk_steps=a__ ) torch.manual_seed(0 ) _A = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) _A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="gelu" , projection_dim=5_12 , ) _A = CLIPTextModel(a__ ) _A = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _A = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def a_ ( self : Optional[Any] , a__ : List[str] , a__ : Tuple=0 ) -> int: '''simple docstring''' _A = floats_tensor((1, 3, 32, 32) , rng=random.Random(a__ ) ).to(a__ ) _A = image.cpu().permute(0 , 2 , 3 , 1 )[0] _A = Image.fromarray(np.uinta(a__ ) ).convert("RGB" ).resize((64, 64) ) _A = Image.fromarray(np.uinta(image + 4 ) ).convert("RGB" ).resize((64, 64) ) if str(a__ ).startswith("mps" ): _A = torch.manual_seed(a__ ) else: _A = torch.Generator(device=a__ ).manual_seed(a__ ) _A = { "prompt": "A painting of a squirrel eating a burger", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def a_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' _A = "cpu" # ensure determinism for the device-dependent torch.Generator _A = self.get_dummy_components() _A = StableDiffusionInpaintPipeline(**a__ ) _A = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) _A = self.get_dummy_inputs(a__ ) _A = sd_pipe(**a__ ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A = np.array([0.4_7_2_7, 0.5_7_3_5, 0.3_9_4_1, 0.5_4_4_6, 0.5_9_2_6, 0.4_3_9_4, 0.5_0_6_2, 0.4_6_5_4, 0.4_4_7_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a_ ( self : str ) -> Union[str, Any]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class snake_case ( unittest.TestCase): def a_ ( self : List[Any] ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' _A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) _A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) _A = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench.npy" ) _A = "stabilityai/stable-diffusion-2-inpainting" _A = StableDiffusionInpaintPipeline.from_pretrained(a__ , safety_checker=a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() _A = "Face of a yellow cat, high resolution, sitting on a park bench" _A = torch.manual_seed(0 ) _A = pipe( prompt=a__ , image=a__ , mask_image=a__ , generator=a__ , output_type="np" , ) _A = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9E-3 def a_ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' _A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) _A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) _A = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench_fp16.npy" ) _A = "stabilityai/stable-diffusion-2-inpainting" _A = StableDiffusionInpaintPipeline.from_pretrained( a__ , torch_dtype=torch.floataa , safety_checker=a__ , ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() _A = "Face of a yellow cat, high resolution, sitting on a park bench" _A = torch.manual_seed(0 ) _A = pipe( prompt=a__ , image=a__ , mask_image=a__ , generator=a__ , output_type="np" , ) _A = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def a_ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) _A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) _A = "stabilityai/stable-diffusion-2-inpainting" _A = PNDMScheduler.from_pretrained(a__ , subfolder="scheduler" ) _A = StableDiffusionInpaintPipeline.from_pretrained( a__ , safety_checker=a__ , scheduler=a__ , torch_dtype=torch.floataa , ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _A = "Face of a yellow cat, high resolution, sitting on a park bench" _A = torch.manual_seed(0 ) _A = pipe( prompt=a__ , image=a__ , mask_image=a__ , generator=a__ , num_inference_steps=2 , output_type="np" , ) _A = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.6_5 * 10**9
621
1
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. a = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir ,"""schedulers/""" ) ) __SCREAMING_SNAKE_CASE = self.diffusers_dir shutil.copy( os.path.join(lowerCamelCase ,"""src/diffusers/schedulers/scheduling_ddpm.py""" ) ,os.path.join(self.diffusers_dir ,"""schedulers/scheduling_ddpm.py""" ) ,) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """src/diffusers""" shutil.rmtree(self.diffusers_dir ) def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : List[str] ,lowerCamelCase : Tuple ,lowerCamelCase : Optional[Any] ,lowerCamelCase : List[Any]=None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: __SCREAMING_SNAKE_CASE = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result __SCREAMING_SNAKE_CASE = black.Mode(target_versions={black.TargetVersion.PYaa} ,line_length=119 ) __SCREAMING_SNAKE_CASE = black.format_str(lowerCamelCase ,mode=lowerCamelCase ) __SCREAMING_SNAKE_CASE = os.path.join(self.diffusers_dir ,"""new_code.py""" ) with open(lowerCamelCase ,"""w""" ,newline="""\n""" ) as f: f.write(lowerCamelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCamelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name ,overwrite=lowerCamelCase ) with open(lowerCamelCase ,"""r""" ) as f: self.assertTrue(f.read() ,lowerCamelCase ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = check_copies.find_code_in_diffusers("""schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ) self.assertEqual(lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ,"""DDPMSchedulerOutput""" ,REFERENCE_CODE + """\n""" ,) # With no empty line at the end self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ,"""DDPMSchedulerOutput""" ,lowerCamelCase ,) # Copy consistency with rename self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" ,"""TestSchedulerOutput""" ,re.sub("""DDPM""" ,"""Test""" ,lowerCamelCase ) ,) # Copy consistency with a really long name __SCREAMING_SNAKE_CASE = """TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" ,f"""{long_class_name}SchedulerOutput""" ,re.sub("""Bert""" ,lowerCamelCase ,lowerCamelCase ) ,) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" ,"""TestSchedulerOutput""" ,lowerCamelCase ,overwrite_result=re.sub("""DDPM""" ,"""Test""" ,lowerCamelCase ) ,)
109
def __magic_name__ ( SCREAMING_SNAKE_CASE = 50 ) -> int: _lowercase : Optional[int] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
66
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class a ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase_ : str = field(default='image-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) UpperCamelCase_ : ClassVar[Features] = Features({'image': Image()} ) UpperCamelCase_ : ClassVar[Features] = Features({'labels': ClassLabel} ) UpperCamelCase_ : str = "image" UpperCamelCase_ : str = "labels" def UpperCAmelCase_ ( self : Tuple , lowerCamelCase__ : int ) -> List[Any]: """simple docstring""" if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , lowerCamelCase__ ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) __lowercase = copy.deepcopy(self ) __lowercase = self.label_schema.copy() __lowercase = features[self.label_column] __lowercase = label_schema return task_template @property def UpperCAmelCase_ ( self : Tuple ) -> Dict[str, str]: """simple docstring""" return { self.image_column: "image", self.label_column: "labels", }
716
