code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow __lowerCAmelCase : int = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) __lowerCAmelCase : List[Any] = logging.getLogger() def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) __UpperCAmelCase = parser.parse_args() return args.f def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any="eval" ): """simple docstring""" __UpperCAmelCase = os.path.join(UpperCamelCase__ , f"""{split}_results.json""" ) if os.path.exists(UpperCamelCase__ ): with open(UpperCamelCase__ , '''r''' ) as f: return json.load(UpperCamelCase__ ) raise ValueError(f"""can't find {path}""" ) __lowerCAmelCase : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A ( UpperCAmelCase ): def snake_case__ ( self : List[Any] ) -> Union[str, Any]: __UpperCAmelCase = self.get_auto_remove_tmp_dir() __UpperCAmelCase = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(__a , '''argv''' , __a ): run_flax_glue.main() __UpperCAmelCase = get_results(__a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.7_5 ) @slow def snake_case__ ( self : Optional[Any] ) -> Optional[int]: __UpperCAmelCase = self.get_auto_remove_tmp_dir() __UpperCAmelCase = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(__a , '''argv''' , __a ): run_clm_flax.main() __UpperCAmelCase = get_results(__a ) self.assertLess(result['''eval_perplexity'''] , 1_0_0 ) @slow def snake_case__ ( self : Dict ) -> List[str]: __UpperCAmelCase = self.get_auto_remove_tmp_dir() __UpperCAmelCase = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(__a , '''argv''' , __a ): run_summarization_flax.main() __UpperCAmelCase = get_results(__a , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 1_0 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def snake_case__ ( self : Any ) -> List[Any]: __UpperCAmelCase = self.get_auto_remove_tmp_dir() __UpperCAmelCase = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(__a , '''argv''' , __a ): run_mlm_flax.main() __UpperCAmelCase = get_results(__a ) self.assertLess(result['''eval_perplexity'''] , 4_2 ) @slow def snake_case__ ( self : Dict ) -> str: __UpperCAmelCase = self.get_auto_remove_tmp_dir() __UpperCAmelCase = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(__a , '''argv''' , __a ): run_ta_mlm_flax.main() __UpperCAmelCase = get_results(__a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.4_2 ) @slow def snake_case__ ( self : Dict ) -> Tuple: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu __UpperCAmelCase = 7 if get_gpu_count() > 1 else 2 __UpperCAmelCase = self.get_auto_remove_tmp_dir() __UpperCAmelCase = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(__a , '''argv''' , __a ): run_flax_ner.main() __UpperCAmelCase = get_results(__a ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.7_5 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def snake_case__ ( self : Optional[Any] ) -> List[Any]: __UpperCAmelCase = self.get_auto_remove_tmp_dir() __UpperCAmelCase = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(__a , '''argv''' , __a ): run_qa.main() __UpperCAmelCase = get_results(__a ) self.assertGreaterEqual(result['''eval_f1'''] , 3_0 ) self.assertGreaterEqual(result['''eval_exact'''] , 3_0 )
262
'''simple docstring''' import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class A : def __init__( self : List[str] , __a : Any , __a : int=9_9 , __a : Any=1_3 , __a : Tuple=7 , __a : Tuple=9 , __a : Tuple=True , __a : Union[str, Any]=True , __a : List[Any]=False , __a : Optional[Any]=3_2 , __a : str=5 , __a : Optional[int]=4 , __a : Union[str, Any]=3_7 , __a : List[str]=8 , __a : Optional[int]=0.1 , __a : List[str]=0.0_0_2 , __a : List[Any]=1 , __a : str=0 , __a : Dict=0 , __a : int=None , __a : List[Any]=None , ) -> Tuple: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = encoder_seq_length __UpperCAmelCase = decoder_seq_length # For common tests __UpperCAmelCase = self.decoder_seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_attention_mask __UpperCAmelCase = use_labels __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = d_ff __UpperCAmelCase = relative_attention_num_buckets __UpperCAmelCase = dropout_rate __UpperCAmelCase = initializer_factor __UpperCAmelCase = eos_token_id __UpperCAmelCase = pad_token_id __UpperCAmelCase = decoder_start_token_id __UpperCAmelCase = None __UpperCAmelCase = decoder_layers def snake_case__ ( self : Union[str, Any] ) -> int: return TaConfig.from_pretrained('''google/umt5-base''' ) def snake_case__ ( self : List[Any] , __a : List[str] , __a : str , __a : Optional[int] , __a : List[Any]=None , __a : List[Any]=None , __a : Any=None , __a : str=None , __a : Any=None , ) -> List[Any]: if attention_mask is None: __UpperCAmelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __UpperCAmelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __UpperCAmelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__a ) if decoder_head_mask is None: __UpperCAmelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__a ) if cross_attn_head_mask is None: __UpperCAmelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__a ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def snake_case__ ( self : List[str] ) -> Dict: __UpperCAmelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __UpperCAmelCase = input_ids.clamp(self.pad_token_id + 1 ) __UpperCAmelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) __UpperCAmelCase = self.get_config() __UpperCAmelCase = config.num_attention_heads __UpperCAmelCase = self.prepare_inputs_dict(__a , __a , __a ) return config, input_dict def snake_case__ ( self : Union[str, Any] ) -> Optional[Any]: __UpperCAmelCase , __UpperCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def snake_case__ ( self : int ) -> Optional[int]: return TaConfig( vocab_size=1_6_6 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def snake_case__ ( self : Optional[int] ) -> Any: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def snake_case__ ( self : int , __a : Any , __a : Union[str, Any] , __a : List[Any] , __a : Dict , __a : Optional[Any] , __a : int , ) -> List[Any]: __UpperCAmelCase = UMTaModel(config=__a ) model.to(__a ) model.eval() __UpperCAmelCase = model( input_ids=__a , decoder_input_ids=__a , attention_mask=__a , decoder_attention_mask=__a , ) __UpperCAmelCase = model(input_ids=__a , decoder_input_ids=__a ) __UpperCAmelCase = result.last_hidden_state __UpperCAmelCase = result.past_key_values __UpperCAmelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__a ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def snake_case__ ( self : List[str] , __a : Any , __a : Tuple , __a : List[str] , __a : Optional[Any] , __a : Dict , __a : Any , ) -> Optional[Any]: __UpperCAmelCase = UMTaModel(config=__a ).get_decoder().to(__a ).eval() # first forward pass __UpperCAmelCase = model(__a , use_cache=__a ) __UpperCAmelCase = model(__a ) __UpperCAmelCase = model(__a , use_cache=__a ) self.parent.assertTrue(len(__a ) == len(__a ) ) self.parent.assertTrue(len(__a ) == len(__a ) + 1 ) __UpperCAmelCase , __UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and __UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCAmelCase = model(__a )['''last_hidden_state'''] __UpperCAmelCase = model(__a , past_key_values=__a )['''last_hidden_state'''] # select random slice __UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach() __UpperCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a , __a , atol=1e-3 ) ) def snake_case__ ( self : List[Any] , __a : Union[str, Any] , __a : Dict , ) -> Optional[int]: __UpperCAmelCase = UMTaModel(config=__a ).to(__a ).half().eval() __UpperCAmelCase = model(**__a )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(__a ).any().item() ) @require_torch class A ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): a_ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) a_ = (UMTaForConditionalGeneration,) if is_torch_available() else () a_ = ( { '''conversational''': UMTaForConditionalGeneration, '''feature-extraction''': UMTaModel, '''summarization''': UMTaForConditionalGeneration, '''text2text-generation''': UMTaForConditionalGeneration, '''translation''': UMTaForConditionalGeneration, '''question-answering''': UMTaForQuestionAnswering, } if is_torch_available() else {} ) a_ = True a_ = False a_ = False a_ = True a_ = True # The small UMT5 model needs higher percentages for CPU/MP tests a_ = [0.8, 0.9] def snake_case__ ( self : Tuple ) -> Optional[int]: __UpperCAmelCase = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def snake_case__ ( self : str ) -> Optional[int]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() __UpperCAmelCase = UMTaModel(config_and_inputs[0] ).to(__a ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __a , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"""{tmpdirname}/t5_test.onnx""" , export_params=__a , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def snake_case__ ( self : Union[str, Any] ) -> List[str]: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__a ) def snake_case__ ( self : List[Any] ) -> str: __UpperCAmelCase = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() __UpperCAmelCase = config_and_inputs[0] __UpperCAmelCase = UMTaForConditionalGeneration(__a ).eval() model.to(__a ) __UpperCAmelCase = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__a ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__a ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__a ), } for attn_name, (name, mask) in zip(__a , head_masking.items() ): __UpperCAmelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": __UpperCAmelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=__a ) __UpperCAmelCase = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__a , return_dict_in_generate=__a , **__a , ) # We check the state of decoder_attentions and cross_attentions just from the last step __UpperCAmelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def snake_case__ ( self : Optional[int] ) -> int: pass @require_torch @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def snake_case__ ( self : Any ) -> int: __UpperCAmelCase = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__a ).to(__a ) __UpperCAmelCase = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__a , legacy=__a ) __UpperCAmelCase = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] __UpperCAmelCase = tokenizer(__a , return_tensors='''pt''' , padding=__a ).input_ids # fmt: off __UpperCAmelCase = torch.tensor( [ [ 3_8_5_3_0, 2_1_0_7_0_3, 2_5_6_2_9_9, 1_4_1_0, 2_5_6_2_9_8, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_2_6, 3_2_1, 6_7_1, 2_5_9_2_2, 2_5_6_2_9_9, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_4_6_0, 3_3_9, 3_1_2, 1_9_0_1_4, 1_0_6_2_0, 7_5_8, 2_5_6_2_9_9, 2_3_5_5,2_7_4, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_1_7, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 3_0_1, 2_5_6_2_9_8, 2_7_5, 1_1_9_9_8_3,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_2_0, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 2_2_3_4, 2_8_9, 2_2_7_5, 3_3_3,6_1_3_9_1, 2_8_9, 2_5_6_2_9_8, 5_4_3, 2_5_6_2_9_7, 1_6_8_7_1_4, 3_2_9, 2_5_6_2_9_6,2_7_4, 1], ] ) # fmt: on torch.testing.assert_allclose(__a , __a ) __UpperCAmelCase = model.generate(input_ids.to(__a ) ) __UpperCAmelCase = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ <extra_id_56>ajลกietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajลกie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> ํ”ผํ•ด[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] __UpperCAmelCase = tokenizer.batch_decode(__a ) self.assertEqual(__a , __a )
262
1
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class __lowerCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = StableDiffusionControlNetImgaImgPipeline snake_case_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} snake_case_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case_ = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} ) snake_case_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase_ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) __lowerCamelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) __lowerCamelCase = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , ) torch.manual_seed(0 ) __lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __lowerCamelCase = CLIPTextModel(lowerCamelCase__ ) __lowerCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __lowerCamelCase = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=0 ) -> Dict: '''simple docstring''' if str(lowerCamelCase__ ).startswith('mps' ): __lowerCamelCase = torch.manual_seed(lowerCamelCase__ ) else: __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) __lowerCamelCase = 2 __lowerCamelCase = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCamelCase__ , device=torch.device(lowerCamelCase__ ) , ) __lowerCamelCase = floats_tensor(control_image.shape , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase = Image.fromarray(np.uinta(lowerCamelCase__ ) ).convert('RGB' ).resize((64, 64) ) __lowerCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def lowercase_ ( self ) -> str: '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def lowercase_ ( self ) -> Dict: '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = StableDiffusionControlNetImgaImgPipeline snake_case_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} snake_case_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case_ = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(lowerCamelCase__ ): if isinstance(lowerCamelCase__ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) __lowerCamelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(lowerCamelCase__ ) torch.manual_seed(0 ) __lowerCamelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(lowerCamelCase__ ) torch.manual_seed(0 ) __lowerCamelCase = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , ) torch.manual_seed(0 ) __lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __lowerCamelCase = CLIPTextModel(lowerCamelCase__ ) __lowerCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __lowerCamelCase = MultiControlNetModel([controlneta, controlneta] ) __lowerCamelCase = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=0 ) -> List[Any]: '''simple docstring''' if str(lowerCamelCase__ ).startswith('mps' ): __lowerCamelCase = torch.manual_seed(lowerCamelCase__ ) else: __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) __lowerCamelCase = 2 __lowerCamelCase = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCamelCase__ , device=torch.device(lowerCamelCase__ ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCamelCase__ , device=torch.device(lowerCamelCase__ ) , ), ] __lowerCamelCase = floats_tensor(control_image[0].shape , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase = Image.fromarray(np.uinta(lowerCamelCase__ ) ).convert('RGB' ).resize((64, 64) ) __lowerCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) __lowerCamelCase = 10.0 __lowerCamelCase = 4 __lowerCamelCase = self.get_dummy_inputs(lowerCamelCase__ ) __lowerCamelCase = steps __lowerCamelCase = scale __lowerCamelCase = pipe(**lowerCamelCase__ )[0] __lowerCamelCase = self.get_dummy_inputs(lowerCamelCase__ ) __lowerCamelCase = steps __lowerCamelCase = scale __lowerCamelCase = pipe(**lowerCamelCase__ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] __lowerCamelCase = self.get_dummy_inputs(lowerCamelCase__ ) __lowerCamelCase = steps __lowerCamelCase = scale __lowerCamelCase = pipe(**lowerCamelCase__ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] __lowerCamelCase = self.get_dummy_inputs(lowerCamelCase__ ) __lowerCamelCase = steps __lowerCamelCase = scale __lowerCamelCase = pipe(**lowerCamelCase__ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def lowercase_ ( self ) -> Dict: '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(lowerCamelCase__ ) except NotImplementedError: pass @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-canny' ) __lowerCamelCase = StableDiffusionControlNetImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase__ , controlnet=lowerCamelCase__ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = torch.Generator(device='cpu' ).manual_seed(0 ) __lowerCamelCase = 'evil space-punk bird' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ).resize((512, 512) ) __lowerCamelCase = load_image( 'https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png' ).resize((512, 512) ) __lowerCamelCase = pipe( lowerCamelCase__ , lowerCamelCase__ , control_image=lowerCamelCase__ , generator=lowerCamelCase__ , output_type='np' , num_inference_steps=50 , strength=0.6 , ) __lowerCamelCase = output.images[0] assert image.shape == (512, 512, 3) __lowerCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy' ) assert np.abs(expected_image - image ).max() < 9e-2
702
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __A = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __A = [file for file in filepaths if file != file.lower()] if upper_files: print(f'''{len(upper_files)} files contain uppercase characters:''') print("\n".join(upper_files) + "\n") __A = [file for file in filepaths if " " in file] if space_files: print(f'''{len(space_files)} files contain space characters:''') print("\n".join(space_files) + "\n") __A = [file for file in filepaths if "-" in file] if hyphen_files: print(f'''{len(hyphen_files)} files contain hyphen characters:''') print("\n".join(hyphen_files) + "\n") __A = [file for file in filepaths if os.sep not in file] if nodir_files: print(f'''{len(nodir_files)} files are not in a directory:''') print("\n".join(nodir_files) + "\n") __A = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
167
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCAmelCase : Tuple = {'''configuration_swin''': ['''SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwinConfig''', '''SwinOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ '''SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwinForImageClassification''', '''SwinForMaskedImageModeling''', '''SwinModel''', '''SwinPreTrainedModel''', '''SwinBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any = [ '''TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSwinForImageClassification''', '''TFSwinForMaskedImageModeling''', '''TFSwinModel''', '''TFSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys __lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
58
"""simple docstring""" import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() __lowerCAmelCase : Dict = logging.get_logger(__name__) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : List[str] = WavaVecaForSequenceClassification.from_pretrained(__UpperCamelCase , config=__UpperCamelCase ) snake_case_ : int = downstream_dict["""projector.weight"""] snake_case_ : Optional[int] = downstream_dict["""projector.bias"""] snake_case_ : List[Any] = downstream_dict["""model.post_net.linear.weight"""] snake_case_ : Union[str, Any] = downstream_dict["""model.post_net.linear.bias"""] return model def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : int = WavaVecaForAudioFrameClassification.from_pretrained(__UpperCamelCase , config=__UpperCamelCase ) snake_case_ : Any = downstream_dict["""model.linear.weight"""] snake_case_ : int = downstream_dict["""model.linear.bias"""] return model def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Optional[int] = WavaVecaForXVector.from_pretrained(__UpperCamelCase , config=__UpperCamelCase ) snake_case_ : Any = downstream_dict["""connector.weight"""] snake_case_ : str = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): snake_case_ : Dict = downstream_dict[ F'model.framelevel_feature_extractor.module.{i}.kernel.weight' ] snake_case_ : int = downstream_dict[F'model.framelevel_feature_extractor.module.{i}.kernel.bias'] snake_case_ : str = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] snake_case_ : int = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] snake_case_ : Any = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] snake_case_ : int = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] snake_case_ : List[str] = downstream_dict["""objective.W"""] return model @torch.no_grad() def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : Any = torch.load(__UpperCamelCase , map_location="""cpu""" ) snake_case_ : Any = checkpoint["""Downstream"""] snake_case_ : Optional[Any] = WavaVecaConfig.from_pretrained(__UpperCamelCase ) snake_case_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained( __UpperCamelCase , return_attention_mask=__UpperCamelCase , do_normalize=__UpperCamelCase ) snake_case_ : Optional[Any] = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): snake_case_ : Tuple = convert_classification(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) elif arch.endswith("""ForAudioFrameClassification""" ): snake_case_ : Union[str, Any] = convert_diarization(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) elif arch.endswith("""ForXVector""" ): snake_case_ : List[str] = convert_xvector(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: raise NotImplementedError(F'S3PRL weights conversion is not supported for {arch}' ) if hf_config.use_weighted_layer_sum: snake_case_ : List[Any] = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(__UpperCamelCase ) hf_model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') __lowerCAmelCase : Dict = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
58
1
"""simple docstring""" from math import ceil, sqrt def lowercase ( __snake_case : int = 1_0_0_0_0_0_0 ): lowercase_ : Tuple = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowercase_ : int = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowercase_ : int = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F"""{solution() = }""")
141
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __A : List[Any] = logging.getLogger(__name__) if __name__ == "__main__": __A : int = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=30_522, type=int) __A : Optional[int] = parser.parse_args() logger.info(F"""Loading data from {args.data_file}""") with open(args.data_file, '''rb''') as fp: __A : List[str] = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') __A : Optional[Any] = Counter() for tk_ids in data: counter.update(tk_ids) __A : Dict = [0] * args.vocab_size for k, v in counter.items(): __A : Union[str, Any] = v logger.info(F"""Dump to {args.token_counts_dump}""") with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
141
1
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def UpperCamelCase ( __lowercase : List[Any] ): '''simple docstring''' A_ : Dict = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__lowercase ,__lowercase ) def UpperCamelCase ( __lowercase : int ): '''simple docstring''' A_ , A_ : Dict = emb.weight.shape A_ : Optional[Any] = nn.Linear(__lowercase ,__lowercase ,bias=__lowercase ) A_ : Optional[int] = emb.weight.data return lin_layer def UpperCamelCase ( __lowercase : List[Any] ,__lowercase : Optional[int]=None ): '''simple docstring''' A_ : List[str] = {} for old_key in state_dict.keys(): A_ : Dict = old_key if "moe_layer.experts." in key: if expert_idx is not None: A_ : Union[str, Any] = key.replace('moe_layer.experts.0' ,f'''ffn.experts.expert_{expert_idx}''' ) else: A_ : Dict = key.replace('moe_layer.experts.' ,'ffn.experts.expert_' ) if "gate" in key: A_ : Dict = key.replace('.moe_layer.gate.wg' ,'.ffn.router.classifier' ) if "fc2" and "experts" not in key: A_ : List[Any] = key.replace('.fc2.' ,'.ffn.fc2.' ) if "fc1" and "experts" not in key: A_ : Optional[Any] = key.replace('.fc1.' ,'.ffn.fc1.' ) if ".encoder_attn." in key: A_ : Optional[int] = key.replace('.encoder_attn.' ,'.cross_attention.' ) if "encoder_attn_layer_norm" in key: A_ : Optional[Any] = key.replace('encoder_attn_layer_norm' ,'cross_attention_layer_norm' ) if "final_layer_norm" in key: A_ : Dict = key.replace('final_layer_norm' ,'ff_layer_norm' ) A_ : List[Any] = state_dict[old_key] return new_dict def UpperCamelCase ( __lowercase : Optional[int] ,__lowercase : List[Any] ,__lowercase : str ,__lowercase : Optional[int] ,__lowercase : str = WEIGHTS_NAME ): '''simple docstring''' A_ : List[str] = [] A_ : int = 0 os.makedirs(__lowercase ,exist_ok=__lowercase ) for expert in range(__lowercase ): A_ : Optional[int] = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(__lowercase ): A_ : Optional[Any] = torch.load(__lowercase )['model'] remove_ignore_keys_(__lowercase ) A_ : List[Any] = rename_fairseq_keys(__lowercase ,__lowercase ) A_ : Any = os.path.join( __lowercase ,weights_name.replace('.bin' ,f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) torch.save(__lowercase ,__lowercase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__lowercase )[0]].dtype ) # Add the last block A_ : List[str] = os.path.join(__lowercase ,weights_name.replace('.bin' ,f'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) A_ : Any = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(__lowercase ) A_ : Tuple = rename_fairseq_keys(__lowercase ,__lowercase ) A_ : str = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__lowercase ) == 1: A_ : Any = os.path.join(__lowercase ,__lowercase ) torch.save(__lowercase ,__lowercase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__lowercase ,__lowercase ) # Otherwise, let's build the index A_ : Tuple = {} for idx, shard in enumerate(__lowercase ): A_ : str = weights_name.replace('.bin' ,f'''-{idx+1:05d}-of-{len(__lowercase ):05d}.bin''' ) A_ : str = os.path.join(__lowercase ,weights_name.replace('.bin' ,f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__lowercase ,os.path.join(__lowercase ,__lowercase ) ) for key in shard: A_ : Dict = shard_file # Add the metadata A_ : Dict = {'total_size': total_size} A_ : Dict = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(__lowercase ,__lowercase ) ,'w' ,encoding='utf-8' ) as f: A_ : str = json.dumps(__lowercase ,indent=2 ,sort_keys=__lowercase ) + '\n' f.write(__lowercase ) return metadata, index if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) _UpperCAmelCase = parser.parse_args() _UpperCAmelCase ,_UpperCAmelCase = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _UpperCAmelCase = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _UpperCAmelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
558
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """google/bit-50""": """https://huggingface.co/google/bit-50/resolve/main/config.json""", } class UpperCAmelCase ( __A , __A ): '''simple docstring''' lowerCamelCase_ = '''bit''' lowerCamelCase_ = ['''preactivation''', '''bottleneck'''] lowerCamelCase_ = ['''SAME''', '''VALID'''] def __init__( self , lowercase=3 , lowercase=6_4 , lowercase=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , lowercase=[3, 4, 6, 3] , lowercase="preactivation" , lowercase="relu" , lowercase=None , lowercase=3_2 , lowercase=0.0 , lowercase=False , lowercase=3_2 , lowercase=1 , lowercase=None , lowercase=None , **lowercase , ): """simple docstring""" super().__init__(**lowercase ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: A_ : Tuple = global_padding.upper() else: raise ValueError(F'''Padding strategy {global_padding} not supported''' ) A_ : Any = num_channels A_ : Any = embedding_size A_ : List[Any] = hidden_sizes A_ : int = depths A_ : Union[str, Any] = layer_type A_ : List[Any] = hidden_act A_ : Tuple = global_padding A_ : List[str] = num_groups A_ : int = drop_path_rate A_ : str = embedding_dynamic_padding A_ : Dict = output_stride A_ : Any = width_factor A_ : int = ['stem'] + [F'''stage{idx}''' for idx in range(1 , len(lowercase ) + 1 )] A_ , A_ : List[Any] = get_aligned_output_features_output_indices( out_features=lowercase , out_indices=lowercase , stage_names=self.stage_names )
558
1
import math from collections.abc import Iterator from itertools import takewhile def _a ( __lowercase ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _a ( ) -> Iterator[int]: """simple docstring""" __UpperCamelCase = 2 while True: if is_prime(__lowercase ): yield num num += 1 def _a ( __lowercase = 200_0000 ) -> int: """simple docstring""" return sum(takewhile(lambda __lowercase : x < n , prime_generator() ) ) if __name__ == "__main__": print(F'''{solution() = }''')
567
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def _a ( ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=__lowercase , default=__lowercase , required=__lowercase , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=__lowercase , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=__lowercase , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=__lowercase , default=42 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=__lowercase , default=0 , help='cuda_id.' , ) __UpperCamelCase = parser.parse_args() return args def _a ( __lowercase , __lowercase , __lowercase ) -> Any: """simple docstring""" if not len(__lowercase ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) __UpperCamelCase , __UpperCamelCase = imgs[0].size __UpperCamelCase = Image.new('RGB' , size=(cols * w, rows * h) ) __UpperCamelCase , __UpperCamelCase = grid.size for i, img in enumerate(__lowercase ): grid.paste(__lowercase , box=(i % cols * w, i // cols * h) ) return grid def _a ( __lowercase , __lowercase="robotic cat with wings" , __lowercase=7.5 , __lowercase=50 , __lowercase=1 , __lowercase=42 , ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = torch.Generator(pipeline.device ).manual_seed(__lowercase ) __UpperCamelCase = pipeline( __lowercase , guidance_scale=__lowercase , num_inference_steps=__lowercase , generator=__lowercase , num_images_per_prompt=__lowercase , ).images __UpperCamelCase = int(math.sqrt(__lowercase ) ) __UpperCamelCase = image_grid(__lowercase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images _snake_case = parse_args() # Load models and create wrapper for stable diffusion _snake_case = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') _snake_case = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') _snake_case = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') _snake_case = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') _snake_case = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) _snake_case = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): _snake_case = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: _snake_case = unet.to(torch.device('cuda', args.cuda_id)) _snake_case = pipeline.to(unet.device) _snake_case , _snake_case = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) _snake_case = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
567
1
from math import ceil def a_ ( lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Dict ): __lowerCAmelCase = list(range(0, lowerCAmelCase_ ) ) __lowerCAmelCase = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check __lowerCAmelCase = [] for i in device_map_blocks: if device_map_blocks.count(lowerCAmelCase_ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(lowerCAmelCase_ ) # Missing blocks __lowerCAmelCase = [i for i in blocks if i not in device_map_blocks] __lowerCAmelCase = [i for i in device_map_blocks if i not in blocks] if len(lowerCAmelCase_ ) != 0: raise ValueError( 'Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.' ' These attention blocks were specified more than once: ' + str(lowerCAmelCase_ ) ) if len(lowerCAmelCase_ ) != 0: raise ValueError( 'There are attention blocks for this model that are not specified in the device_map. Add these attention ' 'blocks to a device on the device_map: ' + str(lowerCAmelCase_ ) ) if len(lowerCAmelCase_ ) != 0: raise ValueError( 'The device_map contains more attention blocks than this model has. Remove these from the device_map:' + str(lowerCAmelCase_ ) ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = list(range(lowerCAmelCase_ ) ) __lowerCAmelCase = int(ceil(n_layers / len(lowerCAmelCase_ ) ) ) __lowerCAmelCase = [layers[i : i + n_blocks] for i in range(0, lowerCAmelCase_, lowerCAmelCase_ )] return dict(zip(lowerCAmelCase_, lowerCAmelCase_ ) )
53
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class _A( yaml.SafeLoader ): """simple docstring""" def UpperCAmelCase_ ( self , _A ): __A : Optional[int] = [self.constructed_objects[key_node] for key_node, _ in node.value] __A : Dict = [tuple(_A ) if isinstance(_A , _A ) else key for key in keys] __A : Tuple = Counter(_A ) __A : Optional[int] = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F"""Got duplicate yaml keys: {duplicate_keys}""" ) def UpperCAmelCase_ ( self , _A , _A=False ): __A : Union[str, Any] = super().construct_mapping(_A , deep=_A ) self._check_no_duplicates_on_constructed_node(_A ) return mapping def _SCREAMING_SNAKE_CASE ( a ) -> Tuple[Optional[str], str]: __A : List[str] = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: __A : List[Any] = full_content[1:].index('---' ) + 1 __A : Dict = '\n'.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(a ) class _A( snake_case__ ): """simple docstring""" UpperCamelCase : Union[str, Any] = {'''train_eval_index'''} # train-eval-index in the YAML metadata @classmethod def UpperCAmelCase_ ( cls , _A ): with open(_A , encoding='utf-8' ) as readme_file: __A , __A : Any = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(_A ) else: return cls() def UpperCAmelCase_ ( self , _A ): if path.exists(): with open(_A , encoding='utf-8' ) as readme_file: __A : Union[str, Any] = readme_file.read() else: __A : List[Any] = None __A : Any = self._to_readme(_A ) with open(_A , 'w' , encoding='utf-8' ) as readme_file: readme_file.write(_A ) def UpperCAmelCase_ ( self , _A = None ): if readme_content is not None: __A , __A : str = _split_yaml_from_readme(_A ) __A : Any = '---\n' + self.to_yaml_string() + '---\n' + content else: __A : List[Any] = '---\n' + self.to_yaml_string() + '---\n' return full_content @classmethod def UpperCAmelCase_ ( cls , _A ): __A : Optional[int] = yaml.load(_A , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields __A : int = { (key.replace('-' , '_' ) if key.replace('-' , '_' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**_A ) def UpperCAmelCase_ ( self ): return yaml.safe_dump( { (key.replace('_' , '-' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=_A , allow_unicode=_A , encoding='utf-8' , ).decode('utf-8' ) UpperCAmelCase : List[Any] = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser UpperCAmelCase : Any = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') UpperCAmelCase : Any = ap.parse_args() UpperCAmelCase : Any = Path(args.readme_filepath) UpperCAmelCase : int = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
239
0
'''simple docstring''' import operator as op UpperCamelCase_ = '''scaler.pt''' UpperCamelCase_ = '''pytorch_model''' UpperCamelCase_ = '''random_states''' UpperCamelCase_ = '''optimizer''' UpperCamelCase_ = '''scheduler''' UpperCamelCase_ = '''pytorch_model.bin''' UpperCamelCase_ = '''pytorch_model.bin.index.json''' UpperCamelCase_ = '''model.safetensors''' UpperCamelCase_ = '''model.safetensors.index.json''' UpperCamelCase_ = '''1.10.2''' UpperCamelCase_ = '''py38''' UpperCamelCase_ = '''4.17.0''' UpperCamelCase_ = ['''ml.p3.16xlarge''', '''ml.p3dn.24xlarge''', '''ml.p4dn.24xlarge'''] UpperCamelCase_ = ['''FULL_SHARD''', '''SHARD_GRAD_OP''', '''NO_SHARD''', '''HYBRID_SHARD''', '''HYBRID_SHARD_ZERO2'''] UpperCamelCase_ = ['''TRANSFORMER_BASED_WRAP''', '''SIZE_BASED_WRAP''', '''NO_WRAP'''] UpperCamelCase_ = ['''BACKWARD_PRE''', '''BACKWARD_POST''', '''NO_PREFETCH'''] UpperCamelCase_ = ['''FULL_STATE_DICT''', '''LOCAL_STATE_DICT''', '''SHARDED_STATE_DICT'''] UpperCamelCase_ = '''2.0.1''' UpperCamelCase_ = ['''pdsh''', '''standard''', '''openmpi''', '''mvapich'''] UpperCamelCase_ = ['''default''', '''reduce-overhead''', '''max-autotune'''] UpperCamelCase_ = {'''>''': op.gt, '''>=''': op.ge, '''==''': op.eq, '''!=''': op.ne, '''<=''': op.le, '''<''': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 UpperCamelCase_ = [ '''nnodes''', '''nproc_per_node''', '''rdzv_backend''', '''rdzv_endpoint''', '''rdzv_id''', '''rdzv_conf''', '''standalone''', '''max_restarts''', '''monitor_interval''', '''start_method''', '''role''', '''module''', '''m''', '''no_python''', '''run_path''', '''log_dir''', '''r''', '''redirects''', '''t''', '''tee''', '''node_rank''', '''master_addr''', '''master_port''', ] UpperCamelCase_ = ['''DEEPSPEED''', '''MULTI_GPU''', '''FSDP''', '''MEGATRON_LM'''] UpperCamelCase_ = ['''DEEPSPEED''', '''MULTI_XPU''', '''FSDP''']
320
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : int ) -> list[str]: '''simple docstring''' return [sentence[i : i + ngram_size] for i in range(len(UpperCAmelCase__ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
320
1
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase : """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any=13 , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str=99 , lowerCAmelCase__ : Dict=16 , lowerCAmelCase__ : List[Any]=36 , lowerCAmelCase__ : List[Any]=6 , lowerCAmelCase__ : Any=6 , lowerCAmelCase__ : str=6 , lowerCAmelCase__ : Union[str, Any]=37 , lowerCAmelCase__ : Optional[int]="gelu" , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : Any=0.1 , lowerCAmelCase__ : Union[str, Any]=512 , lowerCAmelCase__ : List[str]=16 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : Tuple=0.02 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : int=4 , lowerCAmelCase__ : str=None , ) -> int: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = embedding_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_hidden_groups _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope def snake_case__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def snake_case__ ( self : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = AlbertModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) _UpperCamelCase = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) _UpperCamelCase = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict ) -> str: '''simple docstring''' _UpperCamelCase = AlbertForPreTraining(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , sentence_order_label=lowerCAmelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def snake_case__ ( self : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = AlbertForMaskedLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = AlbertForQuestionAnswering(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = AlbertForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = AlbertForTokenClassification(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple ) -> str: '''simple docstring''' _UpperCamelCase = self.num_choices _UpperCamelCase = AlbertForMultipleChoice(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self : Optional[int] ) -> Any: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Union[str, Any] = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) _snake_case : List[Any] = ( { 'feature-extraction': AlbertModel, 'fill-mask': AlbertForMaskedLM, 'question-answering': AlbertForQuestionAnswering, 'text-classification': AlbertForSequenceClassification, 'token-classification': AlbertForTokenClassification, 'zero-shot': AlbertForSequenceClassification, } if is_torch_available() else {} ) _snake_case : List[Any] = True def snake_case__ ( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any=False ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class in get_values(lowerCAmelCase__ ): _UpperCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase__ ) _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def snake_case__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' _UpperCamelCase = AlbertModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=37 ) def snake_case__ ( self : Tuple ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self : int ) -> str: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def snake_case__ ( self : Any ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase__ ) def snake_case__ ( self : int ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__ ) def snake_case__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase__ ) def snake_case__ ( self : Optional[Any] ) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__ ) def snake_case__ ( self : Any ) -> Dict: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase__ ) def snake_case__ ( self : Tuple ) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCamelCase = type self.model_tester.create_and_check_model(*lowerCAmelCase__ ) @slow def snake_case__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = AlbertModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def snake_case__ ( self : str ) -> List[str]: '''simple docstring''' _UpperCamelCase = AlbertModel.from_pretrained('''albert-base-v2''' ) _UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCamelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] _UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , lowerCAmelCase__ ) _UpperCamelCase = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1e-4 ) )
98
from __future__ import annotations import requests def __a ( __UpperCAmelCase ): a__ = f"https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty" return requests.get(__UpperCAmelCase ).json() def __a ( __UpperCAmelCase = 10 ): a__ = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' a__ = requests.get(__UpperCAmelCase ).json()[:max_stories] return [get_hackernews_story(__UpperCAmelCase ) for story_id in story_ids] def __a ( __UpperCAmelCase = 10 ): a__ = hackernews_top_stories(__UpperCAmelCase ) return "\n".join('''* [{title}]({url})'''.format(**__UpperCAmelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
194
0
"""simple docstring""" import sys __A = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def UpperCamelCase ( _lowerCAmelCase : str ): __a = 1 for digit in s: product *= int(_lowerCAmelCase ) return product def UpperCamelCase ( _lowerCAmelCase : str = N ): __a = -sys.maxsize - 1 __a = n[:13] __a = 13 while cur_index < len(_lowerCAmelCase ) - 13: if int(n[cur_index] ) >= int(substr[0] ): __a = substr[1:] + n[cur_index] cur_index += 1 else: __a = max(_lowerCAmelCase , str_eval(_lowerCAmelCase ) ) __a = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f'{solution() = }')
173
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { """s-JoL/Open-Llama-V1""": """https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json""", } class a ( A_ ): A_ : str = '''open-llama''' def __init__( self : Tuple , lowerCamelCase_ : Tuple=10_00_00 , lowerCamelCase_ : Union[str, Any]=40_96 , lowerCamelCase_ : Any=1_10_08 , lowerCamelCase_ : Union[str, Any]=32 , lowerCamelCase_ : Optional[Any]=32 , lowerCamelCase_ : Tuple="silu" , lowerCamelCase_ : Dict=20_48 , lowerCamelCase_ : Optional[Any]=0.02 , lowerCamelCase_ : List[Any]=1E-6 , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Tuple=0 , lowerCamelCase_ : Any=1 , lowerCamelCase_ : Any=2 , lowerCamelCase_ : Union[str, Any]=False , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : str=0.1 , lowerCamelCase_ : Any=0.1 , lowerCamelCase_ : Any=True , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : Dict=None , **lowerCamelCase_ : int , ) -> List[Any]: __a = vocab_size __a = max_position_embeddings __a = hidden_size __a = intermediate_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = initializer_range __a = rms_norm_eps __a = use_cache __a = kwargs.pop( """use_memorry_efficient_attention""" , lowerCamelCase_ ) __a = hidden_dropout_prob __a = attention_dropout_prob __a = use_stable_embedding __a = shared_input_output_embedding __a = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , tie_word_embeddings=lowerCamelCase_ , **lowerCamelCase_ , ) def lowerCAmelCase_ ( self : Optional[int] ) -> Optional[Any]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowerCamelCase_ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ F"""got {self.rope_scaling}""" ) __a = self.rope_scaling.get("""type""" , lowerCamelCase_ ) __a = self.rope_scaling.get("""factor""" , lowerCamelCase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
173
1
"""simple docstring""" from collections import defaultdict def lowercase__ ( snake_case_ :int ): __UpperCAmelCase = 1 __UpperCAmelCase = True for v in tree[start]: if v not in visited: ret += dfs(snake_case_ ) if ret % 2 == 0: cuts.append(snake_case_ ) return ret def lowercase__ ( ): dfs(1 ) if __name__ == "__main__": _lowercase ,_lowercase : Union[str, Any] = 10, 9 _lowercase : Union[str, Any] = defaultdict(list) _lowercase : dict[int, bool] = {} _lowercase : list[int] = [] _lowercase : Tuple = 0 _lowercase : Optional[Any] = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
49
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _lowerCamelCase : Optional[int] = ''' Human: <<task>> Assistant: ''' _lowerCamelCase : str = '''huggingface-tools/default-prompts''' _lowerCamelCase : Optional[int] = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def A__ ( __A : Dict , __A : Dict , __A : Optional[Any]="run" ) ->Any: if prompt_or_repo_id is None: __A =DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('''\\s''' , __A ) is not None: return prompt_or_repo_id __A =cached_file( __A , PROMPT_FILES[mode] , repo_type='''dataset''' , user_agent={'''agent''': agent_name} ) with open(__A , '''r''' , encoding='''utf-8''' ) as f: return f.read()
184
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch __lowerCamelCase = logging.get_logger(__name__) @dataclass class UpperCamelCase__: def __init__( self ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=6.0 ,__UpperCAmelCase=None ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=None ,__UpperCAmelCase="fp4" ,__UpperCAmelCase=False ,**__UpperCAmelCase ,) -> Union[str, Any]: A__ = load_in_abit A__ = load_in_abit A__ = llm_inta_threshold A__ = llm_inta_skip_modules A__ = llm_inta_enable_fpaa_cpu_offload A__ = llm_inta_has_fpaa_weight A__ = bnb_abit_quant_type A__ = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: A__ = torch.floataa elif isinstance(__UpperCAmelCase ,__UpperCAmelCase ): A__ = getattr(__UpperCAmelCase ,__UpperCAmelCase ) elif isinstance(__UpperCAmelCase ,torch.dtype ): A__ = bnb_abit_compute_dtype else: raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype' ) self.post_init() def snake_case__ ( self ) -> str: if not isinstance(self.llm_inta_threshold ,__UpperCAmelCase ): raise ValueError('llm_int8_threshold must be a float' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules ,__UpperCAmelCase ): raise ValueError('llm_int8_skip_modules must be a list of strings' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload ,__UpperCAmelCase ): raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean' ) if not isinstance(self.llm_inta_has_fpaa_weight ,__UpperCAmelCase ): raise ValueError('llm_int8_has_fp16_weight must be a boolean' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype ,torch.dtype ): raise ValueError('bnb_4bit_compute_dtype must be torch.dtype' ) if not isinstance(self.bnb_abit_quant_type ,__UpperCAmelCase ): raise ValueError('bnb_4bit_quant_type must be a string' ) if not isinstance(self.bnb_abit_use_double_quant ,__UpperCAmelCase ): raise ValueError('bnb_4bit_use_double_quant must be a boolean' ) if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes' ) ) >= version.parse( '0.39.0' ): raise ValueError( '4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version' ) def snake_case__ ( self ) -> int: return self.load_in_abit or self.load_in_abit def snake_case__ ( self ) -> Optional[int]: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def snake_case__ ( cls ,__UpperCAmelCase ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: A__ = cls(**__UpperCAmelCase ) A__ = [] for key, value in kwargs.items(): if hasattr(__UpperCAmelCase ,__UpperCAmelCase ): setattr(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) to_remove.append(__UpperCAmelCase ) for key in to_remove: kwargs.pop(__UpperCAmelCase ,__UpperCAmelCase ) if return_unused_kwargs: return config, kwargs else: return config def snake_case__ ( self ,__UpperCAmelCase ) -> str: with open(__UpperCAmelCase ,'w' ,encoding='utf-8' ) as writer: A__ = self.to_dict() A__ = json.dumps(__UpperCAmelCase ,indent=2 ,sort_keys=__UpperCAmelCase ) + '\n' writer.write(__UpperCAmelCase ) def snake_case__ ( self ) -> Dict[str, Any]: A__ = copy.deepcopy(self.__dict__ ) A__ = str(output['bnb_4bit_compute_dtype'] ).split('.' )[1] return output def __repr__( self ) -> Union[str, Any]: return f'''{self.__class__.__name__} {self.to_json_string()}''' def snake_case__ ( self ,__UpperCAmelCase = True ) -> str: if use_diff is True: A__ = self.to_diff_dict() else: A__ = self.to_dict() return json.dumps(__UpperCAmelCase ,indent=2 ,sort_keys=__UpperCAmelCase ) + "\n" def snake_case__ ( self ) -> Dict[str, Any]: A__ = self.to_dict() # get the default config dict A__ = BitsAndBytesConfig().to_dict() A__ = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: A__ = value return serializable_config_dict
536
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class UpperCamelCase__( enum.Enum ): lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : Optional[int] = 1 lowerCAmelCase__ : List[Any] = 2 @add_end_docstrings(__A ) class UpperCamelCase__( __A ): lowerCAmelCase__ : Optional[Any] = '\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n ' def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: super().__init__(*__UpperCAmelCase ,**__UpperCAmelCase ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. A__ = None if self.model.config.prefix is not None: A__ = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. A__ = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. A__ , A__ , A__ = self._sanitize_parameters(prefix=__UpperCAmelCase ,**self._forward_params ) A__ = {**self._preprocess_params, **preprocess_params} A__ = {**self._forward_params, **forward_params} def snake_case__ ( self ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,**__UpperCAmelCase ,) -> Dict: A__ = {} if prefix is not None: A__ = prefix if prefix: A__ = self.tokenizer( __UpperCAmelCase ,padding=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,return_tensors=self.framework ) A__ = prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' ' [None, \'hole\']' ) A__ = handle_long_generation preprocess_params.update(__UpperCAmelCase ) A__ = generate_kwargs A__ = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`' ) if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' ) A__ = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`' ) A__ = ReturnType.TENSORS if return_type is not None: A__ = return_type if clean_up_tokenization_spaces is not None: A__ = clean_up_tokenization_spaces if stop_sequence is not None: A__ = self.tokenizer.encode(__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ) if len(__UpperCAmelCase ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) A__ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def snake_case__ ( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True} ) return super()._parse_and_tokenize(*__UpperCAmelCase ,**__UpperCAmelCase ) def __call__( self ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict: return super().__call__(__UpperCAmelCase ,**__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase="" ,__UpperCAmelCase=None ,**__UpperCAmelCase ) -> Dict: A__ = self.tokenizer( prefix + prompt_text ,padding=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,return_tensors=self.framework ) A__ = prompt_text if handle_long_generation == "hole": A__ = inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: A__ = generate_kwargs['max_new_tokens'] else: A__ = generate_kwargs.get('max_length' ,self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected' ) if cur_len + new_tokens > self.tokenizer.model_max_length: A__ = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length' ) A__ = inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: A__ = inputs['attention_mask'][:, -keep_length:] return inputs def snake_case__ ( self ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: A__ = model_inputs['input_ids'] A__ = model_inputs.get('attention_mask' ,__UpperCAmelCase ) # Allow empty prompts if input_ids.shape[1] == 0: A__ = None A__ = None A__ = 1 else: A__ = input_ids.shape[0] A__ = model_inputs.pop('prompt_text' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. A__ = generate_kwargs.pop('prefix_length' ,0 ) if prefix_length > 0: A__ = 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: A__ = generate_kwargs.get('max_length' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length A__ = 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL A__ = self.model.generate(input_ids=__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,**__UpperCAmelCase ) A__ = generated_sequence.shape[0] if self.framework == "pt": A__ = generated_sequence.reshape(__UpperCAmelCase ,out_b // in_b ,*generated_sequence.shape[1:] ) elif self.framework == "tf": A__ = tf.reshape(__UpperCAmelCase ,(in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=ReturnType.FULL_TEXT ,__UpperCAmelCase=True ) -> str: A__ = model_outputs['generated_sequence'][0] A__ = model_outputs['input_ids'] A__ = model_outputs['prompt_text'] A__ = generated_sequence.numpy().tolist() A__ = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: A__ = {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text A__ = self.tokenizer.decode( __UpperCAmelCase ,skip_special_tokens=__UpperCAmelCase ,clean_up_tokenization_spaces=__UpperCAmelCase ,) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: A__ = 0 else: A__ = len( self.tokenizer.decode( input_ids[0] ,skip_special_tokens=__UpperCAmelCase ,clean_up_tokenization_spaces=__UpperCAmelCase ,) ) if return_type == ReturnType.FULL_TEXT: A__ = prompt_text + text[prompt_length:] else: A__ = text[prompt_length:] A__ = {'generated_text': all_text} records.append(__UpperCAmelCase ) return records
536
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case =logging.get_logger(__name__) __snake_case ={ """google/pegasus-large""": """https://huggingface.co/google/pegasus-large/resolve/main/config.json""", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Any = '''pegasus''' lowerCamelCase : Dict = ['''past_key_values'''] lowerCamelCase : int = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : List[Any] , UpperCAmelCase__ : List[Any]=5_0_2_6_5 , UpperCAmelCase__ : str=1_0_2_4 , UpperCAmelCase__ : str=1_2 , UpperCAmelCase__ : str=4_0_9_6 , UpperCAmelCase__ : Union[str, Any]=1_6 , UpperCAmelCase__ : int=1_2 , UpperCAmelCase__ : List[str]=4_0_9_6 , UpperCAmelCase__ : List[str]=1_6 , UpperCAmelCase__ : List[str]=0.0 , UpperCAmelCase__ : str=0.0 , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : List[Any]="gelu" , UpperCAmelCase__ : Optional[Any]=1_0_2_4 , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : List[str]=0.0 , UpperCAmelCase__ : Optional[int]=0.02 , UpperCAmelCase__ : Dict=0 , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Optional[int]=0 , UpperCAmelCase__ : Any=1 , UpperCAmelCase__ : Dict=1 , **UpperCAmelCase__ : int , ) -> List[str]: lowerCAmelCase = vocab_size lowerCAmelCase = max_position_embeddings lowerCAmelCase = d_model lowerCAmelCase = encoder_ffn_dim lowerCAmelCase = encoder_layers lowerCAmelCase = encoder_attention_heads lowerCAmelCase = decoder_ffn_dim lowerCAmelCase = decoder_layers lowerCAmelCase = decoder_attention_heads lowerCAmelCase = dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = activation_function lowerCAmelCase = init_std lowerCAmelCase = encoder_layerdrop lowerCAmelCase = decoder_layerdrop lowerCAmelCase = use_cache lowerCAmelCase = encoder_layers lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , is_encoder_decoder=UpperCAmelCase__ , decoder_start_token_id=UpperCAmelCase__ , forced_eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ , ) @property def __UpperCAmelCase ( self : Optional[int] ) -> int: return self.encoder_attention_heads @property def __UpperCAmelCase ( self : Any ) -> int: return self.d_model
133
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __snake_case =Lock() def a_ ( lowerCamelCase : int , lowerCamelCase : List[str] , lowerCamelCase : Dict , lowerCamelCase : Tuple , lowerCamelCase : Dict , lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] ): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(lowerCamelCase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCAmelCase = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCAmelCase = min(lowerCamelCase , lowerCamelCase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(lowerCamelCase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCAmelCase = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCAmelCase = max(lowerCamelCase , lowerCamelCase ) # after all swaps are performed, send the values back to main result_pipe[1].send(lowerCamelCase ) def a_ ( lowerCamelCase : Any ): lowerCAmelCase = [] lowerCAmelCase = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCAmelCase = Pipe() lowerCAmelCase = Pipe() process_array_.append( Process( target=lowerCamelCase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) lowerCAmelCase = temp_rs lowerCAmelCase = temp_rr for i in range(1 , len(lowerCamelCase ) - 1 ): lowerCAmelCase = Pipe() lowerCAmelCase = Pipe() process_array_.append( Process( target=lowerCamelCase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) lowerCAmelCase = temp_rs lowerCAmelCase = temp_rr process_array_.append( Process( target=lowerCamelCase , args=( len(lowerCamelCase ) - 1, arr[len(lowerCamelCase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(lowerCamelCase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(lowerCamelCase ) ): lowerCAmelCase = result_pipe[p][0].recv() process_array_[p].join() return arr def a_ ( ): lowerCAmelCase = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*lowerCamelCase ) lowerCAmelCase = odd_even_transposition(lowerCamelCase ) print('Sorted List\n' ) print(*lowerCamelCase ) if __name__ == "__main__": main()
133
1
"""simple docstring""" import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a : str = get_tests_dir("""fixtures/test_sentencepiece_with_bytefallback.model""") @require_sentencepiece @require_tokenizers class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" __lowerCamelCase = GPTSwaTokenizer __lowerCamelCase = False __lowerCamelCase = True __lowerCamelCase = False def UpperCAmelCase_ ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase__ : Optional[Any]= GPTSwaTokenizer(snake_case__ , eos_token="<unk>" , bos_token="<unk>" , pad_token="<unk>" ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self , snake_case__ ): '''simple docstring''' lowercase__ : int= "This is a test" lowercase__ : Optional[int]= "This is a test" return input_text, output_text def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : List[Any]= "<s>" lowercase__ : List[Any]= 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : int= list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(snake_case__ ) , 2000 ) def UpperCAmelCase_ ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Tuple= GPTSwaTokenizer(snake_case__ ) lowercase__ : int= tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case__ , ["โ–This", "โ–is", "โ–a", "โ–t", "est"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [465, 287, 265, 631, 842] ) lowercase__ : Dict= tokenizer.tokenize("I was born in 92000, and this is falsรฉ." ) # fmt: off self.assertListEqual( snake_case__ , ["โ–I", "โ–was", "โ–bor", "n", "โ–in", "โ–", "<0x39>", "2", "0", "0", "0", ",", "โ–and", "โ–this", "โ–is", "โ–f", "al", "s", "<0xC3>", "<0xA9>", "."] , ) # fmt: on lowercase__ : Any= tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowercase__ : Dict= tokenizer.convert_ids_to_tokens(snake_case__ ) # fmt: off self.assertListEqual( snake_case__ , ["โ–I", "โ–was", "โ–bor", "n", "โ–in", "โ–", "<0x39>", "2", "0", "0", "0", ",", "โ–and", "โ–this", "โ–is", "โ–f", "al", "s", "<0xC3>", "<0xA9>", "."] ) # fmt: on def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Optional[Any]= GPTSwaTokenizer(snake_case__ ) lowercase__ : List[str]= ["This is a test", "I was born in 92000, and this is falsรฉ."] lowercase__ : Union[str, Any]= [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(snake_case__ , snake_case__ ): self.assertListEqual(tokenizer.encode_fast(snake_case__ ) , snake_case__ ) # Test that decode_fast returns the input text for text, token_ids in zip(snake_case__ , snake_case__ ): self.assertEqual(tokenizer.decode_fast(snake_case__ ) , snake_case__ ) @slow def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Tuple= [ "<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')", "Hey there, how are you doing this fine day?", "This is a text with a trailing spaces followed by a dot .", "Hรคj svรคjs lillebrรถr! =)", "Det รคr inget fel pรฅ Mr. Cool", ] # fmt: off lowercase__ : Optional[int]= {"input_ids": [[63423, 5, 6811, 14954, 282, 816, 3821, 63466, 63425, 63462, 18, 63978, 678, 301, 1320, 63423, 63455, 63458, 18, 63982, 4246, 3940, 1901, 47789, 5547, 18994], [19630, 1100, 63446, 1342, 633, 544, 4488, 593, 5102, 2416, 63495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 58593, 22413, 9106, 546, 268, 33213, 63979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55130, 63450, 924, 63449, 2249, 4062, 1558, 318, 63504, 21498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 63443, 26801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="AI-Sweden/gpt-sw3-126m" , sequences=snake_case__ , )
701
"""simple docstring""" from __future__ import annotations def lowercase__(A ) ->list[int]: # This function is recursive """simple docstring""" lowercase__ : int= len(A ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowercase__ : str= array[0] lowercase__ : Optional[Any]= False lowercase__ : Any= 1 lowercase__ : list[int]= [] while not is_found and i < array_length: if array[i] < pivot: lowercase__ : Union[str, Any]= True lowercase__ : List[str]= [element for element in array[i:] if element >= array[i]] lowercase__ : Union[str, Any]= longest_subsequence(A ) if len(A ) > len(A ): lowercase__ : List[str]= temp_array else: i += 1 lowercase__ : List[str]= [element for element in array[1:] if element >= pivot] lowercase__ : List[str]= [pivot, *longest_subsequence(A )] if len(A ) > len(A ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
85
0
