code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
65
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = """▁""" UpperCAmelCase_ = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} UpperCAmelCase_ = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } UpperCAmelCase_ = {"""vinai/bartpho-syllable""": 1_0_2_4} class lowerCamelCase__ ( _A): """simple docstring""" a__ : int = VOCAB_FILES_NAMES a__ : Tuple = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Tuple = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any]="<s>" , __lowerCAmelCase : Dict="</s>" , __lowerCAmelCase : List[Any]="</s>" , __lowerCAmelCase : Optional[Any]="<s>" , __lowerCAmelCase : Tuple="<unk>" , __lowerCAmelCase : int="<pad>" , __lowerCAmelCase : Optional[Any]="<mask>" , __lowerCAmelCase : Optional[Dict[str, Any]] = None , **__lowerCAmelCase : Tuple , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _A = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token _A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) _A = vocab_file _A = monolingual_vocab_file _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCAmelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _A = {} _A = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__lowerCAmelCase ) not in self.fairseq_tokens_to_ids: _A = cnt cnt += 1 with open(__lowerCAmelCase , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): _A = line.strip().split()[0] _A = len(self.fairseq_tokens_to_ids ) if str(__lowerCAmelCase ) not in self.fairseq_tokens_to_ids: _A = len(self.fairseq_tokens_to_ids ) _A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Any ) -> List[Any]: _A = self.__dict__.copy() _A = None _A = self.sp_model.serialized_model_proto() return state def __setstate__( self : Union[str, Any] , __lowerCAmelCase : Dict ) -> List[Any]: _A = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A = [self.cls_token_id] _A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ ( self : List[Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCAmelCase )) + [1] return [1] + ([0] * len(__lowerCAmelCase )) + [1, 1] + ([0] * len(__lowerCAmelCase )) + [1] def snake_case_ ( self : Any , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case_ ( self : Optional[int] ) -> Union[str, Any]: return len(self.fairseq_ids_to_tokens ) def snake_case_ ( self : Dict ) -> Optional[Any]: _A = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self : List[str] , __lowerCAmelCase : str ) -> List[str]: return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) def snake_case_ ( self : str , __lowerCAmelCase : Optional[Any] ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def snake_case_ ( self : int , __lowerCAmelCase : Optional[int] ) -> List[str]: return self.fairseq_ids_to_tokens[index] def snake_case_ ( self : List[str] , __lowerCAmelCase : Union[str, Any] ) -> Tuple: _A = ''''''.join(__lowerCAmelCase ).replace(__lowerCAmelCase , ''' ''' ).strip() return out_string def snake_case_ ( self : str , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase , '''wb''' ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __lowerCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(__lowerCAmelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
2
0
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) lowerCAmelCase : Tuple = 0 lowerCAmelCase : Dict = str(SCREAMING_SNAKE_CASE__ ) while len(SCREAMING_SNAKE_CASE__ ) != 1: lowerCAmelCase : Any = [int(SCREAMING_SNAKE_CASE__ ) for i in num_string] lowerCAmelCase : Optional[int] = 1 for i in range(0 ,len(SCREAMING_SNAKE_CASE__ ) ): total *= numbers[i] lowerCAmelCase : int = str(SCREAMING_SNAKE_CASE__ ) steps += 1 return steps def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Union[str, Any] = str(SCREAMING_SNAKE_CASE__ ) while len(SCREAMING_SNAKE_CASE__ ) != 1: lowerCAmelCase : List[Any] = [int(SCREAMING_SNAKE_CASE__ ) for i in num_string] lowerCAmelCase : str = 0 for i in range(0 ,len(SCREAMING_SNAKE_CASE__ ) ): total += numbers[i] lowerCAmelCase : Union[str, Any] = str(SCREAMING_SNAKE_CASE__ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
693
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[str] = None if token is not None: lowerCAmelCase : Union[str, Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[Any] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" lowerCAmelCase : Any = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) lowerCAmelCase : int = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : List[str] = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = None if token is not None: lowerCAmelCase : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ).json() lowerCAmelCase : List[str] = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) lowerCAmelCase : Optional[int] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase : int = requests.get(url + F"""&page={i + 2}""" ,headers=SCREAMING_SNAKE_CASE__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Dict = None if token is not None: lowerCAmelCase : Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} lowerCAmelCase : str = requests.get(SCREAMING_SNAKE_CASE__ ,headers=SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = result.headers["""Location"""] lowerCAmelCase : Optional[int] = requests.get(SCREAMING_SNAKE_CASE__ ,allow_redirects=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ ,F"""{artifact_name}.zip""" ) with open(SCREAMING_SNAKE_CASE__ ,"""wb""" ) as fp: fp.write(response.content ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Optional[int] = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: lowerCAmelCase : Optional[Any] = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs lowerCAmelCase : str = line[: line.index(""": """ )] lowerCAmelCase : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed lowerCAmelCase : Union[str, Any] = line[len("""FAILED """ ) :] failed_tests.append(SCREAMING_SNAKE_CASE__ ) elif filename == "job_name.txt": lowerCAmelCase : Union[str, Any] = line if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError( F"""`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE__ )} for `errors` """ F"""and {len(SCREAMING_SNAKE_CASE__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" """ problem.""" ) lowerCAmelCase : Optional[int] = None if job_name and job_links: lowerCAmelCase : Optional[int] = job_links.get(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # A list with elements of the form (line of error, error, failed test) lowerCAmelCase : Union[str, Any] = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )] return result def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : str = [] lowerCAmelCase : Union[str, Any] = [os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for p in os.listdir(SCREAMING_SNAKE_CASE__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE__ ,job_links=SCREAMING_SNAKE_CASE__ ) ) return errors def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : int = Counter() counter.update([x[1] for x in logs] ) lowerCAmelCase : List[str] = counter.most_common() lowerCAmelCase : Union[str, Any] = {} for error, count in counts: if error_filter is None or error not in error_filter: lowerCAmelCase : List[Any] = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} lowerCAmelCase : int = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): lowerCAmelCase : str = test.split("""/""" )[2] else: lowerCAmelCase : List[Any] = None return test def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' lowerCAmelCase : List[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] lowerCAmelCase : int = [x for x in logs if x[2] is not None] lowerCAmelCase : Optional[Any] = {x[2] for x in logs} lowerCAmelCase : Dict = {} for test in tests: lowerCAmelCase : Optional[int] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) lowerCAmelCase : Tuple = counter.most_common() lowerCAmelCase : Union[str, Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} lowerCAmelCase : List[Any] = sum(error_counts.values() ) if n_errors > 0: lowerCAmelCase : Optional[int] = {"""count""": n_errors, """errors""": error_counts} lowerCAmelCase : Any = dict(sorted(r.items() ,key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] ,reverse=SCREAMING_SNAKE_CASE__ ) ) return r def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = """| no. | error | status |""" lowerCAmelCase : List[Any] = """|-:|:-|:-|""" lowerCAmelCase : Union[str, Any] = [header, sep] for error in reduced_by_error: lowerCAmelCase : List[str] = reduced_by_error[error]["""count"""] lowerCAmelCase : Any = F"""| {count} | {error[:1_0_0]} | |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : str = """| model | no. of errors | major error | count |""" lowerCAmelCase : Any = """|-:|-:|-:|-:|""" lowerCAmelCase : str = [header, sep] for model in reduced_by_model: lowerCAmelCase : Any = reduced_by_model[model]["""count"""] lowerCAmelCase , lowerCAmelCase : Optional[int] = list(reduced_by_model[model]["""errors"""].items() )[0] lowerCAmelCase : Optional[Any] = F"""| {model} | {count} | {error[:6_0]} | {_count} |""" lines.append(SCREAMING_SNAKE_CASE__ ) return "\n".join(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase : int =argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') lowerCAmelCase : Dict =parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) lowerCAmelCase : Optional[int] =get_job_links(args.workflow_run_id, token=args.token) lowerCAmelCase : List[Any] ={} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: lowerCAmelCase : str =k.find(' / ') lowerCAmelCase : Any =k[index + len(' / ') :] lowerCAmelCase : str =v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Any =get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) lowerCAmelCase : List[Any] =get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error lowerCAmelCase : str =Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors lowerCAmelCase : int =counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) lowerCAmelCase : Optional[int] =reduce_by_error(errors) lowerCAmelCase : Tuple =reduce_by_model(errors) lowerCAmelCase : Optional[Any] =make_github_table(reduced_by_error) lowerCAmelCase : Union[str, Any] =make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
693
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '▁' lowerCAmelCase__ = {'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase__ = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), } } lowerCAmelCase__ = { 'facebook/mbart-large-en-ro': 10_24, 'facebook/mbart-large-cc25': 10_24, } # fmt: off lowerCAmelCase__ = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] def __init__( self , __lowerCamelCase , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<s>" , __lowerCamelCase="<unk>" , __lowerCamelCase="<pad>" , __lowerCamelCase="<mask>" , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase = None , __lowerCamelCase=None , **__lowerCamelCase , ) -> int: # Mask token behave like a normal word, i.e. include the space before it _A : Union[str, Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase) if isinstance(__lowerCamelCase , __lowerCamelCase) else mask_token _A : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , tokenizer_file=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) _A : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(__lowerCamelCase)) _A : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _A : List[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _A : Optional[int] = 1 _A : Dict = len(self.sp_model) _A : List[str] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__lowerCamelCase) } _A : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()} _A : List[str] = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id) _A : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _A : int = list(self.lang_code_to_id.keys()) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens]) _A : Tuple = src_lang if src_lang is not None else "en_XX" _A : List[Any] = self.lang_code_to_id[self._src_lang] _A : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang) def __getstate__( self) -> List[Any]: _A : Optional[Any] = self.__dict__.copy() _A : List[str] = None _A : List[str] = self.sp_model.serialized_model_proto() return state def __setstate__( self , __lowerCamelCase) -> Dict: _A : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs"): _A : Optional[Any] = {} _A : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) @property def _lowerCamelCase ( self) -> Tuple: return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _lowerCamelCase ( self) -> str: return self._src_lang @src_lang.setter def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : List[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase) _A : Optional[int] = [1] * len(self.prefix_tokens) _A : Tuple = [1] * len(self.suffix_tokens) if token_ids_a is None: return prefix_ones + ([0] * len(__lowerCamelCase)) + suffix_ones return prefix_ones + ([0] * len(__lowerCamelCase)) + ([0] * len(__lowerCamelCase)) + suffix_ones def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: _A : Optional[int] = [self.sep_token_id] _A : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) -> Optional[int]: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") _A : int = src_lang _A : Any = self(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) _A : Any = self.convert_tokens_to_ids(__lowerCamelCase) _A : int = tgt_lang_id return inputs def _lowerCamelCase ( self) -> Dict: _A : int = {self.convert_ids_to_tokens(__lowerCamelCase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _lowerCamelCase ( self , __lowerCamelCase) -> List[str]: return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _A : List[str] = self.sp_model.PieceToId(__lowerCamelCase) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[Any]: _A : Optional[Any] = "".join(__lowerCamelCase).replace(__lowerCamelCase , " ").strip() return out_string def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _A : Union[str, Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__lowerCamelCase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __lowerCamelCase) elif not os.path.isfile(self.vocab_file): with open(__lowerCamelCase , "wb") as fi: _A : List[Any] = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase) return (out_vocab_file,) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = "en_XX" , __lowerCamelCase = None , __lowerCamelCase = "ro_RO" , **__lowerCamelCase , ) -> BatchEncoding: _A : Optional[int] = src_lang _A : Optional[Any] = tgt_lang return super().prepare_seqaseq_batch(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self) -> int: return self.set_src_lang_special_tokens(self.src_lang) def _lowerCamelCase ( self) -> int: return self.set_tgt_lang_special_tokens(self.tgt_lang) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : str = self.lang_code_to_id[src_lang] _A : Any = [] _A : Dict = [self.eos_token_id, self.cur_lang_code] def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Any = self.lang_code_to_id[lang] _A : str = [] _A : Union[str, Any] = [self.eos_token_id, self.cur_lang_code]
503
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase__ ( a , unittest.TestCase): '''simple docstring''' # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' @property def _lowerCamelCase ( self) -> List[Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowerCamelCase ( self) -> List[str]: _A : Optional[int] = ort.SessionOptions() _A : Any = False return options def _lowerCamelCase ( self) -> str: _A : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png") _A : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png") _A : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=__lowerCamelCase , feature_extractor=__lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowerCamelCase) _A : Tuple = "A red cat sitting on a park bench" _A : Dict = np.random.RandomState(0) _A : int = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , mask_image=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=1_0 , generator=__lowerCamelCase , output_type="np" , ) _A : List[Any] = output.images _A : Tuple = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) _A : Tuple = np.array([0.2_5_1_4, 0.3_0_0_7, 0.3_5_1_7, 0.1_7_9_0, 0.2_3_8_2, 0.3_1_6_7, 0.1_9_4_4, 0.2_2_7_3, 0.2_4_6_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def _lowerCamelCase ( self) -> List[str]: _A : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png") _A : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png") _A : Dict = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx") _A : int = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=__lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowerCamelCase) _A : Optional[int] = "A red cat sitting on a park bench" _A : Union[str, Any] = np.random.RandomState(0) _A : int = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , mask_image=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=2_0 , generator=__lowerCamelCase , output_type="np" , ) _A : str = output.images _A : Optional[int] = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) _A : Tuple = np.array([0.0_0_8_6, 0.0_0_7_7, 0.0_0_8_3, 0.0_0_9_3, 0.0_1_0_7, 0.0_1_3_9, 0.0_0_9_4, 0.0_0_9_7, 0.0_1_2_5]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
503
1
from __future__ import annotations def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if days_between_payments <= 0: raise ValueError('days_between_payments must be > 0' ) if daily_interest_rate < 0: raise ValueError('daily_interest_rate must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return principal * daily_interest_rate * days_between_payments def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): '''simple docstring''' if number_of_compounding_periods <= 0: raise ValueError('number_of_compounding_periods must be > 0' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('nominal_annual_interest_rate_percentage must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): '''simple docstring''' if number_of_years <= 0: raise ValueError('number_of_years must be > 0' ) if nominal_annual_percentage_rate < 0: raise ValueError('nominal_annual_percentage_rate must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return compound_interest( UpperCamelCase__ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
108
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase ( lowercase_ ): def a ( self ): return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def a ( self ): snake_case_ = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']} return Dataset.from_dict(snake_case ) def a ( self ): snake_case_ = self._create_example_records() snake_case_ = Dataset.from_list(snake_case ) self.assertListEqual(dset.column_names , ['col_1', 'col_2'] ) for i, r in enumerate(snake_case ): self.assertDictEqual(snake_case , example_records[i] ) def a ( self ): snake_case_ = self._create_example_records() snake_case_ = Dataset.from_list(snake_case ) snake_case_ = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def a ( self ): # checks what happens with missing columns snake_case_ = [{'col_1': 1}, {'col_2': 'x'}] snake_case_ = Dataset.from_list(snake_case ) self.assertDictEqual(dset[0] , {'col_1': 1} ) self.assertDictEqual(dset[1] , {'col_1': None} ) # NB: first record is used for columns def a ( self ): # checks if the type can be inferred from the second record snake_case_ = [{'col_1': []}, {'col_1': [1, 2]}] snake_case_ = Dataset.from_list(snake_case ) self.assertEqual(dset.info.features['col_1'] , Sequence(Value('int64' ) ) ) def a ( self ): snake_case_ = Dataset.from_list([] ) self.assertEqual(len(snake_case ) , 0 ) self.assertListEqual(dset.column_names , [] )
108
1
'''simple docstring''' def UpperCAmelCase ( A : int ): SCREAMING_SNAKE_CASE : Tuple = [] SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : str = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator SCREAMING_SNAKE_CASE : List[Any] = len(A ) if (len(A ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ) , '''Stack'''.center(A ) , '''Postfix'''.center(A ) , sep=''' | ''' , ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(A ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(A ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(A ) == 0: stack.append(A ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(A ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(A ) # push x to stack print( x.center(8 ) , (''''''.join(A )).ljust(A ) , (''''''.join(A )).ljust(A ) , sep=''' | ''' , ) # Output in tabular format while len(A ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ) , (''''''.join(A )).ljust(A ) , (''''''.join(A )).ljust(A ) , sep=''' | ''' , ) # Output in tabular format return "".join(A ) # return Postfix as str def UpperCAmelCase ( A : Optional[Any] ): SCREAMING_SNAKE_CASE : List[str] = list(infix[::-1] ) # reverse the infix equation for i in range(len(A ) ): if infix[i] == "(": SCREAMING_SNAKE_CASE : int = ''')''' # change "(" to ")" elif infix[i] == ")": SCREAMING_SNAKE_CASE : Dict = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(A ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": lowerCAmelCase_ : List[str] = input('\nEnter an Infix Equation = ') # Input an Infix equation lowerCAmelCase_ : Any = ''.join(Infix.split()) # Remove spaces from the input print('\n\t', Infix, '(Infix) -> ', infix_2_prefix(Infix), '(Prefix)')
527
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Dict=7 , lowerCAmelCase__ : List[str]=3 , lowerCAmelCase__ : Union[str, Any]=18 , lowerCAmelCase__ : Tuple=30 , lowerCAmelCase__ : Any=4_00 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Union[str, Any]=[0.5, 0.5, 0.5] , lowerCAmelCase__ : List[str]=[0.5, 0.5, 0.5] , ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE : Union[str, Any] = image_size SCREAMING_SNAKE_CASE : Any = min_resolution SCREAMING_SNAKE_CASE : int = max_resolution SCREAMING_SNAKE_CASE : Tuple = do_resize SCREAMING_SNAKE_CASE : Optional[int] = size if size is not None else {'''height''': 18, '''width''': 20} SCREAMING_SNAKE_CASE : List[Any] = do_thumbnail SCREAMING_SNAKE_CASE : Union[str, Any] = do_align_axis SCREAMING_SNAKE_CASE : Tuple = do_pad SCREAMING_SNAKE_CASE : Union[str, Any] = do_normalize SCREAMING_SNAKE_CASE : Union[str, Any] = image_mean SCREAMING_SNAKE_CASE : Optional[int] = image_std def __lowercase ( self : Union[str, Any] ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCamelCase_ ( snake_case_ , unittest.TestCase ): _lowerCAmelCase : Any = DonutImageProcessor if is_vision_available() else None def __lowercase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = DonutImageProcessingTester(self ) @property def __lowercase ( self : int ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowercase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_thumbnail''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_pad''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) ) def __lowercase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order SCREAMING_SNAKE_CASE : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def __lowercase ( self : int ): """simple docstring""" pass @is_flaky() def __lowercase ( self : int ): """simple docstring""" # Initialize image_processing SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def __lowercase ( self : Union[str, Any] ): """simple docstring""" # Initialize image_processing SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE : int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE : int = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def __lowercase ( self : List[Any] ): """simple docstring""" # Initialize image_processing SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE : str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE : List[str] = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
527
1
'''simple docstring''' def _lowerCAmelCase( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] ): lowerCAmelCase__ = len(UpperCAmelCase_ ) print("""The following activities are selected:""" ) # The first activity is always selected lowerCAmelCase__ = 0 print(UpperCAmelCase_ , end=""",""" ) # Consider rest of the activities for j in range(UpperCAmelCase_ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(UpperCAmelCase_ , end=""",""" ) lowerCAmelCase__ = j if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = [1, 3, 0, 5, 8, 5] _UpperCamelCase = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
701
'''simple docstring''' import argparse import datetime def _lowerCAmelCase( UpperCAmelCase_ : str ) -> str: lowerCAmelCase__ = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } lowerCAmelCase__ = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(UpperCAmelCase_ ) < 11: raise ValueError("""Must be 10 characters long""" ) # Get month lowerCAmelCase__ = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""" ) lowerCAmelCase__ = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day lowerCAmelCase__ = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator lowerCAmelCase__ = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year lowerCAmelCase__ = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation lowerCAmelCase__ = datetime.date(int(UpperCAmelCase_ ) , int(UpperCAmelCase_ ) , int(UpperCAmelCase_ ) ) # Start math if m <= 2: lowerCAmelCase__ = y - 1 lowerCAmelCase__ = m + 12 # maths var lowerCAmelCase__ = int(str(UpperCAmelCase_ )[:2] ) lowerCAmelCase__ = int(str(UpperCAmelCase_ )[2:] ) lowerCAmelCase__ = int(2.6 * m - 5.39 ) lowerCAmelCase__ = int(c / 4 ) lowerCAmelCase__ = int(k / 4 ) lowerCAmelCase__ = int(d + k ) lowerCAmelCase__ = int(t + u + v + x ) lowerCAmelCase__ = int(z - (2 * c) ) lowerCAmelCase__ = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response lowerCAmelCase__ = F'''Your date {date_input}, is a {days[str(UpperCAmelCase_ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) _UpperCamelCase = parser.parse_args() zeller(args.date_input)
211
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A :Any = ["image_processor", "tokenizer"] A :str = "ViTImageProcessor" A :Dict = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): """simple docstring""" a__ : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCAmelCase , ) a__ : Any = kwargs.pop("feature_extractor" ) a__ : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: a__ : Tuple = self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if visual_prompt is not None: a__ : Any = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if images is not None: a__ : List[str] = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if visual_prompt is not None and images is not None: a__ : List[Any] = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: a__ : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: a__ : Any = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def _A ( self , *__UpperCAmelCase , **__UpperCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def _A ( self , *__UpperCAmelCase , **__UpperCAmelCase ): """simple docstring""" return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def _A ( self ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __UpperCAmelCase , ) return self.image_processor_class @property def _A ( self ): """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __UpperCAmelCase , ) return self.image_processor
191
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig lowerCamelCase = logging.get_logger(__name__) # General docstring lowerCamelCase = """PoolFormerConfig""" # Base docstring lowerCamelCase = """sail/poolformer_s12""" lowerCamelCase = [1, 5_12, 7, 7] # Image classification docstring lowerCamelCase = """sail/poolformer_s12""" lowerCamelCase = """tabby, tabby cat""" lowerCamelCase = [ """sail/poolformer_s12""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase = 0.0 , __UpperCamelCase = False ) -> Dict: if drop_prob == 0.0 or not training: return input a__ : Tuple = 1 - drop_prob a__ : Any = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets a__ : Dict = keep_prob + torch.rand(__UpperCamelCase , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize a__ : Optional[int] = input.div(__UpperCamelCase ) * random_tensor return output class _a ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCAmelCase = None ): """simple docstring""" super().__init__() a__ : Optional[Any] = drop_prob def _A ( self , __UpperCAmelCase ): """simple docstring""" return drop_path(__UpperCAmelCase , self.drop_prob , self.training ) def _A ( self ): """simple docstring""" return "p={}".format(self.drop_prob ) class _a ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ): """simple docstring""" super().__init__() a__ : Optional[Any] = patch_size if isinstance(__UpperCAmelCase , collections.abc.Iterable ) else (patch_size, patch_size) a__ : List[str] = stride if isinstance(__UpperCAmelCase , collections.abc.Iterable ) else (stride, stride) a__ : Union[str, Any] = padding if isinstance(__UpperCAmelCase , collections.abc.Iterable ) else (padding, padding) a__ : int = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , kernel_size=__UpperCAmelCase , stride=__UpperCAmelCase , padding=__UpperCAmelCase ) a__ : Optional[Any] = norm_layer(__UpperCAmelCase ) if norm_layer else nn.Identity() def _A ( self , __UpperCAmelCase ): """simple docstring""" a__ : Dict = self.projection(__UpperCAmelCase ) a__ : Union[str, Any] = self.norm(__UpperCAmelCase ) return embeddings class _a ( nn.GroupNorm ): '''simple docstring''' def __init__( self , __UpperCAmelCase , **__UpperCAmelCase ): """simple docstring""" super().__init__(1 , __UpperCAmelCase , **__UpperCAmelCase ) class _a ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCAmelCase ): """simple docstring""" super().__init__() a__ : List[str] = nn.AvgPoolad(__UpperCAmelCase , stride=1 , padding=pool_size // 2 , count_include_pad=__UpperCAmelCase ) def _A ( self , __UpperCAmelCase ): """simple docstring""" return self.pool(__UpperCAmelCase ) - hidden_states class _a ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" super().__init__() a__ : str = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , 1 ) a__ : int = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , 1 ) a__ : Any = PoolFormerDropPath(__UpperCAmelCase ) if isinstance(config.hidden_act , __UpperCAmelCase ): a__ : List[Any] = ACTaFN[config.hidden_act] else: a__ : Union[str, Any] = config.hidden_act def _A ( self , __UpperCAmelCase ): """simple docstring""" a__ : Union[str, Any] = self.conva(__UpperCAmelCase ) a__ : Union[str, Any] = self.act_fn(__UpperCAmelCase ) a__ : Dict = self.drop(__UpperCAmelCase ) a__ : Union[str, Any] = self.conva(__UpperCAmelCase ) a__ : int = self.drop(__UpperCAmelCase ) return hidden_states class _a ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" super().__init__() a__ : Any = PoolFormerPooling(__UpperCAmelCase ) a__ : Any = PoolFormerOutput(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) a__ : Any = PoolFormerGroupNorm(__UpperCAmelCase ) a__ : Dict = PoolFormerGroupNorm(__UpperCAmelCase ) # Useful for training neural nets a__ : List[Any] = PoolFormerDropPath(__UpperCAmelCase ) if drop_path > 0.0 else nn.Identity() a__ : List[str] = config.use_layer_scale if config.use_layer_scale: a__ : str = nn.Parameter( config.layer_scale_init_value * torch.ones((__UpperCAmelCase) ) , requires_grad=__UpperCAmelCase ) a__ : int = nn.Parameter( config.layer_scale_init_value * torch.ones((__UpperCAmelCase) ) , requires_grad=__UpperCAmelCase ) def _A ( self , __UpperCAmelCase ): """simple docstring""" if self.use_layer_scale: a__ : Any = self.pooling(self.before_norm(__UpperCAmelCase ) ) a__ : int = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection a__ : Optional[int] = hidden_states + self.drop_path(__UpperCAmelCase ) a__ : Dict = () a__ : List[Any] = self.output(self.after_norm(__UpperCAmelCase ) ) a__ : Union[str, Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection a__ : Optional[Any] = hidden_states + self.drop_path(__UpperCAmelCase ) a__ : Optional[int] = (output,) + outputs return outputs else: a__ : Optional[int] = self.drop_path(self.pooling(self.before_norm(__UpperCAmelCase ) ) ) # First residual connection a__ : Tuple = pooling_output + hidden_states a__ : Tuple = () # Second residual connection inside the PoolFormerOutput block a__ : Optional[int] = self.drop_path(self.output(self.after_norm(__UpperCAmelCase ) ) ) a__ : str = hidden_states + layer_output a__ : Optional[Any] = (output,) + outputs return outputs class _a ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCAmelCase ): """simple docstring""" super().__init__() a__ : Any = config # stochastic depth decay rule a__ : List[str] = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings a__ : List[Any] = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) a__ : Any = nn.ModuleList(__UpperCAmelCase ) # Transformer blocks a__ : Optional[int] = [] a__ : List[Any] = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers a__ : str = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( __UpperCAmelCase , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(__UpperCAmelCase ) ) a__ : Any = nn.ModuleList(__UpperCAmelCase ) def _A ( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True ): """simple docstring""" a__ : int = () if output_hidden_states else None a__ : str = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): a__ , a__ : Optional[Any] = layers # Get patch embeddings from hidden_states a__ : Any = embedding_layer(__UpperCAmelCase ) # Send the embeddings through the blocks for _, blk in enumerate(__UpperCAmelCase ): a__ : List[Any] = blk(__UpperCAmelCase ) a__ : Tuple = layer_outputs[0] if output_hidden_states: a__ : Optional[Any] = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__UpperCAmelCase , hidden_states=__UpperCAmelCase ) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A :Optional[int] = PoolFormerConfig A :List[str] = "poolformer" A :Tuple = "pixel_values" A :List[str] = True def _A ( self , __UpperCAmelCase ): """simple docstring""" if isinstance(__UpperCAmelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__UpperCAmelCase , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _A ( self , __UpperCAmelCase , __UpperCAmelCase=False ): """simple docstring""" if isinstance(__UpperCAmelCase , __UpperCAmelCase ): a__ : Dict = value lowerCamelCase = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ lowerCamelCase = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PoolFormerImageProcessor.__call__`] for details. """ @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , SCREAMING_SNAKE_CASE , ) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , __UpperCAmelCase ): """simple docstring""" super().__init__(__UpperCAmelCase ) a__ : Optional[Any] = config a__ : int = PoolFormerEncoder(__UpperCAmelCase ) # Initialize weights and apply final processing self.post_init() def _A ( self ): """simple docstring""" return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(__UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _A ( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , ): """simple docstring""" a__ : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a__ : str = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) a__ : List[Any] = self.encoder( __UpperCAmelCase , output_hidden_states=__UpperCAmelCase , return_dict=__UpperCAmelCase , ) a__ : Any = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=__UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , ) class _a ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCAmelCase ): """simple docstring""" super().__init__() a__ : Any = nn.Linear(config.hidden_size , config.hidden_size ) def _A ( self , __UpperCAmelCase ): """simple docstring""" a__ : Any = self.dense(__UpperCAmelCase ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , SCREAMING_SNAKE_CASE , ) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , __UpperCAmelCase ): """simple docstring""" super().__init__(__UpperCAmelCase ) a__ : Optional[Any] = config.num_labels a__ : int = PoolFormerModel(__UpperCAmelCase ) # Final norm a__ : Any = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head a__ : Dict = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _A ( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , ): """simple docstring""" a__ : str = return_dict if return_dict is not None else self.config.use_return_dict a__ : str = self.poolformer( __UpperCAmelCase , output_hidden_states=__UpperCAmelCase , return_dict=__UpperCAmelCase , ) a__ : Optional[Any] = outputs[0] a__ : Union[str, Any] = self.classifier(self.norm(__UpperCAmelCase ).mean([-2, -1] ) ) a__ : List[str] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: a__ : str = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): a__ : List[str] = "single_label_classification" else: a__ : str = "multi_label_classification" if self.config.problem_type == "regression": a__ : int = MSELoss() if self.num_labels == 1: a__ : str = loss_fct(logits.squeeze() , labels.squeeze() ) else: a__ : Union[str, Any] = loss_fct(__UpperCAmelCase , __UpperCAmelCase ) elif self.config.problem_type == "single_label_classification": a__ : Any = CrossEntropyLoss() a__ : Optional[Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": a__ : Union[str, Any] = BCEWithLogitsLoss() a__ : Dict = loss_fct(__UpperCAmelCase , __UpperCAmelCase ) if not return_dict: a__ : List[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__UpperCAmelCase , logits=__UpperCAmelCase , hidden_states=outputs.hidden_states )
191
1
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class a__ ( UpperCAmelCase__ ): snake_case_ = 42 snake_case_ = 42 class a__ ( UpperCAmelCase__ , UpperCAmelCase__ ): snake_case_ = 1 @register_to_config def __init__( self, _UpperCAmelCase = 2000, _UpperCAmelCase = 0.15, _UpperCAmelCase = 0.01, _UpperCAmelCase = 1348.0, _UpperCAmelCase = 1E-5, _UpperCAmelCase = 1, ): '''simple docstring''' lowercase__ = sigma_max # setable values lowercase__ = None self.set_sigmas(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None ): '''simple docstring''' return sample def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = None ): '''simple docstring''' lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowercase__ = torch.linspace(1, _UpperCAmelCase, _UpperCAmelCase, device=_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None ): '''simple docstring''' lowercase__ = sigma_min if sigma_min is not None else self.config.sigma_min lowercase__ = sigma_max if sigma_max is not None else self.config.sigma_max lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowercase__ = torch.exp(torch.linspace(math.log(_UpperCAmelCase ), math.log(_UpperCAmelCase ), _UpperCAmelCase ) ) lowercase__ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device ) ), self.discrete_sigmas[timesteps - 1].to(timesteps.device ), ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) lowercase__ = timestep * torch.ones( sample.shape[0], device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowercase__ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowercase__ = timesteps.to(self.discrete_sigmas.device ) lowercase__ = self.discrete_sigmas[timesteps].to(sample.device ) lowercase__ = self.get_adjacent_sigma(_UpperCAmelCase, _UpperCAmelCase ).to(sample.device ) lowercase__ = torch.zeros_like(_UpperCAmelCase ) lowercase__ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowercase__ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowercase__ = diffusion.unsqueeze(-1 ) lowercase__ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowercase__ = randn_tensor( sample.shape, layout=sample.layout, generator=_UpperCAmelCase, device=sample.device, dtype=sample.dtype ) lowercase__ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowercase__ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=_UpperCAmelCase, prev_sample_mean=_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowercase__ = randn_tensor(sample.shape, layout=sample.layout, generator=_UpperCAmelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowercase__ = torch.norm(model_output.reshape(model_output.shape[0], -1 ), dim=-1 ).mean() lowercase__ = torch.norm(noise.reshape(noise.shape[0], -1 ), dim=-1 ).mean() lowercase__ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowercase__ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowercase__ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowercase__ = step_size.unsqueeze(-1 ) lowercase__ = sample + step_size * model_output lowercase__ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ): '''simple docstring''' lowercase__ = timesteps.to(original_samples.device ) lowercase__ = self.discrete_sigmas.to(original_samples.device )[timesteps] lowercase__ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(_UpperCAmelCase ) * sigmas[:, None, None, None] ) lowercase__ = noise + original_samples return noisy_samples def __len__( self ): '''simple docstring''' return self.config.num_train_timesteps
714
"""simple docstring""" import os import sys lowerCAmelCase_: Any = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCAmelCase_: Union[str, Any] = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoConfig.from_pretrained(*A , **A ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoTokenizer.from_pretrained(*A , **A ) @add_start_docstrings(AutoModel.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModel.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*A , **A )
668
0
from __future__ import annotations from cmath import sqrt def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[Any] , lowerCAmelCase: Tuple , lowerCAmelCase: List[str] ) -> Tuple: if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) _UpperCAmelCase : Tuple = b * b - 4 * a * c _UpperCAmelCase : Dict = (-b + sqrt(_a )) / (2 * a) _UpperCAmelCase : List[Any] = (-b - sqrt(_a )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def __SCREAMING_SNAKE_CASE ( ) -> int: _UpperCAmelCase : Optional[int] = quadratic_roots(a=5 , b=6 , c=1 ) print(F'The solutions are: {solutiona} and {solutiona}' ) if __name__ == "__main__": main()
300
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) a_ = parser.parse_args() a_ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) a_ = CLIPImageProcessor() a_ = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') a_ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
25
0
'''simple docstring''' from __future__ import annotations import math def __lowerCAmelCase ( lowerCamelCase : int ): '''simple docstring''' if num <= 0: __lowerCAmelCase = f'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(lowerCamelCase ) __lowerCAmelCase = [True] * (num + 1) __lowerCAmelCase = [] __lowerCAmelCase = 2 __lowerCAmelCase = int(math.sqrt(lowerCamelCase ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCamelCase ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCamelCase ): if sieve[i] is True: __lowerCAmelCase = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCamelCase ) return prime if __name__ == "__main__": print(prime_sieve(int(input('''Enter a positive integer: ''').strip())))
39
'''simple docstring''' import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __lowerCAmelCase ( lowerCamelCase : bytes , lowerCamelCase : int ): '''simple docstring''' __lowerCAmelCase = f'''{sampling_rate}''' __lowerCAmelCase = "1" __lowerCAmelCase = "f32le" __lowerCAmelCase = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(lowerCamelCase , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: __lowerCAmelCase = ffmpeg_process.communicate(lowerCamelCase ) except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to load audio files from filename" ) from error __lowerCAmelCase = output_stream[0] __lowerCAmelCase = np.frombuffer(lowerCamelCase , np.floataa ) if audio.shape[0] == 0: raise ValueError("Malformed soundfile" ) return audio def __lowerCAmelCase ( lowerCamelCase : int , lowerCamelCase : float , lowerCamelCase : str = "f32le" , ): '''simple docstring''' __lowerCAmelCase = f'''{sampling_rate}''' __lowerCAmelCase = "1" if format_for_conversion == "s16le": __lowerCAmelCase = 2 elif format_for_conversion == "f32le": __lowerCAmelCase = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) __lowerCAmelCase = platform.system() if system == "Linux": __lowerCAmelCase = "alsa" __lowerCAmelCase = "default" elif system == "Darwin": __lowerCAmelCase = "avfoundation" __lowerCAmelCase = ":0" elif system == "Windows": __lowerCAmelCase = "dshow" __lowerCAmelCase = "default" __lowerCAmelCase = [ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] __lowerCAmelCase = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample __lowerCAmelCase = _ffmpeg_stream(lowerCamelCase , lowerCamelCase ) for item in iterator: yield item def __lowerCAmelCase ( lowerCamelCase : int , lowerCamelCase : float , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[Union[Tuple[float, float], float]] = None , lowerCamelCase : str = "f32le" , ): '''simple docstring''' if stream_chunk_s is not None: __lowerCAmelCase = stream_chunk_s else: __lowerCAmelCase = chunk_length_s __lowerCAmelCase = ffmpeg_microphone(lowerCamelCase , lowerCamelCase , format_for_conversion=lowerCamelCase ) if format_for_conversion == "s16le": __lowerCAmelCase = np.intaa __lowerCAmelCase = 2 elif format_for_conversion == "f32le": __lowerCAmelCase = np.floataa __lowerCAmelCase = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: __lowerCAmelCase = chunk_length_s / 6 __lowerCAmelCase = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(lowerCamelCase , (int, float) ): __lowerCAmelCase = [stride_length_s, stride_length_s] __lowerCAmelCase = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample __lowerCAmelCase = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample __lowerCAmelCase = datetime.datetime.now() __lowerCAmelCase = datetime.timedelta(seconds=lowerCamelCase ) for item in chunk_bytes_iter(lowerCamelCase , lowerCamelCase , stride=(stride_left, stride_right) , stream=lowerCamelCase ): # Put everything back in numpy scale __lowerCAmelCase = np.frombuffer(item["raw"] , dtype=lowerCamelCase ) __lowerCAmelCase = ( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) __lowerCAmelCase = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def __lowerCAmelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : Tuple[int, int] , lowerCamelCase : bool = False ): '''simple docstring''' __lowerCAmelCase = B"" __lowerCAmelCase , __lowerCAmelCase = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) __lowerCAmelCase = 0 for raw in iterator: acc += raw if stream and len(lowerCamelCase ) < chunk_len: __lowerCAmelCase = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(lowerCamelCase ) >= chunk_len: # We are flushing the accumulator __lowerCAmelCase = (_stride_left, stride_right) __lowerCAmelCase = {"raw": acc[:chunk_len], "stride": stride} if stream: __lowerCAmelCase = False yield item __lowerCAmelCase = stride_left __lowerCAmelCase = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(lowerCamelCase ) > stride_left: __lowerCAmelCase = {"raw": acc, "stride": (_stride_left, 0)} if stream: __lowerCAmelCase = False yield item def __lowerCAmelCase ( lowerCamelCase : Optional[int] , lowerCamelCase : int ): '''simple docstring''' __lowerCAmelCase = 2**24 # 16Mo try: with subprocess.Popen(lowerCamelCase , stdout=subprocess.PIPE , bufsize=lowerCamelCase ) as ffmpeg_process: while True: __lowerCAmelCase = ffmpeg_process.stdout.read(lowerCamelCase ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to stream audio files from filename" ) from error
39
1
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : int =OpenAIGPTTokenizer __lowerCamelCase : Optional[Any] =OpenAIGPTTokenizerFast __lowerCamelCase : Optional[Any] =True __lowerCamelCase : List[str] =False def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __a = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] __a = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __a = ["""#version: 0.2""", """l o""", """lo w""", """e r</w>""", """"""] __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(__lowercase ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(__lowercase ) ) def UpperCamelCase_ ( self : List[Any] , __lowercase : Union[str, Any] ): '''simple docstring''' return "lower newer", "lower newer" def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) __a = """lower""" __a = ["""low""", """er</w>"""] __a = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __a = tokens + ["""<unk>"""] __a = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , __lowercase ) def UpperCamelCase_ ( self : Any , __lowercase : Optional[Any]=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __a = self.rust_tokenizer_class.from_pretrained(__lowercase , **__lowercase ) # Simple input __a = """This is a simple input""" __a = ["""This is a simple input 1""", """This is a simple input 2"""] __a = ("""This is a simple input""", """This is a pair""") __a = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(__lowercase , tokenizer_r.encode , __lowercase , max_length=__lowercase , padding="""max_length""" ) # Simple input self.assertRaises(__lowercase , tokenizer_r.encode_plus , __lowercase , max_length=__lowercase , padding="""max_length""" ) # Simple input self.assertRaises( __lowercase , tokenizer_r.batch_encode_plus , __lowercase , max_length=__lowercase , padding="""max_length""" , ) # Pair input self.assertRaises(__lowercase , tokenizer_r.encode , __lowercase , max_length=__lowercase , padding="""max_length""" ) # Pair input self.assertRaises(__lowercase , tokenizer_r.encode_plus , __lowercase , max_length=__lowercase , padding="""max_length""" ) # Pair input self.assertRaises( __lowercase , tokenizer_r.batch_encode_plus , __lowercase , max_length=__lowercase , padding="""max_length""" , ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' pass @require_ftfy @require_spacy @require_tokenizers class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): pass
225
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever lowerCamelCase__ = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def __init__( self : Optional[Any] , __lowercase : Dict , __lowercase : Optional[int] , __lowercase : Optional[int] , __lowercase : Optional[Any]=None ): '''simple docstring''' super().__init__( __lowercase , question_encoder_tokenizer=__lowercase , generator_tokenizer=__lowercase , index=__lowercase , init_retrieval=__lowercase , ) __a = None def UpperCamelCase_ ( self : List[Any] , __lowercase : int ): '''simple docstring''' logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually __a = self._infer_socket_ifname() # avoid clash with the NCCL port __a = str(distributed_port + 1 ) __a = dist.new_group(ranks=__lowercase , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return dist.get_rank(group=self.process_group ) == 0 def UpperCamelCase_ ( self : int , __lowercase : List[str] , __lowercase : int , __lowercase : List[str]=torch.floataa ): '''simple docstring''' __a = torch.empty(__lowercase , dtype=__lowercase ) dist.scatter(__lowercase , src=0 , scatter_list=__lowercase , group=self.process_group ) return target_tensor def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __a = next((addr for addr in addrs if addr.startswith("""e""" )) , __lowercase ) return ifname def UpperCamelCase_ ( self : int , __lowercase : np.ndarray , __lowercase : int ): '''simple docstring''' # single GPU training if not dist.is_initialized(): __a , __a = self._main_retrieve(__lowercase , __lowercase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__lowercase ) # distributed training __a = dist.get_world_size(group=self.process_group ) # gather logic __a = None if self._is_main(): __a = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__lowercase )] dist.gather(torch.tensor(__lowercase ) , dst=0 , gather_list=__lowercase , group=self.process_group ) # scatter logic __a = question_hidden_states.shape[0] __a = [] __a = [] if self._is_main(): assert len(__lowercase ) == world_size __a , __a = self._main_retrieve(torch.cat(__lowercase ).numpy() , __lowercase ) __a , __a = torch.tensor(__lowercase ), torch.tensor(__lowercase ) __a = self._chunk_tensor(__lowercase , __lowercase ) __a = self._chunk_tensor(__lowercase , __lowercase ) __a = self._scattered(__lowercase , [n_queries, n_docs] , target_type=torch.intaa ) __a = self._scattered(__lowercase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__lowercase )
225
1
'''simple docstring''' import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowercase__ : Any = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Optional[Any]=None ) -> Dict: require_version(deps[pkg] , __snake_case )
338
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase__ : Union[str, Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = ['''pixel_values'''] def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = PIL.Image.BICUBIC , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(**_UpperCAmelCase) __A : List[Any] = size if size is not None else {'height': 256, 'width': 256} __A : Tuple = get_size_dict(_UpperCAmelCase) __A : int = crop_size if crop_size is not None else {'height': 224, 'width': 224} __A : str = get_size_dict(_UpperCAmelCase , param_name='crop_size') __A : Union[str, Any] = do_resize __A : Tuple = size __A : Any = resample __A : List[Any] = do_center_crop __A : Tuple = crop_size __A : Tuple = do_rescale __A : Optional[int] = rescale_factor __A : List[str] = do_normalize __A : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __A : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = PIL.Image.BICUBIC , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' __A : List[Any] = get_size_dict(_UpperCAmelCase) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}') return resize( _UpperCAmelCase , size=(size['height'], size['width']) , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' __A : Any = get_size_dict(_UpperCAmelCase) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}') return center_crop(_UpperCAmelCase , size=(size['height'], size['width']) , data_format=_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase=None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ): '''simple docstring''' __A : str = do_resize if do_resize is not None else self.do_resize __A : int = resample if resample is not None else self.resample __A : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop __A : List[Any] = do_rescale if do_rescale is not None else self.do_rescale __A : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor __A : List[str] = do_normalize if do_normalize is not None else self.do_normalize __A : Optional[int] = image_mean if image_mean is not None else self.image_mean __A : Optional[Any] = image_std if image_std is not None else self.image_std __A : Optional[Any] = size if size is not None else self.size __A : Dict = get_size_dict(_UpperCAmelCase) __A : int = crop_size if crop_size is not None else self.crop_size __A : List[str] = get_size_dict(_UpperCAmelCase , param_name='crop_size') __A : Dict = make_list_of_images(_UpperCAmelCase) if not valid_images(_UpperCAmelCase): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. __A : Dict = [to_numpy_array(_UpperCAmelCase) for image in images] if do_resize: __A : Dict = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase) for image in images] if do_center_crop: __A : Tuple = [self.center_crop(image=_UpperCAmelCase , size=_UpperCAmelCase) for image in images] if do_rescale: __A : Optional[Any] = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase) for image in images] if do_normalize: __A : List[Any] = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase) for image in images] __A : Optional[Any] = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase) for image in images] __A : Any = {'pixel_values': images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase)
338
1
from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput __a : Optional[Any] = 8 def _SCREAMING_SNAKE_CASE ( __lowercase : List[Any] , __lowercase : Dict=BITS ) -> List[str]: """simple docstring""" __A = x.device __A = (x * 2_5_5).int().clamp(0 , 2_5_5 ) __A = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_UpperCamelCase ) __A = rearrange(_UpperCamelCase , """d -> d 1 1""" ) __A = rearrange(_UpperCamelCase , """b c h w -> b c 1 h w""" ) __A = ((x & mask) != 0).float() __A = rearrange(_UpperCamelCase , """b c d h w -> b (c d) h w""" ) __A = bits * 2 - 1 return bits def _SCREAMING_SNAKE_CASE ( __lowercase : int , __lowercase : Any=BITS ) -> Tuple: """simple docstring""" __A = x.device __A = (x > 0).int() __A = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_UpperCamelCase , dtype=torch.intaa ) __A = rearrange(_UpperCamelCase , """d -> d 1 1""" ) __A = rearrange(_UpperCamelCase , """b (c d) h w -> b c d h w""" , d=8 ) __A = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" ) return (dec / 2_5_5).clamp(0.0 , 1.0 ) def _SCREAMING_SNAKE_CASE ( self : Any , __lowercase : str , __lowercase : Dict , __lowercase : Dict , __lowercase : Any = 0.0 , __lowercase : int = True , __lowercase : Union[str, Any]=None , __lowercase : Union[str, Any] = True , ) -> Union[DDIMSchedulerOutput, Tuple]: """simple docstring""" if self.num_inference_steps is None: raise ValueError( """Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler""" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) __A = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas __A = self.alphas_cumprod[timestep] __A = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod __A = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __A = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" __A = self.bit_scale if self.config.clip_sample: __A = torch.clamp(_UpperCamelCase , -scale , _UpperCamelCase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) __A = self._get_variance(_UpperCamelCase , _UpperCamelCase ) __A = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide __A = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __A = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __A = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 __A = model_output.device if torch.is_tensor(_UpperCamelCase ) else '''cpu''' __A = torch.randn(model_output.shape , dtype=model_output.dtype , generator=_UpperCamelCase ).to(_UpperCamelCase ) __A = self._get_variance(_UpperCamelCase , _UpperCamelCase ) ** 0.5 * eta * noise __A = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=_UpperCamelCase , pred_original_sample=_UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self : List[str] , __lowercase : List[str] , __lowercase : Union[str, Any] , __lowercase : Optional[Any] , __lowercase : Optional[int]="epsilon" , __lowercase : List[str]=None , __lowercase : Optional[Any] = True , ) -> Union[DDPMSchedulerOutput, Tuple]: """simple docstring""" __A = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: __A = torch.split(_UpperCamelCase , sample.shape[1] , dim=1 ) else: __A = None # 1. compute alphas, betas __A = self.alphas_cumprod[t] __A = self.alphas_cumprod[t - 1] if t > 0 else self.one __A = 1 - alpha_prod_t __A = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": __A = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": __A = model_output else: raise ValueError(f"Unsupported prediction_type {prediction_type}." ) # 3. Clip "predicted x_0" __A = self.bit_scale if self.config.clip_sample: __A = torch.clamp(_UpperCamelCase , -scale , _UpperCamelCase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __A = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t __A = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __A = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __A = 0 if t > 0: __A = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=_UpperCamelCase ).to(model_output.device ) __A = (self._get_variance(_UpperCamelCase , predicted_variance=_UpperCamelCase ) ** 0.5) * noise __A = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=_UpperCamelCase , pred_original_sample=_UpperCamelCase ) class __lowercase ( A__ ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : List[str] = 1.0 , ): """simple docstring""" super().__init__() __A = bit_scale __A = ( ddim_bit_scheduler_step if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def __call__( self : List[Any] , UpperCamelCase_ : str = 256 , UpperCamelCase_ : str = 256 , UpperCamelCase_ : Dict = 50 , UpperCamelCase_ : List[Any] = None , UpperCamelCase_ : Any = 1 , UpperCamelCase_ : Optional[Any] = "pil" , UpperCamelCase_ : List[str] = True , **UpperCamelCase_ : Optional[Any] , ): """simple docstring""" __A = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=SCREAMING_SNAKE_CASE__ , ) __A = decimal_to_bits(SCREAMING_SNAKE_CASE__ ) * self.bit_scale __A = latents.to(self.device ) self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual __A = self.unet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).sample # compute the previous noisy sample x_t -> x_t-1 __A = self.scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample __A = bits_to_decimal(SCREAMING_SNAKE_CASE__ ) if output_type == "pil": __A = self.numpy_to_pil(SCREAMING_SNAKE_CASE__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE__ )
637