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class a ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def UpperCAmelCase_ ( self : List[str] , lowerCamelCase__ : float ) -> float: """simple docstring""" return 0.0 def _A( UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int ) -> tuple[int | float, int | float]: '''simple docstring''' __lowercase = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) __lowercase = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def _A( UpperCamelCase__ : FilterType , UpperCamelCase__ : int ) -> None: '''simple docstring''' __lowercase = 512 __lowercase = [1] + [0] * (size - 1) __lowercase = [filter_type.process(UpperCamelCase__ ) for item in inputs] __lowercase = [0] * (samplerate - size) # zero-padding outputs += filler __lowercase = np.abs(np.fft.fft(UpperCamelCase__ ) ) __lowercase = 20 * np.logaa(UpperCamelCase__ ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) # Display within reasonable bounds __lowercase = get_bounds(UpperCamelCase__ , UpperCamelCase__ ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('''Gain (dB)''' ) plt.plot(UpperCamelCase__ ) plt.show() def _A( UpperCamelCase__ : FilterType , UpperCamelCase__ : int ) -> None: '''simple docstring''' __lowercase = 512 __lowercase = [1] + [0] * (size - 1) __lowercase = [filter_type.process(UpperCamelCase__ ) for item in inputs] __lowercase = [0] * (samplerate - size) # zero-padding outputs += filler __lowercase = np.angle(np.fft.fft(UpperCamelCase__ ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('''Phase shift (Radians)''' ) plt.plot(np.unwrap(UpperCamelCase__ , -2 * pi ) ) plt.show()
362
0
from __future__ import annotations import requests def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> dict: a = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(__UpperCamelCase).json() def SCREAMING_SNAKE_CASE ( __UpperCamelCase = 10) -> list[dict]: a = "https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty" a = requests.get(__UpperCamelCase).json()[:max_stories] return [get_hackernews_story(__UpperCamelCase) for story_id in story_ids] def SCREAMING_SNAKE_CASE ( __UpperCamelCase = 10) -> str: a = hackernews_top_stories(__UpperCamelCase) return "\n".join("* [{title}]({url})".format(**__UpperCamelCase) for story in stories) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
515
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : int = logging.get_logger(__name__) lowercase__ : Any = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class a__ ( UpperCamelCase__ ): a : int = """audio-spectrogram-transformer""" def __init__( self , A=768 , A=12 , A=12 , A=3072 , A="gelu" , A=0.0 , A=0.0 , A=0.0_2 , A=1e-12 , A=16 , A=True , A=10 , A=10 , A=1024 , A=128 , **A , ) -> Any: '''simple docstring''' super().__init__(**A ) a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = layer_norm_eps a = patch_size a = qkv_bias a = frequency_stride a = time_stride a = max_length a = num_mel_bins
515
1
_lowercase : List[Any] ={ '''Pillow''': '''Pillow''', '''accelerate''': '''accelerate>=0.11.0''', '''compel''': '''compel==0.1.8''', '''black''': '''black~=23.1''', '''datasets''': '''datasets''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.13.2''', '''requests-mock''': '''requests-mock==1.10.0''', '''importlib_metadata''': '''importlib_metadata''', '''invisible-watermark''': '''invisible-watermark''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2''', '''jaxlib''': '''jaxlib>=0.1.65''', '''Jinja2''': '''Jinja2''', '''k-diffusion''': '''k-diffusion>=0.0.12''', '''torchsde''': '''torchsde''', '''note_seq''': '''note_seq''', '''librosa''': '''librosa''', '''numpy''': '''numpy''', '''omegaconf''': '''omegaconf''', '''parameterized''': '''parameterized''', '''protobuf''': '''protobuf>=3.20.3,<4''', '''pytest''': '''pytest''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''ruff''': '''ruff>=0.0.241''', '''safetensors''': '''safetensors''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''scipy''': '''scipy''', '''onnx''': '''onnx''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''tensorboard''': '''tensorboard''', '''torch''': '''torch>=1.4''', '''torchvision''': '''torchvision''', '''transformers''': '''transformers>=4.25.1''', '''urllib3''': '''urllib3<=2.0.0''', }
661
import math def A__ ( lowercase: int ) -> list: A : Optional[Any] =[True] * n A : Tuple =False A : List[Any] =False A : Dict =True for i in range(3, int(n**0.5 + 1 ), 2 ): A : Dict =i * 2 while index < n: A : Dict =False A : Dict =index + i A : Tuple =[2] for i in range(3, lowercase, 2 ): if is_prime[i]: primes.append(lowercase ) return primes def A__ ( lowercase: int = 999_966_663_333 ) -> int: A : Optional[int] =math.floor(math.sqrt(lowercase ) ) + 100 A : Optional[int] =prime_sieve(lowercase ) A : Optional[Any] =0 A : List[Any] =0 A : Union[str, Any] =primes[prime_index] while (last_prime**2) <= limit: A : Tuple =primes[prime_index + 1] A : Optional[int] =last_prime**2 A : Tuple =next_prime**2 # Get numbers divisible by lps(current) A : int =lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) A : List[Any] =upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps A : Any =0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair A : List[str] =next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
661
1
def __lowerCAmelCase ( _UpperCamelCase ) -> int: '''simple docstring''' lowerCamelCase__: Optional[Any] = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) lowerCamelCase__: List[Any] = hex_num[0] == """-""" if is_negative: lowerCamelCase__: Optional[int] = hex_num[1:] try: lowerCamelCase__: Dict = int(_UpperCamelCase , 16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) lowerCamelCase__: Union[str, Any] = """""" while int_num > 0: lowerCamelCase__: Dict = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
306
_lowercase = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} _lowercase = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> list[int]: '''simple docstring''' lowerCamelCase__: Optional[int] = True lowerCamelCase__: Union[str, Any] = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) order.append(_UpperCamelCase ) return order def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> list[int]: '''simple docstring''' lowerCamelCase__: Union[str, Any] = True lowerCamelCase__: Optional[int] = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return component def __lowerCAmelCase ( _UpperCamelCase ) -> list[list[int]]: '''simple docstring''' lowerCamelCase__: List[Any] = len(_UpperCamelCase ) * [False] lowerCamelCase__: dict[int, list[int]] = {vert: [] for vert in range(len(_UpperCamelCase ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(_UpperCamelCase ) lowerCamelCase__: Tuple = [] for i, was_visited in enumerate(_UpperCamelCase ): if not was_visited: order += topology_sort(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowerCamelCase__: Tuple = [] lowerCamelCase__: Optional[Any] = len(_UpperCamelCase ) * [False] for i in range(len(_UpperCamelCase ) ): lowerCamelCase__: Optional[Any] = order[len(_UpperCamelCase ) - i - 1] if not visited[vert]: lowerCamelCase__: Optional[Any] = find_components(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) components_list.append(_UpperCamelCase ) return components_list
306
1
__UpperCamelCase : List[str] = 0 # The first color of the flag. __UpperCamelCase : Any = 1 # The second color of the flag. __UpperCamelCase : Union[str, Any] = 2 # The third color of the flag. __UpperCamelCase : Union[str, Any] = (red, white, blue) def snake_case_ ( __lowercase : List[str] ): if not sequence: return [] if len(__lowercase ) == 1: return list(__lowercase ) UpperCAmelCase_ : Tuple = 0 UpperCAmelCase_ : Any = len(__lowercase ) - 1 UpperCAmelCase_ : str = 0 while mid <= high: if sequence[mid] == colors[0]: UpperCAmelCase_ : Optional[Any] = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: UpperCAmelCase_ : List[str] = sequence[high], sequence[mid] high -= 1 else: UpperCAmelCase_ : int = F'''The elements inside the sequence must contains only {colors} values''' raise ValueError(__lowercase ) return sequence if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : Union[str, Any] = input('Enter numbers separated by commas:\n').strip() __UpperCamelCase : Optional[Any] = [int(item.strip()) for item in user_input.split(',')] print(F'{dutch_national_flag_sort(unsorted)}')
718