import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _lowerCamelCase : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') _lowerCamelCase : Optional[int] = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') _lowerCamelCase : List[str] = '''pt''' if is_torch_available() else '''tf''' @require_sentencepiece @require_tokenizers class lowercase ( lowercase_ , unittest.TestCase ): lowercase__ : str = CamembertTokenizer lowercase__ : int = CamembertTokenizerFast lowercase__ : Tuple = True lowercase__ : Any = True def __snake_case( self : Tuple ) -> List[str]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE = CamembertTokenizer(a__ ) tokenizer.save_pretrained(self.tmpdirname ) def __snake_case( self : Tuple ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = """<pad>""" SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ ) def __snake_case( self : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>NOTUSED" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(a__ ) , 1_004 ) def __snake_case( self : Dict ) -> str: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_005 ) def __snake_case( self : Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = CamembertTokenizer(a__ ) tokenizer.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = """I was born in 92000, and this is falsรฉ.""" SCREAMING_SNAKE_CASE = tokenizer.encode(a__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) SCREAMING_SNAKE_CASE = tokenizer.encode(a__ , add_special_tokens=a__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(a__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) def __snake_case( self : Any ) -> int: '''simple docstring''' if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = """I was born in 92000, and this is falsรฉ.""" SCREAMING_SNAKE_CASE = tokenizer.tokenize(a__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) SCREAMING_SNAKE_CASE = tokenizer.encode(a__ , add_special_tokens=a__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = tokenizer.encode(a__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) @slow def __snake_case( self : Dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = {"""input_ids""": [[5, 54, 7_196, 297, 30, 23, 776, 18, 11, 3_215, 3_705, 8_252, 22, 3_164, 1_181, 2_116, 29, 16, 813, 25, 791, 3_314, 20, 3_446, 38, 27_575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9_088, 20, 1_517, 8, 22_804, 18_818, 10, 38, 629, 607, 607, 142, 19, 7_196, 867, 56, 10_326, 24, 2_267, 20, 416, 5_072, 15_612, 233, 734, 7, 2_399, 27, 16, 3_015, 1_649, 7, 24, 20, 4_338, 2_399, 27, 13, 3_400, 14, 13, 6_189, 8, 930, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. SCREAMING_SNAKE_CASE = [ """Le transformeur est un modรจle d'apprentissage profond introduit en 2017, """ """utilisรฉ principalement dans le domaine du traitement automatique des langues (TAL).""", """ร€ l'instar des rรฉseaux de neurones rรฉcurrents (RNN), les transformeurs sont conรงus """ """pour gรฉrer des donnรฉes sรฉquentielles, telles que le langage naturel, pour des tรขches """ """telles que la traduction et la synthรจse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=a__ , model_name="camembert-base" , revision="3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf" , sequences=a__ , )
403
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def UpperCamelCase ( snake_case__ : int ): '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def UpperCamelCase ( ): '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def UpperCamelCase ( ): '''simple docstring''' __snake_case :Tuple = """mock-s3-bucket""" __snake_case :Optional[Any] = f'''s3://{mock_bucket}''' __snake_case :Optional[int] = extract_path_from_uri(snake_case__ ) assert dataset_path.startswith("""s3://""" ) is False __snake_case :Union[str, Any] = """./local/path""" __snake_case :List[str] = extract_path_from_uri(snake_case__ ) assert dataset_path == new_dataset_path def UpperCamelCase ( snake_case__ : str ): '''simple docstring''' __snake_case :List[str] = is_remote_filesystem(snake_case__ ) assert is_remote is True __snake_case :Any = fsspec.filesystem("""file""" ) __snake_case :Optional[Any] = is_remote_filesystem(snake_case__ ) assert is_remote is False @pytest.mark.parametrize("""compression_fs_class""" ,snake_case__ ) def UpperCamelCase ( snake_case__ : Optional[Any] ,snake_case__ : List[str] ,snake_case__ : int ,snake_case__ : List[Any] ,snake_case__ : Tuple ,snake_case__ : str ,snake_case__ : Optional[Any] ): '''simple docstring''' __snake_case :Optional[int] = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_file, """bz2""": bza_file, """lz4""": lza_file} __snake_case :Optional[Any] = input_paths[compression_fs_class.protocol] if input_path is None: __snake_case :Optional[int] = f'''for \'{compression_fs_class.protocol}\' compression protocol, ''' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(snake_case__ ) __snake_case :Optional[Any] = fsspec.filesystem(compression_fs_class.protocol ,fo=snake_case__ ) assert isinstance(snake_case__ ,snake_case__ ) __snake_case :Dict = os.path.basename(snake_case__ ) __snake_case :Dict = expected_filename[: expected_filename.rindex(""".""" )] assert fs.glob("""*""" ) == [expected_filename] with fs.open(snake_case__ ,"""r""" ,encoding="""utf-8""" ) as f, open(snake_case__ ,encoding="""utf-8""" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("""protocol""" ,["""zip""", """gzip"""] ) def UpperCamelCase ( snake_case__ : List[Any] ,snake_case__ : List[Any] ,snake_case__ : Dict ): '''simple docstring''' __snake_case :Optional[int] = {"""zip""": zip_jsonl_path, """gzip""": jsonl_gz_path} __snake_case :List[str] = compressed_file_paths[protocol] __snake_case :Optional[int] = """dataset.jsonl""" __snake_case :Optional[int] = f'''{protocol}://{member_file_path}::{compressed_file_path}''' __snake_case , *__snake_case :Optional[Any] = fsspec.get_fs_token_paths(snake_case__ ) assert fs.isfile(snake_case__ ) assert not fs.isfile("""non_existing_""" + member_file_path ) @pytest.mark.integration def UpperCamelCase ( snake_case__ : Optional[int] ,snake_case__ : Dict ,snake_case__ : List[str] ,snake_case__ : Dict ): '''simple docstring''' __snake_case :List[Any] = hf_api.dataset_info(snake_case__ ,token=snake_case__ ) __snake_case :List[str] = HfFileSystem(repo_info=snake_case__ ,token=snake_case__ ) assert sorted(hffs.glob("""*""" ) ) == [".gitattributes", "data"] assert hffs.isdir("""data""" ) assert hffs.isfile(""".gitattributes""" ) and hffs.isfile("""data/text_data.txt""" ) with open(snake_case__ ) as f: assert hffs.open("""data/text_data.txt""" ,"""r""" ).read() == f.read() def UpperCamelCase ( ): '''simple docstring''' __snake_case :str = """bz2""" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(snake_case__ ,snake_case__ ,clobber=snake_case__ ) with pytest.warns(snake_case__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(snake_case__ ) == 1 assert ( str(warning_info[0].message ) == f'''A filesystem protocol was already set for {protocol} and will be overwritten.''' )
455
0
from heapq import heappop, heappush import numpy as np def a ( A__ , A__ , A__ , A__ , ) -> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = grid.shape SCREAMING_SNAKE_CASE__ : Tuple = [-1, 1, 0, 0] SCREAMING_SNAKE_CASE__ : Optional[Any] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] SCREAMING_SNAKE_CASE__ : str = [(0, source)], set() SCREAMING_SNAKE_CASE__ : List[Any] = np.full((rows, cols) , np.inf ) SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.empty((rows, cols) , dtype=A__ ) SCREAMING_SNAKE_CASE__ : str = None while queue: (SCREAMING_SNAKE_CASE__) : Optional[int] = heappop(A__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: SCREAMING_SNAKE_CASE__ : Tuple = [] while (x, y) != source: path.append((x, y) ) SCREAMING_SNAKE_CASE__ : List[str] = predecessors[x, y] path.append(A__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(A__ ) ): SCREAMING_SNAKE_CASE__ : str = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: SCREAMING_SNAKE_CASE__ : Tuple = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(A__ , (dist + 1, (nx, ny)) ) SCREAMING_SNAKE_CASE__ : str = dist + 1 SCREAMING_SNAKE_CASE__ : List[str] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
719
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('1.0.0a'): raise Exception('requires fairseq >= 1.0.0a') logging.set_verbosity_info() a_ :Tuple = logging.get_logger(__name__) a_ :List[str] = 'Hello world! cรฉcรฉ herlolip' def a ( A__ , A__ , A__ ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = FairseqRobertaModel.from_pretrained(A__ ) roberta.eval() # disable dropout SCREAMING_SNAKE_CASE__ : List[str] = roberta.model.encoder.sentence_encoder SCREAMING_SNAKE_CASE__ : Optional[Any] = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: SCREAMING_SNAKE_CASE__ : List[str] = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our RoBERTa config:''' , A__ ) SCREAMING_SNAKE_CASE__ : Tuple = XLMRobertaXLForSequenceClassification(A__ ) if classification_head else XLMRobertaXLForMaskedLM(A__ ) model.eval() # Now let's copy all the weights. # Embeddings SCREAMING_SNAKE_CASE__ : List[str] = roberta_sent_encoder.embed_tokens.weight SCREAMING_SNAKE_CASE__ : List[Any] = roberta_sent_encoder.embed_positions.weight SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. SCREAMING_SNAKE_CASE__ : int = roberta_sent_encoder.layer_norm.weight SCREAMING_SNAKE_CASE__ : int = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer SCREAMING_SNAKE_CASE__ : BertLayer = model.roberta.encoder.layer[i] SCREAMING_SNAKE_CASE__ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] SCREAMING_SNAKE_CASE__ : RobertaAttention = layer.attention SCREAMING_SNAKE_CASE__ : Optional[Any] = roberta_layer.self_attn_layer_norm.weight SCREAMING_SNAKE_CASE__ : Any = roberta_layer.self_attn_layer_norm.bias # self attention SCREAMING_SNAKE_CASE__ : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = roberta_layer.self_attn.q_proj.weight SCREAMING_SNAKE_CASE__ : int = roberta_layer.self_attn.q_proj.bias SCREAMING_SNAKE_CASE__ : Any = roberta_layer.self_attn.k_proj.weight SCREAMING_SNAKE_CASE__ : Optional[Any] = roberta_layer.self_attn.k_proj.bias SCREAMING_SNAKE_CASE__ : List[Any] = roberta_layer.self_attn.v_proj.weight SCREAMING_SNAKE_CASE__ : Dict = roberta_layer.self_attn.v_proj.bias # self-attention output SCREAMING_SNAKE_CASE__ : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape SCREAMING_SNAKE_CASE__ : str = roberta_layer.self_attn.out_proj.weight SCREAMING_SNAKE_CASE__ : Union[str, Any] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm SCREAMING_SNAKE_CASE__ : List[Any] = roberta_layer.final_layer_norm.weight SCREAMING_SNAKE_CASE__ : List[str] = roberta_layer.final_layer_norm.bias # intermediate SCREAMING_SNAKE_CASE__ : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape SCREAMING_SNAKE_CASE__ : List[str] = roberta_layer.fca.weight SCREAMING_SNAKE_CASE__ : Tuple = roberta_layer.fca.bias # output SCREAMING_SNAKE_CASE__ : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape SCREAMING_SNAKE_CASE__ : List[str] = roberta_layer.fca.weight SCREAMING_SNAKE_CASE__ : Any = roberta_layer.fca.bias # end of layer if classification_head: SCREAMING_SNAKE_CASE__ : Dict = roberta.model.classification_heads['''mnli'''].dense.weight SCREAMING_SNAKE_CASE__ : Any = roberta.model.classification_heads['''mnli'''].dense.bias SCREAMING_SNAKE_CASE__ : Tuple = roberta.model.classification_heads['''mnli'''].out_proj.weight SCREAMING_SNAKE_CASE__ : Union[str, Any] = roberta.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head SCREAMING_SNAKE_CASE__ : str = roberta.model.encoder.lm_head.dense.weight SCREAMING_SNAKE_CASE__ : List[str] = roberta.model.encoder.lm_head.dense.bias SCREAMING_SNAKE_CASE__ : Tuple = roberta.model.encoder.lm_head.layer_norm.weight SCREAMING_SNAKE_CASE__ : Dict = roberta.model.encoder.lm_head.layer_norm.bias SCREAMING_SNAKE_CASE__ : List[str] = roberta.model.encoder.lm_head.weight SCREAMING_SNAKE_CASE__ : Tuple = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. SCREAMING_SNAKE_CASE__ : torch.Tensor = roberta.encode(A__ ).unsqueeze(0 ) # batch of size 1 SCREAMING_SNAKE_CASE__ : List[str] = model(A__ )[0] if classification_head: SCREAMING_SNAKE_CASE__ : Optional[int] = roberta.model.classification_heads['''mnli'''](roberta.extract_features(A__ ) ) else: SCREAMING_SNAKE_CASE__ : Dict = roberta.model(A__ )[0] print(our_output.shape , their_output.shape ) SCREAMING_SNAKE_CASE__ : List[Any] = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.allclose(A__ , A__ , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''๐Ÿ”ฅ''' if success else '''๐Ÿ’ฉ''' ) if not success: raise Exception('''Something went wRoNg''' ) pathlib.Path(A__ ).mkdir(parents=A__ , exist_ok=A__ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(A__ ) if __name__ == "__main__": a_ :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--roberta_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) a_ :str = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
250
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "facebook/deit-base-distilled-patch16-224": ( "https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : List[Any] = """deit""" def __init__( self :Optional[Any] , lowerCamelCase__ :List[str]=7_68 , lowerCamelCase__ :int=12 , lowerCamelCase__ :Any=12 , lowerCamelCase__ :Optional[Any]=30_72 , lowerCamelCase__ :Optional[Any]="gelu" , lowerCamelCase__ :str=0.0 , lowerCamelCase__ :Tuple=0.0 , lowerCamelCase__ :int=0.02 , lowerCamelCase__ :Tuple=1e-12 , lowerCamelCase__ :Union[str, Any]=2_24 , lowerCamelCase__ :List[Any]=16 , lowerCamelCase__ :List[Any]=3 , lowerCamelCase__ :Optional[int]=True , lowerCamelCase__ :str=16 , **lowerCamelCase__ :str , ): super().__init__(**lowerCamelCase__ ) UpperCamelCase__ :int = hidden_size UpperCamelCase__ :Dict = num_hidden_layers UpperCamelCase__ :Optional[int] = num_attention_heads UpperCamelCase__ :Optional[Any] = intermediate_size UpperCamelCase__ :Tuple = hidden_act UpperCamelCase__ :Dict = hidden_dropout_prob UpperCamelCase__ :List[str] = attention_probs_dropout_prob UpperCamelCase__ :str = initializer_range UpperCamelCase__ :int = layer_norm_eps UpperCamelCase__ :Any = image_size UpperCamelCase__ :int = patch_size UpperCamelCase__ :List[str] = num_channels UpperCamelCase__ :Any = qkv_bias UpperCamelCase__ :Tuple = encoder_stride class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : int = version.parse("""1.11""" ) @property def __a ( self :List[str] ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __a ( self :Union[str, Any] ): return 1e-4
45
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class __a ( __snake_case ): def __init__( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = "arrow" , **UpperCAmelCase , ): '''simple docstring''' super().__init__( split=UpperCAmelCase , features=UpperCAmelCase , cache_dir=UpperCAmelCase , keep_in_memory=UpperCAmelCase , streaming=UpperCAmelCase , **UpperCAmelCase , ) lowerCAmelCase_ = load_from_cache_file lowerCAmelCase_ = file_format lowerCAmelCase_ = Spark( df=UpperCAmelCase , features=UpperCAmelCase , cache_dir=UpperCAmelCase , working_dir=UpperCAmelCase , **UpperCAmelCase , ) def lowerCamelCase_ ( self ): '''simple docstring''' if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowerCAmelCase_ = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=UpperCAmelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
552
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if "cls_token" in name: _snake_case = name.replace("cls_token" , "vit.embeddings.cls_token" ) if "mask_token" in name: _snake_case = name.replace("mask_token" , "decoder.mask_token" ) if "decoder_pos_embed" in name: _snake_case = name.replace("decoder_pos_embed" , "decoder.decoder_pos_embed" ) if "pos_embed" in name and "decoder" not in name: _snake_case = name.replace("pos_embed" , "vit.embeddings.position_embeddings" ) if "patch_embed.proj" in name: _snake_case = name.replace("patch_embed.proj" , "vit.embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: _snake_case = name.replace("patch_embed.norm" , "vit.embeddings.norm" ) if "decoder_blocks" in name: _snake_case = name.replace("decoder_blocks" , "decoder.decoder_layers" ) if "blocks" in name: _snake_case = name.replace("blocks" , "vit.encoder.layer" ) if "attn.proj" in name: _snake_case = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: _snake_case = name.replace("attn" , "attention.self" ) if "norm1" in name: _snake_case = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: _snake_case = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: _snake_case = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: _snake_case = name.replace("mlp.fc2" , "output.dense" ) if "decoder_embed" in name: _snake_case = name.replace("decoder_embed" , "decoder.decoder_embed" ) if "decoder_norm" in name: _snake_case = name.replace("decoder_norm" , "decoder.decoder_norm" ) if "decoder_pred" in name: _snake_case = name.replace("decoder_pred" , "decoder.decoder_pred" ) if "norm.weight" in name and "decoder" not in name: _snake_case = name.replace("norm.weight" , "vit.layernorm.weight" ) if "norm.bias" in name and "decoder" not in name: _snake_case = name.replace("norm.bias" , "vit.layernorm.bias" ) return name def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): _snake_case = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "qkv" in key: _snake_case = key.split("." ) _snake_case = int(key_split[1] ) if "decoder_blocks" in key: _snake_case = config.decoder_hidden_size _snake_case = "decoder.decoder_layers." if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[dim : dim * 2, :] _snake_case = val[-dim:, :] elif "bias" in key: _snake_case = val[:dim] _snake_case = val[dim : dim * 2] _snake_case = val[-dim:] else: _snake_case = config.hidden_size _snake_case = "vit.encoder.layer." if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[dim : dim * 2, :] _snake_case = val[-dim:, :] elif "bias" in key: _snake_case = val[:dim] _snake_case = val[dim : dim * 2] _snake_case = val[-dim:] else: _snake_case = val return orig_state_dict def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = ViTMAEConfig() if "large" in checkpoint_url: _snake_case = 10_24 _snake_case = 40_96 _snake_case = 24 _snake_case = 16 elif "huge" in checkpoint_url: _snake_case = 14 _snake_case = 12_80 _snake_case = 51_20 _snake_case = 32 _snake_case = 16 _snake_case = ViTMAEForPreTraining(SCREAMING_SNAKE_CASE__ ) _snake_case = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location="cpu" )["model"] _snake_case = ViTMAEImageProcessor(size=config.image_size ) _snake_case = convert_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() _snake_case = "https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg" _snake_case = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) _snake_case = ViTMAEImageProcessor(size=config.image_size ) _snake_case = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) _snake_case = model(**SCREAMING_SNAKE_CASE__ ) _snake_case = outputs.logits if "large" in checkpoint_url: _snake_case = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: _snake_case = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: _snake_case = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": __magic_name__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) __magic_name__ : List[str] = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
368
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": __magic_name__ : Union[str, Any] = pd.read_csv("""sample_data.csv""", header=None) __magic_name__ : Optional[Any] = df.shape[:1][0] # If you're using some other dataset input the target column __magic_name__ : str = df.iloc[:, 1:2] __magic_name__ : Dict = actual_data.values.reshape(len_data, 1) __magic_name__ : Tuple = MinMaxScaler().fit_transform(actual_data) __magic_name__ : Union[str, Any] = 10 __magic_name__ : Optional[int] = 5 __magic_name__ : Any = 20 __magic_name__ : int = len_data - periods * look_back __magic_name__ : Union[str, Any] = actual_data[:division] __magic_name__ : int = actual_data[division - look_back :] __magic_name__ , __magic_name__ : List[str] = [], [] __magic_name__ , __magic_name__ : Tuple = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) __magic_name__ : List[str] = np.array(train_x) __magic_name__ : List[str] = np.array(test_x) __magic_name__ : int = np.array([list(i.ravel()) for i in train_y]) __magic_name__ : int = np.array([list(i.ravel()) for i in test_y]) __magic_name__ : Tuple = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="""mean_squared_error""", optimizer="""adam""") __magic_name__ : int = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) __magic_name__ : int = model.predict(x_test)
368
1
"""simple docstring""" import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCamelCase : Optional[int] = '''true''' def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : Any=82 , _UpperCAmelCase : Any=16 ): set_seed(42 ) lowerCAmelCase = RegressionModel() lowerCAmelCase = deepcopy(_UpperCAmelCase ) lowerCAmelCase = RegressionDataset(length=_UpperCAmelCase ) lowerCAmelCase = DataLoader(_UpperCAmelCase , batch_size=_UpperCAmelCase ) model.to(accelerator.device ) lowerCAmelCase = accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase ) return model, ddp_model, dataloader def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Accelerator , _UpperCAmelCase : str=False ): lowerCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) lowerCAmelCase = load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(_UpperCAmelCase : List[str] ): lowerCAmelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs with accelerator.main_process_first(): lowerCAmelCase = dataset.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) lowerCAmelCase = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_UpperCAmelCase : List[Any] ): if use_longest: return tokenizer.pad(_UpperCAmelCase , padding='longest' , return_tensors='pt' ) return tokenizer.pad(_UpperCAmelCase , padding='max_length' , max_length=128 , return_tensors='pt' ) return DataLoader(_UpperCAmelCase , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=16 ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] ): lowerCAmelCase = Accelerator(dispatch_batches=_UpperCAmelCase , split_batches=_UpperCAmelCase ) lowerCAmelCase = get_dataloader(_UpperCAmelCase , not dispatch_batches ) lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=_UpperCAmelCase ) lowerCAmelCase = accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int ): lowerCAmelCase = [] for batch in dataloader: lowerCAmelCase = batch.values() with torch.no_grad(): lowerCAmelCase = model(_UpperCAmelCase ) lowerCAmelCase = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) lowerCAmelCase = [], [] for logit, targ in logits_and_targets: logits.append(_UpperCAmelCase ) targs.append(_UpperCAmelCase ) lowerCAmelCase = torch.cat(_UpperCAmelCase ), torch.cat(_UpperCAmelCase ) return logits, targs def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Accelerator , _UpperCAmelCase : str=82 , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Optional[int]=16 ): lowerCAmelCase = get_basic_setup(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = generate_predictions(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) assert ( len(_UpperCAmelCase ) == num_samples ), F'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_UpperCAmelCase )}' def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False ): lowerCAmelCase = evaluate.load('glue' , 'mrpc' ) lowerCAmelCase = get_mrpc_setup(_UpperCAmelCase , _UpperCAmelCase ) # First do baseline lowerCAmelCase = setup['''no'''] model.to(_UpperCAmelCase ) model.eval() for batch in dataloader: batch.to(_UpperCAmelCase ) with torch.inference_mode(): lowerCAmelCase = model(**_UpperCAmelCase ) lowerCAmelCase = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=_UpperCAmelCase , references=batch['labels'] ) lowerCAmelCase = metric.compute() # Then do distributed lowerCAmelCase = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): lowerCAmelCase = model(**_UpperCAmelCase ) lowerCAmelCase = outputs.logits.argmax(dim=-1 ) lowerCAmelCase = batch['''labels'''] lowerCAmelCase = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=_UpperCAmelCase , references=_UpperCAmelCase ) lowerCAmelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n' def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = Accelerator(split_batches=_UpperCAmelCase , dispatch_batches=_UpperCAmelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' ) test_mrpc(_UpperCAmelCase , _UpperCAmelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: lowerCAmelCase = Accelerator(split_batches=_UpperCAmelCase , dispatch_batches=_UpperCAmelCase ) if accelerator.is_local_main_process: print(F'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' ) test_torch_metrics(_UpperCAmelCase , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) lowerCAmelCase = Accelerator() test_torch_metrics(_UpperCAmelCase , 512 ) accelerator.state._reset_state() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
4
'''simple docstring''' from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class __SCREAMING_SNAKE_CASE : def __init__( self : List[str] , UpperCAmelCase__ : Dict , ): '''simple docstring''' lowercase : Any =parent lowercase : Optional[int] =13 lowercase : Union[str, Any] =7 lowercase : str =30 lowercase : Optional[int] =self.seq_length + self.mem_len lowercase : Dict =15 lowercase : List[str] =True lowercase : Optional[int] =True lowercase : Tuple =99 lowercase : str =[10, 50, 80] lowercase : List[Any] =32 lowercase : Optional[int] =32 lowercase : int =4 lowercase : Any =8 lowercase : List[Any] =128 lowercase : List[str] =2 lowercase : Tuple =2 lowercase : int =None lowercase : Optional[int] =1 lowercase : int =0 lowercase : List[str] =3 lowercase : str =self.vocab_size - 1 lowercase : Tuple =0.01 def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : str =None if self.use_labels: lowercase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Union[str, Any] =TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' random.seed(self.seed ) tf.random.set_seed(self.seed ) def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] ): '''simple docstring''' lowercase : Tuple =TFTransfoXLModel(UpperCAmelCase__ ) lowercase , lowercase : Optional[Any] =model(UpperCAmelCase__ ).to_tuple() lowercase : List[str] ={'''input_ids''': input_ids_a, '''mems''': mems_a} lowercase , lowercase : Any =model(UpperCAmelCase__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def lowerCamelCase_ ( self : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int ): '''simple docstring''' lowercase : int =TFTransfoXLLMHeadModel(UpperCAmelCase__ ) lowercase , lowercase : Tuple =model(UpperCAmelCase__ ).to_tuple() lowercase : Optional[Any] ={'''input_ids''': input_ids_a, '''labels''': lm_labels} lowercase , lowercase : Optional[int] =model(UpperCAmelCase__ ).to_tuple() lowercase , lowercase : List[str] =model([input_ids_a, mems_a] ).to_tuple() lowercase : int ={'''input_ids''': input_ids_a, '''mems''': mems_a, '''labels''': lm_labels} lowercase , lowercase : str =model(UpperCAmelCase__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def lowerCamelCase_ ( self : str , UpperCAmelCase__ : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any] ): '''simple docstring''' lowercase : Optional[int] =TFTransfoXLForSequenceClassification(UpperCAmelCase__ ) lowercase : Union[str, Any] =model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowercase : List[Any] =self.prepare_config_and_inputs() ((lowercase) , (lowercase) , (lowercase) , (lowercase)) : Optional[Any] =config_and_inputs lowercase : Union[str, Any] ={'''input_ids''': input_ids_a} return config, inputs_dict @require_tf class __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , unittest.TestCase ): lowerCamelCase_ = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) lowerCamelCase_ = () if is_tf_available() else () lowerCamelCase_ = ( { 'feature-extraction': TFTransfoXLModel, 'text-classification': TFTransfoXLForSequenceClassification, 'text-generation': TFTransfoXLLMHeadModel, 'zero-shot': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False def lowerCamelCase_ ( self : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int ): '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def lowerCamelCase_ ( self : int ): '''simple docstring''' lowercase : Any =TFTransfoXLModelTester(self ) lowercase : Optional[int] =ConfigTester(self , config_class=UpperCAmelCase__ , d_embed=37 ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' self.model_tester.set_seed() lowercase : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*UpperCAmelCase__ ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' self.model_tester.set_seed() lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*UpperCAmelCase__ ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*UpperCAmelCase__ ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowercase , lowercase : Tuple =self.model_tester.prepare_config_and_inputs_for_common() lowercase : int =[TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: lowercase : str =model_class(UpperCAmelCase__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: lowercase : Union[str, Any] =model.get_output_embeddings() assert isinstance(UpperCAmelCase__ , tf.keras.layers.Layer ) lowercase : Any =model.get_bias() assert name is None else: lowercase : Optional[int] =model.get_output_embeddings() assert x is None lowercase : Optional[int] =model.get_bias() assert name is None def lowerCamelCase_ ( self : Any ): '''simple docstring''' # TODO JP: Make TransfoXL XLA compliant pass @slow def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : int =TFTransfoXLModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @unittest.skip(reason='''This model doesn\'t play well with fit() due to not returning a single loss.''' ) def lowerCamelCase_ ( self : int ): '''simple docstring''' pass @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @unittest.skip('''Skip test until #12651 is resolved.''' ) @slow def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' lowercase : Optional[Any] =TFTransfoXLLMHeadModel.from_pretrained('''transfo-xl-wt103''' ) # fmt: off lowercase : Tuple =tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off lowercase : Optional[int] =[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> lowercase : int =model.generate(UpperCAmelCase__ , max_length=200 , do_sample=UpperCAmelCase__ ) self.assertListEqual(output_ids[0].numpy().tolist() , UpperCAmelCase__ )
92
0
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowercase : Any = logging.getLogger() def SCREAMING_SNAKE_CASE ( ): _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) _UpperCamelCase = parser.parse_args() return args.f def SCREAMING_SNAKE_CASE ( lowerCAmelCase ): _UpperCamelCase = {} _UpperCamelCase = os.path.join(__UpperCamelCase , '''all_results.json''' ) if os.path.exists(__UpperCamelCase ): with open(__UpperCamelCase , '''r''' ) as f: _UpperCamelCase = json.load(__UpperCamelCase ) else: raise ValueError(f'''can\'t find {path}''' ) return results def SCREAMING_SNAKE_CASE ( ): _UpperCamelCase = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() lowercase : Union[str, Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __A( __UpperCAmelCase ): @classmethod def _UpperCamelCase ( cls ): """simple docstring""" _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = os.path.join(cls.tmpdir, '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) _UpperCamelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def _UpperCamelCase ( cls ): """simple docstring""" shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ, {'''WANDB_MODE''': '''offline'''} ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F'''\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n '''.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result['''eval_accuracy'''], 0.75 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE, '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE, '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ, {'''WANDB_MODE''': '''offline'''} ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F'''\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n '''.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result['''perplexity'''], 100 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE, '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE, '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ, {'''WANDB_MODE''': '''offline'''} ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F'''\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n '''.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result['''perplexity'''], 42 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE, '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE, '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ, {'''WANDB_MODE''': '''offline'''} ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = 7 if get_gpu_count() > 1 else 2 _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F'''\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n '''.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result['''eval_accuracy'''], 0.75 ) self.assertLess(result['''train_loss'''], 0.5 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE, '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE, '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ, {'''WANDB_MODE''': '''offline'''} ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F'''\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '''.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(_SCREAMING_SNAKE_CASE ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''], 28 ) self.assertGreaterEqual(result['''eval_exact'''], 28 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE, '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE, '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ, {'''WANDB_MODE''': '''offline'''} ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F'''\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n '''.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result['''eval_accuracy'''], 0.8 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE, '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ, {'''WANDB_MODE''': '''offline'''} ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F'''\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '''.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result['''eval_rouge1'''], 10 ) self.assertGreaterEqual(result['''eval_rouge2'''], 2 ) self.assertGreaterEqual(result['''eval_rougeL'''], 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''], 7 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE, '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE, '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ, {'''WANDB_MODE''': '''offline'''} ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F'''\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n '''.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result['''eval_bleu'''], 30 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE, '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE, '''translation_no_trainer''' ) ) ) @slow def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = logging.StreamHandler(sys.stdout ) logger.addHandler(_SCREAMING_SNAKE_CASE ) _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F'''\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n '''.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result['''eval_overall_accuracy'''], 0.10 ) @mock.patch.dict(os.environ, {'''WANDB_MODE''': '''offline'''} ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = F'''\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n '''.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(_SCREAMING_SNAKE_CASE ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''], 0.6 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE, '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE, '''image_classification_no_trainer''' ) ) )
713
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __A( unittest.TestCase ): def _UpperCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase , _UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained( '''stabilityai/stable-diffusion-2''', revision='''bf16''', dtype=jnp.bfloataa, ) _UpperCamelCase = '''A painting of a squirrel eating a burger''' _UpperCamelCase = jax.device_count() _UpperCamelCase = num_samples * [prompt] _UpperCamelCase = sd_pipe.prepare_inputs(A ) _UpperCamelCase = replicate(A ) _UpperCamelCase = shard(A ) _UpperCamelCase = jax.random.PRNGKey(0 ) _UpperCamelCase = jax.random.split(A, jax.device_count() ) _UpperCamelCase = sd_pipe(A, A, A, num_inference_steps=25, jit=A )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) _UpperCamelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _UpperCamelCase = images[0, 253:256, 253:256, -1] _UpperCamelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _UpperCamelCase = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = '''stabilityai/stable-diffusion-2''' _UpperCamelCase , _UpperCamelCase = FlaxDPMSolverMultistepScheduler.from_pretrained(A, subfolder='''scheduler''' ) _UpperCamelCase , _UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained( A, scheduler=A, revision='''bf16''', dtype=jnp.bfloataa, ) _UpperCamelCase = scheduler_params _UpperCamelCase = '''A painting of a squirrel eating a burger''' _UpperCamelCase = jax.device_count() _UpperCamelCase = num_samples * [prompt] _UpperCamelCase = sd_pipe.prepare_inputs(A ) _UpperCamelCase = replicate(A ) _UpperCamelCase = shard(A ) _UpperCamelCase = jax.random.PRNGKey(0 ) _UpperCamelCase = jax.random.split(A, jax.device_count() ) _UpperCamelCase = sd_pipe(A, A, A, num_inference_steps=25, jit=A )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) _UpperCamelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _UpperCamelCase = images[0, 253:256, 253:256, -1] _UpperCamelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _UpperCamelCase = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
105
0
"""simple docstring""" import numpy as np def lowerCAmelCase_ ( lowercase_ : np.ndarray , lowercase_ : np.ndarray , lowercase_ : float = 1E-1_2 , lowercase_ : int = 100 , ): '''simple docstring''' assert np.shape(lowercase_ )[0] == np.shape(lowercase_ )[1] # Ensure proper dimensionality. assert np.shape(lowercase_ )[0] == np.shape(lowercase_ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowercase_ ) == np.iscomplexobj(lowercase_ ) __SCREAMING_SNAKE_CASE : Any = np.iscomplexobj(lowercase_ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowercase_ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __SCREAMING_SNAKE_CASE : Optional[Any] = False __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 __SCREAMING_SNAKE_CASE : Any = 0 __SCREAMING_SNAKE_CASE : Any = 1E1_2 while not convergence: # Multiple matrix by the vector. __SCREAMING_SNAKE_CASE : int = np.dot(lowercase_ , lowercase_ ) # Normalize the resulting output vector. __SCREAMING_SNAKE_CASE : int = w / np.linalg.norm(lowercase_ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __SCREAMING_SNAKE_CASE : Optional[Any] = vector.conj().T if is_complex else vector.T __SCREAMING_SNAKE_CASE : Optional[int] = np.dot(lowercase_ , np.dot(lowercase_ , lowercase_ ) ) # Check convergence. __SCREAMING_SNAKE_CASE : int = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __SCREAMING_SNAKE_CASE : Optional[int] = True __SCREAMING_SNAKE_CASE : str = lambda_ if is_complex: __SCREAMING_SNAKE_CASE : Optional[int] = np.real(lambda_ ) return lambda_, vector def lowerCAmelCase_ ( ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) __SCREAMING_SNAKE_CASE : Optional[Any] = np.array([41, 4, 20] ) __SCREAMING_SNAKE_CASE : Dict = real_input_matrix.astype(np.complexaaa ) __SCREAMING_SNAKE_CASE : List[str] = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __SCREAMING_SNAKE_CASE : int = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": __SCREAMING_SNAKE_CASE : int = real_input_matrix __SCREAMING_SNAKE_CASE : str = real_vector elif problem_type == "complex": __SCREAMING_SNAKE_CASE : Dict = complex_input_matrix __SCREAMING_SNAKE_CASE : Optional[int] = complex_vector # Our implementation. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = power_iteration(lowercase_ , lowercase_ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = np.linalg.eigh(lowercase_ ) # Last eigenvalue is the maximum one. __SCREAMING_SNAKE_CASE : int = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __SCREAMING_SNAKE_CASE : Dict = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowercase_ ) - np.abs(lowercase_ ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
674
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable _lowerCamelCase = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
674
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _lowerCAmelCase : Optional[int] = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class A_ ( unittest.TestCase ): lowerCAmelCase__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCAmelCase__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCAmelCase__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCAmelCase__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[Any] = pipeline( task="text-classification" ,model="hf-internal-testing/tiny-random-distilbert" ,framework="pt" ) _lowerCamelCase : Tuple = text_classifier("This is great !" ) self.assertEqual(nested_simplify(__lowerCAmelCase ) ,[{"label": "LABEL_0", "score": 0.5_04}] ) _lowerCamelCase : Any = text_classifier("This is great !" ,top_k=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) ,[{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}] ) _lowerCamelCase : List[str] = text_classifier(["This is great !", "This is bad"] ,top_k=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) ,[ [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}], [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}], ] ,) _lowerCamelCase : Dict = text_classifier("This is great !" ,top_k=1 ) self.assertEqual(nested_simplify(__lowerCAmelCase ) ,[{"label": "LABEL_0", "score": 0.5_04}] ) # Legacy behavior _lowerCamelCase : int = text_classifier("This is great !" ,return_all_scores=__lowerCAmelCase ) self.assertEqual(nested_simplify(__lowerCAmelCase ) ,[{"label": "LABEL_0", "score": 0.5_04}] ) _lowerCamelCase : List[Any] = text_classifier("This is great !" ,return_all_scores=__lowerCAmelCase ) self.assertEqual( nested_simplify(__lowerCAmelCase ) ,[[{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}]] ) _lowerCamelCase : Optional[int] = text_classifier(["This is great !", "Something else"] ,return_all_scores=__lowerCAmelCase ) self.assertEqual( nested_simplify(__lowerCAmelCase ) ,[ [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}], [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}], ] ,) _lowerCamelCase : Tuple = text_classifier(["This is great !", "Something else"] ,return_all_scores=__lowerCAmelCase ) self.assertEqual( nested_simplify(__lowerCAmelCase ) ,[ {"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_0", "score": 0.5_04}, ] ,) @require_torch def _lowercase ( self: str ): '''simple docstring''' import torch _lowerCamelCase : str = pipeline( task="text-classification" ,model="hf-internal-testing/tiny-random-distilbert" ,framework="pt" ,device=torch.device("cpu" ) ,) _lowerCamelCase : List[str] = text_classifier("This is great !" ) self.assertEqual(nested_simplify(__lowerCAmelCase ) ,[{"label": "LABEL_0", "score": 0.5_04}] ) @require_tf def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : List[str] = pipeline( task="text-classification" ,model="hf-internal-testing/tiny-random-distilbert" ,framework="tf" ) _lowerCamelCase : Optional[Any] = text_classifier("This is great !" ) self.assertEqual(nested_simplify(__lowerCAmelCase ) ,[{"label": "LABEL_0", "score": 0.5_04}] ) @slow @require_torch def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : str = pipeline("text-classification" ) _lowerCamelCase : Union[str, Any] = text_classifier("This is great !" ) self.assertEqual(nested_simplify(__lowerCAmelCase ) ,[{"label": "POSITIVE", "score": 1.0}] ) _lowerCamelCase : Any = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(__lowerCAmelCase ) ,[{"label": "NEGATIVE", "score": 1.0}] ) _lowerCamelCase : str = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(__lowerCAmelCase ) ,[{"label": "POSITIVE", "score": 0.9_88}] ) @slow @require_tf def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : List[str] = pipeline("text-classification" ,framework="tf" ) _lowerCamelCase : Optional[int] = text_classifier("This is great !" ) self.assertEqual(nested_simplify(__lowerCAmelCase ) ,[{"label": "POSITIVE", "score": 1.0}] ) _lowerCamelCase : List[Any] = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(__lowerCAmelCase ) ,[{"label": "NEGATIVE", "score": 1.0}] ) _lowerCamelCase : Dict = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(__lowerCAmelCase ) ,[{"label": "POSITIVE", "score": 0.9_88}] ) def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Dict = TextClassificationPipeline(model=__lowerCAmelCase ,tokenizer=__lowerCAmelCase ) return text_classifier, ["HuggingFace is in", "This is another test"] def _lowercase ( self: List[Any] ,__lowerCAmelCase: Any ,__lowerCAmelCase: int ): '''simple docstring''' _lowerCamelCase : Optional[int] = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 _lowerCamelCase : Optional[int] = "HuggingFace is in" _lowerCamelCase : Optional[int] = text_classifier(__lowerCAmelCase ) self.assertEqual(nested_simplify(__lowerCAmelCase ) ,[{"label": ANY(__lowerCAmelCase ), "score": ANY(__lowerCAmelCase )}] ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) _lowerCamelCase : Optional[int] = ["HuggingFace is in ", "Paris is in France"] _lowerCamelCase : Any = text_classifier(__lowerCAmelCase ) self.assertEqual( nested_simplify(__lowerCAmelCase ) ,[{"label": ANY(__lowerCAmelCase ), "score": ANY(__lowerCAmelCase )}, {"label": ANY(__lowerCAmelCase ), "score": ANY(__lowerCAmelCase )}] ,) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["label"] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format _lowerCamelCase : Tuple = text_classifier(__lowerCAmelCase ,top_k=__lowerCAmelCase ) _lowerCamelCase : Tuple = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(__lowerCAmelCase ) ,[[{"label": ANY(__lowerCAmelCase ), "score": ANY(__lowerCAmelCase )}] * N, [{"label": ANY(__lowerCAmelCase ), "score": ANY(__lowerCAmelCase )}] * N] ,) _lowerCamelCase : Optional[Any] = {"text": "HuggingFace is in ", "text_pair": "Paris is in France"} _lowerCamelCase : Union[str, Any] = text_classifier(__lowerCAmelCase ) self.assertEqual( nested_simplify(__lowerCAmelCase ) ,{"label": ANY(__lowerCAmelCase ), "score": ANY(__lowerCAmelCase )} ,) self.assertTrue(outputs["label"] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. _lowerCamelCase : Optional[Any] = [["HuggingFace is in ", "Paris is in France"]] with self.assertRaises(__lowerCAmelCase ): text_classifier(__lowerCAmelCase ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility _lowerCamelCase : Dict = text_classifier([[["HuggingFace is in ", "Paris is in France"]]] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) ,[{"label": ANY(__lowerCAmelCase ), "score": ANY(__lowerCAmelCase )}] ,) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() )
386
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ ( unittest.TestCase ): def __init__( self: Any ,__lowerCAmelCase: int ,__lowerCAmelCase: Optional[Any]=13 ,__lowerCAmelCase: List[str]=3 ,__lowerCAmelCase: Optional[Any]=224 ,__lowerCAmelCase: Optional[int]=30 ,__lowerCAmelCase: Union[str, Any]=400 ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: Any=None ,__lowerCAmelCase: str=True ,__lowerCAmelCase: Union[str, Any]=[0.5, 0.5, 0.5] ,__lowerCAmelCase: Tuple=[0.5, 0.5, 0.5] ,): '''simple docstring''' _lowerCamelCase : Optional[Any] = size if size is not None else {"height": 18, "width": 18} _lowerCamelCase : Tuple = parent _lowerCamelCase : List[str] = batch_size _lowerCamelCase : Any = num_channels _lowerCamelCase : Union[str, Any] = image_size _lowerCamelCase : Optional[int] = min_resolution _lowerCamelCase : List[str] = max_resolution _lowerCamelCase : int = do_resize _lowerCamelCase : Dict = size _lowerCamelCase : Optional[int] = do_normalize _lowerCamelCase : int = image_mean _lowerCamelCase : Tuple = image_std def _lowercase ( self: Optional[Any] ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = ViTImageProcessor if is_vision_available() else None def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = EfficientFormerImageProcessorTester(self ) @property def _lowercase ( self: Tuple ): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase ,"image_mean" ) ) self.assertTrue(hasattr(__lowerCAmelCase ,"image_std" ) ) self.assertTrue(hasattr(__lowerCAmelCase ,"do_normalize" ) ) self.assertTrue(hasattr(__lowerCAmelCase ,"do_resize" ) ) self.assertTrue(hasattr(__lowerCAmelCase ,"size" ) ) def _lowercase ( self: List[Any] ): '''simple docstring''' pass def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase : Dict = prepare_image_inputs(self.image_proc_tester ,equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase ,Image.Image ) # Test not batched input _lowerCamelCase : Dict = image_processor(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) ,) # Test batched _lowerCamelCase : Optional[Any] = image_processor(__lowerCAmelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) ,) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase : str = prepare_image_inputs(self.image_proc_tester ,equal_resolution=__lowerCAmelCase ,numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase ,np.ndarray ) # Test not batched input _lowerCamelCase : List[Any] = image_processor(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) ,) # Test batched _lowerCamelCase : Dict = image_processor(__lowerCAmelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) ,) def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase : int = prepare_image_inputs(self.image_proc_tester ,equal_resolution=__lowerCAmelCase ,torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase ,torch.Tensor ) # Test not batched input _lowerCamelCase : int = image_processor(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) ,) # Test batched _lowerCamelCase : Tuple = image_processor(__lowerCAmelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) ,)
386
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class a__ ( unittest.TestCase ): def __magic_name__ ( self ): lowercase : Dict = tempfile.mkdtemp() lowercase : Union[str, Any] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) lowercase : Optional[int] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], "image_std": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } lowercase : Optional[int] = os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(_a , _a ) def __magic_name__ ( self , **_a ): return BertTokenizer.from_pretrained(self.tmpdirname , **_a ) def __magic_name__ ( self , **_a ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def __magic_name__ ( self , **_a ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_a ) def __magic_name__ ( self ): shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ): lowercase : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase : List[str] = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def __magic_name__ ( self ): lowercase : Tuple = self.get_tokenizer() lowercase : List[str] = self.get_rust_tokenizer() lowercase : Tuple = self.get_image_processor() lowercase : Optional[int] = AlignProcessor(tokenizer=_a , image_processor=_a ) processor_slow.save_pretrained(self.tmpdirname ) lowercase : List[str] = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_a ) lowercase : Optional[Any] = AlignProcessor(tokenizer=_a , image_processor=_a ) processor_fast.save_pretrained(self.tmpdirname ) lowercase : int = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _a ) self.assertIsInstance(processor_fast.tokenizer , _a ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _a ) self.assertIsInstance(processor_fast.image_processor , _a ) def __magic_name__ ( self ): lowercase : Dict = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase : List[str] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowercase : Dict = self.get_image_processor(do_normalize=_a , padding_value=1.0 ) lowercase : List[Any] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __magic_name__ ( self ): lowercase : int = self.get_image_processor() lowercase : List[Any] = self.get_tokenizer() lowercase : Tuple = AlignProcessor(tokenizer=_a , image_processor=_a ) lowercase : List[str] = self.prepare_image_inputs() lowercase : List[Any] = image_processor(_a , return_tensors="np" ) lowercase : str = processor(images=_a , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __magic_name__ ( self ): lowercase : Tuple = self.get_image_processor() lowercase : List[Any] = self.get_tokenizer() lowercase : int = AlignProcessor(tokenizer=_a , image_processor=_a ) lowercase : Any = "lower newer" lowercase : Optional[Any] = processor(text=_a ) lowercase : Optional[int] = tokenizer(_a , padding="max_length" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __magic_name__ ( self ): lowercase : Union[str, Any] = self.get_image_processor() lowercase : Union[str, Any] = self.get_tokenizer() lowercase : Tuple = AlignProcessor(tokenizer=_a , image_processor=_a ) lowercase : List[str] = "lower newer" lowercase : Dict = self.prepare_image_inputs() lowercase : int = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __magic_name__ ( self ): lowercase : Optional[Any] = self.get_image_processor() lowercase : List[Any] = self.get_tokenizer() lowercase : str = AlignProcessor(tokenizer=_a , image_processor=_a ) lowercase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase : Optional[Any] = processor.batch_decode(_a ) lowercase : Tuple = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): lowercase : Union[str, Any] = self.get_image_processor() lowercase : Any = self.get_tokenizer() lowercase : Tuple = AlignProcessor(tokenizer=_a , image_processor=_a ) lowercase : List[Any] = "lower newer" lowercase : List[str] = self.prepare_image_inputs() lowercase : int = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
361
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class a__ ( a_ ): __lowerCAmelCase = (DDPMScheduler,) def __magic_name__ ( self , **_a ): lowercase : Dict = { "num_train_timesteps": 1_000, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**_a ) return config def __magic_name__ ( self ): for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_a ) def __magic_name__ ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_a , beta_end=_a ) def __magic_name__ ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_a ) def __magic_name__ ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_a ) def __magic_name__ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_a ) def __magic_name__ ( self ): self.check_over_configs(thresholding=_a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_a , prediction_type=_a , sample_max_value=_a , ) def __magic_name__ ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def __magic_name__ ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=_a ) def __magic_name__ ( self ): lowercase : Union[str, Any] = self.scheduler_classes[0] lowercase : Any = self.get_scheduler_config() lowercase : Dict = scheduler_class(**_a ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1E-5 def __magic_name__ ( self ): lowercase : Optional[int] = self.scheduler_classes[0] lowercase : Tuple = self.get_scheduler_config() lowercase : Dict = scheduler_class(**_a ) lowercase : Dict = len(_a ) lowercase : str = self.dummy_model() lowercase : Optional[int] = self.dummy_sample_deter lowercase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(_a ) ): # 1. predict noise residual lowercase : Optional[Any] = model(_a , _a ) # 2. predict previous mean of sample x_t-1 lowercase : str = scheduler.step(_a , _a , _a , generator=_a ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase : List[str] = pred_prev_sample lowercase : Dict = torch.sum(torch.abs(_a ) ) lowercase : List[Any] = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1E-3 def __magic_name__ ( self ): lowercase : Optional[int] = self.scheduler_classes[0] lowercase : Any = self.get_scheduler_config(prediction_type="v_prediction" ) lowercase : int = scheduler_class(**_a ) lowercase : str = len(_a ) lowercase : Optional[int] = self.dummy_model() lowercase : List[str] = self.dummy_sample_deter lowercase : Optional[Any] = torch.manual_seed(0 ) for t in reversed(range(_a ) ): # 1. predict noise residual lowercase : Union[str, Any] = model(_a , _a ) # 2. predict previous mean of sample x_t-1 lowercase : Optional[Any] = scheduler.step(_a , _a , _a , generator=_a ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase : Dict = pred_prev_sample lowercase : str = torch.sum(torch.abs(_a ) ) lowercase : Tuple = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1E-3 def __magic_name__ ( self ): lowercase : List[Any] = self.scheduler_classes[0] lowercase : Tuple = self.get_scheduler_config() lowercase : Tuple = scheduler_class(**_a ) lowercase : List[str] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_a ) lowercase : Union[str, Any] = scheduler.timesteps for i, timestep in enumerate(_a ): if i == len(_a ) - 1: lowercase : Any = -1 else: lowercase : Union[str, Any] = timesteps[i + 1] lowercase : Optional[int] = scheduler.previous_timestep(_a ) lowercase : Union[str, Any] = prev_t.item() self.assertEqual(_a , _a ) def __magic_name__ ( self ): lowercase : str = self.scheduler_classes[0] lowercase : List[str] = self.get_scheduler_config() lowercase : List[Any] = scheduler_class(**_a ) lowercase : Optional[int] = [100, 87, 50, 51, 0] with self.assertRaises(_a , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=_a ) def __magic_name__ ( self ): lowercase : Dict = self.scheduler_classes[0] lowercase : Union[str, Any] = self.get_scheduler_config() lowercase : Any = scheduler_class(**_a ) lowercase : int = [100, 87, 50, 1, 0] lowercase : Any = len(_a ) with self.assertRaises(_a , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a ) def __magic_name__ ( self ): lowercase : str = self.scheduler_classes[0] lowercase : Tuple = self.get_scheduler_config() lowercase : Optional[int] = scheduler_class(**_a ) lowercase : List[str] = [scheduler.config.num_train_timesteps] with self.assertRaises( _a , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=_a )
361
1
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ={ """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } __UpperCAmelCase ={ """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } __UpperCAmelCase ={"""facebook/blenderbot-3B""": 128} class lowerCAmelCase__ ( UpperCAmelCase_ ): lowercase__ : Optional[Any] = VOCAB_FILES_NAMES lowercase__ : Tuple = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : List[Any] = ["""input_ids""", """attention_mask"""] lowercase__ : Any = BlenderbotTokenizer def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="replace" , UpperCamelCase__="<s>" , UpperCamelCase__="</s>" , UpperCamelCase__="</s>" , UpperCamelCase__="<s>" , UpperCamelCase__="<unk>" , UpperCamelCase__="<pad>" , UpperCamelCase__="<mask>" , UpperCamelCase__=False , UpperCamelCase__=True , **UpperCamelCase__ , ): '''simple docstring''' super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , errors=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ , **UpperCamelCase__ , ) A__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCamelCase__ ) != add_prefix_space: A__ = getattr(UpperCamelCase__ , pre_tok_state.pop("type" ) ) A__ = add_prefix_space A__ = pre_tok_class(**UpperCamelCase__ ) A__ = add_prefix_space A__ = "post_processor" A__ = getattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__ ) if tokenizer_component_instance: A__ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A__ = tuple(state["sep"] ) if "cls" in state: A__ = tuple(state["cls"] ) A__ = False if state.get("add_prefix_space" , UpperCamelCase__ ) != add_prefix_space: A__ = add_prefix_space A__ = True if state.get("trim_offsets" , UpperCamelCase__ ) != trim_offsets: A__ = trim_offsets A__ = True if changes_to_apply: A__ = getattr(UpperCamelCase__ , state.pop("type" ) ) A__ = component_class(**UpperCamelCase__ ) setattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowercase_ ( self ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' A__ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else value A__ = value def lowercase_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' A__ = kwargs.get("is_split_into_words" , UpperCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase__ , **UpperCamelCase__ ) def lowercase_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' A__ = kwargs.get("is_split_into_words" , UpperCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase__ , **UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ): '''simple docstring''' A__ = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ): '''simple docstring''' A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ): '''simple docstring''' return token_ids_a + [self.eos_token_id] def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' A__ = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(UpperCamelCase__ ) A__ = " ".join(UpperCamelCase__ ) A__ = self.encode(UpperCamelCase__ ) if len(UpperCamelCase__ ) > self.model_max_length: A__ = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
261
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) __UpperCAmelCase ={ """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =[ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =[ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys __UpperCAmelCase =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
261
1
"""simple docstring""" lowerCamelCase_ = ''' # Transformers ์„ค์น˜ ๋ฐฉ๋ฒ• ! pip install transformers datasets # ๋งˆ์ง€๋ง‰ ๋ฆด๋ฆฌ์Šค ๋Œ€์‹  ์†Œ์Šค์—์„œ ์„ค์น˜ํ•˜๋ ค๋ฉด, ์œ„ ๋ช…๋ น์„ ์ฃผ์„์œผ๋กœ ๋ฐ”๊พธ๊ณ  ์•„๋ž˜ ๋ช…๋ น์„ ํ•ด์ œํ•˜์„ธ์š”. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowerCamelCase_ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowerCamelCase_ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
95
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : Optional[int] = ["""image_processor""", """tokenizer"""] a_ : Union[str, Any] = """ViltImageProcessor""" a_ : Dict = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : List[Any] , a_ : Optional[int]=None , a_ : Optional[Any]=None , **a_ : str ): lowerCAmelCase_ : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , a_ , ) lowerCAmelCase_ : Tuple = kwargs.pop("feature_extractor" ) lowerCAmelCase_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(a_ , a_ ) lowerCAmelCase_ : str = self.image_processor def __call__( self : int , a_ : List[Any] , a_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , a_ : bool = True , a_ : Union[bool, str, PaddingStrategy] = False , a_ : Union[bool, str, TruncationStrategy] = None , a_ : Optional[int] = None , a_ : int = 0 , a_ : Optional[int] = None , a_ : Optional[bool] = None , a_ : Optional[bool] = None , a_ : bool = False , a_ : bool = False , a_ : bool = False , a_ : bool = False , a_ : bool = True , a_ : Optional[Union[str, TensorType]] = None , **a_ : Optional[Any] , ): lowerCAmelCase_ : Dict = self.tokenizer( text=a_ , add_special_tokens=a_ , padding=a_ , truncation=a_ , max_length=a_ , stride=a_ , pad_to_multiple_of=a_ , return_token_type_ids=a_ , return_attention_mask=a_ , return_overflowing_tokens=a_ , return_special_tokens_mask=a_ , return_offsets_mapping=a_ , return_length=a_ , verbose=a_ , return_tensors=a_ , **a_ , ) # add pixel_values + pixel_mask lowerCAmelCase_ : Tuple = self.image_processor(a_ , return_tensors=a_ ) encoding.update(a_ ) return encoding def lowerCamelCase ( self : Union[str, Any] , *a_ : Dict , **a_ : Union[str, Any] ): return self.tokenizer.batch_decode(*a_ , **a_ ) def lowerCamelCase ( self : Optional[Any] , *a_ : List[str] , **a_ : Any ): return self.tokenizer.decode(*a_ , **a_ ) @property def lowerCamelCase ( self : Dict ): lowerCAmelCase_ : Tuple = self.tokenizer.model_input_names lowerCAmelCase_ : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCamelCase ( self : Union[str, Any] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , a_ , ) return self.image_processor_class @property def lowerCamelCase ( self : Optional[int] ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , a_ , ) return self.image_processor