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging __a = logging.get_logger(__name__) __a = {'''vocab_file''': '''vocab.txt'''} __a = { '''vocab_file''': { '''facebook/esm2_t6_8M_UR50D''': '''https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt''', '''facebook/esm2_t12_35M_UR50D''': '''https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt''', }, } __a = { '''facebook/esm2_t6_8M_UR50D''': 10_24, '''facebook/esm2_t12_35M_UR50D''': 10_24, } def __lowercase ( _UpperCamelCase ) ->Tuple: """simple docstring""" with open(_UpperCamelCase, '''r''' ) as f: lowercase : List[Any] = f.read().splitlines() return [l.strip() for l in lines] class __SCREAMING_SNAKE_CASE ( A__ ): A : Dict = VOCAB_FILES_NAMES A : List[str] = PRETRAINED_VOCAB_FILES_MAP A : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : List[str] = ['input_ids', 'attention_mask'] def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="<cls>" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__="<mask>" , SCREAMING_SNAKE_CASE__="<eos>" , **SCREAMING_SNAKE_CASE__ , ): super().__init__(**SCREAMING_SNAKE_CASE__ ) lowercase : str = load_vocab_file(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = dict(enumerate(self.all_tokens ) ) lowercase : Tuple = {tok: ind for ind, tok in enumerate(self.all_tokens )} lowercase : Tuple = unk_token lowercase : Optional[Any] = cls_token lowercase : Union[str, Any] = pad_token lowercase : Dict = mask_token lowercase : Dict = eos_token lowercase : Any = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): return self._id_to_token.get(SCREAMING_SNAKE_CASE__ , self.unk_token ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): return self._token_to_id.get(SCREAMING_SNAKE_CASE__ , self._token_to_id.get(self.unk_token ) ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): return text.split() def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__=False ): return len(self._id_to_token ) def __lowerCamelCase ( self ): return {token: i for i, token in enumerate(self.all_tokens )} def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): return self._token_to_id.get(SCREAMING_SNAKE_CASE__ , self._token_to_id.get(self.unk_token ) ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): return self._id_to_token.get(SCREAMING_SNAKE_CASE__ , self.unk_token ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): lowercase : List[str] = [self.cls_token_id] lowercase : Dict = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase : Tuple = [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] if token_ids_a is not None: mask += [0] * len(SCREAMING_SNAKE_CASE__ ) + [1] return mask def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(SCREAMING_SNAKE_CASE__ , '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def __lowerCamelCase ( self ): return self.get_vocab_size(with_added_tokens=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = False ): return super()._add_tokens(SCREAMING_SNAKE_CASE__ , special_tokens=SCREAMING_SNAKE_CASE__ )
319
0
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def _snake_case ( snake_case__ : int ): return x + 2 class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: A = "x = 3" A = {} A = evaluate(A_ ,{} ,state=A_ ) assert result == 3 self.assertDictEqual(A_ ,{'x': 3} ) A = "x = y" A = {"y": 5} A = evaluate(A_ ,{} ,state=A_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(A_ ,{'x': 5, 'y': 5} ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: A = "y = add_two(x)" A = {"x": 3} A = evaluate(A_ ,{'add_two': add_two} ,state=A_ ) assert result == 5 self.assertDictEqual(A_ ,{'x': 3, 'y': 5} ) # Won't work without the tool with CaptureStdout() as out: A = evaluate(A_ ,{} ,state=A_ ) assert result is None assert "tried to execute add_two" in out.out def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: A = "x = 3" A = {} A = evaluate(A_ ,{} ,state=A_ ) assert result == 3 self.assertDictEqual(A_ ,{'x': 3} ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: A = "test_dict = {'x': x, 'y': add_two(x)}" A = {"x": 3} A = evaluate(A_ ,{'add_two': add_two} ,state=A_ ) self.assertDictEqual(A_ ,{'x': 3, 'y': 5} ) self.assertDictEqual(A_ ,{'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: A = "x = 3\ny = 5" A = {} A = evaluate(A_ ,{} ,state=A_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(A_ ,{'x': 3, 'y': 5} ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: A = "text = f'This is x: {x}.'" A = {"x": 3} A = evaluate(A_ ,{} ,state=A_ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(A_ ,{'x': 3, 'text': 'This is x: 3.'} ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A = "if x <= 3:\n y = 2\nelse:\n y = 5" A = {"x": 3} A = evaluate(A_ ,{} ,state=A_ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(A_ ,{'x': 3, 'y': 2} ) A = {"x": 8} A = evaluate(A_ ,{} ,state=A_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(A_ ,{'x': 8, 'y': 5} ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: A = "test_list = [x, add_two(x)]" A = {"x": 3} A = evaluate(A_ ,{'add_two': add_two} ,state=A_ ) self.assertListEqual(A_ ,[3, 5] ) self.assertDictEqual(A_ ,{'x': 3, 'test_list': [3, 5]} ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Any: A = "y = x" A = {"x": 3} A = evaluate(A_ ,{} ,state=A_ ) assert result == 3 self.assertDictEqual(A_ ,{'x': 3, 'y': 3} ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: A = "test_list = [x, add_two(x)]\ntest_list[1]" A = {"x": 3} A = evaluate(A_ ,{'add_two': add_two} ,state=A_ ) assert result == 5 self.assertDictEqual(A_ ,{'x': 3, 'test_list': [3, 5]} ) A = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" A = {"x": 3} A = evaluate(A_ ,{'add_two': add_two} ,state=A_ ) assert result == 5 self.assertDictEqual(A_ ,{'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: A = "x = 0\nfor i in range(3):\n x = i" A = {} A = evaluate(A_ ,{'range': range} ,state=A_ ) assert result == 2 self.assertDictEqual(A_ ,{'x': 2, 'i': 2} )
714
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ,A_ : Optional[Any] ,) -> Optional[int]: A = parent A = 13 A = 7 A = True A = True A = True A = 99 A = 32 A = 2 A = 4 A = 37 A = 'gelu' A = 0.1 A = 0.1 A = 512 A = 16 A = 2 A = 0.02 A = 3 A = 4 A = None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,self.num_choices ) A = EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,pad_token_id=1 ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = self.prepare_config_and_inputs() A = True A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : List[str] ,A_ : Optional[int] ,A_ : List[Any] ,A_ : Any ,A_ : Any ) -> Dict: A = TFEsmModel(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) A = [input_ids, input_mask] A = model(A_ ) A = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Any ,A_ : Union[str, Any] ,A_ : Tuple ,A_ : int ,A_ : List[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[str] ,) -> Optional[int]: A = True A = TFEsmModel(config=A_ ) A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } A = model(A_ ) A = [input_ids, input_mask] A = model(A_ ,encoder_hidden_states=A_ ) # Also check the case where encoder outputs are not passed A = model(A_ ,attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : List[Any] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[Any] ) -> Dict: A = TFEsmForMaskedLM(config=A_ ) A = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : str ,A_ : List[Any] ,A_ : int ,A_ : Tuple ,A_ : Optional[int] ) -> Union[str, Any]: A = self.num_labels A = TFEsmForTokenClassification(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) _lowerCamelCase: List[str] = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase: Union[str, Any] = False _lowerCamelCase: List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: A = TFEsmModelTester(self ) A = ConfigTester(self ,config_class=A_ ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = TFEsmModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip('Protein models do not support embedding resizing.' ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip('Protein models do not support embedding resizing.' ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ) assert isinstance(model.get_input_embeddings() ,tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer A = model.get_bias() assert isinstance(A_ ,A_ ) for k, v in name.items(): assert isinstance(A_ ,tf.Variable ) else: A = model.get_output_embeddings() assert x is None A = model.get_bias() assert name is None @require_tf class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A = tf.constant([[0, 1, 2, 3, 4, 5]] ) A = model(A_ )[0] A = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) ,A_ ) # compare the actual values for a slice. A = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-2 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) A = model(A_ )[0] # compare the actual values for a slice. A = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
22
0
import requests _lowerCamelCase : int = """https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=""" def __a ( __lowerCAmelCase ) -> None: # fetching a list of articles in json format SCREAMING_SNAKE_CASE : List[str] = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'] , 1 ): print(F'''{i}.) {article['title']}''' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="""<Your BBC News API key goes here>""")
352
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _lowerCamelCase : List[str] = """\ """ _lowerCamelCase : Optional[int] = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ _lowerCamelCase : List[Any] = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowercase ( datasets.Metric): '''simple docstring''' def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'input_texts': datasets.Value('string' ), } ) , reference_urls=['https://huggingface.co/docs/transformers/perplexity'] , ) def lowerCamelCase_ ( self : List[Any] , snake_case : Optional[int] , snake_case : int , snake_case : int = 16 , snake_case : bool = True , snake_case : Dict=None ): '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": SCREAMING_SNAKE_CASE : Union[str, Any] = 'cuda' else: SCREAMING_SNAKE_CASE : Union[str, Any] = 'cuda' if torch.cuda.is_available() else 'cpu' SCREAMING_SNAKE_CASE : Any = AutoModelForCausalLM.from_pretrained(snake_case ) SCREAMING_SNAKE_CASE : Dict = model.to(snake_case ) SCREAMING_SNAKE_CASE : Union[str, Any] = AutoTokenizer.from_pretrained(snake_case ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: SCREAMING_SNAKE_CASE : str = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(snake_case ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" SCREAMING_SNAKE_CASE : List[str] = model.config.max_length - 1 else: SCREAMING_SNAKE_CASE : Union[str, Any] = model.config.max_length SCREAMING_SNAKE_CASE : Tuple = tokenizer( snake_case , add_special_tokens=snake_case , padding=snake_case , truncation=snake_case , max_length=snake_case , return_tensors='pt' , return_attention_mask=snake_case , ).to(snake_case ) SCREAMING_SNAKE_CASE : List[Any] = encodings['input_ids'] SCREAMING_SNAKE_CASE : Dict = encodings['attention_mask'] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : Optional[Any] = CrossEntropyLoss(reduction='none' ) for start_index in logging.tqdm(range(0 , len(snake_case ) , snake_case ) ): SCREAMING_SNAKE_CASE : Dict = min(start_index + batch_size , len(snake_case ) ) SCREAMING_SNAKE_CASE : List[str] = encoded_texts[start_index:end_index] SCREAMING_SNAKE_CASE : Optional[int] = attn_masks[start_index:end_index] if add_start_token: SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(snake_case ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) SCREAMING_SNAKE_CASE : int = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(snake_case ), attn_mask] , dim=1 ) SCREAMING_SNAKE_CASE : Optional[Any] = encoded_batch with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(snake_case , attention_mask=snake_case ).logits SCREAMING_SNAKE_CASE : Optional[Any] = out_logits[..., :-1, :].contiguous() SCREAMING_SNAKE_CASE : Optional[int] = labels[..., 1:].contiguous() SCREAMING_SNAKE_CASE : Optional[int] = attn_mask[..., 1:].contiguous() SCREAMING_SNAKE_CASE : Optional[int] = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , snake_case ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(snake_case )}
352
1
'''simple docstring''' def __lowerCamelCase ( __snake_case : int, __snake_case : Optional[Any] ) -> int: """simple docstring""" print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""" ) for i in range(__snake_case ): for j in range(__snake_case ): if dist[i][j] != float("""inf""" ): print(int(dist[i][j] ), end="""\t""" ) else: print("""INF""", end="""\t""" ) print() def __lowerCamelCase ( __snake_case : Optional[int], __snake_case : Dict ) -> List[str]: """simple docstring""" A__ : Tuple =[[float("""inf""" ) for _ in range(__snake_case )] for _ in range(__snake_case )] for i in range(__snake_case ): for j in range(__snake_case ): A__ : int =graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__snake_case ): # looping through rows of graph array for i in range(__snake_case ): # looping through columns of graph array for j in range(__snake_case ): if ( dist[i][k] != float("""inf""" ) and dist[k][j] != float("""inf""" ) and dist[i][k] + dist[k][j] < dist[i][j] ): A__ : str =dist[i][k] + dist[k][j] _print_dist(__snake_case, __snake_case ) return dist, v if __name__ == "__main__": __snake_case : Optional[Any] = int(input('Enter number of vertices: ')) __snake_case : Optional[int] = int(input('Enter number of edges: ')) __snake_case : int = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): __snake_case : Dict = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) __snake_case : List[Any] = int(input('Enter source:')) __snake_case : int = int(input('Enter destination:')) __snake_case : Dict = float(input('Enter weight:')) __snake_case : Union[str, Any] = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
687
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case : Optional[int] = logging.get_logger(__name__) __snake_case : Tuple = { 'vocab_file': 'vocab.txt', 'merges_file': 'bpe.codes', } __snake_case : str = { 'vocab_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt', }, 'merges_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes', }, } __snake_case : List[Any] = { 'vinai/phobert-base': 256, 'vinai/phobert-large': 256, } def __lowerCamelCase ( __snake_case : Union[str, Any] ) -> str: """simple docstring""" A__ : Optional[int] =set() A__ : Optional[int] =word[0] for char in word[1:]: pairs.add((prev_char, char) ) A__ : str =char A__ : List[Any] =set(__snake_case ) return pairs class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]="<s>" , lowerCAmelCase_ : List[str]="</s>" , lowerCAmelCase_ : str="</s>" , lowerCAmelCase_ : int="<s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Any="<pad>" , lowerCAmelCase_ : Tuple="<mask>" , **lowerCAmelCase_ : Dict , ) -> Dict: '''simple docstring''' super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , **lowerCAmelCase_ , ) A__ : int =vocab_file A__ : Any =merges_file A__ : Union[str, Any] ={} A__ : Optional[int] =0 A__ : List[Any] =1 A__ : Tuple =2 A__ : Dict =3 self.add_from_file(lowerCAmelCase_ ) A__ : List[str] ={v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding="""utf-8""" ) as merges_handle: A__ : str =merges_handle.read().split("""\n""" )[:-1] A__ : Tuple =[tuple(merge.split()[:-1] ) for merge in merges] A__ : Optional[Any] =dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) A__ : Dict ={} def lowercase__ ( self : Tuple , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ : Dict =[self.cls_token_id] A__ : Union[str, Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self : str , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1] def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A__ : Tuple =[self.sep_token_id] A__ : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' return len(self.encoder ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self : str , lowerCAmelCase_ : Any ) -> Dict: '''simple docstring''' if token in self.cache: return self.cache[token] A__ : int =tuple(lowerCAmelCase_ ) A__ : Optional[int] =tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) A__ : Tuple =get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: A__ : List[Any] =min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A__ , A__ : Tuple =bigram A__ : Optional[int] =[] A__ : Tuple =0 while i < len(lowerCAmelCase_ ): try: A__ : str =word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A__ : Union[str, Any] =j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A__ : Dict =tuple(lowerCAmelCase_ ) A__ : Dict =new_word if len(lowerCAmelCase_ ) == 1: break else: A__ : str =get_pairs(lowerCAmelCase_ ) A__ : Dict ="""@@ """.join(lowerCAmelCase_ ) A__ : Tuple =word[:-4] A__ : Any =word return word def lowercase__ ( self : List[str] , lowerCAmelCase_ : str ) -> Any: '''simple docstring''' A__ : int =[] A__ : Optional[int] =re.findall(R"""\S+\n?""" , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(""" """ ) ) ) return split_tokens def lowercase__ ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> int: '''simple docstring''' return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =""" """.join(lowerCAmelCase_ ).replace("""@@ """ , """""" ).strip() return out_string def lowercase__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return A__ : Optional[Any] =os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A__ : Tuple =os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.vocab_file , lowerCAmelCase_ ) if os.path.abspath(self.merges_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.merges_file , lowerCAmelCase_ ) return out_vocab_file, out_merge_file def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ) -> Any: '''simple docstring''' if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(lowerCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset" ) return A__ : Union[str, Any] =f.readlines() for lineTmp in lines: A__ : List[Any] =lineTmp.strip() A__ : Dict =line.rfind(""" """ ) if idx == -1: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" ) A__ : Tuple =line[:idx] A__ : Tuple =len(self.encoder )
687
1
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( snake_case__ , unittest.TestCase ): '''simple docstring''' A = GPTSanJapaneseTokenizer A = False A = {'do_clean_text': False, 'add_prefix_space': False} def lowerCamelCase__ ( self :Union[str, Any] ) -> Any: """simple docstring""" super().setUp() # fmt: off UpperCamelCase__ = ["こん", "こんに", "にちは", "ばんは", "世界,㔺界", "、", "。", "<BR>", "<SP>", "<TAB>", "<URL>", "<EMAIL>", "<TEL>", "<DATE>", "<PRICE>", "<BLOCK>", "<KIGOU>", "<U2000U2BFF>", "<|emoji1|>", "<unk>", "<|bagoftoken|>", "<|endoftext|>"] # fmt: on UpperCamelCase__ = {"emoji": {"\ud83d\ude00": "<|emoji1|>"}, "emoji_inv": {"<|emoji1|>": "\ud83d\ude00"}} # 😀 UpperCamelCase__ = {"unk_token": "<unk>"} UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["emoji_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.emoji_file , "w" ) as emoji_writer: emoji_writer.write(json.dumps(lowerCamelCase_ ) ) def lowerCamelCase__ ( self :List[Any] , **lowerCamelCase_ :List[str] ) -> Optional[int]: """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def lowerCamelCase__ ( self :List[str] , lowerCamelCase_ :Dict ) -> Tuple: """simple docstring""" UpperCamelCase__ = "こんにちは、世界。 \nこんばんは、㔺界。😀" UpperCamelCase__ = "こんにちは、世界。 \nこんばんは、世界。😀" return input_text, output_text def lowerCamelCase__ ( self :Dict , lowerCamelCase_ :str ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = self.get_input_output_texts(lowerCamelCase_ ) UpperCamelCase__ = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) UpperCamelCase__ = tokenizer.decode(lowerCamelCase_ , clean_up_tokenization_spaces=lowerCamelCase_ ) return text, ids def lowerCamelCase__ ( self :List[str] ) -> List[Any]: """simple docstring""" pass # TODO add if relevant def lowerCamelCase__ ( self :Any ) -> Optional[int]: """simple docstring""" pass # TODO add if relevant def lowerCamelCase__ ( self :Any ) -> Tuple: """simple docstring""" pass # TODO add if relevant def lowerCamelCase__ ( self :List[Any] ) -> Dict: """simple docstring""" UpperCamelCase__ = self.get_tokenizer() # Testing tokenization UpperCamelCase__ = "こんにちは、世界。 こんばんは、㔺界。" UpperCamelCase__ = ["こん", "にちは", "、", "世界", "。", "<SP>", "こん", "ばんは", "、", "㔺界", "。"] UpperCamelCase__ = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) # Testing conversion to ids without special tokens UpperCamelCase__ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] UpperCamelCase__ = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) # Testing conversion to ids with special tokens UpperCamelCase__ = tokens + [tokenizer.unk_token] UpperCamelCase__ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] UpperCamelCase__ = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase__ ( self :Any ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = self.get_tokenizer() # Testing tokenization UpperCamelCase__ = "こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。" UpperCamelCase__ = "こんにちは、、、、世界。こんばんは、、、、世界。" UpperCamelCase__ = tokenizer.encode(lowerCamelCase_ ) UpperCamelCase__ = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) @slow def lowerCamelCase__ ( self :Union[str, Any] ) -> str: """simple docstring""" UpperCamelCase__ = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization UpperCamelCase__ = "こんにちは、世界。" UpperCamelCase__ = "こんばんは、㔺界。😀" UpperCamelCase__ = "こんにちは、世界。こんばんは、世界。😀" UpperCamelCase__ = tokenizer.encode(prefix_text + input_text ) UpperCamelCase__ = tokenizer.encode("" , prefix_text=prefix_text + input_text ) UpperCamelCase__ = tokenizer.encode(lowerCamelCase_ , prefix_text=lowerCamelCase_ ) UpperCamelCase__ = tokenizer.decode(lowerCamelCase_ ) UpperCamelCase__ = tokenizer.decode(lowerCamelCase_ ) UpperCamelCase__ = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) @slow def lowerCamelCase__ ( self :Optional[int] ) -> Any: """simple docstring""" UpperCamelCase__ = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization UpperCamelCase__ = "こんにちは、世界。" UpperCamelCase__ = "こんばんは、㔺界。😀" UpperCamelCase__ = len(tokenizer.encode(lowerCamelCase_ ) ) - 2 UpperCamelCase__ = len(tokenizer.encode(lowerCamelCase_ ) ) - 2 UpperCamelCase__ = [1] + [0] * (len_prefix + len_text + 1) UpperCamelCase__ = [1] * (len_prefix + len_text + 1) + [0] UpperCamelCase__ = [1] + [1] * (len_prefix) + [0] * (len_text + 1) UpperCamelCase__ = tokenizer(prefix_text + input_text ).token_type_ids UpperCamelCase__ = tokenizer("" , prefix_text=prefix_text + input_text ).token_type_ids UpperCamelCase__ = tokenizer(lowerCamelCase_ , prefix_text=lowerCamelCase_ ).token_type_ids self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) @slow def lowerCamelCase__ ( self :int ) -> Dict: """simple docstring""" UpperCamelCase__ = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) UpperCamelCase__ = tokenizer.encode("あンいワ" ) UpperCamelCase__ = tokenizer.encode("" , prefix_text="あンいワ" ) UpperCamelCase__ = tokenizer.encode("いワ" , prefix_text="あン" ) self.assertEqual(tokenizer.decode(lowerCamelCase_ ) , tokenizer.decode(lowerCamelCase_ ) ) self.assertEqual(tokenizer.decode(lowerCamelCase_ ) , tokenizer.decode(lowerCamelCase_ ) ) self.assertNotEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertNotEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def lowerCamelCase__ ( self :Union[str, Any] ) -> List[str]: """simple docstring""" UpperCamelCase__ = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) UpperCamelCase__ = [["武田信玄", "は、"], ["織田信長", "の配下の、"]] UpperCamelCase__ = tokenizer(lowerCamelCase_ , padding=lowerCamelCase_ ) UpperCamelCase__ = tokenizer.batch_encode_plus(lowerCamelCase_ , padding=lowerCamelCase_ ) # fmt: off UpperCamelCase__ = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] UpperCamelCase__ = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] UpperCamelCase__ = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , lowerCamelCase_ ) self.assertListEqual(x_token.token_type_ids , lowerCamelCase_ ) self.assertListEqual(x_token.attention_mask , lowerCamelCase_ ) self.assertListEqual(x_token_a.input_ids , lowerCamelCase_ ) self.assertListEqual(x_token_a.token_type_ids , lowerCamelCase_ ) self.assertListEqual(x_token_a.attention_mask , lowerCamelCase_ ) def lowerCamelCase__ ( self :Union[str, Any] ) -> int: """simple docstring""" pass def lowerCamelCase__ ( self :Tuple ) -> Tuple: """simple docstring""" pass
516
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging A : Union[str, Any] = logging.get_logger(__name__) A : Tuple = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class lowerCAmelCase ( snake_case__ ): '''simple docstring''' A = 'bloom' A = ['past_key_values'] A = { 'num_hidden_layers': 'n_layer', 'num_attention_heads': 'n_head', } def __init__( self :Tuple , lowerCamelCase_ :str=2_5_0_8_8_0 , lowerCamelCase_ :Optional[int]=6_4 , lowerCamelCase_ :Union[str, Any]=2 , lowerCamelCase_ :Optional[int]=8 , lowerCamelCase_ :Any=1e-5 , lowerCamelCase_ :int=0.02 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :Optional[int]=1 , lowerCamelCase_ :Any=2 , lowerCamelCase_ :Optional[Any]=False , lowerCamelCase_ :List[str]=0.0 , lowerCamelCase_ :List[str]=0.0 , lowerCamelCase_ :Tuple=1 , lowerCamelCase_ :Optional[int]=False , **lowerCamelCase_ :Dict , ) -> str: """simple docstring""" UpperCamelCase__ = vocab_size # Backward compatibility with n_embed kwarg UpperCamelCase__ = kwargs.pop("n_embed" , lowerCamelCase_ ) UpperCamelCase__ = hidden_size if n_embed is None else n_embed UpperCamelCase__ = n_layer UpperCamelCase__ = n_head UpperCamelCase__ = layer_norm_epsilon UpperCamelCase__ = initializer_range UpperCamelCase__ = use_cache UpperCamelCase__ = pretraining_tp UpperCamelCase__ = apply_residual_connection_post_layernorm UpperCamelCase__ = hidden_dropout UpperCamelCase__ = attention_dropout UpperCamelCase__ = bos_token_id UpperCamelCase__ = eos_token_id UpperCamelCase__ = slow_but_exact super().__init__(bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) class lowerCAmelCase ( snake_case__ ): '''simple docstring''' A = version.parse('1.12' ) def __init__( self :Tuple , lowerCamelCase_ :PretrainedConfig , lowerCamelCase_ :str = "default" , lowerCamelCase_ :List[PatchingSpec] = None , lowerCamelCase_ :bool = False , ) -> Dict: """simple docstring""" super().__init__(lowerCamelCase_ , task=lowerCamelCase_ , patching_specs=lowerCamelCase_ , use_past=lowerCamelCase_ ) if not getattr(self._config , "pad_token_id" , lowerCamelCase_ ): # TODO: how to do that better? UpperCamelCase__ = 0 @property def lowerCamelCase__ ( self :Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" UpperCamelCase__ = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(lowerCamelCase_ , direction="inputs" , inverted_values_shape=lowerCamelCase_ ) UpperCamelCase__ = {0: "batch", 1: "past_sequence + sequence"} else: UpperCamelCase__ = {0: "batch", 1: "sequence"} return common_inputs @property def lowerCamelCase__ ( self :Union[str, Any] ) -> int: """simple docstring""" return self._config.n_layer @property def lowerCamelCase__ ( self :Tuple ) -> int: """simple docstring""" return self._config.n_head @property def lowerCamelCase__ ( self :Optional[Any] ) -> float: """simple docstring""" return 1e-3 def lowerCamelCase__ ( self :Dict , lowerCamelCase_ :"PreTrainedTokenizer" , lowerCamelCase_ :int = -1 , lowerCamelCase_ :int = -1 , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional["TensorType"] = None , ) -> Mapping[str, Any]: """simple docstring""" UpperCamelCase__ = super(lowerCamelCase_ , self ).generate_dummy_inputs( lowerCamelCase_ , batch_size=lowerCamelCase_ , seq_length=lowerCamelCase_ , is_pair=lowerCamelCase_ , framework=lowerCamelCase_ ) # We need to order the input in the way they appears in the forward() UpperCamelCase__ = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCamelCase__ , UpperCamelCase__ = common_inputs["input_ids"].shape # Not using the same length for past_key_values UpperCamelCase__ = seqlen + 2 UpperCamelCase__ = self._config.hidden_size // self.num_attention_heads UpperCamelCase__ = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) UpperCamelCase__ = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) UpperCamelCase__ = [ (torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ )) for _ in range(self.num_layers ) ] UpperCamelCase__ = common_inputs["attention_mask"] if self.use_past: UpperCamelCase__ = ordered_inputs["attention_mask"].dtype UpperCamelCase__ = torch.cat( [ordered_inputs["attention_mask"], torch.ones(lowerCamelCase_ , lowerCamelCase_ , dtype=lowerCamelCase_ )] , dim=1 ) return ordered_inputs @property def lowerCamelCase__ ( self :int ) -> int: """simple docstring""" return 1_3
516
1
"""simple docstring""" def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return base * power(lowerCAmelCase__ ,(exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('''Raise base to the power of exponent using recursion...''') SCREAMING_SNAKE_CASE : Dict = int(input('''Enter the base: ''').strip()) SCREAMING_SNAKE_CASE : Optional[Any] = int(input('''Enter the exponent: ''').strip()) SCREAMING_SNAKE_CASE : List[str] = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents SCREAMING_SNAKE_CASE : Optional[int] = 1 / result print(f'''{base} to the power of {exponent} is {result}''')
716
"""simple docstring""" import numpy as np def __lowerCamelCase ( lowerCAmelCase__ ): return 1 / (1 + np.exp(-vector )) def __lowerCamelCase ( lowerCAmelCase__ ): return vector * sigmoid(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
554
0
'''simple docstring''' import requests a__ : str = '''https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=''' def __lowerCamelCase ( UpperCAmelCase_ ) ->None: # fetching a list of articles in json format snake_case__ = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'] , 1 ): print(f'''{i}.) {article['title']}''' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='''<Your BBC News API key goes here>''')
368
'''simple docstring''' import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() a__ : Any = logging.get_logger() def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = True ) ->Dict: print(f'''Converting {name}...''' ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": snake_case__ = timm.create_model('levit_128s' , pretrained=UpperCAmelCase_ ) else: snake_case__ = timm.create_model('levit_128' , pretrained=UpperCAmelCase_ ) if hidden_sizes == 1_92: snake_case__ = timm.create_model('levit_192' , pretrained=UpperCAmelCase_ ) if hidden_sizes == 2_56: snake_case__ = timm.create_model('levit_256' , pretrained=UpperCAmelCase_ ) if hidden_sizes == 3_84: snake_case__ = timm.create_model('levit_384' , pretrained=UpperCAmelCase_ ) from_model.eval() snake_case__ = LevitForImageClassificationWithTeacher(UpperCAmelCase_ ).eval() snake_case__ = OrderedDict() snake_case__ = from_model.state_dict() snake_case__ = list(from_model.state_dict().keys() ) snake_case__ = list(our_model.state_dict().keys() ) print(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) ) for i in range(len(UpperCAmelCase_ ) ): snake_case__ = weights[og_keys[i]] our_model.load_state_dict(UpperCAmelCase_ ) snake_case__ = torch.randn((2, 3, 2_24, 2_24) ) snake_case__ = from_model(UpperCAmelCase_ ) snake_case__ = our_model(UpperCAmelCase_ ).logits assert torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ ), "The model logits don't match the original one." snake_case__ = name print(UpperCAmelCase_ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) snake_case__ = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f'''Pushed {checkpoint_name}''' ) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = True ) ->Any: snake_case__ = 'imagenet-1k-id2label.json' snake_case__ = 10_00 snake_case__ = (1, num_labels) snake_case__ = 'huggingface/label-files' snake_case__ = num_labels snake_case__ = json.load(open(hf_hub_download(UpperCAmelCase_ , UpperCAmelCase_ , repo_type='dataset' ) , 'r' ) ) snake_case__ = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()} snake_case__ = idalabel snake_case__ = {v: k for k, v in idalabel.items()} snake_case__ = partial(UpperCAmelCase_ , num_labels=UpperCAmelCase_ , idalabel=UpperCAmelCase_ , labelaid=UpperCAmelCase_ ) snake_case__ = { 'levit-128S': 1_28, 'levit-128': 1_28, 'levit-192': 1_92, 'levit-256': 2_56, 'levit-384': 3_84, } snake_case__ = { 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , UpperCAmelCase_ , names_to_config[model_name] , UpperCAmelCase_ , UpperCAmelCase_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return config, expected_shape if __name__ == "__main__": a__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help='''The name of the model you wish to convert, it must be one of the supported Levit* architecture,''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''levit-dump-folder/''', type=Path, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) a__ : Optional[Any] = parser.parse_args() a__ : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
368
1
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def _SCREAMING_SNAKE_CASE ( _lowercase : Callable[[int | float], int | float] , _lowercase : int | float , _lowercase : int | float , _lowercase : int = 100 , ) ->float: '''simple docstring''' a : str = x_start a : Optional[Any] = fnc(_lowercase ) a : Union[str, Any] = 0.0 for _ in range(_lowercase ): # Approximates curve as a sequence of linear lines and sums their length a : Optional[Any] = (x_end - x_start) / steps + xa a : str = fnc(_lowercase ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step a : Tuple = xa a : Optional[Any] = fxa return length if __name__ == "__main__": def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[Any] ) ->Optional[Any]: '''simple docstring''' return math.sin(10 * x ) print('''f(x) = sin(10 * x)''') print('''The length of the curve from x = -10 to x = 10 is:''') a : Dict = 10 while i <= 100000: print(F'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
31
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch a : List[Any] = random.Random() def _SCREAMING_SNAKE_CASE ( _lowercase : List[str] , _lowercase : int=1.0 , _lowercase : Optional[int]=None , _lowercase : Union[str, Any]=None ) ->Optional[Any]: '''simple docstring''' if rng is None: a : Tuple = global_rng a : Tuple = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class __UpperCamelCase ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=400 , lowerCAmelCase__=2000 , lowerCAmelCase__=1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=1_6000 , lowerCAmelCase__=True , lowerCAmelCase__=80 , lowerCAmelCase__=16 , lowerCAmelCase__=64 , lowerCAmelCase__="hann_window" , lowerCAmelCase__=80 , lowerCAmelCase__=7600 , lowerCAmelCase__=1E-10 , lowerCAmelCase__=True , ) -> Optional[Any]: a : int = parent a : Tuple = batch_size a : Dict = min_seq_length a : Any = max_seq_length a : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a : Union[str, Any] = feature_size a : Tuple = padding_value a : str = sampling_rate a : Dict = do_normalize a : str = num_mel_bins a : List[str] = hop_length a : str = win_length a : Optional[Any] = win_function a : List[str] = fmin a : Any = fmax a : Optional[int] = mel_floor a : Tuple = return_attention_mask def __a ( self ) -> Optional[Any]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def __a ( self , lowerCAmelCase__=False , lowerCAmelCase__=False ) -> Tuple: def _flatten(lowerCAmelCase__ ): return list(itertools.chain(*lowerCAmelCase__ ) ) if equal_length: a : Union[str, Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size a : str = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a : Any = [np.asarray(lowerCAmelCase__ ) for x in speech_inputs] return speech_inputs def __a ( self , lowerCAmelCase__=False , lowerCAmelCase__=False ) -> Dict: if equal_length: a : str = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size a : Any = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a : Optional[int] = [np.asarray(lowerCAmelCase__ ) for x in speech_inputs] return speech_inputs @require_torch class __UpperCamelCase ( a__ , unittest.TestCase ): lowerCamelCase : Tuple =SpeechTaFeatureExtractor def __a ( self ) -> Union[str, Any]: a : Tuple = SpeechTaFeatureExtractionTester(self ) def __a ( self , lowerCAmelCase__ ) -> Union[str, Any]: self.assertTrue(np.all(np.mean(lowerCAmelCase__ , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCAmelCase__ , axis=0 ) - 1 ) < 1E-3 ) ) def __a ( self ) -> Union[str, Any]: # Tests that all call wrap to encode_plus and batch_encode_plus a : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a : Any = [np.asarray(lowerCAmelCase__ ) for speech_input in speech_inputs] # Test not batched input a : Optional[int] = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values a : Optional[Any] = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) # Test batched a : int = feat_extract(lowerCAmelCase__ , return_tensors="np" ).input_values a : int = feat_extract(lowerCAmelCase__ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) def __a ( self ) -> Optional[Any]: a : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a : Dict = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a : int = ["longest", "max_length", "do_not_pad"] a : Tuple = [None, 1600, None] for max_length, padding in zip(lowerCAmelCase__ , lowerCAmelCase__ ): a : Dict = feat_extract(lowerCAmelCase__ , padding=lowerCAmelCase__ , max_length=lowerCAmelCase__ , return_tensors="np" ) a : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def __a ( self ) -> str: a : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a : List[str] = range(800 , 1400 , 200 ) a : List[str] = [floats_list((1, x) )[0] for x in lengths] a : Any = ["longest", "max_length", "do_not_pad"] a : Any = [None, 1600, None] for max_length, padding in zip(lowerCAmelCase__ , lowerCAmelCase__ ): a : List[Any] = feat_extract(lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding=lowerCAmelCase__ ) a : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def __a ( self ) -> Dict: a : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a : int = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a : Union[str, Any] = feat_extract( lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=1000 , padding="max_length" , return_tensors="np" ) a : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __a ( self ) -> Dict: a : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a : List[Any] = feat_extract( lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=1000 , padding="longest" , return_tensors="np" ) a : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) a : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a : int = feat_extract( lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=2000 , padding="longest" , return_tensors="np" ) a : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) def __a ( self ) -> List[str]: a : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a : Any = np.random.rand(100 ).astype(np.floataa ) a : Optional[Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: a : str = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) a : List[str] = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __a ( self ) -> Tuple: # Tests that all call wrap to encode_plus and batch_encode_plus a : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a : Tuple = [np.asarray(lowerCAmelCase__ ) for speech_input in speech_inputs] # Test feature size a : Union[str, Any] = feature_extractor(audio_target=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="np" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input a : Dict = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_values a : List[Any] = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) # Test batched a : Optional[int] = feature_extractor(lowerCAmelCase__ , return_tensors="np" ).input_values a : Any = feature_extractor(lowerCAmelCase__ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. a : Optional[Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] a : List[Any] = np.asarray(lowerCAmelCase__ ) a : str = feature_extractor(lowerCAmelCase__ , return_tensors="np" ).input_values a : str = feature_extractor(lowerCAmelCase__ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) def __a ( self ) -> str: a : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_target() a : Any = self.feature_extraction_class(**self.feat_extract_dict ) a : Union[str, Any] = feat_extract.model_input_names[0] a : List[str] = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) for x, y in zip(lowerCAmelCase__ , processed_features[input_name] ) ) ) a : Tuple = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCAmelCase__ ) a : List[Any] = BatchFeature({input_name: speech_inputs} , tensor_type="np" ) a : Tuple = processed_features[input_name] if len(batch_features_input.shape ) < 3: a : Dict = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __a ( self ) -> Tuple: a : Tuple = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCAmelCase__ ) a : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) a : Optional[int] = feat_extract.model_input_names[0] a : List[Any] = BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) a : Tuple = processed_features[input_name] if len(batch_features_input.shape ) < 3: a : List[str] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __a ( self ) -> Optional[Any]: a : Dict = self.feature_extraction_class(**self.feat_extract_dict ) a : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target() a : Optional[Any] = feat_extract.model_input_names[0] a : List[str] = BatchFeature({input_name: speech_inputs} ) a : Tuple = feat_extract.num_mel_bins # hack! a : List[Any] = feat_extract.pad(lowerCAmelCase__ , padding="longest" , return_tensors="np" )[input_name] a : Any = feat_extract.pad(lowerCAmelCase__ , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def __a ( self ) -> Union[str, Any]: a : Any = self.feat_extract_dict a : Optional[Any] = True a : Union[str, Any] = self.feature_extraction_class(**lowerCAmelCase__ ) a : Any = self.feat_extract_tester.prepare_inputs_for_target() a : Dict = [len(lowerCAmelCase__ ) for x in speech_inputs] a : int = feat_extract.model_input_names[0] a : List[Any] = BatchFeature({input_name: speech_inputs} ) a : Union[str, Any] = feat_extract.num_mel_bins # hack! a : Dict = feat_extract.pad(lowerCAmelCase__ , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , lowerCAmelCase__ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , lowerCAmelCase__ ) def __a ( self ) -> Union[str, Any]: a : Tuple = self.feat_extract_dict a : str = True a : Optional[Any] = self.feature_extraction_class(**lowerCAmelCase__ ) a : List[Any] = self.feat_extract_tester.prepare_inputs_for_target() a : Dict = [len(lowerCAmelCase__ ) for x in speech_inputs] a : Optional[Any] = feat_extract.model_input_names[0] a : str = BatchFeature({input_name: speech_inputs} ) a : Optional[Any] = min(lowerCAmelCase__ ) a : List[Any] = feat_extract.num_mel_bins # hack! a : Any = feat_extract.pad( lowerCAmelCase__ , padding="max_length" , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="np" ) self.assertIn("attention_mask" , lowerCAmelCase__ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def __a ( self , lowerCAmelCase__ ) -> Optional[int]: from datasets import load_dataset a : Tuple = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech a : Optional[Any] = ds.sort("id" ).select(range(lowerCAmelCase__ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def __a ( self ) -> Union[str, Any]: # fmt: off a : List[Any] = torch.tensor( [2.3_804E-03, 2.0_752E-03, 1.9_836E-03, 2.1_057E-03, 1.6_174E-03, 3.0_518E-04, 9.1_553E-05, 3.3_569E-04, 9.7_656E-04, 1.8_311E-03, 2.0_142E-03, 2.1_057E-03, 1.7_395E-03, 4.5_776E-04, -3.9_673E-04, 4.5_776E-04, 1.0_071E-03, 9.1_553E-05, 4.8_828E-04, 1.1_597E-03, 7.3_242E-04, 9.4_604E-04, 1.8_005E-03, 1.8_311E-03, 8.8_501E-04, 4.2_725E-04, 4.8_828E-04, 7.3_242E-04, 1.0_986E-03, 2.1_057E-03] ) # fmt: on a : List[str] = self._load_datasamples(1 ) a : Union[str, Any] = SpeechTaFeatureExtractor() a : str = feature_extractor(lowerCAmelCase__ , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 9_3680) ) self.assertTrue(torch.allclose(input_values[0, :30] , lowerCAmelCase__ , atol=1E-6 ) ) def __a ( self ) -> Union[str, Any]: # fmt: off a : Tuple = torch.tensor( [-2.6_870, -3.0_104, -3.1_356, -3.5_352, -3.0_044, -3.0_353, -3.4_719, -3.6_777, -3.1_520, -2.9_435, -2.6_553, -2.8_795, -2.9_944, -2.5_921, -3.0_279, -3.0_386, -3.0_864, -3.1_291, -3.2_353, -2.7_444, -2.6_831, -2.7_287, -3.1_761, -3.1_571, -3.2_726, -3.0_582, -3.1_007, -3.4_533, -3.4_695, -3.0_998] ) # fmt: on a : Dict = self._load_datasamples(1 ) a : Tuple = SpeechTaFeatureExtractor() a : Optional[int] = feature_extractor(audio_target=lowerCAmelCase__ , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , lowerCAmelCase__ , atol=1E-4 ) )
31
1
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class A ( SCREAMING_SNAKE_CASE__ ): def __init__( self : Any , __magic_name__ : pyspark.sql.DataFrame , __magic_name__ : Optional[NamedSplit] = None , __magic_name__ : Optional[Features] = None , __magic_name__ : bool = True , __magic_name__ : str = None , __magic_name__ : bool = False , __magic_name__ : str = None , __magic_name__ : bool = True , __magic_name__ : str = "arrow" , **__magic_name__ : int , ): """simple docstring""" super().__init__( split=__magic_name__ , features=__magic_name__ , cache_dir=__magic_name__ , keep_in_memory=__magic_name__ , streaming=__magic_name__ , **__magic_name__ , ) lowerCAmelCase__ = load_from_cache_file lowerCAmelCase__ = file_format lowerCAmelCase__ = Spark( df=__magic_name__ , features=__magic_name__ , cache_dir=__magic_name__ , working_dir=__magic_name__ , **__magic_name__ , ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowerCAmelCase__ = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=__magic_name__ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
48
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __a : Tuple = Mapping[str, np.ndarray] __a : int = Mapping[str, Any] # Is a nested dict. __a : Union[str, Any] = 0.01 @dataclasses.dataclass(frozen=snake_case_ ) class UpperCAmelCase: """simple docstring""" a : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. a : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. a : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. a : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. a : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions a : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files a : Optional[str] = None # Templates used to generate this protein (prediction-only) a : Optional[Sequence[str]] = None # Chain corresponding to each parent a : Optional[Sequence[int]] = None def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Protein: lowercase__ : str = r"(\[[A-Z]+\]\n)" lowercase__ : List[str] = [tag.strip() for tag in re.split(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0] lowercase__ : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] ,[l.split("\n" ) for l in tags[1::2]] ) lowercase__ : List[str] = ["N", "CA", "C"] lowercase__ : Optional[int] = None lowercase__ : List[Any] = None lowercase__ : Optional[Any] = None for g in groups: if "[PRIMARY]" == g[0]: lowercase__ : List[Any] = g[1][0].strip() for i in range(len(SCREAMING_SNAKE_CASE_ ) ): if seq[i] not in residue_constants.restypes: lowercase__ : Optional[int] = "X" # FIXME: strings are immutable lowercase__ : List[str] = np.array( [residue_constants.restype_order.get(SCREAMING_SNAKE_CASE_ ,residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: lowercase__ : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(SCREAMING_SNAKE_CASE_ ,g[1][axis].split() ) ) ) lowercase__ : Tuple = np.array(SCREAMING_SNAKE_CASE_ ) lowercase__ : int = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(SCREAMING_SNAKE_CASE_ ): lowercase__ : Tuple = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: lowercase__ : int = np.array(list(map({"-": 0, "+": 1}.get ,g[1][0].strip() ) ) ) lowercase__ : Tuple = np.zeros( ( len(SCREAMING_SNAKE_CASE_ ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(SCREAMING_SNAKE_CASE_ ): lowercase__ : Optional[int] = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=SCREAMING_SNAKE_CASE_ ,atom_mask=SCREAMING_SNAKE_CASE_ ,aatype=SCREAMING_SNAKE_CASE_ ,residue_index=np.arange(len(SCREAMING_SNAKE_CASE_ ) ) ,b_factors=SCREAMING_SNAKE_CASE_ ,) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = 0 ) -> List[str]: lowercase__ : List[str] = [] lowercase__ : Union[str, Any] = prot.remark if remark is not None: pdb_headers.append(F"""REMARK {remark}""" ) lowercase__ : List[Any] = prot.parents lowercase__ : Any = prot.parents_chain_index if parents is not None and parents_chain_index is not None: lowercase__ : List[str] = [p for i, p in zip(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if i == chain_id] if parents is None or len(SCREAMING_SNAKE_CASE_ ) == 0: lowercase__ : List[str] = ["N/A"] pdb_headers.append(F"""PARENT {" ".join(SCREAMING_SNAKE_CASE_ )}""" ) return pdb_headers def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> str: lowercase__ : List[str] = [] lowercase__ : Optional[Any] = pdb_str.split("\n" ) lowercase__ : Any = prot.remark if remark is not None: out_pdb_lines.append(F"""REMARK {remark}""" ) lowercase__ : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: lowercase__ : Optional[int] = [] if prot.parents_chain_index is not None: lowercase__ : Dict[str, List[str]] = {} for p, i in zip(prot.parents ,prot.parents_chain_index ): parent_dict.setdefault(str(SCREAMING_SNAKE_CASE_ ) ,[] ) parent_dict[str(SCREAMING_SNAKE_CASE_ )].append(SCREAMING_SNAKE_CASE_ ) lowercase__ : int = max([int(SCREAMING_SNAKE_CASE_ ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): lowercase__ : List[Any] = parent_dict.get(str(SCREAMING_SNAKE_CASE_ ) ,["N/A"] ) parents_per_chain.append(SCREAMING_SNAKE_CASE_ ) else: parents_per_chain.append(list(prot.parents ) ) else: lowercase__ : List[str] = [["N/A"]] def make_parent_line(SCREAMING_SNAKE_CASE_ ) -> str: return F"""PARENT {" ".join(SCREAMING_SNAKE_CASE_ )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) lowercase__ : Dict = 0 for i, l in enumerate(SCREAMING_SNAKE_CASE_ ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(SCREAMING_SNAKE_CASE_ ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(SCREAMING_SNAKE_CASE_ ): lowercase__ : int = parents_per_chain[chain_counter] else: lowercase__ : Any = ["N/A"] out_pdb_lines.append(make_parent_line(SCREAMING_SNAKE_CASE_ ) ) return "\n".join(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> str: lowercase__ : List[str] = residue_constants.restypes + ["X"] def res_atoa(SCREAMING_SNAKE_CASE_ ) -> str: return residue_constants.restype_atoa.get(restypes[r] ,"UNK" ) lowercase__ : Optional[int] = residue_constants.atom_types lowercase__ : List[str] = [] lowercase__ : int = prot.atom_mask lowercase__ : str = prot.aatype lowercase__ : List[str] = prot.atom_positions lowercase__ : Optional[Any] = prot.residue_index.astype(np.intaa ) lowercase__ : Tuple = prot.b_factors lowercase__ : Union[str, Any] = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) lowercase__ : List[Any] = get_pdb_headers(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: pdb_lines.extend(SCREAMING_SNAKE_CASE_ ) lowercase__ : Tuple = aatype.shape[0] lowercase__ : List[str] = 1 lowercase__ : Tuple = 0 lowercase__ : List[str] = string.ascii_uppercase lowercase__ : Optional[int] = None # Add all atom sites. for i in range(SCREAMING_SNAKE_CASE_ ): lowercase__ : Dict = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(SCREAMING_SNAKE_CASE_ ,atom_positions[i] ,atom_mask[i] ,b_factors[i] ): if mask < 0.5: continue lowercase__ : Tuple = "ATOM" lowercase__ : Optional[int] = atom_name if len(SCREAMING_SNAKE_CASE_ ) == 4 else F""" {atom_name}""" lowercase__ : List[Any] = "" lowercase__ : int = "" lowercase__ : Any = 1.00 lowercase__ : Optional[Any] = atom_name[0] # Protein supports only C, N, O, S, this works. lowercase__ : Optional[int] = "" lowercase__ : int = "A" if chain_index is not None: lowercase__ : Dict = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! lowercase__ : Optional[int] = ( F"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" F"""{res_name_a:>3} {chain_tag:>1}""" F"""{residue_index[i]:>4}{insertion_code:>1} """ F"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" F"""{occupancy:>6.2f}{b_factor:>6.2f} """ F"""{element:>2}{charge:>2}""" ) pdb_lines.append(SCREAMING_SNAKE_CASE_ ) atom_index += 1 lowercase__ : Dict = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: lowercase__ : Any = True lowercase__ : int = chain_index[i + 1] if should_terminate: # Close the chain. lowercase__ : List[str] = "TER" lowercase__ : str = ( F"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(SCREAMING_SNAKE_CASE_ ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> np.ndarray: return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,) -> Protein: return Protein( aatype=features["aatype"] ,atom_positions=result["final_atom_positions"] ,atom_mask=result["final_atom_mask"] ,residue_index=features["residue_index"] + 1 ,b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) ,chain_index=SCREAMING_SNAKE_CASE_ ,remark=SCREAMING_SNAKE_CASE_ ,parents=SCREAMING_SNAKE_CASE_ ,parents_chain_index=SCREAMING_SNAKE_CASE_ ,)
397
0
'''simple docstring''' import argparse from collections import defaultdict def __a ( __lowerCamelCase : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] ) -> List[str]: '''simple docstring''' lowercase_ = f'{file}_{class_name}_{test_name}' done_test[_id] += 1 with open(SCREAMING_SNAKE_CASE_ , "r" ) as f: lowercase_ = f.readlines() lowercase_ = f'class {class_name}(' lowercase_ = f'{4 * " "}def {test_name}(' lowercase_ = f'{8 * " "}{correct_line.split()[0]}' lowercase_ = f'{16 * " "}{correct_line.split()[0]}' lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = 0 lowercase_ = 0 lowercase_ = [] for line in lines: if line.startswith(SCREAMING_SNAKE_CASE_ ): lowercase_ = True elif in_class and line.startswith(SCREAMING_SNAKE_CASE_ ): lowercase_ = True elif in_class and in_func and (line.startswith(SCREAMING_SNAKE_CASE_ ) or line.startswith(SCREAMING_SNAKE_CASE_ )): lowercase_ = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: lowercase_ = True if in_class and in_func and in_line: if ")" not in line: continue else: lowercase_ = True if in_class and in_func and in_line and insert_line: new_lines.append(f'{spaces * " "}{correct_line}' ) lowercase_ = False else: new_lines.append(SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ , "w" ) as f: for line in new_lines: f.write(SCREAMING_SNAKE_CASE_ ) def __a ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any=None ) -> str: '''simple docstring''' if fail is not None: with open(SCREAMING_SNAKE_CASE_ , "r" ) as f: lowercase_ = {l.strip() for l in f.readlines()} else: lowercase_ = None with open(SCREAMING_SNAKE_CASE_ , "r" ) as f: lowercase_ = f.readlines() lowercase_ = defaultdict(SCREAMING_SNAKE_CASE_ ) for line in correct_lines: lowercase_ = line.split(";" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCAmelCase_ : Dict = argparse.ArgumentParser() parser.add_argument("--correct_filename", help="filename of tests with expected result") parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None) lowerCAmelCase_ : Optional[int] = parser.parse_args() main(args.correct_filename, args.fail_filename)
703
'''simple docstring''' import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline lowerCAmelCase_ : Union[str, Any] = datasets.utils.logging.get_logger(__name__) @dataclass class lowercase ( datasets.BuilderConfig ): lowerCamelCase_ =None lowerCamelCase_ ="utf-8" lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =True # deprecated lowerCamelCase_ =None # deprecated lowerCamelCase_ =1_0 << 2_0 # 10MB lowerCamelCase_ =None class lowercase ( datasets.ArrowBasedBuilder ): lowerCamelCase_ =JsonConfig def __UpperCAmelCase ( self : int) -> List[str]: if self.config.block_size is not None: logger.warning("The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead") lowercase_ = self.config.block_size if self.config.use_threads is not True: logger.warning( "The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.") if self.config.newlines_in_values is not None: raise ValueError("The JSON loader parameter `newlines_in_values` is no longer supported") return datasets.DatasetInfo(features=self.config.features) def __UpperCAmelCase ( self : Any , __lowerCAmelCase : int) -> Any: if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}') lowercase_ = dl_manager.download_and_extract(self.config.data_files) if isinstance(__lowerCAmelCase , (str, list, tuple)): lowercase_ = data_files if isinstance(__lowerCAmelCase , __lowerCAmelCase): lowercase_ = [files] lowercase_ = [dl_manager.iter_files(__lowerCAmelCase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files})] lowercase_ = [] for split_name, files in data_files.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase): lowercase_ = [files] lowercase_ = [dl_manager.iter_files(__lowerCAmelCase) for file in files] splits.append(datasets.SplitGenerator(name=__lowerCAmelCase , gen_kwargs={"files": files})) return splits def __UpperCAmelCase ( self : Any , __lowerCAmelCase : pa.Table) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features) - set(pa_table.column_names): lowercase_ = self.config.features.arrow_schema.field(__lowerCAmelCase).type lowercase_ = pa_table.append_column(__lowerCAmelCase , pa.array([None] * len(__lowerCAmelCase) , type=__lowerCAmelCase)) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example lowercase_ = table_cast(__lowerCAmelCase , self.config.features.arrow_schema) return pa_table def __UpperCAmelCase ( self : List[Any] , __lowerCAmelCase : List[Any]) -> List[Any]: for file_idx, file in enumerate(itertools.chain.from_iterable(__lowerCAmelCase)): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__lowerCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: lowercase_ = json.load(__lowerCAmelCase) # We keep only the field we are interested in lowercase_ = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__lowerCAmelCase , (list, tuple)): lowercase_ = set().union(*[row.keys() for row in dataset]) lowercase_ = {col: [row.get(__lowerCAmelCase) for row in dataset] for col in keys} else: lowercase_ = dataset lowercase_ = pa.Table.from_pydict(__lowerCAmelCase) yield file_idx, self._cast_table(__lowerCAmelCase) # If the file has one json object per line else: with open(__lowerCAmelCase , "rb") as f: lowercase_ = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small lowercase_ = max(self.config.chunksize // 32 , 16 << 10) lowercase_ = ( self.config.encoding_errors if self.config.encoding_errors is not None else "strict" ) while True: lowercase_ = f.read(self.config.chunksize) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__lowerCAmelCase) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": lowercase_ = batch.decode(self.config.encoding , errors=__lowerCAmelCase).encode("utf-8") try: while True: try: lowercase_ = paj.read_json( io.BytesIO(__lowerCAmelCase) , read_options=paj.ReadOptions(block_size=__lowerCAmelCase)) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__lowerCAmelCase , pa.ArrowInvalid) and "straddling" not in str(__lowerCAmelCase) or block_size > len(__lowerCAmelCase) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F'Batch of {len(__lowerCAmelCase)} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.') block_size *= 2 except pa.ArrowInvalid as e: try: with open( __lowerCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: lowercase_ = json.load(__lowerCAmelCase) except json.JSONDecodeError: logger.error(F'Failed to read file \'{file}\' with error {type(__lowerCAmelCase)}: {e}') raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__lowerCAmelCase , __lowerCAmelCase): # list is the only sequence type supported in JSON try: lowercase_ = set().union(*[row.keys() for row in dataset]) lowercase_ = {col: [row.get(__lowerCAmelCase) for row in dataset] for col in keys} lowercase_ = pa.Table.from_pydict(__lowerCAmelCase) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F'Failed to read file \'{file}\' with error {type(__lowerCAmelCase)}: {e}') raise ValueError(F'Not able to read records in the JSON file at {file}.') from None yield file_idx, self._cast_table(__lowerCAmelCase) break else: logger.error(F'Failed to read file \'{file}\' with error {type(__lowerCAmelCase)}: {e}') raise ValueError( F'Not able to read records in the JSON file at {file}. ' F'You should probably indicate the field of the JSON file containing your records. ' F'This JSON file contain the following fields: {str(list(dataset.keys()))}. ' F'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ') from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__lowerCAmelCase) batch_idx += 1
461
0
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline a__ = { '''n_samples''': 64, '''horizon''': 32, '''num_inference_steps''': 20, '''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network '''scale_grad_by_std''': True, '''scale''': 0.1, '''eta''': 0.0, '''t_grad_cutoff''': 2, '''device''': '''cpu''', } if __name__ == "__main__": a__ = '''hopper-medium-v2''' a__ = gym.make(env_name) a__ = ValueGuidedRLPipeline.from_pretrained( '''bglick13/hopper-medium-v2-value-function-hor32''', env=env, ) env.seed(0) a__ = env.reset() a__ = 0 a__ = 0 a__ = 1000 a__ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy a__ = pipeline(obs, planning_horizon=32) # execute action in environment a__ , a__ , a__ , a__ = env.step(denorm_actions) a__ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f'''Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:''' f''' {total_score}''' ) # save observations for rendering rollout.append(next_observation.copy()) a__ = next_observation except KeyboardInterrupt: pass print(f'''Total reward: {total_reward}''')
14
'''simple docstring''' def A_ ( snake_case , snake_case ): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) SCREAMING_SNAKE_CASE:int = str(bin(snake_case ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE:Dict = str(bin(snake_case ) )[2:] SCREAMING_SNAKE_CASE:List[Any] = max(len(snake_case ) , len(snake_case ) ) return "0b" + "".join( str(int("1" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(snake_case ) , b_binary.zfill(snake_case ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