import math import qiskit def snake_case_ ( __lowercase = 1 , __lowercase = 1 , __lowercase = 1 ): if ( isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers UpperCAmelCase_ : Any = qiskit.QuantumRegister(4 , '''qr''' ) UpperCAmelCase_ : List[str] = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries UpperCAmelCase_ : Any = [input_a, input_a, carry_in] UpperCAmelCase_ : Dict = qiskit.QuantumCircuit(__lowercase , __lowercase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__lowercase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__lowercase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__lowercase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __lowercase ) # measure the last two qbits UpperCAmelCase_ : Optional[int] = qiskit.Aer.get_backend('''aer_simulator''' ) UpperCAmelCase_ : List[str] = qiskit.execute(__lowercase , __lowercase , shots=1_0_0_0 ) return job.result().get_counts(__lowercase ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
641
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : int , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[int]=7 , lowerCamelCase : int=3 , lowerCamelCase : Any=30 , lowerCamelCase : Union[str, Any]=400 , lowerCamelCase : List[str]=True , lowerCamelCase : Union[str, Any]=None , lowerCamelCase : List[Any]=True , lowerCamelCase : Optional[Any]=1 / 255 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : Tuple=[0.5, 0.5, 0.5] , lowerCamelCase : Union[str, Any]=[0.5, 0.5, 0.5] , lowerCamelCase : Any=True , ) -> str: """simple docstring""" # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _UpperCAmelCase = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std _UpperCAmelCase = do_pad def lowerCamelCase ( self : str ) -> str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def lowerCamelCase ( self : Tuple , lowerCamelCase : Any , lowerCamelCase : Optional[Any]=False ) -> str: """simple docstring""" if not batched: _UpperCAmelCase = image_inputs[0] if isinstance(lowerCamelCase , Image.Image ): _UpperCAmelCase , _UpperCAmelCase = image.size else: _UpperCAmelCase , _UpperCAmelCase = image.shape[1], image.shape[2] if w < h: _UpperCAmelCase = int(self.size["""shortest_edge"""] * h / w ) _UpperCAmelCase = self.size["""shortest_edge"""] elif w > h: _UpperCAmelCase = self.size["""shortest_edge"""] _UpperCAmelCase = int(self.size["""shortest_edge"""] * w / h ) else: _UpperCAmelCase = self.size["""shortest_edge"""] _UpperCAmelCase = self.size["""shortest_edge"""] else: _UpperCAmelCase = [] for image in image_inputs: _UpperCAmelCase , _UpperCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _UpperCAmelCase = max(lowerCamelCase , key=lambda lowerCamelCase : item[0] )[0] _UpperCAmelCase = max(lowerCamelCase , key=lambda lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase = DetrImageProcessor if is_vision_available() else None def lowerCamelCase ( self : Tuple ) -> Dict: """simple docstring""" _UpperCAmelCase = DetrImageProcessingTester(self ) @property def lowerCamelCase ( self : Dict ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase , """image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_rescale""" ) ) self.assertTrue(hasattr(lowerCamelCase , """rescale_factor""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_pad""" ) ) def lowerCamelCase ( self : Any ) -> int: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , lowerCamelCase ) _UpperCAmelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCamelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , lowerCamelCase ) def lowerCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" pass def lowerCamelCase ( self : Any ) -> Tuple: """simple docstring""" # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) _UpperCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase ( self : List[str] ) -> Any: """simple docstring""" # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCamelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" # prepare image and target _UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: _UpperCAmelCase = json.loads(f.read() ) _UpperCAmelCase = {"""image_id""": 3_9769, """annotations""": target} # encode them _UpperCAmelCase = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" ) _UpperCAmelCase = image_processing(images=lowerCamelCase , annotations=lowerCamelCase , return_tensors="""pt""" ) # verify pixel values _UpperCAmelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowerCamelCase ) _UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowerCamelCase , atol=1E-4 ) ) # verify area _UpperCAmelCase = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowerCamelCase ) ) # verify boxes _UpperCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowerCamelCase ) _UpperCAmelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowerCamelCase , atol=1E-3 ) ) # verify image_id _UpperCAmelCase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowerCamelCase ) ) # verify is_crowd _UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowerCamelCase ) ) # verify class_labels _UpperCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowerCamelCase ) ) # verify orig_size _UpperCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowerCamelCase ) ) # verify size _UpperCAmelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowerCamelCase ) ) @slow def lowerCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" # prepare image, target and masks_path _UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: _UpperCAmelCase = json.loads(f.read() ) _UpperCAmelCase = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} _UpperCAmelCase = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them _UpperCAmelCase = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" ) _UpperCAmelCase = image_processing(images=lowerCamelCase , annotations=lowerCamelCase , masks_path=lowerCamelCase , return_tensors="""pt""" ) # verify pixel values _UpperCAmelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowerCamelCase ) _UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowerCamelCase , atol=1E-4 ) ) # verify area _UpperCAmelCase = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowerCamelCase ) ) # verify boxes _UpperCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowerCamelCase ) _UpperCAmelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowerCamelCase , atol=1E-3 ) ) # verify image_id _UpperCAmelCase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowerCamelCase ) ) # verify is_crowd _UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowerCamelCase ) ) # verify class_labels _UpperCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowerCamelCase ) ) # verify masks _UpperCAmelCase = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowerCamelCase ) # verify orig_size _UpperCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowerCamelCase ) ) # verify size _UpperCAmelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowerCamelCase ) )
108