610
0
import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset __UpperCAmelCase = pd.read_csv( """https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/""" """position_salaries.csv""" ) __UpperCAmelCase = dataset.iloc[:, 1:2].values __UpperCAmelCase = dataset.iloc[:, 2].values __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = train_test_split(X, y, test_size=0.2, random_state=0) __UpperCAmelCase = PolynomialFeatures(degree=4) __UpperCAmelCase = poly_reg.fit_transform(X) __UpperCAmelCase = LinearRegression() pol_reg.fit(X_poly, y) def snake_case_ () -> Any: plt.scatter(__A , __A , color="""red""" ) plt.plot(__A , pol_reg.predict(poly_reg.fit_transform(__A ) ) , color="""blue""" ) plt.title("""Truth or Bluff (Linear Regression)""" ) plt.xlabel("""Position level""" ) plt.ylabel("""Salary""" ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
218
from argparse import ArgumentParser from . import BaseTransformersCLICommand def snake_case_ (__A : Union[str, Any] ) -> Any: return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" @staticmethod def SCREAMING_SNAKE_CASE ( lowerCAmelCase : ArgumentParser ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=lowerCAmelCase , default=lowerCAmelCase , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=lowerCAmelCase , help="""Name of the model to download""" ) download_parser.set_defaults(func=lowerCAmelCase ) def __init__( self : Dict , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : bool , lowerCAmelCase : bool ) -> Any: """simple docstring""" __lowerCAmelCase : Union[str, Any] = model __lowerCAmelCase : Optional[Any] = cache __lowerCAmelCase : Optional[Any] = force __lowerCAmelCase : Tuple = trust_remote_code def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
218
1
"""simple docstring""" def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : int , snake_case_ : Tuple ) ->int: if height >= 1: move_tower(height - 1 , snake_case_ , snake_case_ , snake_case_ ) move_disk(snake_case_ , snake_case_ ) move_tower(height - 1 , snake_case_ , snake_case_ , snake_case_ ) def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : Dict ) ->Dict: print('moving disk from' , snake_case_ , 'to' , snake_case_ ) def lowerCAmelCase_ ( ) ->Optional[int]: lowerCamelCase__ : List[str] =int(input('Height of hanoi: ' ).strip() ) move_tower(snake_case_ , 'A' , 'B' , 'C' ) if __name__ == "__main__": main()
174
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) class A_ ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = """timm_backbone""" def __init__( self :Any , lowerCamelCase_ :int=None , lowerCamelCase_ :Optional[int]=3 , lowerCamelCase_ :int=True , lowerCamelCase_ :Dict=True , lowerCamelCase_ :Union[str, Any]=None , **lowerCamelCase_ :Optional[int] , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) lowerCamelCase__ : Optional[int] =backbone lowerCamelCase__ : List[Any] =num_channels lowerCamelCase__ : Tuple =features_only lowerCamelCase__ : Dict =use_pretrained_backbone lowerCamelCase__ : Optional[int] =True lowerCamelCase__ : Optional[int] =out_indices if out_indices is not None else (-1,)
174
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE__ = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE__ = { 'camembert-base': 5_1_2, } SCREAMING_SNAKE_CASE__ = 'โ–' class a_ ( lowerCamelCase ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["""input_ids""", """attention_mask"""] lowercase = CamembertTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE=["<s>NOTUSED", "</s>NOTUSED"] , **_SCREAMING_SNAKE_CASE , ) -> Optional[int]: """simple docstring""" UpperCamelCase = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase = vocab_file UpperCamelCase = False if not self.vocab_file else True def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCamelCase = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
35
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) SCREAMING_SNAKE_CASE__ = CLIPImageProcessor() SCREAMING_SNAKE_CASE__ = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') SCREAMING_SNAKE_CASE__ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
35
1
'''simple docstring''' import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib A = threading.Lock() A = None A = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } A = logging.WARNING A = True def UpperCAmelCase ( ): lowerCamelCase : str = os.getenv('TRANSFORMERS_VERBOSITY' , UpperCAmelCase__) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'''Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ''' F'''has to be one of: { ', '.join(log_levels.keys()) }''') return _default_log_level def UpperCAmelCase ( ): return __name__.split('.')[0] def UpperCAmelCase ( ): return logging.getLogger(_get_library_name()) def UpperCAmelCase ( ): global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return lowerCamelCase : List[Any] = logging.StreamHandler() # Set sys.stderr as stream. lowerCamelCase : Optional[int] = sys.stderr.flush # Apply our default configuration to the library root logger. lowerCamelCase : Union[str, Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler) library_root_logger.setLevel(_get_default_logging_level()) lowerCamelCase : Dict = False def UpperCAmelCase ( ): global _default_handler with _lock: if not _default_handler: return lowerCamelCase : Tuple = _get_library_root_logger() library_root_logger.removeHandler(_default_handler) library_root_logger.setLevel(logging.NOTSET) lowerCamelCase : Union[str, Any] = None def UpperCAmelCase ( ): return log_levels def UpperCAmelCase ( UpperCAmelCase__ : Optional[str] = None): if name is None: lowerCamelCase : Union[str, Any] = _get_library_name() _configure_library_root_logger() return logging.getLogger(UpperCAmelCase__) def UpperCAmelCase ( ): _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def UpperCAmelCase ( UpperCAmelCase__ : int): _configure_library_root_logger() _get_library_root_logger().setLevel(UpperCAmelCase__) def UpperCAmelCase ( ): return set_verbosity(UpperCAmelCase__) def UpperCAmelCase ( ): return set_verbosity(UpperCAmelCase__) def UpperCAmelCase ( ): return set_verbosity(UpperCAmelCase__) def UpperCAmelCase ( ): return set_verbosity(UpperCAmelCase__) def UpperCAmelCase ( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler) def UpperCAmelCase ( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler) def UpperCAmelCase ( UpperCAmelCase__ : logging.Handler): _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(UpperCAmelCase__) def UpperCAmelCase ( UpperCAmelCase__ : logging.Handler): _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(UpperCAmelCase__) def UpperCAmelCase ( ): _configure_library_root_logger() lowerCamelCase : str = False def UpperCAmelCase ( ): _configure_library_root_logger() lowerCamelCase : Dict = True def UpperCAmelCase ( ): lowerCamelCase : Optional[Any] = _get_library_root_logger().handlers for handler in handlers: lowerCamelCase : Any = logging.Formatter('[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s') handler.setFormatter(UpperCAmelCase__) def UpperCAmelCase ( ): lowerCamelCase : Tuple = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(UpperCAmelCase__) def UpperCAmelCase ( self : Optional[int] , *UpperCAmelCase__ : Any , **UpperCAmelCase__ : Dict): lowerCamelCase : Dict = os.getenv('TRANSFORMERS_NO_ADVISORY_WARNINGS' , UpperCAmelCase__) if no_advisory_warnings: return self.warning(*UpperCAmelCase__ , **UpperCAmelCase__) A = warning_advice @functools.lru_cache(UpperCAmelCase__) def UpperCAmelCase ( self : Optional[int] , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : List[str]): self.warning(*UpperCAmelCase__ , **UpperCAmelCase__) A = warning_once class __snake_case : def __init__( self, *A, **A ): # pylint: disable=unused-argument """simple docstring""" lowerCamelCase : Any = args[0] if args else None def __iter__( self ): """simple docstring""" return iter(self._iterator ) def __getattr__( self, A ): """simple docstring""" def empty_fn(*A, **A ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ): """simple docstring""" return self def __exit__( self, A, A, A ): """simple docstring""" return class __snake_case : def __call__( self, *A, **A ): """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm(*A, **A ) else: return EmptyTqdm(*A, **A ) def UpperCAmelCase_ ( self, *A, **A ): """simple docstring""" lowerCamelCase : Any = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*A, **A ) def UpperCAmelCase_ ( self ): """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() A = _tqdm_cls() def UpperCAmelCase ( ): global _tqdm_active return bool(_tqdm_active) def UpperCAmelCase ( ): global _tqdm_active lowerCamelCase : Optional[Any] = True hf_hub_utils.enable_progress_bars() def UpperCAmelCase ( ): global _tqdm_active lowerCamelCase : Optional[int] = False hf_hub_utils.disable_progress_bars()
320
'''simple docstring''' from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging A = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class __snake_case ( a__): def __init__( self, A = 101 ): """simple docstring""" lowerCamelCase : int = length def __len__( self ): """simple docstring""" return self.length def __getitem__( self, A ): """simple docstring""" return i class __snake_case : def __call__( self, A ): """simple docstring""" return {"input_ids": torch.tensor(A ), "labels": torch.tensor(A )} class __snake_case ( nn.Module): def __init__( self ): """simple docstring""" super().__init__() # Add some (unused) params otherwise DDP will complain. lowerCamelCase : str = nn.Linear(120, 80 ) def UpperCAmelCase_ ( self, A, A=None ): """simple docstring""" if labels is not None: return torch.tensor(0.0, device=input_ids.device ), input_ids else: return input_ids class __snake_case ( a__): @require_torch_neuroncore def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[str] = F'''--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() lowerCamelCase : Optional[Any] = self.get_auto_remove_tmp_dir() lowerCamelCase : int = F'''--output_dir {output_dir}'''.split() lowerCamelCase : Optional[Any] = ['torchrun'] + distributed_args + args execute_subprocess_async(A, env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class __snake_case ( a__): @require_torch_multi_gpu def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[Any] = F'''--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() lowerCamelCase : int = self.get_auto_remove_tmp_dir() lowerCamelCase : Optional[Any] = F'''--output_dir {output_dir}'''.split() lowerCamelCase : str = ['torchrun'] + distributed_args + args execute_subprocess_async(A, env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py A = HfArgumentParser((TrainingArguments,)) A = parser.parse_args_into_dataclasses()[0] logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """ f"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}""" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: A = DummyDataset(dataset_length) def UpperCAmelCase ( UpperCAmelCase__ : EvalPrediction): lowerCamelCase : Union[str, Any] = list(range(len(UpperCAmelCase__))) lowerCamelCase : Any = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( 'Predictions and/or labels do not match expected results:\n - predictions: ' F'''{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}''') return {"success": success} A = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) A = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) A = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) A = 2 A = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) A = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) A = None
320
1
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('''socket.socket''') @patch('''builtins.open''') def __A ( a_ :Optional[int] , a_ :Dict) -> List[Any]: __a : str = Mock() __a : int = conn, Mock() __a : Dict = iter([1, None]) __a : Union[str, Any] = lambda a_: next(lowercase__) # ===== invoke ===== send_file(filename='''mytext.txt''' , testing=lowercase__) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
719
"""simple docstring""" def __A ( a_ :int , a_ :float , a_ :float) -> float: return round(float(moles / volume) * nfactor) def __A ( a_ :float , a_ :float , a_ :float) -> float: return round(float((moles * 0.0_8_2_1 * temperature) / (volume))) def __A ( a_ :float , a_ :float , a_ :float) -> float: return round(float((moles * 0.0_8_2_1 * temperature) / (pressure))) def __A ( a_ :float , a_ :float , a_ :float) -> float: return round(float((pressure * volume) / (0.0_8_2_1 * moles))) if __name__ == "__main__": import doctest doctest.testmod()
101
0
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class _snake_case ( unittest.TestCase ): def lowercase__ ( self): '''simple docstring''' lowercase__ : str = inspect.getfile(accelerate.test_utils) lowercase__ : Tuple = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["""scripts""", """test_script.py"""]) lowercase__ : Optional[Any] = os.path.sep.join( mod_file.split(os.path.sep)[:-1] + ["""scripts""", """test_distributed_data_loop.py"""]) lowercase__ : int = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["""scripts""", """test_ops.py"""]) @require_multi_gpu def lowercase__ ( self): '''simple docstring''' print(f'Found {torch.cuda.device_count()} devices.') lowercase__ : Any = ["""torchrun""", f'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1): execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy()) @require_multi_gpu def lowercase__ ( self): '''simple docstring''' print(f'Found {torch.cuda.device_count()} devices.') lowercase__ : Tuple = ["""torchrun""", f'--nproc_per_node={torch.cuda.device_count()}', self.operation_file_path] print(f'Command: {cmd}') with patch_environment(omp_num_threads=1): execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy()) @require_multi_gpu def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = ["""torchrun""", f'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__)] with patch_environment(omp_num_threads=1): execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy()) @require_multi_gpu def lowercase__ ( self): '''simple docstring''' print(f'Found {torch.cuda.device_count()} devices, using 2 devices only') lowercase__ : Optional[Any] = ["""torchrun""", f'--nproc_per_node={torch.cuda.device_count()}', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="""0,1"""): execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy()) if __name__ == "__main__": lowerCamelCase__ : Any = Accelerator() lowerCamelCase__ : Union[str, Any] = (accelerator.state.process_index + 2, 1_0) lowerCamelCase__ : Tuple = torch.randint(0, 1_0, shape).to(accelerator.device) lowerCamelCase__ : List[Any] = """""" lowerCamelCase__ : str = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." lowerCamelCase__ : Any = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." lowerCamelCase__ : List[str] = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
12
"""simple docstring""" import os from typing import Dict, List, Tuple, TypeVar, Union _a : Optional[Any] = TypeVar('T') _a : List[Any] = Union[List[T], Tuple[T, ...]] _a : Tuple = Union[T, List[T], Dict[str, T]] _a : List[str] = Union[str, bytes, os.PathLike]
213
0
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase = 16 UpperCAmelCase = 32 def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 16 )-> List[Any]: """simple docstring""" snake_case_ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) snake_case_ = DatasetDict( { '''train''': dataset['''train'''].select(SCREAMING_SNAKE_CASE ), '''validation''': dataset['''train'''].select(SCREAMING_SNAKE_CASE ), '''test''': dataset['''validation'''], } ) def tokenize_function(SCREAMING_SNAKE_CASE ): # max_length=None => use the model max length (it's actually the default) snake_case_ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case_ = datasets.map( SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case_ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(SCREAMING_SNAKE_CASE ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case_ = 16 elif accelerator.mixed_precision != "no": snake_case_ = 8 else: snake_case_ = None return tokenizer.pad( SCREAMING_SNAKE_CASE , padding='''longest''' , max_length=SCREAMING_SNAKE_CASE , pad_to_multiple_of=SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) # Instantiate dataloaders. snake_case_ = DataLoader( tokenized_datasets['''train'''] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) snake_case_ = DataLoader( tokenized_datasets['''validation'''] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) snake_case_ = DataLoader( tokenized_datasets['''test'''] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader, test_dataloader def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Optional[int]: """simple docstring""" snake_case_ = [] # Download the dataset snake_case_ = load_dataset('''glue''' , '''mrpc''' ) # Create our splits snake_case_ = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator snake_case_ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case_ = config['''lr'''] snake_case_ = int(config['''num_epochs'''] ) snake_case_ = int(config['''seed'''] ) snake_case_ = int(config['''batch_size'''] ) snake_case_ = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation snake_case_ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: snake_case_ = batch_size // MAX_GPU_BATCH_SIZE snake_case_ = MAX_GPU_BATCH_SIZE set_seed(SCREAMING_SNAKE_CASE ) # New Code # # Create our folds: snake_case_ = kfold.split(np.zeros(datasets['''train'''].num_rows ) , datasets['''train''']['''label'''] ) snake_case_ = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(SCREAMING_SNAKE_CASE ): snake_case_ , snake_case_ , snake_case_ = get_fold_dataloaders( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case_ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case_ = model.to(accelerator.device ) # Instantiate optimizer snake_case_ = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE ) # Instantiate scheduler snake_case_ = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE , num_warmup_steps=100 , num_training_steps=(len(SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = accelerator.prepare( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) snake_case_ = model(**SCREAMING_SNAKE_CASE ) snake_case_ = outputs.loss snake_case_ = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case_ = model(**SCREAMING_SNAKE_CASE ) snake_case_ = outputs.logits.argmax(dim=-1 ) snake_case_ , snake_case_ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=SCREAMING_SNAKE_CASE , references=SCREAMING_SNAKE_CASE , ) snake_case_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , SCREAMING_SNAKE_CASE ) # New Code # # We also run predictions on the test set at the very end snake_case_ = [] for step, batch in enumerate(SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case_ = model(**SCREAMING_SNAKE_CASE ) snake_case_ = outputs.logits snake_case_ , snake_case_ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(SCREAMING_SNAKE_CASE , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: snake_case_ = torch.cat(SCREAMING_SNAKE_CASE , dim=0 ) snake_case_ = torch.stack(SCREAMING_SNAKE_CASE , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) snake_case_ = metric.compute(predictions=SCREAMING_SNAKE_CASE , references=SCREAMING_SNAKE_CASE ) accelerator.print('''Average test metrics from all folds:''' , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ()-> int: """simple docstring""" snake_case_ = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) # New Code # parser.add_argument('''--num_folds''' , type=SCREAMING_SNAKE_CASE , default=3 , help='''The number of splits to perform across the dataset''' ) snake_case_ = parser.parse_args() snake_case_ = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
720
def __lowerCAmelCase (SCREAMING_SNAKE_CASE = 3 , SCREAMING_SNAKE_CASE = 7 , SCREAMING_SNAKE_CASE = 100_0000 )-> int: """simple docstring""" snake_case_ = 0 snake_case_ = 1 for current_denominator in range(1 , limit + 1 ): snake_case_ = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: snake_case_ = current_numerator snake_case_ = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=100_0000))
531
0
'''simple docstring''' def lowerCamelCase_ ( A_ , A_ ): return int((input_a, input_a).count(1 ) != 0 ) def lowerCamelCase_ ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
316
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = tempfile.mkdtemp() # fmt: off __lowerCamelCase = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCamelCase = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) __lowerCamelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCamelCase = {'''unk_token''': '''<unk>'''} __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_snake_case ) ) __lowerCamelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCamelCase = os.path.join(self.tmpdirname , _snake_case ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_snake_case , _snake_case ) def _lowerCamelCase ( self , **_snake_case ): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **_snake_case ) def _lowerCamelCase ( self , **_snake_case ): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **_snake_case ) def _lowerCamelCase ( self , **_snake_case ): """simple docstring""" return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **_snake_case ) def _lowerCamelCase ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCamelCase = [Image.fromarray(np.moveaxis(_snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = self.get_image_processor() __lowerCamelCase = OwlViTProcessor(tokenizer=_snake_case , image_processor=_snake_case ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCamelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=_snake_case ) __lowerCamelCase = OwlViTProcessor(tokenizer=_snake_case , image_processor=_snake_case ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCamelCase = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _snake_case ) self.assertIsInstance(processor_fast.tokenizer , _snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _snake_case ) self.assertIsInstance(processor_fast.image_processor , _snake_case ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCamelCase = self.get_image_processor(do_normalize=_snake_case ) __lowerCamelCase = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_snake_case ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _snake_case ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = OwlViTProcessor(tokenizer=_snake_case , image_processor=_snake_case ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = image_processor(_snake_case , return_tensors='''np''' ) __lowerCamelCase = processor(images=_snake_case , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = OwlViTProcessor(tokenizer=_snake_case , image_processor=_snake_case ) __lowerCamelCase = '''lower newer''' __lowerCamelCase = processor(text=_snake_case , return_tensors='''np''' ) __lowerCamelCase = tokenizer(_snake_case , return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = OwlViTProcessor(tokenizer=_snake_case , image_processor=_snake_case ) __lowerCamelCase = '''lower newer''' __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(text=_snake_case , images=_snake_case ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_snake_case ): processor() def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = '''google/owlvit-base-patch32''' __lowerCamelCase = OwlViTProcessor.from_pretrained(_snake_case ) __lowerCamelCase = ['''cat''', '''nasa badge'''] __lowerCamelCase = processor(text=_snake_case ) __lowerCamelCase = 16 self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(_snake_case ): processor() def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = '''google/owlvit-base-patch32''' __lowerCamelCase = OwlViTProcessor.from_pretrained(_snake_case ) __lowerCamelCase = [['''cat''', '''nasa badge'''], ['''person''']] __lowerCamelCase = processor(text=_snake_case ) __lowerCamelCase = 16 __lowerCamelCase = len(_snake_case ) __lowerCamelCase = max([len(_snake_case ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(_snake_case ): processor() def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = '''google/owlvit-base-patch32''' __lowerCamelCase = OwlViTProcessor.from_pretrained(_snake_case ) __lowerCamelCase = ['''cat''', '''nasa badge'''] __lowerCamelCase = processor(text=_snake_case ) __lowerCamelCase = 16 __lowerCamelCase = inputs['''input_ids'''] __lowerCamelCase = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = OwlViTProcessor(tokenizer=_snake_case , image_processor=_snake_case ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(images=_snake_case , query_images=_snake_case ) self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_snake_case ): processor() def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = OwlViTProcessor(tokenizer=_snake_case , image_processor=_snake_case ) __lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCamelCase = processor.batch_decode(_snake_case ) __lowerCamelCase = tokenizer.batch_decode(_snake_case ) self.assertListEqual(_snake_case , _snake_case )
316
1
'''simple docstring''' import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def __UpperCAmelCase ( a_: dict ): return (data["data"], data["target"]) def __UpperCAmelCase ( a_: np.ndarray, a_: np.ndarray, a_: np.ndarray ): _UpperCAmelCase : Union[str, Any] = XGBRegressor(verbosity=0, random_state=42 ) xgb.fit(a_, a_ ) # Predict target for test data _UpperCAmelCase : Optional[int] = xgb.predict(a_ ) _UpperCAmelCase : List[Any] = predictions.reshape(len(a_ ), 1 ) return predictions def __UpperCAmelCase ( ): _UpperCAmelCase : List[Any] = fetch_california_housing() _UpperCAmelCase , _UpperCAmelCase : Optional[int] = data_handling(a_ ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = train_test_split( a_, a_, test_size=0.25, random_state=1 ) _UpperCAmelCase : Dict = xgboost(a_, a_, a_ ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(a_, a_ )}""" ) print(f"""Mean Square Error : {mean_squared_error(a_, a_ )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
257
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { 'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimesformerModel', 'TimesformerForVideoClassification', 'TimesformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
257
1
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging lowercase__ : Optional[Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( snake_case__=None , snake_case__=None ) -> Tuple: return field(default_factory=lambda: default , metadata=snake_case__ ) @dataclass class lowercase_ : """simple docstring""" UpperCAmelCase_ : List[str] = list_field( default=[] , metadata={ """help""": ( """Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version""" """ of all available models""" ) } , ) UpperCAmelCase_ : List[int] = list_field( default=[8] , metadata={"""help""": """List of batch sizes for which memory and time performance will be evaluated"""} ) UpperCAmelCase_ : List[int] = list_field( default=[8, 32, 128, 512] , metadata={"""help""": """List of sequence lengths for which memory and time performance will be evaluated"""} , ) UpperCAmelCase_ : bool = field( default=UpperCamelCase_ , metadata={"""help""": """Whether to benchmark inference of model. Inference can be disabled via --no-inference."""} , ) UpperCAmelCase_ : bool = field( default=UpperCamelCase_ , metadata={"""help""": """Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."""} , ) UpperCAmelCase_ : bool = field( default=UpperCamelCase_ , metadata={"""help""": """Whether to run on available tpu devices. TPU can be disabled via --no-tpu."""} ) UpperCAmelCase_ : bool = field(default=UpperCamelCase_ , metadata={"""help""": """Use FP16 to accelerate inference."""} ) UpperCAmelCase_ : bool = field(default=UpperCamelCase_ , metadata={"""help""": """Benchmark training of model"""} ) UpperCAmelCase_ : bool = field(default=UpperCamelCase_ , metadata={"""help""": """Verbose memory tracing"""} ) UpperCAmelCase_ : bool = field( default=UpperCamelCase_ , metadata={"""help""": """Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."""} , ) UpperCAmelCase_ : bool = field( default=UpperCamelCase_ , metadata={ """help""": """Whether to perform memory measurements. Memory measurements can be disabled via --no-memory""" } , ) UpperCAmelCase_ : bool = field(default=UpperCamelCase_ , metadata={"""help""": """Trace memory line by line"""} ) UpperCAmelCase_ : bool = field(default=UpperCamelCase_ , metadata={"""help""": """Save result to a CSV file"""} ) UpperCAmelCase_ : bool = field(default=UpperCamelCase_ , metadata={"""help""": """Save all print statements in a log file"""} ) UpperCAmelCase_ : bool = field(default=UpperCamelCase_ , metadata={"""help""": """Whether to print environment information"""} ) UpperCAmelCase_ : bool = field( default=UpperCamelCase_ , metadata={ """help""": ( """Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use""" """ multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled""" """ for debugging / testing and on TPU.""" ) } , ) UpperCAmelCase_ : str = field( default=F"inference_time_{round(time() )}.csv" , metadata={"""help""": """CSV filename used if saving time results to csv."""} , ) UpperCAmelCase_ : str = field( default=F"inference_memory_{round(time() )}.csv" , metadata={"""help""": """CSV filename used if saving memory results to csv."""} , ) UpperCAmelCase_ : str = field( default=F"train_time_{round(time() )}.csv" , metadata={"""help""": """CSV filename used if saving time results to csv for training."""} , ) UpperCAmelCase_ : str = field( default=F"train_memory_{round(time() )}.csv" , metadata={"""help""": """CSV filename used if saving memory results to csv for training."""} , ) UpperCAmelCase_ : str = field( default=F"env_info_{round(time() )}.csv" , metadata={"""help""": """CSV filename used if saving environment information."""} , ) UpperCAmelCase_ : str = field( default=F"log_{round(time() )}.csv" , metadata={"""help""": """Log filename used if print statements are saved in log."""} , ) UpperCAmelCase_ : int = field(default=3 , metadata={"""help""": """Times an experiment will be run."""} ) UpperCAmelCase_ : bool = field( default=UpperCamelCase_ , metadata={ """help""": ( """Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain""" """ model weights.""" ) } , ) def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: warnings.warn( F"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils" ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , __SCREAMING_SNAKE_CASE , ) def SCREAMING_SNAKE_CASE_ ( self ) ->Any: return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]: if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]: if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
312
import os lowercase__ : List[str] = {'''I''': 1, '''V''': 5, '''X''': 1_0, '''L''': 5_0, '''C''': 1_0_0, '''D''': 5_0_0, '''M''': 1_0_0_0} def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> int: lowerCAmelCase = 0 lowerCAmelCase = 0 while index < len(snake_case__ ) - 1: lowerCAmelCase = SYMBOLS[numerals[index]] lowerCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> str: lowerCAmelCase = '''''' lowerCAmelCase = num // 1_0_0_0 numerals += m_count * "M" num %= 1_0_0_0 lowerCAmelCase = num // 1_0_0 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_0_0 lowerCAmelCase = num // 1_0 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 1_0 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def SCREAMING_SNAKE_CASE_ ( snake_case__ = "/p089_roman.txt" ) -> int: lowerCAmelCase = 0 with open(os.path.dirname(snake_case__ ) + roman_numerals_filename ) as filea: lowerCAmelCase = filea.readlines() for line in lines: lowerCAmelCase = line.strip() lowerCAmelCase = parse_roman_numerals(snake_case__ ) lowerCAmelCase = generate_roman_numerals(snake_case__ ) savings += len(snake_case__ ) - len(snake_case__ ) return savings if __name__ == "__main__": print(f'{solution() = }')
312
1
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging _a: List[str] = logging.get_logger(__name__) def __lowerCAmelCase ( A ): UpperCAmelCase_ = r"\w+[.]\d+" UpperCAmelCase_ = re.findall(A , A ) for pat in pats: UpperCAmelCase_ = key.replace(A , "_".join(pat.split("." ) ) ) return key def __lowerCAmelCase ( A , A , A ): UpperCAmelCase_ = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCAmelCase_ = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCAmelCase_ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": UpperCAmelCase_ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase_ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase_ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __lowerCAmelCase ( A , A , A=42 ): # Step 1: Convert pytorch tensor to numpy UpperCAmelCase_ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCAmelCase_ = flax_model.init_weights(PRNGKey(A ) ) UpperCAmelCase_ = flatten_dict(A ) UpperCAmelCase_ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase_ = rename_key(A ) UpperCAmelCase_ = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters UpperCAmelCase_ , UpperCAmelCase_ = rename_key_and_reshape_tensor(A , A , A ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown UpperCAmelCase_ = jnp.asarray(A ) return unflatten_dict(A )
268
from __future__ import annotations class __UpperCamelCase : def __init__( self : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : str ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = text, pattern UpperCAmelCase_ , UpperCAmelCase_ = len(lowerCAmelCase ), len(lowerCAmelCase ) def __A ( self : List[str] , lowerCAmelCase : str ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def __A ( self : int , lowerCAmelCase : int ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def __A ( self : str ): '''simple docstring''' UpperCAmelCase_ = [] for i in range(self.textLen - self.patLen + 1 ): UpperCAmelCase_ = self.mismatch_in_text(lowerCAmelCase ) if mismatch_index == -1: positions.append(lowerCAmelCase ) else: UpperCAmelCase_ = self.match_in_pattern(self.text[mismatch_index] ) UpperCAmelCase_ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _a: Dict = """ABAABA""" _a: Union[str, Any] = """AB""" _a: str = BoyerMooreSearch(text, pattern) _a: Dict = bms.bad_character_heuristic() if len(positions) == 0: print("""No match found""") else: print("""Pattern found in following positions: """) print(positions)
268
1
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase )-> Tuple: """simple docstring""" lowercase = checkpoint lowercase = {} lowercase = vae_state_dict['''encoder.conv_in.weight'''] lowercase = vae_state_dict['''encoder.conv_in.bias'''] lowercase = vae_state_dict['''encoder.conv_out.weight'''] lowercase = vae_state_dict['''encoder.conv_out.bias'''] lowercase = vae_state_dict['''encoder.norm_out.weight'''] lowercase = vae_state_dict['''encoder.norm_out.bias'''] lowercase = vae_state_dict['''decoder.conv_in.weight'''] lowercase = vae_state_dict['''decoder.conv_in.bias'''] lowercase = vae_state_dict['''decoder.conv_out.weight'''] lowercase = vae_state_dict['''decoder.conv_out.bias'''] lowercase = vae_state_dict['''decoder.norm_out.weight'''] lowercase = vae_state_dict['''decoder.norm_out.bias'''] lowercase = vae_state_dict['''quant_conv.weight'''] lowercase = vae_state_dict['''quant_conv.bias'''] lowercase = vae_state_dict['''post_quant_conv.weight'''] lowercase = vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only lowercase = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} ) lowercase = { layer_id: [key for key in vae_state_dict if f'down.{layer_id}' in key] for layer_id in range(lowercase__ ) } # Retrieves the keys for the decoder up blocks only lowercase = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} ) lowercase = { layer_id: [key for key in vae_state_dict if f'up.{layer_id}' in key] for layer_id in range(lowercase__ ) } for i in range(lowercase__ ): lowercase = [key for key in down_blocks[i] if f'down.{i}' in key and f'down.{i}.downsample' not in key] if f'encoder.down.{i}.downsample.conv.weight' in vae_state_dict: lowercase = vae_state_dict.pop( f'encoder.down.{i}.downsample.conv.weight' ) lowercase = vae_state_dict.pop( f'encoder.down.{i}.downsample.conv.bias' ) lowercase = renew_vae_resnet_paths(lowercase__ ) lowercase = {'''old''': f'down.{i}.block', '''new''': f'down_blocks.{i}.resnets'} assign_to_checkpoint(lowercase__, lowercase__, lowercase__, additional_replacements=[meta_path], config=lowercase__ ) lowercase = [key for key in vae_state_dict if '''encoder.mid.block''' in key] lowercase = 2 for i in range(1, num_mid_res_blocks + 1 ): lowercase = [key for key in mid_resnets if f'encoder.mid.block_{i}' in key] lowercase = renew_vae_resnet_paths(lowercase__ ) lowercase = {'''old''': f'mid.block_{i}', '''new''': f'mid_block.resnets.{i - 1}'} assign_to_checkpoint(lowercase__, lowercase__, lowercase__, additional_replacements=[meta_path], config=lowercase__ ) lowercase = [key for key in vae_state_dict if '''encoder.mid.attn''' in key] lowercase = renew_vae_attention_paths(lowercase__ ) lowercase = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(lowercase__, lowercase__, lowercase__, additional_replacements=[meta_path], config=lowercase__ ) conv_attn_to_linear(lowercase__ ) for i in range(lowercase__ ): lowercase = num_up_blocks - 1 - i lowercase = [ key for key in up_blocks[block_id] if f'up.{block_id}' in key and f'up.{block_id}.upsample' not in key ] if f'decoder.up.{block_id}.upsample.conv.weight' in vae_state_dict: lowercase = vae_state_dict[ f'decoder.up.{block_id}.upsample.conv.weight' ] lowercase = vae_state_dict[ f'decoder.up.{block_id}.upsample.conv.bias' ] lowercase = renew_vae_resnet_paths(lowercase__ ) lowercase = {'''old''': f'up.{block_id}.block', '''new''': f'up_blocks.{i}.resnets'} assign_to_checkpoint(lowercase__, lowercase__, lowercase__, additional_replacements=[meta_path], config=lowercase__ ) lowercase = [key for key in vae_state_dict if '''decoder.mid.block''' in key] lowercase = 2 for i in range(1, num_mid_res_blocks + 1 ): lowercase = [key for key in mid_resnets if f'decoder.mid.block_{i}' in key] lowercase = renew_vae_resnet_paths(lowercase__ ) lowercase = {'''old''': f'mid.block_{i}', '''new''': f'mid_block.resnets.{i - 1}'} assign_to_checkpoint(lowercase__, lowercase__, lowercase__, additional_replacements=[meta_path], config=lowercase__ ) lowercase = [key for key in vae_state_dict if '''decoder.mid.attn''' in key] lowercase = renew_vae_attention_paths(lowercase__ ) lowercase = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(lowercase__, lowercase__, lowercase__, additional_replacements=[meta_path], config=lowercase__ ) conv_attn_to_linear(lowercase__ ) return new_checkpoint def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase, )-> List[str]: """simple docstring""" lowercase = requests.get( ''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' ) lowercase = io.BytesIO(r.content ) lowercase = OmegaConf.load(lowercase__ ) lowercase = 512 lowercase = '''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('''safetensors''' ): from safetensors import safe_open lowercase = {} with safe_open(lowercase__, framework='''pt''', device='''cpu''' ) as f: for key in f.keys(): lowercase = f.get_tensor(lowercase__ ) else: lowercase = torch.load(lowercase__, map_location=lowercase__ )['''state_dict'''] # Convert the VAE model. lowercase = create_vae_diffusers_config(lowercase__, image_size=lowercase__ ) lowercase = custom_convert_ldm_vae_checkpoint(lowercase__, lowercase__ ) lowercase = AutoencoderKL(**lowercase__ ) vae.load_state_dict(lowercase__ ) vae.save_pretrained(lowercase__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") A_ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
604
def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =int(lowercase__ ) if n_element < 1: UpperCAmelCase_ =ValueError("a should be a positive number" ) raise my_error UpperCAmelCase_ =[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =(0, 0, 0) UpperCAmelCase_ =1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": __lowercase : Tuple =input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") __lowercase : Union[str, Any] =hamming(int(n)) print("""-----------------------------------------------------""") print(f"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
54
0
'''simple docstring''' from __future__ import annotations import time import numpy as np _A: Dict = [8, 5, 9, 7] _A: str = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _A: str = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class UpperCAmelCase : def __init__( self , __A , __A , __A , ): __UpperCAmelCase = claim_vector __UpperCAmelCase = allocated_resources_table __UpperCAmelCase = maximum_claim_table def __lowerCamelCase ( self ): return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __lowerCamelCase ( self ): return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __lowerCamelCase ( self ): return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__A ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __lowerCamelCase ( self ): return {self.__need().index(__A ): i for i in self.__need()} def __lowerCamelCase ( self , **__A ): __UpperCAmelCase = self.__need() __UpperCAmelCase = self.__allocated_resources_table __UpperCAmelCase = self.__available_resources() __UpperCAmelCase = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: __UpperCAmelCase = False for each_need in need_list: __UpperCAmelCase = True for index, need in enumerate(__A ): if need > available_resources[index]: __UpperCAmelCase = False break if execution: __UpperCAmelCase = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __UpperCAmelCase = original_need_index print(f'Process {process_number + 1} is executing.' ) # remove the process run from stack need_list.remove(__A ) # update available/freed resources stack __UpperCAmelCase = np.array(__A ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(__A ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def __lowerCamelCase ( self ): print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f'P{self.__allocated_resources_table.index(__A ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f'P{self.__maximum_claim_table.index(__A ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(__A ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(__A ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
617
'''simple docstring''' import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=[] )-> Any: __UpperCAmelCase = size[0] - overlap_pixels * 2 __UpperCAmelCase = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels __UpperCAmelCase = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_55 __UpperCAmelCase = np.pad(_lowerCAmelCase , mode='linear_ramp' , pad_width=_lowerCAmelCase , end_values=0 ) if "l" in remove_borders: __UpperCAmelCase = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: __UpperCAmelCase = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: __UpperCAmelCase = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: __UpperCAmelCase = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )-> Any: return max(_lowerCAmelCase , min(_lowerCAmelCase , _lowerCAmelCase ) ) def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )-> Dict: return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )-> Dict: __UpperCAmelCase = list(_lowerCAmelCase ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap __UpperCAmelCase = clamp_rect(_lowerCAmelCase , [0, 0] , [image_size[0], image_size[1]] ) return rect def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )-> Tuple: __UpperCAmelCase = Image.new('RGB' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(_lowerCAmelCase , (original_slice, 0) ) return result def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase )-> List[Any]: __UpperCAmelCase = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) __UpperCAmelCase = tile.crop(_lowerCAmelCase ) return tile def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase )-> Optional[int]: __UpperCAmelCase = n % d return n - divisor class UpperCAmelCase ( UpperCAmelCase_ ): def __init__( self , __A , __A , __A , __A , __A , __A , __A = 350 , ): super().__init__( vae=__A , text_encoder=__A , tokenizer=__A , unet=__A , low_res_scheduler=__A , scheduler=__A , max_noise_level=__A , ) def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A , **__A ): torch.manual_seed(0 ) __UpperCAmelCase = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) __UpperCAmelCase = add_overlap_rect(__A , __A , image.size ) __UpperCAmelCase = image.crop(__A ) __UpperCAmelCase = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] __UpperCAmelCase = translated_slice_x - (original_image_slice / 2) __UpperCAmelCase = max(0 , __A ) __UpperCAmelCase = squeeze_tile(__A , __A , __A , __A ) __UpperCAmelCase = to_input.size __UpperCAmelCase = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) __UpperCAmelCase = super(__A , self ).__call__(image=__A , **__A ).images[0] __UpperCAmelCase = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) __UpperCAmelCase = unsqueeze_tile(__A , __A ) __UpperCAmelCase = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) __UpperCAmelCase = [] if x == 0: remove_borders.append('l' ) elif crop_rect[2] == image.size[0]: remove_borders.append('r' ) if y == 0: remove_borders.append('t' ) elif crop_rect[3] == image.size[1]: remove_borders.append('b' ) __UpperCAmelCase = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=__A ) , mode='L' , ) final_image.paste( __A , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , __A ) @torch.no_grad() def __call__( self , __A , __A , __A = 75 , __A = 9.0 , __A = 50 , __A = None , __A = 1 , __A = 0.0 , __A = None , __A = None , __A = None , __A = 1 , __A = 128 , __A = 32 , __A = 32 , ): __UpperCAmelCase = Image.new('RGB' , (image.size[0] * 4, image.size[1] * 4) ) __UpperCAmelCase = math.ceil(image.size[0] / tile_size ) __UpperCAmelCase = math.ceil(image.size[1] / tile_size ) __UpperCAmelCase = tcx * tcy __UpperCAmelCase = 0 for y in range(__A ): for x in range(__A ): self._process_tile( __A , __A , __A , __A , __A , __A , __A , prompt=__A , num_inference_steps=__A , guidance_scale=__A , noise_level=__A , negative_prompt=__A , num_images_per_prompt=__A , eta=__A , generator=__A , latents=__A , ) current_count += 1 if callback is not None: callback({'progress': current_count / total_tile_count, 'image': final_image} ) return final_image def _lowerCAmelCase ( )-> str: # Run a demo __UpperCAmelCase = 'stabilityai/stable-diffusion-x4-upscaler' __UpperCAmelCase = StableDiffusionTiledUpscalePipeline.from_pretrained(_lowerCAmelCase , revision='fp16' , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to('cuda' ) __UpperCAmelCase = Image.open('../../docs/source/imgs/diffusers_library.jpg' ) def callback(_lowerCAmelCase ): print(F'progress: {obj["progress"]:.4f}' ) obj["image"].save('diffusers_library_progress.jpg' ) __UpperCAmelCase = pipe(image=_lowerCAmelCase , prompt='Black font, white background, vector' , noise_level=40 , callback=_lowerCAmelCase ) final_image.save('diffusers_library.jpg' ) if __name__ == "__main__": main()
617
1
"""simple docstring""" from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) _lowerCAmelCase = """ transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. """ class __UpperCamelCase ( a__ ): @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : List[str] = parser.add_parser( 'convert' ,help='CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.' ,) train_parser.add_argument('--model_type' ,type=_A ,required=_A ,help='Model\'s type.' ) train_parser.add_argument( '--tf_checkpoint' ,type=_A ,required=_A ,help='TensorFlow checkpoint path or folder.' ) train_parser.add_argument( '--pytorch_dump_output' ,type=_A ,required=_A ,help='Path to the PyTorch saved model output.' ) train_parser.add_argument('--config' ,type=_A ,default='' ,help='Configuration file path or folder.' ) train_parser.add_argument( '--finetuning_task_name' ,type=_A ,default=_A ,help='Optional fine-tuning task name if the TF model was a finetuned model.' ,) train_parser.set_defaults(func=_A ) def __init__( self ,_A ,_A ,_A ,_A ,_A ,*_A ,): '''simple docstring''' _lowerCAmelCase : str = logging.get_logger('transformers-cli/converting' ) self._logger.info(F"""Loading model {model_type}""" ) _lowerCAmelCase : int = model_type _lowerCAmelCase : Optional[Any] = tf_checkpoint _lowerCAmelCase : Union[str, Any] = pytorch_dump_output _lowerCAmelCase : Optional[int] = config _lowerCAmelCase : Optional[Any] = finetuning_task_name def __lowerCamelCase ( self ): '''simple docstring''' if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_A ) if "ckpt" in self._tf_checkpoint.lower(): _lowerCAmelCase : List[Any] = self._tf_checkpoint _lowerCAmelCase : Union[str, Any] = '' else: _lowerCAmelCase : Optional[int] = self._tf_checkpoint _lowerCAmelCase : Dict = '' convert_transfo_xl_checkpoint_to_pytorch( _A ,self._config ,self._pytorch_dump_output ,_A ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_A ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_A ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint ,self._config ,self._pytorch_dump_output ,self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint ,self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint ,self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) else: raise ValueError( '--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]' )
259
"""simple docstring""" import random def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = num - 1 _lowerCAmelCase : List[Any] = 0 while s % 2 == 0: _lowerCAmelCase : Tuple = s // 2 t += 1 for _ in range(5 ): _lowerCAmelCase : Dict = random.randrange(2 , num - 1 ) _lowerCAmelCase : str = pow(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if v != 1: _lowerCAmelCase : Union[str, Any] = 0 while v != (num - 1): if i == t - 1: return False else: _lowerCAmelCase : str = i + 1 _lowerCAmelCase : List[str] = (v**2) % num return True def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if num < 2: return False _lowerCAmelCase : Any = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(_lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase = 1024 ): '''simple docstring''' while True: _lowerCAmelCase : List[str] = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(_lowerCamelCase ): return num if __name__ == "__main__": _lowerCAmelCase = generate_large_prime() print(("""Prime number:""", num)) print(("""is_prime_low_num:""", is_prime_low_num(num)))
259
1
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example UpperCAmelCase_ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example UpperCAmelCase_ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def SCREAMING_SNAKE_CASE ( a_ : list[list[int]] ): __a = [] for i in range(len(a_ ) ): __a = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours __a = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(a_ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(a_ ) - 1: neighbour_count += cells[i + 1][j] if i < len(a_ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. __a = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(a_ ) return next_generation def SCREAMING_SNAKE_CASE ( a_ : list[list[int]] , a_ : int ): __a = [] for _ in range(a_ ): # Create output image __a = Image.new('RGB' , (len(cells[0] ), len(a_ )) ) __a = img.load() # Save cells to image for x in range(len(a_ ) ): for y in range(len(cells[0] ) ): __a = 255 - cells[y][x] * 255 __a = (colour, colour, colour) # Save image images.append(a_ ) __a = new_generation(a_ ) return images if __name__ == "__main__": UpperCAmelCase_ = generate_images(GLIDER, 16) images[0].save("out.gif", save_all=True, append_images=images[1:])
490
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
490
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __A : List[str] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = ['pixel_values'] def __init__( self , snake_case_ = True , snake_case_ = None , snake_case_ = PILImageResampling.BICUBIC , snake_case_ = True , snake_case_ = None , snake_case_ = True , snake_case_ = 1 / 255 , snake_case_ = True , snake_case_ = None , snake_case_ = None , snake_case_ = True , **snake_case_ , ): super().__init__(**snake_case_ ) _A = size if size is not None else {'shortest_edge': 224} _A = get_size_dict(snake_case_ , default_to_square=snake_case_ ) _A = crop_size if crop_size is not None else {'height': 224, 'width': 224} _A = get_size_dict(snake_case_ , default_to_square=snake_case_ , param_name='crop_size' ) _A = do_resize _A = size _A = resample _A = do_center_crop _A = crop_size _A = do_rescale _A = rescale_factor _A = do_normalize _A = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _A = image_std if image_std is not None else OPENAI_CLIP_STD _A = do_convert_rgb def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ = PILImageResampling.BICUBIC , snake_case_ = None , **snake_case_ , ): _A = get_size_dict(snake_case_ , default_to_square=snake_case_ ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) _A = get_resize_output_image_size(snake_case_ , size=size['shortest_edge'] , default_to_square=snake_case_ ) return resize(snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ , ): _A = get_size_dict(snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(snake_case_ , size=(size['height'], size['width']) , data_format=snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ , ): return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ , ): return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = ChannelDimension.FIRST , **snake_case_ , ): _A = do_resize if do_resize is not None else self.do_resize _A = size if size is not None else self.size _A = get_size_dict(snake_case_ , param_name='size' , default_to_square=snake_case_ ) _A = resample if resample is not None else self.resample _A = do_center_crop if do_center_crop is not None else self.do_center_crop _A = crop_size if crop_size is not None else self.crop_size _A = get_size_dict(snake_case_ , param_name='crop_size' , default_to_square=snake_case_ ) _A = do_rescale if do_rescale is not None else self.do_rescale _A = rescale_factor if rescale_factor is not None else self.rescale_factor _A = do_normalize if do_normalize is not None else self.do_normalize _A = image_mean if image_mean is not None else self.image_mean _A = image_std if image_std is not None else self.image_std _A = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _A = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _A = [convert_to_rgb(snake_case_ ) for image in images] # All transformations expect numpy arrays. _A = [to_numpy_array(snake_case_ ) for image in images] if do_resize: _A = [self.resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ ) for image in images] if do_center_crop: _A = [self.center_crop(image=snake_case_ , size=snake_case_ ) for image in images] if do_rescale: _A = [self.rescale(image=snake_case_ , scale=snake_case_ ) for image in images] if do_normalize: _A = [self.normalize(image=snake_case_ , mean=snake_case_ , std=snake_case_ ) for image in images] _A = [to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] _A = {'pixel_values': images} return BatchFeature(data=snake_case_ , tensor_type=snake_case_ )
27
'''simple docstring''' from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE( A__ , A__ , A__ ): """simple docstring""" lowerCamelCase__ = [r"""h\.\d+\.attn\.bias""", r"""h\.\d+\.attn\.masked_bias"""] @register_to_config def __init__( self : Union[str, Any] , __snake_case : int , __snake_case : int , __snake_case : Optional[int] = None , __snake_case : int = 50257 , __snake_case : int = 1024 , __snake_case : int = 768 , __snake_case : int = 12 , __snake_case : int = 12 , __snake_case : Optional[int] = None , __snake_case : str = "gelu_new" , __snake_case : float = 0.1 , __snake_case : float = 0.1 , __snake_case : float = 0.1 , __snake_case : float = 1E-5 , __snake_case : float = 0.02 , __snake_case : bool = True , __snake_case : bool = True , __snake_case : bool = False , __snake_case : bool = False , ) -> Tuple: super().__init__() UpperCAmelCase : Optional[Any] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F"""`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and""" F""" `n_embd`: {n_embd} are not equal.""" ) UpperCAmelCase : List[str] = prefix_inner_dim UpperCAmelCase : Tuple = prefix_hidden_dim UpperCAmelCase : List[Any] = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) UpperCAmelCase : List[str] = ( nn.Linear(self.prefix_hidden_dim , __snake_case ) if self.prefix_hidden_dim is not None else nn.Identity() ) UpperCAmelCase : Dict = GPTaConfig( vocab_size=__snake_case , n_positions=__snake_case , n_embd=__snake_case , n_layer=__snake_case , n_head=__snake_case , n_inner=__snake_case , activation_function=__snake_case , resid_pdrop=__snake_case , embd_pdrop=__snake_case , attn_pdrop=__snake_case , layer_norm_epsilon=__snake_case , initializer_range=__snake_case , scale_attn_weights=__snake_case , use_cache=__snake_case , scale_attn_by_inverse_layer_idx=__snake_case , reorder_and_upcast_attn=__snake_case , ) UpperCAmelCase : List[Any] = GPTaLMHeadModel(__snake_case ) def A ( self : Dict , __snake_case : torch.Tensor , __snake_case : torch.Tensor , __snake_case : Optional[torch.Tensor] = None , __snake_case : Optional[torch.Tensor] = None , ) -> Any: UpperCAmelCase : Optional[int] = self.transformer.transformer.wte(__snake_case ) UpperCAmelCase : Union[str, Any] = self.encode_prefix(__snake_case ) UpperCAmelCase : List[str] = self.decode_prefix(__snake_case ) UpperCAmelCase : int = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: UpperCAmelCase : List[Any] = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) UpperCAmelCase : int = torch.cat((dummy_token, input_ids) , dim=1 ) UpperCAmelCase : str = self.transformer(inputs_embeds=__snake_case , labels=__snake_case , attention_mask=__snake_case ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def A ( self : str , __snake_case : int , __snake_case : torch.device ) -> torch.Tensor: return torch.zeros(__snake_case , self.prefix_length , dtype=torch.intaa , device=__snake_case ) def A ( self : Optional[Any] , __snake_case : Optional[Any] ) -> Any: return self.encode_prefix(__snake_case ) @torch.no_grad() def A ( self : Dict , __snake_case : int , __snake_case : Any , __snake_case : Dict ) -> Optional[Any]: UpperCAmelCase : int = torch.split(__snake_case , 1 , dim=0 ) UpperCAmelCase : str = [] UpperCAmelCase : List[Any] = [] for feature in features: UpperCAmelCase : Union[str, Any] = self.decode_prefix(feature.to(__snake_case ) ) # back to the clip feature # Only support beam search for now UpperCAmelCase , UpperCAmelCase : Tuple = self.generate_beam( input_embeds=__snake_case , device=__snake_case , eos_token_id=__snake_case ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) UpperCAmelCase : Optional[Any] = torch.stack(__snake_case ) UpperCAmelCase : Optional[Any] = torch.stack(__snake_case ) return generated_tokens, generated_seq_lengths @torch.no_grad() def A ( self : Any , __snake_case : List[str]=None , __snake_case : Optional[int]=None , __snake_case : str=None , __snake_case : int = 5 , __snake_case : int = 67 , __snake_case : float = 1.0 , __snake_case : Optional[int] = None , ) -> Optional[Any]: UpperCAmelCase : str = eos_token_id UpperCAmelCase : Optional[int] = None UpperCAmelCase : Optional[Any] = None UpperCAmelCase : Optional[int] = torch.ones(__snake_case , device=__snake_case , dtype=torch.int ) UpperCAmelCase : Union[str, Any] = torch.zeros(__snake_case , device=__snake_case , dtype=torch.bool ) if input_embeds is not None: UpperCAmelCase : str = input_embeds else: UpperCAmelCase : Union[str, Any] = self.transformer.transformer.wte(__snake_case ) for i in range(__snake_case ): UpperCAmelCase : Optional[int] = self.transformer(inputs_embeds=__snake_case ) UpperCAmelCase : Optional[Any] = outputs.logits UpperCAmelCase : List[Any] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) UpperCAmelCase : Any = logits.softmax(-1 ).log() if scores is None: UpperCAmelCase , UpperCAmelCase : Tuple = logits.topk(__snake_case , -1 ) UpperCAmelCase : Dict = generated.expand(__snake_case , *generated.shape[1:] ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: UpperCAmelCase : Optional[Any] = next_tokens else: UpperCAmelCase : List[str] = tokens.expand(__snake_case , *tokens.shape[1:] ) UpperCAmelCase : Any = torch.cat((tokens, next_tokens) , dim=1 ) else: UpperCAmelCase : Any = -float(np.inf ) UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Optional[int] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 UpperCAmelCase : List[str] = scores_sum / seq_lengths[:, None] UpperCAmelCase , UpperCAmelCase : Optional[Any] = scores_sum_average.view(-1 ).topk(__snake_case , -1 ) UpperCAmelCase : str = next_tokens // scores_sum.shape[1] UpperCAmelCase : List[Any] = seq_lengths[next_tokens_source] UpperCAmelCase : str = next_tokens % scores_sum.shape[1] UpperCAmelCase : Optional[Any] = next_tokens.unsqueeze(1 ) UpperCAmelCase : Any = tokens[next_tokens_source] UpperCAmelCase : Union[str, Any] = torch.cat((tokens, next_tokens) , dim=1 ) UpperCAmelCase : int = generated[next_tokens_source] UpperCAmelCase : Any = scores_sum_average * seq_lengths UpperCAmelCase : List[str] = is_stopped[next_tokens_source] UpperCAmelCase : int = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) UpperCAmelCase : Optional[int] = torch.cat((generated, next_token_embed) , dim=1 ) UpperCAmelCase : List[Any] = is_stopped + next_tokens.eq(__snake_case ).squeeze() if is_stopped.all(): break UpperCAmelCase : str = scores / seq_lengths UpperCAmelCase : Any = scores.argsort(descending=__snake_case ) # tokens tensors are already padded to max_seq_length UpperCAmelCase : Union[str, Any] = [tokens[i] for i in order] UpperCAmelCase : Optional[Any] = torch.stack(__snake_case , dim=0 ) UpperCAmelCase : Dict = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
127
0