143
0
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging lowercase : Any = logging.get_logger(__name__) lowercase : List[str] = '▁' lowercase : Tuple = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } lowercase : str = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } lowercase : Optional[int] = { 'facebook/m2m100_418M': 10_24, } # fmt: off lowercase : Union[str, Any] = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class A ( __snake_case ): __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = ['''input_ids''', '''attention_mask'''] __magic_name__ = [] __magic_name__ = [] def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="<s>" , SCREAMING_SNAKE_CASE="</s>" , SCREAMING_SNAKE_CASE="</s>" , SCREAMING_SNAKE_CASE="<pad>" , SCREAMING_SNAKE_CASE="<unk>" , SCREAMING_SNAKE_CASE="m2m100" , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE=8 , **SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" A : str = {} if sp_model_kwargs is None else sp_model_kwargs A : str = language_codes A : Any = FAIRSEQ_LANGUAGE_CODES[language_codes] A : List[str] = {lang_code: F'__{lang_code}__' for lang_code in fairseq_language_code} A : Tuple = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(SCREAMING_SNAKE_CASE ) for lang_code in fairseq_language_code if self.get_lang_token(SCREAMING_SNAKE_CASE ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=SCREAMING_SNAKE_CASE , tgt_lang=SCREAMING_SNAKE_CASE , bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , language_codes=SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) A : List[str] = vocab_file A : Dict = load_json(SCREAMING_SNAKE_CASE ) A : Any = {v: k for k, v in self.encoder.items()} A : int = spm_file A : Dict = load_spm(SCREAMING_SNAKE_CASE , self.sp_model_kwargs ) A : int = len(self.encoder ) A : Dict = { self.get_lang_token(SCREAMING_SNAKE_CASE ): self.encoder_size + i for i, lang_code in enumerate(SCREAMING_SNAKE_CASE ) } A : List[str] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(SCREAMING_SNAKE_CASE )} A : List[Any] = {v: k for k, v in self.lang_token_to_id.items()} A : Any = src_lang if src_lang is not None else '''en''' A : Dict = tgt_lang A : str = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) A : List[str] = num_madeup_words @property def __lowerCAmelCase ( self ) -> int: """simple docstring""" return len(self.encoder ) + len(self.lang_token_to_id ) @property def __lowerCAmelCase ( self ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" A : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" return self.sp_model.encode(SCREAMING_SNAKE_CASE , out_type=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(SCREAMING_SNAKE_CASE , self.encoder[self.unk_token] ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(SCREAMING_SNAKE_CASE , self.unk_token ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" A : List[Any] = [] A : str = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE ) + token A : Tuple = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE ) return out_string.strip() def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE , token_ids_a=SCREAMING_SNAKE_CASE , already_has_special_tokens=SCREAMING_SNAKE_CASE ) A : Any = [1] * len(self.prefix_tokens ) A : Dict = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(SCREAMING_SNAKE_CASE )) + suffix_ones return prefix_ones + ([0] * len(SCREAMING_SNAKE_CASE )) + ([0] * len(SCREAMING_SNAKE_CASE )) + suffix_ones def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : List[Any] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: """simple docstring""" A : str = self.__dict__.copy() A : Optional[Any] = None return state def __setstate__( self , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" A : Any = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A : Union[str, Any] = {} A : Optional[Any] = load_spm(self.spm_file , self.sp_model_kwargs ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" A : List[str] = Path(SCREAMING_SNAKE_CASE ) if not save_dir.is_dir(): raise OSError(F'{save_directory} should be a directory' ) A : Optional[Any] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) A : int = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , SCREAMING_SNAKE_CASE ) if os.path.abspath(self.spm_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.spm_file ): with open(SCREAMING_SNAKE_CASE , '''wb''' ) as fi: A : Tuple = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE ) return (str(SCREAMING_SNAKE_CASE ), str(SCREAMING_SNAKE_CASE )) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = "en" , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = "ro" , **SCREAMING_SNAKE_CASE , ) -> BatchEncoding: """simple docstring""" A : Union[str, Any] = src_lang A : Any = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) A : List[str] = src_lang A : List[Any] = self(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) A : Tuple = self.get_lang_id(SCREAMING_SNAKE_CASE ) A : str = tgt_lang_id return inputs def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" self.set_src_lang_special_tokens(self.src_lang ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" A : str = self.get_lang_token(SCREAMING_SNAKE_CASE ) A : Dict = self.lang_token_to_id[lang_token] A : List[str] = [self.cur_lang_id] A : str = [self.eos_token_id] def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" A : Optional[Any] = self.get_lang_token(SCREAMING_SNAKE_CASE ) A : List[str] = self.lang_token_to_id[lang_token] A : List[Any] = [self.cur_lang_id] A : List[str] = [self.eos_token_id] def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return self.lang_code_to_token[lang] def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" A : Dict = self.get_lang_token(SCREAMING_SNAKE_CASE ) return self.lang_token_to_id[lang_token] def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : str = sentencepiece.SentencePieceProcessor(**snake_case__ ) spm.Load(str(snake_case__ ) ) return spm def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' with open(snake_case__ , '''r''' ) as f: return json.load(snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' with open(snake_case__ , '''w''' ) as f: json.dump(snake_case__ , snake_case__ , indent=2 )
716
'''simple docstring''' import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowercase : Optional[int] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. lowercase : Tuple = direct_transformers_import(PATH_TO_TRANSFORMERS) lowercase : int = transformers.models.auto.configuration_auto.CONFIG_MAPPING lowercase : Tuple = { # used to compute the property `self.chunk_length` 'EncodecConfig': ['overlap'], # used as `self.bert_model = BertModel(config, ...)` 'DPRConfig': True, # not used in modeling files, but it's an important information 'FSMTConfig': ['langs'], # used internally in the configuration class file 'GPTNeoConfig': ['attention_types'], # used internally in the configuration class file 'EsmConfig': ['is_folding_model'], # used during training (despite we don't have training script for these models yet) 'Mask2FormerConfig': ['ignore_value'], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) 'OneFormerConfig': ['ignore_value', 'norm'], # used during preprocessing and collation, see `collating_graphormer.py` 'GraphormerConfig': ['spatial_pos_max'], # used internally in the configuration class file 'T5Config': ['feed_forward_proj'], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally 'MT5Config': ['feed_forward_proj', 'tokenizer_class'], 'UMT5Config': ['feed_forward_proj', 'tokenizer_class'], # used internally in the configuration class file 'LongT5Config': ['feed_forward_proj'], # used internally in the configuration class file 'SwitchTransformersConfig': ['feed_forward_proj'], # having default values other than `1e-5` - we can't fix them without breaking 'BioGptConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'GLPNConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'SegformerConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'CvtConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'PerceiverConfig': ['layer_norm_eps'], # used internally to calculate the feature size 'InformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'TimeSeriesTransformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'AutoformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate `mlp_dim` 'SamVisionConfig': ['mlp_ratio'], # For (head) training, but so far not implemented 'ClapAudioConfig': ['num_classes'], # Not used, but providing useful information to users 'SpeechT5HifiGanConfig': ['sampling_rate'], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { 'CLIPSegConfig': True, 'DeformableDetrConfig': True, 'DetaConfig': True, 'DinatConfig': True, 'DonutSwinConfig': True, 'EfficientFormerConfig': True, 'FSMTConfig': True, 'JukeboxConfig': True, 'LayoutLMv2Config': True, 'MaskFormerSwinConfig': True, 'MT5Config': True, 'NatConfig': True, 'OneFormerConfig': True, 'PerceiverConfig': True, 'RagConfig': True, 'SpeechT5Config': True, 'SwinConfig': True, 'Swin2SRConfig': True, 'Swinv2Config': True, 'SwitchTransformersConfig': True, 'TableTransformerConfig': True, 'TapasConfig': True, 'TransfoXLConfig': True, 'UniSpeechConfig': True, 'UniSpeechSatConfig': True, 'WavLMConfig': True, 'WhisperConfig': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) 'JukeboxPriorConfig': True, # TODO: @Younes (for `is_decoder`) 'Pix2StructTextConfig': True, } ) def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : List[str] = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F'config.{attribute}' in modeling_source or F'getattr(config, "{attribute}"' in modeling_source or F'getattr(self.config, "{attribute}"' in modeling_source ): A : Dict = True # Deal with multi-line cases elif ( re.search( RF'getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"' , snake_case__ , ) is not None ): A : int = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: A : Optional[Any] = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files A : Tuple = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] A : List[Any] = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed A : List[Any] = True if not attribute_used: A : str = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: A : Tuple = True elif attribute in ["tie_word_embeddings"] and default_value is False: A : Optional[Any] = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: A : Union[str, Any] = True elif attribute.endswith('''_token_id''' ): A : Dict = True # configuration class specific cases if not case_allowed: A : Union[str, Any] = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) A : List[str] = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : List[Any] = dict(inspect.signature(config_class.__init__ ).parameters ) A : Tuple = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] A : int = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass A : Dict = {} if len(config_class.attribute_map ) > 0: A : str = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files A : Optional[Any] = inspect.getsourcefile(snake_case__ ) A : Optional[int] = os.path.dirname(snake_case__ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. A : Union[str, Any] = [os.path.join(snake_case__ , snake_case__ ) for fn in os.listdir(snake_case__ ) if fn.startswith('''modeling_''' )] # Get the source code strings A : List[Any] = [] for path in modeling_paths: if os.path.isfile(snake_case__ ): with open(snake_case__ ) as fp: modeling_sources.append(fp.read() ) A : str = [] for config_param, default_value in zip(snake_case__ , snake_case__ ): # `attributes` here is all the variant names for `config_param` A : Union[str, Any] = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(snake_case__ , snake_case__ , snake_case__ , snake_case__ ): unused_attributes.append(attributes[0] ) return sorted(snake_case__ ) def lowerCAmelCase_ ( ): '''simple docstring''' A : int = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) A : str = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda snake_case__ : inspect.isclass(snake_case__ ) and issubclass(snake_case__ , snake_case__ ) and inspect.getmodule(snake_case__ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: A : List[Any] = check_config_attributes_being_used(snake_case__ ) if len(snake_case__ ) > 0: A : Tuple = unused_attributes if len(snake_case__ ) > 0: A : Any = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += F'{name}: {attributes}\n' raise ValueError(snake_case__ ) if __name__ == "__main__": check_config_attributes()
343
0
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __snake_case = logging.get_logger(__name__) enable_full_determinism() class lowercase ( A__ , A__ , unittest.TestCase ): """simple docstring""" _a = UNetaDModel _a = 'sample' @property def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = 4 UpperCamelCase__ :Union[str, Any] = 3 UpperCamelCase__ :Optional[Any] = (32, 32) UpperCamelCase__ :Optional[int] = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCamelCase_ ) UpperCamelCase__ :Dict = torch.tensor([10] ).to(UpperCamelCase_ ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase__ ( self ): '''simple docstring''' return (3, 32, 32) @property def lowerCAmelCase__ ( self ): '''simple docstring''' return (3, 32, 32) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :int = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } UpperCamelCase__ :str = self.dummy_input return init_dict, inputs_dict class lowercase ( A__ , A__ , unittest.TestCase ): """simple docstring""" _a = UNetaDModel _a = 'sample' @property def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = 4 UpperCamelCase__ :Optional[int] = 4 UpperCamelCase__ :str = (32, 32) UpperCamelCase__ :int = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCamelCase_ ) UpperCamelCase__ :Optional[Any] = torch.tensor([10] ).to(UpperCamelCase_ ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase__ ( self ): '''simple docstring''' return (4, 32, 32) @property def lowerCAmelCase__ ( self ): '''simple docstring''' return (4, 32, 32) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } UpperCamelCase__ :Any = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :int = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(UpperCamelCase_ ) UpperCamelCase__ :Dict = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :Any = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=UpperCamelCase_ ) model.to(UpperCamelCase_ ) UpperCamelCase__ :Any = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=UpperCamelCase_ ) model_accelerate.to(UpperCamelCase_ ) model_accelerate.eval() UpperCamelCase__ :Union[str, Any] = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCamelCase__ :Optional[Any] = noise.to(UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = torch.tensor([10] * noise.shape[0] ).to(UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = model_accelerate(UpperCamelCase_ , UpperCamelCase_ )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() UpperCamelCase__ , UpperCamelCase__ :List[Any] = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=UpperCamelCase_ , low_cpu_mem_usage=UpperCamelCase_ ) model_normal_load.to(UpperCamelCase_ ) model_normal_load.eval() UpperCamelCase__ :str = model_normal_load(UpperCamelCase_ , UpperCamelCase_ )['''sample'''] assert torch_all_close(UpperCamelCase_ , UpperCamelCase_ , rtol=1e-3 ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCamelCase__ :Tuple = noise.to(UpperCamelCase_ ) UpperCamelCase__ :Dict = torch.tensor([10] * noise.shape[0] ).to(UpperCamelCase_ ) with torch.no_grad(): UpperCamelCase__ :str = model(UpperCamelCase_ , UpperCamelCase_ ).sample UpperCamelCase__ :int = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCamelCase__ :Optional[Any] = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(UpperCamelCase_ , UpperCamelCase_ , rtol=1e-3 ) ) class lowercase ( A__ , A__ , unittest.TestCase ): """simple docstring""" _a = UNetaDModel _a = 'sample' @property def lowerCAmelCase__ ( self , UpperCamelCase_=(32, 32) ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = 4 UpperCamelCase__ :Optional[Any] = 3 UpperCamelCase__ :Dict = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCamelCase_ ) UpperCamelCase__ :str = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=UpperCamelCase_ ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase__ ( self ): '''simple docstring''' return (3, 32, 32) @property def lowerCAmelCase__ ( self ): '''simple docstring''' return (3, 32, 32) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1e-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } UpperCamelCase__ :str = self.dummy_input return init_dict, inputs_dict @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(UpperCamelCase_ ) UpperCamelCase__ :List[str] = self.dummy_input UpperCamelCase__ :Optional[Any] = floats_tensor((4, 3) + (256, 256) ).to(UpperCamelCase_ ) UpperCamelCase__ :str = noise UpperCamelCase__ :str = model(**UpperCamelCase_ ) assert image is not None, "Make sure output is not None" @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(UpperCamelCase_ ) UpperCamelCase__ :Optional[Any] = 4 UpperCamelCase__ :str = 3 UpperCamelCase__ :Union[str, Any] = (256, 256) UpperCamelCase__ :Any = torch.ones((batch_size, num_channels) + sizes ).to(UpperCamelCase_ ) UpperCamelCase__ :List[str] = torch.tensor(batch_size * [1e-4] ).to(UpperCamelCase_ ) with torch.no_grad(): UpperCamelCase__ :List[str] = model(UpperCamelCase_ , UpperCamelCase_ ).sample UpperCamelCase__ :Union[str, Any] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCamelCase__ :List[Any] = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -10980.7129, -20028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(UpperCamelCase_ , UpperCamelCase_ , rtol=1e-2 ) ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(UpperCamelCase_ ) UpperCamelCase__ :str = 4 UpperCamelCase__ :int = 3 UpperCamelCase__ :Optional[Any] = (32, 32) UpperCamelCase__ :str = torch.ones((batch_size, num_channels) + sizes ).to(UpperCamelCase_ ) UpperCamelCase__ :List[str] = torch.tensor(batch_size * [1e-4] ).to(UpperCamelCase_ ) with torch.no_grad(): UpperCamelCase__ :Optional[int] = model(UpperCamelCase_ , UpperCamelCase_ ).sample UpperCamelCase__ :Optional[Any] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCamelCase__ :List[str] = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(UpperCamelCase_ , UpperCamelCase_ , rtol=1e-2 ) ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass
189
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def a ( __a , __a ) -> tuple: '''simple docstring''' if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
189
1
import requests from bsa import BeautifulSoup def _a ( SCREAMING_SNAKE_CASE = "AAPL" ): """simple docstring""" lowercase__ = f'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' lowercase__ = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE ).text , '''html.parser''' ) lowercase__ = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
719
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: int ) -> None: """simple docstring""" lowercase__ = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) lowercase__ = Vector() def lowerCamelCase_ ( self: int ) -> None: """simple docstring""" lowercase__ = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCamelCase_ ) , '''(0,0,0,0,0,1)''' ) def lowerCamelCase_ ( self: Optional[int] ) -> None: """simple docstring""" lowercase__ = Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCamelCase_ ) , 4 ) def lowerCamelCase_ ( self: str ) -> None: """simple docstring""" lowercase__ = Vector([1, 2] ) lowercase__ = Vector([1, 2, 3, 4, 5] ) lowercase__ = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) lowercase__ = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def lowerCamelCase_ ( self: List[str] ) -> None: """simple docstring""" lowercase__ = Vector([1, 2, 3] ) lowercase__ = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def lowerCamelCase_ ( self: Optional[int] ) -> None: """simple docstring""" lowercase__ = Vector([1, 2, 3] ) lowercase__ = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def lowerCamelCase_ ( self: str ) -> None: """simple docstring""" lowercase__ = Vector([1, 2, 3] ) lowercase__ = Vector([2, -1, 4] ) # for test of dot product lowercase__ = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '''(3.0,6.0,9.0)''' ) self.assertEqual((a * b) , 0 ) def lowerCamelCase_ ( self: Optional[int] ) -> None: """simple docstring""" self.assertEqual(str(zero_vector(10 ) ).count('''0''' ) , 10 ) def lowerCamelCase_ ( self: Any ) -> None: """simple docstring""" self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '''(0,1,0)''' ) def lowerCamelCase_ ( self: List[Any] ) -> None: """simple docstring""" lowercase__ = Vector([1, 2, 3] ) lowercase__ = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCamelCase_ , UpperCamelCase_ ) ) , '''(3,4,7)''' ) def lowerCamelCase_ ( self: Dict ) -> None: """simple docstring""" lowercase__ = Vector([1, 0, 0, 0, 0, 0] ) lowercase__ = x.copy() self.assertEqual(str(UpperCamelCase_ ) , str(UpperCamelCase_ ) ) def lowerCamelCase_ ( self: Any ) -> None: """simple docstring""" lowercase__ = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCamelCase_ ) , '''(0,1,0)''' ) def lowerCamelCase_ ( self: Optional[Any] ) -> None: """simple docstring""" lowercase__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('''|1,2,3|\n|2,4,5|\n|6,7,8|\n''' , str(UpperCamelCase_ ) ) def lowerCamelCase_ ( self: Any ) -> None: """simple docstring""" lowercase__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowercase__ = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCamelCase_ ( self: Optional[Any] ) -> None: """simple docstring""" lowercase__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowercase__ = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCamelCase_ ( self: List[str] ) -> None: """simple docstring""" lowercase__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def lowerCamelCase_ ( self: Union[str, Any] ) -> None: """simple docstring""" lowercase__ = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) lowercase__ = Vector([1, 2, 3] ) self.assertEqual('''(14,32,50)''' , str(a * x ) ) self.assertEqual('''|2,4,6|\n|8,10,12|\n|14,16,18|\n''' , str(a * 2 ) ) def lowerCamelCase_ ( self: int ) -> None: """simple docstring""" lowercase__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('''|1,2,5|\n|2,4,5|\n|6,7,8|\n''' , str(UpperCamelCase_ ) ) def lowerCamelCase_ ( self: Union[str, Any] ) -> None: """simple docstring""" lowercase__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def lowerCamelCase_ ( self: Dict ) -> None: """simple docstring""" lowercase__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowercase__ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|2,4,10|\n|4,8,10|\n|12,14,18|\n''' , str(a + b ) ) def lowerCamelCase_ ( self: Any ) -> None: """simple docstring""" lowercase__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowercase__ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|0,0,-4|\n|0,0,0|\n|0,0,-2|\n''' , str(a - b ) ) def lowerCamelCase_ ( self: Optional[int] ) -> None: """simple docstring""" self.assertEqual( '''|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n''' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
429
0
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed UpperCamelCase : int = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def UpperCamelCase_ ( __a ) -> List[Any]: assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def UpperCamelCase_ ( __a , __a ) -> int: if args.student_type == "roberta": a__ : str = False elif args.student_type == "gpt2": a__ : List[str] = False def UpperCamelCase_ ( __a , __a ) -> Optional[int]: if args.student_type == "roberta": a__ : Union[str, Any] = False def UpperCamelCase_ ( ) -> Any: a__ : List[Any] = argparse.ArgumentParser(description="Training" ) parser.add_argument("--force" , action="store_true" , help="Overwrite dump_path if it already exists." ) parser.add_argument( "--dump_path" , type=__a , required=__a , help="The output directory (log, checkpoints, parameters, etc.)" ) parser.add_argument( "--data_file" , type=__a , required=__a , help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence." , ) parser.add_argument( "--student_type" , type=__a , choices=["distilbert", "roberta", "gpt2"] , required=__a , help="The student type (DistilBERT, RoBERTa)." , ) parser.add_argument("--student_config" , type=__a , required=__a , help="Path to the student configuration." ) parser.add_argument( "--student_pretrained_weights" , default=__a , type=__a , help="Load student initialization checkpoint." ) parser.add_argument( "--teacher_type" , choices=["bert", "roberta", "gpt2"] , required=__a , help="Teacher type (BERT, RoBERTa)." ) parser.add_argument("--teacher_name" , type=__a , required=__a , help="The teacher model." ) parser.add_argument("--temperature" , default=2.0 , type=__a , help="Temperature for the softmax temperature." ) parser.add_argument( "--alpha_ce" , default=0.5 , type=__a , help="Linear weight for the distillation loss. Must be >=0." ) parser.add_argument( "--alpha_mlm" , default=0.0 , type=__a , help="Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag." , ) parser.add_argument("--alpha_clm" , default=0.5 , type=__a , help="Linear weight for the CLM loss. Must be >=0." ) parser.add_argument("--alpha_mse" , default=0.0 , type=__a , help="Linear weight of the MSE loss. Must be >=0." ) parser.add_argument( "--alpha_cos" , default=0.0 , type=__a , help="Linear weight of the cosine embedding loss. Must be >=0." ) parser.add_argument( "--mlm" , action="store_true" , help="The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM." ) parser.add_argument( "--mlm_mask_prop" , default=0.15 , type=__a , help="Proportion of tokens for which we need to make a prediction." , ) parser.add_argument("--word_mask" , default=0.8 , type=__a , help="Proportion of tokens to mask out." ) parser.add_argument("--word_keep" , default=0.1 , type=__a , help="Proportion of tokens to keep." ) parser.add_argument("--word_rand" , default=0.1 , type=__a , help="Proportion of tokens to randomly replace." ) parser.add_argument( "--mlm_smoothing" , default=0.7 , type=__a , help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec)." , ) parser.add_argument("--token_counts" , type=__a , help="The token counts in the data_file for MLM." ) parser.add_argument( "--restrict_ce_to_mask" , action="store_true" , help="If true, compute the distillation loss only the [MLM] prediction distribution." , ) parser.add_argument( "--freeze_pos_embs" , action="store_true" , help="Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only." , ) parser.add_argument( "--freeze_token_type_embds" , action="store_true" , help="Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only." , ) parser.add_argument("--n_epoch" , type=__a , default=3 , help="Number of pass on the whole dataset." ) parser.add_argument("--batch_size" , type=__a , default=5 , help="Batch size (for each process)." ) parser.add_argument( "--group_by_size" , action="store_false" , help="If true, group sequences that have similar length into the same batch. Default is true." , ) parser.add_argument( "--gradient_accumulation_steps" , type=__a , default=50 , help="Gradient accumulation for larger training batches." , ) parser.add_argument("--warmup_prop" , default=0.05 , type=__a , help="Linear warmup proportion." ) parser.add_argument("--weight_decay" , default=0.0 , type=__a , help="Weight decay if we apply some." ) parser.add_argument("--learning_rate" , default=5e-4 , type=__a , help="The initial learning rate for Adam." ) parser.add_argument("--adam_epsilon" , default=1e-6 , type=__a , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , default=5.0 , type=__a , help="Max gradient norm." ) parser.add_argument("--initializer_range" , default=0.02 , type=__a , help="Random initialization range." ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=__a , default="O1" , help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_gpu" , type=__a , default=1 , help="Number of GPUs in the node." ) parser.add_argument("--local_rank" , type=__a , default=-1 , help="Distributed training - Local rank" ) parser.add_argument("--seed" , type=__a , default=56 , help="Random seed" ) parser.add_argument("--log_interval" , type=__a , default=500 , help="Tensorboard logging interval." ) parser.add_argument("--checkpoint_interval" , type=__a , default=4_000 , help="Checkpoint interval." ) a__ : List[str] = parser.parse_args() sanity_checks(__a ) # ARGS # init_gpu_params(__a ) set_seed(__a ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' " itUse `--force` if you want to overwrite it" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(f'''Param: {args}''' ) with open(os.path.join(args.dump_path , "parameters.json" ) , "w" ) as f: json.dump(vars(__a ) , __a , indent=4 ) git_log(args.dump_path ) a__, a__, a__ : Dict = MODEL_CLASSES[args.student_type] a__, a__, a__ : List[Any] = MODEL_CLASSES[args.teacher_type] # TOKENIZER # a__ : Optional[int] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) a__ : Union[str, Any] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): a__ : Optional[Any] = tokenizer.all_special_tokens.index(__a ) a__ : Union[str, Any] = tokenizer.all_special_ids[idx] logger.info(f'''Special tokens {special_tok_ids}''' ) a__ : List[str] = special_tok_ids a__ : Optional[Any] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f'''Loading data from {args.data_file}''' ) with open(args.data_file , "rb" ) as fp: a__ : Tuple = pickle.load(__a ) if args.mlm: logger.info(f'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , "rb" ) as fp: a__ : Optional[Any] = pickle.load(__a ) a__ : Dict = np.maximum(__a , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): a__ : List[Any] = 0.0 # do not predict special tokens a__ : List[str] = torch.from_numpy(__a ) else: a__ : Any = None a__ : Any = LmSeqsDataset(params=__a , data=__a ) logger.info("Data loader created." ) # STUDENT # logger.info(f'''Loading student config from {args.student_config}''' ) a__ : List[str] = student_config_class.from_pretrained(args.student_config ) a__ : Optional[Any] = True if args.student_pretrained_weights is not None: logger.info(f'''Loading pretrained weights from {args.student_pretrained_weights}''' ) a__ : List[Any] = student_model_class.from_pretrained(args.student_pretrained_weights , config=__a ) else: a__ : List[Any] = student_model_class(__a ) if args.n_gpu > 0: student.to(f'''cuda:{args.local_rank}''' ) logger.info("Student loaded." ) # TEACHER # a__ : int = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__a ) if args.n_gpu > 0: teacher.to(f'''cuda:{args.local_rank}''' ) logger.info(f'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(__a , __a ) if args.freeze_token_type_embds: freeze_token_type_embeddings(__a , __a ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() a__ : List[Any] = Distiller( params=__a , dataset=__a , token_probs=__a , student=__a , teacher=__a ) distiller.train() logger.info("Let's go get some drinks." ) if __name__ == "__main__": main()
37
from collections import deque class lowerCAmelCase_ : def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): lowerCAmelCase__ = process_name # process name lowerCAmelCase__ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowerCAmelCase__ = arrival_time lowerCAmelCase__ = burst_time # remaining burst time lowerCAmelCase__ = 0 # total time of the process wait in ready queue lowerCAmelCase__ = 0 # time from arrival time to completion time class lowerCAmelCase_ : def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : deque[Process] , SCREAMING_SNAKE_CASE_ : int , ): # total number of mlfq's queues lowerCAmelCase__ = number_of_queues # time slice of queues that round robin algorithm applied lowerCAmelCase__ = time_slices # unfinished process is in this ready_queue lowerCAmelCase__ = queue # current time lowerCAmelCase__ = current_time # finished process is in this sequence queue lowerCAmelCase__ = deque() def __snake_case ( self : Tuple ): lowerCAmelCase__ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def __snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : list[Process] ): lowerCAmelCase__ = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def __snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : list[Process] ): lowerCAmelCase__ = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def __snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : list[Process] ): lowerCAmelCase__ = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): completion_times.append(queue[i].stop_time ) return completion_times def __snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : deque[Process] ): return [q.burst_time for q in queue] def __snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Process ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def __snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : deque[Process] ): lowerCAmelCase__ = deque() # sequence deque of finished process while len(SCREAMING_SNAKE_CASE_ ) != 0: lowerCAmelCase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(SCREAMING_SNAKE_CASE_ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowerCAmelCase__ = 0 # set the process's turnaround time because it is finished lowerCAmelCase__ = self.current_time - cp.arrival_time # set the completion time lowerCAmelCase__ = self.current_time # add the process to queue that has finished queue finished.append(SCREAMING_SNAKE_CASE_ ) self.finish_queue.extend(SCREAMING_SNAKE_CASE_ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def __snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : deque[Process] , SCREAMING_SNAKE_CASE_ : int ): lowerCAmelCase__ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(SCREAMING_SNAKE_CASE_ ) ): lowerCAmelCase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(SCREAMING_SNAKE_CASE_ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowerCAmelCase__ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(SCREAMING_SNAKE_CASE_ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowerCAmelCase__ = 0 # set the finish time lowerCAmelCase__ = self.current_time # update the process' turnaround time because it is finished lowerCAmelCase__ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(SCREAMING_SNAKE_CASE_ ) self.finish_queue.extend(SCREAMING_SNAKE_CASE_ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def __snake_case ( self : int ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): lowerCAmelCase__ , lowerCAmelCase__ = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest _UpperCAmelCase : List[Any] = Process("P1", 0, 53) _UpperCAmelCase : Tuple = Process("P2", 0, 17) _UpperCAmelCase : int = Process("P3", 0, 68) _UpperCAmelCase : str = Process("P4", 0, 24) _UpperCAmelCase : Tuple = 3 _UpperCAmelCase : List[Any] = [17, 25] _UpperCAmelCase : Tuple = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) _UpperCAmelCase : Tuple = Process("P1", 0, 53) _UpperCAmelCase : List[str] = Process("P2", 0, 17) _UpperCAmelCase : Any = Process("P3", 0, 68) _UpperCAmelCase : List[Any] = Process("P4", 0, 24) _UpperCAmelCase : Optional[int] = 3 _UpperCAmelCase : int = [17, 25] _UpperCAmelCase : str = deque([Pa, Pa, Pa, Pa]) _UpperCAmelCase : Tuple = MLFQ(number_of_queues, time_slices, queue, 0) _UpperCAmelCase : int = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( F'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( F'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
668
0
'''simple docstring''' from __future__ import annotations from collections import namedtuple def __lowerCamelCase ( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float ): '''simple docstring''' UpperCAmelCase_ = namedtuple('''result''' , '''name value''' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('''Only one argument must be 0''' ) elif power < 0: raise ValueError( '''Power cannot be negative in any electrical/electronics system''' ) elif voltage == 0: return result('''voltage''' , power / current ) elif current == 0: return result('''current''' , power / voltage ) elif power == 0: return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
718
'''simple docstring''' import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase ( lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = XLMTokenizer lowerCAmelCase__ = False def lowerCAmelCase__ ( self : int ) ->Union[str, Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] UpperCAmelCase_ = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) UpperCAmelCase_ = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(UpperCAmelCase__ ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(UpperCAmelCase__ ) ) def lowerCAmelCase__ ( self : Optional[int] , UpperCAmelCase__ : Any ) ->List[Any]: UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = '''lower newer''' return input_text, output_text def lowerCAmelCase__ ( self : Union[str, Any] ) ->Tuple: UpperCAmelCase_ = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase_ = '''lower''' UpperCAmelCase_ = ['''low''', '''er</w>'''] UpperCAmelCase_ = tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCAmelCase_ = tokens + ['''<unk>'''] UpperCAmelCase_ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , UpperCAmelCase__ ) @slow def lowerCAmelCase__ ( self : Any ) ->str: UpperCAmelCase_ = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) UpperCAmelCase_ = tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCAmelCase__ ) UpperCAmelCase_ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCAmelCase__ ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ , UpperCAmelCase__ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
43
0
'''simple docstring''' import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple ) -> Dict: return params[F'''{prefix}/{prefix}/relpos_bias/rel_embedding'''][:, i, :] def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int]="attention" ) -> Optional[Any]: snake_case = snake_case = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/key/kernel'''][:, i, :, :] ) snake_case = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) snake_case = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/out/kernel'''][:, i, :, :] ) snake_case = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) snake_case = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/query/kernel'''][:, i, :, :] ) snake_case = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) snake_case = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/value/kernel'''][:, i, :, :] ) snake_case = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any]=False ) -> int: if split_mlp_wi: snake_case = params[F'''{prefix}/{prefix}/mlp/wi_0/kernel'''][:, i, :] snake_case = params[F'''{prefix}/{prefix}/mlp/wi_1/kernel'''][:, i, :] snake_case = (wi_a, wi_a) else: snake_case = params[F'''{prefix}/{prefix}/mlp/wi/kernel'''][:, i, :] snake_case = params[F'''{prefix}/{prefix}/mlp/wo/kernel'''][:, i, :] return wi, wo def __lowerCamelCase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] ) -> int: return params[F'''{prefix}/{prefix}/{layer_name}/scale'''][:, i] def __lowerCamelCase ( __lowerCAmelCase : dict , *, __lowerCAmelCase : int , __lowerCAmelCase : bool , __lowerCAmelCase : bool = False ) -> List[str]: snake_case = traverse_util.flatten_dict(variables["""target"""] ) snake_case = {"""/""".join(__lowerCAmelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi snake_case = """encoder/encoder/mlp/wi_0/kernel""" in old print("""Split MLP:""" , __lowerCAmelCase ) snake_case = collections.OrderedDict() # Shared embeddings. snake_case = old["""token_embedder/embedding"""] # Encoder. for i in range(__lowerCAmelCase ): # Block i, layer 0 (Self Attention). snake_case = tax_layer_norm_lookup(__lowerCAmelCase , __lowerCAmelCase , """encoder""" , """pre_attention_layer_norm""" ) snake_case , snake_case , snake_case , snake_case = tax_attention_lookup(__lowerCAmelCase , __lowerCAmelCase , """encoder""" , """attention""" ) snake_case = layer_norm snake_case = k.T snake_case = o.T snake_case = q.T snake_case = v.T # Block i, layer 1 (MLP). snake_case = tax_layer_norm_lookup(__lowerCAmelCase , __lowerCAmelCase , """encoder""" , """pre_mlp_layer_norm""" ) snake_case , snake_case = tax_mlp_lookup(__lowerCAmelCase , __lowerCAmelCase , """encoder""" , __lowerCAmelCase ) snake_case = layer_norm if split_mlp_wi: snake_case = wi[0].T snake_case = wi[1].T else: snake_case = wi.T snake_case = wo.T if scalable_attention: # convert the rel_embedding of each layer snake_case = tax_relpos_bias_lookup( __lowerCAmelCase , __lowerCAmelCase , """encoder""" ).T snake_case = old["""encoder/encoder_norm/scale"""] if not scalable_attention: snake_case = tax_relpos_bias_lookup( __lowerCAmelCase , 0 , """encoder""" ).T snake_case = tax_relpos_bias_lookup( __lowerCAmelCase , 0 , """decoder""" ).T if not is_encoder_only: # Decoder. for i in range(__lowerCAmelCase ): # Block i, layer 0 (Self Attention). snake_case = tax_layer_norm_lookup(__lowerCAmelCase , __lowerCAmelCase , """decoder""" , """pre_self_attention_layer_norm""" ) snake_case , snake_case , snake_case , snake_case = tax_attention_lookup(__lowerCAmelCase , __lowerCAmelCase , """decoder""" , """self_attention""" ) snake_case = layer_norm snake_case = k.T snake_case = o.T snake_case = q.T snake_case = v.T # Block i, layer 1 (Cross Attention). snake_case = tax_layer_norm_lookup(__lowerCAmelCase , __lowerCAmelCase , """decoder""" , """pre_cross_attention_layer_norm""" ) snake_case , snake_case , snake_case , snake_case = tax_attention_lookup(__lowerCAmelCase , __lowerCAmelCase , """decoder""" , """encoder_decoder_attention""" ) snake_case = layer_norm snake_case = k.T snake_case = o.T snake_case = q.T snake_case = v.T # Block i, layer 2 (MLP). snake_case = tax_layer_norm_lookup(__lowerCAmelCase , __lowerCAmelCase , """decoder""" , """pre_mlp_layer_norm""" ) snake_case , snake_case = tax_mlp_lookup(__lowerCAmelCase , __lowerCAmelCase , """decoder""" , __lowerCAmelCase ) snake_case = layer_norm if split_mlp_wi: snake_case = wi[0].T snake_case = wi[1].T else: snake_case = wi.T snake_case = wo.T if scalable_attention: # convert the rel_embedding of each layer snake_case = tax_relpos_bias_lookup(__lowerCAmelCase , __lowerCAmelCase , """decoder""" ).T snake_case = old["""decoder/decoder_norm/scale"""] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: snake_case = old["""decoder/logits_dense/kernel"""].T return new def __lowerCamelCase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : bool ) -> List[Any]: snake_case = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: snake_case = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: snake_case = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) snake_case = state_dict["""shared.weight"""] return state_dict def __lowerCamelCase ( __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ) -> Union[str, Any]: snake_case = checkpoints.load_tax_checkpoint(__lowerCAmelCase ) snake_case = convert_tax_to_pytorch( __lowerCAmelCase , num_layers=config.num_layers , is_encoder_only=__lowerCAmelCase , scalable_attention=__lowerCAmelCase ) snake_case = make_state_dict(__lowerCAmelCase , __lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , ) -> Union[str, Any]: snake_case = MTaConfig.from_json_file(__lowerCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: snake_case = UMTaEncoderModel(__lowerCAmelCase ) else: snake_case = UMTaForConditionalGeneration(__lowerCAmelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(__lowerCAmelCase ) # Verify that we can load the checkpoint. model.from_pretrained(__lowerCAmelCase ) print("""Done""" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) parser.add_argument( "--scalable_attention", action="store_true", help="Whether the model uses scaled attention (umt5 model)", default=False, ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
369
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
369
1
def _lowercase ( a_ : Union[str, Any] ) -> List[Any]: '''simple docstring''' return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def _lowercase ( a_ : dict[int, list[int]] ) -> list[tuple[int, int]]: '''simple docstring''' __magic_name__ = 0 __magic_name__ = len(a_ ) # No of vertices in graph __magic_name__ = [0] * n __magic_name__ = [False] * n def dfs(a_ : Tuple ,a_ : str ,a_ : Optional[Any] ,a_ : Dict ): __magic_name__ = True __magic_name__ = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(a_ ,a_ ,a_ ,id_ ) __magic_name__ = min(low[at] ,low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge __magic_name__ = min(low[at] ,low[to] ) __magic_name__ = [] for i in range(a_ ): if not visited[i]: dfs(a_ ,-1 ,a_ ,id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
716
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType A__ = logging.get_logger(__name__) A__ = { "microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json", } class __UpperCamelCase ( SCREAMING_SNAKE_CASE ): _lowercase : Optional[Any] = "layoutlmv3" def __init__( self: Tuple , __UpperCamelCase: List[Any]=5_02_65 , __UpperCamelCase: Union[str, Any]=7_68 , __UpperCamelCase: Optional[int]=12 , __UpperCamelCase: List[str]=12 , __UpperCamelCase: List[Any]=30_72 , __UpperCamelCase: Union[str, Any]="gelu" , __UpperCamelCase: Union[str, Any]=0.1 , __UpperCamelCase: Union[str, Any]=0.1 , __UpperCamelCase: List[Any]=5_12 , __UpperCamelCase: int=2 , __UpperCamelCase: Union[str, Any]=0.02 , __UpperCamelCase: Dict=1E-5 , __UpperCamelCase: int=1 , __UpperCamelCase: Dict=0 , __UpperCamelCase: Tuple=2 , __UpperCamelCase: Any=10_24 , __UpperCamelCase: Union[str, Any]=1_28 , __UpperCamelCase: Dict=1_28 , __UpperCamelCase: Any=True , __UpperCamelCase: Any=32 , __UpperCamelCase: int=1_28 , __UpperCamelCase: List[str]=64 , __UpperCamelCase: Union[str, Any]=2_56 , __UpperCamelCase: int=True , __UpperCamelCase: Optional[int]=True , __UpperCamelCase: Union[str, Any]=True , __UpperCamelCase: Union[str, Any]=2_24 , __UpperCamelCase: Tuple=3 , __UpperCamelCase: Any=16 , __UpperCamelCase: List[Any]=None , **__UpperCamelCase: str , ): '''simple docstring''' super().__init__( vocab_size=__UpperCamelCase , hidden_size=__UpperCamelCase , num_hidden_layers=__UpperCamelCase , num_attention_heads=__UpperCamelCase , intermediate_size=__UpperCamelCase , hidden_act=__UpperCamelCase , hidden_dropout_prob=__UpperCamelCase , attention_probs_dropout_prob=__UpperCamelCase , max_position_embeddings=__UpperCamelCase , type_vocab_size=__UpperCamelCase , initializer_range=__UpperCamelCase , layer_norm_eps=__UpperCamelCase , pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase , ) __magic_name__ = max_ad_position_embeddings __magic_name__ = coordinate_size __magic_name__ = shape_size __magic_name__ = has_relative_attention_bias __magic_name__ = rel_pos_bins __magic_name__ = max_rel_pos __magic_name__ = has_spatial_attention_bias __magic_name__ = rel_ad_pos_bins __magic_name__ = max_rel_ad_pos __magic_name__ = text_embed __magic_name__ = visual_embed __magic_name__ = input_size __magic_name__ = num_channels __magic_name__ = patch_size __magic_name__ = classifier_dropout class __UpperCamelCase ( SCREAMING_SNAKE_CASE ): _lowercase : Any = version.parse("1.12" ) @property def _SCREAMING_SNAKE_CASE ( self: Any ): '''simple docstring''' if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def _SCREAMING_SNAKE_CASE ( self: int ): '''simple docstring''' return 1E-5 @property def _SCREAMING_SNAKE_CASE ( self: Optional[int] ): '''simple docstring''' return 12 def _SCREAMING_SNAKE_CASE ( self: Tuple , __UpperCamelCase: "ProcessorMixin" , __UpperCamelCase: int = -1 , __UpperCamelCase: int = -1 , __UpperCamelCase: bool = False , __UpperCamelCase: Optional["TensorType"] = None , __UpperCamelCase: int = 3 , __UpperCamelCase: int = 40 , __UpperCamelCase: int = 40 , ): '''simple docstring''' setattr(processor.image_processor , 'apply_ocr' , __UpperCamelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __magic_name__ = compute_effective_axis_dimension( __UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __magic_name__ = processor.tokenizer.num_special_tokens_to_add(__UpperCamelCase ) __magic_name__ = compute_effective_axis_dimension( __UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCamelCase ) # Generate dummy inputs according to compute batch and sequence __magic_name__ = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __magic_name__ = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __magic_name__ = self._generate_dummy_images(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) __magic_name__ = dict( processor( __UpperCamelCase , text=__UpperCamelCase , boxes=__UpperCamelCase , return_tensors=__UpperCamelCase , ) ) return inputs
184
0
class lowercase_ : def __init__( self , lowercase_ , lowercase_) -> str: a__ =name a__ =val def __str__( self) -> Tuple: return F"""{self.__class__.__name__}({self.name}, {self.val})""" def __lt__( self , lowercase_) -> Any: return self.val < other.val class lowercase_ : def __init__( self , lowercase_) -> Any: a__ ={} a__ ={} a__ =self.build_heap(lowercase_) def __getitem__( self , lowercase_) -> List[str]: return self.get_value(lowercase_) def __UpperCamelCase ( self , lowercase_) -> Optional[int]: return (idx - 1) // 2 def __UpperCamelCase ( self , lowercase_) -> int: return idx * 2 + 1 def __UpperCamelCase ( self , lowercase_) -> List[Any]: return idx * 2 + 2 def __UpperCamelCase ( self , lowercase_) -> Any: return self.heap_dict[key] def __UpperCamelCase ( self , lowercase_) -> str: a__ =len(lowercase_) - 1 a__ =self.get_parent_idx(lowercase_) for idx, i in enumerate(lowercase_): a__ =idx a__ =i.val for i in range(lowercase_ , -1 , -1): self.sift_down(lowercase_ , lowercase_) return array def __UpperCamelCase ( self , lowercase_ , lowercase_) -> List[str]: while True: a__ =self.get_left_child_idx(lowercase_) # noqa: E741 a__ =self.get_right_child_idx(lowercase_) a__ =idx if l < len(lowercase_) and array[l] < array[idx]: a__ =l if r < len(lowercase_) and array[r] < array[smallest]: a__ =r if smallest != idx: a__ , a__ =array[smallest], array[idx] ( ( a__ ) , ( a__ ) , ) =( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) a__ =smallest else: break def __UpperCamelCase ( self , lowercase_) -> Dict: a__ =self.get_parent_idx(lowercase_) while p >= 0 and self.heap[p] > self.heap[idx]: a__ , a__ =self.heap[idx], self.heap[p] a__ , a__ =( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) a__ =p a__ =self.get_parent_idx(lowercase_) def __UpperCamelCase ( self) -> List[str]: return self.heap[0] def __UpperCamelCase ( self) -> Optional[int]: a__ , a__ =self.heap[-1], self.heap[0] a__ , a__ =( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) a__ =self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap) return x def __UpperCamelCase ( self , lowercase_) -> Tuple: self.heap.append(lowercase_) a__ =len(self.heap) - 1 a__ =node.val self.sift_up(len(self.heap) - 1) def __UpperCamelCase ( self) -> Union[str, Any]: return len(self.heap) == 0 def __UpperCamelCase ( self , lowercase_ , lowercase_) -> int: assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" a__ =new_value a__ =new_value self.sift_up(self.idx_of_element[node]) _lowerCAmelCase: Tuple = Node('R', -1) _lowerCAmelCase: Optional[int] = Node('B', 6) _lowerCAmelCase: Tuple = Node('A', 3) _lowerCAmelCase: int = Node('X', 1) _lowerCAmelCase: List[str] = Node('E', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array _lowerCAmelCase: int = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('Min Heap - before decrease key') for i in my_min_heap.heap: print(i) print('Min Heap - After decrease key of node [B -> -17]') my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
20
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__: Dict = logging.get_logger(__name__) A__: Optional[int] = { '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Tuple = "markuplm" def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :List[Any]=3_0_5_2_2 , SCREAMING_SNAKE_CASE :Optional[int]=7_6_8 , SCREAMING_SNAKE_CASE :List[Any]=1_2 , SCREAMING_SNAKE_CASE :List[Any]=1_2 , SCREAMING_SNAKE_CASE :int=3_0_7_2 , SCREAMING_SNAKE_CASE :Optional[int]="gelu" , SCREAMING_SNAKE_CASE :Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE :Optional[int]=0.1 , SCREAMING_SNAKE_CASE :List[Any]=5_1_2 , SCREAMING_SNAKE_CASE :Optional[Any]=2 , SCREAMING_SNAKE_CASE :Optional[int]=0.02 , SCREAMING_SNAKE_CASE :Any=1e-12 , SCREAMING_SNAKE_CASE :Any=0 , SCREAMING_SNAKE_CASE :List[Any]=0 , SCREAMING_SNAKE_CASE :Tuple=2 , SCREAMING_SNAKE_CASE :Optional[Any]=2_5_6 , SCREAMING_SNAKE_CASE :Optional[int]=1_0_2_4 , SCREAMING_SNAKE_CASE :Tuple=2_1_6 , SCREAMING_SNAKE_CASE :Dict=1_0_0_1 , SCREAMING_SNAKE_CASE :List[str]=3_2 , SCREAMING_SNAKE_CASE :List[str]=5_0 , SCREAMING_SNAKE_CASE :Dict="absolute" , SCREAMING_SNAKE_CASE :Dict=True , SCREAMING_SNAKE_CASE :Any=None , **SCREAMING_SNAKE_CASE :Tuple , ) -> Any: '''simple docstring''' super().__init__( pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) _a : Any =vocab_size _a : List[str] =hidden_size _a : List[str] =num_hidden_layers _a : Tuple =num_attention_heads _a : Union[str, Any] =hidden_act _a : Tuple =intermediate_size _a : Optional[Any] =hidden_dropout_prob _a : int =attention_probs_dropout_prob _a : Any =max_position_embeddings _a : List[Any] =type_vocab_size _a : List[Any] =initializer_range _a : List[Any] =layer_norm_eps _a : Optional[int] =position_embedding_type _a : List[Any] =use_cache _a : List[str] =classifier_dropout # additional properties _a : int =max_depth _a : Union[str, Any] =max_xpath_tag_unit_embeddings _a : str =max_xpath_subs_unit_embeddings _a : int =tag_pad_id _a : List[Any] =subs_pad_id _a : str =xpath_unit_hidden_size
694
0
from __future__ import annotations def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" return len(set(lowerCamelCase__ ) ) == len(lowerCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
81
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__: """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple=13 , SCREAMING_SNAKE_CASE : List[str]=32 , SCREAMING_SNAKE_CASE : int=3 , SCREAMING_SNAKE_CASE : Any=4 , SCREAMING_SNAKE_CASE : Optional[Any]=[10, 20, 30, 40] , SCREAMING_SNAKE_CASE : int=[2, 2, 3, 2] , SCREAMING_SNAKE_CASE : Dict=True , SCREAMING_SNAKE_CASE : Dict=True , SCREAMING_SNAKE_CASE : str=37 , SCREAMING_SNAKE_CASE : Tuple="gelu" , SCREAMING_SNAKE_CASE : Optional[int]=10 , SCREAMING_SNAKE_CASE : Optional[int]=0.02 , SCREAMING_SNAKE_CASE : Union[str, Any]=["stage2", "stage3", "stage4"] , SCREAMING_SNAKE_CASE : Optional[int]=[2, 3, 4] , SCREAMING_SNAKE_CASE : str=None , ): lowercase__ : Union[str, Any] = parent lowercase__ : Optional[int] = batch_size lowercase__ : Optional[Any] = image_size lowercase__ : Tuple = num_channels lowercase__ : Tuple = num_stages lowercase__ : List[Any] = hidden_sizes lowercase__ : Any = depths lowercase__ : List[str] = is_training lowercase__ : int = use_labels lowercase__ : Union[str, Any] = intermediate_size lowercase__ : List[Any] = hidden_act lowercase__ : Tuple = num_labels lowercase__ : Optional[Any] = initializer_range lowercase__ : Optional[Any] = out_features lowercase__ : Union[str, Any] = out_indices lowercase__ : Tuple = scope def snake_case ( self : Dict ): lowercase__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Dict = None if self.use_labels: lowercase__ : Dict = ids_tensor([self.batch_size] , self.num_labels ) lowercase__ : Tuple = self.get_config() return config, pixel_values, labels def snake_case ( self : Tuple ): return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def snake_case ( self : Tuple , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] ): lowercase__ : Dict = ConvNextVaModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] ): lowercase__ : Any = ConvNextVaForImageClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowercase__ : str = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self : int , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict ): lowercase__ : Any = ConvNextVaBackbone(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowercase__ : str = None lowercase__ : List[Any] = ConvNextVaBackbone(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowercase__ : List[Any] = model(SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def snake_case ( self : Dict ): lowercase__ : str = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Optional[int] = config_and_inputs lowercase__ : List[Any] = {"pixel_values": pixel_values} return config, inputs_dict def snake_case ( self : Optional[Any] ): lowercase__ : Optional[Any] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Dict = config_and_inputs lowercase__ : Optional[Any] = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class snake_case__(_UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" lowercase_ = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase_ = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def snake_case ( self : List[Any] ): lowercase__ : List[str] = ConvNextVaModelTester(self ) lowercase__ : Optional[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37 ) def snake_case ( self : Optional[int] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case ( self : List[str] ): return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def snake_case ( self : Dict ): pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def snake_case ( self : Union[str, Any] ): pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def snake_case ( self : Union[str, Any] ): pass def snake_case ( self : Optional[int] ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_with_labels() lowercase__ : List[str] = True if model_class.__name__ in [ *get_values(SCREAMING_SNAKE_CASE ), *get_values(SCREAMING_SNAKE_CASE ), ]: continue lowercase__ : List[str] = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.train() lowercase__ : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = model(**SCREAMING_SNAKE_CASE ).loss loss.backward() def snake_case ( self : Optional[Any] ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs_with_labels() lowercase__ : Optional[Any] = False lowercase__ : Dict = True if ( model_class.__name__ in [*get_values(SCREAMING_SNAKE_CASE ), *get_values(SCREAMING_SNAKE_CASE )] or not model_class.supports_gradient_checkpointing ): continue lowercase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.train() lowercase__ : str = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) lowercase__ : str = model(**SCREAMING_SNAKE_CASE ).loss loss.backward() def snake_case ( self : int ): lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE ) lowercase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : str = [*signature.parameters.keys()] lowercase__ : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def snake_case ( self : Dict ): lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def snake_case ( self : str ): def check_hidden_states_output(SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str ): lowercase__ : Any = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowercase__ : Tuple = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) lowercase__ : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ : Dict = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Union[str, Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Optional[Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def snake_case ( self : Any ): lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE ) @slow def snake_case ( self : List[str] ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : List[str] = ConvNextVaModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class snake_case__(unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self : List[Any] ): return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def snake_case ( self : Optional[int] ): lowercase__ : Union[str, Any] = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(SCREAMING_SNAKE_CASE ) lowercase__ : Dict = self.default_image_processor lowercase__ : int = prepare_img() lowercase__ : Optional[Any] = preprocessor(images=SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): lowercase__ : Tuple = model(**SCREAMING_SNAKE_CASE ) # verify the logits lowercase__ : Optional[int] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) )
81
1