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase_ = logging.get_logger(__name__) class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self , A = True , A = None , A = None , A = PILImageResampling.BILINEAR , A = True , A = 1 / 255 , A = True , A = None , A = None , **A , ) -> None: super().__init__(**A ) _SCREAMING_SNAKE_CASE = size if size is not None else {"""shortest_edge""": 384} _SCREAMING_SNAKE_CASE = get_size_dict(A , default_to_square=A ) _SCREAMING_SNAKE_CASE = do_resize _SCREAMING_SNAKE_CASE = size # Default value set here for backwards compatibility where the value in config is None _SCREAMING_SNAKE_CASE = crop_pct if crop_pct is not None else 224 / 256 _SCREAMING_SNAKE_CASE = resample _SCREAMING_SNAKE_CASE = do_rescale _SCREAMING_SNAKE_CASE = rescale_factor _SCREAMING_SNAKE_CASE = do_normalize _SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _SCREAMING_SNAKE_CASE = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case_( self , A , A , A , A = PILImageResampling.BICUBIC , A = None , **A , ) -> np.ndarray: _SCREAMING_SNAKE_CASE = get_size_dict(A , default_to_square=A ) if "shortest_edge" not in size: raise ValueError(f'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) _SCREAMING_SNAKE_CASE = size["""shortest_edge"""] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct _SCREAMING_SNAKE_CASE = int(shortest_edge / crop_pct ) _SCREAMING_SNAKE_CASE = get_resize_output_image_size(A , size=A , default_to_square=A ) _SCREAMING_SNAKE_CASE = resize(image=A , size=A , resample=A , data_format=A , **A ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=A , size=(shortest_edge, shortest_edge) , data_format=A , **A ) else: # warping (no cropping) when evaluated at 384 or larger return resize( A , size=(shortest_edge, shortest_edge) , resample=A , data_format=A , **A ) def snake_case_( self , A , A , A = None , **A , ) -> List[str]: return rescale(A , scale=A , data_format=A , **A ) def snake_case_( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def snake_case_( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: _SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize _SCREAMING_SNAKE_CASE = crop_pct if crop_pct is not None else self.crop_pct _SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample _SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale _SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor _SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize _SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean _SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std _SCREAMING_SNAKE_CASE = size if size is not None else self.size _SCREAMING_SNAKE_CASE = get_size_dict(A , default_to_square=A ) _SCREAMING_SNAKE_CASE = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("""crop_pct must be specified if size < 384.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _SCREAMING_SNAKE_CASE = [to_numpy_array(A ) for image in images] if do_resize: _SCREAMING_SNAKE_CASE = [self.resize(image=A , size=A , crop_pct=A , resample=A ) for image in images] if do_rescale: _SCREAMING_SNAKE_CASE = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: _SCREAMING_SNAKE_CASE = [self.normalize(image=A , mean=A , std=A ) for image in images] _SCREAMING_SNAKE_CASE = [to_channel_dimension_format(A , A ) for image in images] _SCREAMING_SNAKE_CASE = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A )
314
0
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =DownBlockaD # noqa F405 UpperCamelCase__ ="down" def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): _lowerCAmelCase = [-0.0_2_3_2, -0.9_8_6_9, 0.8_0_5_4, -0.0_6_3_7, -0.1_6_8_8, -1.4_2_6_4, 0.4_4_7_0, -1.3_3_9_4, 0.0_9_0_4] super().test_output(lowercase__ ) class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =ResnetDownsampleBlockaD # noqa F405 UpperCamelCase__ ="down" def SCREAMING_SNAKE_CASE__ ( self : str ): _lowerCAmelCase = [0.0_7_1_0, 0.2_4_1_0, -0.7_3_2_0, -1.0_7_5_7, -1.1_3_4_3, 0.3_5_4_0, -0.0_1_3_3, -0.2_5_7_6, 0.0_9_4_8] super().test_output(lowercase__ ) class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =AttnDownBlockaD # noqa F405 UpperCamelCase__ ="down" def SCREAMING_SNAKE_CASE__ ( self : Tuple ): _lowerCAmelCase = [0.0_6_3_6, 0.8_9_6_4, -0.6_2_3_4, -1.0_1_3_1, 0.0_8_4_4, 0.4_9_3_5, 0.3_4_3_7, 0.0_9_1_1, -0.2_9_5_7] super().test_output(lowercase__ ) class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =CrossAttnDownBlockaD # noqa F405 UpperCamelCase__ ="down" def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): _lowerCAmelCase , _lowerCAmelCase = super().prepare_init_args_and_inputs_for_common() _lowerCAmelCase = 32 return init_dict, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase = [0.2_2_3_8, -0.7_3_9_6, -0.2_2_5_5, -0.3_8_2_9, 0.1_9_2_5, 1.1_6_6_5, 0.0_6_0_3, -0.7_2_9_5, 0.1_9_8_3] super().test_output(lowercase__ ) class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =SimpleCrossAttnDownBlockaD # noqa F405 UpperCamelCase__ ="down" @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return super().get_dummy_input(include_encoder_hidden_states=lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): _lowerCAmelCase , _lowerCAmelCase = super().prepare_init_args_and_inputs_for_common() _lowerCAmelCase = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == 'mps' , 'MPS result is not consistent' ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): _lowerCAmelCase = [0.7_9_2_1, -0.0_9_9_2, -0.1_9_6_2, -0.7_6_9_5, -0.4_2_4_2, 0.7_8_0_4, 0.4_7_3_7, 0.2_7_6_5, 0.3_3_3_8] super().test_output(lowercase__ ) class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =SkipDownBlockaD # noqa F405 UpperCamelCase__ ="down" @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): return super().get_dummy_input(include_skip_sample=lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = [-0.0_8_4_5, -0.2_0_8_7, -0.2_4_6_5, 0.0_9_7_1, 0.1_9_0_0, -0.0_4_8_4, 0.2_6_6_4, 0.4_1_7_9, 0.5_0_6_9] super().test_output(lowercase__ ) class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =AttnSkipDownBlockaD # noqa F405 UpperCamelCase__ ="down" @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): return super().get_dummy_input(include_skip_sample=lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): _lowerCAmelCase = [0.5_5_3_9, 0.1_6_0_9, 0.4_9_2_4, 0.0_5_3_7, -0.1_9_9_5, 0.4_0_5_0, 0.0_9_7_9, -0.2_7_2_1, -0.0_6_4_2] super().test_output(lowercase__ ) class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =DownEncoderBlockaD # noqa F405 UpperCamelCase__ ="down" @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return super().get_dummy_input(include_temb=lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = { 'in_channels': 32, 'out_channels': 32, } _lowerCAmelCase = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : int ): _lowerCAmelCase = [1.1_1_0_2, 0.5_3_0_2, 0.4_8_7_2, -0.0_0_2_3, -0.8_0_4_2, 0.0_4_8_3, -0.3_4_8_9, -0.5_6_3_2, 0.7_6_2_6] super().test_output(lowercase__ ) class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =AttnDownEncoderBlockaD # noqa F405 UpperCamelCase__ ="down" @property def SCREAMING_SNAKE_CASE__ ( self : Dict ): return super().get_dummy_input(include_temb=lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase = { 'in_channels': 32, 'out_channels': 32, } _lowerCAmelCase = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : str ): _lowerCAmelCase = [0.8_9_6_6, -0.1_4_8_6, 0.8_5_6_8, 0.8_1_4_1, -0.9_0_4_6, -0.1_3_4_2, -0.0_9_7_2, -0.7_4_1_7, 0.1_5_3_8] super().test_output(lowercase__ ) class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =UNetMidBlockaD # noqa F405 UpperCamelCase__ ="mid" def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): _lowerCAmelCase = { 'in_channels': 32, 'temb_channels': 1_28, } _lowerCAmelCase = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase = [-0.1_0_6_2, 1.7_2_4_8, 0.3_4_9_4, 1.4_5_6_9, -0.0_9_1_0, -1.2_4_2_1, -0.9_9_8_4, 0.6_7_3_6, 1.0_0_2_8] super().test_output(lowercase__ ) class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =UNetMidBlockaDCrossAttn # noqa F405 UpperCamelCase__ ="mid" def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): _lowerCAmelCase , _lowerCAmelCase = super().prepare_init_args_and_inputs_for_common() _lowerCAmelCase = 32 return init_dict, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = [0.0_1_8_7, 