_lowercase : str =[ 9_99, 8_00, 7_99, 6_00, 5_99, 5_00, 4_00, 3_99, 3_77, 3_55, 3_33, 3_11, 2_88, 2_66, 2_44, 2_22, 2_00, 1_99, 1_77, 1_55, 1_33, 1_11, 88, 66, 44, 22, 0, ] _lowercase : Union[str, Any] =[ 9_99, 9_76, 9_52, 9_28, 9_05, 8_82, 8_58, 8_57, 8_10, 7_62, 7_15, 7_14, 5_72, 4_29, 4_28, 2_86, 2_85, 2_38, 1_90, 1_43, 1_42, 1_18, 95, 71, 47, 24, 0, ] _lowercase : Dict =[ 9_99, 9_88, 9_77, 9_66, 9_55, 9_44, 9_33, 9_22, 9_11, 9_00, 8_99, 8_79, 8_59, 8_40, 8_20, 8_00, 7_99, 7_66, 7_33, 7_00, 6_99, 6_50, 6_00, 5_99, 5_00, 4_99, 4_00, 3_99, 3_50, 3_00, 2_99, 2_66, 2_33, 2_00, 1_99, 1_79, 1_59, 1_40, 1_20, 1_00, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] _lowercase : str =[ 9_99, 9_95, 9_92, 9_89, 9_85, 9_81, 9_78, 9_75, 9_71, 9_67, 9_64, 9_61, 9_57, 9_56, 9_51, 9_47, 9_42, 9_37, 9_33, 9_28, 9_23, 9_19, 9_14, 9_13, 9_08, 9_03, 8_97, 8_92, 8_87, 8_81, 8_76, 8_71, 8_70, 8_64, 8_58, 8_52, 8_46, 8_40, 8_34, 8_28, 8_27, 8_20, 8_13, 8_06, 7_99, 7_92, 7_85, 7_84, 7_77, 7_70, 7_63, 7_56, 7_49, 7_42, 7_41, 7_33, 7_24, 7_16, 7_07, 6_99, 6_98, 6_88, 6_77, 6_66, 6_56, 6_55, 6_45, 6_34, 6_23, 6_13, 6_12, 5_98, 5_84, 5_70, 5_69, 5_55, 5_41, 5_27, 5_26, 5_05, 4_84, 4_83, 4_62, 4_40, 4_39, 3_96, 3_95, 3_52, 3_51, 3_08, 3_07, 2_64, 2_63, 2_20, 2_19, 1_76, 1_32, 88, 44, 0, ] _lowercase : List[Any] =[ 9_99, 9_97, 9_95, 9_92, 9_90, 9_88, 9_86, 9_84, 9_81, 9_79, 9_77, 9_75, 9_72, 9_70, 9_68, 9_66, 9_64, 9_61, 9_59, 9_57, 9_56, 9_54, 9_51, 9_49, 9_46, 9_44, 9_41, 9_39, 9_36, 9_34, 9_31, 9_29, 9_26, 9_24, 9_21, 9_19, 9_16, 9_14, 9_13, 9_10, 9_07, 9_05, 9_02, 8_99, 8_96, 8_93, 8_91, 8_88, 8_85, 8_82, 8_79, 8_77, 8_74, 8_71, 8_70, 8_67, 8_64, 8_61, 8_58, 8_55, 8_52, 8_49, 8_46, 8_43, 8_40, 8_37, 8_34, 8_31, 8_28, 8_27, 8_24, 8_21, 8_17, 8_14, 8_11, 8_08, 8_04, 8_01, 7_98, 7_95, 7_91, 7_88, 7_85, 7_84, 7_80, 7_77, 7_74, 7_70, 7_66, 7_63, 7_60, 7_56, 7_52, 7_49, 7_46, 7_42, 7_41, 7_37, 7_33, 7_30, 7_26, 7_22, 7_18, 7_14, 7_10, 7_07, 7_03, 6_99, 6_98, 6_94, 6_90, 6_85, 6_81, 6_77, 6_73, 6_69, 6_64, 6_60, 6_56, 6_55, 6_50, 6_46, 6_41, 6_36, 6_32, 6_27, 6_22, 6_18, 6_13, 6_12, 6_07, 6_02, 5_96, 5_91, 5_86, 5_80, 5_75, 5_70, 5_69, 5_63, 5_57, 5_51, 5_45, 5_39, 5_33, 5_27, 5_26, 5_19, 5_12, 5_05, 4_98, 4_91, 4_84, 4_83, 4_74, 4_66, 4_57, 4_49, 4_40, 4_39, 4_28, 4_18, 4_07, 3_96, 3_95, 3_81, 3_66, 3_52, 3_51, 3_30, 3_08, 3_07, 2_86, 2_64, 2_63, 2_42, 2_20, 2_19, 1_76, 1_75, 1_32, 1_31, 88, 44, 0, ] _lowercase : List[Any] =[ 9_99, 9_91, 9_82, 9_74, 9_66, 9_58, 9_50, 9_41, 9_33, 9_25, 9_16, 9_08, 9_00, 8_99, 8_74, 8_50, 8_25, 8_00, 7_99, 7_00, 6_00, 5_00, 4_00, 3_00, 2_00, 1_00, 0, ] _lowercase : List[Any] =[ 9_99, 9_92, 9_85, 9_78, 9_71, 9_64, 9_57, 9_49, 9_42, 9_35, 9_28, 9_21, 9_14, 9_07, 9_00, 8_99, 8_79, 8_59, 8_40, 8_20, 8_00, 7_99, 7_66, 7_33, 7_00, 6_99, 6_50, 6_00, 5_99, 5_00, 4_99, 4_00, 3_99, 3_00, 2_99, 2_00, 1_99, 1_00, 99, 0, ] _lowercase : List[Any] =[ 9_99, 9_96, 9_92, 9_89, 9_85, 9_82, 9_79, 9_75, 9_72, 9_68, 9_65, 9_61, 9_58, 9_55, 9_51, 9_48, 9_44, 9_41, 9_38, 9_34, 9_31, 9_27, 9_24, 9_20, 9_17, 9_14, 9_10, 9_07, 9_03, 9_00, 8_99, 8_91, 8_84, 8_76, 8_69, 8_61, 8_53, 8_46, 8_38, 8_30, 8_23, 8_15, 8_08, 8_00, 7_99, 7_88, 7_77, 7_66, 7_55, 7_44, 7_33, 7_22, 7_11, 7_00, 6_99, 6_88, 6_77, 6_66, 6_55, 6_44, 6_33, 6_22, 6_11, 6_00, 5_99, 5_85, 5_71, 5_57, 5_42, 5_28, 5_14, 5_00, 4_99, 4_85, 4_71, 4_57, 4_42, 4_28, 4_14, 4_00, 3_99, 3_79, 3_59, 3_40, 3_20, 3_00, 2_99, 2_79, 2_59, 2_40, 2_20, 2_00, 1_99, 1_66, 1_33, 1_00, 99, 66, 33, 0, ]
709
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput _lowercase : int =logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowerCAmelCase_ ( A_ ): '''simple docstring''' def __init__( self , *lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , **lowerCamelCase ): '''simple docstring''' super().__init__(*lowerCamelCase , **lowerCamelCase ) a__ = eval_examples a__ = post_process_function a__ = quant_trainer_args a__ = 128 # default number of calibration samples def _A ( self , lowerCamelCase=None ): '''simple docstring''' if calib_dataset is None and self.calib_dataset is None: raise ValueError("""Trainer: calibration requires an calib_dataset.""" ) a__ = calib_dataset if calib_dataset is not None else self.calib_dataset a__ = self._remove_unused_columns(lowerCamelCase , description="""Calibration""" ) return DataLoader( lowerCamelCase , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=lowerCamelCase , ) def _A ( self , lowerCamelCase=None ): '''simple docstring''' a__ = self.train_dataset if calib_dataset is None else calib_dataset a__ = self.get_calib_dataloader(lowerCamelCase ) a__ = self.model quant_trainer.configure_model(lowerCamelCase , self.quant_trainer_args , calib=lowerCamelCase ) model.eval() quant_trainer.enable_calibration(lowerCamelCase ) logger.info("""***** Running calibration *****""" ) logger.info(f' Num examples = {self.calib_num}' ) logger.info(f' Batch size = {calib_dataloader.batch_size}' ) for step, inputs in enumerate(lowerCamelCase ): # Prediction step a__ , a__ , a__ = self.prediction_step(lowerCamelCase , lowerCamelCase , prediction_loss_only=lowerCamelCase ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(lowerCamelCase , self.quant_trainer_args ) a__ = model def _A ( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase = "eval" ): '''simple docstring''' a__ = self.eval_dataset if eval_dataset is None else eval_dataset a__ = self.get_eval_dataloader(lowerCamelCase ) a__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. a__ = self.compute_metrics a__ = None a__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: a__ = eval_loop( lowerCamelCase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCamelCase , ) finally: a__ = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: a__ = self.post_process_function(lowerCamelCase , lowerCamelCase , output.predictions ) a__ = self.compute_metrics(lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): a__ = metrics.pop(lowerCamelCase ) self.log(lowerCamelCase ) else: a__ = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) a__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowerCamelCase ) return metrics def _A ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase = "test" ): '''simple docstring''' a__ = self.get_test_dataloader(lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. a__ = self.compute_metrics a__ = None a__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: a__ = eval_loop( lowerCamelCase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCamelCase , ) finally: a__ = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output a__ = self.post_process_function(lowerCamelCase , lowerCamelCase , output.predictions , """predict""" ) a__ = self.compute_metrics(lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): a__ = metrics.pop(lowerCamelCase ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowerCamelCase ) def _A ( self , lowerCamelCase="./" ): '''simple docstring''' a__ = self.eval_dataset a__ = self.get_eval_dataloader(lowerCamelCase ) a__ = next(iter(lowerCamelCase ) ) # saving device - to make it consistent a__ = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) # convert to tuple a__ = tuple(v.to(lowerCamelCase ) for k, v in batch.items() ) logger.info("""Converting model to be onnx compatible""" ) from pytorch_quantization.nn import TensorQuantizer a__ = True a__ = self.model.to(lowerCamelCase ) model.eval() model.float() a__ = model.module if hasattr(lowerCamelCase , """module""" ) else model quant_trainer.configure_model(lowerCamelCase , self.quant_trainer_args ) a__ = os.path.join(lowerCamelCase , """model.onnx""" ) logger.info(f'exporting model to {output_model_file}' ) a__ = {0: """batch_size""", 1: """seq_len"""} torch.onnx.export( lowerCamelCase , lowerCamelCase , lowerCamelCase , export_params=lowerCamelCase , opset_version=13 , do_constant_folding=lowerCamelCase , input_names=["""input_ids""", """attention_mask""", """token_type_ids"""] , output_names=["""output_start_logits""", """output_end_logits"""] , dynamic_axes={ """input_ids""": axes, """attention_mask""": axes, """token_type_ids""": axes, """output_start_logits""": axes, """output_end_logits""": axes, } , verbose=lowerCamelCase , ) logger.info("""onnx export finished""" )
412
0
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class _lowerCamelCase( enum.Enum ): lowercase_ : int = 0 lowercase_ : str = 1 lowercase_ : Optional[Any] = 2 @add_end_docstrings(_a ) class _lowerCamelCase( _a ): lowercase_ : List[str] = """ In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> """ def __init__( self, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" super().__init__(*lowerCamelCase, **lowerCamelCase) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _lowercase : int = None if self.model.config.prefix is not None: _lowercase : str = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _lowercase : str = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _lowercase , _lowercase , _lowercase : Optional[Any] = self._sanitize_parameters(prefix=lowerCamelCase, **self._forward_params) _lowercase : Dict = {**self._preprocess_params, **preprocess_params} _lowercase : str = {**self._forward_params, **forward_params} def UpperCamelCase ( self, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, **lowerCamelCase, ) -> int: """simple docstring""" _lowercase : List[str] = {} if prefix is not None: _lowercase : str = prefix if prefix: _lowercase : Dict = self.tokenizer( lowerCamelCase, padding=lowerCamelCase, add_special_tokens=lowerCamelCase, return_tensors=self.framework) _lowercase : Any = prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' ' [None, \'hole\']') _lowercase : str = handle_long_generation preprocess_params.update(lowerCamelCase) _lowercase : Optional[int] = generate_kwargs _lowercase : Union[str, Any] = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`') if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`') _lowercase : Union[str, Any] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`') _lowercase : List[str] = ReturnType.TENSORS if return_type is not None: _lowercase : Tuple = return_type if clean_up_tokenization_spaces is not None: _lowercase : Optional[Any] = clean_up_tokenization_spaces if stop_sequence is not None: _lowercase : List[Any] = self.tokenizer.encode(lowerCamelCase, add_special_tokens=lowerCamelCase) if len(lowerCamelCase) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.') _lowercase : Optional[Any] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCamelCase ( self, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True}) return super()._parse_and_tokenize(*lowerCamelCase, **lowerCamelCase) def __call__( self, lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" return super().__call__(lowerCamelCase, **lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase="", lowerCamelCase=None, **lowerCamelCase) -> Dict: """simple docstring""" _lowercase : List[str] = self.tokenizer( prefix + prompt_text, padding=lowerCamelCase, add_special_tokens=lowerCamelCase, return_tensors=self.framework) _lowercase : Optional[int] = prompt_text if handle_long_generation == "hole": _lowercase : Dict = inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: _lowercase : Any = generate_kwargs['max_new_tokens'] else: _lowercase : Tuple = generate_kwargs.get('max_length', self.model.config.max_length) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected') if cur_len + new_tokens > self.tokenizer.model_max_length: _lowercase : Optional[Any] = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length') _lowercase : Tuple = inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: _lowercase : Optional[int] = inputs['attention_mask'][:, -keep_length:] return inputs def UpperCamelCase ( self, lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" _lowercase : Any = model_inputs['input_ids'] _lowercase : str = model_inputs.get('attention_mask', lowerCamelCase) # Allow empty prompts if input_ids.shape[1] == 0: _lowercase : List[str] = None _lowercase : int = None _lowercase : str = 1 else: _lowercase : Dict = input_ids.shape[0] _lowercase : int = model_inputs.pop('prompt_text') # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _lowercase : Optional[int] = generate_kwargs.pop('prefix_length', 0) if prefix_length > 0: _lowercase : int = 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: _lowercase : Union[str, Any] = generate_kwargs.get('max_length') or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _lowercase : str = 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _lowercase : Dict = self.model.generate(input_ids=lowerCamelCase, attention_mask=lowerCamelCase, **lowerCamelCase) _lowercase : int = generated_sequence.shape[0] if self.framework == "pt": _lowercase : Optional[Any] = generated_sequence.reshape(lowerCamelCase, out_b // in_b, *generated_sequence.shape[1:]) elif self.framework == "tf": _lowercase : Optional[int] = tf.reshape(lowerCamelCase, (in_b, out_b // in_b, *generated_sequence.shape[1:])) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=ReturnType.FULL_TEXT, lowerCamelCase=True) -> List[Any]: """simple docstring""" _lowercase : Tuple = model_outputs['generated_sequence'][0] _lowercase : str = model_outputs['input_ids'] _lowercase : Any = model_outputs['prompt_text'] _lowercase : str = generated_sequence.numpy().tolist() _lowercase : Union[str, Any] = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _lowercase : Dict = {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _lowercase : Union[str, Any] = self.tokenizer.decode( lowerCamelCase, skip_special_tokens=lowerCamelCase, clean_up_tokenization_spaces=lowerCamelCase, ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _lowercase : Union[str, Any] = 0 else: _lowercase : Dict = len( self.tokenizer.decode( input_ids[0], skip_special_tokens=lowerCamelCase, clean_up_tokenization_spaces=lowerCamelCase, )) if return_type == ReturnType.FULL_TEXT: _lowercase : int = prompt_text + text[prompt_length:] else: _lowercase : List[str] = text[prompt_length:] _lowercase : Dict = {'generated_text': all_text} records.append(lowerCamelCase) return records
89
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __magic_name__ = logging.get_logger(__name__) __magic_name__ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all BART models at https://huggingface.co/models?filter=bart __magic_name__ = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, 'tokenizer_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json', }, } __magic_name__ = { 'facebook/bart-base': 1_024, 'facebook/bart-large': 1_024, 'facebook/bart-large-mnli': 1_024, 'facebook/bart-large-cnn': 1_024, 'facebook/bart-large-xsum': 1_024, 'yjernite/bart_eli5': 1_024, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["""input_ids""", """attention_mask"""] a_ = BartTokenizer def __init__( self : str ,_a : Any=None ,_a : Optional[int]=None ,_a : int=None ,_a : Optional[int]="replace" ,_a : Dict="<s>" ,_a : Optional[Any]="</s>" ,_a : Dict="</s>" ,_a : Tuple="<s>" ,_a : Optional[Any]="<unk>" ,_a : List[str]="<pad>" ,_a : int="<mask>" ,_a : str=False ,_a : List[str]=True ,**_a : Dict ,): '''simple docstring''' super().__init__( _a ,_a ,tokenizer_file=_a ,errors=_a ,bos_token=_a ,eos_token=_a ,sep_token=_a ,cls_token=_a ,unk_token=_a ,pad_token=_a ,mask_token=_a ,add_prefix_space=_a ,trim_offsets=_a ,**_a ,) A_ : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" ,_a ) != add_prefix_space: A_ : List[str] = getattr(_a ,pre_tok_state.pop("""type""" ) ) A_ : Optional[int] = add_prefix_space A_ : int = pre_tok_class(**_a ) A_ : str = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` A_ : str = """post_processor""" A_ : List[Any] = getattr(self.backend_tokenizer ,_a ,_a ) if tokenizer_component_instance: A_ : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A_ : Tuple = tuple(state["""sep"""] ) if "cls" in state: A_ : Tuple = tuple(state["""cls"""] ) A_ : List[str] = False if state.get("""add_prefix_space""" ,_a ) != add_prefix_space: A_ : Dict = add_prefix_space A_ : Any = True if state.get("""trim_offsets""" ,_a ) != trim_offsets: A_ : Union[str, Any] = trim_offsets A_ : List[Any] = True if changes_to_apply: A_ : Optional[int] = getattr(_a ,state.pop("""type""" ) ) A_ : Tuple = component_class(**_a ) setattr(self.backend_tokenizer ,_a ,_a ) @property def _a ( self : List[str] ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def _a ( self : Union[str, Any] ,_a : Any ): '''simple docstring''' A_ : int = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else value A_ : List[Any] = value def _a ( self : str ,*_a : str ,**_a : Optional[int] ): '''simple docstring''' A_ : Optional[Any] = kwargs.get("""is_split_into_words""" ,_a ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*_a ,**_a ) def _a ( self : str ,*_a : List[Any] ,**_a : str ): '''simple docstring''' A_ : List[str] = kwargs.get("""is_split_into_words""" ,_a ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*_a ,**_a ) def _a ( self : Optional[int] ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' A_ : str = self._tokenizer.model.save(_a ,name=_a ) return tuple(_a ) def _a ( self : str ,_a : Optional[int] ,_a : int=None ): '''simple docstring''' A_ : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _a ( self : Optional[int] ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' A_ : Dict = [self.sep_token_id] A_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
665
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class A_ ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. _lowercase = [[1, 2, 4], [1, 2, 3, 4]] _lowercase = DisjunctiveConstraint(__A ) self.assertTrue(isinstance(dc.token_ids ,__A ) ) with self.assertRaises(__A ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__A ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __UpperCAmelCase ( self : List[Any] ) -> str: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). _lowercase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__A ): DisjunctiveConstraint(__A ) # fails here def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: _lowercase = [[1, 2, 3], [1, 2, 4]] _lowercase = DisjunctiveConstraint(__A ) _lowercase , _lowercase , _lowercase = dc.update(1 ) _lowercase = stepped is True and completed is False and reset is False self.assertTrue(__A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _lowercase , _lowercase , _lowercase = dc.update(2 ) _lowercase = stepped is True and completed is False and reset is False self.assertTrue(__A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _lowercase , _lowercase , _lowercase = dc.update(3 ) _lowercase = stepped is True and completed is True and reset is False self.assertTrue(__A ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __UpperCAmelCase ( self : List[Any] ) -> Any: _lowercase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] _lowercase = DisjunctiveConstraint(__A ) _lowercase , _lowercase , _lowercase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _lowercase , _lowercase , _lowercase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _lowercase , _lowercase , _lowercase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) _lowercase , _lowercase , _lowercase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() _lowercase , _lowercase , _lowercase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) _lowercase , _lowercase , _lowercase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) _lowercase , _lowercase , _lowercase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
535
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class A_ ( UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = '''gptj''' SCREAMING_SNAKE_CASE_ : int = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : str ,__A : List[str]=5_0400 ,__A : Dict=2048 ,__A : List[str]=4096 ,__A : Dict=28 ,__A : Optional[int]=16 ,__A : Tuple=64 ,__A : Optional[int]=None ,__A : Optional[int]="gelu_new" ,__A : Dict=0.0 ,__A : List[str]=0.0 ,__A : Optional[int]=0.0 ,__A : str=1e-5 ,__A : List[Any]=0.02 ,__A : str=True ,__A : int=5_0256 ,__A : Union[str, Any]=5_0256 ,__A : int=False ,**__A : List[Any] ,) -> str: _lowercase = vocab_size _lowercase = n_positions _lowercase = n_embd _lowercase = n_layer _lowercase = n_head _lowercase = n_inner _lowercase = rotary_dim _lowercase = activation_function _lowercase = resid_pdrop _lowercase = embd_pdrop _lowercase = attn_pdrop _lowercase = layer_norm_epsilon _lowercase = initializer_range _lowercase = use_cache _lowercase = bos_token_id _lowercase = eos_token_id super().__init__( bos_token_id=__A ,eos_token_id=__A ,tie_word_embeddings=__A ,**__A ) class A_ ( UpperCAmelCase ): """simple docstring""" def __init__( self : Tuple ,__A : PretrainedConfig ,__A : str = "default" ,__A : List[PatchingSpec] = None ,__A : bool = False ,) -> Any: super().__init__(__A ,task=__A ,patching_specs=__A ,use_past=__A ) if not getattr(self._config ,'pad_token_id' ,__A ): # TODO: how to do that better? _lowercase = 0 @property def __UpperCAmelCase ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: _lowercase = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(__A ,direction='inputs' ) _lowercase = {0: 'batch', 1: 'past_sequence + sequence'} else: _lowercase = {0: 'batch', 1: 'sequence'} return common_inputs @property def __UpperCAmelCase ( self : Union[str, Any] ) -> int: return self._config.n_layer @property def __UpperCAmelCase ( self : Tuple ) -> int: return self._config.n_head def __UpperCAmelCase ( self : Any ,__A : PreTrainedTokenizer ,__A : int = -1 ,__A : int = -1 ,__A : bool = False ,__A : Optional[TensorType] = None ,) -> Mapping[str, Any]: _lowercase = super(__A ,self ).generate_dummy_inputs( __A ,batch_size=__A ,seq_length=__A ,is_pair=__A ,framework=__A ) # We need to order the input in the way they appears in the forward() _lowercase = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _lowercase , _lowercase = common_inputs['input_ids'].shape # Not using the same length for past_key_values _lowercase = seqlen + 2 _lowercase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _lowercase = [ (torch.zeros(__A ), torch.zeros(__A )) for _ in range(self.num_layers ) ] _lowercase = common_inputs['attention_mask'] if self.use_past: _lowercase = ordered_inputs['attention_mask'].dtype _lowercase = torch.cat( [ordered_inputs['attention_mask'], torch.ones(__A ,__A ,dtype=__A )] ,dim=1 ) return ordered_inputs @property def __UpperCAmelCase ( self : str ) -> int: return 13
535
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] ): '''simple docstring''' lowerCamelCase_ = 'huggingface/label-files' lowerCamelCase_ = 'imagenet-1k-id2label.json' lowerCamelCase_ = json.load(open(hf_hub_download(lowercase , lowercase , repo_type='dataset' ) , 'r' ) ) lowerCamelCase_ = {int(lowercase ): v for k, v in idalabel.items()} lowerCamelCase_ = {v: k for k, v in idalabel.items()} lowerCamelCase_ = 'std_conv' if 'bit' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowerCamelCase_ = BitConfig( conv_layer=lowercase , num_labels=10_00 , idalabel=lowercase , labelaid=lowercase , ) return config def _SCREAMING_SNAKE_CASE ( lowercase : Any ): '''simple docstring''' if "stem.conv" in name: lowerCamelCase_ = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: lowerCamelCase_ = name.replace('blocks' , 'layers' ) if "head.fc" in name: lowerCamelCase_ = name.replace('head.fc' , 'classifier.1' ) if name.startswith('norm' ): lowerCamelCase_ = 'bit.' + name if "bit" not in name and "classifier" not in name: lowerCamelCase_ = 'bit.encoder.' + name return name def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase_ = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : int , lowercase : Union[str, Any]=False ): '''simple docstring''' lowerCamelCase_ = get_config(lowercase ) # load original model from timm lowerCamelCase_ = create_model(lowercase , pretrained=lowercase ) timm_model.eval() # load state_dict of original model lowerCamelCase_ = timm_model.state_dict() for key in state_dict.copy().keys(): lowerCamelCase_ = state_dict.pop(lowercase ) lowerCamelCase_ = val.squeeze() if 'head' in key else val # load HuggingFace model lowerCamelCase_ = BitForImageClassification(lowercase ) model.eval() model.load_state_dict(lowercase ) # create image processor lowerCamelCase_ = create_transform(**resolve_data_config({} , model=lowercase ) ) lowerCamelCase_ = transform.transforms lowerCamelCase_ = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } lowerCamelCase_ = BitImageProcessor( do_resize=lowercase , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=lowercase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCamelCase_ = prepare_img() lowerCamelCase_ = transform(lowercase ).unsqueeze(0 ) lowerCamelCase_ = processor(lowercase , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(lowercase , lowercase ) # verify logits with torch.no_grad(): lowerCamelCase_ = model(lowercase ) lowerCamelCase_ = outputs.logits print('Logits:' , logits[0, :3] ) print('Predicted class:' , model.config.idalabel[logits.argmax(-1 ).item()] ) lowerCamelCase_ = timm_model(lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase , outputs.logits , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) print(f"""Saving model {model_name} and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase ) processor.save_pretrained(lowercase ) if push_to_hub: print(f"""Pushing model {model_name} and processor to the hub""" ) model.push_to_hub(f"""ybelkada/{model_name}""" ) processor.push_to_hub(f"""ybelkada/{model_name}""" ) if __name__ == "__main__": lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="resnetv2_50x1_bitm", type=str, help="Name of the BiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model to the hub.", ) lowerCamelCase : Optional[int] = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
70
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ : str = { '''configuration_table_transformer''': [ '''TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TableTransformerConfig''', '''TableTransformerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : str = [ '''TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TableTransformerForObjectDetection''', '''TableTransformerModel''', '''TableTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys snake_case_ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
691
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase =logging.get_logger(__name__) _UpperCamelCase ={ "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class _SCREAMING_SNAKE_CASE ( __A ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 'swinv2' SCREAMING_SNAKE_CASE_ = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , _snake_case=2_24 , _snake_case=4 , _snake_case=3 , _snake_case=96 , _snake_case=[2, 2, 6, 2] , _snake_case=[3, 6, 12, 24] , _snake_case=7 , _snake_case=4.0 , _snake_case=True , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.1 , _snake_case="gelu" , _snake_case=False , _snake_case=0.0_2 , _snake_case=1E-5 , _snake_case=32 , **_snake_case , ): """simple docstring""" super().__init__(**_snake_case ) __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = embed_dim __lowerCamelCase = depths __lowerCamelCase = len(_snake_case ) __lowerCamelCase = num_heads __lowerCamelCase = window_size __lowerCamelCase = mlp_ratio __lowerCamelCase = qkv_bias __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = drop_path_rate __lowerCamelCase = hidden_act __lowerCamelCase = use_absolute_embeddings __lowerCamelCase = layer_norm_eps __lowerCamelCase = initializer_range __lowerCamelCase = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowerCamelCase = int(embed_dim * 2 ** (len(_snake_case ) - 1) ) __lowerCamelCase = (0, 0, 0, 0)
704
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _UpperCamelCase : List[Any] =logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ['input_features', 'attention_mask'] def __init__( self , _snake_case=80 , _snake_case=1_60_00 , _snake_case=80 , _snake_case=0.0 , _snake_case=True , _snake_case=True , _snake_case=True , **_snake_case , ): """simple docstring""" super().__init__(feature_size=_snake_case , sampling_rate=_snake_case , padding_value=_snake_case , **_snake_case ) __lowerCamelCase = num_mel_bins __lowerCamelCase = do_ceptral_normalize __lowerCamelCase = normalize_means __lowerCamelCase = normalize_vars __lowerCamelCase = True def _lowerCamelCase ( self , _snake_case , ): """simple docstring""" __lowerCamelCase = waveform * (2**15) # Kaldi compliance: 16-bit signed integers __lowerCamelCase = torch.from_numpy(_snake_case ).unsqueeze(0 ) __lowerCamelCase = ta_kaldi.fbank(_snake_case , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def _lowerCamelCase ( _snake_case , _snake_case , _snake_case = True , _snake_case = True , _snake_case = 0.0 , ): """simple docstring""" if normalize_means: __lowerCamelCase = x[:input_length].mean(axis=0 ) __lowerCamelCase = np.subtract(_snake_case , _snake_case ) if normalize_vars: __lowerCamelCase = x[:input_length].std(axis=0 ) __lowerCamelCase = np.divide(_snake_case , _snake_case ) if input_length < x.shape[0]: __lowerCamelCase = padding_value # make sure array is in float32 __lowerCamelCase = x.astype(np.floataa ) return x def _lowerCamelCase ( self , _snake_case , _snake_case = None ): """simple docstring""" __lowerCamelCase = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(_snake_case , _snake_case , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(_snake_case , _snake_case ) ] def __call__( self , _snake_case , _snake_case = False , _snake_case = None , _snake_case = False , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , **_snake_case , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) __lowerCamelCase = isinstance(_snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) __lowerCamelCase = is_batched_numpy or ( isinstance(_snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowerCamelCase = [np.asarray(_snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_snake_case , np.ndarray ): __lowerCamelCase = np.asarray(_snake_case , dtype=np.floataa ) elif isinstance(_snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowerCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowerCamelCase = [raw_speech] # extract fbank features __lowerCamelCase = [self._extract_fbank_features(_snake_case ) for waveform in raw_speech] # convert into correct format for padding __lowerCamelCase = BatchFeature({'''input_features''': features} ) __lowerCamelCase = self.pad( _snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , **_snake_case , ) # make sure list is in array format __lowerCamelCase = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , _snake_case ): __lowerCamelCase = [np.asarray(_snake_case , dtype=np.floataa ) for feature in input_features] __lowerCamelCase = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: __lowerCamelCase = [np.asarray(_snake_case , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: __lowerCamelCase = ( np.array(_snake_case , dtype=np.intaa ) if self._get_padding_strategies(_snake_case , max_length=_snake_case ) is not PaddingStrategy.DO_NOT_PAD else None ) __lowerCamelCase = self.normalize( padded_inputs['''input_features'''] , attention_mask=_snake_case ) if return_tensors is not None: __lowerCamelCase = padded_inputs.convert_to_tensors(_snake_case ) return padded_inputs
575
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer __A = logging.get_logger(__name__) __A = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __A = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } __A = { """bert-base-uncased""": 512, """bert-large-uncased""": 512, """bert-base-cased""": 512, """bert-large-cased""": 512, """bert-base-multilingual-uncased""": 512, """bert-base-multilingual-cased""": 512, """bert-base-chinese""": 512, """bert-base-german-cased""": 512, """bert-large-uncased-whole-word-masking""": 512, """bert-large-cased-whole-word-masking""": 512, """bert-large-uncased-whole-word-masking-finetuned-squad""": 512, """bert-large-cased-whole-word-masking-finetuned-squad""": 512, """bert-base-cased-finetuned-mrpc""": 512, """bert-base-german-dbmdz-cased""": 512, """bert-base-german-dbmdz-uncased""": 512, """TurkuNLP/bert-base-finnish-cased-v1""": 512, """TurkuNLP/bert-base-finnish-uncased-v1""": 512, """wietsedv/bert-base-dutch-cased""": 512, } __A = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :int = VOCAB_FILES_NAMES __magic_name__ :List[str] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ :Union[str, Any] = PRETRAINED_INIT_CONFIGURATION __magic_name__ :int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ :Union[str, Any] = BertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) lowerCAmelCase__ :Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __UpperCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , __UpperCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __UpperCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase__ :Tuple = getattr(__UpperCAmelCase , normalizer_state.pop('type' ) ) lowerCAmelCase__ :Optional[Any] = do_lower_case lowerCAmelCase__ :List[str] = strip_accents lowerCAmelCase__ :Optional[int] = tokenize_chinese_chars lowerCAmelCase__ :Tuple = normalizer_class(**__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = do_lower_case def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=None ): '''simple docstring''' lowerCAmelCase__ :Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' lowerCAmelCase__ :Any = [self.sep_token_id] lowerCAmelCase__ :List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
93
"""simple docstring""" import functools def lowercase__ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> int: '''simple docstring''' a__ : Any = len(lowerCAmelCase__ ) a__ : Optional[int] = len(lowerCAmelCase__ ) @functools.cache def min_distance(lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa a__ : List[Any] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , lowerCAmelCase__ ) , 1 + min_distance(lowerCAmelCase__ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
642
0
"""simple docstring""" from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar a_ = TypeVar("""T""") class A_(Generic[T] ): """simple docstring""" def __init__( self , A = True ): _lowerCamelCase : dict[T, list[T]] = {} # dictionary of lists _lowerCamelCase : Dict = directed def _lowerCAmelCase ( self , A , A ): if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(A ) self.adj_list[destination_vertex].append(A ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(A ) _lowerCamelCase : Optional[Any] = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(A ) _lowerCamelCase : Dict = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: _lowerCamelCase : str = [destination_vertex] _lowerCamelCase : Optional[int] = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(A ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(A ) _lowerCamelCase : Optional[int] = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: _lowerCamelCase : str = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: _lowerCamelCase : Union[str, Any] = [destination_vertex] _lowerCamelCase : str = [] return self def __repr__( self ): return pformat(self.adj_list )
708
"""simple docstring""" def UpperCAmelCase_ ( __a : Dict , __a : Optional[Any] ): '''simple docstring''' _lowerCamelCase : Any = '' for i in table: res += inp[i - 1] return res def UpperCAmelCase_ ( __a : List[Any] ): '''simple docstring''' return data[1:] + data[0] def UpperCAmelCase_ ( __a : Any , __a : Optional[int] ): '''simple docstring''' _lowerCamelCase : List[str] = '' for i in range(len(__a ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def UpperCAmelCase_ ( __a : List[Any] , __a : str ): '''simple docstring''' _lowerCamelCase : str = int('0b' + data[0] + data[-1] , 2 ) _lowerCamelCase : Optional[int] = int('0b' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def UpperCAmelCase_ ( __a : Dict , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[Any] ): '''simple docstring''' _lowerCamelCase : str = message[:4] _lowerCamelCase : Optional[Any] = message[4:] _lowerCamelCase : Union[str, Any] = apply_table(__a , __a ) _lowerCamelCase : int = xor(__a , __a ) _lowerCamelCase : str = apply_sbox(__a , temp[:4] ) # noqa: E741 _lowerCamelCase : Any = apply_sbox(__a , temp[4:] ) _lowerCamelCase : Dict = '0' * (2 - len(__a )) + l # noqa: E741 _lowerCamelCase : Optional[Any] = '0' * (2 - len(__a )) + r _lowerCamelCase : Tuple = apply_table(l + r , __a ) _lowerCamelCase : Tuple = xor(__a , __a ) return temp + right if __name__ == "__main__": a_ = input("""Enter 10 bit key: """) a_ = input("""Enter 8 bit message: """) a_ = [6, 3, 7, 4, 8, 5, 10, 9] a_ = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] a_ = [2, 4, 3, 1] a_ = [2, 6, 3, 1, 4, 8, 5, 7] a_ = [4, 1, 3, 5, 7, 2, 8, 6] a_ = [4, 1, 2, 3, 2, 3, 4, 1] a_ = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] a_ = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation a_ = apply_table(key, paa_table) a_ = temp[:5] a_ = temp[5:] a_ = left_shift(left) a_ = left_shift(right) a_ = apply_table(left + right, pa_table) a_ = left_shift(left) a_ = left_shift(right) a_ = left_shift(left) a_ = left_shift(right) a_ = apply_table(left + right, pa_table) # encryption a_ = apply_table(message, IP) a_ = function(expansion, sa, sa, keya, temp) a_ = temp[4:] + temp[:4] a_ = function(expansion, sa, sa, keya, temp) a_ = apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption a_ = apply_table(CT, IP) a_ = function(expansion, sa, sa, keya, temp) a_ = temp[4:] + temp[:4] a_ = function(expansion, sa, sa, keya, temp) a_ = apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
349
0
from __future__ import annotations import math class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_ ) -> None: UpperCamelCase : str = size # approximate the overall size of segment tree with given value UpperCamelCase : Dict = [0 for i in range(0, 4 * size )] # create array to store lazy update UpperCamelCase : Dict = [0 for i in range(0, 4 * size )] UpperCamelCase : List[str] = [0 for i in range(0, 4 * size )] # flag for lazy update def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> int: return idx * 2 def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> int: return idx * 2 + 1 def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> None: if left_element == right_element: UpperCamelCase : Dict = a[left_element - 1] else: UpperCamelCase : str = (left_element + right_element) // 2 self.build(self.left(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) self.build(self.right(SCREAMING_SNAKE_CASE_ ), mid + 1, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = max( self.segment_tree[self.left(SCREAMING_SNAKE_CASE_ )], self.segment_tree[self.right(SCREAMING_SNAKE_CASE_ )] ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> bool: if self.flag[idx] is True: UpperCamelCase : Union[str, Any] = self.lazy[idx] UpperCamelCase : str = False if left_element != right_element: UpperCamelCase : int = self.lazy[idx] UpperCamelCase : Tuple = self.lazy[idx] UpperCamelCase : Optional[Any] = True UpperCamelCase : Tuple = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: UpperCamelCase : List[str] = val if left_element != right_element: UpperCamelCase : Optional[int] = val UpperCamelCase : Union[str, Any] = val UpperCamelCase : Optional[int] = True UpperCamelCase : List[Any] = True return True UpperCamelCase : Union[str, Any] = (left_element + right_element) // 2 self.update(self.left(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) self.update(self.right(SCREAMING_SNAKE_CASE_ ), mid + 1, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = max( self.segment_tree[self.left(SCREAMING_SNAKE_CASE_ )], self.segment_tree[self.right(SCREAMING_SNAKE_CASE_ )] ) return True def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> int | float: if self.flag[idx] is True: UpperCamelCase : str = self.lazy[idx] UpperCamelCase : Union[str, Any] = False if left_element != right_element: UpperCamelCase : Optional[Any] = self.lazy[idx] UpperCamelCase : Optional[int] = self.lazy[idx] UpperCamelCase : Union[str, Any] = True UpperCamelCase : int = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] UpperCamelCase : Any = (left_element + right_element) // 2 UpperCamelCase : int = self.query(self.left(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = self.query(self.right(SCREAMING_SNAKE_CASE_ ), mid + 1, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) return max(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def __str__( self ) -> str: return str([self.query(1, 1, self.size, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) for i in range(1, self.size + 1 )] ) if __name__ == "__main__": __UpperCAmelCase = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] __UpperCAmelCase = 15 __UpperCAmelCase = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
40
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def UpperCamelCase ( snake_case__ : int ) -> Dict: UpperCamelCase : Optional[Any] = tmp_path / 'file.csv' UpperCamelCase : Optional[Any] = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20\n ' ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def UpperCamelCase ( snake_case__ : List[str] ) -> List[str]: UpperCamelCase : Optional[Any] = tmp_path / 'malformed_file.csv' UpperCamelCase : Any = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20,\n ' ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : List[Any] ) -> str: UpperCamelCase : Any = tmp_path / 'csv_with_image.csv' UpperCamelCase : Dict = textwrap.dedent( F"""\ image {image_file} """ ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def UpperCamelCase ( snake_case__ : List[str] ) -> Tuple: UpperCamelCase : List[str] = tmp_path / 'csv_with_label.csv' UpperCamelCase : Dict = textwrap.dedent( '\\n label\n good\n bad\n good\n ' ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) @pytest.fixture def UpperCamelCase ( snake_case__ : Dict ) -> List[str]: UpperCamelCase : List[str] = tmp_path / 'csv_with_int_list.csv' UpperCamelCase : Union[str, Any] = textwrap.dedent( '\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' ) with open(snake_case__ , 'w' ) as f: f.write(snake_case__ ) return str(snake_case__ ) def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : int , snake_case__ : Optional[Any] ) -> List[Any]: UpperCamelCase : str = Csv() UpperCamelCase : Optional[Any] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(snake_case__ , match='Error tokenizing data' ): for _ in generator: pass assert any( record.levelname == 'ERROR' and 'Failed to read file' in record.message and os.path.basename(snake_case__ ) in record.message for record in caplog.records ) @require_pil def UpperCamelCase ( snake_case__ : Union[str, Any] ) -> Optional[int]: with open(snake_case__ , encoding='utf-8' ) as f: UpperCamelCase : List[str] = f.read().splitlines()[1] UpperCamelCase : int = Csv(encoding='utf-8' , features=Features({'image': Image()} ) ) UpperCamelCase : Any = csv._generate_tables([[csv_file_with_image]] ) UpperCamelCase : Any = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('image' ).type == Image()() UpperCamelCase : str = pa_table.to_pydict()['image'] assert generated_content == [{"path": image_file, "bytes": None}] def UpperCamelCase ( snake_case__ : Any ) -> str: with open(snake_case__ , encoding='utf-8' ) as f: UpperCamelCase : Any = f.read().splitlines()[1:] UpperCamelCase : Union[str, Any] = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) ) UpperCamelCase : int = csv._generate_tables([[csv_file_with_label]] ) UpperCamelCase : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )() UpperCamelCase : List[str] = pa_table.to_pydict()['label'] assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(snake_case__ ) for label in labels] def UpperCamelCase ( snake_case__ : str ) -> List[Any]: UpperCamelCase : str = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda snake_case__ : [int(snake_case__ ) for i in x.split()]} ) UpperCamelCase : List[str] = csv._generate_tables([[csv_file_with_int_list]] ) UpperCamelCase : Union[str, Any] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('int_list' ).type ) UpperCamelCase : str = pa_table.to_pydict()['int_list'] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
40
1
'''simple docstring''' from __future__ import annotations from dataclasses import dataclass @dataclass class _lowercase : '''simple docstring''' _SCREAMING_SNAKE_CASE : float _SCREAMING_SNAKE_CASE : TreeNode | None = None _SCREAMING_SNAKE_CASE : TreeNode | None = None def UpperCamelCase_ ( snake_case_ : TreeNode | None ) -> Any: '''simple docstring''' def is_valid_tree(snake_case_ : TreeNode | None ) -> bool: if node is None: return True if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(lowerCAmelCase__ ): raise ValueError( """Each node should be type of TreeNode and data should be float.""" ) def is_binary_search_tree_recursive_check( snake_case_ : TreeNode | None , snake_case_ : float , snake_case_ : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , lowerCAmelCase__ , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , lowerCAmelCase__ ) ) return is_binary_search_tree_recursive_check(lowerCAmelCase__ , -float("""inf""" ) , float("""inf""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
709
'''simple docstring''' def UpperCamelCase_ ( snake_case_ : int ) -> list[int]: '''simple docstring''' if num <= 0: raise ValueError("""Input must be a positive integer""" ) __lowerCAmelCase = [True] * (num + 1) __lowerCAmelCase = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , snake_case_ ): __lowerCAmelCase = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() _A : Tuple = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
330
0
'''simple docstring''' def A (__lowerCamelCase :int = 10 , __lowerCamelCase :int = 1000 , __lowerCamelCase :bool = True ): assert ( isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("""Invalid value for min_val or max_val (min_value < max_value)""" ) return min_val if option else max_val def A (__lowerCamelCase :int , __lowerCamelCase :int ): return int((number_a + number_a) / 2 ) def A (__lowerCamelCase :int , __lowerCamelCase :int , __lowerCamelCase :int ): assert ( isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("""argument value for lower and higher must be(lower > higher)""" ) if not lower < to_guess < higher: raise ValueError( """guess value must be within the range of lower and higher value""" ) def answer(__lowerCamelCase :int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("""started...""" ) _lowerCAmelCase = lower _lowerCAmelCase = higher _lowerCAmelCase = [] while True: _lowerCAmelCase = get_avg(__lowerCamelCase , __lowerCamelCase ) last_numbers.append(__lowerCamelCase ) if answer(__lowerCamelCase ) == "low": _lowerCAmelCase = number elif answer(__lowerCamelCase ) == "high": _lowerCAmelCase = number else: break print(f'guess the number : {last_numbers[-1]}' ) print(f'details : {last_numbers!s}' ) def A (): _lowerCAmelCase = int(input("""Enter lower value : """ ).strip() ) _lowerCAmelCase = int(input("""Enter high value : """ ).strip() ) _lowerCAmelCase = int(input("""Enter value to guess : """ ).strip() ) guess_the_number(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
5
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() snake_case : Union[str, Any] = logging.get_logger(__name__) snake_case : Any = { 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } snake_case : Union[str, Any] = { 'b0': { 'hidden_dim': 1_280, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 224, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 1_280, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 240, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 1_408, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 260, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 1_536, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 300, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 1_792, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 380, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 2_048, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 456, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 2_304, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 528, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 2_560, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 600, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def lowercase__ ( __UpperCamelCase : str ): '''simple docstring''' __lowercase = EfficientNetConfig() __lowercase = CONFIG_MAP[model_name]["""hidden_dim"""] __lowercase = CONFIG_MAP[model_name]["""width_coef"""] __lowercase = CONFIG_MAP[model_name]["""depth_coef"""] __lowercase = CONFIG_MAP[model_name]["""image_size"""] __lowercase = CONFIG_MAP[model_name]["""dropout_rate"""] __lowercase = CONFIG_MAP[model_name]["""dw_padding"""] __lowercase = """huggingface/label-files""" __lowercase = """imagenet-1k-id2label.json""" __lowercase = 1000 __lowercase = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) __lowercase = {int(__UpperCamelCase ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} return config def lowercase__ ( ): '''simple docstring''' __lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im def lowercase__ ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' __lowercase = CONFIG_MAP[model_name]["""image_size"""] __lowercase = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.4785_3944, 0.473_2864, 0.4743_4163] , do_center_crop=__UpperCamelCase , ) return preprocessor def lowercase__ ( __UpperCamelCase : str ): '''simple docstring''' __lowercase = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] __lowercase = sorted(set(__UpperCamelCase ) ) __lowercase = len(__UpperCamelCase ) __lowercase = {b: str(__UpperCamelCase ) for b, i in zip(__UpperCamelCase , range(__UpperCamelCase ) )} __lowercase = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: __lowercase = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) __lowercase = {} for item in rename_keys: if item[0] in original_param_names: __lowercase = """efficientnet.""" + item[1] __lowercase = """classifier.weight""" __lowercase = """classifier.bias""" return key_mapping def lowercase__ ( __UpperCamelCase : Tuple , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ): '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue __lowercase = key_mapping[key] if "_conv" in key and "kernel" in key: __lowercase = torch.from_numpy(__UpperCamelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: __lowercase = torch.from_numpy(__UpperCamelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: __lowercase = torch.from_numpy(np.transpose(__UpperCamelCase ) ) else: __lowercase = torch.from_numpy(__UpperCamelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(__UpperCamelCase ) @torch.no_grad() def lowercase__ ( __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str ): '''simple docstring''' __lowercase = model_classes[model_name]( include_top=__UpperCamelCase , weights="""imagenet""" , input_tensor=__UpperCamelCase , input_shape=__UpperCamelCase , pooling=__UpperCamelCase , classes=1000 , classifier_activation="""softmax""" , ) __lowercase = original_model.trainable_variables __lowercase = original_model.non_trainable_variables __lowercase = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: __lowercase = param.numpy() __lowercase = list(tf_params.keys() ) # Load HuggingFace model __lowercase = get_efficientnet_config(__UpperCamelCase ) __lowercase = EfficientNetForImageClassification(__UpperCamelCase ).eval() __lowercase = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) __lowercase = rename_keys(__UpperCamelCase ) replace_params(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Initialize preprocessor and preprocess input image __lowercase = convert_image_processor(__UpperCamelCase ) __lowercase = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): __lowercase = hf_model(**__UpperCamelCase ) __lowercase = outputs.logits.detach().numpy() # Original model inference __lowercase = False __lowercase = CONFIG_MAP[model_name]["""image_size"""] __lowercase = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) __lowercase = image.img_to_array(__UpperCamelCase ) __lowercase = np.expand_dims(__UpperCamelCase , axis=0 ) __lowercase = original_model.predict(__UpperCamelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(__UpperCamelCase ): os.mkdir(__UpperCamelCase ) # Save converted model and image processor hf_model.save_pretrained(__UpperCamelCase ) preprocessor.save_pretrained(__UpperCamelCase ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) __lowercase = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(__UpperCamelCase ) hf_model.push_to_hub(__UpperCamelCase ) if __name__ == "__main__": snake_case : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') snake_case : Tuple = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
566
0
from __future__ import annotations def __lowercase ( _UpperCAmelCase ) -> Any: '''simple docstring''' __lowercase = 2 __lowercase = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowerCAmelCase_ ) if n > 1: factors.append(lowerCAmelCase_ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
707
from collections.abc import Sequence def __lowercase ( _UpperCAmelCase = None ) -> int: '''simple docstring''' if nums is None or not nums: raise ValueError("Input sequence should not be empty" ) __lowercase = nums[0] for i in range(1 , len(_UpperCAmelCase ) ): __lowercase = nums[i] __lowercase = max(_UpperCAmelCase , ans + num , _UpperCAmelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowerCAmelCase__ = int(input('Enter number of elements : ').strip()) lowerCAmelCase__ = list(map(int, input('\nEnter the numbers : ').strip().split()))[:n] print(max_subsequence_sum(array))
576
0
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
222
"""simple docstring""" from __future__ import annotations def snake_case ( UpperCamelCase__ : tuple[int, int] , UpperCamelCase__ : int ) -> list[tuple[int, int]]: lowerCamelCase , lowerCamelCase : Optional[int] = position lowerCamelCase : Any = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowerCamelCase : Optional[Any] = [] for position in positions: lowerCamelCase , lowerCamelCase : Dict = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(UpperCamelCase__ ) return permissible_positions def snake_case ( UpperCamelCase__ : list[list[int]] ) -> bool: return not any(elem == 0 for row in board for elem in row ) def snake_case ( UpperCamelCase__ : list[list[int]] , UpperCamelCase__ : tuple[int, int] , UpperCamelCase__ : int ) -> bool: if is_complete(UpperCamelCase__ ): return True for position in get_valid_pos(UpperCamelCase__ , len(UpperCamelCase__ ) ): lowerCamelCase , lowerCamelCase : Union[str, Any] = position if board[y][x] == 0: lowerCamelCase : List[Any] = curr + 1 if open_knight_tour_helper(UpperCamelCase__ , UpperCamelCase__ , curr + 1 ): return True lowerCamelCase : int = 0 return False def snake_case ( UpperCamelCase__ : int ) -> list[list[int]]: lowerCamelCase : List[str] = [[0 for i in range(UpperCamelCase__ )] for j in range(UpperCamelCase__ )] for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): lowerCamelCase : Any = 1 if open_knight_tour_helper(UpperCamelCase__ , (i, j) , 1 ): return board lowerCamelCase : Optional[Any] = 0 lowerCamelCase : List[Any] = F'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
222
1
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class UpperCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : BigBirdConfig _SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa _SCREAMING_SNAKE_CASE : bool = True def lowerCAmelCase__ ( self ): super().setup() a =nn.Dense(5 , dtype=self.dtype ) def __call__( self , *_lowerCAmelCase , **_lowerCAmelCase ): a =super().__call__(*_lowerCAmelCase , **_lowerCAmelCase ) a =self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class UpperCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Optional[Any] = FlaxBigBirdForNaturalQuestionsModule def lowerCamelCase ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] )-> Optional[int]: """simple docstring""" def cross_entropy(UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int]=None ): a =logits.shape[-1] a =(labels[..., None] == jnp.arange(UpperCAmelCase_ )[None]).astype("""f4""" ) a =jax.nn.log_softmax(UpperCAmelCase_ , axis=-1 ) a =-jnp.sum(labels * logits , axis=-1 ) if reduction is not None: a =reduction(UpperCAmelCase_ ) return loss a =partial(UpperCAmelCase_ , reduction=jnp.mean ) a =cross_entropy(UpperCAmelCase_ , UpperCAmelCase_ ) a =cross_entropy(UpperCAmelCase_ , UpperCAmelCase_ ) a =cross_entropy(UpperCAmelCase_ , UpperCAmelCase_ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class UpperCAmelCase__ : '''simple docstring''' _SCREAMING_SNAKE_CASE : str = "google/bigbird-roberta-base" _SCREAMING_SNAKE_CASE : int = 3000 _SCREAMING_SNAKE_CASE : int = 1_0500 _SCREAMING_SNAKE_CASE : int = 128 _SCREAMING_SNAKE_CASE : int = 3 _SCREAMING_SNAKE_CASE : int = 1 _SCREAMING_SNAKE_CASE : int = 5 # tx_args _SCREAMING_SNAKE_CASE : float = 3E-5 _SCREAMING_SNAKE_CASE : float = 0.0 _SCREAMING_SNAKE_CASE : int = 2_0000 _SCREAMING_SNAKE_CASE : float = 0.0_0_9_5 _SCREAMING_SNAKE_CASE : str = "bigbird-roberta-natural-questions" _SCREAMING_SNAKE_CASE : str = "training-expt" _SCREAMING_SNAKE_CASE : str = "data/nq-training.jsonl" _SCREAMING_SNAKE_CASE : str = "data/nq-validation.jsonl" def lowerCAmelCase__ ( self ): os.makedirs(self.base_dir , exist_ok=_lowerCAmelCase ) a =os.path.join(self.base_dir , self.save_dir ) a =self.batch_size_per_device * jax.device_count() @dataclass class UpperCAmelCase__ : '''simple docstring''' _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : int = 4096 # no dynamic padding on TPUs def __call__( self , _lowerCAmelCase ): a =self.collate_fn(_lowerCAmelCase ) a =jax.tree_util.tree_map(_lowerCAmelCase , _lowerCAmelCase ) return batch def lowerCAmelCase__ ( self , _lowerCAmelCase ): a , a =self.fetch_inputs(features["""input_ids"""] ) a ={ """input_ids""": jnp.array(_lowerCAmelCase , dtype=jnp.intaa ), """attention_mask""": jnp.array(_lowerCAmelCase , dtype=jnp.intaa ), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa ), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa ), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa ), } return batch def lowerCAmelCase__ ( self , _lowerCAmelCase ): a =[self._fetch_inputs(_lowerCAmelCase ) for ids in input_ids] return zip(*_lowerCAmelCase ) def lowerCAmelCase__ ( self , _lowerCAmelCase ): a =[1 for _ in range(len(_lowerCAmelCase ) )] while len(_lowerCAmelCase ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int=None )-> int: """simple docstring""" if seed is not None: a =dataset.shuffle(seed=UpperCAmelCase_ ) for i in range(len(UpperCAmelCase_ ) // batch_size ): a =dataset[i * batch_size : (i + 1) * batch_size] yield dict(UpperCAmelCase_ ) @partial(jax.pmap , axis_name="""batch""" ) def lowerCamelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Optional[int] )-> List[Any]: """simple docstring""" def loss_fn(UpperCAmelCase_ : Optional[Any] ): a =model_inputs.pop("""start_labels""" ) a =model_inputs.pop("""end_labels""" ) a =model_inputs.pop("""pooled_labels""" ) a =state.apply_fn(**UpperCAmelCase_ , params=UpperCAmelCase_ , dropout_rng=UpperCAmelCase_ , train=UpperCAmelCase_ ) a , a , a =outputs return state.loss_fn( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) a , a =jax.random.split(UpperCAmelCase_ ) a =jax.value_and_grad(UpperCAmelCase_ ) a , a =grad_fn(state.params ) a =jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) a =jax.lax.pmean(UpperCAmelCase_ , """batch""" ) a =state.apply_gradients(grads=UpperCAmelCase_ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def lowerCamelCase ( UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Union[str, Any] )-> str: """simple docstring""" a =model_inputs.pop("""start_labels""" ) a =model_inputs.pop("""end_labels""" ) a =model_inputs.pop("""pooled_labels""" ) a =state.apply_fn(**UpperCAmelCase_ , params=state.params , train=UpperCAmelCase_ ) a , a , a =outputs a =state.loss_fn(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) a =jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class UpperCAmelCase__ ( train_state.TrainState ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Callable = struct.field(pytree_node=UpperCAmelCase__ ) @dataclass class UpperCAmelCase__ : '''simple docstring''' _SCREAMING_SNAKE_CASE : Args _SCREAMING_SNAKE_CASE : Callable _SCREAMING_SNAKE_CASE : Callable _SCREAMING_SNAKE_CASE : Callable _SCREAMING_SNAKE_CASE : Callable _SCREAMING_SNAKE_CASE : wandb _SCREAMING_SNAKE_CASE : Callable = None def lowerCAmelCase__ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): a =model.params a =TrainState.create( apply_fn=model.__call__ , params=_lowerCAmelCase , tx=_lowerCAmelCase , loss_fn=_lowerCAmelCase , ) if ckpt_dir is not None: a , a , a , a , a =restore_checkpoint(_lowerCAmelCase , _lowerCAmelCase ) a ={ """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } a , a =build_tx(**_lowerCAmelCase ) a =train_state.TrainState( step=_lowerCAmelCase , apply_fn=model.__call__ , params=_lowerCAmelCase , tx=_lowerCAmelCase , opt_state=_lowerCAmelCase , ) a =args a =data_collator a =lr a =params a =jax_utils.replicate(_lowerCAmelCase ) return state def lowerCAmelCase__ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): a =self.args a =len(_lowerCAmelCase ) // args.batch_size a =jax.random.PRNGKey(0 ) a =jax.random.split(_lowerCAmelCase , jax.device_count() ) for epoch in range(args.max_epochs ): a =jnp.array(0 , dtype=jnp.floataa ) a =get_batched_dataset(_lowerCAmelCase , args.batch_size , seed=_lowerCAmelCase ) a =0 for batch in tqdm(_lowerCAmelCase , total=_lowerCAmelCase , desc=F'''Running EPOCH-{epoch}''' ): a =self.data_collator(_lowerCAmelCase ) a , a , a =self.train_step_fn(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 if i % args.logging_steps == 0: a =jax_utils.unreplicate(state.step ) a =running_loss.item() / i a =self.scheduler_fn(state_step - 1 ) a =self.evaluate(_lowerCAmelCase , _lowerCAmelCase ) a ={ """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(_lowerCAmelCase ) ) self.logger.log(_lowerCAmelCase , commit=_lowerCAmelCase ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'''-e{epoch}-s{i}''' , state=_lowerCAmelCase ) def lowerCAmelCase__ ( self , _lowerCAmelCase , _lowerCAmelCase ): a =get_batched_dataset(_lowerCAmelCase , self.args.batch_size ) a =len(_lowerCAmelCase ) // self.args.batch_size a =jnp.array(0 , dtype=jnp.floataa ) a =0 for batch in tqdm(_lowerCAmelCase , total=_lowerCAmelCase , desc="""Evaluating ... """ ): a =self.data_collator(_lowerCAmelCase ) a =self.val_step_fn(_lowerCAmelCase , **_lowerCAmelCase ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 return running_loss / i def lowerCAmelCase__ ( self , _lowerCAmelCase , _lowerCAmelCase ): a =jax_utils.unreplicate(_lowerCAmelCase ) print(F'''SAVING CHECKPOINT IN {save_dir}''' , end=""" ... """ ) self.model_save_fn(_lowerCAmelCase , params=state.params ) with open(os.path.join(_lowerCAmelCase , """opt_state.msgpack""" ) , """wb""" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(_lowerCAmelCase , """args.joblib""" ) ) joblib.dump(self.data_collator , os.path.join(_lowerCAmelCase , """data_collator.joblib""" ) ) with open(os.path.join(_lowerCAmelCase , """training_state.json""" ) , """w""" ) as f: json.dump({"""step""": state.step.item()} , _lowerCAmelCase ) print("""DONE""" ) def lowerCamelCase ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] )-> int: """simple docstring""" print(F'''RESTORING CHECKPOINT FROM {save_dir}''' , end=""" ... """ ) with open(os.path.join(UpperCAmelCase_ , """flax_model.msgpack""" ) , """rb""" ) as f: a =from_bytes(state.params , f.read() ) with open(os.path.join(UpperCAmelCase_ , """opt_state.msgpack""" ) , """rb""" ) as f: a =from_bytes(state.opt_state , f.read() ) a =joblib.load(os.path.join(UpperCAmelCase_ , """args.joblib""" ) ) a =joblib.load(os.path.join(UpperCAmelCase_ , """data_collator.joblib""" ) ) with open(os.path.join(UpperCAmelCase_ , """training_state.json""" ) , """r""" ) as f: a =json.load(UpperCAmelCase_ ) a =training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def lowerCamelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] )-> Any: """simple docstring""" a =num_train_steps - warmup_steps a =optax.linear_schedule(init_value=UpperCAmelCase_ , end_value=UpperCAmelCase_ , transition_steps=UpperCAmelCase_ ) a =optax.linear_schedule(init_value=UpperCAmelCase_ , end_value=1e-7 , transition_steps=UpperCAmelCase_ ) a =optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def lowerCamelCase ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] )-> Any: """simple docstring""" def weight_decay_mask(UpperCAmelCase_ : int ): a =traverse_util.flatten_dict(UpperCAmelCase_ ) a ={k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(UpperCAmelCase_ ) a =scheduler_fn(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) a =optax.adamw(learning_rate=UpperCAmelCase_ , weight_decay=UpperCAmelCase_ , mask=UpperCAmelCase_ ) return tx, lr