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :BigBirdConfig __snake_case :jnp.dtype = jnp.floataa __snake_case :bool = True def _a ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" super().setup() __lowercase = nn.Dense(5 , dtype=self.dtype ) def __call__( self : Optional[int] , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = super().__call__(*_lowerCAmelCase , **_lowerCAmelCase ) __lowercase = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Tuple = FlaxBigBirdForNaturalQuestionsModule def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' def cross_entropy(lowerCamelCase , lowerCamelCase , lowerCamelCase=None ): __lowercase = logits.shape[-1] __lowercase = (labels[..., None] == jnp.arange(lowerCamelCase )[None]).astype("""f4""" ) __lowercase = jax.nn.log_softmax(lowerCamelCase , axis=-1 ) __lowercase = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: __lowercase = reduction(lowerCamelCase ) return loss __lowercase = partial(lowerCamelCase , reduction=jnp.mean ) __lowercase = cross_entropy(lowerCamelCase , lowerCamelCase ) __lowercase = cross_entropy(lowerCamelCase , lowerCamelCase ) __lowercase = cross_entropy(lowerCamelCase , lowerCamelCase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __UpperCamelCase : __snake_case :str = "google/bigbird-roberta-base" __snake_case :int = 3_0_0_0 __snake_case :int = 1_0_5_0_0 __snake_case :int = 1_2_8 __snake_case :int = 3 __snake_case :int = 1 __snake_case :int = 5 # tx_args __snake_case :float = 3e-5 __snake_case :float = 0.0 __snake_case :int = 2_0_0_0_0 __snake_case :float = 0.00_95 __snake_case :str = "bigbird-roberta-natural-questions" __snake_case :str = "training-expt" __snake_case :str = "data/nq-training.jsonl" __snake_case :str = "data/nq-validation.jsonl" def _a ( self : Dict ) -> List[str]: """simple docstring""" os.makedirs(self.base_dir , exist_ok=_lowerCAmelCase ) __lowercase = os.path.join(self.base_dir , self.save_dir ) __lowercase = self.batch_size_per_device * jax.device_count() @dataclass class __UpperCamelCase : __snake_case :int __snake_case :int = 4_0_9_6 # no dynamic padding on TPUs def __call__( self : Any , _lowerCAmelCase : str ) -> Tuple: """simple docstring""" __lowercase = self.collate_fn(_lowerCAmelCase ) __lowercase = jax.tree_util.tree_map(_lowerCAmelCase , _lowerCAmelCase ) return batch def _a ( self : Dict , _lowerCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.fetch_inputs(features["""input_ids"""] ) __lowercase = { """input_ids""": jnp.array(_lowerCAmelCase , dtype=jnp.intaa ), """attention_mask""": jnp.array(_lowerCAmelCase , dtype=jnp.intaa ), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa ), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa ), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa ), } return batch def _a ( self : Optional[Any] , _lowerCAmelCase : list ) -> Optional[Any]: """simple docstring""" __lowercase = [self._fetch_inputs(_lowerCAmelCase ) for ids in input_ids] return zip(*_lowerCAmelCase ) def _a ( self : int , _lowerCAmelCase : list ) -> Tuple: """simple docstring""" __lowercase = [1 for _ in range(len(_lowerCAmelCase ) )] while len(_lowerCAmelCase ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase=None ): '''simple docstring''' if seed is not None: __lowercase = dataset.shuffle(seed=lowerCamelCase ) for i in range(len(lowerCamelCase ) // batch_size ): __lowercase = dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowerCamelCase ) @partial(jax.pmap , axis_name="""batch""" ) def snake_case ( lowerCamelCase , lowerCamelCase , **lowerCamelCase ): '''simple docstring''' def loss_fn(lowerCamelCase ): __lowercase = model_inputs.pop("""start_labels""" ) __lowercase = model_inputs.pop("""end_labels""" ) __lowercase = model_inputs.pop("""pooled_labels""" ) __lowercase = state.apply_fn(**lowerCamelCase , params=lowerCamelCase , dropout_rng=lowerCamelCase , train=lowerCamelCase ) __lowercase , __lowercase , __lowercase = outputs return state.loss_fn( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) __lowercase , __lowercase = jax.random.split(lowerCamelCase ) __lowercase = jax.value_and_grad(lowerCamelCase ) __lowercase , __lowercase = grad_fn(state.params ) __lowercase = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) __lowercase = jax.lax.pmean(lowerCamelCase , """batch""" ) __lowercase = state.apply_gradients(grads=lowerCamelCase ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def snake_case ( lowerCamelCase , **lowerCamelCase ): '''simple docstring''' __lowercase = model_inputs.pop("""start_labels""" ) __lowercase = model_inputs.pop("""end_labels""" ) __lowercase = model_inputs.pop("""pooled_labels""" ) __lowercase = state.apply_fn(**lowerCamelCase , params=state.params , train=lowerCamelCase ) __lowercase , __lowercase , __lowercase = outputs __lowercase = state.loss_fn(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class __UpperCamelCase ( train_state.TrainState ): __snake_case :Callable = struct.field(pytree_node=_lowerCAmelCase ) @dataclass class __UpperCamelCase : __snake_case :Args __snake_case :Callable __snake_case :Callable __snake_case :Callable __snake_case :Callable __snake_case :wandb __snake_case :Callable = None def _a ( self : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple=None ) -> int: """simple docstring""" __lowercase = model.params __lowercase = TrainState.create( apply_fn=model.__call__ , params=_lowerCAmelCase , tx=_lowerCAmelCase , loss_fn=_lowerCAmelCase , ) if ckpt_dir is not None: __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = restore_checkpoint(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } __lowercase , __lowercase = build_tx(**_lowerCAmelCase ) __lowercase = train_state.TrainState( step=_lowerCAmelCase , apply_fn=model.__call__ , params=_lowerCAmelCase , tx=_lowerCAmelCase , opt_state=_lowerCAmelCase , ) __lowercase = args __lowercase = data_collator __lowercase = lr __lowercase = params __lowercase = jax_utils.replicate(_lowerCAmelCase ) return state def _a ( self : str , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : List[str] ) -> Tuple: """simple docstring""" __lowercase = self.args __lowercase = len(_lowerCAmelCase ) // args.batch_size __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) for epoch in range(args.max_epochs ): __lowercase = jnp.array(0 , dtype=jnp.floataa ) __lowercase = get_batched_dataset(_lowerCAmelCase , args.batch_size , seed=_lowerCAmelCase ) __lowercase = 0 for batch in tqdm(_lowerCAmelCase , total=_lowerCAmelCase , desc=F'Running EPOCH-{epoch}' ): __lowercase = self.data_collator(_lowerCAmelCase ) __lowercase , __lowercase , __lowercase = self.train_step_fn(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 if i % args.logging_steps == 0: __lowercase = jax_utils.unreplicate(state.step ) __lowercase = running_loss.item() / i __lowercase = self.scheduler_fn(state_step - 1 ) __lowercase = self.evaluate(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(_lowerCAmelCase ) ) self.logger.log(_lowerCAmelCase , commit=_lowerCAmelCase ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'-e{epoch}-s{i}' , state=_lowerCAmelCase ) def _a ( self : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict ) -> List[Any]: """simple docstring""" __lowercase = get_batched_dataset(_lowerCAmelCase , self.args.batch_size ) __lowercase = len(_lowerCAmelCase ) // self.args.batch_size __lowercase = jnp.array(0 , dtype=jnp.floataa ) __lowercase = 0 for batch in tqdm(_lowerCAmelCase , total=_lowerCAmelCase , desc="""Evaluating ... """ ): __lowercase = self.data_collator(_lowerCAmelCase ) __lowercase = self.val_step_fn(_lowerCAmelCase , **_lowerCAmelCase ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 return running_loss / i def _a ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = jax_utils.unreplicate(_lowerCAmelCase ) print(F'SAVING CHECKPOINT IN {save_dir}' , end=""" ... """ ) self.model_save_fn(_lowerCAmelCase , params=state.params ) with open(os.path.join(_lowerCAmelCase , """opt_state.msgpack""" ) , """wb""" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(_lowerCAmelCase , """args.joblib""" ) ) joblib.dump(self.data_collator , os.path.join(_lowerCAmelCase , """data_collator.joblib""" ) ) with open(os.path.join(_lowerCAmelCase , """training_state.json""" ) , """w""" ) as f: json.dump({"""step""": state.step.item()} , _lowerCAmelCase ) print("""DONE""" ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=""" ... """ ) with open(os.path.join(lowerCamelCase , """flax_model.msgpack""" ) , """rb""" ) as f: __lowercase = from_bytes(state.params , f.read() ) with open(os.path.join(lowerCamelCase , """opt_state.msgpack""" ) , """rb""" ) as f: __lowercase = from_bytes(state.opt_state , f.read() ) __lowercase = joblib.load(os.path.join(lowerCamelCase , """args.joblib""" ) ) __lowercase = joblib.load(os.path.join(lowerCamelCase , """data_collator.joblib""" ) ) with open(os.path.join(lowerCamelCase , """training_state.json""" ) , """r""" ) as f: __lowercase = json.load(lowerCamelCase ) __lowercase = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = num_train_steps - warmup_steps __lowercase = optax.linear_schedule(init_value=lowerCamelCase , end_value=lowerCamelCase , transition_steps=lowerCamelCase ) __lowercase = optax.linear_schedule(init_value=lowerCamelCase , end_value=1e-7 , transition_steps=lowerCamelCase ) __lowercase = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' def weight_decay_mask(lowerCamelCase ): __lowercase = traverse_util.flatten_dict(lowerCamelCase ) __lowercase = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(lowerCamelCase ) __lowercase = scheduler_fn(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = optax.adamw(learning_rate=lowerCamelCase , weight_decay=lowerCamelCase , mask=lowerCamelCase ) return tx, lr
80
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class A : lowercase_ = 42 lowercase_ = 42 class A : def __init__( self : Optional[Any] , lowerCAmelCase_ : int ) -> str: """simple docstring""" _a = [[] for _ in range(lowerCAmelCase_ )] _a = size def __getitem__( self : Any , lowerCAmelCase_ : int ) -> Iterator[Edge]: """simple docstring""" return iter(self._graph[vertex] ) @property def __lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" return self._size def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> Dict: """simple docstring""" if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(lowerCAmelCase_ , lowerCAmelCase_ ) ) def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> int | None: """simple docstring""" _a = deque([start_vertex] ) _a = [None] * self.size _a = 0 while queue: _a = queue.popleft() _a = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _a = current_distance + edge.weight _a = distances[edge.destination_vertex] if ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and new_distance >= dest_vertex_distance ): continue _a = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
22
0
'''simple docstring''' def snake_case_ ( a__ : List[str] ,a__ : Tuple ): """simple docstring""" if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) __lowercase = str(bin(_lowerCAmelCase ) )[2:] # remove the leading "0b" __lowercase = str(bin(_lowerCAmelCase ) )[2:] # remove the leading "0b" __lowercase = max(len(_lowerCAmelCase ) ,len(_lowerCAmelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_lowerCAmelCase ) ,b_binary.zfill(_lowerCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
716
'''simple docstring''' def snake_case_ ( a__ : int ): """simple docstring""" __lowercase = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def snake_case_ ( a__ : int = 1_00 ): """simple docstring""" __lowercase = 1 __lowercase = 2 for i in range(2 ,max_n + 1 ): __lowercase = pre_numerator __lowercase = 2 * i // 3 if i % 3 == 0 else 1 __lowercase = cur_numerator __lowercase = e_cont * pre_numerator + temp return sum_digits(a__ ) if __name__ == "__main__": print(F"""{solution() = }""")
163
0
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : List[str] ,A : str=7 ,A : Optional[Any]=3 ,A : Any=18 ,A : int=30 ,A : int=4_00 ,A : List[str]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=True ,A : Tuple=None ,A : Tuple=True ,A : Union[str, Any]=[0.5, 0.5, 0.5] ,A : str=[0.5, 0.5, 0.5] ,A : List[Any]=False ,): __A = size if size is not None else {"height": 20, "width": 20} __A = crop_size if crop_size is not None else {"height": 18, "width": 18} __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size __A = do_center_crop __A = crop_size __A = do_normalize __A = image_mean __A = image_std __A = do_reduce_labels def UpperCamelCase_ ( self : List[str] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCAmelCase ( ) -> int: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(dataset[0]["file"] ) __A = Image.open(dataset[1]["file"] ) return image, map def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(ds[0]["file"] ) __A = Image.open(ds[1]["file"] ) __A = Image.open(ds[2]["file"] ) __A = Image.open(ds[3]["file"] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = BeitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : List[Any] ): __A = BeitImageProcessingTester(self ) @property def UpperCamelCase_ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : int ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size" ) ) self.assertTrue(hasattr(A ,"do_center_crop" ) ) self.assertTrue(hasattr(A ,"center_crop" ) ) self.assertTrue(hasattr(A ,"do_normalize" ) ) self.assertTrue(hasattr(A ,"image_mean" ) ) self.assertTrue(hasattr(A ,"image_std" ) ) def UpperCamelCase_ ( self : List[str] ): __A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"height": 20, "width": 20} ) self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} ) self.assertEqual(image_processor.do_reduce_labels ,A ) __A = self.image_processing_class.from_dict( self.image_processor_dict ,size=42 ,crop_size=84 ,reduce_labels=A ) self.assertEqual(image_processor.size ,{"height": 42, "width": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) self.assertEqual(image_processor.do_reduce_labels ,A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Optional[int] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : List[str] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : str ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) __A = [] for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __A = image_processing(image_inputs[0] ,maps[0] ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test not batched input (PIL images) __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched input (PIL images) __A , __A = prepare_semantic_batch_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 2, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 1_50 ) __A = True __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 )
55
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class lowerCAmelCase__ : def __init__( self : Optional[int] ) -> Optional[int]: __lowerCamelCase = '''''' __lowerCamelCase = '''''' __lowerCamelCase = [] __lowerCamelCase = 0 __lowerCamelCase = 2_56 __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = 0 def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ) -> Dict: __lowerCamelCase = cva.imread(SCREAMING_SNAKE_CASE__ , 0 ) __lowerCamelCase = copy.deepcopy(self.img ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label='''x''' ) __lowerCamelCase = np.sum(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __lowerCamelCase = x[i] / self.k self.sk += prk __lowerCamelCase = (self.L - 1) * self.sk if self.rem != 0: __lowerCamelCase = int(last % last ) __lowerCamelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = int(np.ma.count(self.img ) / self.img[1].size ) __lowerCamelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): __lowerCamelCase = self.img[j][i] if num != self.last_list[num]: __lowerCamelCase = self.last_list[num] cva.imwrite('''output_data/output.jpg''' , self.img ) def __A ( self : Optional[Any] ) -> Union[str, Any]: plt.hist(self.img.ravel() , 2_56 , [0, 2_56] ) def __A ( self : str ) -> Union[str, Any]: cva.imshow('''Output-Image''' , self.img ) cva.imshow('''Input-Image''' , self.original_image ) cva.waitKey(50_00 ) cva.destroyAllWindows() if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(os.path.basename(__file__), "image_data/input.jpg") SCREAMING_SNAKE_CASE__ : List[str] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
298
0
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' UpperCamelCase_ : Optional[Union[str, Path]] = None UpperCamelCase_ : bool = False UpperCamelCase_ : bool = False UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[Dict] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = False UpperCamelCase_ : bool = False UpperCamelCase_ : bool = False UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : int = 1 UpperCamelCase_ : Optional[Union[str, bool]] = None UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[Dict] = None UpperCamelCase_ : Optional[str] = None def _A ( self : List[Any] ): return self.__class__(**{k: copy.deepcopy(UpperCAmelCase_ ) for k, v in self.__dict__.items()} )
488
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter snake_case = """Create a default config file for Accelerate with only a few flags set.""" def lowerCamelCase__ ( lowercase="no" , lowercase = default_json_config_file , lowercase = False ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = Path(lowercase ) path.parent.mkdir(parents=lowercase , exist_ok=lowercase ) if path.exists(): print( F'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' ) return False SCREAMING_SNAKE_CASE : int = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = { "compute_environment": "LOCAL_MACHINE", "mixed_precision": mixed_precision, } if torch.cuda.is_available(): SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cuda.device_count() SCREAMING_SNAKE_CASE : int = num_gpus SCREAMING_SNAKE_CASE : Union[str, Any] = False if num_gpus > 1: SCREAMING_SNAKE_CASE : Tuple = "MULTI_GPU" else: SCREAMING_SNAKE_CASE : Optional[Any] = "NO" elif is_xpu_available() and use_xpu: SCREAMING_SNAKE_CASE : List[str] = torch.xpu.device_count() SCREAMING_SNAKE_CASE : str = num_xpus SCREAMING_SNAKE_CASE : Union[str, Any] = False if num_xpus > 1: SCREAMING_SNAKE_CASE : Any = "MULTI_XPU" else: SCREAMING_SNAKE_CASE : str = "NO" elif is_npu_available(): SCREAMING_SNAKE_CASE : List[Any] = torch.npu.device_count() SCREAMING_SNAKE_CASE : Optional[Any] = num_npus SCREAMING_SNAKE_CASE : Union[str, Any] = False if num_npus > 1: SCREAMING_SNAKE_CASE : str = "MULTI_NPU" else: SCREAMING_SNAKE_CASE : int = "NO" else: SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : int = "NO" SCREAMING_SNAKE_CASE : Dict = ClusterConfig(**lowercase ) config.to_json_file(lowercase ) return path def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = parser.add_parser("default" , parents=lowercase , help=lowercase , formatter_class=lowercase ) parser.add_argument( "--config_file" , default=lowercase , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , dest="save_location" , ) parser.add_argument( "--mixed_precision" , choices=["no", "fp16", "bf16"] , type=lowercase , help="Whether or not to use mixed precision training. " "Choose between FP16 and BF16 (bfloat16) training. " "BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later." , default="no" , ) parser.set_defaults(func=lowercase ) return parser def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'''accelerate configuration saved at {config_file}''' )
488
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer snake_case : Union[str, Any] = logging.get_logger(__name__) snake_case : Optional[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case : Optional[int] = { '''vocab_file''': { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json''' ), }, } snake_case : str = { '''yjernite/retribert-base-uncased''': 5_12, } snake_case : List[str] = { '''yjernite/retribert-base-uncased''': {'''do_lower_case''': True}, } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : List[str] = VOCAB_FILES_NAMES UpperCAmelCase__ : int = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : int = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ : Any = RetriBertTokenizer UpperCAmelCase__ : Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self :List[str] ,__snake_case :Dict=None ,__snake_case :Optional[Any]=None ,__snake_case :List[Any]=True ,__snake_case :Any="[UNK]" ,__snake_case :int="[SEP]" ,__snake_case :Dict="[PAD]" ,__snake_case :Dict="[CLS]" ,__snake_case :Union[str, Any]="[MASK]" ,__snake_case :List[str]=True ,__snake_case :Optional[Any]=None ,**__snake_case :Tuple ,) -> Union[str, Any]: super().__init__( __snake_case ,tokenizer_file=__snake_case ,do_lower_case=__snake_case ,unk_token=__snake_case ,sep_token=__snake_case ,pad_token=__snake_case ,cls_token=__snake_case ,mask_token=__snake_case ,tokenize_chinese_chars=__snake_case ,strip_accents=__snake_case ,**__snake_case ,) a__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,__snake_case ) != do_lower_case or normalizer_state.get('strip_accents' ,__snake_case ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,__snake_case ) != tokenize_chinese_chars ): a__ = getattr(__snake_case ,normalizer_state.pop('type' ) ) a__ = do_lower_case a__ = strip_accents a__ = tokenize_chinese_chars a__ = normalizer_class(**__snake_case ) a__ = do_lower_case def lowerCamelCase__( self :List[str] ,__snake_case :int ,__snake_case :Dict=None ) -> List[str]: a__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__( self :Tuple ,__snake_case :List[int] ,__snake_case :Optional[List[int]] = None ) -> List[int]: a__ = [self.sep_token_id] a__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__( self :Optional[int] ,__snake_case :str ,__snake_case :Optional[str] = None ) -> Tuple[str]: a__ = self._tokenizer.model.save(__snake_case ,name=__snake_case ) return tuple(__snake_case )
335
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType snake_case : int = logging.get_logger(__name__) snake_case : List[Any] = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Optional[Any] = '''layoutlmv3''' def __init__( self :Optional[Any] ,__snake_case :Dict=5_02_65 ,__snake_case :Union[str, Any]=7_68 ,__snake_case :Dict=12 ,__snake_case :List[str]=12 ,__snake_case :Any=30_72 ,__snake_case :int="gelu" ,__snake_case :List[str]=0.1 ,__snake_case :Optional[Any]=0.1 ,__snake_case :List[Any]=5_12 ,__snake_case :Any=2 ,__snake_case :Dict=0.02 ,__snake_case :Dict=1E-5 ,__snake_case :Tuple=1 ,__snake_case :Optional[int]=0 ,__snake_case :List[Any]=2 ,__snake_case :Optional[Any]=10_24 ,__snake_case :List[str]=1_28 ,__snake_case :List[str]=1_28 ,__snake_case :str=True ,__snake_case :Any=32 ,__snake_case :Union[str, Any]=1_28 ,__snake_case :Optional[Any]=64 ,__snake_case :List[Any]=2_56 ,__snake_case :Any=True ,__snake_case :Optional[int]=True ,__snake_case :List[str]=True ,__snake_case :Any=2_24 ,__snake_case :Union[str, Any]=3 ,__snake_case :int=16 ,__snake_case :Any=None ,**__snake_case :Dict ,) -> Any: super().__init__( vocab_size=__snake_case ,hidden_size=__snake_case ,num_hidden_layers=__snake_case ,num_attention_heads=__snake_case ,intermediate_size=__snake_case ,hidden_act=__snake_case ,hidden_dropout_prob=__snake_case ,attention_probs_dropout_prob=__snake_case ,max_position_embeddings=__snake_case ,type_vocab_size=__snake_case ,initializer_range=__snake_case ,layer_norm_eps=__snake_case ,pad_token_id=__snake_case ,bos_token_id=__snake_case ,eos_token_id=__snake_case ,**__snake_case ,) a__ = max_ad_position_embeddings a__ = coordinate_size a__ = shape_size a__ = has_relative_attention_bias a__ = rel_pos_bins a__ = max_rel_pos a__ = has_spatial_attention_bias a__ = rel_ad_pos_bins a__ = max_rel_ad_pos a__ = text_embed a__ = visual_embed a__ = input_size a__ = num_channels a__ = patch_size a__ = classifier_dropout class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Tuple = version.parse('''1.12''' ) @property def lowerCamelCase__( self :Optional[int] ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def lowerCamelCase__( self :Tuple ) -> float: return 1E-5 @property def lowerCamelCase__( self :Any ) -> int: return 12 def lowerCamelCase__( self :Tuple ,__snake_case :"ProcessorMixin" ,__snake_case :int = -1 ,__snake_case :int = -1 ,__snake_case :bool = False ,__snake_case :Optional["TensorType"] = None ,__snake_case :int = 3 ,__snake_case :int = 40 ,__snake_case :int = 40 ,) -> Mapping[str, Any]: setattr(processor.image_processor ,'apply_ocr' ,__snake_case ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX a__ = compute_effective_axis_dimension( __snake_case ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX a__ = processor.tokenizer.num_special_tokens_to_add(__snake_case ) a__ = compute_effective_axis_dimension( __snake_case ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=__snake_case ) # Generate dummy inputs according to compute batch and sequence a__ = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes a__ = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) a__ = self._generate_dummy_images(__snake_case ,__snake_case ,__snake_case ,__snake_case ) a__ = dict( processor( __snake_case ,text=__snake_case ,boxes=__snake_case ,return_tensors=__snake_case ,) ) return inputs
335
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A = logging.get_logger(__name__) A = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class __lowercase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''resnet''' __lowerCAmelCase = ['''basic''', '''bottleneck'''] def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=64 , _UpperCAmelCase=[256, 512, 1024, 2048] , _UpperCAmelCase=[3, 4, 6, 3] , _UpperCAmelCase="bottleneck" , _UpperCAmelCase="relu" , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) if layer_type not in self.layer_types: raise ValueError(f"""layer_type={layer_type} is not one of {",".join(self.layer_types )}""" ) __a : Any = num_channels __a : Optional[Any] = embedding_size __a : Union[str, Any] = hidden_sizes __a : List[Any] = depths __a : Any = layer_type __a : Optional[int] = hidden_act __a : Dict = downsample_in_first_stage __a : str = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(_UpperCAmelCase ) + 1 )] __a , __a : Optional[int] = get_aligned_output_features_output_indices( out_features=_UpperCAmelCase , out_indices=_UpperCAmelCase , stage_names=self.stage_names ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = version.parse('''1.11''' ) @property def _lowerCamelCase ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _lowerCamelCase ( self ): return 1e-3
101
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping A = tuple[int, int] class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __a : set[int] = vertices __a : dict[EdgeT, int] = { (min(_UpperCAmelCase ), max(_UpperCAmelCase )): weight for edge, weight in edges.items() } def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __a : Any = weight def _lowerCamelCase ( self ): __a : Graph = Graph({min(self.vertices )} , {} ) __a : EdgeT __a : int __a : EdgeT __a : int while len(subgraph.vertices ) < len(self.vertices ): __a : List[Any] = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __a : str = edge __a : int = weight subgraph.add_edge(_UpperCAmelCase , _UpperCAmelCase ) return subgraph def __A ( a_ :str = "p107_network.txt") -> int: __a : str = os.path.abspath(os.path.dirname(a_)) __a : str = os.path.join(a_ , a_) __a : dict[EdgeT, int] = {} __a : list[str] __a : int __a : int with open(a_) as f: __a : Any = f.read().strip().split('''\n''') __a : Union[str, Any] = [line.split(''',''') for line in data] for edgea in range(1 , len(a_)): for edgea in range(a_): if adjaceny_matrix[edgea][edgea] != "-": __a : int = int(adjaceny_matrix[edgea][edgea]) __a : Graph = Graph(set(range(len(a_))) , a_) __a : Graph = graph.prims_algorithm() __a : int = sum(graph.edges.values()) __a : int = sum(subgraph.edges.values()) return initial_total - optimal_total if __name__ == "__main__": print(F'{solution() = }')
101
1
class lowerCamelCase_ : '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any ): SCREAMING_SNAKE_CASE_ = name SCREAMING_SNAKE_CASE_ = value SCREAMING_SNAKE_CASE_ = weight def __repr__( self : int ): return F"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})" def lowerCAmelCase_ ( self : Any ): return self.value def lowerCAmelCase_ ( self : Optional[int] ): return self.name def lowerCAmelCase_ ( self : Dict ): return self.weight def lowerCAmelCase_ ( self : List[str] ): return self.value / self.weight def UpperCAmelCase_ ( __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = [] for i in range(len(__UpperCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = sorted(__UpperCAmelCase , key=__UpperCAmelCase , reverse=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0.0, 0.0 for i in range(len(__UpperCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def UpperCAmelCase_ ( ) -> List[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
31
from __future__ import annotations from collections.abc import Generator def UpperCAmelCase_ ( ) -> Generator[int, None, None]: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = 2 while True: SCREAMING_SNAKE_CASE_ = factor_map.pop(__UpperCAmelCase , __UpperCAmelCase ) if factor: SCREAMING_SNAKE_CASE_ = factor + prime while x in factor_map: x += factor SCREAMING_SNAKE_CASE_ = factor else: SCREAMING_SNAKE_CASE_ = prime yield prime prime += 1 def UpperCAmelCase_ ( __UpperCAmelCase : float = 1E10 ) -> int: SCREAMING_SNAKE_CASE_ = sieve() SCREAMING_SNAKE_CASE_ = 1 while True: SCREAMING_SNAKE_CASE_ = next(__UpperCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__UpperCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
31
1
'''simple docstring''' def UpperCAmelCase ( A : bytes ): return "".join([hex(A )[2:].zfill(2 ).upper() for byte in list(A )] ) def UpperCAmelCase ( A : str ): # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(A ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(A ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(A ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
464
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase_ ( snake_case_ ): _lowerCAmelCase : int = ['image_processor', 'tokenizer'] _lowerCAmelCase : Union[str, Any] = 'LayoutLMv3ImageProcessor' _lowerCAmelCase : List[Any] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self : str , lowerCAmelCase__ : int=None , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE : List[str] = kwargs.pop('''feature_extractor''' ) SCREAMING_SNAKE_CASE : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) def __call__( self : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase__ : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , lowerCAmelCase__ : Union[List[List[int]], List[List[List[int]]]] = None , lowerCAmelCase__ : Optional[Union[List[int], List[List[int]]]] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase__ : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase__ : Any , ): """simple docstring""" # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) # first, apply the image processor SCREAMING_SNAKE_CASE : List[Any] = self.image_processor(images=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE : List[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) SCREAMING_SNAKE_CASE : Optional[Any] = features['''words'''] SCREAMING_SNAKE_CASE : Tuple = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) # add pixel values SCREAMING_SNAKE_CASE : List[Any] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: SCREAMING_SNAKE_CASE : Any = self.get_overflowing_images(lowerCAmelCase__ , encoded_inputs['''overflow_to_sample_mapping'''] ) SCREAMING_SNAKE_CASE : Any = images return encoded_inputs def __lowercase ( self : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] ): """simple docstring""" # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image SCREAMING_SNAKE_CASE : Dict = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' F""" {len(lowerCAmelCase__ )} and {len(lowerCAmelCase__ )}""" ) return images_with_overflow def __lowercase ( self : Any , *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : List[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __lowercase ( self : Optional[int] , *lowerCAmelCase__ : Optional[Any] , **lowerCAmelCase__ : Tuple ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @property def __lowercase ( self : Union[str, Any] ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def __lowercase ( self : Union[str, Any] ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase__ , ) return self.image_processor_class @property def __lowercase ( self : List[Any] ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase__ , ) return self.image_processor
464
1
'''simple docstring''' import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder _lowerCAmelCase = "base_with_context" def _lowerCAmelCase ( lowercase : List[Any] , lowercase : Tuple ) ->List[str]: """simple docstring""" lowercase__ = nn.Parameter(torch.FloatTensor(weights['''token_embedder''']['''embedding'''] ) ) lowercase__ = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=lowercase ) for lyr_num, lyr in enumerate(model.encoders ): lowercase__ = weights[F'''layers_{lyr_num}'''] lowercase__ = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) lowercase__ = ly_weight['''attention'''] lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def _lowerCAmelCase ( lowercase : int , lowercase : int ) ->Optional[Any]: """simple docstring""" lowercase__ = nn.Parameter(torch.FloatTensor(weights['''input_proj''']['''kernel'''].T ) ) lowercase__ = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=lowercase ) for lyr_num, lyr in enumerate(model.encoders ): lowercase__ = weights[F'''layers_{lyr_num}'''] lowercase__ = ly_weight['''attention'''] lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) lowercase__ = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) lowercase__ = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def _lowerCAmelCase ( lowercase : Optional[int] , lowercase : Optional[Any] ) ->Dict: """simple docstring""" lowercase__ = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense0''']['''kernel'''].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense1''']['''kernel'''].T ) ) lowercase__ = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=lowercase ) lowercase__ = nn.Parameter( torch.FloatTensor(weights['''continuous_inputs_projection''']['''kernel'''].T ) ) for lyr_num, lyr in enumerate(model.decoders ): lowercase__ = weights[F'''layers_{lyr_num}'''] lowercase__ = nn.Parameter( torch.FloatTensor(ly_weight['''pre_self_attention_layer_norm''']['''scale'''] ) ) lowercase__ = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_0''']['''DenseGeneral_0''']['''kernel'''].T ) ) lowercase__ = ly_weight['''self_attention'''] lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) lowercase__ = ly_weight['''MultiHeadDotProductAttention_0'''] lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) lowercase__ = nn.Parameter( torch.FloatTensor(ly_weight['''pre_cross_attention_layer_norm''']['''scale'''] ) ) lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) lowercase__ = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_1''']['''DenseGeneral_0''']['''kernel'''].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) lowercase__ = nn.Parameter(torch.FloatTensor(weights['''decoder_norm''']['''scale'''] ) ) lowercase__ = nn.Parameter(torch.FloatTensor(weights['''spec_out_dense''']['''kernel'''].T ) ) return model def _lowerCAmelCase ( lowercase : Optional[int] ) ->Dict: """simple docstring""" lowercase__ = checkpoints.load_tax_checkpoint(args.checkpoint_path ) lowercase__ = jnp.tree_util.tree_map(onp.array , lowercase ) lowercase__ = [ '''from __gin__ import dynamic_registration''', '''from music_spectrogram_diffusion.models.diffusion import diffusion_utils''', '''diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0''', '''diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()''', ] lowercase__ = os.path.join(args.checkpoint_path , '''..''' , '''config.gin''' ) lowercase__ = inference.parse_training_gin_file(lowercase , lowercase ) lowercase__ = inference.InferenceModel(args.checkpoint_path , lowercase ) lowercase__ = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' , variance_type='''fixed_large''' ) lowercase__ = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['''inputs'''] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='''gated-gelu''' , ) lowercase__ = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['''targets_context'''] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='''gated-gelu''' , ) lowercase__ = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['''targets_context'''] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) lowercase__ = load_notes_encoder(ta_checkpoint['''target''']['''token_encoder'''] , lowercase ) lowercase__ = load_continuous_encoder(ta_checkpoint['''target''']['''continuous_encoder'''] , lowercase ) lowercase__ = load_decoder(ta_checkpoint['''target''']['''decoder'''] , lowercase ) lowercase__ = OnnxRuntimeModel.from_pretrained('''kashif/soundstream_mel_decoder''' ) lowercase__ = SpectrogramDiffusionPipeline( notes_encoder=lowercase , continuous_encoder=lowercase , decoder=lowercase , scheduler=lowercase , melgan=lowercase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument( "--checkpoint_path", default=f'''{MODEL}/checkpoint_500000''', type=str, required=False, help="Path to the original jax model checkpoint.", ) _lowerCAmelCase = parser.parse_args() main(args)
161
'''simple docstring''' import datasets from .evaluate import evaluate _lowerCAmelCase = "\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n" _lowerCAmelCase = "\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n" _lowerCAmelCase = "\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the CUAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\n 'aupr': Area Under the Precision-Recall curve\n 'prec_at_80_recall': Precision at 80% recall\n 'prec_at_90_recall': Precision at 90% recall\nExamples:\n >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> cuad_metric = datasets.load_metric(\"cuad\")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): """simple docstring""" def snake_case_( self )-> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , ) def snake_case_( self , _lowerCamelCase , _lowerCamelCase )-> Optional[int]: lowercase__ = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} lowercase__ = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] lowercase__ = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
161
1
'''simple docstring''' from __future__ import annotations from typing import Any class UpperCAmelCase__ : """simple docstring""" def __init__(self , _a , _a , _a = 0 ) -> int: lowercase_ ,lowercase_ : str = row, column lowercase_ : int = [[default_value for c in range(_snake_case )] for r in range(_snake_case )] def __str__(self ) -> List[str]: lowercase_ : Optional[int] = f'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier lowercase_ : Dict = 0 for row_vector in self.array: for obj in row_vector: lowercase_ : str = max(_snake_case , len(str(_snake_case ) ) ) lowercase_ : Any = f'''%{max_element_length}s''' # Make string and return def single_line(_a ) -> str: nonlocal string_format_identifier lowercase_ : str = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(_snake_case ) for row_vector in self.array ) return s def __repr__(self ) -> str: return str(self ) def _lowerCamelCase (self , _a ) -> Optional[int]: if not (isinstance(_snake_case , (list, tuple) ) and len(_snake_case ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__(self , _a ) -> Dict: assert self.validate_indicies(_snake_case ) return self.array[loc[0]][loc[1]] def __setitem__(self , _a , _a ) -> str: assert self.validate_indicies(_snake_case ) lowercase_ : int = value def __add__(self , _a ) -> Optional[Any]: assert isinstance(_snake_case , _snake_case ) assert self.row == another.row and self.column == another.column # Add lowercase_ : int = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowercase_ : List[Any] = self[r, c] + another[r, c] return result def __neg__(self ) -> Dict: lowercase_ : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowercase_ : Tuple = -self[r, c] return result def __sub__(self , _a ) -> Optional[int]: return self + (-another) def __mul__(self , _a ) -> Optional[Any]: if isinstance(_snake_case , (int, float) ): # Scalar multiplication lowercase_ : List[Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowercase_ : Any = self[r, c] * another return result elif isinstance(_snake_case , _snake_case ): # Matrix multiplication assert self.column == another.row lowercase_ : Optional[Any] = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: lowercase_ : List[Any] = f'''Unsupported type given for another ({type(_snake_case )})''' raise TypeError(_snake_case ) def _lowerCamelCase (self ) -> str: lowercase_ : Dict = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): lowercase_ : Tuple = self[r, c] return result def _lowerCamelCase (self , _a , _a ) -> int: assert isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowercase_ : Dict = v.transpose() lowercase_ : Tuple = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def _UpperCamelCase ( ): # a^(-1) lowercase_ : str = Matrix(3 , 3 , 0 ) for i in range(3 ): lowercase_ : Tuple = 1 print(f'''a^(-1) is {ainv}''' ) # u, v lowercase_ : List[str] = Matrix(3 , 1 , 0 ) lowercase_ ,lowercase_ ,lowercase_ : Union[str, Any] = 1, 2, -3 lowercase_ : str = Matrix(3 , 1 , 0 ) lowercase_ ,lowercase_ ,lowercase_ : List[str] = 4, -2, 5 print(f'''u is {u}''' ) print(f'''v is {v}''' ) print(f'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(__UpperCamelCase , __UpperCamelCase )}''' ) def _UpperCamelCase ( ): import doctest doctest.testmod() testa()
708
'''simple docstring''' import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase__ ( _snake_case , unittest.TestCase ): """simple docstring""" A : str = TransfoXLTokenizer A : Optional[int] = False A : List[str] = False def _lowerCamelCase (self ) -> List[Any]: super().setUp() lowercase_ : Any = [ '<unk>', '[CLS]', '[SEP]', 'want', 'unwanted', 'wa', 'un', 'running', ',', 'low', 'l', ] lowercase_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def _lowerCamelCase (self , **_a ) -> Union[str, Any]: lowercase_ : str = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **_a ) def _lowerCamelCase (self , _a ) -> Union[str, Any]: lowercase_ : int = '<unk> UNwanted , running' lowercase_ : int = '<unk> unwanted, running' return input_text, output_text def _lowerCamelCase (self ) -> Tuple: lowercase_ : Any = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=_a ) lowercase_ : Optional[Any] = tokenizer.tokenize('<unk> UNwanted , running' ) self.assertListEqual(_a , ['<unk>', 'unwanted', ',', 'running'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [0, 4, 8, 7] ) def _lowerCamelCase (self ) -> Union[str, Any]: lowercase_ : List[str] = TransfoXLTokenizer(lower_case=_a ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) def _lowerCamelCase (self ) -> int: lowercase_ : Dict = TransfoXLTokenizer(lower_case=_a ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _lowerCamelCase (self ) -> Optional[Any]: lowercase_ : Dict = TransfoXLTokenizer(lower_case=_a ) lowercase_ : int = 'Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?' lowercase_ : List[str] = [ 'Hello', '(', 'bracket', ')', 'and', 'side', '@-@', 'scrolled', '[', 'and', ']', 'Henry', '\'s', '$', '5', '@,@', '000', 'with', '3', '@.@', '34', 'm', '.', 'What', '\'s', 'up', '!', '?', ] self.assertListEqual(tokenizer.tokenize(_a ) , _a ) self.assertEqual(tokenizer.convert_tokens_to_string(_a ) , _a ) def _lowerCamelCase (self ) -> Any: lowercase_ : Optional[int] = self.get_tokenizer() lowercase_ : str = len(_a ) tokenizer.add_tokens(['new1', 'new2'] ) tokenizer.move_added_token('new1' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(_a ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('new1' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , 'new1' )
438
0
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __lowercase ( lowerCamelCase__ , unittest.TestCase ): __UpperCAmelCase = TransfoXLTokenizer __UpperCAmelCase = False __UpperCAmelCase = False def _a ( self) -> Any: super().setUp() __snake_case = [ '<unk>', '[CLS]', '[SEP]', 'want', 'unwanted', 'wa', 'un', 'running', ',', 'low', 'l', ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) def _a ( self , **lowercase_) -> Dict: __snake_case = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **lowercase_) def _a ( self , lowercase_) -> Tuple: __snake_case = '<unk> UNwanted , running' __snake_case = '<unk> unwanted, running' return input_text, output_text def _a ( self) -> int: __snake_case = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=lowercase_) __snake_case = tokenizer.tokenize('<unk> UNwanted , running') self.assertListEqual(lowercase_ , ['<unk>', 'unwanted', ',', 'running']) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_) , [0, 4, 8, 7]) def _a ( self) -> Optional[Any]: __snake_case = TransfoXLTokenizer(lower_case=lowercase_) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ') , ['hello', '!', 'how', 'are', 'you', '?']) def _a ( self) -> List[Any]: __snake_case = TransfoXLTokenizer(lower_case=lowercase_) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ') , ['HeLLo', '!', 'how', 'Are', 'yoU', '?']) def _a ( self) -> str: __snake_case = TransfoXLTokenizer(lower_case=lowercase_) __snake_case = 'Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?' __snake_case = [ 'Hello', '(', 'bracket', ')', 'and', 'side', '@-@', 'scrolled', '[', 'and', ']', 'Henry', '\'s', '$', '5', '@,@', '000', 'with', '3', '@.@', '34', 'm', '.', 'What', '\'s', 'up', '!', '?', ] self.assertListEqual(tokenizer.tokenize(lowercase_) , lowercase_) self.assertEqual(tokenizer.convert_tokens_to_string(lowercase_) , lowercase_) def _a ( self) -> str: __snake_case = self.get_tokenizer() __snake_case = len(lowercase_) tokenizer.add_tokens(['new1', 'new2']) tokenizer.move_added_token('new1' , 1) # Check that moved token is not copied (duplicate) self.assertEqual(len(lowercase_) , original_len + 2) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('new1') , [1]) self.assertEqual(tokenizer.decode([1]) , 'new1')
313
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase__ : int = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def A ( snake_case__ : List[str] , snake_case__ : Dict , snake_case__ : Optional[int]=None , snake_case__ : str=None , snake_case__ : Union[str, Any]=None , snake_case__ : List[Any]=None , snake_case__ : Optional[int]=None , snake_case__ : Optional[int]=None , ) -> List[str]: '''simple docstring''' if attention_mask is None: __snake_case = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: __snake_case = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: __snake_case = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __snake_case = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __snake_case = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __lowercase : def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=9_9 , lowercase_=1_6 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=3_2 , lowercase_=2 , lowercase_=1 , lowercase_=0 , lowercase_=0.02 , ) -> Optional[int]: __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = eos_token_id __snake_case = pad_token_id __snake_case = bos_token_id __snake_case = initializer_range def _a ( self) -> Any: __snake_case = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) __snake_case = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) __snake_case = shift_tokens_right(lowercase_ , 1 , 2) __snake_case = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowercase_ , ) __snake_case = prepare_blenderbot_inputs_dict(lowercase_ , lowercase_ , lowercase_) return config, inputs_dict def _a ( self) -> List[str]: __snake_case , __snake_case = self.prepare_config_and_inputs() return config, inputs_dict def _a ( self , lowercase_ , lowercase_ , lowercase_) -> Tuple: __snake_case = 2_0 __snake_case = model_class_name(lowercase_) __snake_case = model.encode(inputs_dict['input_ids']) __snake_case , __snake_case = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __snake_case = model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_) __snake_case = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4') __snake_case = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __snake_case = model.decode( decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , ) __snake_case = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4') __snake_case = model.decode( decoder_input_ids[:, -1:] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase_ , ) __snake_case = model.decode(lowercase_ , lowercase_) __snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F"Max diff is {diff}") def _a ( self , lowercase_ , lowercase_ , lowercase_) -> List[Any]: __snake_case = 2_0 __snake_case = model_class_name(lowercase_) __snake_case = model.encode(inputs_dict['input_ids']) __snake_case , __snake_case = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __snake_case = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) __snake_case = model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_) __snake_case = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __snake_case = model.decode( decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , ) __snake_case = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4') __snake_case = model.decode( decoder_input_ids[:, -1:] , lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase_ , decoder_position_ids=lowercase_ , ) __snake_case = model.decode(lowercase_ , lowercase_ , decoder_attention_mask=lowercase_) __snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F"Max diff is {diff}") @require_flax class __lowercase ( unittest.TestCase ): __UpperCAmelCase = 99 def _a ( self) -> str: __snake_case = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) __snake_case = input_ids.shape[0] __snake_case = BlenderbotConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _a ( self) -> Tuple: __snake_case , __snake_case , __snake_case = self._get_config_and_data() __snake_case = FlaxBlenderbotForConditionalGeneration(lowercase_) __snake_case = lm_model(input_ids=lowercase_) __snake_case = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , lowercase_) def _a ( self) -> Tuple: __snake_case = BlenderbotConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) __snake_case = FlaxBlenderbotForConditionalGeneration(lowercase_) __snake_case = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa) __snake_case = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa) __snake_case = lm_model(input_ids=lowercase_ , decoder_input_ids=lowercase_) __snake_case = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , lowercase_) def _a ( self) -> List[str]: __snake_case = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa) __snake_case = shift_tokens_right(lowercase_ , 1 , 2) __snake_case = np.equal(lowercase_ , 1).astype(np.floataa).sum() __snake_case = np.equal(lowercase_ , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(lowercase_ , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class __lowercase ( lowerCamelCase__ , unittest.TestCase , lowerCamelCase__ ): __UpperCAmelCase = True __UpperCAmelCase = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) __UpperCAmelCase = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _a ( self) -> Dict: __snake_case = FlaxBlenderbotModelTester(self) def _a ( self) -> Union[str, Any]: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowercase_ , lowercase_ , lowercase_) def _a ( self) -> str: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowercase_ , lowercase_ , lowercase_) def _a ( self) -> Dict: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): __snake_case = self._prepare_for_class(lowercase_ , lowercase_) __snake_case = model_class(lowercase_) @jax.jit def encode_jitted(lowercase_ , lowercase_=None , **lowercase_): return model.encode(input_ids=lowercase_ , attention_mask=lowercase_) with self.subTest('JIT Enabled'): __snake_case = encode_jitted(**lowercase_).to_tuple() with self.subTest('JIT Disabled'): with jax.disable_jit(): __snake_case = encode_jitted(**lowercase_).to_tuple() self.assertEqual(len(lowercase_) , len(lowercase_)) for jitted_output, output in zip(lowercase_ , lowercase_): self.assertEqual(jitted_output.shape , output.shape) def _a ( self) -> Union[str, Any]: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): __snake_case = model_class(lowercase_) __snake_case = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask']) __snake_case = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(lowercase_ , lowercase_ , lowercase_): return model.decode( decoder_input_ids=lowercase_ , decoder_attention_mask=lowercase_ , encoder_outputs=lowercase_ , ) with self.subTest('JIT Enabled'): __snake_case = decode_jitted(**lowercase_).to_tuple() with self.subTest('JIT Disabled'): with jax.disable_jit(): __snake_case = decode_jitted(**lowercase_).to_tuple() self.assertEqual(len(lowercase_) , len(lowercase_)) for jitted_output, output in zip(lowercase_ , lowercase_): self.assertEqual(jitted_output.shape , output.shape) @slow def _a ( self) -> str: for model_class_name in self.all_model_classes: __snake_case = model_class_name.from_pretrained('facebook/blenderbot-400M-distill') # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __snake_case = np.ones((1, 1)) * model.config.eos_token_id __snake_case = model(lowercase_) self.assertIsNotNone(lowercase_) @unittest.skipUnless(jax_device != 'cpu' , '3B test too slow on CPU.') @slow def _a ( self) -> int: __snake_case = {'num_beams': 1, 'early_stopping': True, 'min_length': 1_5, 'max_length': 2_5} __snake_case = {'skip_special_tokens': True, 'clean_up_tokenization_spaces': True} __snake_case = FlaxBlenderbotForConditionalGeneration.from_pretrained('facebook/blenderbot-3B' , from_pt=lowercase_) __snake_case = BlenderbotTokenizer.from_pretrained('facebook/blenderbot-3B') __snake_case = ['Sam'] __snake_case = tokenizer(lowercase_ , return_tensors='jax') __snake_case = model.generate(**lowercase_ , **lowercase_) __snake_case = 'Sam is a great name. It means "sun" in Gaelic.' __snake_case = tokenizer.batch_decode(lowercase_ , **lowercase_) assert generated_txt[0].strip() == tgt_text
313
1
'''simple docstring''' import argparse from collections import defaultdict import yaml __lowerCAmelCase : int = "docs/source/en/_toctree.yml" def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = defaultdict(UpperCamelCase__ ) for doc in model_doc: counts[doc["local"]] += 1 __UpperCAmelCase = [key for key, value in counts.items() if value > 1] __UpperCAmelCase = [] for duplicate_key in duplicates: __UpperCAmelCase = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(UpperCamelCase__ ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(UpperCamelCase__ , key=lambda UpperCamelCase__ : s["title"].lower() ) def lowerCAmelCase ( UpperCamelCase__ : Any=False ): """simple docstring""" with open(UpperCamelCase__ , encoding='''utf-8''' ) as f: __UpperCAmelCase = yaml.safe_load(f.read() ) # Get to the API doc __UpperCAmelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 __UpperCAmelCase = content[api_idx]['''sections'''] # Then to the model doc __UpperCAmelCase = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 __UpperCAmelCase = api_doc[model_idx]['''sections'''] __UpperCAmelCase = [(idx, section) for idx, section in enumerate(UpperCamelCase__ ) if '''sections''' in section] __UpperCAmelCase = False for idx, modality_doc in modalities_docs: __UpperCAmelCase = modality_doc['''sections'''] __UpperCAmelCase = clean_model_doc_toc(UpperCamelCase__ ) if old_modality_doc != new_modality_doc: __UpperCAmelCase = True if overwrite: __UpperCAmelCase = new_modality_doc if diff: if overwrite: __UpperCAmelCase = model_doc __UpperCAmelCase = api_doc with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(UpperCamelCase__ , allow_unicode=UpperCamelCase__ ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": __lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __lowerCAmelCase : Dict = parser.parse_args() check_model_doc(args.fix_and_overwrite)
654
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : Tuple ): """simple docstring""" # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __UpperCAmelCase = len(UpperCamelCase__ ) __UpperCAmelCase = max(UpperCamelCase__ ) __UpperCAmelCase = min(UpperCamelCase__ ) # create the counting array __UpperCAmelCase = coll_max + 1 - coll_min __UpperCAmelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection __UpperCAmelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , UpperCamelCase__ ) ): __UpperCAmelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowerCAmelCase ( UpperCamelCase__ : Any ): """simple docstring""" return "".join([chr(UpperCamelCase__ ) for i in counting_sort([ord(UpperCamelCase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" __lowerCAmelCase : str = input("Enter numbers separated by a comma:\n").strip() __lowerCAmelCase : List[Any] = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
654
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = "fnet" def __init__(self , _lowercase=32000 , _lowercase=768 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu_new" , _lowercase=0.1 , _lowercase=512 , _lowercase=4 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=False , _lowercase=512 , _lowercase=3 , _lowercase=1 , _lowercase=2 , **_lowercase , ): '''simple docstring''' super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) __a : Optional[int] = vocab_size __a : Tuple = max_position_embeddings __a : str = hidden_size __a : Tuple = num_hidden_layers __a : List[str] = intermediate_size __a : Optional[Any] = hidden_act __a : Dict = hidden_dropout_prob __a : Tuple = initializer_range __a : List[Any] = type_vocab_size __a : Optional[int] = layer_norm_eps __a : List[Any] = use_tpu_fourier_optimizations __a : int = tpu_short_seq_length
581
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType lowercase__ = logging.get_logger(__name__) lowercase__ = { "openai/imagegpt-small": "", "openai/imagegpt-medium": "", "openai/imagegpt-large": "", } class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = "imagegpt" _lowerCAmelCase = ["past_key_values"] _lowerCAmelCase = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__(self , _lowercase=512 + 1 , _lowercase=32 * 32 , _lowercase=512 , _lowercase=24 , _lowercase=8 , _lowercase=None , _lowercase="quick_gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1e-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=False , _lowercase=False , _lowercase=False , **_lowercase , ): '''simple docstring''' __a : int = vocab_size __a : Union[str, Any] = n_positions __a : List[str] = n_embd __a : Union[str, Any] = n_layer __a : List[str] = n_head __a : int = n_inner __a : Any = activation_function __a : List[str] = resid_pdrop __a : str = embd_pdrop __a : str = attn_pdrop __a : Tuple = layer_norm_epsilon __a : str = initializer_range __a : Dict = scale_attn_weights __a : Optional[int] = use_cache __a : Optional[Any] = scale_attn_by_inverse_layer_idx __a : Optional[Any] = reorder_and_upcast_attn __a : Union[str, Any] = tie_word_embeddings super().__init__(tie_word_embeddings=_lowercase , **_lowercase ) class SCREAMING_SNAKE_CASE__ ( __snake_case ): @property def lowerCAmelCase__(self ): '''simple docstring''' return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ] ) def lowerCAmelCase__(self , _lowercase , _lowercase = 1 , _lowercase = -1 , _lowercase = False , _lowercase = None , _lowercase = 3 , _lowercase = 32 , _lowercase = 32 , ): '''simple docstring''' __a : Any = self._generate_dummy_images(_lowercase , _lowercase , _lowercase , _lowercase ) __a : Union[str, Any] = dict(preprocessor(images=_lowercase , return_tensors=_lowercase ) ) return inputs
581
1