2.4_2_2_0, 0.4_4_8_4, 1.1_2_0_3, -0.6_1_2_1, -1.5_1_2_2, -0.8_2_7_0, 0.7_8_5_1, 1.8_3_3_5] super().test_output(lowercase__ ) class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =UNetMidBlockaDSimpleCrossAttn # noqa F405 UpperCamelCase__ ="mid" @property def SCREAMING_SNAKE_CASE__ ( self : str ): return super().get_dummy_input(include_encoder_hidden_states=lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : str ): _lowerCAmelCase , _lowerCAmelCase = super().prepare_init_args_and_inputs_for_common() _lowerCAmelCase = 32 return init_dict, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : int ): _lowerCAmelCase = [0.7_1_4_3, 1.9_9_7_4, 0.5_4_4_8, 1.3_9_7_7, 0.1_2_8_2, -1.1_2_3_7, -1.4_2_3_8, 0.5_5_3_0, 0.8_8_8_0] super().test_output(lowercase__ ) class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =UpBlockaD # noqa F405 UpperCamelCase__ ="up" @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): _lowerCAmelCase = [-0.2_0_4_1, -0.4_1_6_5, -0.3_0_2_2, 0.0_0_4_1, -0.6_6_2_8, -0.7_0_5_3, 0.1_9_2_8, -0.0_3_2_5, 0.0_5_2_3] super().test_output(lowercase__ ) class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =ResnetUpsampleBlockaD # noqa F405 UpperCamelCase__ ="up" @property def SCREAMING_SNAKE_CASE__ ( self : Dict ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): _lowerCAmelCase = [0.2_2_8_7, 0.3_5_4_9, -0.1_3_4_6, 0.4_7_9_7, -0.1_7_1_5, -0.9_6_4_9, 0.7_3_0_5, -0.5_8_6_4, -0.6_2_4_4] super().test_output(lowercase__ ) class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =CrossAttnUpBlockaD # noqa F405 UpperCamelCase__ ="up" @property def SCREAMING_SNAKE_CASE__ ( self : Any ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase , _lowerCAmelCase = super().prepare_init_args_and_inputs_for_common() _lowerCAmelCase = 32 return init_dict, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): _lowerCAmelCase = [-0.1_4_0_3, -0.3_5_1_5, -0.0_4_2_0, -0.1_4_2_5, 0.3_1_6_7, 0.5_0_9_4, -0.2_1_8_1, 0.5_9_3_1, 0.5_5_8_2] super().test_output(lowercase__ ) class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =SimpleCrossAttnUpBlockaD # noqa F405 UpperCamelCase__ ="up" @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase__ , include_encoder_hidden_states=lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase , _lowerCAmelCase = super().prepare_init_args_and_inputs_for_common() _lowerCAmelCase = 32 return init_dict, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : int ): _lowerCAmelCase = [0.2_6_4_5, 0.1_4_8_0, 0.0_9_0_9, 0.8_0_4_4, -0.9_7_5_8, -0.9_0_8_3, 0.0_9_9_4, -1.1_4_5_3, -0.7_4_0_2] super().test_output(lowercase__ ) class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =AttnUpBlockaD # noqa F405 UpperCamelCase__ ="up" @property def SCREAMING_SNAKE_CASE__ ( self : Dict ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase__ ) @unittest.skipIf(torch_device == 'mps' , 'MPS result is not consistent' ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): _lowerCAmelCase = [0.0_9_7_9, 0.1_3_2_6, 0.0_0_2_1, 0.0_6_5_9, 0.2_2_4_9, 0.0_0_5_9, 0.1_1_3_2, 0.5_9_5_2, 0.1_0_3_3] super().test_output(lowercase__ ) class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =SkipUpBlockaD # noqa F405 UpperCamelCase__ ="up" @property def SCREAMING_SNAKE_CASE__ ( self : int ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : str ): _lowerCAmelCase = [-0.0_8_9_3, -0.1_2_3_4, -0.1_5_0_6, -0.0_3_3_2, 0.0_1_2_3, -0.0_2_1_1, 0.0_5_6_6, 0.0_1_4_3, 0.0_3_6_2] super().test_output(lowercase__ ) class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =AttnSkipUpBlockaD # noqa F405 UpperCamelCase__ ="up" @property def SCREAMING_SNAKE_CASE__ ( self : Any ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase = [0.0_3_6_1, 0.0_6_1_7, 0.2_7_8_7, -0.0_3_5_0, 0.0_3_4_2, 0.3_4_2_1, -0.0_8_4_3, 0.0_9_1_3, 0.3_0_1_5] super().test_output(lowercase__ ) class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =UpDecoderBlockaD # noqa F405 UpperCamelCase__ ="up" @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): return super().get_dummy_input(include_temb=lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): _lowerCAmelCase = {'in_channels': 32, 'out_channels': 32} _lowerCAmelCase = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): _lowerCAmelCase = [0.4_4_0_4, 0.1_9_9_8, -0.9_8_8_6, -0.3_3_2_0, -0.3_1_2_8, -0.7_0_3_4, -0.6_9_5_5, -0.2_3_3_8, -0.3_1_3_7] super().test_output(lowercase__ ) class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =AttnUpDecoderBlockaD # noqa F405 UpperCamelCase__ ="up" @property def SCREAMING_SNAKE_CASE__ ( self : int ): return super().get_dummy_input(include_temb=lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): _lowerCAmelCase = {'in_channels': 32, 'out_channels': 32} _lowerCAmelCase = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase = [0.6_7_3_8, 0.4_4_9_1, 0.1_0_5_5, 1.0_7_1_0, 0.7_3_1_6, 0.3_3_3_9, 0.3_3_5_2, 0.1_0_2_3, 0.3_5_6_8] super().test_output(lowercase__ )
713
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase__ : def __init__( self : int , lowercase__ : Tuple , lowercase__ : Union[str, Any]=13 , lowercase__ : Optional[Any]=7 , lowercase__ : List[str]=True , lowercase__ : Any=True , lowercase__ : int=True , lowercase__ : Tuple=True , lowercase__ : str=99 , lowercase__ : Optional[Any]=32 , lowercase__ : Dict=5 , lowercase__ : Tuple=4 , lowercase__ : Optional[Any]=37 , lowercase__ : Tuple="gelu" , lowercase__ : List[str]=0.1 , lowercase__ : Union[str, Any]=0.1 , lowercase__ : Union[str, Any]=5_12 , lowercase__ : Optional[Any]=16 , lowercase__ : int=2 , lowercase__ : Union[str, Any]=0.0_2 , lowercase__ : Optional[int]=3 , lowercase__ : List[str]=4 , lowercase__ : Any=None , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self : str ): return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , lowercase__ : List[str] , lowercase__ : str , lowercase__ : Tuple , lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : str , lowercase__ : Dict ): _lowerCAmelCase = NystromformerModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ ) _lowerCAmelCase = model(lowercase__ , token_type_ids=lowercase__ ) _lowerCAmelCase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : List[str] , lowercase__ : Union[str, Any] , lowercase__ : Union[str, Any] , lowercase__ : Any , lowercase__ : Any ): _lowerCAmelCase = NystromformerForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , lowercase__ : Optional[Any] , lowercase__ : Dict , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : Optional[int] ): _lowerCAmelCase = NystromformerForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , start_positions=lowercase__ , end_positions=lowercase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : List[str] , lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : Tuple ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = NystromformerForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , lowercase__ : Tuple , lowercase__ : Any , lowercase__ : Tuple , lowercase__ : List[Any] , lowercase__ : str , lowercase__ : Any , lowercase__ : Optional[int] ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = NystromformerForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : str , lowercase__ : Optional[Any] , lowercase__ : Tuple , lowercase__ : Any , lowercase__ : List[Any] , lowercase__ : Tuple , lowercase__ : Optional[int] , lowercase__ : List[str] ): _lowerCAmelCase = self.num_choices _lowerCAmelCase = NystromformerForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = model( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase__ =( { "feature-extraction": NystromformerModel, "fill-mask": NystromformerForMaskedLM, "question-answering": NystromformerForQuestionAnswering, "text-classification": NystromformerForSequenceClassification, "token-classification": NystromformerForTokenClassification, "zero-shot": NystromformerForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ =False UpperCamelCase__ =False def SCREAMING_SNAKE_CASE__ ( self : List[str] ): _lowerCAmelCase = NystromformerModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=lowercase__ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : str ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase = type self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : str ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self : Tuple ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = NystromformerModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @require_torch class lowerCamelCase__ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self : Tuple ): _lowerCAmelCase = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) _lowerCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): _lowerCAmelCase = model(lowercase__ )[0] _lowerCAmelCase = torch.Size((1, 6, 7_68) ) self.assertEqual(output.shape , lowercase__ ) _lowerCAmelCase = torch.tensor( [[[-0.4_5_3_2, -0.0_9_3_6, 0.5_1_3_7], [-0.2_6_7_6, 0.0_6_2_8, 0.6_1_8_6], [-0.3_6_2_9, -0.1_7_2_6, 0.4_7_1_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): _lowerCAmelCase = 'the [MASK] of Belgium is Brussels' _lowerCAmelCase = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) _lowerCAmelCase = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) _lowerCAmelCase = tokenizer(lowercase__ , return_tensors='pt' ) with torch.no_grad(): _lowerCAmelCase = model(encoding.input_ids ).logits _lowerCAmelCase = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(lowercase__ ) , 'capital' )
225
0
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def lowerCamelCase ( ) ->tuple[list[int], int]: _SCREAMING_SNAKE_CASE = [randint(-1000 , 1000 ) for i in range(10 )] _SCREAMING_SNAKE_CASE = randint(-5000 , 5000 ) return (arr, r) lowercase_ = make_dataset() def lowerCamelCase ( __lowerCamelCase : list[int] , __lowerCamelCase : int ) ->tuple[int, ...]: for triplet in permutations(__lowerCamelCase , 3 ): if sum(__lowerCamelCase ) == target: return tuple(sorted(__lowerCamelCase ) ) return (0, 0, 0) def lowerCamelCase ( __lowerCamelCase : list[int] , __lowerCamelCase : int ) ->tuple[int, int, int]: arr.sort() _SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) for i in range(n - 1 ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def lowerCamelCase ( ) ->tuple[float, float]: _SCREAMING_SNAKE_CASE = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ _SCREAMING_SNAKE_CASE = """ triplet_sum1(*dataset) """ _SCREAMING_SNAKE_CASE = """ triplet_sum2(*dataset) """ _SCREAMING_SNAKE_CASE = repeat(setup=__lowerCamelCase , stmt=__lowerCamelCase , repeat=5 , number=1_0000 ) _SCREAMING_SNAKE_CASE = repeat(setup=__lowerCamelCase , stmt=__lowerCamelCase , repeat=5 , number=1_0000 ) return (min(__lowerCamelCase ), min(__lowerCamelCase )) if __name__ == "__main__": from doctest import testmod testmod() lowercase_ = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
314
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor lowercase_ = logging.get_logger(__name__) class a_ ( snake_case_ ): '''simple docstring''' def __init__( self , *A , **A ) -> None: warnings.warn( """The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DeiTImageProcessor instead.""" , A , ) super().__init__(*A , **A )
314
1
import re def _snake_case ( __snake_case ): _UpperCamelCase = re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' ) if match := re.search(__snake_case , __snake_case ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("+918827897895"))
702
from __future__ import annotations import math class lowerCAmelCase_ : def __init__( self : int , _A : int ): _UpperCamelCase = size # approximate the overall size of segment tree with given value _UpperCamelCase = [0 for i in range(0 , 4 * size )] # create array to store lazy update _UpperCamelCase = [0 for i in range(0 , 4 * size )] _UpperCamelCase = [0 for i in range(0 , 4 * size )] # flag for lazy update def UpperCamelCase_ ( self : str , _A : int ): return idx * 2 def UpperCamelCase_ ( self : Any , _A : int ): return idx * 2 + 1 def UpperCamelCase_ ( self : Union[str, Any] , _A : int , _A : int , _A : int , _A : list[int] ): if left_element == right_element: _UpperCamelCase = a[left_element - 1] else: _UpperCamelCase = (left_element + right_element) // 2 self.build(self.left(_A ) , _A , _A , _A ) self.build(self.right(_A ) , mid + 1 , _A , _A ) _UpperCamelCase = max( self.segment_tree[self.left(_A )] , self.segment_tree[self.right(_A )] ) def UpperCamelCase_ ( self : Tuple , _A : int , _A : int , _A : int , _A : int , _A : int , _A : int ): if self.flag[idx] is True: _UpperCamelCase = self.lazy[idx] _UpperCamelCase = False if left_element != right_element: _UpperCamelCase = self.lazy[idx] _UpperCamelCase = self.lazy[idx] _UpperCamelCase = True _UpperCamelCase = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: _UpperCamelCase = val if left_element != right_element: _UpperCamelCase = val _UpperCamelCase = val _UpperCamelCase = True _UpperCamelCase = True return True _UpperCamelCase = (left_element + right_element) // 2 self.update(self.left(_A ) , _A , _A , _A , _A , _A ) self.update(self.right(_A ) , mid + 1 , _A , _A , _A , _A ) _UpperCamelCase = max( self.segment_tree[self.left(_A )] , self.segment_tree[self.right(_A )] ) return True def UpperCamelCase_ ( self : Any , _A : int , _A : int , _A : int , _A : int , _A : int ): if self.flag[idx] is True: _UpperCamelCase = self.lazy[idx] _UpperCamelCase = False if left_element != right_element: _UpperCamelCase = self.lazy[idx] _UpperCamelCase = self.lazy[idx] _UpperCamelCase = True _UpperCamelCase = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] _UpperCamelCase = (left_element + right_element) // 2 _UpperCamelCase = self.query(self.left(_A ) , _A , _A , _A , _A ) _UpperCamelCase = self.query(self.right(_A ) , mid + 1 , _A , _A , _A ) return max(_A , _A ) def __str__( self : Tuple ): return str([self.query(1 , 1 , self.size , _A , _A ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": _lowerCAmelCase = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] _lowerCAmelCase = 15 _lowerCAmelCase = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
71
0
from __future__ import annotations _UpperCAmelCase : Union[str, Any] = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> tuple[list[list[int]], list[list[int]]]: lowerCamelCase__ : Tuple = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_UpperCAmelCase ) ) ] # the reference grid lowerCamelCase__ : List[Any] = 1 lowerCamelCase__ : Union[str, Any] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_UpperCAmelCase ) ) ] # the action grid lowerCamelCase__ : Union[str, Any] = init[0] lowerCamelCase__ : int = init[1] lowerCamelCase__ : Optional[int] = 0 lowerCamelCase__ : Optional[int] = g + heuristic[x][y] # cost from starting cell to destination cell lowerCamelCase__ : List[Any] = [[f, g, x, y]] lowerCamelCase__ : Tuple = False # flag that is set when search is complete lowerCamelCase__ : Union[str, Any] = False # flag set if we can't find expand while not found and not resign: if len(_UpperCAmelCase ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() lowerCamelCase__ : List[Any] = cell.pop() lowerCamelCase__ : Optional[int] = next_cell[2] lowerCamelCase__ : Tuple = next_cell[3] lowerCamelCase__ : int = next_cell[1] if x == goal[0] and y == goal[1]: lowerCamelCase__ : str = True else: for i in range(len(_UpperCAmelCase ) ): # to try out different valid actions