703
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase = { '''configuration_trajectory_transformer''': [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrajectoryTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrajectoryTransformerModel''', '''TrajectoryTransformerPreTrainedModel''', '''load_tf_weights_in_trajectory_transformer''', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
321
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class __snake_case : '''simple docstring''' def __init__( self , A_ , A_=13 , A_=2 , A_=24 , A_=16 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=None , A_=2 , A_=2 , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = max_length SCREAMING_SNAKE_CASE__ = num_mel_bins SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = scope SCREAMING_SNAKE_CASE__ = frequency_stride SCREAMING_SNAKE_CASE__ = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) SCREAMING_SNAKE_CASE__ = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 SCREAMING_SNAKE_CASE__ = (self.max_length - self.patch_size) // self.time_stride + 1 SCREAMING_SNAKE_CASE__ = frequency_out_dimension * time_out_dimension SCREAMING_SNAKE_CASE__ = num_patches + 2 def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, input_values, labels def lowercase_ ( self ): '''simple docstring''' return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def lowercase_ ( self , A_ , A_ , A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = ASTModel(config=A_ ) model.to(A_ ) model.eval() SCREAMING_SNAKE_CASE__ = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE__ = {'''input_values''': input_values} return config, inputs_dict @require_torch class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Any = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) lowerCamelCase__ : Union[str, Any] = ( {"""audio-classification""": ASTForAudioClassification, """feature-extraction""": ASTModel} if is_torch_available() else {} ) lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : Tuple = False def lowercase_ ( self , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = ASTModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def lowercase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''AST does not use inputs_embeds''' ) def lowercase_ ( self ): '''simple docstring''' pass def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(A_ ) SCREAMING_SNAKE_CASE__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ = ['''input_values'''] self.assertListEqual(arg_names[:1] , A_ ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) @slow def lowercase_ ( self ): '''simple docstring''' for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = ASTModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def __snake_case ( ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = torchaudio.load(lowerCAmelCase_ ) return audio, sampling_rate @require_torch @require_torchaudio class __snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase_ ( self ): '''simple docstring''' return ( ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ) if is_torchaudio_available() else None ) @slow def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.default_feature_extractor SCREAMING_SNAKE_CASE__ = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ).to(A_ ) SCREAMING_SNAKE_CASE__ = self.default_feature_extractor SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = prepare_audio() SCREAMING_SNAKE_CASE__ = audio.squeeze().numpy() SCREAMING_SNAKE_CASE__ = feature_extractor(A_ , sampling_rate=A_ , return_tensors='''pt''' ).to(A_ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**A_ ) # verify the logits SCREAMING_SNAKE_CASE__ = torch.Size((1, 5_27) ) self.assertEqual(outputs.logits.shape , A_ ) SCREAMING_SNAKE_CASE__ = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) )
100
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase ( lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = DebertaTokenizer lowerCAmelCase__ = True lowerCAmelCase__ = DebertaTokenizerFast def lowerCAmelCase__ ( self : int ) ->Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] UpperCAmelCase_ = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) UpperCAmelCase_ = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCAmelCase_ = {'''unk_token''': '''[UNK]'''} UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCAmelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCAmelCase__ ) ) def lowerCAmelCase__ ( self : str , **UpperCAmelCase__ : Optional[int] ) ->Optional[Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def lowerCAmelCase__ ( self : Dict , UpperCAmelCase__ : int ) ->Union[str, Any]: UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = '''lower newer''' return input_text, output_text def lowerCAmelCase__ ( self : Union[str, Any] ) ->Union[str, Any]: UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] UpperCAmelCase_ = tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCAmelCase_ = tokens + [tokenizer.unk_token] UpperCAmelCase_ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , UpperCAmelCase__ ) def lowerCAmelCase__ ( self : int ) ->Optional[int]: UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = tokenizer('''Hello''' , '''World''' ) UpperCAmelCase_ = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , UpperCAmelCase__ ) @slow def lowerCAmelCase__ ( self : str ) ->int: UpperCAmelCase_ = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCAmelCase_ = tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCAmelCase__ ) UpperCAmelCase_ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCAmelCase__ ) UpperCAmelCase_ = tokenizer.encode( '''sequence builders''' , add_special_tokens=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ ) UpperCAmelCase_ = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ , UpperCAmelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def lowerCAmelCase__ ( self : str ) ->List[str]: UpperCAmelCase_ = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: UpperCAmelCase_ = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCAmelCase_ = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] UpperCAmelCase_ = tokenizer(UpperCAmelCase__ , padding=UpperCAmelCase__ ) UpperCAmelCase_ = [tokenizer.decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) for seq in encoding['''input_ids''']] # fmt: off UpperCAmelCase_ = { '''input_ids''': [ [1, 2118, 1_1126, 565, 35, 83, 2_5191, 163, 1_8854, 13, 1_2156, 12, 1_6101, 2_5376, 1_3807, 9, 2_2205, 2_7893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 1_1126, 565, 2_4536, 80, 4_3797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 3_3183, 1_1303, 4_3797, 1938, 4, 870, 2_4165, 2_9105, 5, 739, 3_2644, 3_3183, 1_1303, 3_6173, 88, 80, 650, 7821, 4_5940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 1_3171, 31, 5, 1836, 9, 3_2644, 3_3183, 1_1303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on UpperCAmelCase_ = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , UpperCAmelCase__ ) for expected, decoded in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ )
390
0
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = """time_series_transformer""" __snake_case = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self: List[str] , a: Optional[int] = None , a: Optional[int] = None , a: str = "student_t" , a: str = "nll" , a: int = 1 , a: List[int] = [1, 2, 3, 4, 5, 6, 7] , a: Optional[Union[str, bool]] = "mean" , a: int = 0 , a: int = 0 , a: int = 0 , a: int = 0 , a: Optional[List[int]] = None , a: Optional[List[int]] = None , a: int = 32 , a: int = 32 , a: int = 2 , a: int = 2 , a: int = 2 , a: int = 2 , a: bool = True , a: str = "gelu" , a: int = 64 , a: float = 0.1 , a: float = 0.1 , a: float = 0.1 , a: float = 0.1 , a: float = 0.1 , a: int = 100 , a: float = 0.0_2 , a: str=True , **a: Dict , ): # time series specific configuration __lowerCamelCase : Optional[int] = prediction_length __lowerCamelCase : Optional[int] = context_length or prediction_length __lowerCamelCase : Union[str, Any] = distribution_output __lowerCamelCase : int = loss __lowerCamelCase : List[Any] = input_size __lowerCamelCase : Dict = num_time_features __lowerCamelCase : Any = lags_sequence __lowerCamelCase : str = scaling __lowerCamelCase : Dict = num_dynamic_real_features __lowerCamelCase : Union[str, Any] = num_static_real_features __lowerCamelCase : int = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(a ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) __lowerCamelCase : str = cardinality else: __lowerCamelCase : List[str] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(a ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) __lowerCamelCase : str = embedding_dimension else: __lowerCamelCase : List[Any] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __lowerCamelCase : int = num_parallel_samples # Transformer architecture configuration __lowerCamelCase : int = input_size * len(a ) + self._number_of_features __lowerCamelCase : str = d_model __lowerCamelCase : List[str] = encoder_attention_heads __lowerCamelCase : Optional[Any] = decoder_attention_heads __lowerCamelCase : Optional[Any] = encoder_ffn_dim __lowerCamelCase : Optional[int] = decoder_ffn_dim __lowerCamelCase : str = encoder_layers __lowerCamelCase : Optional[Any] = decoder_layers __lowerCamelCase : Dict = dropout __lowerCamelCase : Optional[Any] = attention_dropout __lowerCamelCase : Dict = activation_dropout __lowerCamelCase : List[str] = encoder_layerdrop __lowerCamelCase : int = decoder_layerdrop __lowerCamelCase : str = activation_function __lowerCamelCase : Optional[int] = init_std __lowerCamelCase : List[Any] = use_cache super().__init__(is_encoder_decoder=a , **a ) @property def _snake_case ( self: List[Any] ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
710
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): return getitem, k def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return setitem, k, v def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): return delitem, k def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ): try: return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ), None except Exception as e: return None, e lowercase_ = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) lowercase_ = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] lowercase_ = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] lowercase_ = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] lowercase_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowercase_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( 'operations' , ( pytest.param(_add_items , id='add items' ), pytest.param(_overwrite_items , id='overwrite items' ), pytest.param(_delete_items , id='delete items' ), pytest.param(_access_absent_items , id='access absent items' ), pytest.param(_add_with_resize_up , id='add with resize up' ), pytest.param(_add_with_resize_down , id='add with resize down' ), ) , ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : int = HashMap(initial_block_size=4 ) __lowerCamelCase : Dict = {} for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase , __lowerCamelCase : Union[str, Any] = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase : str = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) assert my_res == py_res assert str(SCREAMING_SNAKE_CASE__ ) == str(SCREAMING_SNAKE_CASE__ ) assert set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) assert set(my.items() ) == set(py.items() ) def UpperCamelCase__ ( ): def is_public(SCREAMING_SNAKE_CASE__ ) -> bool: return not name.startswith('_' ) __lowerCamelCase : Optional[Any] = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE__ )} __lowerCamelCase : Dict = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE__ )} assert dict_public_names > hash_public_names
230
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=a_ ) class a_ ( a_ ): '''simple docstring''' __a: str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __a: ClassVar[Features] = Features({'''audio''': Audio()} ) __a: ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) __a: str = "audio" __a: str = "transcription" def _lowercase ( self , lowercase_ ) -> List[str]: '''simple docstring''' if self.audio_column not in features: raise ValueError(f'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] , lowercase_ ): raise ValueError(f'''Column {self.audio_column} is not an Audio type.''' ) lowerCAmelCase_ = copy.deepcopy(self ) lowerCAmelCase_ = self.input_schema.copy() lowerCAmelCase_ = features[self.audio_column] lowerCAmelCase_ = input_schema return task_template @property def _lowercase ( self ) -> Dict[str, str]: '''simple docstring''' return {self.audio_column: "audio", self.transcription_column: "transcription"}
318
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a_ ( unittest.TestCase ): '''simple docstring''' @property def _lowercase ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def _lowercase ( self ) -> int: '''simple docstring''' lowerCAmelCase_ = self.dummy_uncond_unet lowerCAmelCase_ = ScoreSdeVeScheduler() lowerCAmelCase_ = ScoreSdeVePipeline(unet=lowercase_ , scheduler=lowercase_ ) sde_ve.to(lowercase_ ) sde_ve.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=lowercase_ ).images lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=lowercase_ , return_dict=lowercase_ )[ 0 ] lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCAmelCase_ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = 'google/ncsnpp-church-256' lowerCAmelCase_ = UNetaDModel.from_pretrained(lowercase_ ) lowerCAmelCase_ = ScoreSdeVeScheduler.from_pretrained(lowercase_ ) lowerCAmelCase_ = ScoreSdeVePipeline(unet=lowercase_ , scheduler=lowercase_ ) sde_ve.to(lowercase_ ) sde_ve.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = sde_ve(num_inference_steps=1_0 , output_type='numpy' , generator=lowercase_ ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) lowerCAmelCase_ = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
318
1
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: """simple docstring""" A__ = [] A__ = set({'''(''', '''[''', '''{'''} ) A__ = set({''')''', ''']''', '''}'''} ) A__ = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''} for i in range(len(lowercase_ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(lowercase_ ) == 0 or (len(lowercase_ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(lowercase_ ) == 0 def SCREAMING_SNAKE_CASE ( ) -> List[Any]: """simple docstring""" A__ = input('''Enter sequence of brackets: ''' ) if is_balanced(lowercase_ ): print(lowercase_ , '''is balanced''' ) else: print(lowercase_ , '''is not balanced''' ) if __name__ == "__main__": main()
177
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict: '''simple docstring''' A__ = 1 A__ = 3 A__ = (32, 32) A__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(UpperCAmelCase__) return image @property def SCREAMING_SNAKE_CASE ( self : Any) ->str: '''simple docstring''' torch.manual_seed(0) A__ = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=UpperCAmelCase__ , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def SCREAMING_SNAKE_CASE ( self : str) ->Dict: '''simple docstring''' torch.manual_seed(0) A__ = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict: '''simple docstring''' torch.manual_seed(0) A__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) return CLIPTextModel(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Tuple: '''simple docstring''' A__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator A__ = self.dummy_cond_unet_upscale A__ = DDPMScheduler() A__ = DDIMScheduler(prediction_type='''v_prediction''') A__ = self.dummy_vae A__ = self.dummy_text_encoder A__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') A__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1)[0] A__ = Image.fromarray(np.uinta(UpperCAmelCase__)).convert('''RGB''').resize((64, 64)) # make sure here that pndm scheduler skips prk A__ = StableDiffusionUpscalePipeline( unet=UpperCAmelCase__ , low_res_scheduler=UpperCAmelCase__ , scheduler=UpperCAmelCase__ , vae=UpperCAmelCase__ , text_encoder=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , max_noise_level=350 , ) A__ = sd_pipe.to(UpperCAmelCase__) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__) A__ = '''A painting of a squirrel eating a burger''' A__ = torch.Generator(device=UpperCAmelCase__).manual_seed(0) A__ = sd_pipe( [prompt] , image=UpperCAmelCase__ , generator=UpperCAmelCase__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) A__ = output.images A__ = torch.Generator(device=UpperCAmelCase__).manual_seed(0) A__ = sd_pipe( [prompt] , image=UpperCAmelCase__ , generator=UpperCAmelCase__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , return_dict=UpperCAmelCase__ , )[0] A__ = image[0, -3:, -3:, -1] A__ = image_from_tuple[0, -3:, -3:, -1] A__ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) A__ = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: '''simple docstring''' A__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator A__ = self.dummy_cond_unet_upscale A__ = DDPMScheduler() A__ = DDIMScheduler(prediction_type='''v_prediction''') A__ = self.dummy_vae A__ = self.dummy_text_encoder A__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') A__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1)[0] A__ = Image.fromarray(np.uinta(UpperCAmelCase__)).convert('''RGB''').resize((64, 64)) # make sure here that pndm scheduler skips prk A__ = StableDiffusionUpscalePipeline( unet=UpperCAmelCase__ , low_res_scheduler=UpperCAmelCase__ , scheduler=UpperCAmelCase__ , vae=UpperCAmelCase__ , text_encoder=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , max_noise_level=350 , ) A__ = sd_pipe.to(UpperCAmelCase__) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__) A__ = '''A painting of a squirrel eating a burger''' A__ = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) A__ = output.images assert image.shape[0] == 2 A__ = torch.Generator(device=UpperCAmelCase__).manual_seed(0) A__ = sd_pipe( [prompt] , image=UpperCAmelCase__ , generator=UpperCAmelCase__ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) A__ = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''') def SCREAMING_SNAKE_CASE ( self : Any) ->str: '''simple docstring''' A__ = self.dummy_cond_unet_upscale A__ = DDPMScheduler() A__ = DDIMScheduler(prediction_type='''v_prediction''') A__ = self.dummy_vae A__ = self.dummy_text_encoder A__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') A__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1)[0] A__ = Image.fromarray(np.uinta(UpperCAmelCase__)).convert('''RGB''').resize((64, 64)) # put models in fp16, except vae as it overflows in fp16 A__ = unet.half() A__ = text_encoder.half() # make sure here that pndm scheduler skips prk A__ = StableDiffusionUpscalePipeline( unet=UpperCAmelCase__ , low_res_scheduler=UpperCAmelCase__ , scheduler=UpperCAmelCase__ , vae=UpperCAmelCase__ , text_encoder=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , max_noise_level=350 , ) A__ = sd_pipe.to(UpperCAmelCase__) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__) A__ = '''A painting of a squirrel eating a burger''' A__ = torch.manual_seed(0) A__ = sd_pipe( [prompt] , image=UpperCAmelCase__ , generator=UpperCAmelCase__ , num_inference_steps=2 , output_type='''np''' , ).images A__ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Dict) ->str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : str) ->Any: '''simple docstring''' A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''') A__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat.npy''') A__ = '''stabilityai/stable-diffusion-x4-upscaler''' A__ = StableDiffusionUpscalePipeline.from_pretrained(UpperCAmelCase__) pipe.to(UpperCAmelCase__) pipe.set_progress_bar_config(disable=UpperCAmelCase__) pipe.enable_attention_slicing() A__ = '''a cat sitting on a park bench''' A__ = torch.manual_seed(0) A__ = pipe( prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , generator=UpperCAmelCase__ , output_type='''np''' , ) A__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 1e-3 def SCREAMING_SNAKE_CASE ( self : int) ->str: '''simple docstring''' A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''') A__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat_fp16.npy''') A__ = '''stabilityai/stable-diffusion-x4-upscaler''' A__ = StableDiffusionUpscalePipeline.from_pretrained( UpperCAmelCase__ , torch_dtype=torch.floataa , ) pipe.to(UpperCAmelCase__) pipe.set_progress_bar_config(disable=UpperCAmelCase__) pipe.enable_attention_slicing() A__ = '''a cat sitting on a park bench''' A__ = torch.manual_seed(0) A__ = pipe( prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , generator=UpperCAmelCase__ , output_type='''np''' , ) A__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 5e-1 def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[Any]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''') A__ = '''stabilityai/stable-diffusion-x4-upscaler''' A__ = StableDiffusionUpscalePipeline.from_pretrained( UpperCAmelCase__ , torch_dtype=torch.floataa , ) pipe.to(UpperCAmelCase__) pipe.set_progress_bar_config(disable=UpperCAmelCase__) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() A__ = '''a cat sitting on a park bench''' A__ = torch.manual_seed(0) A__ = pipe( prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , generator=UpperCAmelCase__ , num_inference_steps=5 , output_type='''np''' , ) A__ = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
177
1
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' A : Dict = 'ssube/stable-diffusion-x4-upscaler-onnx' def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE=0 ) -> List[str]: snake_case_ : List[str] = floats_tensor((1, 3, 128, 128) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ) snake_case_ : List[Any] = torch.manual_seed(_SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _lowerCAmelCase ( self ) -> Optional[Any]: snake_case_ : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = self.get_dummy_inputs() snake_case_ : str = pipe(**_SCREAMING_SNAKE_CASE ).images snake_case_ : Optional[int] = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) snake_case_ : List[Any] = np.array( [0.697_4782, 0.6890_2093, 0.7013_5885, 0.758_3618, 0.780_4545, 0.785_4912, 0.7866_7426, 0.7874_3863, 0.7807_0223] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _lowerCAmelCase ( self ) -> int: snake_case_ : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) snake_case_ : str = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = self.get_dummy_inputs() snake_case_ : List[str] = pipe(**_SCREAMING_SNAKE_CASE ).images snake_case_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) snake_case_ : Dict = np.array( [0.689_8892, 0.5924_0556, 0.5249_9527, 0.5886_6215, 0.5225_8235, 0.5257_2715, 0.6241_4473, 0.617_4387, 0.621_4964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCAmelCase ( self ) -> List[str]: snake_case_ : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) snake_case_ : Tuple = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) snake_case_ : int = self.get_dummy_inputs() snake_case_ : Tuple = pipe(**_SCREAMING_SNAKE_CASE ).images snake_case_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) snake_case_ : int = np.array( [0.765_9278, 0.7643_7664, 0.7557_9107, 0.769_1116, 0.7766_6986, 0.772_7672, 0.775_8664, 0.781_2226, 0.7694_2515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCAmelCase ( self ) -> Union[str, Any]: snake_case_ : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) snake_case_ : int = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) snake_case_ : Any = self.get_dummy_inputs() snake_case_ : Optional[Any] = pipe(**_SCREAMING_SNAKE_CASE ).images snake_case_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) snake_case_ : Union[str, Any] = np.array( [0.697_4782, 0.6890_2093, 0.7013_5885, 0.758_3618, 0.780_4545, 0.785_4912, 0.7866_7426, 0.7874_3863, 0.7807_0223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCAmelCase ( self ) -> str: snake_case_ : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) snake_case_ : List[str] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = self.get_dummy_inputs() snake_case_ : Optional[int] = pipe(**_SCREAMING_SNAKE_CASE ).images snake_case_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) snake_case_ : Dict = np.array( [0.7742_4496, 0.77_3601, 0.764_5288, 0.776_9598, 0.777_2739, 0.773_8688, 0.7818_7233, 0.7787_9584, 0.76_7043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @property def _lowerCAmelCase ( self ) -> Any: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowerCAmelCase ( self ) -> Any: snake_case_ : List[Any] = ort.SessionOptions() snake_case_ : int = False return options def _lowerCAmelCase ( self ) -> str: snake_case_ : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) snake_case_ : int = init_image.resize((128, 128) ) # using the PNDM scheduler by default snake_case_ : Any = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = "A fantasy landscape, trending on artstation" snake_case_ : List[str] = torch.manual_seed(0 ) snake_case_ : Union[str, Any] = pipe( prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=10 , generator=_SCREAMING_SNAKE_CASE , output_type="np" , ) snake_case_ : Any = output.images snake_case_ : Tuple = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) snake_case_ : List[str] = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _lowerCAmelCase ( self ) -> Any: snake_case_ : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) snake_case_ : Dict = init_image.resize((128, 128) ) snake_case_ : Tuple = LMSDiscreteScheduler.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , subfolder="scheduler" ) snake_case_ : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , scheduler=_SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) snake_case_ : Any = "A fantasy landscape, trending on artstation" snake_case_ : Dict = torch.manual_seed(0 ) snake_case_ : Optional[Any] = pipe( prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=20 , generator=_SCREAMING_SNAKE_CASE , output_type="np" , ) snake_case_ : Any = output.images snake_case_ : str = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) snake_case_ : Dict = np.array( [0.5017_3753, 0.5022_3356, 0.50_2039, 0.5023_3036, 0.502_3725, 0.502_2601, 0.501_8758, 0.5023_4085, 0.5024_1566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
568
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: lowercase : int = None lowercase : str = logging.get_logger(__name__) lowercase : Any = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase : Dict = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } lowercase : Dict = { '''google/rembert''': 2_56, } lowercase : Dict = '''โ–''' class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Union[str, Any] = VOCAB_FILES_NAMES A : Any = PRETRAINED_VOCAB_FILES_MAP A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Optional[Any] = RemBertTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="[CLS]" , _SCREAMING_SNAKE_CASE="[SEP]" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="[SEP]" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="[CLS]" , _SCREAMING_SNAKE_CASE="[MASK]" , **_SCREAMING_SNAKE_CASE , ) -> Optional[Any]: # Mask token behave like a normal word, i.e. include the space before it snake_case_ : Optional[int] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , remove_space=_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) snake_case_ : Any = do_lower_case snake_case_ : Dict = remove_space snake_case_ : Optional[Any] = keep_accents snake_case_ : Tuple = vocab_file snake_case_ : Union[str, Any] = False if not self.vocab_file else True def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: snake_case_ : List[Any] = [self.sep_token_id] snake_case_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: snake_case_ : Dict = [self.sep_token_id] snake_case_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error("Vocabulary path ({}) should be a directory".format(_SCREAMING_SNAKE_CASE ) ) return snake_case_ : str = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
568
1
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class _UpperCAmelCase ( _A ): """simple docstring""" def __init__( self , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=0 ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = 1.0 if scale is None else scale lowerCAmelCase__ :Any = 0.0 if loc is None else loc super().__init__(_lowerCAmelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=_lowerCAmelCase )] ) @property def snake_case_ ( self ): '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def snake_case_ ( self ): '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def snake_case_ ( self ): '''simple docstring''' return self.variance.sqrt() class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' super().__init__(**_lowerCAmelCase ) lowerCAmelCase__ :Any = args_dim lowerCAmelCase__ :Optional[int] = nn.ModuleList([nn.Linear(_lowerCAmelCase , _lowerCAmelCase ) for dim in args_dim.values()] ) lowerCAmelCase__ :Any = domain_map def snake_case_ ( self , _lowerCAmelCase ): '''simple docstring''' lowerCAmelCase__ :str = [proj(_lowerCAmelCase ) for proj in self.proj] return self.domain_map(*_lowerCAmelCase ) class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowerCAmelCase ): '''simple docstring''' super().__init__() lowerCAmelCase__ :Tuple = function def snake_case_ ( self , _lowerCAmelCase , *_lowerCAmelCase ): '''simple docstring''' return self.function(_lowerCAmelCase , *_lowerCAmelCase ) class _UpperCAmelCase : """simple docstring""" A = 42 A = 42 A = 42 def __init__( self , _lowerCAmelCase = 1 ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = dim lowerCAmelCase__ :Optional[int] = {k: dim * self.args_dim[k] for k in self.args_dim} def snake_case_ ( self , _lowerCAmelCase ): '''simple docstring''' if self.dim == 1: return self.distribution_class(*_lowerCAmelCase ) else: return Independent(self.distribution_class(*_lowerCAmelCase ) , 1 ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = self._base_distribution(_lowerCAmelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(_lowerCAmelCase , loc=_lowerCAmelCase , scale=_lowerCAmelCase , event_dim=self.event_dim ) @property def snake_case_ ( self ): '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def snake_case_ ( self ): '''simple docstring''' return len(self.event_shape ) @property def snake_case_ ( self ): '''simple docstring''' return 0.0 def snake_case_ ( self , _lowerCAmelCase ): '''simple docstring''' return ParameterProjection( in_features=_lowerCAmelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def snake_case_ ( self , *_lowerCAmelCase ): '''simple docstring''' raise NotImplementedError() @staticmethod def snake_case_ ( _lowerCAmelCase ): '''simple docstring''' return (x + torch.sqrt(torch.square(_lowerCAmelCase ) + 4.0 )) / 2.0 class _UpperCAmelCase ( _A ): """simple docstring""" A = {"df": 1, "loc": 1, "scale": 1} A = StudentT @classmethod def snake_case_ ( cls , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): '''simple docstring''' lowerCAmelCase__ :str = cls.squareplus(_lowerCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) lowerCAmelCase__ :Union[str, Any] = 2.0 + cls.squareplus(_lowerCAmelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class _UpperCAmelCase ( _A ): """simple docstring""" A = {"loc": 1, "scale": 1} A = Normal @classmethod def snake_case_ ( cls , _lowerCAmelCase , _lowerCAmelCase ): '''simple docstring''' lowerCAmelCase__ :str = cls.squareplus(_lowerCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class _UpperCAmelCase ( _A ): """simple docstring""" A = {"total_count": 1, "logits": 1} A = NegativeBinomial @classmethod def snake_case_ ( cls , _lowerCAmelCase , _lowerCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[str] = cls.squareplus(_lowerCAmelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def snake_case_ ( self , _lowerCAmelCase ): '''simple docstring''' lowerCAmelCase__ ,lowerCAmelCase__ :int = distr_args if self.dim == 1: return self.distribution_class(total_count=_lowerCAmelCase , logits=_lowerCAmelCase ) else: return Independent(self.distribution_class(total_count=_lowerCAmelCase , logits=_lowerCAmelCase ) , 1 ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None ): '''simple docstring''' lowerCAmelCase__ ,lowerCAmelCase__ :Any = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
111
from __future__ import annotations import math from collections.abc import Callable def snake_case__ ( UpperCAmelCase : Callable[[int | float], int | float] , UpperCAmelCase : int | float , UpperCAmelCase : int | float , UpperCAmelCase : int = 1_0_0 , ): lowerCAmelCase__ :int = x_start lowerCAmelCase__ :int = fnc(UpperCAmelCase ) lowerCAmelCase__ :List[Any] = 0.0 for _ in range(UpperCAmelCase ): # Approximates curve as a sequence of linear lines and sums their length lowerCAmelCase__ :Dict = (x_end - x_start) / steps + xa lowerCAmelCase__ :Optional[Any] = fnc(UpperCAmelCase ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step lowerCAmelCase__ :Union[str, Any] = xa lowerCAmelCase__ :str = fxa return length if __name__ == "__main__": def snake_case__ ( UpperCAmelCase : int ): return math.sin(1_0 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") _a : Any = 10 while i <= 10_0000: print(f"""With {i} steps: {line_length(f, -10, 10, i)}""") i *= 10
111
1
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __lowercase ( snake_case ): """simple docstring""" return getitem, k def __lowercase ( snake_case, snake_case ): """simple docstring""" return setitem, k, v def __lowercase ( snake_case ): """simple docstring""" return delitem, k def __lowercase ( snake_case, snake_case, *snake_case ): """simple docstring""" try: return fun(snake_case, *snake_case ), None except Exception as e: return None, e SCREAMING_SNAKE_CASE__ : List[str] = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) SCREAMING_SNAKE_CASE__ : Dict = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] SCREAMING_SNAKE_CASE__ : Dict = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] SCREAMING_SNAKE_CASE__ : str = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] SCREAMING_SNAKE_CASE__ : Dict = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] SCREAMING_SNAKE_CASE__ : Tuple = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( '''operations''', ( pytest.param(_add_items, id='''add items''' ), pytest.param(_overwrite_items, id='''overwrite items''' ), pytest.param(_delete_items, id='''delete items''' ), pytest.param(_access_absent_items, id='''access absent items''' ), pytest.param(_add_with_resize_up, id='''add with resize up''' ), pytest.param(_add_with_resize_down, id='''add with resize down''' ), ), ) def __lowercase ( snake_case ): """simple docstring""" __magic_name__ :Optional[int] = HashMap(initial_block_size=4 ) __magic_name__ :int = {} for _, (fun, *args) in enumerate(snake_case ): __magic_name__ , __magic_name__ :Union[str, Any] = _run_operation(snake_case, snake_case, *snake_case ) __magic_name__ , __magic_name__ :Optional[Any] = _run_operation(snake_case, snake_case, *snake_case ) assert my_res == py_res assert str(snake_case ) == str(snake_case ) assert set(snake_case ) == set(snake_case ) assert len(snake_case ) == len(snake_case ) assert set(my.items() ) == set(py.items() ) def __lowercase ( ): """simple docstring""" def is_public(snake_case ) -> bool: return not name.startswith('''_''' ) __magic_name__ :List[Any] = {name for name in dir({} ) if is_public(snake_case )} __magic_name__ :Any = {name for name in dir(HashMap() ) if is_public(snake_case )} assert dict_public_names > hash_public_names
0
SCREAMING_SNAKE_CASE__ : Tuple = { """a""": """AAAAA""", """b""": """AAAAB""", """c""": """AAABA""", """d""": """AAABB""", """e""": """AABAA""", """f""": """AABAB""", """g""": """AABBA""", """h""": """AABBB""", """i""": """ABAAA""", """j""": """BBBAA""", """k""": """ABAAB""", """l""": """ABABA""", """m""": """ABABB""", """n""": """ABBAA""", """o""": """ABBAB""", """p""": """ABBBA""", """q""": """ABBBB""", """r""": """BAAAA""", """s""": """BAAAB""", """t""": """BAABA""", """u""": """BAABB""", """v""": """BBBAB""", """w""": """BABAA""", """x""": """BABAB""", """y""": """BABBA""", """z""": """BABBB""", """ """: """ """, } SCREAMING_SNAKE_CASE__ : Union[str, Any] = {value: key for key, value in encode_dict.items()} def __lowercase ( snake_case ): """simple docstring""" __magic_name__ :Tuple = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def __lowercase ( snake_case ): """simple docstring""" if set(snake_case ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) __magic_name__ :Dict = '''''' for word in coded.split(): while len(snake_case ) != 0: decoded += decode_dict[word[:5]] __magic_name__ :int = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
0
1
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __a : str = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def UpperCAmelCase ( lowercase ): """simple docstring""" assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" if args.student_type == "roberta": __lowercase = False elif args.student_type == "gpt2": __lowercase = False def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" if args.student_type == "roberta": __lowercase = False def UpperCAmelCase ( ): """simple docstring""" __lowercase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=lowercase , required=lowercase , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=lowercase , required=lowercase , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=lowercase , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=lowercase , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=lowercase , required=lowercase , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=lowercase , type=lowercase , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=lowercase , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=lowercase , required=lowercase , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=lowercase , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=lowercase , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=lowercase , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=lowercase , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=lowercase , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=lowercase , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=lowercase , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=lowercase , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=lowercase , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=lowercase , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=lowercase , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=lowercase , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=lowercase , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=lowercase , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=lowercase , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=lowercase , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=lowercase , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=lowercase , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=lowercase , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=lowercase , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=lowercase , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=lowercase , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=lowercase , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=lowercase , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=lowercase , default=500 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=lowercase , default=4000 , help='''Checkpoint interval.''' ) __lowercase = parser.parse_args() sanity_checks(lowercase ) # ARGS # init_gpu_params(lowercase ) set_seed(lowercase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F"Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F"Experiment will be dumped and logged in {args.dump_path}" ) # SAVE PARAMS # logger.info(F"Param: {args}" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(lowercase ) , lowercase , indent=4 ) git_log(args.dump_path ) __lowercase , __lowercase , __lowercase = MODEL_CLASSES[args.student_type] __lowercase , __lowercase , __lowercase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __lowercase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __lowercase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __lowercase = tokenizer.all_special_tokens.index(lowercase ) __lowercase = tokenizer.all_special_ids[idx] logger.info(F"Special tokens {special_tok_ids}" ) __lowercase = special_tok_ids __lowercase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F"Loading data from {args.data_file}" ) with open(args.data_file , '''rb''' ) as fp: __lowercase = pickle.load(lowercase ) if args.mlm: logger.info(F"Loading token counts from {args.token_counts} (already pre-computed)" ) with open(args.token_counts , '''rb''' ) as fp: __lowercase = pickle.load(lowercase ) __lowercase = np.maximum(lowercase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __lowercase = 0.0 # do not predict special tokens __lowercase = torch.from_numpy(lowercase ) else: __lowercase = None __lowercase = LmSeqsDataset(params=lowercase , data=lowercase ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F"Loading student config from {args.student_config}" ) __lowercase = student_config_class.from_pretrained(args.student_config ) __lowercase = True if args.student_pretrained_weights is not None: logger.info(F"Loading pretrained weights from {args.student_pretrained_weights}" ) __lowercase = student_model_class.from_pretrained(args.student_pretrained_weights , config=lowercase ) else: __lowercase = student_model_class(lowercase ) if args.n_gpu > 0: student.to(F"cuda:{args.local_rank}" ) logger.info('''Student loaded.''' ) # TEACHER # __lowercase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=lowercase ) if args.n_gpu > 0: teacher.to(F"cuda:{args.local_rank}" ) logger.info(F"Teacher loaded from {args.teacher_name}." ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(lowercase , lowercase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(lowercase , lowercase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __lowercase = Distiller( params=lowercase , dataset=lowercase , token_probs=lowercase , student=lowercase , teacher=lowercase ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
522
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging __a : Dict = logging.get_logger(__name__) class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : str = ['''pixel_values'''] def __init__( self , lowerCAmelCase__ = True , lowerCAmelCase__ = 1 / 2_55 , lowerCAmelCase__ = True , lowerCAmelCase__ = 8 , **lowerCAmelCase__ , ) -> None: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_pad __lowercase = pad_size def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , **lowerCAmelCase__ ) -> np.ndarray: '''simple docstring''' return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[Any]: '''simple docstring''' __lowercase , __lowercase = get_image_size(lowerCAmelCase__ ) __lowercase = (old_height // size + 1) * size - old_height __lowercase = (old_width // size + 1) * size - old_width return pad(lowerCAmelCase__ , ((0, pad_height), (0, pad_width)) , mode='''symmetric''' , data_format=lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = ChannelDimension.FIRST , **lowerCAmelCase__ , ) -> Tuple: '''simple docstring''' __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_pad if do_pad is not None else self.do_pad __lowercase = pad_size if pad_size is not None else self.pad_size __lowercase = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(lowerCAmelCase__ ) for image in images] if do_rescale: __lowercase = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images] if do_pad: __lowercase = [self.pad(lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images] __lowercase = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images] __lowercase = {'''pixel_values''': images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
522
1
from math import sqrt def a__ ( snake_case = 1_000_000 ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(snake_case , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
74
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = XCLIPTextConfig() # derive patch size from model name __SCREAMING_SNAKE_CASE : Tuple = model_name.find('''patch''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = int(model_name[start_idx + len('''patch''' ) : start_idx + len('''patch''' ) + 2] ) __SCREAMING_SNAKE_CASE : Tuple = XCLIPVisionConfig(patch_size=snake_case , num_frames=snake_case ) if "large" in model_name: __SCREAMING_SNAKE_CASE : Optional[Any] = 768 __SCREAMING_SNAKE_CASE : Optional[int] = 3_072 __SCREAMING_SNAKE_CASE : Optional[Any] = 12 __SCREAMING_SNAKE_CASE : Optional[Any] = 1_024 __SCREAMING_SNAKE_CASE : int = 4_096 __SCREAMING_SNAKE_CASE : Tuple = 16 __SCREAMING_SNAKE_CASE : Optional[int] = 24 __SCREAMING_SNAKE_CASE : Optional[int] = 768 __SCREAMING_SNAKE_CASE : Optional[int] = 3_072 if model_name == "xclip-large-patch14-16-frames": __SCREAMING_SNAKE_CASE : Any = 336 __SCREAMING_SNAKE_CASE : Any = XCLIPConfig.from_text_vision_configs(snake_case , snake_case ) if "large" in model_name: __SCREAMING_SNAKE_CASE : Any = 768 return config def a__ ( snake_case ): """simple docstring""" # text encoder if name == "token_embedding.weight": __SCREAMING_SNAKE_CASE : List[str] = name.replace('''token_embedding.weight''' , '''text_model.embeddings.token_embedding.weight''' ) if name == "positional_embedding": __SCREAMING_SNAKE_CASE : List[str] = name.replace('''positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' ) if "ln_1" in name: __SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('''ln_1''' , '''layer_norm1''' ) if "ln_2" in name: __SCREAMING_SNAKE_CASE : str = name.replace('''ln_2''' , '''layer_norm2''' ) if "c_fc" in name: __SCREAMING_SNAKE_CASE : List[str] = name.replace('''c_fc''' , '''fc1''' ) if "c_proj" in name: __SCREAMING_SNAKE_CASE : Dict = name.replace('''c_proj''' , '''fc2''' ) if name.startswith('''transformer.resblocks''' ): __SCREAMING_SNAKE_CASE : Any = name.replace('''transformer.resblocks''' , '''text_model.encoder.layers''' ) if "attn.out_proj" in name and "message" not in name: __SCREAMING_SNAKE_CASE : Dict = name.replace('''attn.out_proj''' , '''self_attn.out_proj''' ) if "ln_final" in name: __SCREAMING_SNAKE_CASE : List[str] = name.replace('''ln_final''' , '''text_model.final_layer_norm''' ) # visual encoder if name == "visual.class_embedding": __SCREAMING_SNAKE_CASE : Optional[Any] = name.replace('''visual.class_embedding''' , '''vision_model.embeddings.class_embedding''' ) if name == "visual.positional_embedding": __SCREAMING_SNAKE_CASE : Tuple = name.replace('''visual.positional_embedding''' , '''vision_model.embeddings.position_embedding.weight''' ) if name.startswith('''visual.transformer.resblocks''' ): __SCREAMING_SNAKE_CASE : List[Any] = name.replace('''visual.transformer.resblocks''' , '''vision_model.encoder.layers''' ) if "visual.conv1" in name: __SCREAMING_SNAKE_CASE : Any = name.replace('''visual.conv1''' , '''vision_model.embeddings.patch_embedding''' ) if "visual.ln_pre" in name: __SCREAMING_SNAKE_CASE : List[str] = name.replace('''visual.ln_pre''' , '''vision_model.pre_layernorm''' ) if "visual.ln_post" in name: __SCREAMING_SNAKE_CASE : Dict = name.replace('''visual.ln_post''' , '''vision_model.post_layernorm''' ) if "visual.proj" in name: __SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('''visual.proj''' , '''visual_projection.weight''' ) if "text_projection" in name: __SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('''text_projection''' , '''text_projection.weight''' ) # things on top if "prompts_visual_proj" in name: __SCREAMING_SNAKE_CASE : str = name.replace('''prompts_visual_proj''' , '''prompts_visual_projection''' ) if "prompts_visual_ln" in name: __SCREAMING_SNAKE_CASE : Optional[int] = name.replace('''prompts_visual_ln''' , '''prompts_visual_layernorm''' ) # mit if name == "mit.positional_embedding": __SCREAMING_SNAKE_CASE : Any = name.replace('''positional''' , '''position''' ) if name.startswith('''mit.resblocks''' ): __SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('''mit.resblocks''' , '''mit.encoder.layers''' ) # prompts generator if name.startswith('''prompts_generator.norm''' ): __SCREAMING_SNAKE_CASE : Tuple = name.replace('''prompts_generator.norm''' , '''prompts_generator.layernorm''' ) return name def a__ ( snake_case , snake_case ): """simple docstring""" for key in orig_state_dict.copy().keys(): __SCREAMING_SNAKE_CASE : Tuple = orig_state_dict.pop(snake_case ) if "attn.in_proj" in key: __SCREAMING_SNAKE_CASE : Optional[Any] = key.split('''.''' ) if key.startswith('''visual''' ): __SCREAMING_SNAKE_CASE : List[Any] = key_split[3] __SCREAMING_SNAKE_CASE : Any = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: __SCREAMING_SNAKE_CASE : Union[str, Any] = val[ :dim, : ] __SCREAMING_SNAKE_CASE : str = val[ dim : dim * 2, : ] __SCREAMING_SNAKE_CASE : Tuple = val[ -dim:, : ] else: __SCREAMING_SNAKE_CASE : Optional[Any] = val[ :dim ] __SCREAMING_SNAKE_CASE : Tuple = val[ dim : dim * 2 ] __SCREAMING_SNAKE_CASE : Tuple = val[ -dim: ] else: if "weight" in key: __SCREAMING_SNAKE_CASE : Tuple = val[ :dim, : ] __SCREAMING_SNAKE_CASE : str = val[ dim : dim * 2, : ] __SCREAMING_SNAKE_CASE : str = val[ -dim:, : ] else: __SCREAMING_SNAKE_CASE : Dict = val[:dim] __SCREAMING_SNAKE_CASE : str = val[ dim : dim * 2 ] __SCREAMING_SNAKE_CASE : Tuple = val[-dim:] elif key.startswith('''mit''' ): __SCREAMING_SNAKE_CASE : List[str] = key_split[2] __SCREAMING_SNAKE_CASE : Union[str, Any] = config.vision_config.mit_hidden_size if "weight" in key: __SCREAMING_SNAKE_CASE : str = val[:dim, :] __SCREAMING_SNAKE_CASE : Tuple = val[dim : dim * 2, :] __SCREAMING_SNAKE_CASE : Optional[int] = val[-dim:, :] else: __SCREAMING_SNAKE_CASE : Any = val[:dim] __SCREAMING_SNAKE_CASE : Any = val[dim : dim * 2] __SCREAMING_SNAKE_CASE : Optional[Any] = val[-dim:] else: __SCREAMING_SNAKE_CASE : Optional[Any] = key_split[2] __SCREAMING_SNAKE_CASE : Any = config.text_config.hidden_size if "weight" in key: __SCREAMING_SNAKE_CASE : Tuple = val[:dim, :] __SCREAMING_SNAKE_CASE : int = val[ dim : dim * 2, : ] __SCREAMING_SNAKE_CASE : Dict = val[-dim:, :] else: __SCREAMING_SNAKE_CASE : Tuple = val[:dim] __SCREAMING_SNAKE_CASE : str = val[ dim : dim * 2 ] __SCREAMING_SNAKE_CASE : int = val[-dim:] else: __SCREAMING_SNAKE_CASE : int = rename_key(snake_case ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: __SCREAMING_SNAKE_CASE : int = val.T __SCREAMING_SNAKE_CASE : Union[str, Any] = val return orig_state_dict def a__ ( snake_case ): """simple docstring""" if num_frames == 8: __SCREAMING_SNAKE_CASE : List[Any] = '''eating_spaghetti_8_frames.npy''' elif num_frames == 16: __SCREAMING_SNAKE_CASE : Tuple = '''eating_spaghetti.npy''' elif num_frames == 32: __SCREAMING_SNAKE_CASE : Dict = '''eating_spaghetti_32_frames.npy''' __SCREAMING_SNAKE_CASE : List[str] = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename=snake_case , repo_type='''dataset''' , ) __SCREAMING_SNAKE_CASE : int = np.load(snake_case ) return list(snake_case ) def a__ ( snake_case , snake_case=None , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = { # fully supervised kinetics-400 checkpoints '''xclip-base-patch32''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth''', '''xclip-base-patch32-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth''' ), '''xclip-base-patch16''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth''', '''xclip-base-patch16-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth''' ), '''xclip-large-patch14''': '''https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb''', '''xclip-large-patch14-16-frames''': '''https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f''', # fully supervised kinetics-600 checkpoints '''xclip-base-patch16-kinetics-600''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth''' ), '''xclip-base-patch16-kinetics-600-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth''' ), '''xclip-large-patch14-kinetics-600''': '''https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be''', # few shot '''xclip-base-patch16-hmdb-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth''' ), '''xclip-base-patch16-hmdb-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth''' ), '''xclip-base-patch16-hmdb-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth''' ), '''xclip-base-patch16-hmdb-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth''' ), '''xclip-base-patch16-ucf-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth''' ), '''xclip-base-patch16-ucf-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth''' ), '''xclip-base-patch16-ucf-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth''' ), '''xclip-base-patch16-ucf-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth''' ), # zero shot '''xclip-base-patch16-zero-shot''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth''', } __SCREAMING_SNAKE_CASE : Optional[Any] = model_to_url[model_name] __SCREAMING_SNAKE_CASE : Any = 8 if "16-frames" in model_name: __SCREAMING_SNAKE_CASE : Optional[int] = 16 elif "shot" in model_name: __SCREAMING_SNAKE_CASE : Optional[Any] = 32 __SCREAMING_SNAKE_CASE : List[str] = get_xclip_config(snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Tuple = XCLIPModel(snake_case ) model.eval() if "drive" in checkpoint_url: __SCREAMING_SNAKE_CASE : Union[str, Any] = '''pytorch_model.bin''' gdown.cached_download(snake_case , snake_case , quiet=snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.load(snake_case , map_location='''cpu''' )['''model'''] else: __SCREAMING_SNAKE_CASE : str = torch.hub.load_state_dict_from_url(snake_case )['''model'''] __SCREAMING_SNAKE_CASE : List[Any] = convert_state_dict(snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = XCLIPModel(snake_case ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = model.load_state_dict(snake_case , strict=snake_case ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() __SCREAMING_SNAKE_CASE : Any = 336 if model_name == '''xclip-large-patch14-16-frames''' else 224 __SCREAMING_SNAKE_CASE : str = VideoMAEImageProcessor(size=snake_case ) __SCREAMING_SNAKE_CASE : int = CLIPTokenizer.from_pretrained('''openai/clip-vit-base-patch32''' ) __SCREAMING_SNAKE_CASE : Optional[int] = CLIPTokenizerFast.from_pretrained('''openai/clip-vit-base-patch32''' ) __SCREAMING_SNAKE_CASE : List[Any] = XCLIPProcessor(image_processor=snake_case , tokenizer=snake_case ) __SCREAMING_SNAKE_CASE : Dict = prepare_video(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = processor( text=['''playing sports''', '''eating spaghetti''', '''go shopping'''] , videos=snake_case , return_tensors='''pt''' , padding=snake_case ) print('''Shape of pixel values:''' , inputs.pixel_values.shape ) with torch.no_grad(): __SCREAMING_SNAKE_CASE : Optional[Any] = model(**snake_case ) # Verify outputs __SCREAMING_SNAKE_CASE : Dict = outputs.logits_per_video __SCREAMING_SNAKE_CASE : Tuple = logits_per_video.softmax(dim=1 ) print('''Probs:''' , snake_case ) # kinetics-400 if model_name == "xclip-base-patch32": __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[7.0999E-04, 9.9883E-01, 4.5580E-04]] ) elif model_name == "xclip-base-patch16": __SCREAMING_SNAKE_CASE : Dict = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[7.6937E-04, 9.9728E-01, 1.9473E-03]] ) elif model_name == "xclip-large-patch14": __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[3.3877E-04, 9.9937E-01, 2.8888E-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[3.8554E-04, 9.9929E-01, 3.2754E-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": __SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": __SCREAMING_SNAKE_CASE : str = torch.tensor([[7.1890E-06, 9.9994E-01, 5.6559E-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": __SCREAMING_SNAKE_CASE : int = torch.tensor([[1.0320E-05, 9.9993E-01, 6.2435E-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": __SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[4.1377E-06, 9.9990E-01, 9.8386E-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": __SCREAMING_SNAKE_CASE : Dict = torch.tensor([[4.1347E-05, 9.9962E-01, 3.3411E-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": __SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[8.5857E-05, 9.9928E-01, 6.3291E-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[8.5857E-05, 9.9928E-01, 6.3291E-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": __SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[9.8219E-04, 9.9593E-01, 3.0863E-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[3.5082E-04, 9.9785E-01, 1.7966E-03]] ) else: raise ValueError(F'''Model name {model_name} not supported''' ) assert torch.allclose(snake_case , snake_case , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case ) if push_to_hub: print('''Pushing model, processor and slow tokenizer files to the hub...''' ) model.push_to_hub(snake_case , organization='''nielsr''' ) processor.push_to_hub(snake_case , organization='''nielsr''' ) slow_tokenizer.push_to_hub(snake_case , organization='''nielsr''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""xclip-base-patch32""", type=str, help="""Name of the model.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the ๐Ÿค— hub.""" ) lowercase_ = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
74
1
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() a : Optional[int] = logging.get_logger(__name__) def lowercase__(A , A ) ->Optional[int]: """simple docstring""" lowercase__ : int= [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''encoder.deit.blocks.{i}.norm1.weight''', f'''encoder.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''encoder.deit.blocks.{i}.norm1.bias''', f'''encoder.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.attn.proj.weight''', f'''encoder.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.attn.proj.bias''', f'''encoder.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.norm2.weight''', f'''encoder.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''encoder.deit.blocks.{i}.norm2.bias''', f'''encoder.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.mlp.fc1.weight''', f'''encoder.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.mlp.fc1.bias''', f'''encoder.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append( (f'''encoder.deit.blocks.{i}.mlp.fc2.weight''', f'''encoder.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''encoder.deit.blocks.{i}.mlp.fc2.bias''', f'''encoder.encoder.layer.{i}.output.dense.bias''') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("encoder.deit.cls_token", "encoder.embeddings.cls_token"), ("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"), ("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"), ("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"), ("encoder.deit.norm.weight", "encoder.layernorm.weight"), ("encoder.deit.norm.bias", "encoder.layernorm.bias"), ] ) return rename_keys def lowercase__(A , A ) ->Optional[int]: """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) lowercase__ : Optional[int]= state_dict.pop(f'''encoder.deit.blocks.{i}.attn.qkv.weight''' ) lowercase__ : Optional[int]= in_proj_weight[ : encoder_config.hidden_size, : ] lowercase__ : int= in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] lowercase__ : str= in_proj_weight[ -encoder_config.hidden_size :, : ] def lowercase__(A , A , A ) ->Tuple: """simple docstring""" lowercase__ : Tuple= dct.pop(_UpperCAmelCase ) lowercase__ : int= val def lowercase__(A ) ->List[str]: """simple docstring""" if "handwritten" in checkpoint_url: lowercase__ : str= "https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase__ : Tuple= "https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg" lowercase__ : Tuple= Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert("RGB" ) return im @torch.no_grad() def lowercase__(A , A ) ->int: """simple docstring""" lowercase__ : Optional[Any]= ViTConfig(image_size=384 , qkv_bias=_UpperCAmelCase ) lowercase__ : Union[str, Any]= TrOCRConfig() # size of the architecture if "base" in checkpoint_url: lowercase__ : List[Any]= 768 elif "large" in checkpoint_url: # use ViT-large encoder lowercase__ : Tuple= 1_024 lowercase__ : Optional[int]= 4_096 lowercase__ : int= 24 lowercase__ : List[str]= 16 lowercase__ : List[Any]= 1_024 else: raise ValueError("Should either find \'base\' or \'large\' in checkpoint URL" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase__ : str= False lowercase__ : List[Any]= "relu" lowercase__ : List[str]= 1_024 lowercase__ : str= True lowercase__ : int= False lowercase__ : Any= False # load HuggingFace model lowercase__ : Dict= ViTModel(_UpperCAmelCase , add_pooling_layer=_UpperCAmelCase ) lowercase__ : str= TrOCRForCausalLM(_UpperCAmelCase ) lowercase__ : Any= VisionEncoderDecoderModel(encoder=_UpperCAmelCase , decoder=_UpperCAmelCase ) model.eval() # load state_dict of original model, rename some keys lowercase__ : Tuple= torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location="cpu" , check_hash=_UpperCAmelCase )["model"] lowercase__ : List[Any]= create_rename_keys(_UpperCAmelCase , _UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase , _UpperCAmelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): lowercase__ : Tuple= state_dict.pop(_UpperCAmelCase ) if key.startswith("decoder" ) and "output_projection" not in key: lowercase__ : Any= val else: lowercase__ : Optional[Any]= val # load state dict model.load_state_dict(_UpperCAmelCase ) # Check outputs on an image lowercase__ : str= ViTImageProcessor(size=encoder_config.image_size ) lowercase__ : int= RobertaTokenizer.from_pretrained("roberta-large" ) lowercase__ : Any= TrOCRProcessor(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ : str= processor(images=prepare_img(_UpperCAmelCase ) , return_tensors="pt" ).pixel_values # verify logits lowercase__ : Any= torch.tensor([[model.config.decoder.decoder_start_token_id]] ) lowercase__ : Optional[Any]= model(pixel_values=_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase ) lowercase__ : int= outputs.logits lowercase__ : Any= torch.Size([1, 1, 50_265] ) if "trocr-base-handwritten" in checkpoint_url: lowercase__ : Tuple= torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] ) elif "trocr-large-handwritten" in checkpoint_url: lowercase__ : Tuple= torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] ) elif "trocr-base-printed" in checkpoint_url: lowercase__ : List[Any]= torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] ) elif "trocr-large-printed" in checkpoint_url: lowercase__ : Optional[int]= torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , _UpperCAmelCase , atol=1e-3 ), "First elements of logits not as expected" Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_UpperCAmelCase ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": a : int = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) a : Optional[int] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