'''simple docstring''' import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_a ,'tf_padding' ) ) self.parent.assertTrue(hasattr(_a ,'depth_multiplier' ) ) class UpperCAmelCase__ : """simple docstring""" def __init__( self : Tuple ,_a : Dict ,_a : List[str]=13 ,_a : Union[str, Any]=3 ,_a : str=32 ,_a : List[str]=0.25 ,_a : Tuple=8 ,_a : Any=8 ,_a : Optional[int]=6 ,_a : int=32 ,_a : List[str]=True ,_a : Optional[Any]=True ,_a : int=True ,_a : Dict="relu6" ,_a : Union[str, Any]=1280 ,_a : str=0.1 ,_a : Optional[Any]=0.02 ,_a : str=True ,_a : Dict=True ,_a : List[Any]=10 ,_a : List[Any]=None ,): '''simple docstring''' _a : str = parent _a : Tuple = batch_size _a : List[str] = num_channels _a : int = image_size _a : Optional[int] = depth_multiplier _a : str = depth_divisible_by _a : int = min_depth _a : Optional[Any] = expand_ratio _a : str = tf_padding _a : str = output_stride _a : Tuple = first_layer_is_expansion _a : Optional[Any] = finegrained_output _a : Union[str, Any] = hidden_act _a : Any = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) _a : List[Any] = classifier_dropout_prob _a : int = use_labels _a : Optional[Any] = is_training _a : Dict = num_labels _a : int = initializer_range _a : Dict = scope def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Union[str, Any] = None _a : Any = None if self.use_labels: _a : Any = ids_tensor([self.batch_size] ,self.num_labels ) _a : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) _a : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def __lowercase ( self : str ): '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,depth_divisible_by=self.depth_divisible_by ,min_depth=self.min_depth ,expand_ratio=self.expand_ratio ,output_stride=self.output_stride ,first_layer_is_expansion=self.first_layer_is_expansion ,finegrained_output=self.finegrained_output ,hidden_act=self.hidden_act ,tf_padding=self.tf_padding ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,) def __lowercase ( self : str ,_a : Tuple ,_a : int ,_a : Union[str, Any] ,_a : Dict ): '''simple docstring''' _a : Optional[Any] = MobileNetVaModel(config=_a ) model.to(_a ) model.eval() _a : int = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) self.parent.assertEqual( result.pooler_output.shape ,(self.batch_size, self.last_hidden_size) ,) def __lowercase ( self : Optional[Any] ,_a : List[Any] ,_a : Any ,_a : Dict ,_a : Optional[Any] ): '''simple docstring''' _a : List[str] = self.num_labels _a : List[Any] = MobileNetVaForImageClassification(_a ) model.to(_a ) model.eval() _a : Union[str, Any] = model(_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowercase ( self : int ,_a : Tuple ,_a : str ,_a : Optional[Any] ,_a : Optional[Any] ): '''simple docstring''' _a : Optional[Any] = self.num_labels _a : Tuple = MobileNetVaForSemanticSegmentation(_a ) model.to(_a ) model.eval() _a : int = model(_a ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) _a : List[str] = model(_a ,labels=_a ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : List[str] = self.prepare_config_and_inputs() _a : Optional[int] = config_and_inputs _a : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[int] = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase : List[str] = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase : Dict = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : Optional[int] = False def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Any = MobileNetVaModelTester(self ) _a : List[str] = MobileNetVaConfigTester(self ,config_class=_a ,has_text_modality=_a ) def __lowercase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='MobileNetV2 does not use inputs_embeds' ) def __lowercase ( self : List[Any] ): '''simple docstring''' pass @unittest.skip(reason='MobileNetV2 does not support input and output embeddings' ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason='MobileNetV2 does not output attentions' ) def __lowercase ( self : Any ): '''simple docstring''' pass def __lowercase ( self : Dict ): '''simple docstring''' _a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = model_class(_a ) _a : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Any = [*signature.parameters.keys()] _a : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_a ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' def check_hidden_states_output(_a : Any ,_a : Tuple ,_a : Union[str, Any] ): _a : List[Any] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Optional[Any] = model(**self._prepare_for_class(_a ,_a ) ) _a : str = outputs.hidden_states _a : Any = 16 self.assertEqual(len(_a ) ,_a ) _a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = True check_hidden_states_output(_a ,_a ,_a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : Optional[Any] = True check_hidden_states_output(_a ,_a ,_a ) def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_a ) @slow def __lowercase ( self : Union[str, Any] ): '''simple docstring''' for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Union[str, Any] = MobileNetVaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def UpperCAmelCase_ (): """simple docstring""" _a : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self : Optional[Any] ): '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v2_1.0_224' ) if is_vision_available() else None ) @slow def __lowercase ( self : List[str] ): '''simple docstring''' _a : Optional[Any] = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v2_1.0_224' ).to(_a ) _a : List[Any] = self.default_image_processor _a : Any = prepare_img() _a : List[Any] = image_processor(images=_a ,return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): _a : List[Any] = model(**_a ) # verify the logits _a : int = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape ,_a ) _a : str = torch.tensor([0.2445, -1.1993, 0.1905] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_a ,atol=1E-4 ) ) @slow def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Optional[int] = MobileNetVaForSemanticSegmentation.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) _a : Optional[Any] = model.to(_a ) _a : Tuple = MobileNetVaImageProcessor.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) _a : Union[str, Any] = prepare_img() _a : Tuple = image_processor(images=_a ,return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): _a : str = model(**_a ) _a : Optional[Any] = outputs.logits # verify the logits _a : List[Any] = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape ,_a ) _a : Union[str, Any] = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] ,device=_a ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,_a ,atol=1E-4 ) )
717
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
319
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''xlm-roberta-xl''' def __init__( self , lowerCamelCase__=250_880 , lowerCamelCase__=2_560 , lowerCamelCase__=36 , lowerCamelCase__=32 , lowerCamelCase__=10_240 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=514 , lowerCamelCase__=1 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-05 , lowerCamelCase__=1 , lowerCamelCase__=0 , lowerCamelCase__=2 , lowerCamelCase__="absolute" , lowerCamelCase__=True , lowerCamelCase__=None , **lowerCamelCase__ , ) -> str: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = position_embedding_type __lowerCamelCase = use_cache __lowerCamelCase = classifier_dropout class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @property def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __lowerCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __lowerCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
469
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''vit_mae''' def __init__( self , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3_072 , lowerCamelCase__="gelu" , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-12 , lowerCamelCase__=224 , lowerCamelCase__=16 , lowerCamelCase__=3 , lowerCamelCase__=True , lowerCamelCase__=16 , lowerCamelCase__=512 , lowerCamelCase__=8 , lowerCamelCase__=2_048 , lowerCamelCase__=0.75 , lowerCamelCase__=False , **lowerCamelCase__ , ) -> Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = qkv_bias __lowerCamelCase = decoder_num_attention_heads __lowerCamelCase = decoder_hidden_size __lowerCamelCase = decoder_num_hidden_layers __lowerCamelCase = decoder_intermediate_size __lowerCamelCase = mask_ratio __lowerCamelCase = norm_pix_loss
469
1
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase : '''simple docstring''' def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=128 , _snake_case=32 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ) -> List[str]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope def snake_case_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self ) -> Tuple: """simple docstring""" return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A__ , initializer_range=self.initializer_range , ) def snake_case_ ( self ) -> Optional[int]: """simple docstring""" ( UpperCAmelCase ) = self.prepare_config_and_inputs() UpperCAmelCase = True UpperCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def snake_case_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Tuple: """simple docstring""" UpperCAmelCase = NezhaModel(config=A__ ) model.to(A__ ) model.eval() UpperCAmelCase = model(A__ , attention_mask=A__ , token_type_ids=A__ ) UpperCAmelCase = model(A__ , token_type_ids=A__ ) UpperCAmelCase = model(A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ) -> Tuple: """simple docstring""" UpperCAmelCase = True UpperCAmelCase = NezhaModel(A__ ) model.to(A__ ) model.eval() UpperCAmelCase = model( A__ , attention_mask=A__ , token_type_ids=A__ , encoder_hidden_states=A__ , encoder_attention_mask=A__ , ) UpperCAmelCase = model( A__ , attention_mask=A__ , token_type_ids=A__ , encoder_hidden_states=A__ , ) UpperCAmelCase = model(A__ , attention_mask=A__ , token_type_ids=A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = NezhaForMaskedLM(config=A__ ) model.to(A__ ) model.eval() UpperCAmelCase = model(A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Any: """simple docstring""" UpperCAmelCase = NezhaForNextSentencePrediction(config=A__ ) model.to(A__ ) model.eval() UpperCAmelCase = model( A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def snake_case_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = NezhaForPreTraining(config=A__ ) model.to(A__ ) model.eval() UpperCAmelCase = model( A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ , next_sentence_label=A__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def snake_case_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = NezhaForQuestionAnswering(config=A__ ) model.to(A__ ) model.eval() UpperCAmelCase = model( A__ , attention_mask=A__ , token_type_ids=A__ , start_positions=A__ , end_positions=A__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Tuple: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = NezhaForSequenceClassification(A__ ) model.to(A__ ) model.eval() UpperCAmelCase = model(A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = NezhaForTokenClassification(config=A__ ) model.to(A__ ) model.eval() UpperCAmelCase = model(A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> int: """simple docstring""" UpperCAmelCase = self.num_choices UpperCAmelCase = NezhaForMultipleChoice(config=A__ ) model.to(A__ ) model.eval() UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = model( A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() ( UpperCAmelCase ) = config_and_inputs UpperCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowercase ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = ( { '''feature-extraction''': NezhaModel, '''fill-mask''': NezhaForMaskedLM, '''question-answering''': NezhaForQuestionAnswering, '''text-classification''': NezhaForSequenceClassification, '''token-classification''': NezhaForTokenClassification, '''zero-shot''': NezhaForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = True def snake_case_ ( self , _snake_case , _snake_case , _snake_case=False ) -> Dict: """simple docstring""" UpperCAmelCase = super()._prepare_for_class(A__ , A__ , return_labels=A__ ) if return_labels: if model_class in get_values(A__ ): UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=A__ ) UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A__ ) return inputs_dict def snake_case_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = NezhaModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=A__ , hidden_size=37 ) def snake_case_ ( self ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def snake_case_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def snake_case_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*A__ ) def snake_case_ ( self ) -> List[str]: """simple docstring""" # This regression test was failing with PyTorch < 1.3 ( UpperCAmelCase ) = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCAmelCase = None self.model_tester.create_and_check_model_as_decoder( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ) def snake_case_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A__ ) def snake_case_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A__ ) def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*A__ ) def snake_case_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A__ ) def snake_case_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A__ ) def snake_case_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A__ ) def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A__ ) @slow def snake_case_ ( self ) -> Optional[int]: """simple docstring""" for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = NezhaModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) @slow @require_torch_gpu def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return UpperCAmelCase = True UpperCAmelCase = model_class(config=A__ ) UpperCAmelCase = self._prepare_for_class(A__ , A__ ) UpperCAmelCase = torch.jit.trace( A__ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(A__ , os.path.join(A__ , '''bert.pt''' ) ) UpperCAmelCase = torch.jit.load(os.path.join(A__ , '''bert.pt''' ) , map_location=A__ ) loaded(inputs_dict['''input_ids'''].to(A__ ) , inputs_dict['''attention_mask'''].to(A__ ) ) @require_torch class lowercase ( unittest.TestCase ): '''simple docstring''' @slow def snake_case_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' ) UpperCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase = model(A__ , attention_mask=A__ )[0] UpperCAmelCase = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , A__ ) UpperCAmelCase = torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , A__ , atol=1e-4 ) ) @slow def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' ) UpperCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase = model(A__ , attention_mask=A__ )[0] UpperCAmelCase = torch.Size((1, 6, 2_1128) ) self.assertEqual(output.shape , A__ ) UpperCAmelCase = torch.tensor( [[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , A__ , atol=1e-4 ) )
720
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate __magic_name__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", "|", "|"), datarow=DataRow("", "|", "|"), padding=1, with_header_hide=None, ) __magic_name__ = [] __magic_name__ = [] __magic_name__ = {"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}} __magic_name__ = [ { "type": "header", "text": { "type": "plain_text", "text": f'''🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results''', "emoji": True, }, } ] __magic_name__ = 0 for log in Path().glob("*.log"): __magic_name__ = 0 with open(log, "r") as f: for line in f: __magic_name__ = json.loads(line) if line.get("nodeid", "") != "": __magic_name__ = line["nodeid"] if line.get("duration", None) is not None: __magic_name__ = f'''{line["duration"]:.4f}''' if line.get("outcome", "") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("_")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) __magic_name__ = [] log.unlink() __magic_name__ = "" __magic_name__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" __magic_name__ = [] __magic_name__ = {} for test in failed_tests: __magic_name__ = test[0].split("::") __magic_name__ = data[0].split("/")[-1] if data[0] not in filesafailed: __magic_name__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) __magic_name__ = [test[0] for test in failed_table] __magic_name__ = list(set(files)) # Count number of instances in failed_tests __magic_name__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) __magic_name__ = tabulate( table, headers=["Test Location", "Num Failed"], tablefmt=hf_table_format, stralign="right", ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: __magic_name__ = "Too many failed tests, please see the full report in the Action results." __magic_name__ = len(err) + 10 __magic_name__ = message[: 3000 - offset] + f'''\n...\n```\n{err}''' print(f'''### {message}''') else: __magic_name__ = "No failed tests! 🤗" print(f'''## {message}''') payload.append(no_error_payload) if os.environ.get("TEST_TYPE", "") != "": from slack_sdk import WebClient __magic_name__ = WebClient(token=os.environ["SLACK_API_TOKEN"]) if message != "No failed tests! 🤗": __magic_name__ = { "type": "section", "text": { "type": "mrkdwn", "text": message, }, } payload.append(md_report) __magic_name__ = { "type": "section", "text": { "type": "mrkdwn", "text": "*For more details:*", }, "accessory": { "type": "button", "text": { "type": "plain_text", "text": "Check Action results", "emoji": True, }, "url": f'''https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } payload.append(action_button) __magic_name__ = { "type": "context", "elements": [ { "type": "plain_text", "text": f'''Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}''', } ], } payload.append(date_report) __magic_name__ = client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload) __magic_name__ = response.data["ts"] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name __magic_name__ = "" for i, row in enumerate(test_failures): if row[0] != test_class: __magic_name__ = row[0] else: __magic_name__ = "" __magic_name__ = { "type": "section", "text": { "type": "mrkdwn", "text": f'''Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```''', }, } client.chat_postMessage( channel="#accelerate-ci-daily", thread_ts=ts, blocks=[payload], )
391
0
'''simple docstring''' import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() def UpperCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Dict = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" , from_pt=lowercase__ , dtype=jnp.bfloataa ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=lowercase__ , from_pt=lowercase__ , dtype=jnp.bfloataa ) UpperCAmelCase__ : Dict = controlnet_params UpperCAmelCase__ : int = "bird" UpperCAmelCase__ : List[Any] = jax.device_count() UpperCAmelCase__ : int = pipe.prepare_text_inputs([prompts] * num_samples ) UpperCAmelCase__ : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) UpperCAmelCase__ : Optional[Any] = pipe.prepare_image_inputs([canny_image] * num_samples ) UpperCAmelCase__ : str = jax.random.PRNGKey(0 ) UpperCAmelCase__ : Optional[Any] = jax.random.split(lowercase__ , jax.device_count() ) UpperCAmelCase__ : Tuple = replicate(lowercase__ ) UpperCAmelCase__ : Dict = shard(lowercase__ ) UpperCAmelCase__ : Optional[int] = shard(lowercase__ ) UpperCAmelCase__ : Dict = pipe( prompt_ids=lowercase__ , image=lowercase__ , params=lowercase__ , prng_seed=lowercase__ , num_inference_steps=50 , jit=lowercase__ , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) UpperCAmelCase__ : List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCAmelCase__ : str = images[0, 2_53:2_56, 2_53:2_56, -1] UpperCAmelCase__ : List[str] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCAmelCase__ : Union[str, Any] = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Dict = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" , from_pt=lowercase__ , dtype=jnp.bfloataa ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=lowercase__ , from_pt=lowercase__ , dtype=jnp.bfloataa ) UpperCAmelCase__ : int = controlnet_params UpperCAmelCase__ : Optional[Any] = "Chef in the kitchen" UpperCAmelCase__ : int = jax.device_count() UpperCAmelCase__ : List[Any] = pipe.prepare_text_inputs([prompts] * num_samples ) UpperCAmelCase__ : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) UpperCAmelCase__ : Optional[Any] = pipe.prepare_image_inputs([pose_image] * num_samples ) UpperCAmelCase__ : Any = jax.random.PRNGKey(0 ) UpperCAmelCase__ : Tuple = jax.random.split(lowercase__ , jax.device_count() ) UpperCAmelCase__ : List[Any] = replicate(lowercase__ ) UpperCAmelCase__ : List[str] = shard(lowercase__ ) UpperCAmelCase__ : List[Any] = shard(lowercase__ ) UpperCAmelCase__ : Optional[int] = pipe( prompt_ids=lowercase__ , image=lowercase__ , params=lowercase__ , prng_seed=lowercase__ , num_inference_steps=50 , jit=lowercase__ , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) UpperCAmelCase__ : Optional[int] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCAmelCase__ : Any = images[0, 2_53:2_56, 2_53:2_56, -1] UpperCAmelCase__ : Dict = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCAmelCase__ : Optional[Any] = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
199
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' lowercase_ = ["""image_processor""", """tokenizer"""] lowercase_ = """LayoutLMv2ImageProcessor""" lowercase_ = ("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self , lowercase__=None , lowercase__=None , **lowercase__ ): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowercase__ , ) __A =kwargs.pop('''feature_extractor''' ) __A =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase__ , lowercase__ ) def __call__( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = True , lowercase__ = False , lowercase__ = None , lowercase__ = None , lowercase__ = 0 , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = True , lowercase__ = None , **lowercase__ , ): '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor __A =self.image_processor(images=lowercase__ , return_tensors=lowercase__ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowercase__ , lowercase__ ): __A =[text] # add batch dimension (as the image processor always adds a batch dimension) __A =features['''words'''] __A =self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=lowercase__ , add_special_tokens=lowercase__ , padding=lowercase__ , truncation=lowercase__ , max_length=lowercase__ , stride=lowercase__ , pad_to_multiple_of=lowercase__ , return_token_type_ids=lowercase__ , return_attention_mask=lowercase__ , return_overflowing_tokens=lowercase__ , return_special_tokens_mask=lowercase__ , return_offsets_mapping=lowercase__ , return_length=lowercase__ , verbose=lowercase__ , return_tensors=lowercase__ , **lowercase__ , ) # add pixel values __A =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: __A =self.get_overflowing_images(lowercase__ , encoded_inputs['''overflow_to_sample_mapping'''] ) __A =images return encoded_inputs def __UpperCamelCase ( self , lowercase__ , lowercase__ ): '''simple docstring''' __A =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowercase__ ) != len(lowercase__ ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(lowercase__ )} and {len(lowercase__ )}''' ) return images_with_overflow def __UpperCamelCase ( self , *lowercase__ , **lowercase__ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def __UpperCamelCase ( self , *lowercase__ , **lowercase__ ): '''simple docstring''' return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property def __UpperCamelCase ( self ): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def __UpperCamelCase ( self ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase__ , ) return self.image_processor_class @property def __UpperCamelCase ( self ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowercase__ , ) return self.image_processor
184
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class _lowercase ( unittest.TestCase ): def __init__( self : Optional[int] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Union[str, Any]=7 , lowerCamelCase__ : Union[str, Any]=3 , lowerCamelCase__ : int=3_0 , lowerCamelCase__ : str=4_0_0 , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : Dict=None , lowerCamelCase__ : str=0.9 , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : str=True , lowerCamelCase__ : Tuple=[0.5, 0.5, 0.5] , lowerCamelCase__ : Dict=[0.5, 0.5, 0.5] , ) -> Union[str, Any]: """simple docstring""" A_ = size if size is not None else {'''shortest_edge''': 3_0} A_ = crop_size if crop_size is not None else {'''height''': 3_0, '''width''': 3_0} A_ = parent A_ = batch_size A_ = num_channels A_ = min_resolution A_ = max_resolution A_ = do_resize_and_center_crop A_ = size A_ = crop_pct A_ = crop_size A_ = do_normalize A_ = image_mean A_ = image_std def UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _lowercase ( __a,unittest.TestCase ): _lowercase : Optional[int] = PoolFormerImageProcessor if is_vision_available() else None def UpperCamelCase ( self : List[str] ) -> Tuple: """simple docstring""" A_ = PoolFormerImageProcessingTester(self ) @property def UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self : List[str] ) -> Tuple: """simple docstring""" A_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , '''do_resize_and_center_crop''' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , '''size''' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , '''crop_pct''' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , '''image_std''' ) ) def UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" A_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 3_0} ) self.assertEqual(image_processor.crop_size , {'''height''': 3_0, '''width''': 3_0} ) A_ = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2} ) self.assertEqual(image_processor.crop_size , {'''height''': 8_4, '''width''': 8_4} ) def UpperCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" pass def UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" A_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , Image.Image ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched A_ = image_processing(lowerCAmelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCamelCase ( self : List[str] ) -> str: """simple docstring""" A_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , np.ndarray ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched A_ = image_processing(lowerCAmelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCamelCase ( self : Dict ) -> str: """simple docstring""" A_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , torch.Tensor ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched A_ = image_processing(lowerCAmelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
719
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class _lowercase : def __init__( self : Dict , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str=1_3 , lowerCamelCase__ : Any=7 , lowerCamelCase__ : Optional[Any]=True , lowerCamelCase__ : Optional[Any]=True , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Optional[Any]=True , lowerCamelCase__ : List[str]=9_9 , lowerCamelCase__ : Optional[Any]=[1, 1, 2] , lowerCamelCase__ : Optional[Any]=1 , lowerCamelCase__ : Union[str, Any]=3_2 , lowerCamelCase__ : int=4 , lowerCamelCase__ : Optional[int]=8 , lowerCamelCase__ : Union[str, Any]=3_7 , lowerCamelCase__ : List[Any]="gelu_new" , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[Any]=0.0 , lowerCamelCase__ : List[Any]=5_1_2 , lowerCamelCase__ : Optional[int]=3 , lowerCamelCase__ : List[Any]=0.02 , lowerCamelCase__ : str=3 , lowerCamelCase__ : Union[str, Any]=4 , lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : List[Any]=False , ) -> Union[str, Any]: """simple docstring""" A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = block_sizes A_ = num_decoder_layers A_ = d_model A_ = n_head A_ = d_head A_ = d_inner A_ = hidden_act A_ = hidden_dropout A_ = attention_dropout A_ = activation_dropout A_ = max_position_embeddings A_ = type_vocab_size A_ = 2 A_ = num_labels A_ = num_choices A_ = scope A_ = initializer_std # Used in the tests to check the size of the first attention layer A_ = n_head # Used in the tests to check the size of the first hidden state A_ = self.d_model # Used in the tests to check the number of output hidden states/attentions A_ = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: A_ = self.num_hidden_layers + 2 def UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def UpperCamelCase ( self : Optional[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int , ) -> List[Any]: """simple docstring""" A_ = TFFunnelModel(config=lowerCamelCase__ ) A_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A_ = model(lowerCamelCase__ ) A_ = [input_ids, input_mask] A_ = model(lowerCamelCase__ ) A_ = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) A_ = False A_ = TFFunnelModel(config=lowerCamelCase__ ) A_ = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) A_ = False A_ = TFFunnelModel(config=lowerCamelCase__ ) A_ = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def UpperCamelCase ( self : List[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Tuple , lowerCamelCase__ : Any , lowerCamelCase__ : Tuple , lowerCamelCase__ : Tuple , lowerCamelCase__ : Tuple , ) -> Tuple: """simple docstring""" A_ = TFFunnelBaseModel(config=lowerCamelCase__ ) A_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A_ = model(lowerCamelCase__ ) A_ = [input_ids, input_mask] A_ = model(lowerCamelCase__ ) A_ = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) A_ = False A_ = TFFunnelBaseModel(config=lowerCamelCase__ ) A_ = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) A_ = False A_ = TFFunnelBaseModel(config=lowerCamelCase__ ) A_ = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def UpperCamelCase ( self : Optional[Any] , lowerCamelCase__ : int , lowerCamelCase__ : Dict , lowerCamelCase__ : int , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int] , ) -> List[str]: """simple docstring""" A_ = TFFunnelForPreTraining(config=lowerCamelCase__ ) A_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A_ = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self : List[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : List[str] , lowerCamelCase__ : Dict , ) -> List[str]: """simple docstring""" A_ = TFFunnelForMaskedLM(config=lowerCamelCase__ ) A_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A_ = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self : str , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : int , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Tuple , ) -> Union[str, Any]: """simple docstring""" A_ = self.num_labels A_ = TFFunnelForSequenceClassification(config=lowerCamelCase__ ) A_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A_ = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self : List[str] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : Dict , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[Any] , ) -> Optional[Any]: """simple docstring""" A_ = self.num_choices A_ = TFFunnelForMultipleChoice(config=lowerCamelCase__ ) A_ = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) A_ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } A_ = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self : Optional[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Dict , ) -> Union[str, Any]: """simple docstring""" A_ = self.num_labels A_ = TFFunnelForTokenClassification(config=lowerCamelCase__ ) A_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A_ = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self : Any , lowerCamelCase__ : Any , lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : str , ) -> str: """simple docstring""" A_ = TFFunnelForQuestionAnswering(config=lowerCamelCase__ ) A_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A_ = model(lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self : Dict ) -> str: """simple docstring""" A_ = self.prepare_config_and_inputs() ( ( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) , ) = config_and_inputs A_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _lowercase ( __lowerCamelCase,__lowerCamelCase,unittest.TestCase ): _lowercase : Optional[Any] = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) _lowercase : List[Any] = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) _lowercase : Dict = False _lowercase : Optional[int] = False def UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" A_ = TFFunnelModelTester(self ) A_ = ConfigTester(self , config_class=lowerCamelCase__ ) def UpperCamelCase ( self : int ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : List[Any] ) -> int: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def UpperCamelCase ( self : Any ) -> List[str]: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase__ ) def UpperCamelCase ( self : Dict ) -> Dict: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase__ ) def UpperCamelCase ( self : Any ) -> Any: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase__ ) def UpperCamelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase__ ) @require_tf class _lowercase ( __lowerCamelCase,unittest.TestCase ): _lowercase : Any = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) _lowercase : str = False _lowercase : Any = False def UpperCamelCase ( self : int ) -> Optional[int]: """simple docstring""" A_ = TFFunnelModelTester(self , base=lowerCamelCase__ ) A_ = ConfigTester(self , config_class=lowerCamelCase__ ) def UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowerCamelCase__ ) def UpperCamelCase ( self : str ) -> Dict: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase__ ) def UpperCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase__ )
563
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] UpperCAmelCase__ = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
332
'''simple docstring''' def lowerCamelCase ( _snake_case : str ): '''simple docstring''' return " ".join( "".join(word[::-1] ) if len(_snake_case ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
267
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _UpperCamelCase : Optional[int] = logging.get_logger(__name__) _UpperCamelCase : Dict = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class UpperCAmelCase_ ( _a): lowerCamelCase__ : str = "deformable_detr" lowerCamelCase__ : List[Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , a=True , a=None , a=3 , a=3_0_0 , a=1_0_2_4 , a=6 , a=1_0_2_4 , a=8 , a=6 , a=1_0_2_4 , a=8 , a=0.0 , a=True , a="relu" , a=2_5_6 , a=0.1 , a=0.0 , a=0.0 , a=0.02 , a=1.0 , a=True , a=False , a="sine" , a="resnet50" , a=True , a=False , a=4 , a=4 , a=4 , a=False , a=3_0_0 , a=False , a=1 , a=5 , a=2 , a=1 , a=1 , a=5 , a=2 , a=0.1 , a=0.25 , a=False , **a , ) -> Any: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowercase__ : List[Any] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(a , a ): lowercase__ : Union[str, Any] = backbone_config.get('model_type' ) lowercase__ : List[Any] = CONFIG_MAPPING[backbone_model_type] lowercase__ : Union[str, Any] = config_class.from_dict(a ) lowercase__ : List[Any] = use_timm_backbone lowercase__ : int = backbone_config lowercase__ : Optional[int] = num_channels lowercase__ : Optional[Any] = num_queries lowercase__ : List[Any] = max_position_embeddings lowercase__ : List[str] = d_model lowercase__ : List[str] = encoder_ffn_dim lowercase__ : List[str] = encoder_layers lowercase__ : List[Any] = encoder_attention_heads lowercase__ : str = decoder_ffn_dim lowercase__ : Optional[Any] = decoder_layers lowercase__ : List[Any] = decoder_attention_heads lowercase__ : Optional[Any] = dropout lowercase__ : int = attention_dropout lowercase__ : Union[str, Any] = activation_dropout lowercase__ : Tuple = activation_function lowercase__ : Optional[int] = init_std lowercase__ : List[str] = init_xavier_std lowercase__ : Tuple = encoder_layerdrop lowercase__ : List[str] = auxiliary_loss lowercase__ : Tuple = position_embedding_type lowercase__ : Tuple = backbone lowercase__ : List[Any] = use_pretrained_backbone lowercase__ : List[Any] = dilation # deformable attributes lowercase__ : Dict = num_feature_levels lowercase__ : Optional[Any] = encoder_n_points lowercase__ : Union[str, Any] = decoder_n_points lowercase__ : List[Any] = two_stage lowercase__ : str = two_stage_num_proposals lowercase__ : Optional[int] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher lowercase__ : int = class_cost lowercase__ : List[Any] = bbox_cost lowercase__ : Optional[Any] = giou_cost # Loss coefficients lowercase__ : List[Any] = mask_loss_coefficient lowercase__ : List[Any] = dice_loss_coefficient lowercase__ : Tuple = bbox_loss_coefficient lowercase__ : int = giou_loss_coefficient lowercase__ : Any = eos_coefficient lowercase__ : str = focal_alpha lowercase__ : Any = disable_custom_kernels super().__init__(is_encoder_decoder=a , **a ) @property def _UpperCAmelCase ( self ) -> int: return self.encoder_attention_heads @property def _UpperCAmelCase ( self ) -> int: return self.d_model def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Dict = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowercase__ : Optional[Any] = self.backbone_config.to_dict() lowercase__ : Optional[Any] = self.__class__.model_type return output
645
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , a , a=7 , a=3 , a=1_8 , a=3_0 , a=4_0_0 , a=True , a=None , a=True , a=None , a=True , ) -> List[str]: lowercase__ : Tuple = size if size is not None else {'shortest_edge': 2_0} lowercase__ : Union[str, Any] = crop_size if crop_size is not None else {'height': 1_8, 'width': 1_8} lowercase__ : Optional[int] = parent lowercase__ : Optional[int] = batch_size lowercase__ : str = num_channels lowercase__ : Any = image_size lowercase__ : Optional[Any] = min_resolution lowercase__ : int = max_resolution lowercase__ : List[Any] = do_resize lowercase__ : List[str] = size lowercase__ : str = do_center_crop lowercase__ : List[Any] = crop_size lowercase__ : Union[str, Any] = do_flip_channel_order def _UpperCAmelCase ( self ) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Optional[Any] = MobileViTImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Tuple = MobileViTImageProcessingTester(self ) @property def _UpperCAmelCase ( self ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , 'do_resize' ) ) self.assertTrue(hasattr(a , 'size' ) ) self.assertTrue(hasattr(a , 'do_center_crop' ) ) self.assertTrue(hasattr(a , 'center_crop' ) ) self.assertTrue(hasattr(a , 'do_flip_channel_order' ) ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 2_0} ) self.assertEqual(image_processor.crop_size , {'height': 1_8, 'width': 1_8} ) lowercase__ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2} ) self.assertEqual(image_processor.crop_size , {'height': 8_4, 'width': 8_4} ) def _UpperCAmelCase ( self ) -> Tuple: pass def _UpperCAmelCase ( self ) -> str: # Initialize image_processing lowercase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input lowercase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : List[Any] = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self ) -> Tuple: # Initialize image_processing lowercase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input lowercase__ : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : Any = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self ) -> Dict: # Initialize image_processing lowercase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input lowercase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : Tuple = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
645
1
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal _UpperCAmelCase = datasets.utils.logging.get_logger(__name__) _UpperCAmelCase = ["""names""", """prefix"""] _UpperCAmelCase = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] _UpperCAmelCase = ["""encoding_errors""", """on_bad_lines"""] _UpperCAmelCase = ["""date_format"""] @dataclass class UpperCAmelCase ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase_ = "," lowerCamelCase_ = None lowerCamelCase_ = "infer" lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = True lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = False lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = False lowerCamelCase_ = True lowerCamelCase_ = None lowerCamelCase_ = "." lowerCamelCase_ = None lowerCamelCase_ = '"' lowerCamelCase_ = 0 lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = 0 lowerCamelCase_ = True lowerCamelCase_ = False lowerCamelCase_ = None lowerCamelCase_ = 1_0_0_0_0 lowerCamelCase_ = None lowerCamelCase_ = "strict" lowerCamelCase_ = "error" lowerCamelCase_ = None def lowerCAmelCase_ ( self ): """simple docstring""" if self.delimiter is not None: A_ : Tuple = self.delimiter if self.column_names is not None: A_ : Tuple = self.column_names @property def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Dict = { 'sep': self.sep, 'header': self.header, 'names': self.names, 'index_col': self.index_col, 'usecols': self.usecols, 'prefix': self.prefix, 'mangle_dupe_cols': self.mangle_dupe_cols, 'engine': self.engine, 'converters': self.converters, 'true_values': self.true_values, 'false_values': self.false_values, 'skipinitialspace': self.skipinitialspace, 'skiprows': self.skiprows, 'nrows': self.nrows, 'na_values': self.na_values, 'keep_default_na': self.keep_default_na, 'na_filter': self.na_filter, 'verbose': self.verbose, 'skip_blank_lines': self.skip_blank_lines, 'thousands': self.thousands, 'decimal': self.decimal, 'lineterminator': self.lineterminator, 'quotechar': self.quotechar, 'quoting': self.quoting, 'escapechar': self.escapechar, 'comment': self.comment, 'encoding': self.encoding, 'dialect': self.dialect, 'error_bad_lines': self.error_bad_lines, 'warn_bad_lines': self.warn_bad_lines, 'skipfooter': self.skipfooter, 'doublequote': self.doublequote, 'memory_map': self.memory_map, 'float_precision': self.float_precision, 'chunksize': self.chunksize, 'encoding_errors': self.encoding_errors, 'on_bad_lines': self.on_bad_lines, 'date_format': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowercase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class UpperCAmelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' lowerCamelCase_ = CsvConfig def lowerCAmelCase_ ( self ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) A_ : Optional[int] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowercase , (str, list, tuple) ): A_ : List[str] = data_files if isinstance(lowercase , lowercase ): A_ : int = [files] A_ : Tuple = [dl_manager.iter_files(lowercase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] A_ : Any = [] for split_name, files in data_files.items(): if isinstance(lowercase , lowercase ): A_ : str = [files] A_ : Union[str, Any] = [dl_manager.iter_files(lowercase ) for file in files] splits.append(datasets.SplitGenerator(name=lowercase , gen_kwargs={'files': files} ) ) return splits def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" if self.config.features is not None: A_ : str = self.config.features.arrow_schema if all(not require_storage_cast(lowercase ) for feature in self.config.features.values() ): # cheaper cast A_ : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowercase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example A_ : Tuple = table_cast(lowercase , lowercase ) return pa_table def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : List[str] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str A_ : int = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowercase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowercase ) ): A_ : Optional[Any] = pd.read_csv(lowercase , iterator=lowercase , dtype=lowercase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowercase ): A_ : Tuple = pa.Table.from_pandas(lowercase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowercase ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowercase )}: {e}''' ) raise
558
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """post_extract_proj""": """feature_projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.upsample.0""": """encoder.upsample.projection""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def UpperCamelCase ( __lowercase : int ,__lowercase : List[str] ,__lowercase : str ,__lowercase : Optional[Any] ,__lowercase : Any ): '''simple docstring''' for attribute in key.split('.' ): A_ : Dict = getattr(__lowercase ,__lowercase ) if weight_type is not None: A_ : Any = getattr(__lowercase ,__lowercase ).shape else: A_ : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": A_ : int = value elif weight_type == "weight_g": A_ : Tuple = value elif weight_type == "weight_v": A_ : Union[str, Any] = value elif weight_type == "bias": A_ : Any = value else: A_ : str = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def UpperCamelCase ( __lowercase : str ,__lowercase : Dict ,__lowercase : Tuple ): '''simple docstring''' A_ : Optional[Any] = [] A_ : Tuple = fairseq_model.state_dict() A_ : Any = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): A_ : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( __lowercase ,__lowercase ,__lowercase ,__lowercase ,hf_model.config.feat_extract_norm == 'group' ,) A_ : List[str] = True else: for key, mapped_key in MAPPING.items(): A_ : str = 'sew.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: A_ : int = True if "*" in mapped_key: A_ : str = name.split(__lowercase )[0].split('.' )[-2] A_ : Optional[Any] = mapped_key.replace('*' ,__lowercase ) if "weight_g" in name: A_ : Dict = 'weight_g' elif "weight_v" in name: A_ : Tuple = 'weight_v' elif "weight" in name: A_ : Union[str, Any] = 'weight' elif "bias" in name: A_ : Optional[Any] = 'bias' else: A_ : Union[str, Any] = None set_recursively(__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ) continue if not is_used: unused_weights.append(__lowercase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def UpperCamelCase ( __lowercase : Optional[Any] ,__lowercase : Union[str, Any] ,__lowercase : Any ,__lowercase : List[Any] ,__lowercase : Union[str, Any] ): '''simple docstring''' A_ : Optional[int] = full_name.split('conv_layers.' )[-1] A_ : Any = name.split('.' ) A_ : Dict = int(items[0] ) A_ : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) A_ : Optional[int] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) A_ : Union[str, Any] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) A_ : Any = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) A_ : Tuple = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowercase ) def UpperCamelCase ( __lowercase : List[str] ,__lowercase : str ): '''simple docstring''' A_ : Union[str, Any] = SEWConfig() if is_finetuned: A_ : Any = model.wav_encoder.wav_model.cfg else: A_ : int = model.cfg A_ : Any = fs_config.conv_bias A_ : Dict = eval(fs_config.conv_feature_layers ) A_ : List[Any] = [x[0] for x in conv_layers] A_ : Optional[Any] = [x[1] for x in conv_layers] A_ : List[Any] = [x[2] for x in conv_layers] A_ : Optional[int] = 'gelu' A_ : Union[str, Any] = 'layer' if fs_config.extractor_mode == 'layer_norm' else 'group' A_ : Tuple = 0.0 A_ : Dict = fs_config.activation_fn.name A_ : List[Any] = fs_config.encoder_embed_dim A_ : int = 0.02 A_ : List[str] = fs_config.encoder_ffn_embed_dim A_ : Any = 1e-5 A_ : Optional[Any] = fs_config.encoder_layerdrop A_ : Optional[int] = fs_config.encoder_attention_heads A_ : Any = fs_config.conv_pos_groups A_ : int = fs_config.conv_pos A_ : Tuple = len(__lowercase ) A_ : List[Any] = fs_config.encoder_layers A_ : Any = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: A_ : Union[str, Any] = model.cfg A_ : str = fs_config.final_dropout A_ : Any = fs_config.layerdrop A_ : str = fs_config.activation_dropout A_ : Any = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 A_ : str = fs_config.attention_dropout A_ : Any = fs_config.dropout_input A_ : Dict = fs_config.dropout A_ : Optional[Any] = fs_config.mask_channel_length A_ : List[str] = fs_config.mask_channel_prob A_ : Tuple = fs_config.mask_length A_ : Dict = fs_config.mask_prob A_ : Any = 'Wav2Vec2FeatureExtractor' A_ : Union[str, Any] = 'Wav2Vec2CTCTokenizer' return config @torch.no_grad() def UpperCamelCase ( __lowercase : List[Any] ,__lowercase : int ,__lowercase : Optional[int]=None ,__lowercase : Optional[Any]=None ,__lowercase : str=True ): '''simple docstring''' if is_finetuned: A_ , A_ , A_ : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: A_ , A_ , A_ : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: A_ : Union[str, Any] = SEWConfig.from_pretrained(__lowercase ) else: A_ : Dict = convert_config(model[0] ,__lowercase ) A_ : Union[str, Any] = model[0].eval() A_ : Optional[int] = True if config.feat_extract_norm == 'layer' else False A_ : List[Any] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=1_60_00 ,padding_value=0 ,do_normalize=__lowercase ,return_attention_mask=__lowercase ,) if is_finetuned: if dict_path: A_ : Optional[int] = Dictionary.load(__lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A_ : int = target_dict.pad_index A_ : List[Any] = target_dict.bos_index A_ : Optional[Any] = target_dict.pad_index A_ : str = target_dict.bos_index A_ : str = target_dict.eos_index A_ : str = len(target_dict.symbols ) A_ : Union[str, Any] = os.path.join(__lowercase ,'vocab.json' ) if not os.path.isdir(__lowercase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(__lowercase ) ) return os.makedirs(__lowercase ,exist_ok=__lowercase ) with open(__lowercase ,'w' ,encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices ,__lowercase ) A_ : Any = WavaVecaCTCTokenizer( __lowercase ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token='|' ,do_lower_case=__lowercase ,) A_ : Tuple = WavaVecaProcessor(feature_extractor=__lowercase ,tokenizer=__lowercase ) processor.save_pretrained(__lowercase ) A_ : Dict = SEWForCTC(__lowercase ) else: A_ : Tuple = SEWModel(__lowercase ) feature_extractor.save_pretrained(__lowercase ) recursively_load_weights(__lowercase ,__lowercase ,__lowercase ) hf_model.save_pretrained(__lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) _UpperCAmelCase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
558
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCamelCase ( lowerCamelCase_ ): """simple docstring""" a_: List[Any] = ["""pixel_values"""] def __init__( self : List[str] , lowerCamelCase_ : bool = True , lowerCamelCase_ : Dict[str, int] = None , lowerCamelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase_ : bool = True , lowerCamelCase_ : Dict[str, int] = None , lowerCamelCase_ : bool = True , lowerCamelCase_ : Union[int, float] = 1 / 255 , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional[Union[float, List[float]]] = None , lowerCamelCase_ : Optional[Union[float, List[float]]] = None , lowerCamelCase_ : bool = True , **lowerCamelCase_ : Dict , ): super().__init__(**lowerCamelCase_ ) _lowerCAmelCase =size if size is not None else {"""shortest_edge""": 224} _lowerCAmelCase =get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) _lowerCAmelCase =crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _lowerCAmelCase =get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ , param_name="""crop_size""" ) _lowerCAmelCase =do_resize _lowerCAmelCase =size _lowerCAmelCase =resample _lowerCAmelCase =do_center_crop _lowerCAmelCase =crop_size _lowerCAmelCase =do_rescale _lowerCAmelCase =rescale_factor _lowerCAmelCase =do_normalize _lowerCAmelCase =image_mean if image_mean is not None else OPENAI_CLIP_MEAN _lowerCAmelCase =image_std if image_std is not None else OPENAI_CLIP_STD _lowerCAmelCase =do_convert_rgb def lowerCAmelCase__ ( self : Tuple , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : Dict[str, int] , lowerCamelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ : List[Any] , ): _lowerCAmelCase =get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) _lowerCAmelCase =get_resize_output_image_size(lowerCamelCase_ , size=size["""shortest_edge"""] , default_to_square=lowerCamelCase_ ) return resize(lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def lowerCAmelCase__ ( self : str , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : Dict[str, int] , lowerCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ : Tuple , ): _lowerCAmelCase =get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(lowerCamelCase_ , size=(size["""height"""], size["""width"""]) , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : Union[int, float] , lowerCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ : str , ): return rescale(lowerCamelCase_ , scale=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : Union[float, List[float]] , lowerCamelCase_ : Union[float, List[float]] , lowerCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ : Any , ): return normalize(lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase_ : ImageInput , lowerCamelCase_ : bool = None , lowerCamelCase_ : Dict[str, int] = None , lowerCamelCase_ : PILImageResampling = None , lowerCamelCase_ : bool = None , lowerCamelCase_ : int = None , lowerCamelCase_ : bool = None , lowerCamelCase_ : float = None , lowerCamelCase_ : bool = None , lowerCamelCase_ : Optional[Union[float, List[float]]] = None , lowerCamelCase_ : Optional[Union[float, List[float]]] = None , lowerCamelCase_ : bool = None , lowerCamelCase_ : Optional[Union[str, TensorType]] = None , lowerCamelCase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , **lowerCamelCase_ : List[str] , ): _lowerCAmelCase =do_resize if do_resize is not None else self.do_resize _lowerCAmelCase =size if size is not None else self.size _lowerCAmelCase =get_size_dict(lowerCamelCase_ , param_name="""size""" , default_to_square=lowerCamelCase_ ) _lowerCAmelCase =resample if resample is not None else self.resample _lowerCAmelCase =do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase =crop_size if crop_size is not None else self.crop_size _lowerCAmelCase =get_size_dict(lowerCamelCase_ , param_name="""crop_size""" , default_to_square=lowerCamelCase_ ) _lowerCAmelCase =do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase =rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase =do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase =image_mean if image_mean is not None else self.image_mean _lowerCAmelCase =image_std if image_std is not None else self.image_std _lowerCAmelCase =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _lowerCAmelCase =make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: _lowerCAmelCase =[convert_to_rgb(lowerCamelCase_ ) for image in images] # All transformations expect numpy arrays. _lowerCAmelCase =[to_numpy_array(lowerCamelCase_ ) for image in images] if do_resize: _lowerCAmelCase =[self.resize(image=lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ ) for image in images] if do_center_crop: _lowerCAmelCase =[self.center_crop(image=lowerCamelCase_ , size=lowerCamelCase_ ) for image in images] if do_rescale: _lowerCAmelCase =[self.rescale(image=lowerCamelCase_ , scale=lowerCamelCase_ ) for image in images] if do_normalize: _lowerCAmelCase =[self.normalize(image=lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ ) for image in images] _lowerCAmelCase =[to_channel_dimension_format(lowerCamelCase_ , lowerCamelCase_ ) for image in images] _lowerCAmelCase ={"""pixel_values""": images} return BatchFeature(data=lowerCamelCase_ , tensor_type=lowerCamelCase_ )
719
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self : str ): _lowerCAmelCase =tempfile.mkdtemp() _lowerCAmelCase =BlipImageProcessor() _lowerCAmelCase =BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" ) _lowerCAmelCase =BlipProcessor(lowerCamelCase_ , lowerCamelCase_ ) processor.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self : Dict , **lowerCamelCase_ : Dict ): return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase_ ).tokenizer def lowerCAmelCase__ ( self : Union[str, Any] , **lowerCamelCase_ : Tuple ): return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase_ ).image_processor def lowerCAmelCase__ ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self : Tuple ): _lowerCAmelCase =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCAmelCase =[Image.fromarray(np.moveaxis(lowerCamelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase__ ( self : Optional[int] ): _lowerCAmelCase =BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase =self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _lowerCAmelCase =self.get_image_processor(do_normalize=lowerCamelCase_ , padding_value=1.0 ) _lowerCAmelCase =BlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCamelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase_ ) def lowerCAmelCase__ ( self : Tuple ): _lowerCAmelCase =self.get_image_processor() _lowerCAmelCase =self.get_tokenizer() _lowerCAmelCase =BlipProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) _lowerCAmelCase =self.prepare_image_inputs() _lowerCAmelCase =image_processor(lowerCamelCase_ , return_tensors="""np""" ) _lowerCAmelCase =processor(images=lowerCamelCase_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self : List[str] ): _lowerCAmelCase =self.get_image_processor() _lowerCAmelCase =self.get_tokenizer() _lowerCAmelCase =BlipProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) _lowerCAmelCase ="""lower newer""" _lowerCAmelCase =processor(text=lowerCamelCase_ ) _lowerCAmelCase =tokenizer(lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self : List[str] ): _lowerCAmelCase =self.get_image_processor() _lowerCAmelCase =self.get_tokenizer() _lowerCAmelCase =BlipProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) _lowerCAmelCase ="""lower newer""" _lowerCAmelCase =self.prepare_image_inputs() _lowerCAmelCase =processor(text=lowerCamelCase_ , images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase_ ): processor() def lowerCAmelCase__ ( self : Optional[int] ): _lowerCAmelCase =self.get_image_processor() _lowerCAmelCase =self.get_tokenizer() _lowerCAmelCase =BlipProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) _lowerCAmelCase =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase =processor.batch_decode(lowerCamelCase_ ) _lowerCAmelCase =tokenizer.batch_decode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def lowerCAmelCase__ ( self : Tuple ): _lowerCAmelCase =self.get_image_processor() _lowerCAmelCase =self.get_tokenizer() _lowerCAmelCase =BlipProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) _lowerCAmelCase ="""lower newer""" _lowerCAmelCase =self.prepare_image_inputs() _lowerCAmelCase =processor(text=lowerCamelCase_ , images=lowerCamelCase_ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
149
0
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCAmelCase__ ="platform" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class A__: lowerCAmelCase = PegasusConfig lowerCAmelCase = {} lowerCAmelCase = '''gelu''' def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple=13 , __SCREAMING_SNAKE_CASE : int=7 , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : int=99 , __SCREAMING_SNAKE_CASE : List[str]=32 , __SCREAMING_SNAKE_CASE : Optional[Any]=5 , __SCREAMING_SNAKE_CASE : Union[str, Any]=4 , __SCREAMING_SNAKE_CASE : List[Any]=37 , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=20 , __SCREAMING_SNAKE_CASE : List[str]=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=1 , __SCREAMING_SNAKE_CASE : Dict=0 , ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = pad_token_id __SCREAMING_SNAKE_CASE = bos_token_id def _a ( self : Any ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) __SCREAMING_SNAKE_CASE = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) __SCREAMING_SNAKE_CASE = np.concatenate([input_ids, eos_tensor] , axis=1 ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __SCREAMING_SNAKE_CASE = prepare_pegasus_inputs_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return config, inputs_dict def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = 20 __SCREAMING_SNAKE_CASE = model_class_name(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model.encode(inputs_dict['''input_ids'''] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) __SCREAMING_SNAKE_CASE = model.init_cache(decoder_input_ids.shape[0] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) __SCREAMING_SNAKE_CASE = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, :-1] , __SCREAMING_SNAKE_CASE , decoder_attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE , decoder_position_ids=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, -1:] , __SCREAMING_SNAKE_CASE , decoder_attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = model.decode(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) def _a ( self : Any , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Tuple ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = 20 __SCREAMING_SNAKE_CASE = model_class_name(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model.encode(inputs_dict['''input_ids'''] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) __SCREAMING_SNAKE_CASE = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __SCREAMING_SNAKE_CASE = model.init_cache(decoder_input_ids.shape[0] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, :-1] , __SCREAMING_SNAKE_CASE , decoder_attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE , decoder_position_ids=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, -1:] , __SCREAMING_SNAKE_CASE , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__SCREAMING_SNAKE_CASE , decoder_position_ids=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = model.decode(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , decoder_attention_mask=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , ) -> Union[str, Any]: if attention_mask is None: __SCREAMING_SNAKE_CASE = np.not_equal(UpperCAmelCase__ , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: __SCREAMING_SNAKE_CASE = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class A__( __magic_name__ , unittest.TestCase ): lowerCAmelCase = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowerCAmelCase = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowerCAmelCase = True lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def _a ( self : List[str] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = FlaxPegasusModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE ) def _a ( self : Optional[Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : Dict ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) @jax.jit def encode_jitted(__SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , **__SCREAMING_SNAKE_CASE : Tuple ): return model.encode(input_ids=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) with self.subTest('''JIT Enabled''' ): __SCREAMING_SNAKE_CASE = encode_jitted(**__SCREAMING_SNAKE_CASE ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE = encode_jitted(**__SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) ) for jitted_output, output in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(jitted_output.shape , output.shape ) def _a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) __SCREAMING_SNAKE_CASE = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(__SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] ): return model.decode( decoder_input_ids=__SCREAMING_SNAKE_CASE , decoder_attention_mask=__SCREAMING_SNAKE_CASE , encoder_outputs=__SCREAMING_SNAKE_CASE , ) with self.subTest('''JIT Enabled''' ): __SCREAMING_SNAKE_CASE = decode_jitted(**__SCREAMING_SNAKE_CASE ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE = decode_jitted(**__SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) ) for jitted_output, output in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _a ( self : List[Any] ) -> Tuple: """simple docstring""" for model_class_name in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = np.ones((1, 1) ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @slow def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''' ) __SCREAMING_SNAKE_CASE = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''' ) __SCREAMING_SNAKE_CASE = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] __SCREAMING_SNAKE_CASE = [ '''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''', '''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''', ] __SCREAMING_SNAKE_CASE = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='''np''' , truncation=__SCREAMING_SNAKE_CASE , max_length=5_12 , padding=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model.generate(**__SCREAMING_SNAKE_CASE , num_beams=2 ).sequences __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) assert tgt_text == decoded
482