lowerCamelCase__ : Dict = x + DIRECTIONS[i][0] lowerCamelCase__ : str = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_UpperCAmelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: lowerCamelCase__ : List[Any] = g + cost lowerCamelCase__ : Optional[Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) lowerCamelCase__ : List[Any] = 1 lowerCamelCase__ : Optional[int] = i lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : Dict = goal[0] lowerCamelCase__ : Optional[Any] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: lowerCamelCase__ : int = x - DIRECTIONS[action[x][y]][0] lowerCamelCase__ : Optional[Any] = y - DIRECTIONS[action[x][y]][1] lowerCamelCase__ : Optional[Any] = xa lowerCamelCase__ : List[str] = ya invpath.append([x, y] ) lowerCamelCase__ : Optional[int] = [] for i in range(len(_UpperCAmelCase ) ): path.append(invpath[len(_UpperCAmelCase ) - 1 - i] ) return path, action if __name__ == "__main__": _UpperCAmelCase : Optional[int] = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] _UpperCAmelCase : Dict = [0, 0] # all coordinates are given in format [y,x] _UpperCAmelCase : int = [len(grid) - 1, len(grid[0]) - 1] _UpperCAmelCase : Dict = 1 # the cost map which pushes the path closer to the goal _UpperCAmelCase : Any = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): _UpperCAmelCase : Dict = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map _UpperCAmelCase : List[Any] = 99 _UpperCAmelCase ,_UpperCAmelCase : Dict = search(grid, init, goal, cost, heuristic) print("""ACTION MAP""") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
295
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = """philschmid/bart-large-cnn-samsum""" UpperCAmelCase__ = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) UpperCAmelCase__ = """summarizer""" UpperCAmelCase__ = AutoTokenizer UpperCAmelCase__ = AutoModelForSeqaSeqLM UpperCAmelCase__ = ["""text"""] UpperCAmelCase__ = ["""text"""] def A_ ( self : Tuple , UpperCAmelCase : List[Any] ) -> List[str]: return self.pre_processor(UpperCAmelCase , return_tensors='pt' , truncation=UpperCAmelCase ) def A_ ( self : Optional[int] , UpperCAmelCase : Dict ) -> str: return self.model.generate(**UpperCAmelCase )[0] def A_ ( self : Tuple , UpperCAmelCase : List[Any] ) -> Union[str, Any]: return self.pre_processor.decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase )
295
1
'''simple docstring''' def _UpperCamelCase ( _a : list , _a : list , _a : int ): """simple docstring""" if len(_a ) != len(_a ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. __UpperCamelCase : Union[str, Any] = [p / w for p, w in zip(_a , _a )] # Creating a copy of the list and sorting profit/weight in ascending order __UpperCamelCase : Union[str, Any] = sorted(_a ) # declaring useful variables __UpperCamelCase : Any = len(_a ) __UpperCamelCase : Dict = 0 __UpperCamelCase : List[Any] = 0 __UpperCamelCase : str = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight __UpperCamelCase : Any = sorted_profit_by_weight[length - i - 1] __UpperCamelCase : Tuple = profit_by_weight.index(_a ) __UpperCamelCase : Union[str, Any] = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) a= [int(x) for x in input('''Input profits separated by spaces: ''').split()] a= [int(x) for x in input('''Input weights separated by spaces: ''').split()] a= int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
287
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a= { '''configuration_bridgetower''': [ '''BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BridgeTowerConfig''', '''BridgeTowerTextConfig''', '''BridgeTowerVisionConfig''', ], '''processing_bridgetower''': ['''BridgeTowerProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a= ['''BridgeTowerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a= [ '''BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BridgeTowerForContrastiveLearning''', '''BridgeTowerForImageAndTextRetrieval''', '''BridgeTowerForMaskedLM''', '''BridgeTowerModel''', '''BridgeTowerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys a= _LazyModule(__name__, globals()['''__file__'''], _import_structure)
287
1
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""image_processor""", """tokenizer"""] UpperCamelCase__ = """BlipImageProcessor""" UpperCamelCase__ = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] )->int: _UpperCAmelCase = False super().__init__(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = self.image_processor def __call__( self : Optional[int] , __UpperCamelCase : ImageInput = None , __UpperCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[bool, str, PaddingStrategy] = False , __UpperCamelCase : Union[bool, str, TruncationStrategy] = None , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : int = 0 , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[str, TensorType]] = None , **__UpperCamelCase : Any , )->BatchEncoding: if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _UpperCAmelCase = self.tokenizer _UpperCAmelCase = self.tokenizer( text=__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , stride=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_overflowing_tokens=__UpperCamelCase , return_special_tokens_mask=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_length=__UpperCamelCase , verbose=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) return text_encoding # add pixel_values _UpperCAmelCase = self.image_processor(__UpperCamelCase , return_tensors=__UpperCamelCase ) if text is not None: _UpperCAmelCase = self.tokenizer( text=__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , stride=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_overflowing_tokens=__UpperCamelCase , return_special_tokens_mask=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_length=__UpperCamelCase , verbose=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) else: _UpperCAmelCase = None if text_encoding is not None: encoding_image_processor.update(__UpperCamelCase ) return encoding_image_processor def lowercase__ ( self : Dict , *__UpperCamelCase : Dict , **__UpperCamelCase : Tuple )->Union[str, Any]: return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Any , *__UpperCamelCase : Any , **__UpperCamelCase : int )->Union[str, Any]: return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property def lowercase__ ( self : Union[str, Any] )->Dict: _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
602
"""simple docstring""" __A : Optional[int] = [ "Audio", "Array2D", "Array3D", "Array4D", "Array5D", "ClassLabel", "Features", "Sequence", "Value", "Image", "Translation", "TranslationVariableLanguages", ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
602
1