716
"""simple docstring""" def lowercase__(A ) ->bool: """simple docstring""" lowercase__ : Tuple= (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def lowercase__(A = 5_000 ) ->int: """simple docstring""" lowercase__ : str= [(i * (3 * i - 1)) // 2 for i in range(1 , A )] for i, pentagonal_i in enumerate(A ): for j in range(A , len(A ) ): lowercase__ : List[Any]= pentagonal_nums[j] lowercase__ : int= pentagonal_i + pentagonal_j lowercase__ : Optional[int]= pentagonal_j - pentagonal_i if is_pentagonal(A ) and is_pentagonal(A ): return b return -1 if __name__ == "__main__": print(F"""{solution() = }""")
85
0
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING _SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase ) class UpperCamelCase__ ( __lowerCamelCase ): def __init__( self : Optional[Any], *__lowerCamelCase : Union[str, Any], **__lowerCamelCase : Union[str, Any] ) -> List[Any]: super().__init__(*__a, **__a ) requires_backends(self, '''vision''' ) self.check_model_type(__a ) def __call__( self : Dict, __lowerCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]], **__lowerCamelCase : str ) -> Optional[int]: return super().__call__(__a, **__a ) def __lowercase( self : Any, **__lowerCamelCase : Union[str, Any] ) -> Dict: return {}, {}, {} def __lowercase( self : List[str], __lowerCamelCase : Union[str, Any] ) -> List[str]: UpperCamelCase__ : List[str] = load_image(__a ) UpperCamelCase__ : Tuple = image.size UpperCamelCase__ : List[str] = self.image_processor(images=__a, return_tensors=self.framework ) return model_inputs def __lowercase( self : Optional[int], __lowerCamelCase : Optional[int] ) -> Optional[int]: UpperCamelCase__ : Optional[Any] = self.model(**__a ) return model_outputs def __lowercase( self : List[str], __lowerCamelCase : int ) -> List[Any]: UpperCamelCase__ : Dict = model_outputs.predicted_depth UpperCamelCase__ : Dict = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ), size=self.image_size[::-1], mode='''bicubic''', align_corners=__a ) UpperCamelCase__ : Tuple = prediction.squeeze().cpu().numpy() UpperCamelCase__ : Tuple = (output * 2_55 / np.max(__a )).astype('''uint8''' ) UpperCamelCase__ : Optional[Any] = Image.fromarray(__a ) UpperCamelCase__ : List[str] = {} UpperCamelCase__ : int = predicted_depth UpperCamelCase__ : List[str] = depth return output_dict
344
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class A ( pl.LightningModule ): def __init__( self : Dict , __a : List[str] ) -> Tuple: super().__init__() __UpperCAmelCase = model __UpperCAmelCase = 2 __UpperCAmelCase = nn.Linear(self.model.config.hidden_size , self.num_labels ) def snake_case__ ( self : int ) -> int: pass def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" # load longformer model from model identifier __UpperCAmelCase = LongformerModel.from_pretrained(UpperCamelCase__ ) __UpperCAmelCase = LightningModel(UpperCamelCase__ ) __UpperCAmelCase = torch.load(UpperCamelCase__ , map_location=torch.device('''cpu''' ) ) lightning_model.load_state_dict(ckpt['''state_dict'''] ) # init longformer question answering model __UpperCAmelCase = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase__ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(UpperCamelCase__ ) print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : List[str] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
262
0
import gc import threading import time import psutil import torch class _UpperCAmelCase : def __init__( self : str): SCREAMING_SNAKE_CASE_ :Tuple = psutil.Process() SCREAMING_SNAKE_CASE_ :int = False def _snake_case ( self : Dict): SCREAMING_SNAKE_CASE_ :Dict = -1 while True: SCREAMING_SNAKE_CASE_ :Optional[int] = max(self.process.memory_info().rss , self.cpu_memory_peak) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def _snake_case ( self : Tuple): SCREAMING_SNAKE_CASE_ :int = True SCREAMING_SNAKE_CASE_ :Dict = threading.Thread(target=self.peak_monitor) SCREAMING_SNAKE_CASE_ :int = True self.thread.start() def _snake_case ( self : Optional[Any]): SCREAMING_SNAKE_CASE_ :Union[str, Any] = False self.thread.join() return self.cpu_memory_peak SCREAMING_SNAKE_CASE__ = PeakCPUMemory() def lowercase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :List[Any] = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem SCREAMING_SNAKE_CASE_ :str = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): SCREAMING_SNAKE_CASE_ :Any = torch.cuda.memory_allocated(a ) torch.cuda.reset_peak_memory_stats() return measures def lowercase ( a ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :Tuple = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem SCREAMING_SNAKE_CASE_ :Tuple = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 SCREAMING_SNAKE_CASE_ :List[Any] = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): SCREAMING_SNAKE_CASE_ :Union[str, Any] = (torch.cuda.memory_allocated(a ) - start_measures[str(a )]) / 2**20 SCREAMING_SNAKE_CASE_ :Union[str, Any] = (torch.cuda.max_memory_allocated(a ) - start_measures[str(a )]) / 2**20 return measures def lowercase ( a , a ): '''simple docstring''' print(F"{description}:" ) print(F"- Time: {measures['time']:.2f}s" ) for i in range(torch.cuda.device_count() ): print(F"- GPU {i} allocated: {measures[str(a )]:.2f}MiB" ) SCREAMING_SNAKE_CASE_ :List[str] = measures[F"{i}-peak"] print(F"- GPU {i} peak: {peak:.2f}MiB" ) print(F"- CPU RAM allocated: {measures['cpu']:.2f}MiB" ) print(F"- CPU RAM peak: {measures['cpu-peak']:.2f}MiB" )
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { "configuration_albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig", "AlbertOnnxConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["AlbertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["AlbertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "AlbertForMaskedLM", "AlbertForMultipleChoice", "AlbertForPreTraining", "AlbertForQuestionAnswering", "AlbertForSequenceClassification", "AlbertForTokenClassification", "AlbertModel", "AlbertPreTrainedModel", "load_tf_weights_in_albert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAlbertForMaskedLM", "TFAlbertForMultipleChoice", "TFAlbertForPreTraining", "TFAlbertForQuestionAnswering", "TFAlbertForSequenceClassification", "TFAlbertForTokenClassification", "TFAlbertMainLayer", "TFAlbertModel", "TFAlbertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "FlaxAlbertForMaskedLM", "FlaxAlbertForMultipleChoice", "FlaxAlbertForPreTraining", "FlaxAlbertForQuestionAnswering", "FlaxAlbertForSequenceClassification", "FlaxAlbertForTokenClassification", "FlaxAlbertModel", "FlaxAlbertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
140
0
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def _UpperCamelCase ( snake_case__ ) -> None: __UpperCAmelCase , __UpperCAmelCase : List[str] = analyze_text(_lowerCamelCase ) __UpperCAmelCase : str = list(" " + ascii_lowercase ) # what is our total sum of probabilities. __UpperCAmelCase : Optional[int] = sum(single_char_strings.values() ) # one length string __UpperCAmelCase : int = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: __UpperCAmelCase : Optional[Any] = single_char_strings[ch] __UpperCAmelCase : int = my_str / all_sum my_fir_sum += prob * math.loga(_lowerCamelCase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string __UpperCAmelCase : str = sum(two_char_strings.values() ) __UpperCAmelCase : int = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: __UpperCAmelCase : Any = cha + cha if sequence in two_char_strings: __UpperCAmelCase : Union[str, Any] = two_char_strings[sequence] __UpperCAmelCase : Optional[int] = int(_lowerCamelCase ) / all_sum my_sec_sum += prob * math.loga(_lowerCamelCase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def _UpperCamelCase ( snake_case__ ) -> tuple[dict, dict]: __UpperCAmelCase : Tuple = Counter() # type: ignore __UpperCAmelCase : Any = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0, len(_lowerCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def _UpperCamelCase ( ) -> Tuple: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
382
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : List[str] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : str = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys _SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
549
0
from ....configuration_utils import PretrainedConfig from ....utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class __SCREAMING_SNAKE_CASE ( snake_case__): """simple docstring""" __UpperCAmelCase = "trajectory_transformer" __UpperCAmelCase = ["past_key_values"] __UpperCAmelCase = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _UpperCAmelCase=100 , _UpperCAmelCase=5 , _UpperCAmelCase=1 , _UpperCAmelCase=1 , _UpperCAmelCase=249 , _UpperCAmelCase=6 , _UpperCAmelCase=17 , _UpperCAmelCase=25 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=128 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0006 , _UpperCAmelCase=512 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=1 , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=50_256 , _UpperCAmelCase=50_256 , **_UpperCAmelCase , ): __snake_case : Optional[Any] = vocab_size __snake_case : Optional[Any] = action_weight __snake_case : Any = reward_weight __snake_case : List[Any] = value_weight __snake_case : str = max_position_embeddings __snake_case : Optional[int] = block_size __snake_case : Tuple = action_dim __snake_case : Dict = observation_dim __snake_case : Union[str, Any] = transition_dim __snake_case : List[str] = learning_rate __snake_case : List[Any] = n_layer __snake_case : Dict = n_head __snake_case : List[Any] = n_embd __snake_case : Dict = embd_pdrop __snake_case : int = attn_pdrop __snake_case : Dict = resid_pdrop __snake_case : int = initializer_range __snake_case : Dict = layer_norm_eps __snake_case : List[Any] = kaiming_initializer_range __snake_case : List[Any] = use_cache super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
704
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = '''โ–''' __magic_name__ = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } __magic_name__ = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } __magic_name__ = { '''facebook/s2t-small-librispeech-asr''': 1_024, } __magic_name__ = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] __magic_name__ = {'''mustc''': MUSTC_LANGS} class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = MAX_MODEL_INPUT_SIZES __UpperCAmelCase = ["input_ids", "attention_mask"] __UpperCAmelCase = [] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase = None , **_UpperCAmelCase , ): __snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , do_upper_case=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , lang_codes=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) __snake_case : Dict = do_upper_case __snake_case : Optional[Any] = do_lower_case __snake_case : List[Any] = load_json(_UpperCAmelCase ) __snake_case : Dict = {v: k for k, v in self.encoder.items()} __snake_case : Optional[Any] = spm_file __snake_case : Any = load_spm(_UpperCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: __snake_case : Optional[Any] = lang_codes __snake_case : int = LANGUAGES[lang_codes] __snake_case : str = [F"""<lang:{lang}>""" for lang in self.langs] __snake_case : Dict = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs} __snake_case : Dict = self.lang_tokens __snake_case : str = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: __snake_case : Optional[int] = {} @property def lowercase_ ( self ): return len(self.encoder ) @property def lowercase_ ( self ): return self._tgt_lang @tgt_lang.setter def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = new_tgt_lang self.set_tgt_lang_special_tokens(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Tuple = self.lang_code_to_id[tgt_lang] __snake_case : Optional[Any] = [lang_code_id] def lowercase_ ( self , _UpperCAmelCase ): return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): return self.encoder.get(_UpperCAmelCase , self.encoder[self.unk_token] ) def lowercase_ ( self , _UpperCAmelCase ): return self.decoder.get(_UpperCAmelCase , self.unk_token ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = [] __snake_case : Any = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __snake_case : Dict = self.sp_model.decode(_UpperCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __snake_case : Any = [] else: current_sub_tokens.append(_UpperCAmelCase ) __snake_case : Union[str, Any] = self.sp_model.decode(_UpperCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) __snake_case : Union[str, Any] = [1] * len(self.prefix_tokens ) __snake_case : Optional[Any] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones def lowercase_ ( self ): __snake_case : List[Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): __snake_case : int = self.__dict__.copy() __snake_case : str = None return state def __setstate__( self , _UpperCAmelCase ): __snake_case : List[Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __snake_case : Optional[int] = {} __snake_case : int = load_spm(self.spm_file , self.sp_model_kwargs ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : str = Path(_UpperCAmelCase ) assert save_dir.is_dir(), F"""{save_directory} should be a directory""" __snake_case : int = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __snake_case : Union[str, Any] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , _UpperCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _UpperCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(_UpperCAmelCase , 'wb' ) as fi: __snake_case : List[str] = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (str(_UpperCAmelCase ), str(_UpperCAmelCase )) def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Dict[str, Any] ): __snake_case : List[str] = sentencepiece.SentencePieceProcessor(**__UpperCAmelCase ) spm.Load(str(__UpperCAmelCase ) ) return spm def UpperCAmelCase__( __UpperCAmelCase : str ): with open(__UpperCAmelCase , 'r' ) as f: return json.load(__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : str ): with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=2 )
679
0
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE : List[Any] = 10 def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE : Optional[Any] = [1, 2, 3, 4] SCREAMING_SNAKE_CASE : int = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(lowercase__ , self.block_size , 0 ) , lowercase__ ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : str = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] SCREAMING_SNAKE_CASE : Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowercase__ , self.block_size , 0 ) , lowercase__ ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE : Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] SCREAMING_SNAKE_CASE : Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowercase__ , self.block_size , 0 ) , lowercase__ ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = process_story(lowercase__ ) self.assertEqual(lowercase__ , [] ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE : Dict = '' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = process_story(lowercase__ ) self.assertEqual(lowercase__ , [] ) self.assertEqual(lowercase__ , [] ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE : Dict = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = process_story(lowercase__ ) SCREAMING_SNAKE_CASE : int = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE : Any = ['It was the best of times.'] self.assertEqual(lowercase__ , lowercase__ ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE : Tuple = torch.tensor([1, 2, 3, 4] ) SCREAMING_SNAKE_CASE : int = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(lowercase__ , 0 ).numpy() , expected.numpy() ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE : Dict = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowercase__ , 23 ).numpy() , expected.numpy() ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE : List[str] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowercase__ , 1 ).numpy() , expected.numpy() ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE : str = 101 SCREAMING_SNAKE_CASE : Dict = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) SCREAMING_SNAKE_CASE : Tuple = compute_token_type_ids(lowercase__ , lowercase__ ) np.testing.assert_array_equal(lowercase__ , lowercase__ )
251
'''simple docstring''' import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def __lowerCAmelCase ( a_ ) -> Tuple: '''simple docstring''' return EnvironmentCommand() class UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod def _UpperCamelCase ( lowercase__ ) -> Dict: SCREAMING_SNAKE_CASE : Optional[Any] = parser.add_parser('env' ) download_parser.set_defaults(func=lowercase__ ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE : Any = huggingface_hub.__version__ SCREAMING_SNAKE_CASE : List[str] = 'not installed' SCREAMING_SNAKE_CASE : List[Any] = 'NA' if is_torch_available(): import torch SCREAMING_SNAKE_CASE : str = torch.__version__ SCREAMING_SNAKE_CASE : Optional[int] = torch.cuda.is_available() SCREAMING_SNAKE_CASE : str = 'not installed' if is_transformers_available(): import transformers SCREAMING_SNAKE_CASE : Any = transformers.__version__ SCREAMING_SNAKE_CASE : int = 'not installed' if is_accelerate_available(): import accelerate SCREAMING_SNAKE_CASE : Optional[Any] = accelerate.__version__ SCREAMING_SNAKE_CASE : Any = 'not installed' if is_xformers_available(): import xformers SCREAMING_SNAKE_CASE : Union[str, Any] = xformers.__version__ SCREAMING_SNAKE_CASE : Optional[int] = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(lowercase__ ) ) return info @staticmethod def _UpperCamelCase ( lowercase__ ) -> Dict: return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
251
1
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __UpperCAmelCase ( ) -> str: """simple docstring""" _a : str = '''https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg''' _a : Tuple = Image.open(requests.get(__a ,stream=__a ).raw ).convert('''RGB''' ) return image def __UpperCAmelCase ( __a : Tuple ) -> List[str]: """simple docstring""" _a : Tuple = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.embeddings.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.embeddings.layernorm.bias''') ) # fmt: on return rename_keys def __UpperCAmelCase ( __a : Dict ,__a : List[Any] ,__a : Any ) -> Dict: """simple docstring""" _a : str = dct.pop(__a ) _a : Tuple = val def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Dict ) -> Optional[int]: """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _a : List[Any] = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" ) _a : List[str] = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict _a : Optional[Any] = torch.cat((q_bias, torch.zeros_like(__a ,requires_grad=__a ), v_bias) ) _a : Optional[int] = qkv_bias def __UpperCAmelCase ( __a : Tuple ) -> List[Any]: """simple docstring""" _a : int = 364 if '''coco''' in model_name else 224 _a : str = InstructBlipVisionConfig(image_size=__a ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: _a : Optional[Any] = TaConfig.from_pretrained('''google/flan-t5-xl''' ,dense_act_fn='''gelu''' ,bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _a : str = TaConfig.from_pretrained('''google/flan-t5-xxl''' ,dense_act_fn='''gelu''' ,bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: _a : int = LlamaConfig.from_pretrained('''decapoda-research/llama-7b-hf''' ,vocab_size=32_001 ).to_dict() elif "vicuna-13b" in model_name: _a : int = LlamaConfig.from_pretrained('''decapoda-research/llama-13b-hf''' ,vocab_size=32_001 ).to_dict() else: raise ValueError('''Model name not supported''' ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 _a : List[str] = InstructBlipQFormerConfig(vocab_size=30_523 ).to_dict() _a : List[Any] = InstructBlipConfig(vision_config=__a ,text_config=__a ,qformer_config=__a ) return config, image_size @torch.no_grad() def __UpperCAmelCase ( __a : Any ,__a : Tuple=None ,__a : List[str]=False ) -> str: """simple docstring""" _a : List[Any] = AutoTokenizer.from_pretrained('''bert-base-uncased''' ,truncation_side='''left''' ) qformer_tokenizer.add_special_tokens({'''bos_token''': '''[DEC]'''} ) if "t5" in model_name: _a : Any = TaTokenizerFast.from_pretrained('''google/flan-t5-xl''' ,truncation_side='''left''' ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) _a : Optional[Any] = LlamaTokenizerFast.from_pretrained( '''huggyllama/llama-7b''' ,truncation_side='''left''' ,bos_token='''</s>''' ,unk_token='''</s>''' ) tokenizer.add_special_tokens({'''pad_token''': '''[PAD]'''} ) _a : str = get_blipa_config(__a ) _a : Optional[int] = InstructBlipForConditionalGeneration(__a ).eval() _a : Optional[int] = { '''instructblip-vicuna-7b''': ('''blip2_vicuna_instruct''', '''vicuna7b'''), '''instructblip-vicuna-13b''': ('''blip2_vicuna_instruct''', '''vicuna13b'''), '''instructblip-flan-t5-xl''': ('''blip2_t5_instruct''', '''flant5xl'''), '''instructblip-flan-t5-xxl''': ('''blip2_t5_instruct''', '''flant5xxl'''), } _a : Optional[int] = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) _a : List[str] = '''cuda:1''' if torch.cuda.is_available() else '''cpu''' _a : Union[str, Any] = '''cuda:2''' if torch.cuda.is_available() else '''cpu''' _a : Any = load_model_and_preprocess( name=__a ,model_type=__a ,is_eval=__a ,device=__a ) original_model.eval() print('''Done!''' ) # update state dict keys _a : Any = original_model.state_dict() _a : Optional[Any] = create_rename_keys(__a ) for src, dest in rename_keys: rename_key(__a ,__a ,__a ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _a : str = state_dict.pop(__a ) if key.startswith('''Qformer.bert''' ): _a : List[Any] = key.replace('''Qformer.bert''' ,'''qformer''' ) if "attention.self" in key: _a : Tuple = key.replace('''self''' ,'''attention''' ) if "llm_proj" in key: _a : Union[str, Any] = key.replace('''llm_proj''' ,'''language_projection''' ) if "t5_proj" in key: _a : int = key.replace('''t5_proj''' ,'''language_projection''' ) if key.startswith('''llm_model''' ): _a : List[str] = key.replace('''llm_model''' ,'''language_model''' ) if key.startswith('''t5''' ): _a : List[str] = key.replace('''t5''' ,'''language''' ) _a : Union[str, Any] = val # read in qv biases read_in_q_v_bias(__a ,__a ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(__a ,strict=__a ) _a : Optional[Any] = load_demo_image() _a : Union[str, Any] = '''What is unusual about this image?''' # create processor _a : Tuple = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} ,image_mean=__a ,image_std=__a ) _a : Dict = InstructBlipProcessor( image_processor=__a ,tokenizer=__a ,qformer_tokenizer=__a ,) _a : str = processor(images=__a ,text=__a ,return_tensors='''pt''' ).to(__a ) # make sure processor creates exact same pixel values _a : Optional[Any] = vis_processors['''eval'''](__a ).unsqueeze(0 ).to(__a ) _a : List[Any] = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) ,__a ) original_model.to(__a ) hf_model.to(__a ) with torch.no_grad(): if "vicuna" in model_name: _a : Any = original_model({'''image''': original_pixel_values, '''text_input''': [prompt]} ).logits _a : Optional[int] = hf_model(**__a ).logits else: _a : Optional[int] = original_model( {'''image''': original_pixel_values, '''text_input''': [prompt], '''text_output''': ['''\n''']} ).logits _a : Optional[Any] = tokenizer('''\n''' ,return_tensors='''pt''' ).input_ids.to(__a ) _a : int = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id ,-100 ) _a : int = hf_model(**__a ,labels=__a ).logits print('''First values of original logits:''' ,original_logits[0, :3, :3] ) print('''First values of HF logits:''' ,logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape _a : Optional[Any] = 1E-4 if '''vicuna''' in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ) ,__a ,atol=__a ) print('''Looks ok!''' ) print('''Generating with original model...''' ) _a : Union[str, Any] = original_model.generate({'''image''': original_pixel_values, '''prompt''': prompt} ,num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print('''Generating with HF model...''' ) _a : Optional[int] = hf_model.generate( **__a ,do_sample=__a ,num_beams=5 ,max_length=256 ,min_length=1 ,top_p=0.9 ,repetition_penalty=1.5 ,length_penalty=1.0 ,temperature=1 ,) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? _a : Optional[Any] = 2 print('''Original generation:''' ,__a ) _a : Dict = processor.batch_decode(__a ,skip_special_tokens=__a ) _a : Optional[int] = [text.strip() for text in output_text] print('''HF generation:''' ,__a ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__a ) hf_model.save_pretrained(__a ) if push_to_hub: processor.push_to_hub(F"""Salesforce/{model_name}""" ) hf_model.push_to_hub(F"""Salesforce/{model_name}""" ) if __name__ == "__main__": a__ = argparse.ArgumentParser() a__ = [ '''instructblip-vicuna-7b''', '''instructblip-vicuna-13b''', '''instructblip-flan-t5-xl''', '''instructblip-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''instructblip-flan-t5-xl''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) a__ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
707
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING a__ = logging.get_logger(__name__) a__ = Dict[str, Any] a__ = List[Prediction] @add_end_docstrings(__lowercase ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __init__( self , *_a , **_a ) -> Optional[Any]: super().__init__(*_a , **_a ) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , '''vision''' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def __lowercase ( self , **_a ) -> int: _a : List[str] = {} if "threshold" in kwargs: _a : List[str] = kwargs['''threshold'''] return {}, {}, postprocess_kwargs def __call__( self , *_a , **_a ) -> Union[Predictions, List[Prediction]]: return super().__call__(*_a , **_a ) def __lowercase ( self , _a ) -> Any: _a : Optional[int] = load_image(_a ) _a : str = torch.IntTensor([[image.height, image.width]] ) _a : Optional[Any] = self.image_processor(images=[image] , return_tensors='''pt''' ) if self.tokenizer is not None: _a : Union[str, Any] = self.tokenizer(text=inputs['''words'''] , boxes=inputs['''boxes'''] , return_tensors='''pt''' ) _a : Optional[int] = target_size return inputs def __lowercase ( self , _a ) -> Optional[Any]: _a : str = model_inputs.pop('''target_size''' ) _a : Dict = self.model(**_a ) _a : List[Any] = outputs.__class__({'''target_size''': target_size, **outputs} ) if self.tokenizer is not None: _a : int = model_inputs['''bbox'''] return model_outputs def __lowercase ( self , _a , _a=0.9 ) -> Any: _a : int = model_outputs['''target_size'''] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. _a , _a : Any = target_size[0].tolist() def unnormalize(_a ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1_0_0_0), (height * bbox[1] / 1_0_0_0), (width * bbox[2] / 1_0_0_0), (height * bbox[3] / 1_0_0_0), ] ) ) _a , _a : Tuple = model_outputs['''logits'''].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) _a : int = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] _a : Optional[Any] = [unnormalize(_a ) for bbox in model_outputs['''bbox'''].squeeze(0 )] _a : Dict = ['''score''', '''label''', '''box'''] _a : Optional[int] = [dict(zip(_a , _a ) ) for vals in zip(scores.tolist() , _a , _a ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel _a : List[str] = self.image_processor.post_process_object_detection(_a , _a , _a ) _a : Optional[int] = raw_annotations[0] _a : Any = raw_annotation['''scores'''] _a : Any = raw_annotation['''labels'''] _a : List[str] = raw_annotation['''boxes'''] _a : Union[str, Any] = scores.tolist() _a : Optional[Any] = [self.model.config.idalabel[label.item()] for label in labels] _a : Any = [self._get_bounding_box(_a ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] _a : Tuple = ['''score''', '''label''', '''box'''] _a : Optional[int] = [ dict(zip(_a , _a ) ) for vals in zip(raw_annotation['''scores'''] , raw_annotation['''labels'''] , raw_annotation['''boxes'''] ) ] return annotation def __lowercase ( self , _a ) -> Dict[str, int]: if self.framework != "pt": raise ValueError('''The ObjectDetectionPipeline is only available in PyTorch.''' ) _a , _a , _a , _a : List[Any] = box.int().tolist() _a : Optional[int] = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
578
0
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class _UpperCamelCase (a_ , unittest.TestCase ): snake_case_ = BlenderbotSmallTokenizer snake_case_ = False def __UpperCAmelCase ( self )-> Optional[int]: super().setUp() __lowerCAmelCase = ["__start__", "adapt", "act", "ap@@", "te", "__end__", "__unk__"] __lowerCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) __lowerCAmelCase = ["#version: 0.2", "a p", "t e</w>", "ap t</w>", "a d", "ad apt</w>", "a c", "ac t</w>", ""] __lowerCAmelCase = {"unk_token": "__unk__", "bos_token": "__start__", "eos_token": "__end__"} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__UpperCamelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__UpperCamelCase ) ) def __UpperCAmelCase ( self , **__UpperCamelCase )-> Any: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __UpperCAmelCase ( self , __UpperCamelCase )-> Dict: __lowerCAmelCase = "adapt act apte" __lowerCAmelCase = "adapt act apte" return input_text, output_text def __UpperCAmelCase ( self )-> str: __lowerCAmelCase = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCAmelCase = "adapt act apte" __lowerCAmelCase = ["adapt", "act", "ap@@", "te"] __lowerCAmelCase = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) __lowerCAmelCase = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] __lowerCAmelCase = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase ) def __UpperCAmelCase ( self )-> Tuple: __lowerCAmelCase = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) assert tok("sam" ).input_ids == [1_3_8_4] __lowerCAmelCase = "I am a small frog." __lowerCAmelCase = tok([src_text] , padding=__UpperCamelCase , truncation=__UpperCamelCase )["input_ids"] __lowerCAmelCase = tok.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __UpperCAmelCase ( self )-> List[Any]: __lowerCAmelCase = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) __lowerCAmelCase = "I am a small frog ." __lowerCAmelCase = "." __lowerCAmelCase = tok(__UpperCamelCase )["input_ids"] __lowerCAmelCase = tok(__UpperCamelCase )["input_ids"] assert encoded[-1] == encoded_dot[0]
367
from math import pow, sqrt def __lowerCAmelCase ( *__snake_case ): __lowerCAmelCase = len(__snake_case ) > 0 and all(value > 0.0 for value in values ) return result def __lowerCAmelCase ( __snake_case , __snake_case ): return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__snake_case , __snake_case ) else ValueError("Input Error: Molar mass values must greater than 0." ) ) def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case ): return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__snake_case , __snake_case , __snake_case ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case ): return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__snake_case , __snake_case , __snake_case ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case ): return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(__snake_case , __snake_case , __snake_case ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case ): return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(__snake_case , __snake_case , __snake_case ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) )
367
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : int = logging.get_logger(__name__) lowercase_ : Optional[int] = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Dict = "transfo-xl" _UpperCamelCase : Dict = ["mems"] _UpperCamelCase : Union[str, Any] = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : int , lowerCamelCase_ : List[str]=26_77_35 , lowerCamelCase_ : List[str]=[2_00_00, 4_00_00, 20_00_00] , lowerCamelCase_ : List[Any]=10_24 , lowerCamelCase_ : Dict=10_24 , lowerCamelCase_ : Union[str, Any]=16 , lowerCamelCase_ : int=64 , lowerCamelCase_ : List[Any]=40_96 , lowerCamelCase_ : str=4 , lowerCamelCase_ : Optional[Any]=False , lowerCamelCase_ : Optional[int]=18 , lowerCamelCase_ : List[Any]=16_00 , lowerCamelCase_ : Dict=10_00 , lowerCamelCase_ : int=True , lowerCamelCase_ : Tuple=True , lowerCamelCase_ : Any=0 , lowerCamelCase_ : str=-1 , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : int=0.1 , lowerCamelCase_ : Optional[int]=0.0 , lowerCamelCase_ : Any=True , lowerCamelCase_ : List[str]="normal" , lowerCamelCase_ : Union[str, Any]=0.01 , lowerCamelCase_ : Optional[int]=0.01 , lowerCamelCase_ : int=0.02 , lowerCamelCase_ : Optional[int]=1e-5 , lowerCamelCase_ : int=0 , **lowerCamelCase_ : List[Any] , ): '''simple docstring''' _snake_case : Union[str, Any] = vocab_size _snake_case : Any = [] self.cutoffs.extend(lowerCamelCase_ ) if proj_share_all_but_first: _snake_case : Any = [False] + [True] * len(self.cutoffs ) else: _snake_case : Union[str, Any] = [False] + [False] * len(self.cutoffs ) _snake_case : Any = d_model _snake_case : Tuple = d_embed _snake_case : Any = d_head _snake_case : int = d_inner _snake_case : Optional[Any] = div_val _snake_case : Dict = pre_lnorm _snake_case : Optional[Any] = n_layer _snake_case : Optional[int] = n_head _snake_case : Optional[Any] = mem_len _snake_case : Union[str, Any] = same_length _snake_case : str = attn_type _snake_case : str = clamp_len _snake_case : str = sample_softmax _snake_case : str = adaptive _snake_case : int = dropout _snake_case : Optional[Any] = dropatt _snake_case : str = untie_r _snake_case : Dict = init _snake_case : str = init_range _snake_case : Optional[Any] = proj_init_std _snake_case : Optional[Any] = init_std _snake_case : Any = layer_norm_epsilon super().__init__(eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) @property def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def __UpperCAmelCase ( self : str , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
706
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ : Optional[Any] = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Tuple = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowercase_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
652
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : Union[str, Any] = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowercase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
336
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case : def __init__( self ,snake_case ,snake_case=3 ,snake_case=32 ,snake_case=3 ,snake_case=10 ,snake_case=[10, 20, 30, 40] ,snake_case=[1, 1, 2, 1] ,snake_case=True ,snake_case=True ,snake_case="relu" ,snake_case=3 ,snake_case=None ,): '''simple docstring''' lowercase : List[str] = parent lowercase : Union[str, Any] = batch_size lowercase : Union[str, Any] = image_size lowercase : Optional[Any] = num_channels lowercase : Any = embeddings_size lowercase : str = hidden_sizes lowercase : Union[str, Any] = depths lowercase : List[Any] = is_training lowercase : Union[str, Any] = use_labels lowercase : Dict = hidden_act lowercase : str = num_labels lowercase : Union[str, Any] = scope lowercase : Optional[Any] = len(snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase : str = None if self.use_labels: lowercase : Tuple = ids_tensor([self.batch_size] ,self.num_labels ) lowercase : Any = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Any = TFRegNetModel(config=snake_case ) lowercase : int = model(snake_case ,training=snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : str = self.num_labels lowercase : Any = TFRegNetForImageClassification(snake_case ) lowercase : int = model(snake_case ,labels=snake_case ,training=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = self.prepare_config_and_inputs() lowercase , lowercase , lowercase : Union[str, Any] = config_and_inputs lowercase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __snake_case ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): _a : Optional[int]= (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () _a : Optional[Any]= ( {"feature-extraction": TFRegNetModel, "image-classification": TFRegNetForImageClassification} if is_tf_available() else {} ) _a : Dict= False _a : List[str]= False _a : str= False _a : str= False _a : Union[str, Any]= False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = TFRegNetModelTester(self ) lowercase : Tuple = ConfigTester(self ,config_class=snake_case ,has_text_modality=snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 ,reason="""TF does not support backprop for grouped convolutions on CPU.""" ,) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().test_keras_fit() @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase , lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Tuple = model_class(snake_case ) lowercase : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : Any = [*signature.parameters.keys()] lowercase : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' def check_hidden_states_output(snake_case ,snake_case ,snake_case ): lowercase : int = model_class(snake_case ) lowercase : List[Any] = model(**self._prepare_for_class(snake_case ,snake_case ) ,training=snake_case ) lowercase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase : int = self.model_tester.num_stages self.assertEqual(len(snake_case ) ,expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 2, self.model_tester.image_size // 2] ,) lowercase , lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase : Union[str, Any] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase : List[str] = layer_type lowercase : Dict = True check_hidden_states_output(snake_case ,snake_case ,snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase : Tuple = True check_hidden_states_output(snake_case ,snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase , lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(snake_case ,snake_case ,snake_case ,snake_case={} ): lowercase : Optional[Any] = model(snake_case ,return_dict=snake_case ,**snake_case ) lowercase : List[Any] = model(snake_case ,return_dict=snake_case ,**snake_case ).to_tuple() def recursive_check(snake_case ,snake_case ): if isinstance(snake_case ,(List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(snake_case ,snake_case ): recursive_check(snake_case ,snake_case ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(snake_case ,snake_case ) ) ,msg=( """Tuple and dict output are not equal. Difference:""" f" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}" ) ,) recursive_check(snake_case ,snake_case ) for model_class in self.all_model_classes: lowercase : Union[str, Any] = model_class(snake_case ) lowercase : Optional[Any] = self._prepare_for_class(snake_case ,snake_case ) lowercase : Dict = self._prepare_for_class(snake_case ,snake_case ) check_equivalence(snake_case ,snake_case ,snake_case ) lowercase : str = self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case ) lowercase : List[Any] = self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case ) check_equivalence(snake_case ,snake_case ,snake_case ) lowercase : Optional[int] = self._prepare_for_class(snake_case ,snake_case ) lowercase : str = self._prepare_for_class(snake_case ,snake_case ) check_equivalence(snake_case ,snake_case ,snake_case ,{"""output_hidden_states""": True} ) lowercase : Optional[Any] = self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case ) lowercase : Optional[int] = self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case ) check_equivalence(snake_case ,snake_case ,snake_case ,{"""output_hidden_states""": True} ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Any = TFRegNetModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def _snake_case( ) -> Any: lowercase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __snake_case ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase : List[Any] = self.default_image_processor lowercase : Optional[Any] = prepare_img() lowercase : Union[str, Any] = image_processor(images=snake_case ,return_tensors="""tf""" ) # forward pass lowercase : List[Any] = model(**snake_case ,training=snake_case ) # verify the logits lowercase : List[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,snake_case ) lowercase : int = tf.constant([-0.4_180, -1.5_051, -3.4_836] ) tf.debugging.assert_near(outputs.logits[0, :3] ,snake_case ,atol=1e-4 )
336
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Optional[int] = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class UpperCamelCase__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __magic_name__ = StableDiffusionLatentUpscalePipeline __magic_name__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """height""", """width""", """cross_attention_kwargs""", """negative_prompt_embeds""", """prompt_embeds""", } __magic_name__ = PipelineTesterMixin.required_optional_params - {"""num_images_per_prompt"""} __magic_name__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __magic_name__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __magic_name__ = frozenset([] ) __magic_name__ = True @property def a ( self ): '''simple docstring''' _lowerCAmelCase : str = 1 _lowerCAmelCase : Optional[int] = 4 _lowerCAmelCase : List[str] = (16, 16) _lowerCAmelCase : List[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase_ ) return image def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Any = UNetaDConditionModel( act_fn='gelu' , attention_head_dim=8 , norm_num_groups=UpperCAmelCase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( 'KDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', ) , in_channels=8 , mid_block_type=UpperCAmelCase_ , only_cross_attention=UpperCAmelCase_ , out_channels=5 , resnet_time_scale_shift='scale_shift' , time_embedding_type='fourier' , timestep_post_act='gelu' , up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D') , ) _lowerCAmelCase : int = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', ] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) _lowerCAmelCase : Union[str, Any] = EulerDiscreteScheduler(prediction_type='sample' ) _lowerCAmelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='quick_gelu' , projection_dim=512 , ) _lowerCAmelCase : Dict = CLIPTextModel(UpperCAmelCase_ ) _lowerCAmelCase : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCAmelCase : List[Any] = { 'unet': model.eval(), 'vae': vae.eval(), 'scheduler': scheduler, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def a ( self , snake_case__ , snake_case__=0 ): '''simple docstring''' if str(UpperCAmelCase_ ).startswith('mps' ): _lowerCAmelCase : Any = torch.manual_seed(UpperCAmelCase_ ) else: _lowerCAmelCase : str = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) _lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': self.dummy_image.cpu(), 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def a ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = 'cpu' _lowerCAmelCase : Optional[int] = self.get_dummy_components() _lowerCAmelCase : Tuple = self.pipeline_class(**UpperCAmelCase_ ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _lowerCAmelCase : Dict = self.get_dummy_inputs(UpperCAmelCase_ ) _lowerCAmelCase : str = pipe(**UpperCAmelCase_ ).images _lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) _lowerCAmelCase : Union[str, Any] = np.array( [0.4722_2412, 0.4192_1633, 0.4471_7434, 0.4687_4192, 0.4258_8258, 0.4615_0726, 0.467_7534, 0.4558_3832, 0.4857_9055] ) _lowerCAmelCase : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase_ , 1E-3 ) def a ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def a ( self ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def a ( self ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def a ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def a ( self ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def a ( self ): '''simple docstring''' super().test_save_load_local(expected_max_difference=3E-3 ) def a ( self ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3E-3 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = [ 'DDIMScheduler', 'DDPMScheduler', 'PNDMScheduler', 'HeunDiscreteScheduler', 'EulerAncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'KDPM2AncestralDiscreteScheduler', 'DPMSolverSDEScheduler', ] _lowerCAmelCase : List[str] = self.get_dummy_components() _lowerCAmelCase : Union[str, Any] = self.pipeline_class(**UpperCAmelCase_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=UpperCAmelCase_ ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _lowerCAmelCase : Optional[int] = self.get_dummy_inputs(UpperCAmelCase_ ) _lowerCAmelCase : Dict = 2 _lowerCAmelCase : List[Any] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue _lowerCAmelCase : Optional[int] = getattr(UpperCAmelCase_ , scheduler_enum.name ) _lowerCAmelCase : List[str] = scheduler_cls.from_config(pipe.scheduler.config ) _lowerCAmelCase : int = pipe(**UpperCAmelCase_ )[0] outputs.append(UpperCAmelCase_ ) assert check_same_shape(UpperCAmelCase_ ) @require_torch_gpu @slow class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self ): '''simple docstring''' _lowerCAmelCase : int = torch.manual_seed(33 ) _lowerCAmelCase : Tuple = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' , torch_dtype=torch.floataa ) pipe.to('cuda' ) _lowerCAmelCase : Tuple = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) _lowerCAmelCase : Union[str, Any] = 'a photo of an astronaut high resolution, unreal engine, ultra realistic' _lowerCAmelCase : str = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , output_type='latent' ).images _lowerCAmelCase : int = upscaler( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCAmelCase_ , output_type='np' , ).images[0] _lowerCAmelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy' ) assert np.abs((expected_image - image).mean() ) < 5E-2 def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = torch.manual_seed(33 ) _lowerCAmelCase : List[str] = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) _lowerCAmelCase : Union[str, Any] = 'the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas' _lowerCAmelCase : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png' ) _lowerCAmelCase : int = upscaler( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=UpperCAmelCase_ , output_type='np' , ).images[0] _lowerCAmelCase : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy' ) assert np.abs((expected_image - image).max() ) < 5E-2
711
'''simple docstring''' import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case__ , 'width_multiplier' ) ) class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=13 , snake_case__=64 , snake_case__=2 , snake_case__=3 , snake_case__="swish" , snake_case__=3 , snake_case__=32 , snake_case__=0.1 , snake_case__=0.02 , snake_case__=True , snake_case__=True , snake_case__=10 , snake_case__=None , snake_case__=0.25 , snake_case__=0.0 , snake_case__=0.0 , ): '''simple docstring''' _lowerCAmelCase : Tuple = parent _lowerCAmelCase : Optional[int] = batch_size _lowerCAmelCase : List[Any] = image_size _lowerCAmelCase : List[Any] = patch_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Optional[Any] = make_divisible(512 * width_multiplier , divisor=8 ) _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : List[Any] = conv_kernel_size _lowerCAmelCase : Optional[Any] = output_stride _lowerCAmelCase : List[Any] = classifier_dropout_prob _lowerCAmelCase : str = use_labels _lowerCAmelCase : List[str] = is_training _lowerCAmelCase : Optional[int] = num_labels _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : str = scope _lowerCAmelCase : Any = width_multiplier _lowerCAmelCase : Union[str, Any] = ffn_dropout _lowerCAmelCase : Optional[int] = attn_dropout def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Dict = None if self.use_labels: _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _lowerCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels, pixel_labels def a ( self ): '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Any = MobileViTVaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCAmelCase : str = model(snake_case__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.num_labels _lowerCAmelCase : List[Any] = MobileViTVaForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCAmelCase : int = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.num_labels _lowerCAmelCase : Optional[int] = MobileViTVaForSemanticSegmentation(snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCAmelCase : Dict = model(snake_case__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _lowerCAmelCase : Any = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = config_and_inputs _lowerCAmelCase : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __magic_name__ = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def a ( self ): '''simple docstring''' _lowerCAmelCase : int = MobileViTVaModelTester(self ) _lowerCAmelCase : Dict = MobileViTVaConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def a ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='MobileViTV2 does not use inputs_embeds' ) def a ( self ): '''simple docstring''' pass @unittest.skip(reason='MobileViTV2 does not support input and output embeddings' ) def a ( self ): '''simple docstring''' pass @unittest.skip(reason='MobileViTV2 does not output attentions' ) def a ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.' ) def a ( self ): '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def a ( self ): '''simple docstring''' pass def a ( self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : str = model_class(snake_case__ ) _lowerCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : int = [*signature.parameters.keys()] _lowerCAmelCase : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def a ( self ): '''simple docstring''' def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): _lowerCAmelCase : Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): _lowerCAmelCase : Optional[Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) _lowerCAmelCase : List[str] = outputs.hidden_states _lowerCAmelCase : List[str] = 5 self.assertEqual(len(snake_case__ ) , snake_case__ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _lowerCAmelCase : List[Any] = 2 for i in range(len(snake_case__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[int] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Any = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case__ ) @slow def a ( self ): '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Dict = MobileViTVaModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def lowercase (): """simple docstring""" _lowerCAmelCase : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def a ( self ): '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ) if is_vision_available() else None ) @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ).to( snake_case__ ) _lowerCAmelCase : str = self.default_image_processor _lowerCAmelCase : Any = prepare_img() _lowerCAmelCase : Optional[int] = image_processor(images=snake_case__ , return_tensors='pt' ).to(snake_case__ ) # forward pass with torch.no_grad(): _lowerCAmelCase : Tuple = model(**snake_case__ ) # verify the logits _lowerCAmelCase : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) _lowerCAmelCase : Tuple = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) ) @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) _lowerCAmelCase : Any = model.to(snake_case__ ) _lowerCAmelCase : int = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) _lowerCAmelCase : Optional[int] = prepare_img() _lowerCAmelCase : Dict = image_processor(images=snake_case__ , return_tensors='pt' ).to(snake_case__ ) # forward pass with torch.no_grad(): _lowerCAmelCase : int = model(**snake_case__ ) _lowerCAmelCase : Dict = outputs.logits # verify the logits _lowerCAmelCase : str = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , snake_case__ ) _lowerCAmelCase : Any = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=snake_case__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case__ , atol=1E-4 ) ) @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) _lowerCAmelCase : List[Any] = model.to(snake_case__ ) _lowerCAmelCase : str = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) _lowerCAmelCase : Tuple = prepare_img() _lowerCAmelCase : List[str] = image_processor(images=snake_case__ , return_tensors='pt' ).to(snake_case__ ) # forward pass with torch.no_grad(): _lowerCAmelCase : Any = model(**snake_case__ ) _lowerCAmelCase : Optional[Any] = outputs.logits.detach().cpu() _lowerCAmelCase : Any = image_processor.post_process_semantic_segmentation(outputs=snake_case__ , target_sizes=[(50, 60)] ) _lowerCAmelCase : List[Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , snake_case__ ) _lowerCAmelCase : List[str] = image_processor.post_process_semantic_segmentation(outputs=snake_case__ ) _lowerCAmelCase : Tuple = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , snake_case__ )
630
0
import datasets from .evaluate import evaluate a_ = """\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } """ a_ = """ This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. """ a_ = """ Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': the text of the answer references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the SQuAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}] >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}] >>> squad_metric = datasets.load_metric(\"squad\") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def lowerCamelCase ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': {'''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.Value('''string''' )}, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , reference_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} __lowerCamelCase = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] __lowerCamelCase = evaluate(dataset=__UpperCAmelCase , predictions=__UpperCAmelCase ) return score
175
def a__ ( _UpperCamelCase : list[int] ): if not numbers: return 0 if not isinstance(_UpperCamelCase ,(list, tuple) ) or not all( isinstance(_UpperCamelCase ,_UpperCamelCase ) for number in numbers ): raise ValueError('''numbers must be an iterable of integers''' ) __lowerCamelCase = __lowerCamelCase = __lowerCamelCase = numbers[0] for i in range(1 ,len(_UpperCamelCase ) ): # update the maximum and minimum subarray products __lowerCamelCase = numbers[i] if number < 0: __lowerCamelCase ,__lowerCamelCase = min_till_now, max_till_now __lowerCamelCase = max(_UpperCamelCase ,max_till_now * number ) __lowerCamelCase = min(_UpperCamelCase ,min_till_now * number ) # update the maximum product found till now __lowerCamelCase = max(_UpperCamelCase ,_UpperCamelCase ) return max_prod
175
1
'''simple docstring''' def _UpperCamelCase ( __A : Optional[Any] , __A : Optional[int] ) -> Tuple: '''simple docstring''' if b == 0: return 1 if (b % 2) == 0: return actual_power(__A , int(b / 2 ) ) * actual_power(__A , int(b / 2 ) ) else: return a * actual_power(__A , int(b / 2 ) ) * actual_power(__A , int(b / 2 ) ) def _UpperCamelCase ( __A : List[str] , __A : Optional[Any] ) -> float: '''simple docstring''' if b < 0: return 1 / actual_power(__A , __A ) return actual_power(__A , __A ) if __name__ == "__main__": print(power(-2, -3))
708
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ : int = logging.get_logger(__name__) a__ : Optional[int] = { 'facebook/xlm-roberta-xl': 'https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json', 'facebook/xlm-roberta-xxl': 'https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class lowercase_ ( a__ ): __UpperCAmelCase = 'xlm-roberta-xl' def __init__( self , a=25_08_80 , a=25_60 , a=36 , a=32 , a=1_02_40 , a="gelu" , a=0.1 , a=0.1 , a=5_14 , a=1 , a=0.02 , a=1e-05 , a=1 , a=0 , a=2 , a="absolute" , a=True , a=None , **a , ): super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a ) UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = position_embedding_type UpperCamelCase__ = use_cache UpperCamelCase__ = classifier_dropout class lowercase_ ( a__ ): @property def __a ( self ): if self.task == "multiple-choice": UpperCamelCase__ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCamelCase__ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
223
0
def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): __UpperCAmelCase : int = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def lowerCamelCase__ ( ): print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
63
'''simple docstring''' from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def lowerCAmelCase_ ( _lowerCamelCase: str , _lowerCamelCase: float | Decimal , _lowerCamelCase: float = 10**-10 ): __SCREAMING_SNAKE_CASE : List[Any] = a while True: __SCREAMING_SNAKE_CASE : Optional[Any] = Decimal(_lowerCamelCase ) - ( Decimal(eval(_lowerCamelCase ) ) / Decimal(eval(str(diff(_lowerCamelCase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(_lowerCamelCase ) ) < precision: # noqa: S307 return float(_lowerCamelCase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial print(f"The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}") # Find Square Root of 5 print(f"The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}") # Exponential Roots print(f"The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}")
578
0
from __future__ import annotations from PIL import Image # Define glider example a__ : List[str] = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example a__ : List[Any] = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def snake_case (UpperCamelCase : list[list[int]] ): '''simple docstring''' lowerCamelCase__ = [] for i in range(len(UpperCamelCase ) ): lowerCamelCase__ = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours lowerCamelCase__ = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(UpperCamelCase ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(UpperCamelCase ) - 1: neighbour_count += cells[i + 1][j] if i < len(UpperCamelCase ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. lowerCamelCase__ = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(UpperCamelCase ) return next_generation def snake_case (UpperCamelCase : list[list[int]] , UpperCamelCase : int ): '''simple docstring''' lowerCamelCase__ = [] for _ in range(UpperCamelCase ): # Create output image lowerCamelCase__ = Image.new("""RGB""" , (len(cells[0] ), len(UpperCamelCase )) ) lowerCamelCase__ = img.load() # Save cells to image for x in range(len(UpperCamelCase ) ): for y in range(len(cells[0] ) ): lowerCamelCase__ = 255 - cells[y][x] * 255 lowerCamelCase__ = (colour, colour, colour) # Save image images.append(UpperCamelCase ) lowerCamelCase__ = new_generation(UpperCamelCase ) return images if __name__ == "__main__": a__ : Dict = generate_images(GLIDER, 1_6) images[0].save("""out.gif""", save_all=True, append_images=images[1:])
706
from __future__ import annotations from scipy.special import comb # type: ignore class lowercase : """simple docstring""" def __init__( self : Optional[int] , a_ : list[tuple[float, float]] ): """simple docstring""" lowerCamelCase__ = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. lowerCamelCase__ = len(a_ ) - 1 def _UpperCamelCase ( self : Union[str, Any] , a_ : float ): """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." lowerCamelCase__ = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , a_ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(a_ ) , 5 ) == 1 return output_values def _UpperCamelCase ( self : int , a_ : float ): """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." lowerCamelCase__ = self.basis_function(a_ ) lowerCamelCase__ = 0.0 lowerCamelCase__ = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def _UpperCamelCase ( self : str , a_ : float = 0.0_1 ): """simple docstring""" from matplotlib import pyplot as plt # type: ignore lowerCamelCase__ = [] # x coordinates of points to plot lowerCamelCase__ = [] # y coordinates of points to plot lowerCamelCase__ = 0.0 while t <= 1: lowerCamelCase__ = self.bezier_curve_function(a_ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size lowerCamelCase__ = [i[0] for i in self.list_of_points] lowerCamelCase__ = [i[1] for i in self.list_of_points] plt.plot( a_ , a_ , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(a_ , a_ , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
235
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class __magic_name__ ( _UpperCamelCase ): _SCREAMING_SNAKE_CASE : Dict = """swin2sr""" _SCREAMING_SNAKE_CASE : Optional[int] = { """hidden_size""": """embed_dim""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Dict , snake_case_ : str=64 , snake_case_ : Any=1 , snake_case_ : str=3 , snake_case_ : Dict=180 , snake_case_ : List[str]=[6, 6, 6, 6, 6, 6] , snake_case_ : str=[6, 6, 6, 6, 6, 6] , snake_case_ : Any=8 , snake_case_ : Tuple=2.0 , snake_case_ : List[Any]=True , snake_case_ : int=0.0 , snake_case_ : Union[str, Any]=0.0 , snake_case_ : str=0.1 , snake_case_ : Any="gelu" , snake_case_ : int=False , snake_case_ : List[str]=0.02 , snake_case_ : List[str]=1e-5 , snake_case_ : Optional[int]=2 , snake_case_ : Any=1.0 , snake_case_ : Union[str, Any]="1conv" , snake_case_ : Optional[Any]="pixelshuffle" , **snake_case_ : Union[str, Any] , ): super().__init__(**UpperCamelCase__ ) __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = embed_dim __snake_case = depths __snake_case = len(UpperCamelCase__ ) __snake_case = num_heads __snake_case = window_size __snake_case = mlp_ratio __snake_case = qkv_bias __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = drop_path_rate __snake_case = hidden_act __snake_case = use_absolute_embeddings __snake_case = layer_norm_eps __snake_case = initializer_range __snake_case = upscale __snake_case = img_range __snake_case = resi_connection __snake_case = upsampler