"""simple docstring""" import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class A__: def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=32 , __SCREAMING_SNAKE_CASE : List[Any]=3 , __SCREAMING_SNAKE_CASE : int=10 , __SCREAMING_SNAKE_CASE : List[Any]=[8, 16, 32, 64] , __SCREAMING_SNAKE_CASE : str=[1, 1, 2, 1] , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : List[str]="relu" , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Dict=["stage2", "stage3", "stage4"] , __SCREAMING_SNAKE_CASE : Optional[Any]=[2, 3, 4] , __SCREAMING_SNAKE_CASE : int=1 , ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = embeddings_size __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = scope __SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = out_features __SCREAMING_SNAKE_CASE = out_indices __SCREAMING_SNAKE_CASE = num_groups def _a ( self : List[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) __SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _a ( self : Any ) -> str: """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def _a ( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = BitModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = BitForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : int , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = BitBackbone(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = BitBackbone(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _a ( self : int ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A__( __magic_name__ , __magic_name__ , unittest.TestCase ): lowerCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () lowerCAmelCase = ( {'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification} if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = BitModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE ) def _a ( self : Optional[int] ) -> int: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self : Any ) -> Optional[int]: """simple docstring""" return @unittest.skip(reason='''Bit does not output attentions''' ) def _a ( self : int ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def _a ( self : Optional[int] ) -> Dict: """simple docstring""" pass def _a ( self : Optional[int] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def _a ( self : int ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__SCREAMING_SNAKE_CASE ) def _a ( self : int ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(config=__SCREAMING_SNAKE_CASE ) for name, module in model.named_modules(): if isinstance(__SCREAMING_SNAKE_CASE , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def _a ( self : int ) -> Dict: """simple docstring""" def check_hidden_states_output(__SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] ): __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __SCREAMING_SNAKE_CASE = self.model_tester.num_stages self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: __SCREAMING_SNAKE_CASE = layer_type __SCREAMING_SNAKE_CASE = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def _a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def _a ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = BitModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def _a ( ) -> List[Any]: __SCREAMING_SNAKE_CASE = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class A__( unittest.TestCase ): @cached_property def _a ( self : Dict ) -> str: """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self : Tuple ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.default_image_processor __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**__SCREAMING_SNAKE_CASE ) # verify the logits __SCREAMING_SNAKE_CASE = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @require_torch class A__( __magic_name__ , unittest.TestCase ): lowerCAmelCase = (BitBackbone,) if is_torch_available() else () lowerCAmelCase = BitConfig lowerCAmelCase = False def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = BitModelTester(self )
482
1
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class _UpperCamelCase( nn.Module ): def __init__( self : Tuple , _lowerCamelCase : int = 16 , _lowerCamelCase : int = 88 , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : int = 1 , _lowerCamelCase : float = 0.0 , _lowerCamelCase : int = 32 , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : bool = False , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : str = "geglu" , _lowerCamelCase : Optional[int] = None , ): super().__init__() _UpperCAmelCase : Tuple = nn.ModuleList( [ TransformeraDModel( num_attention_heads=_lowerCamelCase , attention_head_dim=_lowerCamelCase , in_channels=_lowerCamelCase , num_layers=_lowerCamelCase , dropout=_lowerCamelCase , norm_num_groups=_lowerCamelCase , cross_attention_dim=_lowerCamelCase , attention_bias=_lowerCamelCase , sample_size=_lowerCamelCase , num_vector_embeds=_lowerCamelCase , activation_fn=_lowerCamelCase , num_embeds_ada_norm=_lowerCamelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _UpperCAmelCase : Optional[Any] = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _UpperCAmelCase : Optional[int] = [77, 2_57] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _UpperCAmelCase : Union[str, Any] = [1, 0] def a__ ( self : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : Any , _lowerCamelCase : int=None , _lowerCamelCase : Any=None , _lowerCamelCase : Any=None , _lowerCamelCase : bool = True , ): _UpperCAmelCase : Optional[Any] = hidden_states _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Optional[int] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _UpperCAmelCase : int = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _UpperCAmelCase : Optional[int] = self.transformer_index_for_condition[i] _UpperCAmelCase : Tuple = self.transformers[transformer_index]( _lowerCamelCase , encoder_hidden_states=_lowerCamelCase , timestep=_lowerCamelCase , cross_attention_kwargs=_lowerCamelCase , return_dict=_lowerCamelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _UpperCAmelCase : Optional[int] = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _UpperCAmelCase : Optional[Any] = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=_lowerCamelCase )
328
from __future__ import annotations def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE ) -> list[int]: # This function is recursive """simple docstring""" _UpperCAmelCase : int = len(_SCREAMING_SNAKE_CASE ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else _UpperCAmelCase : List[Any] = array[0] _UpperCAmelCase : int = False _UpperCAmelCase : Optional[Any] = 1 _UpperCAmelCase : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: _UpperCAmelCase : Tuple = True _UpperCAmelCase : Tuple = [element for element in array[i:] if element >= array[i]] _UpperCAmelCase : int = longest_subsequence(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > len(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Any = temp_array else: i += 1 _UpperCAmelCase : List[Any] = [element for element in array[1:] if element >= pivot] _UpperCAmelCase : Any = [pivot, *longest_subsequence(_SCREAMING_SNAKE_CASE )] if len(_SCREAMING_SNAKE_CASE ) > len(_SCREAMING_SNAKE_CASE ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
328
1
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> str: """simple docstring""" __UpperCAmelCase : list[list[str]] = [[] for _ in range(UpperCamelCase )] __UpperCAmelCase : Union[str, Any] = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative" ) if key == 1 or len(UpperCamelCase ) <= key: return input_string for position, character in enumerate(UpperCamelCase ): __UpperCAmelCase : Dict = position % (lowest * 2) # puts it in bounds __UpperCAmelCase : List[str] = min(UpperCamelCase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = ["".join(UpperCamelCase ) for row in temp_grid] __UpperCAmelCase : Any = "".join(UpperCamelCase ) return output_string def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> str: """simple docstring""" __UpperCAmelCase : Tuple = [] __UpperCAmelCase : Union[str, Any] = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative" ) if key == 1: return input_string __UpperCAmelCase : list[list[str]] = [[] for _ in range(UpperCamelCase )] # generates template for position in range(len(UpperCamelCase ) ): __UpperCAmelCase : Optional[int] = position % (lowest * 2) # puts it in bounds __UpperCAmelCase : str = min(UpperCamelCase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("*" ) __UpperCAmelCase : Union[str, Any] = 0 for row in temp_grid: # fills in the characters __UpperCAmelCase : Tuple = input_string[counter : counter + len(UpperCamelCase )] grid.append(list(UpperCamelCase ) ) counter += len(UpperCamelCase ) __UpperCAmelCase : List[str] = "" # reads as zigzag for position in range(len(UpperCamelCase ) ): __UpperCAmelCase : Dict = position % (lowest * 2) # puts it in bounds __UpperCAmelCase : Union[str, Any] = min(UpperCamelCase , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def _UpperCamelCase ( UpperCamelCase ) -> dict[int, str]: """simple docstring""" __UpperCAmelCase : Tuple = {} for key_guess in range(1 , len(UpperCamelCase ) ): # tries every key __UpperCAmelCase : str = decrypt(UpperCamelCase , UpperCamelCase ) return results if __name__ == "__main__": import doctest doctest.testmod()
77
def lowerCamelCase_ ( UpperCAmelCase_ : int | float | str ): try: lowercase : Dict = float(UpperCAmelCase_ ) except ValueError: raise ValueError('''Please enter a valid number''' ) lowercase : str = decimal - int(UpperCAmelCase_ ) if fractional_part == 0: return int(UpperCAmelCase_ ), 1 else: lowercase : Union[str, Any] = len(str(UpperCAmelCase_ ).split('''.''' )[1] ) lowercase : List[Any] = int(decimal * (10**number_of_frac_digits) ) lowercase : str = 10**number_of_frac_digits lowercase , lowercase : str = denominator, numerator while True: lowercase : Any = dividend % divisor if remainder == 0: break lowercase , lowercase : Union[str, Any] = divisor, remainder lowercase , lowercase : str = numerator / divisor, denominator / divisor return int(UpperCAmelCase_ ), int(UpperCAmelCase_ ) if __name__ == "__main__": print(F'{decimal_to_fraction(2) = }') print(F'{decimal_to_fraction(8_9.0) = }') print(F'{decimal_to_fraction("67") = }') print(F'{decimal_to_fraction("45.0") = }') print(F'{decimal_to_fraction(1.5) = }') print(F'{decimal_to_fraction("6.25") = }') print(F'{decimal_to_fraction("78td") = }')
583
0
from __future__ import annotations def __magic_name__ ( lowerCAmelCase_ = 4): '''simple docstring''' lowerCamelCase_ : Tuple = abs(lowerCAmelCase_) or 4 return [[1 + x + y * row_size for x in range(lowerCAmelCase_)] for y in range(lowerCAmelCase_)] def __magic_name__ ( lowerCAmelCase_): '''simple docstring''' return reverse_row(transpose(lowerCAmelCase_)) # OR.. transpose(reverse_column(matrix)) def __magic_name__ ( lowerCAmelCase_): '''simple docstring''' return reverse_row(reverse_column(lowerCAmelCase_)) # OR.. reverse_column(reverse_row(matrix)) def __magic_name__ ( lowerCAmelCase_): '''simple docstring''' return reverse_column(transpose(lowerCAmelCase_)) # OR.. transpose(reverse_row(matrix)) def __magic_name__ ( lowerCAmelCase_): '''simple docstring''' lowerCamelCase_ : Optional[int] = [list(lowerCAmelCase_) for x in zip(*lowerCAmelCase_)] return matrix def __magic_name__ ( lowerCAmelCase_): '''simple docstring''' lowerCamelCase_ : Optional[Any] = matrix[::-1] return matrix def __magic_name__ ( lowerCAmelCase_): '''simple docstring''' lowerCamelCase_ : Optional[int] = [x[::-1] for x in matrix] return matrix def __magic_name__ ( lowerCAmelCase_): '''simple docstring''' for i in matrix: print(*lowerCAmelCase_) if __name__ == "__main__": __magic_name__ = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 90 counterclockwise:\n''') print_matrix(rotate_aa(matrix)) __magic_name__ = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 180:\n''') print_matrix(rotate_aaa(matrix)) __magic_name__ = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 270 counterclockwise:\n''') print_matrix(rotate_aaa(matrix))
702
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Any = inspect.getfile(accelerate.test_utils ) __UpperCAmelCase : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) __UpperCAmelCase : Tuple = ['''accelerate''', '''launch'''] __UpperCAmelCase : Dict = Path.home() / '''.cache/huggingface/accelerate''' __UpperCAmelCase : int = '''default_config.yaml''' __UpperCAmelCase : Tuple = config_folder / config_file __UpperCAmelCase : int = config_folder / '''_default_config.yaml''' __UpperCAmelCase : int = Path('''tests/test_configs''' ) @classmethod def _UpperCamelCase ( cls ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def _UpperCamelCase ( cls ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def _UpperCamelCase ( self ): lowerCamelCase_ : List[Any] = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def _UpperCamelCase ( self ): for config in sorted(self.test_config_path.glob("**/*.yaml" ) ): with self.subTest(config_file=a_ ): execute_subprocess_async( self.base_cmd + ["--config_file", str(a_ ), self.test_file_path] , env=os.environ.copy() ) def _UpperCamelCase ( self ): execute_subprocess_async(["accelerate", "test"] , env=os.environ.copy() ) class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[Any] = '''test-tpu''' __UpperCAmelCase : Tuple = '''us-central1-a''' __UpperCAmelCase : Tuple = '''ls''' __UpperCAmelCase : str = ['''accelerate''', '''tpu-config'''] __UpperCAmelCase : Dict = '''cd /usr/share''' __UpperCAmelCase : Any = '''tests/test_samples/test_command_file.sh''' __UpperCAmelCase : Dict = '''Running gcloud compute tpus tpu-vm ssh''' def _UpperCamelCase ( self ): lowerCamelCase_ : Any = run_command( self.cmd + ["--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug"] , return_stdout=a_ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , a_ , ) def _UpperCamelCase ( self ): lowerCamelCase_ : Tuple = run_command( self.cmd + [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ] , return_stdout=a_ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , a_ , ) def _UpperCamelCase ( self ): lowerCamelCase_ : Union[str, Any] = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--debug"] , return_stdout=a_ ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , a_ , ) def _UpperCamelCase ( self ): lowerCamelCase_ : Any = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--debug"] , return_stdout=a_ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , a_ , ) def _UpperCamelCase ( self ): lowerCamelCase_ : List[Any] = run_command( self.cmd + [ "--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--command", "echo \"Hello World\"", "--debug", ] , return_stdout=a_ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , a_ , ) def _UpperCamelCase ( self ): lowerCamelCase_ : List[str] = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--command_file", self.command_file, "--debug"] , return_stdout=a_ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , a_ , ) def _UpperCamelCase ( self ): lowerCamelCase_ : Dict = run_command( self.cmd + [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command_file", self.command_file, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ] , return_stdout=a_ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , a_ , ) def _UpperCamelCase ( self ): lowerCamelCase_ : str = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--debug"] , return_stdout=a_ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , a_ , ) def _UpperCamelCase ( self ): lowerCamelCase_ : Any = run_command( self.cmd + [ "--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--accelerate_version", "12.0.0", "--debug", ] , return_stdout=a_ , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , a_ , )
73
0
'''simple docstring''' from __future__ import annotations lowercase__ : Dict = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] lowercase__ : Optional[int] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def a__ ( lowercase : list[float] ) -> list[float]: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = len(lowercase ) for i in range(lowercase ): _UpperCamelCase = -1 for j in range(i + 1, lowercase ): if arr[i] < arr[j]: _UpperCamelCase = arr[j] break result.append(lowercase ) return result def a__ ( lowercase : list[float] ) -> list[float]: """simple docstring""" _UpperCamelCase = [] for i, outer in enumerate(lowercase ): _UpperCamelCase = -1 for inner in arr[i + 1 :]: if outer < inner: _UpperCamelCase = inner break result.append(lowercase ) return result def a__ ( lowercase : list[float] ) -> list[float]: """simple docstring""" _UpperCamelCase = len(lowercase ) _UpperCamelCase = [] _UpperCamelCase = [-1] * arr_size for index in reversed(range(lowercase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: _UpperCamelCase = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowercase__ : Dict = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
98
'''simple docstring''' # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() UpperCamelCase__ : Optional[Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model UpperCamelCase__ : str = { # fairseq: 'wmt19-ru-en': {'length_penalty': 1.1}, 'wmt19-en-ru': {'length_penalty': 1.15}, 'wmt19-en-de': {'length_penalty': 1.0}, 'wmt19-de-en': {'length_penalty': 1.1}, # allenai: 'wmt16-en-de-dist-12-1': {'length_penalty': 0.6}, 'wmt16-en-de-dist-6-1': {'length_penalty': 0.6}, 'wmt16-en-de-12-1': {'length_penalty': 0.8}, 'wmt19-de-en-6-6-base': {'length_penalty': 0.6}, 'wmt19-de-en-6-6-big': {'length_penalty': 0.6}, } # this remaps the different models to their organization names UpperCamelCase__ : Tuple = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: UpperCamelCase__ : Tuple = 'facebook' for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: UpperCamelCase__ : Tuple = 'allenai' def __UpperCamelCase( _A : int ): '''simple docstring''' # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} UpperCAmelCase__ : int = dict((re.sub(R'''@@$''' , '''''' , _A ), v) if k.endswith('''@@''' ) else (re.sub(R'''$''' , '''</w>''' , _A ), v) for k, v in d.items() ) UpperCAmelCase__ : List[str] = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[F'''{k}</w>'''] UpperCAmelCase__ : Optional[Any] = d[k] # restore return da def __UpperCamelCase( _A : Tuple , _A : List[Any] ): '''simple docstring''' # prep assert os.path.exists(_A ) os.makedirs(_A , exist_ok=_A ) print(F'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models UpperCAmelCase__ : Dict = basename(_A ) UpperCAmelCase__ : List[str] = dirname(_A ) UpperCAmelCase__ : Union[str, Any] = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel UpperCAmelCase__ : Dict = cls.hub_models() UpperCAmelCase__ : Dict = {'''bpe''': '''fastbpe''', '''tokenizer''': '''moses'''} UpperCAmelCase__ : int = '''.''' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(F'''using checkpoint {checkpoint_file}''' ) UpperCAmelCase__ : Union[str, Any] = hub_utils.from_pretrained( _A , _A , _A , archive_map=_A , **_A ) UpperCAmelCase__ : List[Any] = vars(chkpt['''args''']['''model'''] ) UpperCAmelCase__ : str = args['''source_lang'''] UpperCAmelCase__ : Tuple = args['''target_lang'''] UpperCAmelCase__ : Optional[int] = dirname(_A ) UpperCAmelCase__ : int = basename(_A ) # dicts UpperCAmelCase__ : List[Any] = os.path.join(_A , F'''dict.{src_lang}.txt''' ) UpperCAmelCase__ : Tuple = os.path.join(_A , F'''dict.{tgt_lang}.txt''' ) UpperCAmelCase__ : int = Dictionary.load(_A ) UpperCAmelCase__ : Optional[int] = rewrite_dict_keys(src_dict.indices ) UpperCAmelCase__ : List[Any] = len(_A ) UpperCAmelCase__ : str = os.path.join(_A , '''vocab-src.json''' ) print(F'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(_A , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_A , ensure_ascii=_A , indent=_A ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab UpperCAmelCase__ : Tuple = True for k in src_vocab.keys(): if not k.islower(): UpperCAmelCase__ : int = False break UpperCAmelCase__ : str = Dictionary.load(_A ) UpperCAmelCase__ : Tuple = rewrite_dict_keys(tgt_dict.indices ) UpperCAmelCase__ : List[str] = len(_A ) UpperCAmelCase__ : Dict = os.path.join(_A , '''vocab-tgt.json''' ) print(F'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(_A , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_A , ensure_ascii=_A , indent=_A ) ) # merges_file (bpecodes) UpperCAmelCase__ : Tuple = os.path.join(_A , VOCAB_FILES_NAMES['''merges_file'''] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" UpperCAmelCase__ : Dict = os.path.join(_A , _A ) if os.path.exists(_A ): break with open(_A , encoding='''utf-8''' ) as fin: UpperCAmelCase__ : Optional[Any] = fin.read() UpperCAmelCase__ : List[str] = re.sub(R''' \d+$''' , '''''' , _A , 0 , re.M ) # remove frequency number print(F'''Generating {merges_file}''' ) with open(_A , '''w''' , encoding='''utf-8''' ) as fout: fout.write(_A ) # model config UpperCAmelCase__ : Optional[int] = os.path.join(_A , '''config.json''' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", F'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", F'''need to extend tokenizer to support bpe={args['tokenizer']}''' UpperCAmelCase__ : Optional[Any] = { '''architectures''': ['''FSMTForConditionalGeneration'''], '''model_type''': '''fsmt''', '''activation_dropout''': args['''activation_dropout'''], '''activation_function''': '''relu''', '''attention_dropout''': args['''attention_dropout'''], '''d_model''': args['''decoder_embed_dim'''], '''dropout''': args['''dropout'''], '''init_std''': 0.0_2, '''max_position_embeddings''': args['''max_source_positions'''], '''num_hidden_layers''': args['''encoder_layers'''], '''src_vocab_size''': src_vocab_size, '''tgt_vocab_size''': tgt_vocab_size, '''langs''': [src_lang, tgt_lang], '''encoder_attention_heads''': args['''encoder_attention_heads'''], '''encoder_ffn_dim''': args['''encoder_ffn_embed_dim'''], '''encoder_layerdrop''': args['''encoder_layerdrop'''], '''encoder_layers''': args['''encoder_layers'''], '''decoder_attention_heads''': args['''decoder_attention_heads'''], '''decoder_ffn_dim''': args['''decoder_ffn_embed_dim'''], '''decoder_layerdrop''': args['''decoder_layerdrop'''], '''decoder_layers''': args['''decoder_layers'''], '''bos_token_id''': 0, '''pad_token_id''': 1, '''eos_token_id''': 2, '''is_encoder_decoder''': True, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_all_embeddings'''], } # good hparam defaults to start with UpperCAmelCase__ : Optional[int] = 5 UpperCAmelCase__ : Optional[Any] = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: UpperCAmelCase__ : str = best_score_hparams[model_dir]['''length_penalty'''] else: UpperCAmelCase__ : Dict = 1.0 print(F'''Generating {fsmt_model_config_file}''' ) with open(_A , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_A , ensure_ascii=_A , indent=_A ) ) # tokenizer config UpperCAmelCase__ : List[str] = os.path.join(_A , _A ) UpperCAmelCase__ : Any = { '''langs''': [src_lang, tgt_lang], '''model_max_length''': 10_24, '''do_lower_case''': do_lower_case, } print(F'''Generating {fsmt_tokenizer_config_file}''' ) with open(_A , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_A , ensure_ascii=_A , indent=_A ) ) # model UpperCAmelCase__ : Dict = chkpt['''models'''][0] UpperCAmelCase__ : Any = model.state_dict() # rename keys to start with 'model.' UpperCAmelCase__ : Tuple = OrderedDict(('''model.''' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys UpperCAmelCase__ : Union[str, Any] = [ '''model.model''', '''model.encoder.version''', '''model.decoder.version''', '''model.encoder_embed_tokens.weight''', '''model.decoder_embed_tokens.weight''', '''model.encoder.embed_positions._float_tensor''', '''model.decoder.embed_positions._float_tensor''', ] for k in ignore_keys: model_state_dict.pop(_A , _A ) UpperCAmelCase__ : List[str] = FSMTConfig.from_pretrained(_A ) UpperCAmelCase__ : int = FSMTForConditionalGeneration(_A ) # check that it loads ok model_new.load_state_dict(_A , strict=_A ) # save UpperCAmelCase__ : List[str] = os.path.join(_A , _A ) print(F'''Generating {pytorch_weights_dump_path}''' ) torch.save(_A , _A ) print('''Conversion is done!''' ) print('''\nLast step is to upload the files to s3''' ) print(F'''cd {data_root}''' ) print(F'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": UpperCamelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fsmt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCamelCase__ : List[str] = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
614
0
import warnings from functools import wraps from typing import Callable def _lowerCamelCase ( A_ : Callable ) -> Callable: '''simple docstring''' @wraps(A_ ) def _inner_fn(*A_ : Union[str, Any] , **A_ : Tuple ): warnings.warn( (f'''\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.''') , A_ , ) return fn(*A_ , **A_ ) return _inner_fn
582
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class lowercase__( tf.keras.optimizers.schedules.LearningRateSchedule ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1.0 , __SCREAMING_SNAKE_CASE = None , ) -> Optional[Any]: """simple docstring""" super().__init__() UpperCamelCase__ : Tuple =initial_learning_rate UpperCamelCase__ : List[str] =warmup_steps UpperCamelCase__ : List[Any] =power UpperCamelCase__ : Optional[Any] =decay_schedule_fn UpperCamelCase__ : List[str] =name def __call__( self , __SCREAMING_SNAKE_CASE) -> List[str]: """simple docstring""" with tf.name_scope(self.name or "WarmUp") as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. UpperCamelCase__ : Optional[Any] =tf.cast(__SCREAMING_SNAKE_CASE , tf.floataa) UpperCamelCase__ : Tuple =tf.cast(self.warmup_steps , tf.floataa) UpperCamelCase__ : Optional[int] =global_step_float / warmup_steps_float UpperCamelCase__ : List[Any] =self.initial_learning_rate * tf.math.pow(__SCREAMING_SNAKE_CASE , self.power) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps) , name=__SCREAMING_SNAKE_CASE , ) def UpperCAmelCase ( self) -> Optional[Any]: """simple docstring""" return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _lowerCamelCase ( A_ : float , A_ : int , A_ : int , A_ : float = 0.0 , A_ : float = 0.9 , A_ : float = 0.999 , A_ : float = 1E-8 , A_ : Optional[float] = None , A_ : Optional[float] = None , A_ : float = 0.0 , A_ : float = 1.0 , A_ : Optional[List[str]] = None , ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Dict =tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=A_ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=A_ , ) if num_warmup_steps: UpperCamelCase__ : Dict =WarmUp( initial_learning_rate=A_ , decay_schedule_fn=A_ , warmup_steps=A_ , ) if weight_decay_rate > 0.0: UpperCamelCase__ : Union[str, Any] =AdamWeightDecay( learning_rate=A_ , weight_decay_rate=A_ , beta_a=A_ , beta_a=A_ , epsilon=A_ , clipnorm=A_ , global_clipnorm=A_ , exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"] , include_in_weight_decay=A_ , ) else: UpperCamelCase__ : List[Any] =tf.keras.optimizers.Adam( learning_rate=A_ , beta_a=A_ , beta_a=A_ , epsilon=A_ , clipnorm=A_ , global_clipnorm=A_ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class lowercase__( snake_case__ ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE = 0.0_01 , __SCREAMING_SNAKE_CASE = 0.9 , __SCREAMING_SNAKE_CASE = 0.9_99 , __SCREAMING_SNAKE_CASE = 1E-7 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = 0.0 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "AdamWeightDecay" , **__SCREAMING_SNAKE_CASE , ) -> Dict: """simple docstring""" super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Optional[Any] =weight_decay_rate UpperCamelCase__ : Dict =include_in_weight_decay UpperCamelCase__ : int =exclude_from_weight_decay @classmethod def UpperCAmelCase ( cls , __SCREAMING_SNAKE_CASE) -> List[Any]: """simple docstring""" UpperCamelCase__ : Optional[int] ={"WarmUp": WarmUp} return super(__SCREAMING_SNAKE_CASE , cls).from_config(__SCREAMING_SNAKE_CASE , custom_objects=__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> Optional[int]: """simple docstring""" super(__SCREAMING_SNAKE_CASE , self)._prepare_local(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) UpperCamelCase__ : Any =tf.constant( self.weight_decay_rate , name="adam_weight_decay_rate") def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> Any: """simple docstring""" UpperCamelCase__ : List[str] =self._do_use_weight_decay(var.name) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["weight_decay_rate"] , use_locking=self._use_locking , ) return tf.no_op() def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE) -> Optional[int]: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ : List[str] =list(zip(*__SCREAMING_SNAKE_CASE)) return super(__SCREAMING_SNAKE_CASE , self).apply_gradients(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) , name=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> Tuple: """simple docstring""" if apply_state is None: return self._decayed_lr_t[var_dtype], {} UpperCamelCase__ : Optional[int] =apply_state or {} UpperCamelCase__ : Optional[Any] =apply_state.get((var_device, var_dtype)) if coefficients is None: UpperCamelCase__ : Any =self._fallback_apply_state(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) UpperCamelCase__ : int =coefficients return coefficients["lr_t"], {"apply_state": apply_state} def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None) -> Optional[int]: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ : List[Any] =self._get_lr(var.device , var.dtype.base_dtype , __SCREAMING_SNAKE_CASE) UpperCamelCase__ : str =self._decay_weights_op(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) with tf.control_dependencies([decay]): return super(__SCREAMING_SNAKE_CASE , self)._resource_apply_dense(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None) -> Dict: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ : Any =self._get_lr(var.device , var.dtype.base_dtype , __SCREAMING_SNAKE_CASE) UpperCamelCase__ : List[Any] =self._decay_weights_op(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) with tf.control_dependencies([decay]): return super(__SCREAMING_SNAKE_CASE , self)._resource_apply_sparse(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self) -> Optional[int]: """simple docstring""" UpperCamelCase__ : Any =super().get_config() config.update({"weight_decay_rate": self.weight_decay_rate}) return config def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE) -> Optional[Any]: """simple docstring""" if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) is not None: return False return True class lowercase__( snake_case__ ): '''simple docstring''' def __init__( self) -> int: """simple docstring""" UpperCamelCase__ : str =[] UpperCamelCase__ : List[str] =None @property def UpperCAmelCase ( self) -> List[str]: """simple docstring""" if self._accum_steps is None: UpperCamelCase__ : Any =tf.Variable( tf.constant(0 , dtype=tf.intaa) , trainable=__SCREAMING_SNAKE_CASE , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def UpperCAmelCase ( self) -> Optional[int]: """simple docstring""" if not self._gradients: raise ValueError("The accumulator should be called first to initialize the gradients") return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , __SCREAMING_SNAKE_CASE) -> Any: """simple docstring""" if not self._gradients: UpperCamelCase__ : Any =self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(__SCREAMING_SNAKE_CASE) , trainable=__SCREAMING_SNAKE_CASE , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ]) if len(__SCREAMING_SNAKE_CASE) != len(self._gradients): raise ValueError(F'''Expected {len(self._gradients)} gradients, but got {len(__SCREAMING_SNAKE_CASE)}''') for accum_gradient, gradient in zip(self._gradients , __SCREAMING_SNAKE_CASE): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(__SCREAMING_SNAKE_CASE) self._accum_steps.assign_add(1) def UpperCAmelCase ( self) -> Tuple: """simple docstring""" if not self._gradients: return self._accum_steps.assign(0) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(__SCREAMING_SNAKE_CASE))
582
1
"""simple docstring""" # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys a : List[str] = '''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
555
"""simple docstring""" import math import unittest def _UpperCamelCase ( _A ) -> bool: """simple docstring""" assert isinstance(_A , _A ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class a_ ( unittest.TestCase ): def _snake_case ( self : int ) ->Optional[int]: '''simple docstring''' self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def _snake_case ( self : Union[str, Any] ) ->Optional[Any]: '''simple docstring''' with self.assertRaises(__UpperCamelCase ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , """Zero doesn't have any positive factors, primes must have exactly two.""" , ) self.assertFalse( is_prime(1 ) , """One only has 1 positive factor, primes must have exactly two.""" , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
555
1
'''simple docstring''' from __future__ import annotations class __UpperCAmelCase : def __init__( self , _lowerCamelCase = 0 ): lowerCAmelCase_ = key def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) lowerCAmelCase_ = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_lowerCamelCase ) ^ key ) for ch in content] def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) lowerCAmelCase_ = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_lowerCamelCase ) ^ key ) for ch in content] def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = 0 ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) lowerCAmelCase_ = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned lowerCAmelCase_ = '''''' for ch in content: ans += chr(ord(_lowerCamelCase ) ^ key ) return ans def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = 0 ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) lowerCAmelCase_ = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned lowerCAmelCase_ = '''''' for ch in content: ans += chr(ord(_lowerCamelCase ) ^ key ) return ans def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = 0 ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) try: with open(_lowerCamelCase ) as fin, open('''encrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_lowerCamelCase , _lowerCamelCase ) ) except OSError: return False return True def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) try: with open(_lowerCamelCase ) as fin, open('''decrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_lowerCamelCase , _lowerCamelCase ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
606
'''simple docstring''' import warnings from functools import wraps from typing import Callable def snake_case_ ( __snake_case : Callable) -> Callable: @wraps(__snake_case) def _inner_fn(*__snake_case : str , **__snake_case : Optional[int]): warnings.warn( (F'''\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.''') , __snake_case , ) return fn(*__snake_case , **__snake_case) return _inner_fn
606
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class lowercase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ): '''simple docstring''' UpperCamelCase : List[str] = """ZinengTang/tvlt-base""" UpperCamelCase : Union[str, Any] = tempfile.mkdtemp() def _a ( self , **_A ): '''simple docstring''' return TvltImageProcessor.from_pretrained(self.checkpoint , **_A ) def _a ( self , **_A ): '''simple docstring''' return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_A ) def _a ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _a ( self ): '''simple docstring''' UpperCamelCase : str = self.get_image_processor() UpperCamelCase : Any = self.get_feature_extractor() UpperCamelCase : str = TvltProcessor(image_processor=_A , feature_extractor=_A ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase : List[Any] = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _A ) self.assertIsInstance(processor.image_processor , _A ) def _a ( self ): '''simple docstring''' UpperCamelCase : int = self.get_image_processor() UpperCamelCase : Optional[Any] = self.get_feature_extractor() UpperCamelCase : Optional[int] = TvltProcessor(image_processor=_A , feature_extractor=_A ) UpperCamelCase : Tuple = np.ones([1_2_0_0_0] ) UpperCamelCase : Union[str, Any] = feature_extractor(_A , return_tensors="""np""" ) UpperCamelCase : List[str] = processor(audio=_A , return_tensors="""np""" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _a ( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = self.get_image_processor() UpperCamelCase : Tuple = self.get_feature_extractor() UpperCamelCase : Optional[Any] = TvltProcessor(image_processor=_A , feature_extractor=_A ) UpperCamelCase : List[Any] = np.ones([3, 2_2_4, 2_2_4] ) UpperCamelCase : Optional[Any] = image_processor(_A , return_tensors="""np""" ) UpperCamelCase : Any = processor(images=_A , return_tensors="""np""" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _a ( self ): '''simple docstring''' UpperCamelCase : List[Any] = self.get_image_processor() UpperCamelCase : Tuple = self.get_feature_extractor() UpperCamelCase : Union[str, Any] = TvltProcessor(image_processor=_A , feature_extractor=_A ) UpperCamelCase : Tuple = np.ones([1_2_0_0_0] ) UpperCamelCase : Optional[int] = np.ones([3, 2_2_4, 2_2_4] ) UpperCamelCase : Optional[int] = processor(audio=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , ["""audio_values""", """audio_mask""", """pixel_values""", """pixel_mask"""] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def _a ( self ): '''simple docstring''' UpperCamelCase : str = self.get_image_processor() UpperCamelCase : Dict = self.get_feature_extractor() UpperCamelCase : List[Any] = TvltProcessor(image_processor=_A , feature_extractor=_A ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="""`processor` and `image_processor`+`feature_extractor` model input names do not match""" , )
102
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def lowerCAmelCase_ () -> List[str]: a_ : List[Any] = argparse.ArgumentParser() parser.add_argument("--model_ckpt" , type=_SCREAMING_SNAKE_CASE , default="microsoft/unixcoder-base-nine" ) parser.add_argument("--num_epochs" , type=_SCREAMING_SNAKE_CASE , default=5 ) parser.add_argument("--batch_size" , type=_SCREAMING_SNAKE_CASE , default=6 ) parser.add_argument("--gradient_accumulation_steps" , type=_SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument("--freeze" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE ) parser.add_argument("--learning_rate" , type=_SCREAMING_SNAKE_CASE , default=5E-4 ) parser.add_argument("--seed" , type=_SCREAMING_SNAKE_CASE , default=0 ) parser.add_argument("--lr_scheduler_type" , type=_SCREAMING_SNAKE_CASE , default="cosine" ) parser.add_argument("--num_warmup_steps" , type=_SCREAMING_SNAKE_CASE , default=10 ) parser.add_argument("--weight_decay" , type=_SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument("--output_dir" , type=_SCREAMING_SNAKE_CASE , default="./results" ) return parser.parse_args() UpperCamelCase = load('accuracy') def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :str ) -> Optional[int]: a_ , a_ : Tuple = eval_pred a_ : int = np.argmax(_SCREAMING_SNAKE_CASE , axis=1 ) return metric.compute(predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE ) class UpperCAmelCase__ ( __lowerCamelCase ): """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE ) -> None: super().__init__() a_ : Optional[Any] = trainer def A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: if control.should_evaluate: a_ : int = deepcopy(_SCREAMING_SNAKE_CASE ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="train" ) return control_copy def lowerCAmelCase_ () -> List[str]: a_ : int = get_args() set_seed(args.seed ) a_ : List[Any] = load_dataset("codeparrot/codecomplex" , split="train" ) a_ : str = dataset.train_test_split(test_size=0.2 ) a_ : Any = train_test["test"].train_test_split(test_size=0.5 ) a_ : List[str] = DatasetDict( { "train": train_test["train"], "test": test_validation["train"], "valid": test_validation["test"], } ) print("Loading tokenizer and model" ) a_ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt ) a_ : Optional[Any] = tokenizer.eos_token a_ : List[Any] = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) a_ : Optional[int] = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): a_ : Optional[Any] = False a_ : Optional[int] = ClassLabel(num_classes=7 , names=list(set(train_test_validation["train"]["complexity"] ) ) ) def tokenize(_SCREAMING_SNAKE_CASE :str ): a_ : List[Any] = tokenizer(example["src"] , truncation=_SCREAMING_SNAKE_CASE , max_length=1024 ) a_ : List[Any] = labels.straint(example["complexity"] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } a_ : Any = train_test_validation.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=train_test_validation["train"].column_names , ) a_ : Tuple = DataCollatorWithPadding(tokenizer=_SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="epoch" , save_strategy="epoch" , logging_strategy="epoch" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="accuracy" , run_name="complexity-java" , report_to="wandb" , ) a_ : Optional[Any] = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=tokenized_datasets["train"] , eval_dataset=tokenized_datasets["valid"] , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , ) print("Training..." ) trainer.add_callback(CustomCallback(_SCREAMING_SNAKE_CASE ) ) trainer.train() if __name__ == "__main__": main()
473
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class _A ( unittest.TestCase ): def _a (self ) -> Tuple: '''simple docstring''' UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = BlipImageProcessor() UpperCamelCase__ = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) UpperCamelCase__ = BlipaProcessor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) def _a (self , **SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ).tokenizer def _a (self , **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ).image_processor def _a (self ) -> List[str]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _a (self ) -> Any: '''simple docstring''' UpperCamelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase__ = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a (self ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCamelCase__ = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) UpperCamelCase__ = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ ) def _a (self ) -> str: '''simple docstring''' UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='''np''' ) UpperCamelCase__ = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a (self ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = '''lower newer''' UpperCamelCase__ = processor(text=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer(SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a (self ) -> Dict: '''simple docstring''' UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = '''lower newer''' UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE_ ): processor() def _a (self ) -> Dict: '''simple docstring''' UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _a (self ) -> str: '''simple docstring''' UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = '''lower newer''' UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
469
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class _A ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ : "DiagonalGaussianDistribution" class _A ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ : List[str] =True @register_to_config def __init__(self , SCREAMING_SNAKE_CASE_ = 3 , SCREAMING_SNAKE_CASE_ = 3 , SCREAMING_SNAKE_CASE_ = ("DownEncoderBlock2D",) , SCREAMING_SNAKE_CASE_ = ("UpDecoderBlock2D",) , SCREAMING_SNAKE_CASE_ = (64,) , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = "silu" , SCREAMING_SNAKE_CASE_ = 4 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = 0.18215 , ) -> Optional[int]: '''simple docstring''' super().__init__() # pass init params to Encoder UpperCamelCase__ = Encoder( in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , down_block_types=SCREAMING_SNAKE_CASE_ , block_out_channels=SCREAMING_SNAKE_CASE_ , layers_per_block=SCREAMING_SNAKE_CASE_ , act_fn=SCREAMING_SNAKE_CASE_ , norm_num_groups=SCREAMING_SNAKE_CASE_ , double_z=SCREAMING_SNAKE_CASE_ , ) # pass init params to Decoder UpperCamelCase__ = Decoder( in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , up_block_types=SCREAMING_SNAKE_CASE_ , block_out_channels=SCREAMING_SNAKE_CASE_ , layers_per_block=SCREAMING_SNAKE_CASE_ , norm_num_groups=SCREAMING_SNAKE_CASE_ , act_fn=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) UpperCamelCase__ = nn.Convad(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1 ) UpperCamelCase__ = False UpperCamelCase__ = False # only relevant if vae tiling is enabled UpperCamelCase__ = self.config.sample_size UpperCamelCase__ = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) UpperCamelCase__ = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) UpperCamelCase__ = 0.25 def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ) -> Dict: '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , (Encoder, Decoder) ): UpperCamelCase__ = value def _a (self , SCREAMING_SNAKE_CASE_ = True ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = use_tiling def _a (self ) -> int: '''simple docstring''' self.enable_tiling(SCREAMING_SNAKE_CASE_ ) def _a (self ) -> Any: '''simple docstring''' UpperCamelCase__ = True def _a (self ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def _a (self ) -> Dict[str, AttentionProcessor]: '''simple docstring''' UpperCamelCase__ = {} def fn_recursive_add_processors(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if hasattr(SCREAMING_SNAKE_CASE_ , '''set_processor''' ): UpperCamelCase__ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"{name}.{sub_name}" , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return processors def _a (self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = len(self.attn_processors.keys() ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) != count: raise ValueError( F"A dict of processors was passed, but the number of processors {len(SCREAMING_SNAKE_CASE_ )} does not match the" F" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if hasattr(SCREAMING_SNAKE_CASE_ , '''set_processor''' ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): module.set_processor(SCREAMING_SNAKE_CASE_ ) else: module.set_processor(processor.pop(F"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"{name}.{sub_name}" , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for name, module in self.named_children(): fn_recursive_attn_processor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _a (self ) -> Tuple: '''simple docstring''' self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = True ) -> AutoencoderKLOutput: '''simple docstring''' if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ ) if self.use_slicing and x.shape[0] > 1: UpperCamelCase__ = [self.encoder(SCREAMING_SNAKE_CASE_ ) for x_slice in x.split(1 )] UpperCamelCase__ = torch.cat(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase__ = self.encoder(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.quant_conv(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = DiagonalGaussianDistribution(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=SCREAMING_SNAKE_CASE_ ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.post_quant_conv(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.decoder(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (dec,) return DecoderOutput(sample=SCREAMING_SNAKE_CASE_ ) @apply_forward_hook def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' if self.use_slicing and z.shape[0] > 1: UpperCamelCase__ = [self._decode(SCREAMING_SNAKE_CASE_ ).sample for z_slice in z.split(1 )] UpperCamelCase__ = torch.cat(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase__ = self._decode(SCREAMING_SNAKE_CASE_ ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=SCREAMING_SNAKE_CASE_ ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = min(a.shape[2] , b.shape[2] , SCREAMING_SNAKE_CASE_ ) for y in range(SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = min(a.shape[3] , b.shape[3] , SCREAMING_SNAKE_CASE_ ) for x in range(SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = True ) -> AutoencoderKLOutput: '''simple docstring''' UpperCamelCase__ = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) UpperCamelCase__ = int(self.tile_latent_min_size * self.tile_overlap_factor ) UpperCamelCase__ = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. UpperCamelCase__ = [] for i in range(0 , x.shape[2] , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = [] for j in range(0 , x.shape[3] , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] UpperCamelCase__ = self.encoder(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.quant_conv(SCREAMING_SNAKE_CASE_ ) row.append(SCREAMING_SNAKE_CASE_ ) rows.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [] for i, row in enumerate(SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = [] for j, tile in enumerate(SCREAMING_SNAKE_CASE_ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCamelCase__ = self.blend_v(rows[i - 1][j] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if j > 0: UpperCamelCase__ = self.blend_h(row[j - 1] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(SCREAMING_SNAKE_CASE_ , dim=3 ) ) UpperCamelCase__ = torch.cat(SCREAMING_SNAKE_CASE_ , dim=2 ) UpperCamelCase__ = DiagonalGaussianDistribution(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=SCREAMING_SNAKE_CASE_ ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' UpperCamelCase__ = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) UpperCamelCase__ = int(self.tile_sample_min_size * self.tile_overlap_factor ) UpperCamelCase__ = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. UpperCamelCase__ = [] for i in range(0 , z.shape[2] , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = [] for j in range(0 , z.shape[3] , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] UpperCamelCase__ = self.post_quant_conv(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.decoder(SCREAMING_SNAKE_CASE_ ) row.append(SCREAMING_SNAKE_CASE_ ) rows.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [] for i, row in enumerate(SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = [] for j, tile in enumerate(SCREAMING_SNAKE_CASE_ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCamelCase__ = self.blend_v(rows[i - 1][j] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if j > 0: UpperCamelCase__ = self.blend_h(row[j - 1] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(SCREAMING_SNAKE_CASE_ , dim=3 ) ) UpperCamelCase__ = torch.cat(SCREAMING_SNAKE_CASE_ , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=SCREAMING_SNAKE_CASE_ ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' UpperCamelCase__ = sample UpperCamelCase__ = self.encode(SCREAMING_SNAKE_CASE_ ).latent_dist if sample_posterior: UpperCamelCase__ = posterior.sample(generator=SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase__ = posterior.mode() UpperCamelCase__ = self.decode(SCREAMING_SNAKE_CASE_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=SCREAMING_SNAKE_CASE_ )
469
1
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position _lowerCAmelCase : List[Any] = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _lowerCAmelCase : Tuple = concatenate_datasets _lowerCAmelCase : Optional[int] = DownloadConfig _lowerCAmelCase : List[Any] = DownloadManager _lowerCAmelCase : int = DownloadMode _lowerCAmelCase : Any = DownloadConfig _lowerCAmelCase : str = DownloadMode _lowerCAmelCase : str = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
438
"""simple docstring""" import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint _lowerCAmelCase : Optional[int] = { """169M""": 12, """430M""": 24, """1B5""": 24, """3B""": 32, """7B""": 32, """14B""": 40, } _lowerCAmelCase : Optional[Any] = { """169M""": 768, """430M""": 1_024, """1B5""": 2_048, """3B""": 2_560, """7B""": 4_096, """14B""": 5_120, } def SCREAMING_SNAKE_CASE__ ( snake_case : Any )-> Tuple: '''simple docstring''' UpperCAmelCase__ : str = list(state_dict.keys() ) for name in state_dict_keys: UpperCAmelCase__ : Dict = state_dict.pop(snake_case ) # emb -> embedding if name.startswith("emb." ): UpperCAmelCase__ : str = name.replace("emb." , "embeddings." ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("blocks.0.ln0" ): UpperCAmelCase__ : List[str] = name.replace("blocks.0.ln0" , "blocks.0.pre_ln" ) # att -> attention UpperCAmelCase__ : Optional[int] = re.sub(r"blocks\.(\d+)\.att" , r"blocks.\1.attention" , snake_case ) # ffn -> feed_forward UpperCAmelCase__ : Any = re.sub(r"blocks\.(\d+)\.ffn" , r"blocks.\1.feed_forward" , snake_case ) # time_mix_k -> time_mix_key and reshape if name.endswith(".time_mix_k" ): UpperCAmelCase__ : List[Any] = name.replace(".time_mix_k" , ".time_mix_key" ) # time_mix_v -> time_mix_value and reshape if name.endswith(".time_mix_v" ): UpperCAmelCase__ : int = name.replace(".time_mix_v" , ".time_mix_value" ) # time_mix_r -> time_mix_key and reshape if name.endswith(".time_mix_r" ): UpperCAmelCase__ : Optional[Any] = name.replace(".time_mix_r" , ".time_mix_receptance" ) if name != "head.weight": UpperCAmelCase__ : int = "rwkv." + name UpperCAmelCase__ : Dict = weight return state_dict def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : Optional[Any] , snake_case : Dict=None , snake_case : List[Any]=None , snake_case : List[str]=False , snake_case : str=None )-> int: '''simple docstring''' if tokenizer_file is None: print("No `--tokenizer_file` provided, we will use the default tokenizer." ) UpperCAmelCase__ : str = 5_0277 UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b" ) else: UpperCAmelCase__ : Union[str, Any] = PreTrainedTokenizerFast(tokenizer_file=snake_case ) UpperCAmelCase__ : Tuple = len(snake_case ) tokenizer.save_pretrained(snake_case ) # 2. Build the config UpperCAmelCase__ : Dict = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: UpperCAmelCase__ : List[Any] = candidate break if size is None: raise ValueError("Could not infer the size, please provide it with the `--size` argument." ) if size not in possible_sizes: raise ValueError(f'`size` should be one of {possible_sizes}, got {size}.' ) UpperCAmelCase__ : int = RwkvConfig( vocab_size=snake_case , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(snake_case ) # 3. Download model file then convert state_dict UpperCAmelCase__ : Optional[int] = hf_hub_download(snake_case , snake_case ) UpperCAmelCase__ : Optional[Any] = torch.load(snake_case , map_location="cpu" ) UpperCAmelCase__ : Tuple = convert_state_dict(snake_case ) # 4. Split in shards and save UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = shard_checkpoint(snake_case ) for shard_file, shard in shards.items(): torch.save(snake_case , os.path.join(snake_case , snake_case ) ) if index is not None: UpperCAmelCase__ : Tuple = os.path.join(snake_case , snake_case ) # Save the index as well with open(snake_case , "w" , encoding="utf-8" ) as f: UpperCAmelCase__ : Any = json.dumps(snake_case , indent=2 , sort_keys=snake_case ) + "\n" f.write(snake_case ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( "Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model." ) UpperCAmelCase__ : List[str] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: UpperCAmelCase__ : Any = torch.load(os.path.join(snake_case , snake_case ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(snake_case , snake_case ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("Please provide a `model_name` to push the model to the Hub." ) UpperCAmelCase__ : Optional[Any] = AutoModelForCausalLM.from_pretrained(snake_case ) model.push_to_hub(snake_case , max_shard_size="2GB" ) tokenizer.push_to_hub(snake_case ) if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint.""" ) parser.add_argument( """--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo.""" ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model.""" ) parser.add_argument( """--tokenizer_file""", default=None, type=str, help="""Path to the tokenizer file to use (if not provided, only the model is converted).""", ) parser.add_argument( """--size""", default=None, type=str, help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Push to the Hub the converted model.""", ) parser.add_argument( """--model_name""", default=None, type=str, help="""Name of the pushed model on the Hub, including the username / organization.""", ) _lowerCAmelCase : Dict = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
438
1
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCamelCase ( snake_case ) -> Dict: '''simple docstring''' __A = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def __UpperCamelCase ( snake_case , snake_case ) -> List[str]: '''simple docstring''' __A = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def __UpperCamelCase ( snake_case ) -> Any: '''simple docstring''' __A = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", '''stage2.cls_token''') ) return token def __UpperCamelCase ( ) -> Tuple: '''simple docstring''' __A = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def __UpperCamelCase ( snake_case , snake_case , snake_case , snake_case ) -> List[Any]: '''simple docstring''' __A = '''imagenet-1k-id2label.json''' __A = 1_0_0_0 __A = '''huggingface/label-files''' __A = num_labels __A = json.load(open(cached_download(hf_hub_url(snake_case , snake_case , repo_type='''dataset''' ) ) , '''r''' ) ) __A = {int(snake_case ): v for k, v in idalabel.items()} __A = idalabel __A = {v: k for k, v in idalabel.items()} __A = __A = CvtConfig(num_labels=snake_case , idalabel=snake_case , labelaid=snake_case ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": __A = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": __A = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __A = [2, 2, 2_0] __A = [3, 1_2, 1_6] __A = [1_9_2, 7_6_8, 1_0_2_4] __A = CvtForImageClassification(snake_case ) __A = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) __A = image_size __A = torch.load(snake_case , map_location=torch.device('''cpu''' ) ) __A = OrderedDict() __A = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: __A = list_of_state_dict + cls_token(snake_case ) __A = list_of_state_dict + embeddings(snake_case ) for cnt in range(config.depth[idx] ): __A = list_of_state_dict + attention(snake_case , snake_case ) __A = list_of_state_dict + final() for gg in list_of_state_dict: print(snake_case ) for i in range(len(snake_case ) ): __A = original_weights[list_of_state_dict[i][1]] model.load_state_dict(snake_case ) model.save_pretrained(snake_case ) image_processor.save_pretrained(snake_case ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _UpperCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--cvt_model""", default="""cvt-w24""", type=str, help="""Name of the cvt model you'd like to convert.""", ) parser.add_argument( """--image_size""", default=3_8_4, type=int, help="""Input Image Size""", ) parser.add_argument( """--cvt_file_name""", default=r"""cvtmodels\CvT-w24-384x384-IN-22k.pth""", type=str, help="""Input Image Size""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _UpperCamelCase : str = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
341
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def __UpperCamelCase ( snake_case ) -> Any: '''simple docstring''' monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''' , set() ) @pytest.fixture def __UpperCamelCase ( snake_case ) -> List[str]: '''simple docstring''' class _lowerCAmelCase: """simple docstring""" def __init__( self , UpperCAmelCase )-> List[str]: __A = metric_id class _lowerCAmelCase: """simple docstring""" lowerCamelCase__ = [MetricMock(_a) for metric_id in ['''accuracy''', '''mse''', '''precision''', '''codeparrot/apps_metric''']] def SCREAMING_SNAKE_CASE__ ( self )-> Dict: return self._metrics monkeypatch.setattr('''datasets.inspect.huggingface_hub''' , HfhMock() ) @pytest.mark.parametrize( '''func, args''' , [(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))] ) def __UpperCamelCase ( snake_case , snake_case , snake_case , snake_case , snake_case ) -> str: '''simple docstring''' if "tmp_path" in args: __A = tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args ) with pytest.warns(snake_case , match='''https://huggingface.co/docs/evaluate''' ): func(*snake_case )
341
1
'''simple docstring''' import math import tensorflow as tf from packaging import version def UpperCamelCase__ ( __magic_name__ : Tuple ) -> Tuple: '''simple docstring''' snake_case__ : List[Any] = tf.convert_to_tensor(__lowercase ) snake_case__ : Any = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def UpperCamelCase__ ( __magic_name__ : Dict ) -> List[str]: '''simple docstring''' snake_case__ : int = tf.convert_to_tensor(__lowercase ) snake_case__ : int = tf.cast(math.pi , x.dtype ) snake_case__ : Optional[int] = tf.cast(0.04_4715 , x.dtype ) snake_case__ : Dict = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__lowercase , 3 )) )) return x * cdf def UpperCamelCase__ ( __magic_name__ : Optional[int] ) -> List[str]: '''simple docstring''' snake_case__ : Union[str, Any] = tf.convert_to_tensor(__lowercase ) return x * tf.tanh(tf.math.softplus(__lowercase ) ) def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> Tuple: '''simple docstring''' snake_case__ : int = tf.convert_to_tensor(__lowercase ) snake_case__ : int = tf.cast(0.04_4715 , x.dtype ) snake_case__ : str = tf.cast(0.79_7884_5608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def UpperCamelCase__ ( __magic_name__ : str ) -> Any: '''simple docstring''' snake_case__ : Union[str, Any] = tf.convert_to_tensor(__lowercase ) snake_case__ : Any = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def UpperCamelCase__ ( __magic_name__ : Optional[int] ) -> Optional[int]: '''simple docstring''' return tf.clip_by_value(_gelu(__lowercase ) , -10 , 10 ) def UpperCamelCase__ ( __magic_name__ : Dict , __magic_name__ : List[Any]=-1 ) -> str: '''simple docstring''' snake_case__ , snake_case__ : Dict = tf.split(__lowercase , 2 , axis=__lowercase ) return a * tf.math.sigmoid(__lowercase ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def UpperCamelCase__ ( __magic_name__ : str ) -> Any: '''simple docstring''' return tf.keras.activations.gelu(__lowercase , approximate=__lowercase ) A_ : str = tf.keras.activations.gelu A_ : str = approximate_gelu_wrap else: A_ : Tuple = _gelu A_ : List[Any] = _gelu_new A_ : Any = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def UpperCamelCase__ ( __magic_name__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