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case = None ,__snake_case = None ,__snake_case = None ,) -> Tuple: '''simple docstring''' if config_name_or_path is None: lowerCamelCase__ = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base''' if generator_tokenizer_name_or_path is None: lowerCamelCase__ = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: lowerCamelCase__ = question_encoder_name_or_path lowerCamelCase__ = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration # Save model. lowerCamelCase__ = RagConfig.from_pretrained(__snake_case ) lowerCamelCase__ = AutoConfig.from_pretrained(__snake_case ) lowerCamelCase__ = AutoConfig.from_pretrained(__snake_case ) lowerCamelCase__ = gen_config lowerCamelCase__ = question_encoder_config lowerCamelCase__ = model_class.from_pretrained_question_encoder_generator( __snake_case ,__snake_case ,config=__snake_case ) rag_model.save_pretrained(__snake_case ) # Sanity check. model_class.from_pretrained(__snake_case ) # Save tokenizers. lowerCamelCase__ = AutoTokenizer.from_pretrained(__snake_case ) gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' ) lowerCamelCase__ = AutoTokenizer.from_pretrained(__snake_case ) question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token"], required=True, type=str, help="RAG model type: rag_sequence, rag_token", ) parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.") parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier") parser.add_argument( "--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier" ) parser.add_argument( "--generator_tokenizer_name_or_path", type=str, help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``", ) parser.add_argument( "--question_encoder_tokenizer_name_or_path", type=str, help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``", ) parser.add_argument( "--config_name_or_path", type=str, help=( "Identifier of the model config to use, if not provided, resolves to a base config for a given" " ``model_type``" ), ) _a = parser.parse_args() _a = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
29
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor _a = logging.get_logger(__name__) class __A ( lowerCAmelCase ): '''simple docstring''' def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , __lowerCAmelCase , ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
29
1
from math import factorial, pi def UpperCamelCase_ ( __a , __a = 30 ) -> float: if not isinstance(__a , (int, float) ): raise ValueError("maclaurin_sin() requires either an int or float for theta" ) if not isinstance(__a , __a ) or accuracy <= 0: raise ValueError("maclaurin_sin() requires a positive int for accuracy" ) a__ : Optional[Any] = float(__a ) a__ : Any = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(__a ) ) def UpperCamelCase_ ( __a , __a = 30 ) -> float: if not isinstance(__a , (int, float) ): raise ValueError("maclaurin_cos() requires either an int or float for theta" ) if not isinstance(__a , __a ) or accuracy <= 0: raise ValueError("maclaurin_cos() requires a positive int for accuracy" ) a__ : Union[str, Any] = float(__a ) a__ : Dict = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(__a ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
37
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def lowerCamelCase_ ( ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = ArgumentParser('Accelerate CLI tool' , usage='accelerate <command> [<args>]' , allow_abbrev=UpperCamelCase__ ) __lowerCamelCase = parser.add_subparsers(help='accelerate command helpers' ) # Register commands get_config_parser(subparsers=UpperCamelCase__ ) env_command_parser(subparsers=UpperCamelCase__ ) launch_command_parser(subparsers=UpperCamelCase__ ) tpu_command_parser(subparsers=UpperCamelCase__ ) test_command_parser(subparsers=UpperCamelCase__ ) # Let's go __lowerCamelCase = parser.parse_args() if not hasattr(UpperCamelCase__ , 'func' ): parser.print_help() exit(1 ) # Run args.func(UpperCamelCase__ ) if __name__ == "__main__": main()
469
0
def __snake_case ( _UpperCAmelCase ): """simple docstring""" if num < 0: return False lowercase = num lowercase = 0 while num > 0: lowercase = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
720
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __magic_name__ = logging.get_logger(__name__) def __snake_case ( _UpperCAmelCase ): """simple docstring""" lowercase = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): lowercase = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): lowercase = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowercase = key[key.find('patch_embed' ) + len('patch_embed' )] lowercase = key.replace(f"""patch_embed{idx}""" , f"""patch_embeddings.{int(_UpperCAmelCase )-1}""" ) if "norm" in key: lowercase = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowercase = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] lowercase = key.replace(f"""layer_norm{idx}""" , f"""layer_norm.{int(_UpperCAmelCase )-1}""" ) if "layer_norm1" in key: lowercase = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowercase = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowercase = key[key.find('block' ) + len('block' )] lowercase = key.replace(f"""block{idx}""" , f"""block.{int(_UpperCAmelCase )-1}""" ) if "attn.q" in key: lowercase = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowercase = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowercase = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowercase = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowercase = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowercase = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowercase = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowercase = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowercase = key[key.find('linear_c' ) + len('linear_c' )] lowercase = key.replace(f"""linear_c{idx}""" , f"""linear_c.{int(_UpperCAmelCase )-1}""" ) if "bot_conv" in key: lowercase = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: lowercase = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: lowercase = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: lowercase = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: lowercase = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: lowercase = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: lowercase = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): lowercase = key.replace('module.last_layer_depth' , 'head.head' ) lowercase = value return new_state_dict def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowercase = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) lowercase = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict lowercase = kv_weight[ : config.hidden_sizes[i], : ] lowercase = kv_bias[: config.hidden_sizes[i]] lowercase = kv_weight[ config.hidden_sizes[i] :, : ] lowercase = kv_bias[config.hidden_sizes[i] :] def __snake_case ( ): """simple docstring""" lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return image @torch.no_grad() def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=None ): """simple docstring""" lowercase = GLPNConfig(hidden_sizes=[64, 1_28, 3_20, 5_12] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowercase = GLPNImageProcessor() # prepare image lowercase = prepare_img() lowercase = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict lowercase = torch.load(_UpperCAmelCase , map_location=torch.device('cpu' ) ) # rename keys lowercase = rename_keys(_UpperCAmelCase ) # key and value matrices need special treatment read_in_k_v(_UpperCAmelCase , _UpperCAmelCase ) # create HuggingFace model and load state dict lowercase = GLPNForDepthEstimation(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() # forward pass lowercase = model(_UpperCAmelCase ) lowercase = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowercase = torch.tensor( [[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] ) elif "kitti" in model_name: lowercase = torch.tensor( [[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] ) else: raise ValueError(f"""Unknown model name: {model_name}""" ) lowercase = torch.Size([1, 4_80, 6_40] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , _UpperCAmelCase , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=_UpperCAmelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=_UpperCAmelCase , ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.''' ) parser.add_argument( '''--model_name''', default='''glpn-kitti''', type=str, help='''Name of the model in case you\'re pushing to the hub.''', ) __magic_name__ = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
314
0