163
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __A : Any = logging.get_logger(__name__) __A : Optional[Any] = { "EleutherAI/gpt-neo-1.3B": "https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __lowerCAmelCase ( _UpperCamelCase): '''simple docstring''' __magic_name__ : Union[str, Any] = """gpt_neo""" __magic_name__ : Union[str, Any] = ["""past_key_values"""] __magic_name__ : Dict = {"""num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self : Dict , UpperCamelCase__ : List[Any]=50257 , UpperCamelCase__ : Optional[Any]=2048 , UpperCamelCase__ : Tuple=2048 , UpperCamelCase__ : int=24 , UpperCamelCase__ : Dict=[[["global", "local"], 12]] , UpperCamelCase__ : Optional[Any]=16 , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : str=256 , UpperCamelCase__ : List[str]="gelu_new" , UpperCamelCase__ : List[str]=0.0 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : List[str]=1E-5 , UpperCamelCase__ : Any=0.02 , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : Optional[Any]=50256 , UpperCamelCase__ : List[str]=50256 , **UpperCamelCase__ : str , ): A__ : Optional[Any] =vocab_size A__ : Dict =max_position_embeddings A__ : List[str] =hidden_size A__ : List[Any] =num_layers A__ : Tuple =num_heads A__ : List[str] =intermediate_size A__ : Tuple =window_size A__ : Dict =activation_function A__ : str =resid_dropout A__ : Union[str, Any] =embed_dropout A__ : List[str] =attention_dropout A__ : Tuple =classifier_dropout A__ : int =layer_norm_epsilon A__ : int =initializer_range A__ : str =use_cache A__ : Tuple =bos_token_id A__ : int =eos_token_id A__ : int =attention_types A__ : Any =self.expand_attention_types_params(UpperCamelCase__ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " F'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' F'''`config.num_layers = {self.num_layers}`. ''' "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) @staticmethod def _UpperCAmelCase ( UpperCamelCase__ : List[str] ): A__ : Optional[Any] =[] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowercase ( UpperCamelCase : List[str] , UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] ): """simple docstring""" import torch A__ : List[str] =input.size() A__ : Dict =len(UpperCamelCase ) A__ : Optional[int] =shape[dimension] A__ : str =torch.arange(0 , UpperCamelCase , UpperCamelCase ) A__ : Optional[int] =torch.div(sizedim - size , UpperCamelCase , rounding_mode="floor" ) + 1 A__ : str =torch.arange(UpperCamelCase ) + low_indices[:min_length][:, None] A__ : Tuple =[slice(UpperCamelCase )] * rank A__ : int =indices A__ : Optional[int] =input[s] A__ : Union[str, Any] =list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(UpperCamelCase ) def lowercase ( UpperCamelCase : str , UpperCamelCase : Any ): """simple docstring""" import torch A__ : List[str] =torch.arange(1 , UpperCamelCase ) A__ : List[Any] =torch.remainder(UpperCamelCase , UpperCamelCase ) A__ : Optional[int] =remainders == 0 A__ : str =candidates[divisor_indices] A__ : int =torch.max(UpperCamelCase ) return largest_divisor, torch.div(UpperCamelCase , UpperCamelCase , rounding_mode="floor" ) class __lowerCAmelCase ( _UpperCamelCase): '''simple docstring''' @property def _UpperCAmelCase ( self : List[Any] ): A__ : Optional[int] =OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(UpperCamelCase__ , direction="inputs" ) A__ : Optional[int] ={0: "batch", 1: "past_sequence + sequence"} else: A__ : Tuple ={0: "batch", 1: "sequence"} return common_inputs @property def _UpperCAmelCase ( self : List[str] ): return self._config.num_heads def _UpperCAmelCase ( self : int , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): A__ : Union[str, Any] =super(UpperCamelCase__ , self ).generate_dummy_inputs( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) # We need to order the input in the way they appears in the forward() A__ : List[Any] =OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch A__ , A__ : Union[str, Any] =common_inputs["input_ids"].shape # Not using the same length for past_key_values A__ : Union[str, Any] =seqlen + 2 A__ : List[Any] =( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) A__ : Optional[Any] =[ (torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) for _ in range(self.num_layers ) ] A__ : Optional[Any] =common_inputs["attention_mask"] if self.use_past: A__ : Any =ordered_inputs["attention_mask"].dtype A__ : Tuple =torch.cat( [ordered_inputs["attention_mask"], torch.ones(UpperCamelCase__ , UpperCamelCase__ , dtype=UpperCamelCase__ )] , dim=1 ) return ordered_inputs @property def _UpperCAmelCase ( self : List[str] ): return 13
656
0
from __future__ import annotations from random import choice def __lowerCAmelCase ( UpperCamelCase ) -> Tuple: return choice(UpperCamelCase ) def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase ) -> int: lowerCAmelCase__ : int = random_pivot(UpperCamelCase ) # partition based on pivot # linear time lowerCAmelCase__ : Any = [e for e in lst if e < pivot] lowerCAmelCase__ : List[Any] = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(UpperCamelCase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(UpperCamelCase ) < k - 1: return kth_number(UpperCamelCase , k - len(UpperCamelCase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
470
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCAmelCase ( _lowercase , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): @property def __magic_name__( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __magic_name__( self ): lowerCAmelCase__ : str = ort.SessionOptions() lowerCAmelCase__ : List[Any] = False return options def __magic_name__( self ): lowerCAmelCase__ : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) lowerCAmelCase__ : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) lowerCAmelCase__ : List[Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = '''A red cat sitting on a park bench''' lowerCAmelCase__ : List[Any] = np.random.RandomState(0 ) lowerCAmelCase__ : int = pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , mask_image=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=10 , generator=__UpperCAmelCase , output_type='''np''' , ) lowerCAmelCase__ : Any = output.images lowerCAmelCase__ : Any = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) lowerCAmelCase__ : Any = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __magic_name__( self ): lowerCAmelCase__ : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) lowerCAmelCase__ : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) lowerCAmelCase__ : Union[str, Any] = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) lowerCAmelCase__ : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=__UpperCAmelCase , safety_checker=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ : str = '''A red cat sitting on a park bench''' lowerCAmelCase__ : Union[str, Any] = np.random.RandomState(0 ) lowerCAmelCase__ : Optional[Any] = pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , mask_image=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=20 , generator=__UpperCAmelCase , output_type='''np''' , ) lowerCAmelCase__ : Tuple = output.images lowerCAmelCase__ : Optional[Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) lowerCAmelCase__ : Optional[int] = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
470
1
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Optional[int]: # A mock response for an HTTP head request to emulate server down __SCREAMING_SNAKE_CASE = mock.Mock() __SCREAMING_SNAKE_CASE = 5_00 __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = HTTPError __SCREAMING_SNAKE_CASE = {} # Download this model to make sure it's in the cache. __SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request", return_value=__a ) as mock_head: __SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def __lowerCAmelCase ( self ) -> str: # A mock response for an HTTP head request to emulate server down __SCREAMING_SNAKE_CASE = mock.Mock() __SCREAMING_SNAKE_CASE = 5_00 __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = HTTPError __SCREAMING_SNAKE_CASE = {} # Download this model to make sure it's in the cache. __SCREAMING_SNAKE_CASE = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request", return_value=__a ) as mock_head: __SCREAMING_SNAKE_CASE = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def __lowerCAmelCase ( self ) -> str: # This test is for deprecated behavior and can be removed in v5 try: __SCREAMING_SNAKE_CASE = tempfile.mktemp() with open(__a, "wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model", __a ) __SCREAMING_SNAKE_CASE = AlbertTokenizer.from_pretrained(__a ) finally: os.remove(__a ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json", "wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json", __a ) __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size, 10_00 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def __lowerCAmelCase ( self ) -> Optional[Any]: # This test is for deprecated behavior and can be removed in v5 __SCREAMING_SNAKE_CASE = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): SCREAMING_SNAKE_CASE__ =['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def __lowerCAmelCase ( cls ) -> int: __SCREAMING_SNAKE_CASE = TOKEN HfFolder.save_token(__a ) @classmethod def __lowerCAmelCase ( cls ) -> Optional[Any]: try: delete_repo(token=cls._token, repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def __lowerCAmelCase ( self ) -> Tuple: with tempfile.TemporaryDirectory() as tmp_dir: __SCREAMING_SNAKE_CASE = os.path.join(__a, "vocab.txt" ) with open(__a, "w", encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) __SCREAMING_SNAKE_CASE = BertTokenizer(__a ) tokenizer.push_to_hub("test-tokenizer", use_auth_token=self._token ) __SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab ) # Reset repo delete_repo(token=self._token, repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__a, repo_id="test-tokenizer", push_to_hub=__a, use_auth_token=self._token ) __SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab ) def __lowerCAmelCase ( self ) -> List[str]: with tempfile.TemporaryDirectory() as tmp_dir: __SCREAMING_SNAKE_CASE = os.path.join(__a, "vocab.txt" ) with open(__a, "w", encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) __SCREAMING_SNAKE_CASE = BertTokenizer(__a ) tokenizer.push_to_hub("valid_org/test-tokenizer-org", use_auth_token=self._token ) __SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab ) # Reset repo delete_repo(token=self._token, repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( __a, repo_id="valid_org/test-tokenizer-org", push_to_hub=__a, use_auth_token=self._token ) __SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab ) @require_tokenizers def __lowerCAmelCase ( self ) -> Any: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: __SCREAMING_SNAKE_CASE = os.path.join(__a, "vocab.txt" ) with open(__a, "w", encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) __SCREAMING_SNAKE_CASE = CustomTokenizer(__a ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer", use_auth_token=self._token ) __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''', trust_remote_code=__a ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__, "CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: __SCREAMING_SNAKE_CASE = os.path.join(__a, "vocab.txt" ) with open(__a, "w", encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) __SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained(__a ) bert_tokenizer.save_pretrained(__a ) __SCREAMING_SNAKE_CASE = CustomTokenizerFast.from_pretrained(__a ) tokenizer.push_to_hub("test-dynamic-tokenizer", use_auth_token=self._token ) __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''', trust_remote_code=__a ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__, "CustomTokenizerFast" ) __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( f'''{USER}/test-dynamic-tokenizer''', use_fast=__a, trust_remote_code=__a ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__, "CustomTokenizer" ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> List[Any]: __SCREAMING_SNAKE_CASE = Trie() trie.add("Hello ๅ‹้”" ) self.assertEqual(trie.data, {"H": {"e": {"l": {"l": {"o": {" ": {"ๅ‹": {"้”": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data, {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"ๅ‹": {"้”": {"": 1}}}}}}}}} ) def __lowerCAmelCase ( self ) -> Any: __SCREAMING_SNAKE_CASE = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ), ["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ), ["[CLS]", " This is a ", "extra_id_100"] ) def __lowerCAmelCase ( self ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ), ["A", "BC"] ) self.assertEqual(trie.split("BCA" ), ["BC", "A"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ), ["This is something ", "[SPECIAL_TOKEN]"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ), ["This is something ", "[SPECIAL_TOKEN]"] ) def __lowerCAmelCase ( self ) -> str: __SCREAMING_SNAKE_CASE = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ), ["AB", "C"] ) def __lowerCAmelCase ( self ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ), ["ABC", "D"] ) def __lowerCAmelCase ( self ) -> Dict: # Even if the offsets are wrong, we necessarily output correct string # parts. __SCREAMING_SNAKE_CASE = Trie() __SCREAMING_SNAKE_CASE = trie.cut_text("ABC", [0, 0, 2, 1, 2, 3] ) self.assertEqual(__a, ["AB", "C"] )
693
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class A__ : """simple docstring""" def __init__( self: Union[str, Any] , __a: int , )-> Dict: lowerCamelCase : Optional[Any] = parent lowerCamelCase : int = 13 lowerCamelCase : Tuple = 7 lowerCamelCase : Any = True lowerCamelCase : List[Any] = True lowerCamelCase : List[Any] = True lowerCamelCase : Optional[int] = 99 lowerCamelCase : str = 32 lowerCamelCase : Dict = 2 lowerCamelCase : Optional[Any] = 4 lowerCamelCase : List[str] = 37 lowerCamelCase : Any = """gelu""" lowerCamelCase : List[Any] = 0.1 lowerCamelCase : Optional[Any] = 0.1 lowerCamelCase : List[Any] = 512 lowerCamelCase : Optional[int] = 16 lowerCamelCase : str = 2 lowerCamelCase : Optional[int] = 0.02 lowerCamelCase : Dict = 3 lowerCamelCase : List[Any] = 4 lowerCamelCase : Union[str, Any] = None def a__ ( self: Optional[int] )-> str: lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase : int = None if self.use_input_mask: lowerCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase : str = None lowerCamelCase : Dict = None lowerCamelCase : Optional[Any] = None if self.use_labels: lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase : Union[str, Any] = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self: Any )-> List[Any]: ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : Optional[Any] = self.prepare_config_and_inputs() lowerCamelCase : Dict = True lowerCamelCase : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def a__ ( self: List[Any] , __a: str , __a: int , __a: Any , __a: Dict , __a: int , __a: str )-> Union[str, Any]: lowerCamelCase : List[str] = TFEsmModel(config=__a ) lowerCamelCase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowerCamelCase : Union[str, Any] = model(__a ) lowerCamelCase : Union[str, Any] = [input_ids, input_mask] lowerCamelCase : Tuple = model(__a ) lowerCamelCase : Dict = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self: List[str] , __a: Any , __a: List[Any] , __a: Tuple , __a: Tuple , __a: int , __a: Optional[int] , __a: str , __a: Optional[int] , )-> Dict: lowerCamelCase : str = True lowerCamelCase : List[str] = TFEsmModel(config=__a ) lowerCamelCase : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """encoder_hidden_states""": encoder_hidden_states, """encoder_attention_mask""": encoder_attention_mask, } lowerCamelCase : List[Any] = model(__a ) lowerCamelCase : int = [input_ids, input_mask] lowerCamelCase : int = model(__a , encoder_hidden_states=__a ) # Also check the case where encoder outputs are not passed lowerCamelCase : List[Any] = model(__a , attention_mask=__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self: Optional[int] , __a: Optional[Any] , __a: Tuple , __a: List[str] , __a: Tuple , __a: Optional[Any] , __a: str )-> Any: lowerCamelCase : Optional[int] = TFEsmForMaskedLM(config=__a ) lowerCamelCase : Dict = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self: Dict , __a: Optional[Any] , __a: Any , __a: int , __a: Optional[int] , __a: str , __a: List[Any] )-> Any: lowerCamelCase : int = self.num_labels lowerCamelCase : Dict = TFEsmForTokenClassification(config=__a ) lowerCamelCase : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowerCamelCase : Dict = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self: Dict )-> str: lowerCamelCase : str = self.prepare_config_and_inputs() ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : Dict = config_and_inputs lowerCamelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class A__ ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" snake_case__ : Optional[Any] =( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) snake_case__ : int =( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) snake_case__ : Optional[Any] =False snake_case__ : Any =False def a__ ( self: Any )-> Optional[int]: lowerCamelCase : Optional[Any] = TFEsmModelTester(self ) lowerCamelCase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def a__ ( self: Optional[int] )-> Tuple: self.config_tester.run_common_tests() def a__ ( self: str )-> Any: lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def a__ ( self: Any )-> Dict: lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__a ) def a__ ( self: Tuple )-> Tuple: lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def a__ ( self: int )-> Optional[Any]: lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def a__ ( self: Union[str, Any] )-> str: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : Tuple = TFEsmModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @unittest.skip("""Protein models do not support embedding resizing.""" ) def a__ ( self: List[Any] )-> Optional[Any]: pass @unittest.skip("""Protein models do not support embedding resizing.""" ) def a__ ( self: Tuple )-> str: pass def a__ ( self: List[Any] )-> Tuple: lowerCamelCase , lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : int = model_class(__a ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCamelCase : Dict = model.get_bias() assert isinstance(__a , __a ) for k, v in name.items(): assert isinstance(__a , tf.Variable ) else: lowerCamelCase : Union[str, Any] = model.get_output_embeddings() assert x is None lowerCamelCase : str = model.get_bias() assert name is None @require_tf class A__ ( unittest.TestCase): """simple docstring""" @slow def a__ ( self: Any )-> Tuple: lowerCamelCase : List[Any] = TFEsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) lowerCamelCase : List[str] = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase : Union[str, Any] = model(__a )[0] lowerCamelCase : Union[str, Any] = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , __a ) # compare the actual values for a slice. lowerCamelCase : Any = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def a__ ( self: List[Any] )-> Optional[int]: lowerCamelCase : int = TFEsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) lowerCamelCase : Any = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCamelCase : List[str] = model(__a )[0] # compare the actual values for a slice. lowerCamelCase : str = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
222
0
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __lowerCamelCase = logging.getLogger(__name__) class _UpperCamelCase( SCREAMING_SNAKE_CASE ): def __init__( self : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : List[str] , _lowerCamelCase : int , _lowerCamelCase : Tuple=None ): super().__init__( _lowerCamelCase , question_encoder_tokenizer=_lowerCamelCase , generator_tokenizer=_lowerCamelCase , index=_lowerCamelCase , init_retrieval=_lowerCamelCase , ) _UpperCAmelCase : str = None def a__ ( self : Optional[Any] , _lowerCamelCase : int ): logger.info("initializing retrieval" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("dist initialized" ) # needs to be set manually _UpperCAmelCase : int = self._infer_socket_ifname() # avoid clash with the NCCL port _UpperCAmelCase : int = str(distributed_port + 1 ) _UpperCAmelCase : Union[str, Any] = dist.new_group(ranks=_lowerCamelCase , backend="gloo" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("dist not initialized / main" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def a__ ( self : Tuple ): return dist.get_rank(group=self.process_group ) == 0 def a__ ( self : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : str=torch.floataa ): _UpperCAmelCase : int = torch.empty(_lowerCamelCase , dtype=_lowerCamelCase ) dist.scatter(_lowerCamelCase , src=0 , scatter_list=_lowerCamelCase , group=self.process_group ) return target_tensor def a__ ( self : Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names _UpperCAmelCase : Union[str, Any] = next((addr for addr in addrs if addr.startswith("e" )) , _lowerCamelCase ) return ifname def a__ ( self : Optional[int] , _lowerCamelCase : np.ndarray , _lowerCamelCase : int ): # single GPU training if not dist.is_initialized(): _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = self._main_retrieve(_lowerCamelCase , _lowerCamelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_lowerCamelCase ) # distributed training _UpperCAmelCase : Optional[int] = dist.get_world_size(group=self.process_group ) # gather logic _UpperCAmelCase : int = None if self._is_main(): _UpperCAmelCase : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(_lowerCamelCase )] dist.gather(torch.tensor(_lowerCamelCase ) , dst=0 , gather_list=_lowerCamelCase , group=self.process_group ) # scatter logic _UpperCAmelCase : str = question_hidden_states.shape[0] _UpperCAmelCase : Dict = [] _UpperCAmelCase : List[Any] = [] if self._is_main(): assert len(_lowerCamelCase ) == world_size _UpperCAmelCase ,_UpperCAmelCase : Any = self._main_retrieve(torch.cat(_lowerCamelCase ).numpy() , _lowerCamelCase ) _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = torch.tensor(_lowerCamelCase ), torch.tensor(_lowerCamelCase ) _UpperCAmelCase : Tuple = self._chunk_tensor(_lowerCamelCase , _lowerCamelCase ) _UpperCAmelCase : List[Any] = self._chunk_tensor(_lowerCamelCase , _lowerCamelCase ) _UpperCAmelCase : str = self._scattered(_lowerCamelCase , [n_queries, n_docs] , target_type=torch.intaa ) _UpperCAmelCase : Tuple = self._scattered(_lowerCamelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(_lowerCamelCase )
328
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCamelCase( SCREAMING_SNAKE_CASE ): __A: Optional[Any] = ["""image_processor""", """tokenizer"""] __A: List[str] = """CLIPImageProcessor""" __A: Dict = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : str , _lowerCamelCase : List[str]=None , _lowerCamelCase : Any=None , **_lowerCamelCase : str ): _UpperCAmelCase : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _lowerCamelCase , ) _UpperCAmelCase : Optional[Any] = kwargs.pop("feature_extractor" ) _UpperCAmelCase : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_lowerCamelCase , _lowerCamelCase ) def __call__( self : Any , _lowerCamelCase : List[str]=None , _lowerCamelCase : str=None , _lowerCamelCase : Optional[int]=None , **_lowerCamelCase : Union[str, Any] ): if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: _UpperCAmelCase : Union[str, Any] = self.tokenizer(_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) if images is not None: _UpperCAmelCase : Any = self.image_processor(_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) if text is not None and images is not None: _UpperCAmelCase : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCamelCase ) , tensor_type=_lowerCamelCase ) def a__ ( self : Union[str, Any] , *_lowerCamelCase : List[Any] , **_lowerCamelCase : List[str] ): return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def a__ ( self : Union[str, Any] , *_lowerCamelCase : List[str] , **_lowerCamelCase : str ): return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @property def a__ ( self : Any ): _UpperCAmelCase : Union[str, Any] = self.tokenizer.model_input_names _UpperCAmelCase : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def a__ ( self : Union[str, Any] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _lowerCamelCase , ) return self.image_processor_class @property def a__ ( self : int ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _lowerCamelCase , ) return self.image_processor
328
1
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __magic_name__ : """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __A : Any = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __A : int = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __A : List[str] = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __A : Tuple = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __A : Any = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowerCAmelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __A : Optional[int] = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __A : Dict = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __A : str = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __A : Optional[int] = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __A : List[str] = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) __A : List[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowerCAmelCase__ ( self ): '''simple docstring''' __A : List[str] = self.get_dummy_components() __A : Any = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __A : Optional[int] = self.get_dummy_inputs(lowerCamelCase ) __A : Optional[int] = inputs["prompt"] __A : Optional[int] = inputs["generator"] __A : List[str] = inputs["num_inference_steps"] __A : str = inputs["output_type"] if "image" in inputs: __A : List[Any] = inputs["image"] else: __A : Tuple = None if "mask_image" in inputs: __A : Optional[int] = inputs["mask_image"] else: __A : List[str] = None if "original_image" in inputs: __A : Tuple = inputs["original_image"] else: __A : List[Any] = None __A ,__A : int = pipe.encode_prompt(lowerCamelCase ) # inputs with prompt converted to embeddings __A : Tuple = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __A : Union[str, Any] = image if mask_image is not None: __A : Optional[Any] = mask_image if original_image is not None: __A : List[Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __A : List[Any] = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __A : Dict = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCamelCase , lowerCamelCase ) is None , f"`{optional_component}` did not stay set to None after loading." , ) __A : Dict = self.get_dummy_inputs(lowerCamelCase ) __A : List[str] = inputs["generator"] __A : Tuple = inputs["num_inference_steps"] __A : str = inputs["output_type"] # inputs with prompt converted to embeddings __A : Dict = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __A : Dict = image if mask_image is not None: __A : List[str] = mask_image if original_image is not None: __A : Optional[int] = original_image __A : str = pipe_loaded(**lowerCamelCase )[0] __A : List[Any] = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1E-4 ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : int = self.get_dummy_components() __A : Optional[Any] = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __A : Optional[int] = self.get_dummy_inputs(lowerCamelCase ) __A : List[str] = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __A : List[str] = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests __A : Dict = self.get_dummy_inputs(lowerCamelCase ) __A : Optional[Any] = pipe_loaded(**lowerCamelCase )[0] __A : str = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1E-4 )
111
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=2 , lowerCamelCase=99 , lowerCamelCase=0 , lowerCamelCase=32 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=2 , lowerCamelCase=4 , lowerCamelCase="last" , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=0 , ): '''simple docstring''' __A : Tuple = parent __A : Optional[Any] = batch_size __A : int = seq_length __A : int = is_training __A : List[str] = use_input_lengths __A : Optional[Any] = use_token_type_ids __A : Any = use_labels __A : Dict = gelu_activation __A : List[str] = sinusoidal_embeddings __A : List[Any] = causal __A : Optional[int] = asm __A : List[Any] = n_langs __A : List[str] = vocab_size __A : Any = n_special __A : Optional[int] = hidden_size __A : Optional[Any] = num_hidden_layers __A : Tuple = num_attention_heads __A : List[str] = hidden_dropout_prob __A : Any = attention_probs_dropout_prob __A : Dict = max_position_embeddings __A : Optional[int] = type_sequence_label_size __A : Tuple = initializer_range __A : List[Any] = num_labels __A : List[Any] = num_choices __A : Any = summary_type __A : List[str] = use_proj __A : List[Any] = scope __A : str = bos_token_id def lowerCAmelCase__ ( self ): '''simple docstring''' __A : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A : int = random_attention_mask([self.batch_size, self.seq_length] ) __A : Union[str, Any] = None if self.use_input_lengths: __A : int = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __A : Any = None if self.use_token_type_ids: __A : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __A : int = None __A : Any = None __A : Tuple = None if self.use_labels: __A : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __A : int = ids_tensor([self.batch_size] , 2 ).float() __A : List[str] = ids_tensor([self.batch_size] , self.num_choices ) __A : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCAmelCase__ ( self ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' __A : Tuple = XLMModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __A : Tuple = model(lowerCamelCase , lengths=lowerCamelCase , langs=lowerCamelCase ) __A : Dict = model(lowerCamelCase , langs=lowerCamelCase ) __A : List[Any] = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' __A : str = XLMWithLMHeadModel(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __A : List[str] = model(lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' __A : str = XLMForQuestionAnsweringSimple(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __A : int = model(lowerCamelCase ) __A : List[str] = model(lowerCamelCase , start_positions=lowerCamelCase , end_positions=lowerCamelCase ) __A : List[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' __A : Optional[Any] = XLMForQuestionAnswering(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __A : str = model(lowerCamelCase ) __A : Optional[int] = model( lowerCamelCase , start_positions=lowerCamelCase , end_positions=lowerCamelCase , cls_index=lowerCamelCase , is_impossible=lowerCamelCase , p_mask=lowerCamelCase , ) __A : Any = model( lowerCamelCase , start_positions=lowerCamelCase , end_positions=lowerCamelCase , cls_index=lowerCamelCase , is_impossible=lowerCamelCase , ) ((__A) ,) : List[str] = result_with_labels.to_tuple() __A : int = model(lowerCamelCase , start_positions=lowerCamelCase , end_positions=lowerCamelCase ) ((__A) ,) : List[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' __A : Optional[int] = XLMForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __A : str = model(lowerCamelCase ) __A : Optional[int] = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' __A : str = self.num_labels __A : int = XLMForTokenClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __A : str = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' __A : Union[str, Any] = self.num_choices __A : Union[str, Any] = XLMForMultipleChoice(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __A : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __A : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __A : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __A : Any = model( lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : List[Any] = self.prepare_config_and_inputs() ( ( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) , ) : str = config_and_inputs __A : int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths} return config, inputs_dict @require_torch class __magic_name__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) lowerCamelCase__ = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowerCamelCase__ = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=False ): '''simple docstring''' __A : Optional[Any] = super()._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __A : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase ) __A : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase ) return inputs_dict def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Optional[int] = XLMModelTester(self ) __A : Any = ConfigTester(self , config_class=lowerCamelCase , emb_dim=37 ) def lowerCAmelCase__ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCamelCase ) def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=False , lowerCamelCase=1 ): '''simple docstring''' self.assertIsInstance(lowerCamelCase , lowerCamelCase ) self.assertListEqual( [isinstance(lowerCamelCase , lowerCamelCase ) for iter_attentions in attentions] , [True] * len(lowerCamelCase ) ) self.assertEqual(len(lowerCamelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCamelCase ): # adds PAD dummy token __A : Optional[Any] = min_length + idx + 1 __A : Optional[int] = min_length + idx + 1 __A : List[Any] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCamelCase ) ) def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=False , lowerCamelCase=1 ): '''simple docstring''' self.assertIsInstance(lowerCamelCase , lowerCamelCase ) self.assertListEqual( [isinstance(lowerCamelCase , lowerCamelCase ) for iter_hidden_states in hidden_states] , [True] * len(lowerCamelCase ) , ) self.assertEqual(len(lowerCamelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCamelCase ): # adds PAD dummy token __A : Dict = min_length + idx + 1 __A : Union[str, Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCamelCase ) , ) pass @slow def lowerCAmelCase__ ( self ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : Any = XLMModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Tuple = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048" ) model.to(lowerCamelCase ) __A : Optional[int] = torch.tensor([[14, 447]] , dtype=torch.long , device=lowerCamelCase ) # the president __A : Optional[Any] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __A : Union[str, Any] = model.generate(lowerCamelCase , do_sample=lowerCamelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCamelCase )
111
1
"""simple docstring""" def UpperCamelCase ( _A , _A , _A , _A , _A , ) -> Union[str, Any]: lowercase : Any = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("""All input parameters must be positive""" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("""Relative densities cannot be greater than one""" ) else: lowercase : int = 1 - (matter_density + radiation_density + dark_energy) lowercase : str = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) lowercase : Union[str, Any] = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation _lowerCAmelCase = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
714
"""simple docstring""" from math import factorial, pi def UpperCamelCase ( _A , _A = 30 ) -> float: if not isinstance(_A , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(_A , _A ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) lowercase : Optional[int] = float(_A ) lowercase : Any = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(_A ) ) def UpperCamelCase ( _A , _A = 30 ) -> float: if not isinstance(_A , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(_A , _A ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) lowercase : str = float(_A ) lowercase : List[Any] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(_A ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
348
0
'''simple docstring''' import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCAmelCase__ : '''simple docstring''' def __init__( self : List[Any] , a__ : Optional[int] , a__ : List[str]=99 , a__ : str=13 , a__ : List[Any]=7 , a__ : Union[str, Any]=9 , a__ : int=True , a__ : Optional[Any]=True , a__ : Union[str, Any]=False , a__ : List[Any]=32 , a__ : Dict=5 , a__ : Dict=4 , a__ : int=37 , a__ : List[Any]=8 , a__ : List[str]=0.1 , a__ : Dict=0.002 , a__ : Dict=1 , a__ : Optional[int]=0 , a__ : Tuple=0 , a__ : int=None , a__ : Any=None , ): UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = encoder_seq_length UpperCAmelCase = decoder_seq_length # For common tests UpperCAmelCase = self.decoder_seq_length UpperCAmelCase = is_training UpperCAmelCase = use_attention_mask UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = d_ff UpperCAmelCase = relative_attention_num_buckets UpperCAmelCase = dropout_rate UpperCAmelCase = initializer_factor UpperCAmelCase = eos_token_id UpperCAmelCase = pad_token_id UpperCAmelCase = decoder_start_token_id UpperCAmelCase = None UpperCAmelCase = decoder_layers def __snake_case ( self : Tuple ): return TaConfig.from_pretrained('''google/umt5-base''' ) def __snake_case ( self : Optional[Any] , a__ : Any , a__ : Tuple , a__ : Union[str, Any] , a__ : List[Any]=None , a__ : Union[str, Any]=None , a__ : int=None , a__ : List[str]=None , a__ : Dict=None , ): if attention_mask is None: UpperCAmelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCAmelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCAmelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=a__ ) if decoder_head_mask is None: UpperCAmelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=a__ ) if cross_attn_head_mask is None: UpperCAmelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=a__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def __snake_case ( self : List[str] ): UpperCAmelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCAmelCase = input_ids.clamp(self.pad_token_id + 1 ) UpperCAmelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) UpperCAmelCase = self.get_config() UpperCAmelCase = config.num_attention_heads UpperCAmelCase = self.prepare_inputs_dict(a__ , a__ , a__ ) return config, input_dict def __snake_case ( self : Any ): UpperCAmelCase, UpperCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def __snake_case ( self : Optional[int] ): return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __snake_case ( self : Tuple ): return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __snake_case ( self : List[str] , a__ : List[str] , a__ : List[str] , a__ : List[Any] , a__ : Any , a__ : Tuple , a__ : List[Any] , ): UpperCAmelCase = UMTaModel(config=a__ ) model.to(a__ ) model.eval() UpperCAmelCase = model( input_ids=a__ , decoder_input_ids=a__ , attention_mask=a__ , decoder_attention_mask=a__ , ) UpperCAmelCase = model(input_ids=a__ , decoder_input_ids=a__ ) UpperCAmelCase = result.last_hidden_state UpperCAmelCase = result.past_key_values UpperCAmelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(a__ ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def __snake_case ( self : Optional[Any] , a__ : str , a__ : Dict , a__ : Dict , a__ : int , a__ : Tuple , a__ : int , ): UpperCAmelCase = UMTaModel(config=a__ ).get_decoder().to(a__ ).eval() # first forward pass UpperCAmelCase = model(a__ , use_cache=a__ ) UpperCAmelCase = model(a__ ) UpperCAmelCase = model(a__ , use_cache=a__ ) self.parent.assertTrue(len(a__ ) == len(a__ ) ) self.parent.assertTrue(len(a__ ) == len(a__ ) + 1 ) UpperCAmelCase, UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase = model(a__ )['''last_hidden_state'''] UpperCAmelCase = model(a__ , past_key_values=a__ )['''last_hidden_state'''] # select random slice UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach() UpperCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a__ , a__ , atol=1e-3 ) ) def __snake_case ( self : Optional[int] , a__ : Tuple , a__ : Dict , ): UpperCAmelCase = UMTaModel(config=a__ ).to(a__ ).half().eval() UpperCAmelCase = model(**a__ )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(a__ ).any().item() ) @require_torch class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) _lowerCamelCase =(UMTaForConditionalGeneration,) if is_torch_available() else () _lowerCamelCase =( { "conversational": UMTaForConditionalGeneration, "feature-extraction": UMTaModel, "summarization": UMTaForConditionalGeneration, "text2text-generation": UMTaForConditionalGeneration, "translation": UMTaForConditionalGeneration, "question-answering": UMTaForQuestionAnswering, } if is_torch_available() else {} ) _lowerCamelCase =True _lowerCamelCase =False _lowerCamelCase =False _lowerCamelCase =True _lowerCamelCase =True # The small UMT5 model needs higher percentages for CPU/MP tests _lowerCamelCase =[0.8, 0.9] def __snake_case ( self : Optional[int] ): UpperCAmelCase = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def __snake_case ( self : Any ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() UpperCAmelCase = UMTaModel(config_and_inputs[0] ).to(a__ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( a__ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"{tmpdirname}/t5_test.onnx" , export_params=a__ , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __snake_case ( self : List[str] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*a__ ) def __snake_case ( self : List[Any] ): UpperCAmelCase = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] UpperCAmelCase = self.model_tester.prepare_config_and_inputs() UpperCAmelCase = config_and_inputs[0] UpperCAmelCase = UMTaForConditionalGeneration(a__ ).eval() model.to(a__ ) UpperCAmelCase = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=a__ ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=a__ ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=a__ ), } for attn_name, (name, mask) in zip(a__ , head_masking.items() ): UpperCAmelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": UpperCAmelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=a__ ) UpperCAmelCase = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=a__ , return_dict_in_generate=a__ , **a__ , ) # We check the state of decoder_attentions and cross_attentions just from the last step UpperCAmelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def __snake_case ( self : Tuple ): pass @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def __snake_case ( self : Dict ): UpperCAmelCase = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=a__ ).to(a__ ) UpperCAmelCase = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=a__ , legacy=a__ ) UpperCAmelCase = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] UpperCAmelCase = tokenizer(a__ , return_tensors='''pt''' , padding=a__ ).input_ids # fmt: off UpperCAmelCase = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(a__ , a__ ) UpperCAmelCase = model.generate(input_ids.to(a__ ) ) UpperCAmelCase = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ <extra_id_56>ajลกietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajลกie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> ํ”ผํ•ด[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] UpperCAmelCase = tokenizer.batch_decode(a__ ) self.assertEqual(a__ , a__ )
51
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _lowerCamelCase ( lowercase : Any ) -> List[str]: return getitem, k def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Any: return setitem, k, v def _lowerCamelCase ( lowercase : int ) -> Union[str, Any]: return delitem, k def _lowerCamelCase ( lowercase : Tuple , lowercase : Dict , *lowercase : Union[str, Any] ) -> int: try: return fun(lowercase , *lowercase ), None except Exception as e: return None, e lowerCAmelCase_ : Optional[Any] = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) lowerCAmelCase_ : Optional[int] = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] lowerCAmelCase_ : int = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] lowerCAmelCase_ : List[Any] = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def _lowerCamelCase ( lowercase : Optional[int] ) -> Optional[int]: _a = HashMap(initial_block_size=4 ) _a = {} for _, (fun, *args) in enumerate(lowercase ): _a , _a = _run_operation(lowercase , lowercase , *lowercase ) _a , _a = _run_operation(lowercase , lowercase , *lowercase ) assert my_res == py_res assert str(lowercase ) == str(lowercase ) assert set(lowercase ) == set(lowercase ) assert len(lowercase ) == len(lowercase ) assert set(my.items() ) == set(py.items() ) def _lowerCamelCase ( ) -> str: def is_public(lowercase : str ) -> bool: return not name.startswith("_" ) _a = {name for name in dir({} ) if is_public(lowercase )} _a = {name for name in dir(HashMap() ) if is_public(lowercase )} assert dict_public_names > hash_public_names
692
0
"""simple docstring""" import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowerCamelCase__ ( _UpperCAmelCase ): def __init__( self : Tuple , *A_ : Union[str, Any] , A_ : Optional[Any]=None , A_ : Optional[Any]=None , **A_ : Dict ): '''simple docstring''' super().__init__(*lowercase__ , **lowercase__ ) __lowercase = eval_examples __lowercase = post_process_function def SCREAMING_SNAKE_CASE_ ( self : List[str] , A_ : int = None , A_ : Tuple=None , A_ : List[str] = None , A_ : str = "eval" , **A_ : Optional[int] , ): '''simple docstring''' __lowercase = gen_kwargs.copy() __lowercase = ( gen_kwargs["max_length"] if gen_kwargs.get("""max_length""" ) is not None else self.args.generation_max_length ) __lowercase = ( gen_kwargs["num_beams"] if gen_kwargs.get("""num_beams""" ) is not None else self.args.generation_num_beams ) __lowercase = gen_kwargs __lowercase = self.eval_dataset if eval_dataset is None else eval_dataset __lowercase = self.get_eval_dataloader(lowercase__ ) __lowercase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __lowercase = self.compute_metrics __lowercase = None __lowercase = time.time() __lowercase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __lowercase = eval_loop( lowercase__ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase__ , metric_key_prefix=lowercase__ , ) finally: __lowercase = compute_metrics __lowercase = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( lowercase__ , lowercase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __lowercase = self.post_process_function(lowercase__ , lowercase__ , lowercase__ ) __lowercase = self.compute_metrics(lowercase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): __lowercase = metrics.pop(lowercase__ ) metrics.update(output.metrics ) else: __lowercase = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase__ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __lowercase = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase__ ) return metrics def SCREAMING_SNAKE_CASE_ ( self : List[Any] , A_ : Optional[int] , A_ : Optional[Any] , A_ : List[str]=None , A_ : Tuple = "test" , **A_ : Union[str, Any] ): '''simple docstring''' __lowercase = gen_kwargs.copy() __lowercase = self.get_test_dataloader(lowercase__ ) # Temporarily disable metric computation, we will do it in the loop here. __lowercase = self.compute_metrics __lowercase = None __lowercase = time.time() __lowercase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __lowercase = eval_loop( lowercase__ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase__ , metric_key_prefix=lowercase__ , ) finally: __lowercase = compute_metrics __lowercase = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( lowercase__ , lowercase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output __lowercase = self.post_process_function(lowercase__ , lowercase__ , lowercase__ , """predict""" ) __lowercase = self.compute_metrics(lowercase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): __lowercase = metrics.pop(lowercase__ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase__ )
702
"""simple docstring""" import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class lowerCamelCase__ ( _a ): def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' __lowercase = tempfile.mkdtemp() __lowercase = 5 # Realm tok __lowercase = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """test""", """question""", """this""", """is""", """the""", """first""", """second""", """third""", """fourth""", """fifth""", """record""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __lowercase = os.path.join(self.tmpdirname , """realm_tokenizer""" ) os.makedirs(A_ , exist_ok=A_ ) __lowercase = os.path.join(A_ , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) __lowercase = os.path.join(self.tmpdirname , """realm_block_records""" ) os.makedirs(A_ , exist_ok=A_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , """realm_tokenizer""" ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' __lowercase = RealmConfig(num_block_records=self.num_block_records ) return config def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' __lowercase = Dataset.from_dict( { """id""": ["""0""", """1"""], """question""": ["""foo""", """bar"""], """answers""": [["""Foo""", """Bar"""], ["""Bar"""]], } ) return dataset def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' __lowercase = np.array( [ B"""This is the first record""", B"""This is the second record""", B"""This is the third record""", B"""This is the fourth record""", B"""This is the fifth record""", B"""This is a longer longer longer record""", ] , dtype=A_ , ) return block_records def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' __lowercase = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' __lowercase = self.get_config() __lowercase = self.get_dummy_retriever() __lowercase = retriever.tokenizer __lowercase = np.array([0, 3] , dtype="""long""" ) __lowercase = tokenizer(["""Test question"""] ).input_ids __lowercase = tokenizer( ["""the fourth"""] , add_special_tokens=A_ , return_token_type_ids=A_ , return_attention_mask=A_ , ).input_ids __lowercase = config.reader_seq_len __lowercase , __lowercase , __lowercase , __lowercase = retriever( A_ , A_ , answer_ids=A_ , max_length=A_ , return_tensors="""np""" ) self.assertEqual(len(A_ ) , 2 ) self.assertEqual(len(A_ ) , 2 ) self.assertEqual(len(A_ ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 1_0) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 1_0) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """first""", """record""", """[SEP]"""] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """fourth""", """record""", """[SEP]"""] , ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' __lowercase = self.get_config() __lowercase = self.get_dummy_retriever() __lowercase = retriever.tokenizer __lowercase = np.array([0, 3, 5] , dtype="""long""" ) __lowercase = tokenizer(["""Test question"""] ).input_ids __lowercase = tokenizer( ["""the fourth""", """longer longer"""] , add_special_tokens=A_ , return_token_type_ids=A_ , return_attention_mask=A_ , ).input_ids __lowercase = config.reader_seq_len __lowercase , __lowercase , __lowercase , __lowercase = retriever( A_ , A_ , answer_ids=A_ , max_length=A_ , return_tensors="""np""" ) self.assertEqual([False, True, True] , A_ ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , A_ ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , A_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) # Test local path __lowercase = retriever.from_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) self.assertEqual(retriever.block_records[0] , B"""This is the first record""" ) # Test mocked remote path with patch("""transformers.models.realm.retrieval_realm.hf_hub_download""" ) as mock_hf_hub_download: __lowercase = os.path.join( os.path.join(self.tmpdirname , """realm_block_records""" ) , _REALM_BLOCK_RECORDS_FILENAME ) __lowercase = RealmRetriever.from_pretrained("""google/realm-cc-news-pretrained-openqa""" ) self.assertEqual(retriever.block_records[0] , B"""This is the first record""" )
442
0
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def lowercase_ ( _lowercase ) -> Tuple: '''simple docstring''' lowerCamelCase_ : List[Any] = os.path.join(args.tf_model_dir , '''parameters.json''' ) lowerCamelCase_ : Optional[int] = json.loads(open(_lowercase ).read() ) if not params: raise ValueError( F"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith('''.pt''' ): lowerCamelCase_ : int = args.output + '''.pt''' lowerCamelCase_ : Optional[Any] = OrderedDict() with tf.device('''/CPU:0''' ): lowerCamelCase_ : List[Any] = tf.train.load_checkpoint(args.tf_model_dir ) lowerCamelCase_ : List[str] = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowerCamelCase_ : List[Any] = reader.get_tensor(_lowercase ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): lowerCamelCase_ : Any = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): lowerCamelCase_ : Dict = 8 lowerCamelCase_ : Union[str, Any] = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowerCamelCase_ : str = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase_ : Tuple = torch.tensor(_lowercase ) elif key_name.startswith('''model/moe''' ): lowerCamelCase_ : Union[str, Any] = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): lowerCamelCase_ : Dict = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player lowerCamelCase_ : Tuple = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase_ : Tuple = torch.tensor(_lowercase ) elif key_name.endswith('''/softmlp/kernel''' ): lowerCamelCase_ : Union[str, Any] = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player lowerCamelCase_ : Any = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase_ : Optional[int] = torch.tensor(_lowercase ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): lowerCamelCase_ : Any = key_name[-9:-7] for i in range(16 ): lowerCamelCase_ : Optional[Any] = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) lowerCamelCase_ : Optional[int] = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowerCamelCase_ : str = torch.tensor(_lowercase ) elif key_name.startswith('''model/mlp''' ): lowerCamelCase_ : Tuple = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): lowerCamelCase_ : Union[str, Any] = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player lowerCamelCase_ : List[str] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase_ : Union[str, Any] = torch.tensor(_lowercase ) elif key_name.endswith('''/p1/bias''' ): lowerCamelCase_ : int = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player lowerCamelCase_ : Optional[int] = vnp.copy() # same because it is one dimensional lowerCamelCase_ : int = torch.tensor(_lowercase ) elif key_name.endswith('''/p2/kernel''' ): lowerCamelCase_ : List[str] = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player lowerCamelCase_ : List[str] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase_ : Union[str, Any] = torch.tensor(_lowercase ) elif key_name.endswith('''/p2/bias''' ): lowerCamelCase_ : Optional[Any] = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player lowerCamelCase_ : List[str] = vnp.copy() # same because it is one dimensional lowerCamelCase_ : Optional[int] = torch.tensor(_lowercase ) elif key_name.startswith('''model/ln''' ): lowerCamelCase_ : Any = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowerCamelCase_ : int = '''model.blocks.%d.feed_forward.norm.bias''' % player lowerCamelCase_ : Dict = vnp.copy() # same because it is one dimensional lowerCamelCase_ : str = torch.tensor(_lowercase ) elif key_name.endswith('''/g''' ): lowerCamelCase_ : Union[str, Any] = '''model.blocks.%d.feed_forward.norm.weight''' % player lowerCamelCase_ : int = vnp.copy() # same because it is one dimensional lowerCamelCase_ : Dict = torch.tensor(_lowercase ) elif key_name.startswith('''model/att''' ): lowerCamelCase_ : List[Any] = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): lowerCamelCase_ : Optional[int] = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowerCamelCase_ : Any = state[:, 0, :, :] lowerCamelCase_ : Any = state[:, 1, :, :] lowerCamelCase_ : Optional[Any] = state[:, 2, :, :] lowerCamelCase_ : Union[str, Any] = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCamelCase_ : int = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCamelCase_ : Optional[int] = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCamelCase_ : Tuple = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player lowerCamelCase_ : List[str] = torch.tensor(_lowercase ) lowerCamelCase_ : Dict = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player lowerCamelCase_ : List[Any] = torch.tensor(_lowercase ) lowerCamelCase_ : Optional[Any] = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player lowerCamelCase_ : str = torch.tensor(_lowercase ) elif key_name.endswith('''/o/kernel''' ): lowerCamelCase_ : List[Any] = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player lowerCamelCase_ : List[Any] = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCamelCase_ : List[str] = torch.tensor(_lowercase ) elif key_name.startswith('''model/an''' ): lowerCamelCase_ : List[str] = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowerCamelCase_ : Dict = '''model.blocks.%d.self_attn.norm.bias''' % player lowerCamelCase_ : Optional[Any] = vnp.copy() # same because it is one dimensional lowerCamelCase_ : Tuple = torch.tensor(_lowercase ) elif key_name.endswith('''/g''' ): lowerCamelCase_ : Any = '''model.blocks.%d.self_attn.norm.weight''' % player lowerCamelCase_ : Dict = vnp.copy() # same because it is one dimensional lowerCamelCase_ : Optional[Any] = torch.tensor(_lowercase ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): lowerCamelCase_ : Union[str, Any] = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] lowerCamelCase_ : Dict = '''model.%s.weight''' % nlayer lowerCamelCase_ : int = vnp.copy() # same in embedded lowerCamelCase_ : Any = torch.tensor(_lowercase ) if key_name.startswith('''model/wte''' ): lowerCamelCase_ : Tuple = '''lm_head.weight''' lowerCamelCase_ : List[Any] = vnp.copy() # same in embedded lowerCamelCase_ : List[Any] = torch.tensor(_lowercase ) elif key_name.startswith('''model/wob''' ): lowerCamelCase_ : Dict = '''final_logits_bias''' lowerCamelCase_ : Union[str, Any] = vnp.copy() # same in embedded lowerCamelCase_ : Tuple = state.reshape((1, -1) ) lowerCamelCase_ : List[Any] = torch.tensor(_lowercase ) elif key_name == "model/dense/kernel": lowerCamelCase_ : Union[str, Any] = '''model.last_project.weight''' lowerCamelCase_ : Tuple = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCamelCase_ : Any = torch.tensor(_lowercase ) elif key_name == "model/dense_1/bias": lowerCamelCase_ : Union[str, Any] = '''model.last_project.bias''' lowerCamelCase_ : Optional[Any] = vnp.copy() # same because it is one dimensional lowerCamelCase_ : Union[str, Any] = torch.tensor(_lowercase ) torch.save(_lowercase , args.output ) if __name__ == "__main__": __lowercase : int = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') __lowercase : Dict = parser.parse_args() convert_tf_gptsan_to_pt(args)
422
'''simple docstring''' import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowercase_ ( _lowercase , _lowercase=False ) -> Dict: '''simple docstring''' lowerCamelCase_ : Tuple = OmegaConf.load(_lowercase ) if display: print(yaml.dump(OmegaConf.to_container(_lowercase ) ) ) return config def lowercase_ ( _lowercase , _lowercase=None , _lowercase=None ) -> Optional[int]: '''simple docstring''' if conf_path is None: lowerCamelCase_ : int = '''./model_checkpoints/vqgan_only.yaml''' lowerCamelCase_ : Dict = load_config(_lowercase , display=_lowercase ) lowerCamelCase_ : List[str] = VQModel(**config.model.params ) if ckpt_path is None: lowerCamelCase_ : int = '''./model_checkpoints/vqgan_only.pt''' lowerCamelCase_ : Union[str, Any] = torch.load(_lowercase , map_location=_lowercase ) if ".ckpt" in ckpt_path: lowerCamelCase_ : str = sd['''state_dict'''] model.load_state_dict(_lowercase , strict=_lowercase ) model.to(_lowercase ) del sd return model def lowercase_ ( _lowercase , _lowercase ) -> List[str]: '''simple docstring''' lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : Any = model.encode(_lowercase ) print(F"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" ) lowerCamelCase_ : Any = model.decode(_lowercase ) return xrec def lowercase_ ( _lowercase , _lowercase=False ) -> Any: '''simple docstring''' lowerCamelCase_, lowerCamelCase_ : Any = string.rsplit('''.''' , 1 ) if reload: lowerCamelCase_ : int = importlib.import_module(_lowercase ) importlib.reload(_lowercase ) return getattr(importlib.import_module(_lowercase , package=_lowercase ) , cls ) def lowercase_ ( _lowercase ) -> List[str]: '''simple docstring''' if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def lowercase_ ( _lowercase , _lowercase , _lowercase=True , _lowercase=True ) -> Any: '''simple docstring''' lowerCamelCase_ : int = instantiate_from_config(_lowercase ) if sd is not None: model.load_state_dict(_lowercase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase ) -> Tuple: '''simple docstring''' if ckpt: lowerCamelCase_ : List[Any] = torch.load(_lowercase , map_location='''cpu''' ) lowerCamelCase_ : int = pl_sd['''global_step'''] print(F"""loaded model from global step {global_step}.""" ) else: lowerCamelCase_ : Optional[int] = {'''state_dict''': None} lowerCamelCase_ : str = None lowerCamelCase_ : Any = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=_lowercase , eval_mode=_lowercase )['''model'''] return model, global_step
422
1
from __future__ import annotations def lowercase ( _a ,_a ,_a ) -> tuple[float, list[float]]: UpperCAmelCase_: Dict = list(range(len(__A ) ) ) UpperCAmelCase_: Dict = [v / w for v, w in zip(__A ,__A )] index.sort(key=lambda _a : ratio[i] ,reverse=__A ) UpperCAmelCase_: float = 0 UpperCAmelCase_: list[float] = [0] * len(__A ) for i in index: if weight[i] <= capacity: UpperCAmelCase_: int = 1 max_value += value[i] capacity -= weight[i] else: UpperCAmelCase_: Dict = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
708