38
def _a ( __lowercase = 1 , __lowercase = 1000 ) -> int: """simple docstring""" __UpperCamelCase = 1 __UpperCamelCase = 0 for divide_by_number in range(__lowercase , digit + 1 ): __UpperCamelCase = [] __UpperCamelCase = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__lowercase ): __UpperCamelCase = len(__lowercase ) __UpperCamelCase = divide_by_number else: has_been_divided.append(__lowercase ) __UpperCamelCase = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
383
0
"""simple docstring""" import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) a = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') a = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) a = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) a = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) a = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions a = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) a = tf.keras.preprocessing.image.img_to_array(test_image) a = np.expand_dims(test_image, axis=0) a = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: a = '''Normal''' if result[0][0] == 1: a = '''Abnormality detected'''
710
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : List[str] ): _A = inspect.getfile(accelerate.test_utils ) _A = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) _A = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) _A = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def lowerCAmelCase_ ( self : List[Any] ): print(F'''Found {torch.cuda.device_count()} devices.''' ) _A = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) @require_multi_gpu def lowerCAmelCase_ ( self : Optional[Any] ): print(F'''Found {torch.cuda.device_count()} devices.''' ) _A = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(F'''Command: {cmd}''' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) @require_multi_gpu def lowerCAmelCase_ ( self : Optional[Any] ): _A = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) @require_multi_gpu def lowerCAmelCase_ ( self : List[str] ): print(F'''Found {torch.cuda.device_count()} devices, using 2 devices only''' ) _A = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='0,1' ): execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": a = Accelerator() a = (accelerator.state.process_index + 2, 10) a = torch.randint(0, 10, shape).to(accelerator.device) a = '''''' a = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." a = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." a = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
505
0
'''simple docstring''' from __future__ import annotations import math def lowerCamelCase ( _snake_case : float ,_snake_case : int ): '''simple docstring''' lowercase__ = u for i in range(1 ,_snake_case ): lowercase__ = temp * (u - i) return temp def lowerCamelCase ( ): '''simple docstring''' lowercase__ = int(input("enter the numbers of values: " ) ) lowercase__ = [] for _ in range(_snake_case ): y.append([] ) for i in range(_snake_case ): for j in range(_snake_case ): y[i].append(_snake_case ) lowercase__ = 0 print("enter the values of parameters in a list: " ) lowercase__ = list(map(_snake_case ,input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(_snake_case ): lowercase__ = float(input() ) lowercase__ = int(input("enter the value to interpolate: " ) ) lowercase__ = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 ,_snake_case ): for j in range(n - i ): lowercase__ = y[j + 1][i - 1] - y[j][i - 1] lowercase__ = y[0][0] for i in range(1 ,_snake_case ): summ += (ucal(_snake_case ,_snake_case ) * y[0][i]) / math.factorial(_snake_case ) print(f'''the value at {value} is {summ}''' ) if __name__ == "__main__": main()
267
'''simple docstring''' import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case (UpperCamelCase , unittest.TestCase ): lowerCAmelCase__ :str = MgpstrTokenizer lowerCAmelCase__ :Tuple = False lowerCAmelCase__ :Any = {} lowerCAmelCase__ :List[Any] = False def _a ( self ) -> Union[str, Any]: super().setUp() # fmt: off lowercase__ = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on lowercase__ = dict(zip(UpperCAmelCase_ ,range(len(UpperCAmelCase_ ) ) ) ) lowercase__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + "\n" ) def _a ( self ,**UpperCAmelCase_ ) -> Any: return MgpstrTokenizer.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def _a ( self ,UpperCAmelCase_ ) -> Dict: lowercase__ = "tester" lowercase__ = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def _a ( self ) -> Dict: pass def _a ( self ) -> Optional[Any]: lowercase__ = self.get_tokenizers(do_lower_case=UpperCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) lowercase__ = tokenizer.encode([special_token] ,add_special_tokens=UpperCAmelCase_ ) self.assertEqual(len(UpperCAmelCase_ ) ,1 ) lowercase__ = tokenizer.decode(UpperCAmelCase_ ,skip_special_tokens=UpperCAmelCase_ ) self.assertTrue(special_token not in decoded ) def _a ( self ) -> str: lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ , lowercase__ = self.get_input_output_texts(UpperCAmelCase_ ) lowercase__ = tokenizer.tokenize(UpperCAmelCase_ ) lowercase__ = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) lowercase__ = tokenizer.encode(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) lowercase__ = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertNotEqual(len(UpperCAmelCase_ ) ,0 ) lowercase__ = tokenizer.decode(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual(text_a.replace(" " ,"" ) ,UpperCAmelCase_ ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def _a ( self ) -> Optional[int]: pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def _a ( self ) -> Any: pass
267
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = ['''image_processor''', '''tokenizer'''] lowerCAmelCase__ = '''BlipImageProcessor''' lowerCAmelCase__ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" snake_case__ : List[str] =False super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] =self.image_processor def __call__( self , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 0 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) -> BatchEncoding: """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: snake_case__ : Tuple =self.tokenizer snake_case__ : Optional[int] =self.tokenizer( text=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , return_overflowing_tokens=__SCREAMING_SNAKE_CASE , return_special_tokens_mask=__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE , return_length=__SCREAMING_SNAKE_CASE , verbose=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) return text_encoding # add pixel_values snake_case__ : Union[str, Any] =self.image_processor(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE ) if text is not None: snake_case__ : Union[str, Any] =self.tokenizer( text=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , stride=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , return_overflowing_tokens=__SCREAMING_SNAKE_CASE , return_special_tokens_mask=__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE , return_length=__SCREAMING_SNAKE_CASE , verbose=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) else: snake_case__ : Optional[Any] =None if text_encoding is not None: encoding_image_processor.update(__SCREAMING_SNAKE_CASE ) return encoding_image_processor def UpperCAmelCase ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return self.tokenizer.decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @property def UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" snake_case__ : int =self.tokenizer.model_input_names snake_case__ : Union[str, Any] =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
703
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Any: """simple docstring""" snake_case__ : int =torch.nn.Linear(10 , 10 ) snake_case__ : int =torch.optim.SGD(model.parameters() , 0.1 ) snake_case__ : str =Accelerator() snake_case__ : Any =accelerator.prepare(__SCREAMING_SNAKE_CASE ) try: pickle.loads(pickle.dumps(__SCREAMING_SNAKE_CASE ) ) except Exception as e: self.fail(f'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
408
0
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) _A = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS} def lowerCamelCase__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] ): """simple docstring""" if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: lowerCAmelCase_ = TOKENIZER_CLASSES else: lowerCAmelCase_ = {tokenizer_name: getattr(__lowerCAmelCase , tokenizer_name + "Fast" )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: lowerCAmelCase_ = TOKENIZER_CLASSES[tokenizer_name] lowerCAmelCase_ = True if checkpoint_name is None: lowerCAmelCase_ = list(tokenizer_class.max_model_input_sizes.keys() ) else: lowerCAmelCase_ = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer lowerCAmelCase_ = tokenizer_class.from_pretrained(__lowerCAmelCase , force_download=__lowerCAmelCase ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: lowerCAmelCase_ , lowerCAmelCase_ = checkpoint.split("/" ) lowerCAmelCase_ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) elif add_prefix: lowerCAmelCase_ = checkpoint lowerCAmelCase_ = dump_path else: lowerCAmelCase_ = None lowerCAmelCase_ = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: lowerCAmelCase_ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] lowerCAmelCase_ = file_path.split(__lowerCAmelCase )[-1][0] if next_char == "/": lowerCAmelCase_ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) lowerCAmelCase_ = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) lowerCAmelCase_ = tokenizer.save_pretrained( __lowerCAmelCase , legacy_format=__lowerCAmelCase , filename_prefix=__lowerCAmelCase ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(__lowerCAmelCase ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files." ) parser.add_argument( "--tokenizer_name", default=None, type=str, help=( f"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ "download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--checkpoint_name", default=None, type=str, help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.", ) parser.add_argument( "--force_download", action="store_true", help="Re-download checkpoints.", ) _A = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
290
from functools import reduce _A = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def lowerCamelCase__ ( __lowerCAmelCase : str = N ): """simple docstring""" return max( # mypy cannot properly interpret reduce int(reduce(lambda __lowerCAmelCase , __lowerCAmelCase : str(int(__lowerCAmelCase ) * int(__lowerCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(__lowerCAmelCase ) - 12 ) ) if __name__ == "__main__": print(f"""{solution() = }""")
290
1
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int _SCREAMING_SNAKE_CASE = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class SCREAMING_SNAKE_CASE_ ( datasets.BuilderConfig ): __magic_name__: Optional[datasets.Features] = None def SCREAMING_SNAKE_CASE__ ( __a , __a , ): import pyspark def generate_fn(): snake_case_ : Union[str, Any] = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: snake_case_ : Tuple = df_with_partition_id.select('*' ).where(f"""part_id = {partition_id}""" ).drop('part_id' ) snake_case_ : int = partition_df.collect() snake_case_ : int = 0 for row in rows: yield f"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class SCREAMING_SNAKE_CASE_ ( _BaseExamplesIterable ): def __init__( self : Union[str, Any] , _A : "pyspark.sql.DataFrame" , _A : Optional[Any]=None , ) -> Optional[int]: """simple docstring""" snake_case_ : Any = df snake_case_ : Any = partition_order or range(self.df.rdd.getNumPartitions() ) snake_case_ : int = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : List[Any] ) -> int: """simple docstring""" yield from self.generate_examples_fn() def UpperCAmelCase_ ( self : List[str] , _A : np.random.Generator ) -> "SparkExamplesIterable": """simple docstring""" snake_case_ : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(_A ) return SparkExamplesIterable(self.df , partition_order=_A ) def UpperCAmelCase_ ( self : Optional[int] , _A : int , _A : int ) -> "SparkExamplesIterable": """simple docstring""" snake_case_ : Tuple = self.split_shard_indices_by_worker(_A , _A ) return SparkExamplesIterable(self.df , partition_order=_A ) @property def UpperCAmelCase_ ( self : List[Any] ) -> int: """simple docstring""" return len(self.partition_order ) class SCREAMING_SNAKE_CASE_ ( datasets.DatasetBuilder ): __magic_name__: Dict = SparkConfig def __init__( self : int , _A : "pyspark.sql.DataFrame" , _A : str = None , _A : str = None , **_A : Dict , ) -> Union[str, Any]: """simple docstring""" import pyspark snake_case_ : List[str] = pyspark.sql.SparkSession.builder.getOrCreate() snake_case_ : List[Any] = df snake_case_ : Tuple = working_dir super().__init__( cache_dir=_A , config_name=str(self.df.semanticHash() ) , **_A , ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: """simple docstring""" def create_cache_and_write_probe(_A : Optional[Any] ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=_A ) snake_case_ : Any = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(_A , 'a' ) return [probe_file] if self._spark.conf.get('spark.master' , '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: snake_case_ : Any = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(_A ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def UpperCAmelCase_ ( self : List[Any] , _A : datasets.download.download_manager.DownloadManager ) -> Tuple: """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def UpperCAmelCase_ ( self : Any , _A : Dict ) -> Tuple: """simple docstring""" import pyspark def get_arrow_batch_size(_A : List[str] ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) snake_case_ : Union[str, Any] = self.df.count() snake_case_ : Optional[Any] = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. snake_case_ : int = ( self.df.limit(_A ) .repartition(1 ) .mapInArrow(_A , 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) snake_case_ : List[Any] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. snake_case_ : int = min(_A , int(approx_total_size / max_shard_size ) ) snake_case_ : str = self.df.repartition(_A ) def UpperCAmelCase_ ( self : List[str] , _A : str , _A : str , _A : int , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: """simple docstring""" import pyspark snake_case_ : Optional[Any] = ParquetWriter if file_format == 'parquet' else ArrowWriter snake_case_ : Dict = os.path.join(self._working_dir , os.path.basename(_A ) ) if self._working_dir else fpath snake_case_ : List[str] = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. snake_case_ : Optional[Any] = self.config.features snake_case_ : List[str] = self._writer_batch_size snake_case_ : Dict = self._fs.storage_options def write_arrow(_A : Optional[int] ): # Within the same SparkContext, no two task attempts will share the same attempt ID. snake_case_ : Dict = pyspark.TaskContext().taskAttemptId() snake_case_ : Tuple = next(_A , _A ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , ) snake_case_ : Optional[Any] = 0 snake_case_ : Dict = writer_class( features=_A , path=working_fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , writer_batch_size=_A , storage_options=_A , embed_local_files=_A , ) snake_case_ : List[Any] = pa.Table.from_batches([first_batch] ) writer.write_table(_A ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: snake_case_ ,snake_case_ : List[str] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) shard_id += 1 snake_case_ : Tuple = writer_class( features=writer._features , path=working_fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , writer_batch_size=_A , storage_options=_A , embed_local_files=_A , ) snake_case_ : List[Any] = pa.Table.from_batches([batch] ) writer.write_table(_A ) if writer._num_bytes > 0: snake_case_ ,snake_case_ : str = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(_A ) ): snake_case_ : str = os.path.join(os.path.dirname(_A ) , os.path.basename(_A ) ) shutil.move(_A , _A ) snake_case_ : int = ( self.df.mapInArrow(_A , 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) , pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) , pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) , pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def UpperCAmelCase_ ( self : Union[str, Any] , _A : "datasets.SplitGenerator" , _A : str = "arrow" , _A : Optional[Union[str, int]] = None , _A : Optional[int] = None , **_A : Optional[int] , ) -> Dict: """simple docstring""" self._validate_cache_dir() snake_case_ : List[Any] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(_A ) snake_case_ : Tuple = not is_remote_filesystem(self._fs ) snake_case_ : str = os.path.join if is_local else posixpath.join snake_case_ : Optional[int] = '-TTTTT-SSSSS-of-NNNNN' snake_case_ : List[str] = F"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" snake_case_ : str = path_join(self._output_dir , _A ) snake_case_ : Any = 0 snake_case_ : List[str] = 0 snake_case_ : Tuple = 0 snake_case_ : Tuple = [] snake_case_ : Tuple = [] for task_id, content in self._prepare_split_single(_A , _A , _A ): ( ( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) , ) : int = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(_A ) snake_case_ : List[str] = total_num_examples snake_case_ : Union[str, Any] = total_num_bytes # should rename everything at the end logger.debug(F"""Renaming {total_shards} shards.""" ) if total_shards > 1: snake_case_ : Dict = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. snake_case_ : Union[str, Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( _A : int , _A : int , _A : int , ): rename( _A , fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , fpath.replace('TTTTT-SSSSS' , F"""{global_shard_id:05d}""" ).replace('NNNNN' , F"""{total_shards:05d}""" ) , ) snake_case_ : Dict = [] snake_case_ : List[str] = 0 for i in range(len(_A ) ): snake_case_ ,snake_case_ : Union[str, Any] = task_id_and_num_shards[i] for shard_id in range(_A ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(_A , len(_A ) ).map(lambda _A : _rename_shard(*_A ) ).collect() else: # don't use any pattern snake_case_ : str = 0 snake_case_ : Optional[Any] = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS' , F"""{shard_id:05d}""" ).replace('TTTTT' , F"""{task_id:05d}""" ) , fpath.replace(_A , '' ) , ) def UpperCAmelCase_ ( self : Optional[int] , _A : "datasets.SplitGenerator" , ) -> SparkExamplesIterable: """simple docstring""" return SparkExamplesIterable(self.df )
534
from statistics import mean import numpy as np def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a ): snake_case_ : Optional[Any] = 0 # Number of processes finished snake_case_ : List[str] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. snake_case_ : str = [0] * no_of_process # List to include calculation results snake_case_ : Optional[int] = [0] * no_of_process # Sort by arrival time. snake_case_ : str = [burst_time[i] for i in np.argsort(__a )] snake_case_ : str = [process_name[i] for i in np.argsort(__a )] arrival_time.sort() while no_of_process > finished_process_count: snake_case_ : int = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: snake_case_ : str = arrival_time[i] snake_case_ : Optional[Any] = 0 # Index showing the location of the process being performed snake_case_ : Tuple = 0 # Saves the current response ratio. snake_case_ : List[Any] = 0 for i in range(0 , __a ): if finished_process[i] == 0 and arrival_time[i] <= current_time: snake_case_ : Optional[Any] = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: snake_case_ : Optional[int] = temp snake_case_ : Optional[Any] = i # Calculate the turn around time snake_case_ : Any = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. snake_case_ : Optional[Any] = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a ): snake_case_ : List[Any] = [0] * no_of_process for i in range(0 , __a ): snake_case_ : Optional[int] = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": _SCREAMING_SNAKE_CASE = 5 _SCREAMING_SNAKE_CASE = ["""A""", """B""", """C""", """D""", """E"""] _SCREAMING_SNAKE_CASE = [1, 2, 3, 4, 5] _SCREAMING_SNAKE_CASE = [1, 2, 3, 4, 5] _SCREAMING_SNAKE_CASE = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) _SCREAMING_SNAKE_CASE = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("""Process name \tArrival time \tBurst time \tTurn around time \tWaiting time""") for i in range(0, no_of_process): print( F'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' F'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(F'''average waiting time : {mean(waiting_time):.5f}''') print(F'''average turn around time : {mean(turn_around_time):.5f}''')
534
1
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel lowercase_ = False lowercase_ = True lowercase_ = False if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') lowercase_ = parser.parse_args() lowercase_ = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } lowercase_ = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } lowercase_ = '' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: lowercase_ = reader.read() lowercase_ = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): lowercase_ = UNetaDModel(**config) else: lowercase_ = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel lowercase_ = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) lowercase_ = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: lowercase_ = config[key] del config[key] lowercase_ = [k.replace('UNetRes', '') for k in config['down_block_types']] lowercase_ = [k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: lowercase_ = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) lowercase_ = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue lowercase_ = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: lowercase_ = param_value lowercase_ = True if not has_changed: lowercase_ = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
291
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowercase_ = '\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n' class __lowerCAmelCase ( unittest.TestCase , SCREAMING_SNAKE_CASE ): def A__ ( self ) -> Union[str, Any]: '''simple docstring''' _lowercase =load_tool('text-question-answering' ) self.tool.setup() _lowercase =load_tool('text-question-answering' , remote=lowerCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' _lowercase =self.tool(lowerCAmelCase , 'What did Hugging Face do in April 2021?' ) self.assertEqual(lowerCAmelCase , 'launched the BigScience Research Workshop' ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' _lowercase =self.remote_tool(lowerCAmelCase , 'What did Hugging Face do in April 2021?' ) self.assertEqual(lowerCAmelCase , 'launched the BigScience Research Workshop' ) def A__ ( self ) -> Any: '''simple docstring''' _lowercase =self.tool(text=lowerCAmelCase , question='What did Hugging Face do in April 2021?' ) self.assertEqual(lowerCAmelCase , 'launched the BigScience Research Workshop' ) def A__ ( self ) -> Optional[int]: '''simple docstring''' _lowercase =self.remote_tool(text=lowerCAmelCase , question='What did Hugging Face do in April 2021?' ) self.assertEqual(lowerCAmelCase , 'launched the BigScience Research Workshop' )
291
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class UpperCamelCase ( __magic_name__ ): """simple docstring""" UpperCAmelCase_ : Dict = "canine" def __init__( self , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__=3072 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=16384 , lowercase__=16 , lowercase__=0.02 , lowercase__=1E-12 , lowercase__=0 , lowercase__=0xe_0_0_0 , lowercase__=0xe_0_0_1 , lowercase__=4 , lowercase__=4 , lowercase__=8 , lowercase__=16384 , lowercase__=128 , **lowercase__ , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__ ) SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = layer_norm_eps # Character config: SCREAMING_SNAKE_CASE = downsampling_rate SCREAMING_SNAKE_CASE = upsampling_kernel_size SCREAMING_SNAKE_CASE = num_hash_functions SCREAMING_SNAKE_CASE = num_hash_buckets SCREAMING_SNAKE_CASE = local_transformer_stride
709
"""simple docstring""" from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal snake_case = logging.get_logger(__name__) snake_case = TypeVar('DatasetType', Dataset, IterableDataset) def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = "first_exhausted", ): from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(SCREAMING_SNAKE_CASE_ ): if not isinstance(SCREAMING_SNAKE_CASE_, (Dataset, IterableDataset) ): if isinstance(SCREAMING_SNAKE_CASE_, (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' 'is an empty dataset dictionary.' ) raise ValueError( f'''Dataset at position {i} has at least one split: {list(SCREAMING_SNAKE_CASE_ )}\n''' f'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(SCREAMING_SNAKE_CASE_ ) )}\']''' ) raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(SCREAMING_SNAKE_CASE_ ).__name__}.''' ) if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ( (Dataset, IterableDataset) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else (IterableDataset, Dataset) ) elif not isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): raise ValueError( f'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'''{stopping_strategy} is not supported. Please enter a valid stopping_strategy.''' ) if dataset_type is Dataset: return _interleave_map_style_datasets( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, info=SCREAMING_SNAKE_CASE_, split=SCREAMING_SNAKE_CASE_, stopping_strategy=SCREAMING_SNAKE_CASE_ ) else: return _interleave_iterable_datasets( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, info=SCREAMING_SNAKE_CASE_, split=SCREAMING_SNAKE_CASE_, stopping_strategy=SCREAMING_SNAKE_CASE_ ) def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = 0, ): if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(SCREAMING_SNAKE_CASE_ ): if not isinstance(SCREAMING_SNAKE_CASE_, (Dataset, IterableDataset) ): if isinstance(SCREAMING_SNAKE_CASE_, (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' 'is an empty dataset dictionary.' ) raise ValueError( f'''Dataset at position {i} has at least one split: {list(SCREAMING_SNAKE_CASE_ )}\n''' f'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(SCREAMING_SNAKE_CASE_ ) )}\']''' ) raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(SCREAMING_SNAKE_CASE_ ).__name__}.''' ) if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ( (Dataset, IterableDataset) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else (IterableDataset, Dataset) ) elif not isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): raise ValueError( f'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(SCREAMING_SNAKE_CASE_, info=SCREAMING_SNAKE_CASE_, split=SCREAMING_SNAKE_CASE_, axis=SCREAMING_SNAKE_CASE_ ) else: return _concatenate_iterable_datasets(SCREAMING_SNAKE_CASE_, info=SCREAMING_SNAKE_CASE_, split=SCREAMING_SNAKE_CASE_, axis=SCREAMING_SNAKE_CASE_ )
406
0
"""simple docstring""" import argparse import struct import unittest class UpperCamelCase_ : def __init__( self : List[str] , lowerCAmelCase_ : bytes ) -> None: UpperCAmelCase_ : Optional[Any] = data # Initialize hash values UpperCAmelCase_ : Union[str, Any] = [ 0X6A09_E667, 0XBB67_AE85, 0X3C6E_F372, 0XA54F_F53A, 0X510E_527F, 0X9B05_688C, 0X1F83_D9AB, 0X5BE0_CD19, ] # Initialize round constants UpperCAmelCase_ : Any = [ 0X428A_2F98, 0X7137_4491, 0XB5C0_FBCF, 0XE9B5_DBA5, 0X3956_C25B, 0X59F1_11F1, 0X923F_82A4, 0XAB1C_5ED5, 0XD807_AA98, 0X1283_5B01, 0X2431_85BE, 0X550C_7DC3, 0X72BE_5D74, 0X80DE_B1FE, 0X9BDC_06A7, 0XC19B_F174, 0XE49B_69C1, 0XEFBE_4786, 0X0FC1_9DC6, 0X240C_A1CC, 0X2DE9_2C6F, 0X4A74_84AA, 0X5CB0_A9DC, 0X76F9_88DA, 0X983E_5152, 0XA831_C66D, 0XB003_27C8, 0XBF59_7FC7, 0XC6E0_0BF3, 0XD5A7_9147, 0X06CA_6351, 0X1429_2967, 0X27B7_0A85, 0X2E1B_2138, 0X4D2C_6DFC, 0X5338_0D13, 0X650A_7354, 0X766A_0ABB, 0X81C2_C92E, 0X9272_2C85, 0XA2BF_E8A1, 0XA81A_664B, 0XC24B_8B70, 0XC76C_51A3, 0XD192_E819, 0XD699_0624, 0XF40E_3585, 0X106A_A070, 0X19A4_C116, 0X1E37_6C08, 0X2748_774C, 0X34B0_BCB5, 0X391C_0CB3, 0X4ED8_AA4A, 0X5B9C_CA4F, 0X682E_6FF3, 0X748F_82EE, 0X78A5_636F, 0X84C8_7814, 0X8CC7_0208, 0X90BE_FFFA, 0XA450_6CEB, 0XBEF9_A3F7, 0XC671_78F2, ] UpperCAmelCase_ : List[str] = self.preprocessing(self.data ) self.final_hash() @staticmethod def _SCREAMING_SNAKE_CASE ( lowerCAmelCase_ : bytes ) -> bytes: UpperCAmelCase_ : List[Any] = b"\x80" + (b"\x00" * (63 - (len(lowerCAmelCase_ ) + 8) % 64)) UpperCAmelCase_ : int = struct.pack(">Q" , (len(lowerCAmelCase_ ) * 8) ) return data + padding + big_endian_integer def _SCREAMING_SNAKE_CASE ( self : Dict ) -> None: # Convert into blocks of 64 bytes UpperCAmelCase_ : str = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers UpperCAmelCase_ : Optional[Any] = list(struct.unpack(">16L" , lowerCAmelCase_ ) ) # add 48 0-ed integers words += [0] * 48 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array UpperCAmelCase_ : Any = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) UpperCAmelCase_ : Dict = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) UpperCAmelCase_ : int = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_0000_0000 # Compression UpperCAmelCase_ : Any = self.ror(lowerCAmelCase_ , 6 ) ^ self.ror(lowerCAmelCase_ , 11 ) ^ self.ror(lowerCAmelCase_ , 25 ) UpperCAmelCase_ : Optional[int] = (e & f) ^ ((~e & 0XFFFF_FFFF) & g) UpperCAmelCase_ : str = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0000_0000 UpperCAmelCase_ : str = self.ror(lowerCAmelCase_ , 2 ) ^ self.ror(lowerCAmelCase_ , 13 ) ^ self.ror(lowerCAmelCase_ , 22 ) UpperCAmelCase_ : List[Any] = (a & b) ^ (a & c) ^ (b & c) UpperCAmelCase_ : Optional[Any] = (sa + maj) % 0X1_0000_0000 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = ( g, f, e, ((d + tempa) % 0X1_0000_0000), c, b, a, ((tempa + tempa) % 0X1_0000_0000), ) UpperCAmelCase_ : Optional[Any] = [a, b, c, d, e, f, g, h] # Modify final values UpperCAmelCase_ : Any = [ ((element + mutated_hash_values[index]) % 0X1_0000_0000) for index, element in enumerate(self.hashes ) ] UpperCAmelCase_ : Optional[Any] = "".join([hex(lowerCAmelCase_ )[2:].zfill(8 ) for value in self.hashes] ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> int: return 0XFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations) class UpperCamelCase_ (unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> None: import hashlib UpperCAmelCase_ : Union[str, Any] = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(lowerCAmelCase_ ).hash , hashlib.shaaaa(lowerCAmelCase_ ).hexdigest() ) def snake_case ( ): import doctest doctest.testmod() UpperCAmelCase_ : Any = argparse.ArgumentParser() parser.add_argument( "-s" ,"--string" ,dest="input_string" ,default="Hello World!! Welcome to Cryptography" ,help="Hash the string" ,) parser.add_argument( "-f" ,"--file" ,dest="input_file" ,help="Hash contents of a file" ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() UpperCAmelCase_ : Optional[int] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file ,"rb" ) as f: UpperCAmelCase_ : Dict = f.read() else: UpperCAmelCase_ : Union[str, Any] = bytes(A__ ,"utf-8" ) print(SHAaaa(A__ ).hash ) if __name__ == "__main__": main()
95
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class _a : '''simple docstring''' def __init__( self , A__ , A__=13 , A__=7 , A__=True , A__=True , A__=True , A__=True , A__=99 , A__=64 , A__=32 , A__=5 , A__=4 , A__=37 , A__="gelu" , A__=0.1 , A__=0.1 , A__=512 , A__=16 , A__=2 , A__=0.0_2 , A__=3 , A__=4 , A__=None , ): A__ : int = parent A__ : Optional[Any] = batch_size A__ : Optional[Any] = seq_length A__ : Any = is_training A__ : Tuple = use_input_mask A__ : Optional[int] = use_token_type_ids A__ : Tuple = use_labels A__ : Union[str, Any] = vocab_size A__ : List[Any] = hidden_size A__ : Optional[Any] = embedding_size A__ : Optional[int] = num_hidden_layers A__ : Any = num_attention_heads A__ : Tuple = intermediate_size A__ : Tuple = hidden_act A__ : Dict = hidden_dropout_prob A__ : Union[str, Any] = attention_probs_dropout_prob A__ : Optional[Any] = max_position_embeddings A__ : Tuple = type_vocab_size A__ : Optional[Any] = type_sequence_label_size A__ : str = initializer_range A__ : Any = num_labels A__ : Dict = num_choices A__ : List[str] = scope def __A ( self ): A__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Any = None if self.use_input_mask: A__ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) A__ : List[str] = None if self.use_token_type_ids: A__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ : Any = None A__ : str = None A__ : Dict = None if self.use_labels: A__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) A__ : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A__ , initializer_range=self.initializer_range , ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ): A__ : Dict = MegatronBertModel(config=A__ ) model.to(A__ ) model.eval() A__ : str = model(A__ , attention_mask=A__ , token_type_ids=A__ ) A__ : Optional[Any] = model(A__ , token_type_ids=A__ ) A__ : Dict = model(A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ): A__ : str = MegatronBertForMaskedLM(config=A__ ) model.to(A__ ) model.eval() A__ : List[Any] = model(A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ): A__ : Tuple = MegatronBertForCausalLM(config=A__ ) model.to(A__ ) model.eval() A__ : int = model(A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ): A__ : Dict = MegatronBertForNextSentencePrediction(config=A__ ) model.to(A__ ) model.eval() A__ : Optional[int] = model( A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ): A__ : Optional[Any] = MegatronBertForPreTraining(config=A__ ) model.to(A__ ) model.eval() A__ : List[str] = model( A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ , next_sentence_label=A__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ): A__ : Optional[Any] = MegatronBertForQuestionAnswering(config=A__ ) model.to(A__ ) model.eval() A__ : Optional[Any] = model( A__ , attention_mask=A__ , token_type_ids=A__ , start_positions=A__ , end_positions=A__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ): A__ : Optional[int] = self.num_labels A__ : Union[str, Any] = MegatronBertForSequenceClassification(A__ ) model.to(A__ ) model.eval() A__ : List[str] = model(A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ): A__ : Union[str, Any] = self.num_labels A__ : int = MegatronBertForTokenClassification(config=A__ ) model.to(A__ ) model.eval() A__ : Optional[int] = model(A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ): A__ : Any = self.num_choices A__ : Dict = MegatronBertForMultipleChoice(config=A__ ) model.to(A__ ) model.eval() A__ : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Optional[Any] = model( A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self ): A__ : Optional[Any] = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Any = config_and_inputs A__ : Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _a (__magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: Optional[Any] = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) UpperCAmelCase__: Tuple = ( { '''feature-extraction''': MegatronBertModel, '''fill-mask''': MegatronBertForMaskedLM, '''question-answering''': MegatronBertForQuestionAnswering, '''text-classification''': MegatronBertForSequenceClassification, '''text-generation''': MegatronBertForCausalLM, '''token-classification''': MegatronBertForTokenClassification, '''zero-shot''': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__: int = True # test_resize_embeddings = False UpperCAmelCase__: List[str] = False def __A ( self , A__ , A__ , A__=False ): A__ : Union[str, Any] = super()._prepare_for_class(A__ , A__ , return_labels=A__ ) if return_labels: if model_class in get_values(A__ ): A__ : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=A__ ) A__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A__ ) return inputs_dict def __A ( self ): A__ : Union[str, Any] = MegatronBertModelTester(self ) A__ : Union[str, Any] = ConfigTester(self , config_class=A__ , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*A__ ) def __A ( self ): A__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*A__ ) def __A ( self ): A__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*A__ ) def __A ( self ): A__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*A__ ) def __A ( self ): A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*A__ ) def __A ( self ): A__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*A__ ) def __A ( self ): A__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*A__ ) def __A ( self ): A__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*A__ ) def UpperCamelCase (lowercase_: Optional[int] ) -> List[Any]: return torch.tensor( lowercase_ , dtype=torch.long , device=lowercase_ , ) A_ : int = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class _a (unittest.TestCase ): '''simple docstring''' @slow @unittest.skip("""Model is not available.""" ) def __A ( self ): A__ : int = """nvidia/megatron-bert-uncased-345m""" if "MYDIR" in os.environ: A__ : Dict = os.path.join(os.environ["""MYDIR"""] , A__ ) A__ : List[str] = MegatronBertModel.from_pretrained(A__ ) model.to(A__ ) model.half() A__ : Union[str, Any] = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): A__ : Dict = model(A__ )[0] A__ : List[Any] = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape , A__ ) A__ : int = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3 ): for jj in range(3 ): A__ : List[Any] = output[0, ii, jj] A__ : Dict = expected[3 * ii + jj] A__ : Dict = """ii={} jj={} a={} b={}""".format(A__ , A__ , A__ , A__ ) self.assertTrue(math.isclose(A__ , A__ , rel_tol=A__ , abs_tol=A__ ) , msg=A__ )
456
0
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __A : List[str] = logging.getLogger() @unittest.skip("Temporarily disable the doc tests." ) @require_torch @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case ( self : int , lowercase__ : Path , lowercase__ : Union[str, None] = None , lowercase__ : Union[List[str], None] = None , lowercase__ : Union[str, List[str], None] = None , lowercase__ : bool = True , ): __lowercase : Optional[int] = [file for file in os.listdir(lowercase__ ) if os.path.isfile(os.path.join(lowercase__ , lowercase__ ) )] if identifier is not None: __lowercase : Optional[Any] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase__ , lowercase__ ): for n_ in n_identifier: __lowercase : str = [file for file in files if n_ not in file] else: __lowercase : List[str] = [file for file in files if n_identifier not in file] __lowercase : Tuple = ignore_files or [] ignore_files.append("__init__.py" ) __lowercase : Any = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , lowercase__ ) if only_modules: __lowercase : Any = file.split("." )[0] try: __lowercase : Any = getattr(lowercase__ , lowercase__ ) __lowercase : Dict = doctest.DocTestSuite(lowercase__ ) __lowercase : Tuple = unittest.TextTestRunner().run(lowercase__ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'{module_identifier} is not a module.' ) else: __lowercase : List[str] = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def snake_case ( self : Tuple ): __lowercase : int = Path("src/transformers" ) __lowercase : List[str] = "modeling" __lowercase : str = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(lowercase__ , identifier=lowercase__ , ignore_files=lowercase__ ) def snake_case ( self : List[Any] ): __lowercase : Union[str, Any] = Path("src/transformers" ) __lowercase : List[Any] = "tokenization" self.analyze_directory(lowercase__ , identifier=lowercase__ ) def snake_case ( self : Any ): __lowercase : Tuple = Path("src/transformers" ) __lowercase : Union[str, Any] = "configuration" self.analyze_directory(lowercase__ , identifier=lowercase__ ) def snake_case ( self : Optional[int] ): __lowercase : Optional[Any] = Path("src/transformers" ) __lowercase : List[str] = ["configuration", "modeling", "tokenization"] self.analyze_directory(lowercase__ , n_identifier=lowercase__ ) def snake_case ( self : Optional[Any] ): __lowercase : Dict = Path("docs/source" ) __lowercase : Any = ["favicon.ico"] self.analyze_directory(lowercase__ , ignore_files=lowercase__ , only_modules=lowercase__ )
281
"""simple docstring""" from __future__ import annotations def snake_case__ ( _lowerCamelCase, _lowerCamelCase = None ) ->list[list[str]]: """simple docstring""" __lowercase : List[Any] = word_bank or [] # create a table __lowercase : int = len(_lowerCamelCase ) + 1 __lowercase : list[list[list[str]]] = [] for _ in range(_lowerCamelCase ): table.append([] ) # seed value __lowercase : Any = [[]] # because empty string has empty combination # iterate through the indices for i in range(_lowerCamelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_lowerCamelCase )] == word: __lowercase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_lowerCamelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_lowerCamelCase )]: combination.reverse() return table[len(_lowerCamelCase )] if __name__ == "__main__": print(all_construct('jwajalapa', ['jwa', 'j', 'w', 'a', 'la', 'lapa'])) print(all_construct('rajamati', ['s', 'raj', 'amat', 'raja', 'ma', 'i', 't'])) print( all_construct( 'hexagonosaurus', ['h', 'ex', 'hex', 'ag', 'ago', 'ru', 'auru', 'rus', 'go', 'no', 'o', 's'], ) )
281
1
"""simple docstring""" from __future__ import annotations from typing import Any class __UpperCamelCase : def __init__( self : Any , UpperCAmelCase : int ) -> None: lowerCAmelCase :str = num_of_nodes lowerCAmelCase :list[list[int]] = [] lowerCAmelCase :dict[int, int] = {} def UpperCAmelCase__ ( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ) -> None: self.m_edges.append([u_node, v_node, weight] ) def UpperCAmelCase__ ( self : Tuple , UpperCAmelCase : int ) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def UpperCAmelCase__ ( self : Tuple , UpperCAmelCase : int ) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: lowerCAmelCase :Optional[int] = self.find_component(UpperCAmelCase ) def UpperCAmelCase__ ( self : Optional[int] , UpperCAmelCase : list[int] , UpperCAmelCase : int , UpperCAmelCase : int ) -> None: if component_size[u_node] <= component_size[v_node]: lowerCAmelCase :Union[str, Any] = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase ) elif component_size[u_node] >= component_size[v_node]: lowerCAmelCase :Optional[int] = self.find_component(UpperCAmelCase ) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase ) def UpperCAmelCase__ ( self : Dict ) -> None: lowerCAmelCase :Union[str, Any] = [] lowerCAmelCase :Union[str, Any] = 0 lowerCAmelCase :list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowerCAmelCase :Any = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase :Optional[Any] = edge lowerCAmelCase :str = self.m_component[u] lowerCAmelCase :Tuple = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowerCAmelCase :str = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase :Union[str, Any] = edge lowerCAmelCase :Tuple = self.m_component[u] lowerCAmelCase :int = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 lowerCAmelCase :int = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def UpperCAmelCase ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
553
"""simple docstring""" import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def UpperCAmelCase ( a__ , a__=None ): '''simple docstring''' lowerCAmelCase :str = None if token is not None: lowerCAmelCase :List[Any] = {'Accept': 'application/vnd.github+json', 'Authorization': F"""Bearer {token}"""} lowerCAmelCase :Dict = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" lowerCAmelCase :Optional[Any] = requests.get(a__ , headers=a__ ).json() lowerCAmelCase :Tuple = {} try: job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) lowerCAmelCase :List[Any] = math.ceil((result['total_count'] - 1_00) / 1_00 ) for i in range(a__ ): lowerCAmelCase :List[Any] = requests.get(url + F"""&page={i + 2}""" , headers=a__ ).json() job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) return job_links except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def UpperCAmelCase ( a__ , a__=None ): '''simple docstring''' lowerCAmelCase :Optional[Any] = None if token is not None: lowerCAmelCase :Any = {'Accept': 'application/vnd.github+json', 'Authorization': F"""Bearer {token}"""} lowerCAmelCase :Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" lowerCAmelCase :Any = requests.get(a__ , headers=a__ ).json() lowerCAmelCase :str = {} try: artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) lowerCAmelCase :List[Any] = math.ceil((result['total_count'] - 1_00) / 1_00 ) for i in range(a__ ): lowerCAmelCase :List[Any] = requests.get(url + F"""&page={i + 2}""" , headers=a__ ).json() artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) return artifacts except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def UpperCAmelCase ( a__ , a__ , a__ , a__ ): '''simple docstring''' lowerCAmelCase :Optional[Any] = None if token is not None: lowerCAmelCase :Optional[Any] = {'Accept': 'application/vnd.github+json', 'Authorization': F"""Bearer {token}"""} lowerCAmelCase :Tuple = requests.get(a__ , headers=a__ , allow_redirects=a__ ) lowerCAmelCase :Optional[int] = result.headers['Location'] lowerCAmelCase :int = requests.get(a__ , allow_redirects=a__ ) lowerCAmelCase :Union[str, Any] = os.path.join(a__ , F"""{artifact_name}.zip""" ) with open(a__ , 'wb' ) as fp: fp.write(response.content ) def UpperCAmelCase ( a__ , a__=None ): '''simple docstring''' lowerCAmelCase :Optional[Any] = [] lowerCAmelCase :Dict = [] lowerCAmelCase :Optional[Any] = None with zipfile.ZipFile(a__ ) as z: for filename in z.namelist(): if not os.path.isdir(a__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(a__ ) as f: for line in f: lowerCAmelCase :int = line.decode('UTF-8' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs lowerCAmelCase :int = line[: line.index(': ' )] lowerCAmelCase :int = line[line.index(': ' ) + len(': ' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('FAILED ' ): # `test` is the test method that failed lowerCAmelCase :int = line[len('FAILED ' ) :] failed_tests.append(a__ ) elif filename == "job_name.txt": lowerCAmelCase :List[str] = line if len(a__ ) != len(a__ ): raise ValueError( F"""`errors` and `failed_tests` should have the same number of elements. Got {len(a__ )} for `errors` """ F"""and {len(a__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" ' problem.' ) lowerCAmelCase :Optional[int] = None if job_name and job_links: lowerCAmelCase :Dict = job_links.get(a__ , a__ ) # A list with elements of the form (line of error, error, failed test) lowerCAmelCase :Union[str, Any] = [x + [y] + [job_link] for x, y in zip(a__ , a__ )] return result def UpperCAmelCase ( a__ , a__=None ): '''simple docstring''' lowerCAmelCase :Any = [] lowerCAmelCase :Optional[int] = [os.path.join(a__ , a__ ) for p in os.listdir(a__ ) if p.endswith('.zip' )] for p in paths: errors.extend(get_errors_from_single_artifact(a__ , job_links=a__ ) ) return errors def UpperCAmelCase ( a__ , a__=None ): '''simple docstring''' lowerCAmelCase :int = Counter() counter.update([x[1] for x in logs] ) lowerCAmelCase :Tuple = counter.most_common() lowerCAmelCase :Dict = {} for error, count in counts: if error_filter is None or error not in error_filter: lowerCAmelCase :Optional[int] = {'count': count, 'failed_tests': [(x[2], x[0]) for x in logs if x[1] == error]} lowerCAmelCase :Optional[Any] = dict(sorted(r.items() , key=lambda a__ : item[1]["count"] , reverse=a__ ) ) return r def UpperCAmelCase ( a__ ): '''simple docstring''' lowerCAmelCase :Tuple = test.split('::' )[0] if test.startswith('tests/models/' ): lowerCAmelCase :Union[str, Any] = test.split('/' )[2] else: lowerCAmelCase :Optional[int] = None return test def UpperCAmelCase ( a__ , a__=None ): '''simple docstring''' lowerCAmelCase :str = [(x[0], x[1], get_model(x[2] )) for x in logs] lowerCAmelCase :Any = [x for x in logs if x[2] is not None] lowerCAmelCase :Tuple = {x[2] for x in logs} lowerCAmelCase :Optional[Any] = {} for test in tests: lowerCAmelCase :Union[str, Any] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) lowerCAmelCase :List[str] = counter.most_common() lowerCAmelCase :str = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} lowerCAmelCase :Optional[Any] = sum(error_counts.values() ) if n_errors > 0: lowerCAmelCase :Dict = {'count': n_errors, 'errors': error_counts} lowerCAmelCase :Dict = dict(sorted(r.items() , key=lambda a__ : item[1]["count"] , reverse=a__ ) ) return r def UpperCAmelCase ( a__ ): '''simple docstring''' lowerCAmelCase :Any = '| no. | error | status |' lowerCAmelCase :Optional[int] = '|-:|:-|:-|' lowerCAmelCase :Tuple = [header, sep] for error in reduced_by_error: lowerCAmelCase :Optional[Any] = reduced_by_error[error]['count'] lowerCAmelCase :List[str] = F"""| {count} | {error[:1_00]} | |""" lines.append(a__ ) return "\n".join(a__ ) def UpperCAmelCase ( a__ ): '''simple docstring''' lowerCAmelCase :Any = '| model | no. of errors | major error | count |' lowerCAmelCase :int = '|-:|-:|-:|-:|' lowerCAmelCase :int = [header, sep] for model in reduced_by_model: lowerCAmelCase :Dict = reduced_by_model[model]['count'] lowerCAmelCase , lowerCAmelCase :Any = list(reduced_by_model[model]['errors'].items() )[0] lowerCAmelCase :Any = F"""| {model} | {count} | {error[:60]} | {_count} |""" lines.append(a__ ) return "\n".join(a__ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') __SCREAMING_SNAKE_CASE = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) __SCREAMING_SNAKE_CASE = get_job_links(args.workflow_run_id, token=args.token) __SCREAMING_SNAKE_CASE = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: __SCREAMING_SNAKE_CASE = k.find(' / ') __SCREAMING_SNAKE_CASE = k[index + len(' / ') :] __SCREAMING_SNAKE_CASE = v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) __SCREAMING_SNAKE_CASE = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) __SCREAMING_SNAKE_CASE = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error __SCREAMING_SNAKE_CASE = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors __SCREAMING_SNAKE_CASE = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) __SCREAMING_SNAKE_CASE = reduce_by_error(errors) __SCREAMING_SNAKE_CASE = reduce_by_model(errors) __SCREAMING_SNAKE_CASE = make_github_table(reduced_by_error) __SCREAMING_SNAKE_CASE = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
553
1
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def UpperCamelCase_ ( A__ : Dict[str, torch.Tensor] ): '''simple docstring''' lowerCAmelCase_ : Tuple = [] lowerCAmelCase_ : Tuple = [] lowerCAmelCase_ : str = [] for rt in rc.restypes: lowerCAmelCase_ : str = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) lowerCAmelCase_ : str = {name: i for i, name in enumerate(__a )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) lowerCAmelCase_ : str = torch.tensor( __a , dtype=torch.intaa , device=protein["""aatype"""].device , ) lowerCAmelCase_ : Optional[Any] = torch.tensor( __a , dtype=torch.intaa , device=protein["""aatype"""].device , ) lowerCAmelCase_ : Dict = torch.tensor( __a , dtype=torch.floataa , device=protein["""aatype"""].device , ) lowerCAmelCase_ : List[str] = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein lowerCAmelCase_ : Optional[Any] = restype_atomaa_to_atomaa[protein_aatype] lowerCAmelCase_ : int = restype_atomaa_mask[protein_aatype] lowerCAmelCase_ : List[str] = residx_atomaa_mask lowerCAmelCase_ : Optional[int] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back lowerCAmelCase_ : Tuple = restype_atomaa_to_atomaa[protein_aatype] lowerCAmelCase_ : List[str] = residx_atomaa_to_atomaa.long() # create the corresponding mask lowerCAmelCase_ : Union[str, Any] = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): lowerCAmelCase_ : Tuple = rc.restype_atoa[restype_letter] lowerCAmelCase_ : Optional[Any] = rc.residue_atoms[restype_name] for atom_name in atom_names: lowerCAmelCase_ : List[Any] = rc.atom_order[atom_name] lowerCAmelCase_ : List[str] = 1 lowerCAmelCase_ : List[str] = restype_atomaa_mask[protein_aatype] lowerCAmelCase_ : Dict = residx_atomaa_mask return protein def UpperCamelCase_ ( A__ : Dict[str, torch.Tensor] ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = tree_map(lambda A__ : torch.tensor(__a , device=batch["""aatype"""].device ) , __a , np.ndarray ) lowerCAmelCase_ : int = tensor_tree_map(lambda A__ : np.array(__a ) , make_atomaa_masks(__a ) ) return out
720
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar __A : Tuple = TypeVar("T") __A : Optional[Any] = TypeVar("U") class __snake_case ( Generic[T, U]): """simple docstring""" def __init__( self : Any , lowerCamelCase : T | None , lowerCamelCase : U | None ) -> Dict: lowerCAmelCase_ : List[str] = key lowerCAmelCase_ : List[str] = val lowerCAmelCase_ : DoubleLinkedListNode[T, U] | None = None lowerCAmelCase_ : DoubleLinkedListNode[T, U] | None = None def __repr__( self : Union[str, Any] ) -> str: return ( F'Node: key: {self.key}, val: {self.val}, ' F'has next: {bool(self.next )}, has prev: {bool(self.prev )}' ) class __snake_case ( Generic[T, U]): """simple docstring""" def __init__( self : int ) -> None: lowerCAmelCase_ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_, lowerCAmelCase_ : List[Any] = self.rear, self.head def __repr__( self : str ) -> str: lowerCAmelCase_ : List[str] = ["""DoubleLinkedList"""] lowerCAmelCase_ : str = self.head while node.next is not None: rep.append(str(lowerCamelCase ) ) lowerCAmelCase_ : Optional[int] = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowerCamelCase ) def __lowercase ( self : int , lowerCamelCase : DoubleLinkedListNode[T, U] ) -> None: lowerCAmelCase_ : Optional[Any] = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None lowerCAmelCase_ : Tuple = node lowerCAmelCase_ : int = previous lowerCAmelCase_ : List[str] = node lowerCAmelCase_ : Optional[int] = self.rear def __lowercase ( self : List[Any] , lowerCamelCase : DoubleLinkedListNode[T, U] ) -> DoubleLinkedListNode[T, U] | None: if node.prev is None or node.next is None: return None lowerCAmelCase_ : Any = node.next lowerCAmelCase_ : Any = node.prev lowerCAmelCase_ : List[str] = None lowerCAmelCase_ : Optional[int] = None return node class __snake_case ( Generic[T, U]): """simple docstring""" lowercase = {} def __init__( self : Tuple , lowerCamelCase : int ) -> Union[str, Any]: lowerCAmelCase_ : DoubleLinkedList[T, U] = DoubleLinkedList() lowerCAmelCase_ : Tuple = capacity lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Union[str, Any] = 0 lowerCAmelCase_ : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self : Optional[int] ) -> str: return ( F'CacheInfo(hits={self.hits}, misses={self.miss}, ' F'capacity={self.capacity}, current size={self.num_keys})' ) def __contains__( self : Optional[int] , lowerCamelCase : T ) -> bool: return key in self.cache def __lowercase ( self : Dict , lowerCamelCase : T ) -> U | None: # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 lowerCAmelCase_ : DoubleLinkedListNode[T, U] = self.cache[key] lowerCAmelCase_ : List[str] = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowerCamelCase ) return node.val self.miss += 1 return None def __lowercase ( self : str , lowerCamelCase : T , lowerCamelCase : U ) -> None: if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity lowerCAmelCase_ : List[Any] = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowerCamelCase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 lowerCAmelCase_ : Optional[Any] = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value lowerCAmelCase_ : Optional[Any] = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list lowerCAmelCase_ : Tuple = value self.list.add(lowerCamelCase ) @classmethod def __lowercase ( cls : int , lowerCamelCase : int = 1_28 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: def cache_decorator_inner(lowerCamelCase : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*lowerCamelCase : T ) -> U: if func not in cls.decorator_function_to_instance_map: lowerCAmelCase_ : int = LRUCache(lowerCamelCase ) lowerCAmelCase_ : List[str] = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: lowerCAmelCase_ : Dict = func(*lowerCamelCase ) cls.decorator_function_to_instance_map[func].put(args[0] , lowerCamelCase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowerCamelCase , """cache_info""" , lowerCamelCase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
398
0
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def __UpperCamelCase ( ): A_ : Dict = argparse.ArgumentParser() parser.add_argument("""--model_ckpt""" , type=SCREAMING_SNAKE_CASE_ , default="""microsoft/unixcoder-base-nine""" ) parser.add_argument("""--num_epochs""" , type=SCREAMING_SNAKE_CASE_ , default=5 ) parser.add_argument("""--batch_size""" , type=SCREAMING_SNAKE_CASE_ , default=6 ) parser.add_argument("""--gradient_accumulation_steps""" , type=SCREAMING_SNAKE_CASE_ , default=1 ) parser.add_argument("""--freeze""" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ ) parser.add_argument("""--learning_rate""" , type=SCREAMING_SNAKE_CASE_ , default=5E-4 ) parser.add_argument("""--seed""" , type=SCREAMING_SNAKE_CASE_ , default=0 ) parser.add_argument("""--lr_scheduler_type""" , type=SCREAMING_SNAKE_CASE_ , default="""cosine""" ) parser.add_argument("""--num_warmup_steps""" , type=SCREAMING_SNAKE_CASE_ , default=10 ) parser.add_argument("""--weight_decay""" , type=SCREAMING_SNAKE_CASE_ , default=0.01 ) parser.add_argument("""--output_dir""" , type=SCREAMING_SNAKE_CASE_ , default="""./results""" ) return parser.parse_args() _lowerCAmelCase = load("accuracy") def __UpperCamelCase ( snake_case__ ): A_ : Any = eval_pred A_ : Union[str, Any] = np.argmax(SCREAMING_SNAKE_CASE_ , axis=1 ) return metric.compute(predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE ( _UpperCAmelCase ): """simple docstring""" def __init__(self , lowerCAmelCase_ ): super().__init__() A_ : List[Any] = trainer def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ): if control.should_evaluate: A_ : Dict = deepcopy(lowercase__ ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="""train""" ) return control_copy def __UpperCamelCase ( ): A_ : List[str] = get_args() set_seed(args.seed ) A_ : List[Any] = load_dataset("""codeparrot/codecomplex""" , split="""train""" ) A_ : Optional[Any] = dataset.train_test_split(test_size=0.2 ) A_ : Union[str, Any] = train_test["test"].train_test_split(test_size=0.5 ) A_ : List[str] = DatasetDict( { """train""": train_test["""train"""], """test""": test_validation["""train"""], """valid""": test_validation["""test"""], } ) print("""Loading tokenizer and model""" ) A_ : Tuple = AutoTokenizer.from_pretrained(args.model_ckpt ) A_ : List[Any] = tokenizer.eos_token A_ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) A_ : int = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): A_ : Optional[int] = False A_ : List[Any] = ClassLabel(num_classes=7 , names=list(set(train_test_validation["""train"""]["""complexity"""] ) ) ) def tokenize(snake_case__ ): A_ : Tuple = tokenizer(example["""src"""] , truncation=SCREAMING_SNAKE_CASE_ , max_length=1_024 ) A_ : Dict = labels.straint(example["""complexity"""] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } A_ : Union[str, Any] = train_test_validation.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , remove_columns=train_test_validation["""train"""].column_names , ) A_ : List[Any] = DataCollatorWithPadding(tokenizer=SCREAMING_SNAKE_CASE_ ) A_ : Optional[Any] = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="""epoch""" , save_strategy="""epoch""" , logging_strategy="""epoch""" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="""accuracy""" , run_name="""complexity-java""" , report_to="""wandb""" , ) A_ : Union[str, Any] = Trainer( model=SCREAMING_SNAKE_CASE_ , args=SCREAMING_SNAKE_CASE_ , train_dataset=tokenized_datasets["""train"""] , eval_dataset=tokenized_datasets["""valid"""] , tokenizer=SCREAMING_SNAKE_CASE_ , data_collator=SCREAMING_SNAKE_CASE_ , compute_metrics=SCREAMING_SNAKE_CASE_ , ) print("""Training...""" ) trainer.add_callback(CustomCallback(SCREAMING_SNAKE_CASE_ ) ) trainer.train() if __name__ == "__main__": main()
180
'''simple docstring''' import re def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : str ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = re.compile(R"^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$" ) if match := re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
421
0