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase__ ( snake_case__ , unittest.TestCase ): snake_case_ = TransfoXLTokenizer snake_case_ = False snake_case_ = False def snake_case_ ( self ): """simple docstring""" super().setUp() UpperCAmelCase_: Any = [ "<unk>", "[CLS]", "[SEP]", "want", "unwanted", "wa", "un", "running", ",", "low", "l", ] UpperCAmelCase_: str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def snake_case_ ( self , **A__ ): """simple docstring""" UpperCAmelCase_: Optional[Any] = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **A__ ) def snake_case_ ( self , A__ ): """simple docstring""" UpperCAmelCase_: List[Any] = "<unk> UNwanted , running" UpperCAmelCase_: List[str] = "<unk> unwanted, running" return input_text, output_text def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Tuple = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=A__ ) UpperCAmelCase_: Optional[int] = tokenizer.tokenize("<unk> UNwanted , running" ) self.assertListEqual(A__ , ["<unk>", "unwanted", ",", "running"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , [0, 4, 8, 7] ) def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Tuple = TransfoXLTokenizer(lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo ! how \n Are yoU ? " ) , ["hello", "!", "how", "are", "you", "?"] ) def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Any = TransfoXLTokenizer(lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo ! how \n Are yoU ? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: str = TransfoXLTokenizer(lower_case=A__ ) UpperCAmelCase_: Optional[Any] = "Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?" UpperCAmelCase_: Optional[int] = [ "Hello", "(", "bracket", ")", "and", "side", "@-@", "scrolled", "[", "and", "]", "Henry", "'s", "$", "5", "@,@", "000", "with", "3", "@.@", "34", "m", ".", "What", "'s", "up", "!", "?", ] self.assertListEqual(tokenizer.tokenize(A__ ) , A__ ) self.assertEqual(tokenizer.convert_tokens_to_string(A__ ) , A__ ) def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Dict = self.get_tokenizer() UpperCAmelCase_: Optional[Any] = len(A__ ) tokenizer.add_tokens(["new1", "new2"] ) tokenizer.move_added_token("new1" , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(A__ ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("new1" ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , "new1" )
306
0
"""simple docstring""" from math import pi def lowercase_ ( _lowerCamelCase: List[Any] , _lowerCamelCase: Any ) -> float: '''simple docstring''' return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
646
'''simple docstring''' from datetime import datetime as dt import os from github import Github UpperCamelCase__ = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''feature request''', '''new model''', '''wip''', ] def a__ ( ) -> List[str]: UpperCAmelCase__ : int = Github(os.environ['''GITHUB_TOKEN'''] ) UpperCAmelCase__ : List[Any] = g.get_repo('''huggingface/transformers''' ) UpperCAmelCase__ : List[str] = repo.get_issues(state='''open''' ) for issue in open_issues: UpperCAmelCase__ : List[Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowerCAmelCase__ : i.created_at , reverse=lowerCAmelCase__ ) UpperCAmelCase__ : Tuple = comments[0] if len(lowerCAmelCase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
75
0
'''simple docstring''' import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () __UpperCamelCase : str = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). __UpperCamelCase : List[str] = [0, 25, 50] __UpperCamelCase : Union[str, Any] = [25, 50, 75] __UpperCamelCase : str = fuzz.membership.trimf(X, abca) __UpperCamelCase : Optional[Any] = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. __UpperCamelCase : Optional[Any] = np.ones(75) __UpperCamelCase : int = np.zeros((75,)) # 1. Union = max(ยตA(x), ยตB(x)) __UpperCamelCase : Union[str, Any] = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(ยตA(x), ยตB(x)) __UpperCamelCase : Tuple = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(ยตA(x)) __UpperCamelCase : Tuple = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(ยตA(x),(1- ยตB(x))) __UpperCamelCase : Optional[int] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [ยตA(x) + ยตB(x) โ€“ (ยตA(x) * ยตB(x))] __UpperCamelCase : Optional[int] = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (ยตA(x) * ยตB(x)) __UpperCamelCase : List[Any] = young * middle_aged # 7. Bounded Sum = min[1,(ยตA(x), ยตB(x))] __UpperCamelCase : List[str] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(ยตA(x), ยตB(x))] __UpperCamelCase : List[str] = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
417
'''simple docstring''' import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def lowercase ( lowerCAmelCase : BertModel , lowerCAmelCase : str , lowerCAmelCase : str): """simple docstring""" _A : List[str] = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') _A : int = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(lowerCAmelCase): os.makedirs(lowerCAmelCase) _A : Any = model.state_dict() def to_tf_var_name(lowerCAmelCase : str): for patt, repl in iter(lowerCAmelCase): _A : Dict = name.replace(lowerCAmelCase , lowerCAmelCase) return f"""bert/{name}""" def create_tf_var(lowerCAmelCase : np.ndarray , lowerCAmelCase : str , lowerCAmelCase : tf.Session): _A : Tuple = tf.dtypes.as_dtype(tensor.dtype) _A : int = tf.get_variable(dtype=lowerCAmelCase , shape=tensor.shape , name=lowerCAmelCase , initializer=tf.zeros_initializer()) session.run(tf.variables_initializer([tf_var])) session.run(lowerCAmelCase) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _A : Dict = to_tf_var_name(lowerCAmelCase) _A : Any = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose): _A : str = torch_tensor.T _A : Any = create_tf_var(tensor=lowerCAmelCase , name=lowerCAmelCase , session=lowerCAmelCase) tf.keras.backend.set_value(lowerCAmelCase , lowerCAmelCase) _A : List[Any] = session.run(lowerCAmelCase) print(f"""Successfully created {tf_name}: {np.allclose(lowerCAmelCase , lowerCAmelCase)}""") _A : Tuple = tf.train.Saver(tf.trainable_variables()) saver.save(lowerCAmelCase , os.path.join(lowerCAmelCase , model_name.replace('''-''' , '''_''') + '''.ckpt''')) def lowercase ( lowerCAmelCase : Union[str, Any]=None): """simple docstring""" _A : List[Any] = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=lowerCAmelCase , required=lowerCAmelCase , help='''model name e.g. bert-base-uncased''') parser.add_argument( '''--cache_dir''' , type=lowerCAmelCase , default=lowerCAmelCase , required=lowerCAmelCase , help='''Directory containing pytorch model''') parser.add_argument('''--pytorch_model_path''' , type=lowerCAmelCase , required=lowerCAmelCase , help='''/path/to/<pytorch-model-name>.bin''') parser.add_argument('''--tf_cache_dir''' , type=lowerCAmelCase , required=lowerCAmelCase , help='''Directory in which to save tensorflow model''') _A : Any = parser.parse_args(lowerCAmelCase) _A : Optional[int] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=lowerCAmelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name) if __name__ == "__main__": main()
417
1
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging A_ : Tuple = logging.get_logger(__name__) def snake_case () -> Optional[Any]: # Get the sagemaker specific mp parameters from smp_options variable. UpperCamelCase_: Optional[Any] = os.getenv('SM_HP_MP_PARAMETERS' , '{}' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. UpperCamelCase_: List[str] = json.loads(UpperCAmelCase__ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. UpperCamelCase_: Any = os.getenv('SM_FRAMEWORK_PARAMS' , '{}' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". UpperCamelCase_: Tuple = json.loads(UpperCAmelCase__ ) if not mpi_options.get('sagemaker_mpi_enabled' , UpperCAmelCase__ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('smdistributed' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : str =field( default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , ) def _a ( self ): super().__post_init__() warnings.warn( '`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ' '`TrainingArguments` instead.' , _lowerCamelCase , ) @cached_property def _a ( self ): logger.info('PyTorch: setting up devices' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( 'torch.distributed process group is initialized, but local_rank == -1. ' 'In order to use Torch DDP, launch your script with `python -m torch.distributed.launch' ) if self.no_cuda: UpperCamelCase_: str = torch.device('cpu' ) UpperCamelCase_: Optional[Any] = 0 elif is_sagemaker_model_parallel_available(): UpperCamelCase_: Optional[int] = smp.local_rank() UpperCamelCase_: Any = torch.device('cuda' , _lowerCamelCase ) UpperCamelCase_: int = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='smddp' , timeout=self.ddp_timeout_delta ) UpperCamelCase_: Optional[int] = int(os.getenv('SMDATAPARALLEL_LOCAL_RANK' ) ) UpperCamelCase_: Dict = torch.device('cuda' , self.local_rank ) UpperCamelCase_: Union[str, Any] = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 UpperCamelCase_: Union[str, Any] = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. UpperCamelCase_: Any = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl' , timeout=self.ddp_timeout_delta ) UpperCamelCase_: Optional[Any] = torch.device('cuda' , self.local_rank ) UpperCamelCase_: Optional[int] = 1 if device.type == "cuda": torch.cuda.set_device(_lowerCamelCase ) return device @property def _a ( self ): if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def _a ( self ): return not is_sagemaker_model_parallel_available() @property def _a ( self ): return False
57
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : List[str] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys A_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase): _UpperCamelCase:Any = StableDiffusionInpaintPipeline _UpperCamelCase:int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS _UpperCamelCase:int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _UpperCamelCase:Union[str, Any] = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _UpperCamelCase:Optional[Any] = frozenset([]) def _snake_case ( self )-> List[Any]: torch.manual_seed(0 ) lowerCamelCase_ =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_SCREAMING_SNAKE_CASE , ) lowerCamelCase_ =PNDMScheduler(skip_prk_steps=_SCREAMING_SNAKE_CASE ) torch.manual_seed(0 ) lowerCamelCase_ =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCamelCase_ =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) lowerCamelCase_ =CLIPTextModel(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCamelCase_ ={ """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 )-> str: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched lowerCamelCase_ =floats_tensor((1, 3, 32, 32) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase_ =Image.fromarray(np.uinta(_SCREAMING_SNAKE_CASE ) ).convert("""RGB""" ).resize((64, 64) ) lowerCamelCase_ =Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(_SCREAMING_SNAKE_CASE ).startswith("""mps""" ): lowerCamelCase_ =torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: lowerCamelCase_ =torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ ={ """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ ="""cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =StableDiffusionInpaintPipeline(**_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =sd_pipe(**_SCREAMING_SNAKE_CASE ).images lowerCamelCase_ =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase_ =np.array([0.4_7_2_7, 0.5_7_3_5, 0.3_9_4_1, 0.5_4_4_6, 0.5_9_2_6, 0.4_3_9_4, 0.5_0_6_2, 0.4_6_5_4, 0.4_4_7_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self )-> Tuple: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase): def _snake_case ( self )-> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self )-> List[Any]: lowerCamelCase_ =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) lowerCamelCase_ =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) lowerCamelCase_ =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) lowerCamelCase_ ="""stabilityai/stable-diffusion-2-inpainting""" lowerCamelCase_ =StableDiffusionInpaintPipeline.from_pretrained(_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() lowerCamelCase_ ="""Face of a yellow cat, high resolution, sitting on a park bench""" lowerCamelCase_ =torch.manual_seed(0 ) lowerCamelCase_ =pipe( prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , mask_image=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , output_type="""np""" , ) lowerCamelCase_ =output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def _snake_case ( self )-> Optional[int]: lowerCamelCase_ =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) lowerCamelCase_ =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) lowerCamelCase_ =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) lowerCamelCase_ ="""stabilityai/stable-diffusion-2-inpainting""" lowerCamelCase_ =StableDiffusionInpaintPipeline.from_pretrained( _SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa , safety_checker=_SCREAMING_SNAKE_CASE , ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() lowerCamelCase_ ="""Face of a yellow cat, high resolution, sitting on a park bench""" lowerCamelCase_ =torch.manual_seed(0 ) lowerCamelCase_ =pipe( prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , mask_image=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , output_type="""np""" , ) lowerCamelCase_ =output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def _snake_case ( self )-> Optional[int]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase_ =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) lowerCamelCase_ =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) lowerCamelCase_ ="""stabilityai/stable-diffusion-2-inpainting""" lowerCamelCase_ =PNDMScheduler.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder="""scheduler""" ) lowerCamelCase_ =StableDiffusionInpaintPipeline.from_pretrained( _SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa , ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCamelCase_ ="""Face of a yellow cat, high resolution, sitting on a park bench""" lowerCamelCase_ =torch.manual_seed(0 ) lowerCamelCase_ =pipe( prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , mask_image=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type="""np""" , ) lowerCamelCase_ =torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.6_5 * 10**9
713
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __A : Any = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): _UpperCamelCase:Union[str, Any] = ["pixel_values"] def __init__( self , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 1 / 255 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = IMAGENET_DEFAULT_MEAN , _SCREAMING_SNAKE_CASE = IMAGENET_DEFAULT_STD , **_SCREAMING_SNAKE_CASE , )-> None: super().__init__(**_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =size if size is not None else {"""shortest_edge""": 224} lowerCamelCase_ =get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowerCamelCase_ =get_size_dict(_SCREAMING_SNAKE_CASE , param_name="""crop_size""" ) lowerCamelCase_ =do_resize lowerCamelCase_ =size lowerCamelCase_ =resample lowerCamelCase_ =do_center_crop lowerCamelCase_ =crop_size lowerCamelCase_ =do_rescale lowerCamelCase_ =rescale_factor lowerCamelCase_ =do_normalize lowerCamelCase_ =image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCamelCase_ =image_std if image_std is not None else IMAGENET_DEFAULT_STD def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )-> np.ndarray: lowerCamelCase_ =get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowerCamelCase_ =int((256 / 224) * size["""shortest_edge"""] ) lowerCamelCase_ =get_resize_output_image_size(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ ={"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}' ) return resize( _SCREAMING_SNAKE_CASE , size=(size_dict["""height"""], size_dict["""width"""]) , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )-> np.ndarray: lowerCamelCase_ =get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f'Size dict must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(_SCREAMING_SNAKE_CASE , size=(size["""height"""], size["""width"""]) , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )-> np.ndarray: return rescale(_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )-> np.ndarray: return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE , )-> BatchFeature: lowerCamelCase_ =do_resize if do_resize is not None else self.do_resize lowerCamelCase_ =resample if resample is not None else self.resample lowerCamelCase_ =do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ =do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ =do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ =image_mean if image_mean is not None else self.image_mean lowerCamelCase_ =image_std if image_std is not None else self.image_std lowerCamelCase_ =size if size is not None else self.size lowerCamelCase_ =get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =crop_size if crop_size is not None else self.crop_size lowerCamelCase_ =get_size_dict(_SCREAMING_SNAKE_CASE , param_name="""crop_size""" ) lowerCamelCase_ =make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowerCamelCase_ =[to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if do_resize: lowerCamelCase_ =[self.resize(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: lowerCamelCase_ =[self.center_crop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: lowerCamelCase_ =[self.rescale(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: lowerCamelCase_ =[self.normalize(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] lowerCamelCase_ =[to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] lowerCamelCase_ ={"""pixel_values""": images} return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE )
75
0
"""simple docstring""" import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging A_ = ( "https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py" ) A_ = logging.get_logger(__name__) # pylint: disable=invalid-name def _UpperCamelCase ( ): UpperCamelCase_ ="https://pypi.org/pypi/diffusers/json" UpperCamelCase_ =json.loads(request.urlopen(A ).read() )["releases"].keys() return sorted(A , key=lambda A : version.Version(A ) ) def _UpperCamelCase ( ): # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(A ) os.makedirs(A , exist_ok=A ) UpperCamelCase_ =Path(A ) / "__init__.py" if not init_path.exists(): init_path.touch() def _UpperCamelCase ( A ): init_hf_modules() UpperCamelCase_ =Path(A ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(A , exist_ok=A ) UpperCamelCase_ =dynamic_module_path / "__init__.py" if not init_path.exists(): init_path.touch() def _UpperCamelCase ( A ): with open(A , "r" , encoding="utf-8" ) as f: UpperCamelCase_ =f.read() # Imports of the form `import .xxx` UpperCamelCase_ =re.findall("^\s*import\s+\.(\S+)\s*$" , A , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("^\s*from\s+\.(\S+)\s+import" , A , flags=re.MULTILINE ) # Unique-ify return list(set(A ) ) def _UpperCamelCase ( A ): UpperCamelCase_ =False UpperCamelCase_ =[module_file] UpperCamelCase_ =[] # Let's recurse through all relative imports while not no_change: UpperCamelCase_ =[] for f in files_to_check: new_imports.extend(get_relative_imports(A ) ) UpperCamelCase_ =Path(A ).parent UpperCamelCase_ =[str(module_path / m ) for m in new_imports] UpperCamelCase_ =[f for f in new_import_files if f not in all_relative_imports] UpperCamelCase_ =[f"""{f}.py""" for f in new_import_files] UpperCamelCase_ =len(A ) == 0 all_relative_imports.extend(A ) return all_relative_imports def _UpperCamelCase ( A ): with open(A , "r" , encoding="utf-8" ) as f: UpperCamelCase_ =f.read() # Imports of the form `import xxx` UpperCamelCase_ =re.findall("^\s*import\s+(\S+)\s*$" , A , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("^\s*from\s+(\S+)\s+import" , A , flags=re.MULTILINE ) # Only keep the top-level module UpperCamelCase_ =[imp.split("." )[0] for imp in imports if not imp.startswith("." )] # Unique-ify and test we got them all UpperCamelCase_ =list(set(A ) ) UpperCamelCase_ =[] for imp in imports: try: importlib.import_module(A ) except ImportError: missing_packages.append(A ) if len(A ) > 0: raise ImportError( "This modeling file requires the following packages that were not found in your environment: " f"""{", ".join(A )}. Run `pip install {" ".join(A )}`""" ) return get_relative_imports(A ) def _UpperCamelCase ( A , A ): UpperCamelCase_ =module_path.replace(os.path.sep , "." ) UpperCamelCase_ =importlib.import_module(A ) if class_name is None: return find_pipeline_class(A ) return getattr(A , A ) def _UpperCamelCase ( A ): from ..pipelines import DiffusionPipeline UpperCamelCase_ =dict(inspect.getmembers(A , inspect.isclass ) ) UpperCamelCase_ =None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , A ) and cls.__module__.split("." )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:""" f""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in""" f""" {loaded_module}.""" ) UpperCamelCase_ =cls return pipeline_class def _UpperCamelCase ( A , A , A = None , A = False , A = False , A = None , A = None , A = None , A = False , ): UpperCamelCase_ =str(A ) UpperCamelCase_ =os.path.join(A , A ) if os.path.isfile(A ): UpperCamelCase_ =module_file_or_url UpperCamelCase_ ="local" elif pretrained_model_name_or_path.count("/" ) == 0: UpperCamelCase_ =get_diffusers_versions() # cut ".dev0" UpperCamelCase_ ="v" + ".".join(__version__.split("." )[:3] ) # retrieve github version that matches if revision is None: UpperCamelCase_ =latest_version if latest_version[1:] in available_versions else "main" logger.info(f"""Defaulting to latest_version: {revision}.""" ) elif revision in available_versions: UpperCamelCase_ =f"""v{revision}""" elif revision == "main": UpperCamelCase_ =revision else: raise ValueError( f"""`custom_revision`: {revision} does not exist. Please make sure to choose one of""" f""" {", ".join(available_versions + ["main"] )}.""" ) # community pipeline on GitHub UpperCamelCase_ =COMMUNITY_PIPELINES_URL.format(revision=A , pipeline=A ) try: UpperCamelCase_ =cached_download( A , cache_dir=A , force_download=A , proxies=A , resume_download=A , local_files_only=A , use_auth_token=A , ) UpperCamelCase_ ="git" UpperCamelCase_ =pretrained_model_name_or_path + ".py" except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise else: try: # Load from URL or cache if already cached UpperCamelCase_ =hf_hub_download( A , A , cache_dir=A , force_download=A , proxies=A , resume_download=A , local_files_only=A , use_auth_token=A , ) UpperCamelCase_ =os.path.join("local" , "--".join(pretrained_model_name_or_path.split("/" ) ) ) except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise # Check we have all the requirements in our environment UpperCamelCase_ =check_imports(A ) # Now we move the module inside our cached dynamic modules. UpperCamelCase_ =DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(A ) UpperCamelCase_ =Path(A ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(A , submodule_path / module_file ) for module_needed in modules_needed: UpperCamelCase_ =f"""{module_needed}.py""" shutil.copy(os.path.join(A , A ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(A , A ): UpperCamelCase_ =use_auth_token elif use_auth_token is True: UpperCamelCase_ =HfFolder.get_token() else: UpperCamelCase_ =None UpperCamelCase_ =model_info(A , revision=A , token=A ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. UpperCamelCase_ =submodule_path / commit_hash UpperCamelCase_ =full_submodule + os.path.sep + commit_hash create_dynamic_module(A ) if not (submodule_path / module_file).exists(): shutil.copy(A , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( A , f"""{module_needed}.py""" , cache_dir=A , force_download=A , resume_download=A , proxies=A , use_auth_token=A , revision=A , local_files_only=A , ) return os.path.join(A , A ) def _UpperCamelCase ( A , A , A = None , A = None , A = False , A = False , A = None , A = None , A = None , A = False , **A , ): UpperCamelCase_ =get_cached_module_file( A , A , cache_dir=A , force_download=A , resume_download=A , proxies=A , use_auth_token=A , revision=A , local_files_only=A , ) return get_class_in_module(A , final_module.replace(".py" , "" ) )
391
"""simple docstring""" import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def _UpperCamelCase ( A ): return input_array.reshape((input_array.size, 1) ) def _UpperCamelCase ( A , A , A ): UpperCamelCase_ =np.nan for i in range(A ): UpperCamelCase_ =features[:, labels == i] UpperCamelCase_ =data.mean(1 ) # Centralize the data of class i UpperCamelCase_ =data - column_reshape(A ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(A , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase_ =np.dot(A , centered_data.T ) return covariance_sum / features.shape[1] def _UpperCamelCase ( A , A , A ): UpperCamelCase_ =features.mean(1 ) UpperCamelCase_ =np.nan for i in range(A ): UpperCamelCase_ =features[:, labels == i] UpperCamelCase_ =data.shape[1] UpperCamelCase_ =data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(A ) - column_reshape(A ) , (column_reshape(A ) - column_reshape(A )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase_ =device_data * np.dot( column_reshape(A ) - column_reshape(A ) , (column_reshape(A ) - column_reshape(A )).T , ) return covariance_sum / features.shape[1] def _UpperCamelCase ( A , A ): # Check if the features have been loaded if features.any(): UpperCamelCase_ =features.mean(1 ) # Center the dataset UpperCamelCase_ =features - np.reshape(A , (data_mean.size, 1) ) UpperCamelCase_ =np.dot(A , centered_data.T ) / features.shape[1] UpperCamelCase_ , UpperCamelCase_ =np.linalg.eigh(A ) # Take all the columns in the reverse order (-1), and then takes only the first UpperCamelCase_ =eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space UpperCamelCase_ =np.dot(filtered_eigenvectors.T , A ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=A ) logging.error("Dataset empty" ) raise AssertionError def _UpperCamelCase ( A , A , A , A ): assert classes > dimensions # Check if features have been already loaded if features.any: UpperCamelCase_ , UpperCamelCase_ =eigh( covariance_between_classes(A , A , A ) , covariance_within_classes(A , A , A ) , ) UpperCamelCase_ =eigenvectors[:, ::-1][:, :dimensions] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ =np.linalg.svd(A ) UpperCamelCase_ =svd_matrix[:, 0:dimensions] UpperCamelCase_ =np.dot(filtered_svd_matrix.T , A ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=A ) logging.error("Dataset empty" ) raise AssertionError def _UpperCamelCase ( ): # Create dummy dataset with 2 classes and 3 features UpperCamelCase_ =np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) UpperCamelCase_ =np.array([0, 0, 0, 1, 1] ) UpperCamelCase_ =2 UpperCamelCase_ =2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(A ) as error_info: UpperCamelCase_ =linear_discriminant_analysis( A , A , A , A ) if isinstance(A , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def _UpperCamelCase ( ): UpperCamelCase_ =np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) UpperCamelCase_ =2 UpperCamelCase_ =np.array([[6.92_82_03_23, 8.66_02_54_04, 10.39_23_04_85], [3.0, 3.0, 3.0]] ) with pytest.raises(A ) as error_info: UpperCamelCase_ =principal_component_analysis(A , A ) if not np.allclose(A , A ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
391
1
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ): if b == 0: return (1, 0) ((__lowercase) , (__lowercase)) = extended_euclid(lowerCamelCase_ , a % b ) __lowercase = a // b return (y, x - k * y) def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ): ((__lowercase) , (__lowercase)) = extended_euclid(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ): ((__lowercase) , (__lowercase)) = extended_euclid(lowerCamelCase_ , lowerCamelCase_ ) if b < 0: __lowercase = (b % n + n) % n return b def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ): __lowercase , __lowercase = invert_modulo(lowerCamelCase_ , lowerCamelCase_ ), invert_modulo(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
56
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] ): __lowercase = UniSpeechSatForSequenceClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''projector.weight'''] __lowercase = downstream_dict['''projector.bias'''] __lowercase = downstream_dict['''model.post_net.linear.weight'''] __lowercase = downstream_dict['''model.post_net.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] ): __lowercase = UniSpeechSatForAudioFrameClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''model.linear.weight'''] __lowercase = downstream_dict['''model.linear.bias'''] return model def _lowerCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = UniSpeechSatForXVector.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) __lowercase = downstream_dict['''connector.weight'''] __lowercase = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __lowercase = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] __lowercase = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] __lowercase = downstream_dict['''objective.W'''] return model @torch.no_grad() def _lowerCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ): __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) __lowercase = checkpoint['''Downstream'''] __lowercase = UniSpeechSatConfig.from_pretrained(lowerCamelCase_ ) __lowercase = WavaVecaFeatureExtractor.from_pretrained( lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , do_normalize=lowerCamelCase_ ) __lowercase = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): __lowercase = convert_classification(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForAudioFrameClassification''' ): __lowercase = convert_diarization(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith('''ForXVector''' ): __lowercase = convert_xvector(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: __lowercase = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(lowerCamelCase_ ) hf_model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') _SCREAMING_SNAKE_CASE = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
56
1
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class _snake_case : def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=9 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0_0_2 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , ): '''simple docstring''' lowercase__ : Optional[int] = parent lowercase__ : Any = batch_size lowercase__ : Dict = encoder_seq_length lowercase__ : int = decoder_seq_length # For common tests lowercase__ : Tuple = self.decoder_seq_length lowercase__ : List[Any] = is_training lowercase__ : Dict = use_attention_mask lowercase__ : Any = use_labels lowercase__ : Any = vocab_size lowercase__ : int = hidden_size lowercase__ : List[str] = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : str = d_ff lowercase__ : Tuple = relative_attention_num_buckets lowercase__ : Optional[Any] = dropout_rate lowercase__ : List[str] = initializer_factor lowercase__ : Dict = eos_token_id lowercase__ : List[Any] = pad_token_id lowercase__ : Optional[int] = decoder_start_token_id lowercase__ : Any = None lowercase__ : str = decoder_layers def lowercase__ ( self): '''simple docstring''' return TaConfig.from_pretrained("""google/umt5-base""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , ): '''simple docstring''' if attention_mask is None: lowercase__ : int = input_ids.ne(config.pad_token_id) if decoder_attention_mask is None: lowercase__ : List[Any] = decoder_input_ids.ne(config.pad_token_id) if head_mask is None: lowercase__ : Optional[int] = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE_) if decoder_head_mask is None: lowercase__ : Any = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE_) if cross_attn_head_mask is None: lowercase__ : int = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE_) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size) lowercase__ : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowercase__ : str = input_ids.clamp(self.pad_token_id + 1) lowercase__ : List[Any] = decoder_input_ids.clamp(self.pad_token_id + 1) lowercase__ : List[str] = self.get_config() lowercase__ : List[Any] = config.num_attention_heads lowercase__ : Dict = self.prepare_inputs_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) return config, input_dict def lowercase__ ( self): '''simple docstring''' lowercase__ , lowercase__ : Union[str, Any] = self.prepare_config_and_inputs() return config, inputs_dict def lowercase__ ( self): '''simple docstring''' return TaConfig( vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowercase__ ( self): '''simple docstring''' return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowercase__ : List[Any] = UMTaModel(config=SCREAMING_SNAKE_CASE_) model.to(SCREAMING_SNAKE_CASE_) model.eval() lowercase__ : Union[str, Any] = model( input_ids=SCREAMING_SNAKE_CASE_ , decoder_input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , decoder_attention_mask=SCREAMING_SNAKE_CASE_ , ) lowercase__ : int = model(input_ids=SCREAMING_SNAKE_CASE_ , decoder_input_ids=SCREAMING_SNAKE_CASE_) lowercase__ : int = result.last_hidden_state lowercase__ : Optional[int] = result.past_key_values lowercase__ : Union[str, Any] = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size)) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size)) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(SCREAMING_SNAKE_CASE_) , config.num_layers) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0]) , 4) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowercase__ : Optional[Any] = UMTaModel(config=SCREAMING_SNAKE_CASE_).get_decoder().to(SCREAMING_SNAKE_CASE_).eval() # first forward pass lowercase__ : Any = model(SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = model(SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_) == len(SCREAMING_SNAKE_CASE_)) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_) == len(SCREAMING_SNAKE_CASE_) + 1) lowercase__ , lowercase__ : Tuple = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowercase__ : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size) # append to next input_ids and lowercase__ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1) lowercase__ : Any = model(SCREAMING_SNAKE_CASE_)["""last_hidden_state"""] lowercase__ : List[str] = model(SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_)["""last_hidden_state"""] # select random slice lowercase__ : List[str] = ids_tensor((1,) , output_from_past.shape[-1]).item() lowercase__ : Any = output_from_no_past[:, -1, random_slice_idx].detach() lowercase__ : Union[str, Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3)) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowercase__ : Dict = UMTaModel(config=SCREAMING_SNAKE_CASE_).to(SCREAMING_SNAKE_CASE_).half().eval() lowercase__ : str = model(**SCREAMING_SNAKE_CASE_)["""last_hidden_state"""] self.parent.assertFalse(torch.isnan(SCREAMING_SNAKE_CASE_).any().item()) @require_torch class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Any = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) __lowerCAmelCase : str = (UMTaForConditionalGeneration,) if is_torch_available() else () __lowerCAmelCase : Dict = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) __lowerCAmelCase : Any = True __lowerCAmelCase : Optional[Any] = False __lowerCAmelCase : Optional[int] = False __lowerCAmelCase : List[str] = True __lowerCAmelCase : Optional[int] = True # The small UMT5 model needs higher percentages for CPU/MP tests __lowerCAmelCase : Tuple = [0.8, 0.9] def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = UMTaModelTester(self) @unittest.skip("""Test has a segmentation fault on torch 1.8.0""") def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() lowercase__ : str = UMTaModel(config_and_inputs[0]).to(SCREAMING_SNAKE_CASE_) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( SCREAMING_SNAKE_CASE_ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'{tmpdirname}/t5_test.onnx' , export_params=SCREAMING_SNAKE_CASE_ , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""") def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : int = ["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""] lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() lowercase__ : int = config_and_inputs[0] lowercase__ : Tuple = UMTaForConditionalGeneration(SCREAMING_SNAKE_CASE_).eval() model.to(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = { """head_mask""": torch.zeros(config.num_layers , config.num_heads , device=SCREAMING_SNAKE_CASE_), """decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE_), """cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE_), } for attn_name, (name, mask) in zip(SCREAMING_SNAKE_CASE_ , head_masking.items()): lowercase__ : str = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": lowercase__ : Optional[int] = torch.ones( config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = model.generate( config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=SCREAMING_SNAKE_CASE_ , return_dict_in_generate=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # We check the state of decoder_attentions and cross_attentions just from the last step lowercase__ : int = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights]) , 0.0) @unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""") def lowercase__ ( self): '''simple docstring''' pass @require_torch @require_sentencepiece @require_tokenizers class _snake_case ( unittest.TestCase ): @slow @unittest.skip( """Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""") def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=SCREAMING_SNAKE_CASE_).to(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=SCREAMING_SNAKE_CASE_ , legacy=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = [ """Bonjour monsieur <extra_id_0> bien <extra_id_1>.""", """No se como puedo <extra_id_0>.""", """This is the reason why we <extra_id_0> them.""", """The <extra_id_0> walks in <extra_id_1>, seats""", """A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""", ] lowercase__ : Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , padding=SCREAMING_SNAKE_CASE_).input_ids # fmt: off lowercase__ : Dict = torch.tensor( [ [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1], ]) # fmt: on torch.testing.assert_allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = model.generate(input_ids.to(SCREAMING_SNAKE_CASE_)) lowercase__ : List[Any] = [ """<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ <extra_id_56>ajลกietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajลกie</s>""", """<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> ํ”ผํ•ด[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", ] lowercase__ : List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
12
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _lowercase = abspath(join(dirname(dirname(dirname(__file__))), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __lowerCAmelCase ( _UpperCamelCase ) -> str: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase ) -> Any: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main lowerCamelCase__: Optional[int] = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(_UpperCamelCase , id=_UpperCamelCase )
306
0
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @slow def __magic_name__( self ): lowerCAmelCase__ : Optional[int] = AutoImageProcessor.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) lowerCAmelCase__ : List[Any] = AutoModelForImageClassification.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) model.to(__UpperCAmelCase ) from datasets import load_dataset lowerCAmelCase__ : List[Any] = load_dataset('''nielsr/rvlcdip-demo''' ) lowerCAmelCase__ : Tuple = dataset['''train'''][0]['''image'''].convert('''RGB''' ) lowerCAmelCase__ : Optional[int] = image_processor(__UpperCAmelCase , return_tensors='''pt''' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCAmelCase__ : int = model(**__UpperCAmelCase ) lowerCAmelCase__ : List[str] = outputs.logits lowerCAmelCase__ : List[Any] = torch.Size((1, 16) ) self.assertEqual(logits.shape , __UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = torch.tensor( [-0.4158, -0.4092, -0.4347] , device=__UpperCAmelCase , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) )
470
def __lowerCAmelCase ( UpperCamelCase ) -> None: lowerCAmelCase__ : Dict = generate_pascal_triangle(UpperCamelCase ) for row_idx in range(UpperCamelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''' ) else: print(triangle[row_idx][col_idx] , end='''''' ) print() def __lowerCAmelCase ( UpperCamelCase ) -> list[list[int]]: if not isinstance(UpperCamelCase , UpperCamelCase ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowerCAmelCase__ : list[list[int]] = [] for current_row_idx in range(UpperCamelCase ): lowerCAmelCase__ : List[str] = populate_current_row(UpperCamelCase , UpperCamelCase ) triangle.append(UpperCamelCase ) return triangle def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase ) -> list[int]: lowerCAmelCase__ : Optional[Any] = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 lowerCAmelCase__ , lowerCAmelCase__ : int = 1, 1 for current_col_idx in range(1 , UpperCamelCase ): calculate_current_element( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) return current_row def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ) -> None: lowerCAmelCase__ : Optional[int] = triangle[current_row_idx - 1][current_col_idx - 1] lowerCAmelCase__ : List[str] = triangle[current_row_idx - 1][current_col_idx] lowerCAmelCase__ : List[Any] = above_to_left_elt + above_to_right_elt def __lowerCAmelCase ( UpperCamelCase ) -> list[list[int]]: if not isinstance(UpperCamelCase , UpperCamelCase ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowerCAmelCase__ : list[list[int]] = [[1]] for row_index in range(1 , UpperCamelCase ): lowerCAmelCase__ : Optional[int] = [0] + result[-1] + [0] lowerCAmelCase__ : List[str] = row_index + 1 # Calculate the number of distinct elements in a row lowerCAmelCase__ : Tuple = sum(divmod(UpperCamelCase , 2 ) ) lowerCAmelCase__ : Tuple = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] lowerCAmelCase__ : int = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() lowerCAmelCase__ : Dict = row_first_half + row_second_half result.append(UpperCamelCase ) return result def __lowerCAmelCase ( ) -> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(UpperCamelCase , UpperCamelCase ) -> None: lowerCAmelCase__ : Tuple = F"""{func.__name__}({value})""" lowerCAmelCase__ : Dict = timeit(F"""__main__.{call}""" , setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F"""{call:38} -- {timing:.4f} seconds""" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(UpperCamelCase , UpperCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
470
1
"""simple docstring""" from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging lowercase_ = logging.get_logger(__name__) def lowercase ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] ) -> Tuple: try: with open(_A , '''rb''' ) as flax_state_f: __a = from_bytes(_A , flax_state_f.read() ) except UnpicklingError as e: try: with open(_A ) as f: if f.read().startswith('''version''' ): raise OSError( '''You seem to have cloned a repository without having git-lfs installed. Please''' ''' install git-lfs and run `git lfs install` followed by `git lfs pull` in the''' ''' folder you cloned.''' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f'''Unable to convert {model_file} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(_A , _A ) def lowercase ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict ) -> Any: try: import torch # noqa: F401 except ImportError: logger.error( '''Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights __a = flatten_dict(jax.tree_util.tree_map(lambda lowerCAmelCase__ : x.dtype == jnp.bfloataa , _A ) ).values() if any(_A ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) __a = jax.tree_util.tree_map( lambda lowerCAmelCase__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _A ) __a = '''''' __a = flatten_dict(_A , sep='''.''' ) __a = pt_model.state_dict() # keep track of unexpected & missing keys __a = [] __a = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __a = flax_key_tuple.split('''.''' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: __a = flax_key_tuple_array[:-1] + ['''weight'''] __a = jnp.transpose(_A , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": __a = flax_key_tuple_array[:-1] + ['''weight'''] __a = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": __a = flax_key_tuple_array[:-1] + ['''weight'''] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(_A ): __a = ( flax_key_tuple_string.replace('''_0''' , '''.0''' ) .replace('''_1''' , '''.1''' ) .replace('''_2''' , '''.2''' ) .replace('''_3''' , '''.3''' ) .replace('''_4''' , '''.4''' ) .replace('''_5''' , '''.5''' ) .replace('''_6''' , '''.6''' ) .replace('''_7''' , '''.7''' ) .replace('''_8''' , '''.8''' ) .replace('''_9''' , '''.9''' ) ) __a = '''.'''.join(_A ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' f'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict __a = np.asarray(_A ) if not isinstance(_A , np.ndarray ) else flax_tensor __a = torch.from_numpy(_A ) # remove from missing keys missing_keys.remove(_A ) else: # weight is not expected by PyTorch model unexpected_keys.append(_A ) pt_model.load_state_dict(_A ) # re-transform missing_keys to list __a = list(_A ) if len(_A ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' f''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) if len(_A ) > 0: logger.warning( f'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' f''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' ''' use it for predictions and inference.''' ) return pt_model
695
import random class _lowercase : """simple docstring""" @staticmethod def _UpperCAmelCase ( UpperCAmelCase ): '''simple docstring''' _lowercase = [ord(UpperCAmelCase ) for i in text] _lowercase = [] _lowercase = [] for i in plain: _lowercase = random.randint(1 , 300 ) _lowercase = (i + k) * k cipher.append(UpperCAmelCase ) key.append(UpperCAmelCase ) return cipher, key @staticmethod def _UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ): '''simple docstring''' _lowercase = [] for i in range(len(UpperCAmelCase ) ): _lowercase = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(UpperCAmelCase ) ) return "".join(UpperCAmelCase ) if __name__ == "__main__": A_ , A_: List[Any] = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
398
0
"""simple docstring""" def _snake_case ( lowercase__ : list[int] ) -> list[int]: '''simple docstring''' lowerCAmelCase_ :Tuple = len(lowercase__ ) for i in range(lowercase__ ): for j in range(i + 1 , lowercase__ ): if numbers[j] < numbers[i]: lowerCAmelCase_ , lowerCAmelCase_ :int = numbers[j], numbers[i] return numbers if __name__ == "__main__": __UpperCAmelCase = input('Enter numbers separated by a comma:\n').strip() __UpperCAmelCase = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
256
"""simple docstring""" import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class _SCREAMING_SNAKE_CASE : def __init__( self , __A , __A=14 , __A=7 , __A=True , __A=True , __A=True , __A=True , __A=True , __A=99 , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=16 , __A=2 , __A=0.0_2 , __A=3 , __A=4 , __A=None , ) -> Any: lowerCAmelCase_ :Optional[int] = parent lowerCAmelCase_ :Dict = batch_size lowerCAmelCase_ :Optional[int] = seq_length lowerCAmelCase_ :List[Any] = is_training lowerCAmelCase_ :Tuple = use_token_type_ids lowerCAmelCase_ :List[str] = use_input_mask lowerCAmelCase_ :Tuple = use_labels lowerCAmelCase_ :List[Any] = use_mc_token_ids lowerCAmelCase_ :List[Any] = vocab_size lowerCAmelCase_ :Tuple = hidden_size lowerCAmelCase_ :Optional[int] = num_hidden_layers lowerCAmelCase_ :Optional[int] = num_attention_heads lowerCAmelCase_ :Tuple = intermediate_size lowerCAmelCase_ :List[str] = hidden_act lowerCAmelCase_ :Union[str, Any] = hidden_dropout_prob lowerCAmelCase_ :Optional[int] = attention_probs_dropout_prob lowerCAmelCase_ :int = max_position_embeddings lowerCAmelCase_ :str = type_vocab_size lowerCAmelCase_ :Dict = type_sequence_label_size lowerCAmelCase_ :List[str] = initializer_range lowerCAmelCase_ :int = num_labels lowerCAmelCase_ :List[str] = num_choices lowerCAmelCase_ :str = scope lowerCAmelCase_ :Optional[Any] = self.vocab_size - 1 def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ :List[str] = None if self.use_input_mask: lowerCAmelCase_ :Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ :Any = None if self.use_token_type_ids: lowerCAmelCase_ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase_ :Optional[int] = None if self.use_mc_token_ids: lowerCAmelCase_ :Optional[Any] = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) lowerCAmelCase_ :Union[str, Any] = None lowerCAmelCase_ :List[Any] = None lowerCAmelCase_ :List[Any] = None if self.use_labels: lowerCAmelCase_ :Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ :int = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase_ :int = self.get_config() lowerCAmelCase_ :Dict = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def __lowerCAmelCase ( self ) -> Optional[Any]: return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def __lowerCAmelCase ( self , __A , __A , __A , __A , __A , *__A ) -> Optional[int]: lowerCAmelCase_ :List[Any] = CTRLModel(config=__A ) model.to(__A ) model.eval() model(__A , token_type_ids=__A , head_mask=__A ) model(__A , token_type_ids=__A ) lowerCAmelCase_ :Any = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def __lowerCAmelCase ( self , __A , __A , __A , __A , __A , *__A ) -> List[Any]: lowerCAmelCase_ :Optional[int] = CTRLLMHeadModel(__A ) model.to(__A ) model.eval() lowerCAmelCase_ :Tuple = model(__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :Optional[int] = self.prepare_config_and_inputs() ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) :Tuple = config_and_inputs lowerCAmelCase_ :Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask} return config, inputs_dict def __lowerCAmelCase ( self , __A , __A , __A , __A , *__A ) -> Tuple: lowerCAmelCase_ :int = self.num_labels lowerCAmelCase_ :List[str] = CTRLForSequenceClassification(__A ) model.to(__A ) model.eval() lowerCAmelCase_ :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ :Union[str, Any] = model(__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class _SCREAMING_SNAKE_CASE ( A__ , A__ , A__ , unittest.TestCase ): UpperCAmelCase_ :Optional[int] = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () UpperCAmelCase_ :List[Any] = (CTRLLMHeadModel,) if is_torch_available() else () UpperCAmelCase_ :Dict = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase_ :Tuple = True UpperCAmelCase_ :List[str] = False UpperCAmelCase_ :Union[str, Any] = False def __lowerCAmelCase ( self , __A , __A , __A , __A , __A ) -> List[Any]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :int = CTRLModelTester(self ) lowerCAmelCase_ :List[str] = ConfigTester(self , config_class=__A , n_embd=37 ) def __lowerCAmelCase ( self ) -> Any: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> Any: self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__A ) def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__A ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __lowerCAmelCase ( self ) -> Optional[Any]: pass @slow def __lowerCAmelCase ( self ) -> str: for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ :Optional[Any] = CTRLModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def __lowerCAmelCase ( self ) -> str: pass @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Union[str, Any]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :Optional[Any] = CTRLLMHeadModel.from_pretrained("""ctrl""" ) model.to(__A ) lowerCAmelCase_ :str = torch.tensor( [[1_1859, 0, 1611, 8]] , dtype=torch.long , device=__A ) # Legal the president is lowerCAmelCase_ :Dict = [ 1_1859, 0, 1611, 8, 5, 150, 2_6449, 2, 19, 348, 469, 3, 2595, 48, 2_0740, 24_6533, 24_6533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a lowerCAmelCase_ :Dict = model.generate(__A , do_sample=__A ) self.assertListEqual(output_ids[0].tolist() , __A )
256
1
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self: List[str] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[Any]=7 , UpperCamelCase_: Optional[Any]=3 , UpperCamelCase_: Tuple=18 , UpperCamelCase_: Any=30 , UpperCamelCase_: List[str]=400 , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Dict=None , UpperCamelCase_: List[str]=True , ): UpperCamelCase_ =size if size is not None else {"""height""": 18, """width""": 18} UpperCamelCase_ =parent UpperCamelCase_ =batch_size UpperCamelCase_ =num_channels UpperCamelCase_ =image_size UpperCamelCase_ =min_resolution UpperCamelCase_ =max_resolution UpperCamelCase_ =do_resize UpperCamelCase_ =size UpperCamelCase_ =do_normalize def UpperCamelCase__ ( self: Any ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866_4436_3403_3203, 0.6618_8293_6954_4983, 0.3891_7464_0178_6804], [-0.6042_5591_4688_1104, -0.0_2295_0088_6052_8469, 0.5423_7973_6900_3296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __lowerCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : int = ImageGPTImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self: List[Any] ): UpperCamelCase_ =ImageGPTImageProcessingTester(self ) @property def UpperCamelCase__ ( self: Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self: Dict ): UpperCamelCase_ =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , "clusters" ) ) self.assertTrue(hasattr(UpperCamelCase_ , "do_resize" ) ) self.assertTrue(hasattr(UpperCamelCase_ , "size" ) ) self.assertTrue(hasattr(UpperCamelCase_ , "do_normalize" ) ) def UpperCamelCase__ ( self: Optional[int] ): UpperCamelCase_ =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) UpperCamelCase_ =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def UpperCamelCase__ ( self: List[Any] ): UpperCamelCase_ =self.image_processing_class(**self.image_processor_dict ) UpperCamelCase_ =json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(UpperCamelCase_ , obj[key] ) ) else: self.assertEqual(obj[key] , UpperCamelCase_ ) def UpperCamelCase__ ( self: Optional[int] ): UpperCamelCase_ =self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase_ =os.path.join(UpperCamelCase_ , "image_processor.json" ) image_processor_first.to_json_file(UpperCamelCase_ ) UpperCamelCase_ =self.image_processing_class.from_json_file(UpperCamelCase_ ).to_dict() UpperCamelCase_ =image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(UpperCamelCase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , UpperCamelCase_ ) def UpperCamelCase__ ( self: Optional[int] ): UpperCamelCase_ =self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(UpperCamelCase_ ) UpperCamelCase_ =self.image_processing_class.from_pretrained(UpperCamelCase_ ).to_dict() UpperCamelCase_ =image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(UpperCamelCase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , UpperCamelCase_ ) @unittest.skip("ImageGPT requires clusters at initialization" ) def UpperCamelCase__ ( self: Union[str, Any] ): pass def _UpperCamelCase ( ): UpperCamelCase_ =load_dataset("hf-internal-testing/fixtures_image_utils" , split="test" ) UpperCamelCase_ =Image.open(dataset[4]["file"] ) UpperCamelCase_ =Image.open(dataset[5]["file"] ) UpperCamelCase_ =[imagea, imagea] return images @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self: Optional[Any] ): UpperCamelCase_ =ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small" ) UpperCamelCase_ =prepare_images() # test non-batched UpperCamelCase_ =image_processing(images[0] , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) UpperCamelCase_ =[306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , UpperCamelCase_ ) # test batched UpperCamelCase_ =image_processing(UpperCamelCase_ , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) UpperCamelCase_ =[303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , UpperCamelCase_ )
391
'''simple docstring''' import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Tuple ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : int ) -> str: # Initialise PyTorch model _a : List[str] =RemBertConfig.from_json_file(_UpperCAmelCase ) print("""Building PyTorch model from configuration: {}""".format(str(_UpperCAmelCase ) ) ) _a : Dict =RemBertModel(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(_UpperCAmelCase ) ) torch.save(model.state_dict() ,_UpperCAmelCase ) if __name__ == "__main__": A__: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--rembert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained RemBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) A__: Tuple = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
694
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : int=7 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=99 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : str=2 , UpperCAmelCase : str=4 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Dict=512 , UpperCAmelCase : List[Any]=16 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Any=0.0_2 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Optional[int]=None , ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =parent lowercase : Tuple =13 lowercase : Any =7 lowercase : Union[str, Any] =True lowercase : Any =True lowercase : Optional[int] =True lowercase : List[str] =True lowercase : Tuple =99 lowercase : str =32 lowercase : Union[str, Any] =2 lowercase : Dict =4 lowercase : Union[str, Any] =37 lowercase : Union[str, Any] ='''gelu''' lowercase : Any =0.1 lowercase : Dict =0.1 lowercase : Dict =512 lowercase : List[str] =16 lowercase : Dict =2 lowercase : int =0.0_2 lowercase : List[Any] =3 lowercase : List[str] =4 lowercase : Optional[Any] =None def A__ ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : str =None if self.use_input_mask: lowercase : int =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Any =None if self.use_token_type_ids: lowercase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : List[Any] =None lowercase : List[str] =None lowercase : List[str] =None if self.use_labels: lowercase : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Any =ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModel(config=UpperCAmelCase ) lowercase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase : Tuple =[input_ids, input_mask] lowercase : str =model(UpperCAmelCase ) lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' lowercase : Dict =True lowercase : List[Any] =TFRoFormerForCausalLM(config=UpperCAmelCase ) lowercase : Union[str, Any] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A__ ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' lowercase : List[Any] =TFRoFormerForMaskedLM(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =self.num_labels lowercase : Optional[int] =TFRoFormerForSequenceClassification(config=UpperCAmelCase ) lowercase : Optional[int] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase : int =self.num_choices lowercase : Tuple =TFRoFormerForMultipleChoice(config=UpperCAmelCase ) lowercase : Union[str, Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =self.num_labels lowercase : Union[str, Any] =TFRoFormerForTokenClassification(config=UpperCAmelCase ) lowercase : Tuple ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ) -> Any: '''simple docstring''' lowercase : Tuple =TFRoFormerForQuestionAnswering(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' lowercase : Optional[Any] =self.prepare_config_and_inputs() ( lowercase ) : Optional[int] =config_and_inputs lowercase : str ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase_ = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : str ) -> Tuple: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModelTester(self ) lowercase : Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase ) def A__ ( self : int ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : str ) -> str: '''simple docstring''' lowercase : Union[str, Any] =TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Any =TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) lowercase : Optional[Any] =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[str] =model(UpperCAmelCase )[0] # TODO Replace vocab size lowercase : Tuple =5_0000 lowercase : List[str] =[1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowercase : Dict =tf.constant( [ [ [-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6], [-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7], [-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : int ) -> List[Any]: '''simple docstring''' lowercase : Union[str, Any] =tf.constant([[4, 10]] ) lowercase : List[Any] =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowercase : Any =emba(input_ids.shape ) lowercase : List[str] =tf.constant( [[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] ) tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) def A__ ( self : Optional[Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =tf.constant( [ [0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0], [0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7], [0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0], ] ) lowercase : Tuple =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowercase : str =emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : Dict ) -> Dict: '''simple docstring''' lowercase : str =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowercase : Optional[Any] =embed_positions([2, 16, 768] )[None, None, :, :] lowercase : Optional[int] =TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : Any =tf.constant( [ [0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0], [-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3], [-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5], [-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1], [0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0], [3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3], ] ) lowercase : int =tf.constant( [ [0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0], [0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3], [1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5], [2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1], [-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0], [-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
714
'''simple docstring''' def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : List[Any] =str(bin(__A ) ) binary_number += "0" * shift_amount return binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowercase : Union[str, Any] =str(bin(__A ) )[2:] if shift_amount >= len(__A ): return "0b0" lowercase : Any =binary_number[: len(__A ) - shift_amount] return "0b" + shifted_binary_number def lowercase_ ( __A : int , __A : int ) -> str: """simple docstring""" if number >= 0: # Get binary representation of positive number lowercase : str ='''0''' + str(bin(__A ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number lowercase : Dict =len(bin(__A )[3:] ) # Find 2's complement of number lowercase : Optional[Any] =bin(abs(__A ) - (1 << binary_number_length) )[3:] lowercase : int =( '''1''' + '''0''' * (binary_number_length - len(__A )) + binary_number ) if shift_amount >= len(__A ): return "0b" + binary_number[0] * len(__A ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__A ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
8
0