"""simple docstring""" def _lowerCAmelCase ( __lowerCamelCase:int ): '''simple docstring''' return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def _lowerCAmelCase ( __lowerCamelCase:int ): '''simple docstring''' __magic_name__ = 0 __magic_name__ = number while duplicate > 0: __magic_name__ , __magic_name__ = divmod(__lowerCamelCase , 1_0 ) fact_sum += factorial(__lowerCamelCase ) return fact_sum == number if __name__ == "__main__": print('''Program to check whether a number is a Krisnamurthy Number or not.''') lowercase = int(input('''Enter number: ''').strip()) print( f'''{number} is {"" if krishnamurthy(number) else "not "}a Krishnamurthy Number.''' )
468
"""simple docstring""" def _lowerCAmelCase ( __lowerCamelCase:int = 2_0_0_0_0_0_0 ): '''simple docstring''' __magic_name__ = [0 for i in range(n + 1 )] __magic_name__ = 1 __magic_name__ = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , __lowerCamelCase ): __magic_name__ = 1 __magic_name__ = 0 for i in range(__lowerCamelCase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f'''{solution() = }''')
468
1
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE: int ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError('Input must be an integer' ) if input_num <= 0: raise ValueError('Input must be positive' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
580
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _snake_case = '''src/diffusers''' _snake_case = '''.''' # This is to make sure the diffusers module imported is the one in the repo. _snake_case = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) _snake_case = spec.loader.load_module() def __snake_case ( SCREAMING_SNAKE_CASE: Optional[Any] , SCREAMING_SNAKE_CASE: Optional[Any] ): """simple docstring""" return line.startswith(SCREAMING_SNAKE_CASE ) or len(SCREAMING_SNAKE_CASE ) <= 1 or re.search(R'^\s*\)(\s*->.*:|:)\s*$' , SCREAMING_SNAKE_CASE ) is not None def __snake_case ( SCREAMING_SNAKE_CASE: List[str] ): """simple docstring""" _lowerCAmelCase = object_name.split('.' ) _lowerCAmelCase = 0 # First let's find the module where our object lives. _lowerCAmelCase = parts[i] while i < len(SCREAMING_SNAKE_CASE ) and not os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE , f"""{module}.py""" ) ): i += 1 if i < len(SCREAMING_SNAKE_CASE ): _lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE , parts[i] ) if i >= len(SCREAMING_SNAKE_CASE ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(SCREAMING_SNAKE_CASE , f"""{module}.py""" ) , 'r' , encoding='utf-8' , newline='\n' ) as f: _lowerCAmelCase = f.readlines() # Now let's find the class / func in the code! _lowerCAmelCase = '' _lowerCAmelCase = 0 for name in parts[i + 1 :]: while ( line_index < len(SCREAMING_SNAKE_CASE ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(SCREAMING_SNAKE_CASE ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _lowerCAmelCase = line_index while line_index < len(SCREAMING_SNAKE_CASE ) and _should_continue(lines[line_index] , SCREAMING_SNAKE_CASE ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _lowerCAmelCase = lines[start_index:line_index] return "".join(SCREAMING_SNAKE_CASE ) _snake_case = re.compile(R'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') _snake_case = re.compile(R'''^\s*(\S+)->(\S+)(\s+.*|$)''') _snake_case = re.compile(R'''<FILL\s+[^>]*>''') def __snake_case ( SCREAMING_SNAKE_CASE: List[str] ): """simple docstring""" _lowerCAmelCase = code.split('\n' ) _lowerCAmelCase = 0 while idx < len(SCREAMING_SNAKE_CASE ) and len(lines[idx] ) == 0: idx += 1 if idx < len(SCREAMING_SNAKE_CASE ): return re.search(R'^(\s*)\S' , lines[idx] ).groups()[0] return "" def __snake_case ( SCREAMING_SNAKE_CASE: Optional[Any] ): """simple docstring""" _lowerCAmelCase = len(get_indent(SCREAMING_SNAKE_CASE ) ) > 0 if has_indent: _lowerCAmelCase = f"""class Bla:\n{code}""" _lowerCAmelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=SCREAMING_SNAKE_CASE ) _lowerCAmelCase = black.format_str(SCREAMING_SNAKE_CASE , mode=SCREAMING_SNAKE_CASE ) _lowerCAmelCase , _lowerCAmelCase = style_docstrings_in_code(SCREAMING_SNAKE_CASE ) return result[len('class Bla:\n' ) :] if has_indent else result def __snake_case ( SCREAMING_SNAKE_CASE: Optional[int] , SCREAMING_SNAKE_CASE: List[str]=False ): """simple docstring""" with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: _lowerCAmelCase = f.readlines() _lowerCAmelCase = [] _lowerCAmelCase = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(SCREAMING_SNAKE_CASE ): _lowerCAmelCase = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = search.groups() _lowerCAmelCase = find_code_in_diffusers(SCREAMING_SNAKE_CASE ) _lowerCAmelCase = get_indent(SCREAMING_SNAKE_CASE ) _lowerCAmelCase = line_index + 1 if indent == theoretical_indent else line_index + 2 _lowerCAmelCase = theoretical_indent _lowerCAmelCase = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _lowerCAmelCase = True while line_index < len(SCREAMING_SNAKE_CASE ) and should_continue: line_index += 1 if line_index >= len(SCREAMING_SNAKE_CASE ): break _lowerCAmelCase = lines[line_index] _lowerCAmelCase = _should_continue(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and re.search(f"""^{indent}# End copy""" , SCREAMING_SNAKE_CASE ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _lowerCAmelCase = lines[start_index:line_index] _lowerCAmelCase = ''.join(SCREAMING_SNAKE_CASE ) # Remove any nested `Copied from` comments to avoid circular copies _lowerCAmelCase = [line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(SCREAMING_SNAKE_CASE ) is None] _lowerCAmelCase = '\n'.join(SCREAMING_SNAKE_CASE ) # Before comparing, use the `replace_pattern` on the original code. if len(SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = replace_pattern.replace('with' , '' ).split(',' ) _lowerCAmelCase = [_re_replace_pattern.search(SCREAMING_SNAKE_CASE ) for p in patterns] for pattern in patterns: if pattern is None: continue _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = pattern.groups() _lowerCAmelCase = re.sub(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if option.strip() == "all-casing": _lowerCAmelCase = re.sub(obja.lower() , obja.lower() , SCREAMING_SNAKE_CASE ) _lowerCAmelCase = re.sub(obja.upper() , obja.upper() , SCREAMING_SNAKE_CASE ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _lowerCAmelCase = blackify(lines[start_index - 1] + theoretical_code ) _lowerCAmelCase = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _lowerCAmelCase = lines[:start_index] + [theoretical_code] + lines[line_index:] _lowerCAmelCase = start_index + 1 if overwrite and len(SCREAMING_SNAKE_CASE ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(SCREAMING_SNAKE_CASE ) return diffs def __snake_case ( SCREAMING_SNAKE_CASE: bool = False ): """simple docstring""" _lowerCAmelCase = glob.glob(os.path.join(SCREAMING_SNAKE_CASE , '**/*.py' ) , recursive=SCREAMING_SNAKE_CASE ) _lowerCAmelCase = [] for filename in all_files: _lowerCAmelCase = is_copy_consistent(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = '\n'.join(SCREAMING_SNAKE_CASE ) raise Exception( 'Found the following copy inconsistencies:\n' + diff + '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _snake_case = parser.parse_args() check_copies(args.fix_and_overwrite)
580
1
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __magic_name__ (unittest.TestCase ): @parameterized.expand([(None,), ("foo.json",)] ) def __a ( self , _a ) -> Tuple: lowerCAmelCase_ = GenerationConfig( do_sample=_a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_a , config_name=_a ) lowerCAmelCase_ = GenerationConfig.from_pretrained(_a , config_name=_a ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , _a ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , _a ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = AutoConfig.from_pretrained("gpt2" ) lowerCAmelCase_ = GenerationConfig.from_model_config(_a ) lowerCAmelCase_ = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(_a , _a ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = GenerationConfig() lowerCAmelCase_ = { "max_new_tokens": 1024, "foo": "bar", } lowerCAmelCase_ = copy.deepcopy(_a ) lowerCAmelCase_ = generation_config.update(**_a ) # update_kwargs was not modified (no side effects) self.assertEqual(_a , _a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(_a , {"foo": "bar"} ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = GenerationConfig() lowerCAmelCase_ = "bar" with tempfile.TemporaryDirectory("test-generation-config" ) as tmp_dir: generation_config.save_pretrained(_a ) lowerCAmelCase_ = GenerationConfig.from_pretrained(_a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , "bar" ) lowerCAmelCase_ = GenerationConfig.from_model_config(_a ) assert not hasattr(_a , "foo" ) # no new kwargs should be initialized if from config def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , _a ) self.assertEqual(default_config.num_beams , 1 ) lowerCAmelCase_ = GenerationConfig( do_sample=_a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , _a ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_a ) lowerCAmelCase_ = GenerationConfig.from_pretrained(_a , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , _a ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __magic_name__ (unittest.TestCase ): @classmethod def __a ( cls ) -> Optional[Any]: lowerCAmelCase_ = TOKEN HfFolder.save_token(_a ) @classmethod def __a ( cls ) -> Optional[int]: try: delete_repo(token=cls._token , repo_id="test-generation-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-generation-config-org" ) except HTTPError: pass def __a ( self ) -> List[Any]: lowerCAmelCase_ = GenerationConfig( do_sample=_a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("test-generation-config" , use_auth_token=self._token ) lowerCAmelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a , getattr(_a , _a ) ) # Reset repo delete_repo(token=self._token , repo_id="test-generation-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _a , repo_id="test-generation-config" , push_to_hub=_a , use_auth_token=self._token ) lowerCAmelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a , getattr(_a , _a ) ) def __a ( self ) -> List[str]: lowerCAmelCase_ = GenerationConfig( do_sample=_a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("valid_org/test-generation-config-org" , use_auth_token=self._token ) lowerCAmelCase_ = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a , getattr(_a , _a ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-generation-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _a , repo_id="valid_org/test-generation-config-org" , push_to_hub=_a , use_auth_token=self._token ) lowerCAmelCase_ = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a , getattr(_a , _a ) )
226
def A(__a: int ): lowerCAmelCase_ = abs(__a ) lowerCAmelCase_ = 0 while n > 0: res += n % 10 n //= 10 return res def A(__a: int ): lowerCAmelCase_ = abs(__a ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def A(__a: int ): return sum(int(__a ) for c in str(abs(__a ) ) ) def A(): from collections.abc import Callable from timeit import timeit def benchmark_a_function(__a: Callable , __a: int ) -> None: lowerCAmelCase_ = F"{func.__name__}({value})" lowerCAmelCase_ = timeit(F"__main__.{call}" , setup="import __main__" ) print(F"{call:56} = {func(__a )} -- {timing:.4f} seconds" ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__a , __a ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
226
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): lowerCAmelCase = ViTImageProcessor if is_vision_available() else None @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = (3, 32, 128) __A : List[str] = tempfile.mkdtemp() # fmt: off __A : Any = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on __A : Tuple = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase)))) __A : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(_UpperCAmelCase) + '\n') __A : Tuple = { 'do_normalize': False, 'do_resize': True, 'image_processor_type': 'ViTImageProcessor', 'resample': 3, 'size': {'height': 32, 'width': 128}, } __A : Any = os.path.join(self.tmpdirname , _UpperCAmelCase) with open(self.image_processor_file , 'w' , encoding='utf-8') as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta) __A : Optional[int] = Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1)) return image_input def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = self.get_tokenizer() __A : List[Any] = self.get_image_processor() __A : List[Any] = MgpstrProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) processor.save_pretrained(self.tmpdirname) __A : Any = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCAmelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.get_tokenizer() __A : List[str] = self.get_image_processor() __A : int = MgpstrProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) processor.save_pretrained(self.tmpdirname) __A : int = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') __A : Optional[Any] = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0) __A : Dict = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_UpperCAmelCase , padding_value=1.0) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCAmelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.get_image_processor() __A : Any = self.get_tokenizer() __A : Any = MgpstrProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : int = self.prepare_image_inputs() __A : Tuple = image_processor(_UpperCAmelCase , return_tensors='np') __A : Optional[Any] = processor(images=_UpperCAmelCase , return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.get_image_processor() __A : Any = self.get_tokenizer() __A : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : Any = 'test' __A : Union[str, Any] = processor(text=_UpperCAmelCase) __A : Tuple = tokenizer(_UpperCAmelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.get_image_processor() __A : Tuple = self.get_tokenizer() __A : List[str] = MgpstrProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : str = 'test' __A : Dict = self.prepare_image_inputs() __A : List[Any] = processor(text=_UpperCAmelCase , images=_UpperCAmelCase) self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'labels']) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase): processor() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.get_image_processor() __A : int = self.get_tokenizer() __A : Optional[int] = MgpstrProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __A : str = processor.char_decode(_UpperCAmelCase) __A : Union[str, Any] = tokenizer.batch_decode(_UpperCAmelCase) __A : Optional[int] = [seq.replace(' ' , '') for seq in decoded_tok] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = self.get_image_processor() __A : Optional[Any] = self.get_tokenizer() __A : Dict = MgpstrProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : int = None __A : Any = self.prepare_image_inputs() __A : Union[str, Any] = processor(text=_UpperCAmelCase , images=_UpperCAmelCase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.get_image_processor() __A : Optional[int] = self.get_tokenizer() __A : Optional[int] = MgpstrProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : Tuple = torch.randn(1 , 27 , 38) __A : Any = torch.randn(1 , 27 , 5_0257) __A : List[Any] = torch.randn(1 , 27 , 3_0522) __A : List[Any] = processor.batch_decode([char_input, bpe_input, wp_input]) self.assertListEqual(list(results.keys()) , ['generated_text', 'scores', 'char_preds', 'bpe_preds', 'wp_preds'])
8
"""simple docstring""" import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def _lowerCAmelCase ( *lowerCAmelCase ): '''simple docstring''' if not isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase = list(lowerCAmelCase ) for i in range(len(lowerCAmelCase ) ): UpperCAmelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = [ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(lowerCAmelCase , lowerCAmelCase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def _lowerCAmelCase ( lowerCAmelCase = None , lowerCAmelCase = 128 ): '''simple docstring''' if function is None: return functools.partial(lowerCAmelCase , starting_batch_size=lowerCAmelCase ) UpperCAmelCase = starting_batch_size def decorator(*lowerCAmelCase , **lowerCAmelCase ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() UpperCAmelCase = list(inspect.signature(lowerCAmelCase ).parameters.keys() ) # Guard against user error if len(lowerCAmelCase ) < (len(lowerCAmelCase ) + 1): UpperCAmelCase = """, """.join([F'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F'''Batch size was passed into `{function.__name__}` as the first argument when called.''' F'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase ) except Exception as e: if should_reduce_batch_size(lowerCAmelCase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
673
0
'''simple docstring''' import numpy as np def a__ ( lowerCAmelCase__ ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
312
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase_ ( __a , __a , __a , unittest.TestCase ): lowerCAmelCase__ = AltDiffusionPipeline lowerCAmelCase__ = TEXT_TO_IMAGE_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def lowercase_ ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) UpperCAmelCase__ : Tuple = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_one=_A , ) torch.manual_seed(0 ) UpperCAmelCase__ : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) UpperCAmelCase__ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_002 , ) UpperCAmelCase__ : int = CLIPTextModel(_A ) UpperCAmelCase__ : str = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) UpperCAmelCase__ : Dict = 77 UpperCAmelCase__ : str = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowercase_ ( self : Tuple , _A : List[Any] , _A : Dict=0 ): '''simple docstring''' if str(_A ).startswith('''mps''' ): UpperCAmelCase__ : Optional[Any] = torch.manual_seed(_A ) else: UpperCAmelCase__ : Union[str, Any] = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase__ : str = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowercase_ ( self : Optional[Any] ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def lowercase_ ( self : str ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : Optional[int] = self.get_dummy_components() torch.manual_seed(0 ) UpperCAmelCase__ : int = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCAmelCase__ : Dict = RobertaSeriesModelWithTransformation(_A ) UpperCAmelCase__ : str = text_encoder UpperCAmelCase__ : Optional[Any] = AltDiffusionPipeline(**_A ) UpperCAmelCase__ : Any = alt_pipe.to(_A ) alt_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase__ : Tuple = self.get_dummy_inputs(_A ) UpperCAmelCase__ : int = '''A photo of an astronaut''' UpperCAmelCase__ : Dict = alt_pipe(**_A ) UpperCAmelCase__ : Optional[int] = output.images UpperCAmelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ : Union[str, Any] = np.array( [0.5_7_4_8_1_6_2, 0.6_0_4_4_7_1_4_5, 0.4_8_8_2_1_2_1_7, 0.5_0_1_0_0_6_3_6, 0.5_4_3_1_1_8_5, 0.4_5_7_6_3_6_8_3, 0.4_9_6_5_7_6_9_6, 0.4_8_1_3_2_7_3_3, 0.4_7_5_7_3_0_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : Optional[Any] = self.get_dummy_components() UpperCAmelCase__ : str = PNDMScheduler(skip_prk_steps=_A ) torch.manual_seed(0 ) UpperCAmelCase__ : str = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCAmelCase__ : Dict = RobertaSeriesModelWithTransformation(_A ) UpperCAmelCase__ : Any = text_encoder UpperCAmelCase__ : Optional[Any] = AltDiffusionPipeline(**_A ) UpperCAmelCase__ : Tuple = alt_pipe.to(_A ) alt_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase__ : Any = self.get_dummy_inputs(_A ) UpperCAmelCase__ : Dict = alt_pipe(**_A ) UpperCAmelCase__ : int = output.images UpperCAmelCase__ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ : Optional[int] = np.array( [0.5_1_6_0_5_0_9_3, 0.5_7_0_7_2_4_1, 0.4_7_3_6_5_5_0_7, 0.5_0_5_7_8_8_8_6, 0.5_6_3_3_8_7_7, 0.4_6_4_2_5_0_3, 0.5_1_8_2_0_8_1, 0.4_8_7_6_3_4_8_4, 0.4_9_0_8_4_2_3_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : str = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=_A ) UpperCAmelCase__ : Dict = alt_pipe.to(_A ) alt_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase__ : Optional[Any] = '''A painting of a squirrel eating a burger''' UpperCAmelCase__ : Tuple = torch.manual_seed(0 ) UpperCAmelCase__ : Any = alt_pipe([prompt] , generator=_A , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' ) UpperCAmelCase__ : int = output.images UpperCAmelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase__ : Any = np.array([0.1_0_1_0, 0.0_8_0_0, 0.0_7_9_4, 0.0_8_8_5, 0.0_8_4_3, 0.0_7_6_2, 0.0_7_6_9, 0.0_7_2_9, 0.0_5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) UpperCAmelCase__ : Union[str, Any] = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=_A , safety_checker=_A ) UpperCAmelCase__ : List[Any] = alt_pipe.to(_A ) alt_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase__ : List[Any] = '''A painting of a squirrel eating a burger''' UpperCAmelCase__ : List[str] = torch.manual_seed(0 ) UpperCAmelCase__ : Tuple = alt_pipe([prompt] , generator=_A , num_inference_steps=2 , output_type='''numpy''' ) UpperCAmelCase__ : List[str] = output.images UpperCAmelCase__ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase__ : Optional[int] = np.array([0.4_0_1_9, 0.4_0_5_2, 0.3_8_1_0, 0.4_1_1_9, 0.3_9_1_6, 0.3_9_8_2, 0.4_6_5_1, 0.4_1_9_5, 0.5_3_2_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
312
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Any =logging.get_logger(__name__) _lowerCAmelCase : Dict ={ """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class __UpperCamelCase ( _lowerCAmelCase ): '''simple docstring''' __magic_name__ = "realm" def __init__( self , lowerCamelCase__=3_0_5_2_2 , lowerCamelCase__=7_6_8 , lowerCamelCase__=1_2_8 , lowerCamelCase__=1_2 , lowerCamelCase__=1_2 , lowerCamelCase__=8 , lowerCamelCase__=3_0_7_2 , lowerCamelCase__="gelu_new" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=5_1_2 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-12 , lowerCamelCase__=2_5_6 , lowerCamelCase__=1_0 , lowerCamelCase__=1e-3 , lowerCamelCase__=5 , lowerCamelCase__=3_2_0 , lowerCamelCase__=1_3_3_5_3_7_1_8 , lowerCamelCase__=5_0_0_0 , lowerCamelCase__=1 , lowerCamelCase__=0 , lowerCamelCase__=2 , **lowerCamelCase__ , ): super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # Common config UpperCAmelCase__: Optional[int] = vocab_size UpperCAmelCase__: List[Any] = max_position_embeddings UpperCAmelCase__: Optional[int] = hidden_size UpperCAmelCase__: Dict = retriever_proj_size UpperCAmelCase__: Dict = num_hidden_layers UpperCAmelCase__: Tuple = num_attention_heads UpperCAmelCase__: List[Any] = num_candidates UpperCAmelCase__: Tuple = intermediate_size UpperCAmelCase__: List[str] = hidden_act UpperCAmelCase__: Any = hidden_dropout_prob UpperCAmelCase__: List[Any] = attention_probs_dropout_prob UpperCAmelCase__: Tuple = initializer_range UpperCAmelCase__: str = type_vocab_size UpperCAmelCase__: Optional[int] = layer_norm_eps # Reader config UpperCAmelCase__: Dict = span_hidden_size UpperCAmelCase__: Any = max_span_width UpperCAmelCase__: Dict = reader_layer_norm_eps UpperCAmelCase__: Dict = reader_beam_size UpperCAmelCase__: Tuple = reader_seq_len # Retrieval config UpperCAmelCase__: int = num_block_records UpperCAmelCase__: List[Any] = searcher_beam_size
113
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase = { """configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""], """tokenization_perceiver""": ["""PerceiverTokenizer"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["""PerceiverFeatureExtractor"""] UpperCamelCase = ["""PerceiverImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PerceiverForImageClassificationConvProcessing""", """PerceiverForImageClassificationFourier""", """PerceiverForImageClassificationLearned""", """PerceiverForMaskedLM""", """PerceiverForMultimodalAutoencoding""", """PerceiverForOpticalFlow""", """PerceiverForSequenceClassification""", """PerceiverLayer""", """PerceiverModel""", """PerceiverPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
104
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase__ ) class UpperCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : str = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True} ) _SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"text": Value("string" )} ) _SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({} ) _SCREAMING_SNAKE_CASE : str = "text" @property def lowerCAmelCase__ ( self ): return {self.text_column: "text"}
321
def lowerCamelCase ( UpperCAmelCase_ : int )-> int: """simple docstring""" if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError("""Input must be an integer""" ) if input_num <= 0: raise ValueError("""Input must be positive""" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
321
1
'''simple docstring''' from __future__ import annotations from collections import namedtuple def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> tuple: '''simple docstring''' a_ = namedtuple("result" ,"name value" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("Only one argument must be 0" ) elif power < 0: raise ValueError( "Power cannot be negative in any electrical/electronics system" ) elif voltage == 0: return result("voltage" ,power / current ) elif current == 0: return result("current" ,power / voltage ) elif power == 0: return result("power" ,float(round(abs(voltage * current ) ,2 ) ) ) else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
685
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} a_ = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } a_ = { 'abeja/gpt-neox-japanese-2.7b': 2_048, } def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> Tuple: '''simple docstring''' with open(lowercase__ ,"r" ,encoding="utf-8" ) as f: a_ = json.loads(f.read() ) a_ = collections.OrderedDict() a_ = collections.OrderedDict() a_ = collections.OrderedDict() with open(lowercase__ ,"r" ,encoding="utf-8" ) as f: a_ = f.readlines() a_ = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(lowercase__ ): a_ = b a_ = idx for wd in b: a_ = idx return vocab, raw_vocab, ids_to_tokens, emoji class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase =VOCAB_FILES_NAMES _UpperCAmelCase =PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase =['''input_ids''', '''attention_mask'''] def __init__( self: List[str] , a: Union[str, Any] , a: Optional[int] , a: List[str]="<|endoftext|>" , a: Union[str, Any]="<|endoftext|>" , a: Dict="<|startoftext|>" , a: Dict="<|endoftext|>" , a: Union[str, Any]=False , **a: Optional[int] , ) ->str: '''simple docstring''' super().__init__( unk_token=a , pad_token=a , bos_token=a , eos_token=a , do_clean_text=a , **a , ) if not os.path.isfile(a): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`") if not os.path.isfile(a): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`") a_ = do_clean_text a_ , a_ , a_ , a_ = load_vocab_and_emoji(a , a) a_ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji) @property def _lowerCAmelCase ( self: Optional[Any]) ->Optional[Any]: '''simple docstring''' return len(self.raw_vocab) def _lowerCAmelCase ( self: Dict) ->Any: '''simple docstring''' return dict(self.raw_vocab , **self.added_tokens_encoder) def _lowerCAmelCase ( self: Union[str, Any] , a: Any) ->Dict: '''simple docstring''' return self.subword_tokenizer.tokenize(a , clean=self.do_clean_text) def _lowerCAmelCase ( self: int , a: List[Any]) ->Union[str, Any]: '''simple docstring''' return self.vocab.get(a , self.vocab.get(self.unk_token)) def _lowerCAmelCase ( self: Optional[Any] , a: Optional[int]) ->str: '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(a) def _lowerCAmelCase ( self: Optional[int] , a: Any) ->str: '''simple docstring''' a_ = "".join(a).strip() return out_string def _lowerCAmelCase ( self: Any , a: "Conversation") ->List[int]: '''simple docstring''' a_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(a , add_special_tokens=a) + [self.eos_token_id]) if len(a) > self.model_max_length: a_ = input_ids[-self.model_max_length :] return input_ids def _lowerCAmelCase ( self: int , a: str , a: Optional[str] = None) ->Tuple[str]: '''simple docstring''' a_ = 0 if os.path.isdir(a): a_ = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) a_ = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"]) else: a_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) a_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(a , "w" , encoding="utf-8") as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!") a_ = token_index writer.write(",".join(a) + "\n") index += 1 with open(a , "w" , encoding="utf-8") as writer: json.dump(self.emoji , a) return vocab_file, emoji_file class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def __init__( self: List[str] , a: Any , a: Union[str, Any] , a: Any) ->List[Any]: '''simple docstring''' a_ = vocab # same as swe a_ = ids_to_tokens # same as bpe a_ = emoji a_ = np.max([len(a) for w in self.vocab.keys()]) a_ = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)") a_ = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*") a_ = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}") a_ = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*") a_ = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*") a_ = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*") a_ = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" a_ = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" a_ = str.maketrans({k: "<BLOCK>" for k in keisen + blocks}) def __len__( self: Dict) ->Any: '''simple docstring''' return len(self.ids_to_tokens) def _lowerCAmelCase ( self: Union[str, Any] , a: Tuple) ->Any: '''simple docstring''' a_ = self.content_repattera.sub("<URL>" , a) a_ = self.content_repattera.sub("<EMAIL>" , a) a_ = self.content_repattera.sub("<TEL>" , a) a_ = self.content_repattera.sub("<DATE>" , a) a_ = self.content_repattera.sub("<DATE>" , a) a_ = self.content_repattera.sub("<PRICE>" , a) a_ = content.translate(self.content_transa) while "<BLOCK><BLOCK>" in content: a_ = content.replace("<BLOCK><BLOCK>" , "<BLOCK>") return content def _lowerCAmelCase ( self: Any , a: int , a: Optional[int]=False) ->List[str]: '''simple docstring''' a_ = text.replace(" " , "<SP>") a_ = text.replace(" " , "<SP>") a_ = text.replace("\r\n" , "<BR>") a_ = text.replace("\n" , "<BR>") a_ = text.replace("\r" , "<BR>") a_ = text.replace("\t" , "<TAB>") a_ = text.replace("—" , "ー") a_ = text.replace("−" , "ー") for k, v in self.emoji["emoji"].items(): if k in text: a_ = text.replace(a , a) if clean: a_ = self.clean_text(a) def check_simbol(a: Dict): a_ = x.encode() if len(a) == 1 and len(a) == 2: a_ = (int(e[0]) << 8) + int(e[1]) if ( (c >= 0XC_2_A_1 and c <= 0XC_2_B_F) or (c >= 0XC_7_8_0 and c <= 0XC_7_8_3) or (c >= 0XC_A_B_9 and c <= 0XC_B_B_F) or (c >= 0XC_C_8_0 and c <= 0XC_D_A_2) ): return True return False def checkuae(a: str): a_ = x.encode() if len(a) == 1 and len(a) == 3: a_ = (int(e[0]) << 16) + (int(e[1]) << 8) + int(e[2]) if c >= 0XE_2_8_0_8_0 and c <= 0XE_2_B_0_7_F: return True return False a_ = 0 a_ = [] while pos < len(a): a_ = min(len(a) , pos + self.maxlen + 1) if text[pos] == "<" else pos + 3 a_ = [] # (token_id, token, pos) for e in range(a , a , -1): a_ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(a) > 2: a_ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e)) if len(a) > 0: # the smallest token_id is adopted a_ , a_ , a_ = sorted(a , key=lambda a: x[0])[0] result.append(a) a_ = e else: a_ = pos + 1 a_ = text[pos:end] if check_simbol(a): result.append("<KIGOU>") elif checkuae(a): result.append("<U2000U2BFF>") else: for i in wd.encode("utf-8"): result.append("<|byte%d|>" % i) a_ = end return result def _lowerCAmelCase ( self: int , a: List[Any] , a: Any="\n") ->str: '''simple docstring''' a_ = [] a_ = [] a_ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2])) else: if len(a) > 0: words.append(bytearray(a).decode("utf-8" , errors="replace")) a_ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word]) elif word == "<SP>": words.append(" ") elif word == "<BR>": words.append(a) elif word == "<TAB>": words.append("\t") elif word == "<BLOCK>": words.append("▀") elif word == "<KIGOU>": words.append("ǀ") elif word == "<U2000U2BFF>": words.append("‖") else: words.append(a) if len(a) > 0: words.append(bytearray(a).decode("utf-8" , errors="replace")) a_ = "".join(a) return text
685
1
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class snake_case__(unittest.TestCase ): """simple docstring""" def snake_case ( self : int ): lowercase__ : str = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) lowercase__ : Dict = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(SCREAMING_SNAKE_CASE ) lowercase__ : str = -1 lowercase__ : int = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = model.generate(SCREAMING_SNAKE_CASE , max_new_tokens=10 , do_sample=SCREAMING_SNAKE_CASE ) lowercase__ : Dict = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowercase__ : str = TextStreamer(SCREAMING_SNAKE_CASE ) model.generate(SCREAMING_SNAKE_CASE , max_new_tokens=10 , do_sample=SCREAMING_SNAKE_CASE , streamer=SCREAMING_SNAKE_CASE ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowercase__ : int = cs.out[:-1] self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[int] ): lowercase__ : str = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) lowercase__ : str = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = -1 lowercase__ : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = model.generate(SCREAMING_SNAKE_CASE , max_new_tokens=10 , do_sample=SCREAMING_SNAKE_CASE ) lowercase__ : int = tokenizer.decode(greedy_ids[0] ) lowercase__ : Union[str, Any] = TextIteratorStreamer(SCREAMING_SNAKE_CASE ) lowercase__ : Dict = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} lowercase__ : Optional[int] = Thread(target=model.generate , kwargs=SCREAMING_SNAKE_CASE ) thread.start() lowercase__ : List[Any] = "" for new_text in streamer: streamer_text += new_text self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def snake_case ( self : Union[str, Any] ): lowercase__ : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) lowercase__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = -1 lowercase__ : int = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = model.generate(SCREAMING_SNAKE_CASE , max_new_tokens=10 , do_sample=SCREAMING_SNAKE_CASE ) lowercase__ : Any = greedy_ids[:, input_ids.shape[1] :] lowercase__ : Any = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowercase__ : str = TextStreamer(SCREAMING_SNAKE_CASE , skip_prompt=SCREAMING_SNAKE_CASE ) model.generate(SCREAMING_SNAKE_CASE , max_new_tokens=10 , do_sample=SCREAMING_SNAKE_CASE , streamer=SCREAMING_SNAKE_CASE ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowercase__ : Optional[Any] = cs.out[:-1] self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def snake_case ( self : Any ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowercase__ : List[str] = AutoTokenizer.from_pretrained("distilgpt2" ) lowercase__ : Tuple = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = -1 lowercase__ : List[Any] = torch.ones((1, 5) , device=SCREAMING_SNAKE_CASE ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowercase__ : Dict = TextStreamer(SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE ) model.generate(SCREAMING_SNAKE_CASE , max_new_tokens=1 , do_sample=SCREAMING_SNAKE_CASE , streamer=SCREAMING_SNAKE_CASE ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowercase__ : List[Any] = cs.out[:-1] # Remove the final "\n" lowercase__ : Optional[int] = tokenizer(SCREAMING_SNAKE_CASE , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def snake_case ( self : Optional[int] ): lowercase__ : Dict = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) lowercase__ : List[str] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(SCREAMING_SNAKE_CASE ) lowercase__ : int = -1 lowercase__ : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = TextIteratorStreamer(SCREAMING_SNAKE_CASE , timeout=0.001 ) lowercase__ : Union[str, Any] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} lowercase__ : Any = Thread(target=model.generate , kwargs=SCREAMING_SNAKE_CASE ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(SCREAMING_SNAKE_CASE ): lowercase__ : List[str] = "" for new_text in streamer: streamer_text += new_text
716
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowerCAmelCase__ = logging.get_logger(__name__) logging.set_verbosity_info() def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: lowercase__ : int = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowerCamelCase__ ) lowercase__ , lowercase__ : Any = XLMProphetNetForConditionalGeneration.from_pretrained( lowerCamelCase__ , output_loading_info=lowerCamelCase__ ) else: lowercase__ : List[str] = ProphetNetForConditionalGenerationOld.from_pretrained(lowerCamelCase__ ) lowercase__ , lowercase__ : Optional[int] = ProphetNetForConditionalGeneration.from_pretrained( lowerCamelCase__ , output_loading_info=lowerCamelCase__ ) lowercase__ : int = ["key_proj", "value_proj", "query_proj"] lowercase__ : str = { "self_attn": "ngram_self_attn", "cross_attn": "encoder_attn", "cross_attn_layer_norm": "encoder_attn_layer_norm", "feed_forward_layer_norm": "final_layer_norm", "feed_forward": "", "intermediate": "fc1", "output": "fc2", "key_proj": "k_proj", "query_proj": "q_proj", "value_proj": "v_proj", "word_embeddings": "embed_tokens", "embeddings_layer_norm": "emb_layer_norm", "relative_pos_embeddings": "relative_linear", "ngram_embeddings": "ngram_input_embed", "position_embeddings": "embed_positions", } for key in loading_info["missing_keys"]: lowercase__ : Union[str, Any] = key.split("." ) if attributes[0] == "lm_head": lowercase__ : Tuple = prophet lowercase__ : Tuple = prophet_old else: lowercase__ : Tuple = prophet.prophetnet lowercase__ : List[str] = prophet_old.model lowercase__ : int = False for attribute in attributes: if attribute in mapping: lowercase__ : int = mapping[attribute] if not hasattr(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) > 0: lowercase__ : Dict = attribute elif hasattr(lowerCamelCase__ , lowerCamelCase__ ): lowercase__ : Optional[Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" lowercase__ : Any = old_model.weight logger.info(F"""{attribute} is initialized.""" ) lowercase__ : str = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" lowercase__ : Tuple = old_model.bias logger.info(F"""{attribute} is initialized""" ) lowercase__ : str = True break elif attribute in special_keys and hasattr(lowerCamelCase__ , "in_proj_weight" ): lowercase__ : str = old_model.in_proj_weight.shape[0] // 3 lowercase__ : Any = getattr(lowerCamelCase__ , lowerCamelCase__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": lowercase__ : List[str] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) lowercase__ : str = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": lowercase__ : List[str] = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) lowercase__ : Any = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": lowercase__ : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) lowercase__ : Union[str, Any] = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) lowercase__ : Tuple = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." lowercase__ : List[Any] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) lowercase__ : Union[str, Any] = True break if attribute.isdigit(): lowercase__ : str = model[int(lowerCamelCase__ )] lowercase__ : Union[str, Any] = old_model[int(lowerCamelCase__ )] else: lowercase__ : int = getattr(lowerCamelCase__ , lowerCamelCase__ ) if old_attribute == "": lowercase__ : str = old_model else: if not hasattr(lowerCamelCase__ , lowerCamelCase__ ): raise ValueError(F"""{old_model} does not have {old_attribute}""" ) lowercase__ : int = getattr(lowerCamelCase__ , lowerCamelCase__ ) if not is_key_init: raise ValueError(F"""{key} was not correctly initialized!""" ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) prophet.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase__ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
81
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class lowerCamelCase__ ( datasets.BeamBasedBuilder): """simple docstring""" def snake_case_ ( self : List[Any] ) -> List[str]: return datasets.DatasetInfo( features=datasets.Features({'''content''': datasets.Value('''string''' )} ) , supervised_keys=__lowerCAmelCase , ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict ) -> List[Any]: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_dummy_examples()} )] def snake_case_ ( self : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ) -> List[str]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__lowerCAmelCase ) class lowerCamelCase__ ( datasets.BeamBasedBuilder): """simple docstring""" def snake_case_ ( self : Tuple ) -> int: return datasets.DatasetInfo( features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) , supervised_keys=__lowerCAmelCase , ) def snake_case_ ( self : List[str] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] ) -> Dict: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_nested_examples()} ) ] def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ) -> str: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE_ ( ) -> Any: return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] def SCREAMING_SNAKE_CASE_ ( ) -> Tuple: return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] class lowerCamelCase__ ( _A): """simple docstring""" @require_beam def snake_case_ ( self : Union[str, Any] ) -> List[str]: _A = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _A = DummyBeamDataset(cache_dir=__lowerCAmelCase , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__lowerCAmelCase , builder.name , '''default''' , '''0.0.0''' , f'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) _A = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __lowerCAmelCase ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __lowerCAmelCase ) self.assertDictEqual(dset['''train'''][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__lowerCAmelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def snake_case_ ( self : int ) -> str: import apache_beam as beam _A = beam.io.parquetio.WriteToParquet _A = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _A = DummyBeamDataset(cache_dir=__lowerCAmelCase , beam_runner='''DirectRunner''' ) with patch('''apache_beam.io.parquetio.WriteToParquet''' ) as write_parquet_mock: _A = partial(__lowerCAmelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( __lowerCAmelCase , builder.name , '''default''' , '''0.0.0''' , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertTrue( os.path.exists( os.path.join( __lowerCAmelCase , builder.name , '''default''' , '''0.0.0''' , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) _A = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __lowerCAmelCase ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __lowerCAmelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['''train''']['''content'''] ) , sorted(['''foo''', '''bar''', '''foobar'''] ) ) self.assertTrue( os.path.exists(os.path.join(__lowerCAmelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def snake_case_ ( self : Optional[Any] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_cache_dir: _A = DummyBeamDataset(cache_dir=__lowerCAmelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def snake_case_ ( self : Any ) -> int: _A = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _A = NestedBeamDataset(cache_dir=__lowerCAmelCase , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__lowerCAmelCase , builder.name , '''default''' , '''0.0.0''' , f'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) ) _A = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __lowerCAmelCase ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __lowerCAmelCase ) self.assertDictEqual(dset['''train'''][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__lowerCAmelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset
2
'''simple docstring''' import os import sys import unittest _a : Optional[int] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _a : int = os.path.join("tests", "models", "bert", "test_modeling_bert.py") _a : int = os.path.join("tests", "models", "blip", "test_modeling_blip.py") class __A (unittest.TestCase ): def _snake_case ( self ): __UpperCAmelCase : Any = get_test_to_tester_mapping(UpperCamelCase_ ) __UpperCAmelCase : Dict = get_test_to_tester_mapping(UpperCamelCase_ ) __UpperCAmelCase : List[Any] = {"BertModelTest": "BertModelTester"} __UpperCAmelCase : Optional[Any] = { "BlipModelTest": "BlipModelTester", "BlipTextImageModelTest": "BlipTextImageModelsModelTester", "BlipTextModelTest": "BlipTextModelTester", "BlipTextRetrievalModelTest": "BlipTextRetrievalModelTester", "BlipVQAModelTest": "BlipVQAModelTester", "BlipVisionModelTest": "BlipVisionModelTester", } self.assertEqual(get_test_info.to_json(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(get_test_info.to_json(UpperCamelCase_ ) , UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : Tuple = get_model_to_test_mapping(UpperCamelCase_ ) __UpperCAmelCase : Tuple = get_model_to_test_mapping(UpperCamelCase_ ) __UpperCAmelCase : Any = { "BertForMaskedLM": ["BertModelTest"], "BertForMultipleChoice": ["BertModelTest"], "BertForNextSentencePrediction": ["BertModelTest"], "BertForPreTraining": ["BertModelTest"], "BertForQuestionAnswering": ["BertModelTest"], "BertForSequenceClassification": ["BertModelTest"], "BertForTokenClassification": ["BertModelTest"], "BertLMHeadModel": ["BertModelTest"], "BertModel": ["BertModelTest"], } __UpperCAmelCase : int = { "BlipForConditionalGeneration": ["BlipTextImageModelTest"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTest"], "BlipForQuestionAnswering": ["BlipVQAModelTest"], "BlipModel": ["BlipModelTest"], "BlipTextModel": ["BlipTextModelTest"], "BlipVisionModel": ["BlipVisionModelTest"], } self.assertEqual(get_test_info.to_json(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(get_test_info.to_json(UpperCamelCase_ ) , UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : List[Any] = get_model_to_tester_mapping(UpperCamelCase_ ) __UpperCAmelCase : int = get_model_to_tester_mapping(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = { "BertForMaskedLM": ["BertModelTester"], "BertForMultipleChoice": ["BertModelTester"], "BertForNextSentencePrediction": ["BertModelTester"], "BertForPreTraining": ["BertModelTester"], "BertForQuestionAnswering": ["BertModelTester"], "BertForSequenceClassification": ["BertModelTester"], "BertForTokenClassification": ["BertModelTester"], "BertLMHeadModel": ["BertModelTester"], "BertModel": ["BertModelTester"], } __UpperCAmelCase : Union[str, Any] = { "BlipForConditionalGeneration": ["BlipTextImageModelsModelTester"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTester"], "BlipForQuestionAnswering": ["BlipVQAModelTester"], "BlipModel": ["BlipModelTester"], "BlipTextModel": ["BlipTextModelTester"], "BlipVisionModel": ["BlipVisionModelTester"], } self.assertEqual(get_test_info.to_json(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(get_test_info.to_json(UpperCamelCase_ ) , UpperCamelCase_ )
168
0
import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__ : def __init__( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int=3 , _UpperCAmelCase : List[Any]=32 , _UpperCAmelCase : Dict=3 , _UpperCAmelCase : Optional[Any]=10 , _UpperCAmelCase : List[str]=[10, 20, 30, 40] , _UpperCAmelCase : Union[str, Any]=[1, 1, 2, 1] , _UpperCAmelCase : Any=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Union[str, Any]="relu" , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : Optional[Any]=None , ) -> Tuple: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = embeddings_size __lowercase = hidden_sizes __lowercase = depths __lowercase = is_training __lowercase = use_labels __lowercase = hidden_act __lowercase = num_labels __lowercase = scope __lowercase = len(_UpperCAmelCase ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels def a__ ( self : int ) -> int: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = RegNetModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = RegNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : Union[str, Any] = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () lowerCAmelCase__ : str = ( {"feature-extraction": RegNetModel, "image-classification": RegNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ : Any = False lowerCAmelCase__ : Union[str, Any] = False lowerCAmelCase__ : int = False lowerCAmelCase__ : List[Any] = False def a__ ( self : Any ) -> str: """simple docstring""" __lowercase = RegNetModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def a__ ( self : List[str] ) -> int: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return @unittest.skip(reason='RegNet does not use inputs_embeds' ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def a__ ( self : Optional[Any] ) -> int: """simple docstring""" pass def a__ ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_UpperCAmelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a__ ( self : str ) -> str: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(config=_UpperCAmelCase ) for name, module in model.named_modules(): if isinstance(_UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" def check_hidden_states_output(_UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : int ): __lowercase = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = self.model_tester.num_stages self.assertEqual(len(_UpperCAmelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: __lowercase = layer_type __lowercase = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : str ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def a__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = RegNetModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( ) -> int: __lowercase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): @cached_property def a__ ( self : Tuple ) -> Tuple: """simple docstring""" return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_UpperCAmelCase ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __lowercase = model(**_UpperCAmelCase ) # verify the logits __lowercase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) __lowercase = torch.tensor([-0.4_180, -1.5_051, -3.4_836] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) )
688
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ) -> Any: # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file __lowercase = TapasConfig.from_json_file(SCREAMING_SNAKE_CASE ) # set absolute/relative position embeddings parameter __lowercase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WTQ": # run_task_main.py hparams __lowercase = 4 __lowercase = True # hparam_utils.py hparams __lowercase = 0.664_694 __lowercase = 0.207_951 __lowercase = 0.121_194 __lowercase = True __lowercase = True __lowercase = False __lowercase = 0.0_352_513 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __lowercase = 4 __lowercase = False # hparam_utils.py hparams __lowercase = 36.4_519 __lowercase = 0.903_421 __lowercase = 222.088 __lowercase = True __lowercase = True __lowercase = True __lowercase = 0.763_141 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "TABFACT": __lowercase = TapasForSequenceClassification(config=SCREAMING_SNAKE_CASE ) elif task == "MLM": __lowercase = TapasForMaskedLM(config=SCREAMING_SNAKE_CASE ) elif task == "INTERMEDIATE_PRETRAINING": __lowercase = TapasModel(config=SCREAMING_SNAKE_CASE ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) __lowercase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
688
1
"""simple docstring""" import numpy class lowerCAmelCase : """simple docstring""" def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> None: '''simple docstring''' lowerCamelCase_ = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase_ = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase_ = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase_ = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase_ = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase_ = numpy.zeros(output_array.shape ) def _lowerCAmelCase ( self ) -> numpy.ndarray: '''simple docstring''' lowerCamelCase_ = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase_ = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase_ = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def _lowerCAmelCase ( self ) -> None: '''simple docstring''' lowerCamelCase_ = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase_ = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase_ = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> None: '''simple docstring''' for iteration in range(1 , iterations + 1 ): lowerCamelCase_ = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase_ = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"""Iteration {iteration} Loss: {loss}""" ) def _lowerCAmelCase ( self , UpperCamelCase__ ) -> int: '''simple docstring''' lowerCamelCase_ = input_arr lowerCamelCase_ = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase_ = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase_ = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowerCamelCase_ ( _lowerCamelCase : numpy.ndarray ): return 1 / (1 + numpy.exp(-value )) def lowerCamelCase_ ( _lowerCamelCase : numpy.ndarray ): return (value) * (1 - (value)) def lowerCamelCase_ ( ): lowerCamelCase_ = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase_ = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. lowerCamelCase_ = TwoHiddenLayerNeuralNetwork( input_array=_lowerCamelCase , output_array=_lowerCamelCase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_lowerCamelCase , iterations=1_0 , give_loss=_lowerCamelCase ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
142
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCAmelCase ( a ): """simple docstring""" __lowercase :torch.FloatTensor class lowerCAmelCase ( a , a ): """simple docstring""" @register_to_config def __init__( self , UpperCamelCase__ = 3 , UpperCamelCase__ = 3 , UpperCamelCase__ = ("DownEncoderBlock2D",) , UpperCamelCase__ = ("UpDecoderBlock2D",) , UpperCamelCase__ = (64,) , UpperCamelCase__ = 1 , UpperCamelCase__ = "silu" , UpperCamelCase__ = 3 , UpperCamelCase__ = 32 , UpperCamelCase__ = 256 , UpperCamelCase__ = 32 , UpperCamelCase__ = None , UpperCamelCase__ = 0.18_215 , UpperCamelCase__ = "group" , ) -> Any: '''simple docstring''' super().__init__() # pass init params to Encoder lowerCamelCase_ = Encoder( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , down_block_types=UpperCamelCase__ , block_out_channels=UpperCamelCase__ , layers_per_block=UpperCamelCase__ , act_fn=UpperCamelCase__ , norm_num_groups=UpperCamelCase__ , double_z=UpperCamelCase__ , ) lowerCamelCase_ = vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCamelCase_ = nn.Convad(UpperCamelCase__ , UpperCamelCase__ , 1 ) lowerCamelCase_ = VectorQuantizer(UpperCamelCase__ , UpperCamelCase__ , beta=0.25 , remap=UpperCamelCase__ , sane_index_shape=UpperCamelCase__ ) lowerCamelCase_ = nn.Convad(UpperCamelCase__ , UpperCamelCase__ , 1 ) # pass init params to Decoder lowerCamelCase_ = Decoder( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , up_block_types=UpperCamelCase__ , block_out_channels=UpperCamelCase__ , layers_per_block=UpperCamelCase__ , act_fn=UpperCamelCase__ , norm_num_groups=UpperCamelCase__ , norm_type=UpperCamelCase__ , ) @apply_forward_hook def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ = True ) -> VQEncoderOutput: '''simple docstring''' lowerCamelCase_ = self.encoder(UpperCamelCase__ ) lowerCamelCase_ = self.quant_conv(UpperCamelCase__ ) if not return_dict: return (h,) return VQEncoderOutput(latents=UpperCamelCase__ ) @apply_forward_hook def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' if not force_not_quantize: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = self.quantize(UpperCamelCase__ ) else: lowerCamelCase_ = h lowerCamelCase_ = self.post_quant_conv(UpperCamelCase__ ) lowerCamelCase_ = self.decoder(UpperCamelCase__ , quant if self.config.norm_type == '''spatial''' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase__ ) def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' lowerCamelCase_ = sample lowerCamelCase_ = self.encode(UpperCamelCase__ ).latents lowerCamelCase_ = self.decode(UpperCamelCase__ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase__ )
142
1
'''simple docstring''' import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowerCAmelCase_ = logging.getLogger(__name__) def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase ) -> Dict: lowerCAmelCase__ : Any = np.argmax(UpperCamelCase , axis=1 ) return np.sum(outputs == labels ) def __lowerCAmelCase ( UpperCamelCase ) -> Union[str, Any]: with open(UpperCamelCase , encoding='''utf_8''' ) as f: lowerCAmelCase__ : str = csv.reader(UpperCamelCase ) lowerCAmelCase__ : str = [] next(UpperCamelCase ) # skip the first line for line in tqdm(UpperCamelCase ): output.append((''' '''.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Any: lowerCAmelCase__ : Tuple = [] for dataset in encoded_datasets: lowerCAmelCase__ : Any = len(UpperCamelCase ) lowerCAmelCase__ : Any = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowerCAmelCase__ : List[Any] = np.zeros((n_batch, 2) , dtype=np.intaa ) lowerCAmelCase__ : Optional[int] = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) lowerCAmelCase__ : Union[str, Any] = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(UpperCamelCase ): lowerCAmelCase__ : Optional[Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase__ : str = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase__ : Any = with_conta lowerCAmelCase__ : Optional[int] = with_conta lowerCAmelCase__ : List[Any] = len(UpperCamelCase ) - 1 lowerCAmelCase__ : str = len(UpperCamelCase ) - 1 lowerCAmelCase__ : Union[str, Any] = with_conta lowerCAmelCase__ : Dict = with_conta lowerCAmelCase__ : List[Any] = mc_label lowerCAmelCase__ : int = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(UpperCamelCase ) for t in all_inputs ) ) return tensor_datasets def __lowerCAmelCase ( ) -> str: lowerCAmelCase__ : str = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=UpperCamelCase , default='''openai-gpt''' , help='''pretrained model name''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_eval''' , action='''store_true''' , help='''Whether to run eval on the dev set.''' ) parser.add_argument( '''--output_dir''' , default=UpperCamelCase , type=UpperCamelCase , required=UpperCamelCase , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument('''--train_dataset''' , type=UpperCamelCase , default='''''' ) parser.add_argument('''--eval_dataset''' , type=UpperCamelCase , default='''''' ) parser.add_argument('''--seed''' , type=UpperCamelCase , default=42 ) parser.add_argument('''--num_train_epochs''' , type=UpperCamelCase , default=3 ) parser.add_argument('''--train_batch_size''' , type=UpperCamelCase , default=8 ) parser.add_argument('''--eval_batch_size''' , type=UpperCamelCase , default=16 ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=UpperCamelCase , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , type=UpperCamelCase , default=1 ) parser.add_argument( '''--max_steps''' , default=-1 , type=UpperCamelCase , help=( '''If > 0: set total number of training steps to perform. Override num_train_epochs.''' ) , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=UpperCamelCase , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--learning_rate''' , type=UpperCamelCase , default=6.25E-5 ) parser.add_argument('''--warmup_steps''' , default=0 , type=UpperCamelCase , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--lr_schedule''' , type=UpperCamelCase , default='''warmup_linear''' ) parser.add_argument('''--weight_decay''' , type=UpperCamelCase , default=0.01 ) parser.add_argument('''--lm_coef''' , type=UpperCamelCase , default=0.9 ) parser.add_argument('''--n_valid''' , type=UpperCamelCase , default=374 ) parser.add_argument('''--server_ip''' , type=UpperCamelCase , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=UpperCamelCase , default='''''' , help='''Can be used for distant debugging.''' ) lowerCAmelCase__ : Tuple = parser.parse_args() print(UpperCamelCase ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=UpperCamelCase ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowerCAmelCase__ : Dict = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) lowerCAmelCase__ : List[str] = torch.cuda.device_count() logger.info('''device: {}, n_gpu {}'''.format(UpperCamelCase , UpperCamelCase ) ) if not args.do_train and not args.do_eval: raise ValueError('''At least one of `do_train` or `do_eval` must be True.''' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowerCAmelCase__ : Any = ['''_start_''', '''_delimiter_''', '''_classify_'''] lowerCAmelCase__ : Optional[Any] = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = tokenizer.convert_tokens_to_ids(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(UpperCamelCase ) ) model.to(UpperCamelCase ) # Load and encode the datasets def tokenize_and_encode(UpperCamelCase ): if isinstance(UpperCamelCase , UpperCamelCase ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(UpperCamelCase ) ) elif isinstance(UpperCamelCase , UpperCamelCase ): return obj return [tokenize_and_encode(UpperCamelCase ) for o in obj] logger.info('''Encoding dataset...''' ) lowerCAmelCase__ : Any = load_rocstories_dataset(args.train_dataset ) lowerCAmelCase__ : Any = load_rocstories_dataset(args.eval_dataset ) lowerCAmelCase__ : Optional[int] = (train_dataset, eval_dataset) lowerCAmelCase__ : Union[str, Any] = tokenize_and_encode(UpperCamelCase ) # Compute the max input length for the Transformer lowerCAmelCase__ : List[str] = model.config.n_positions // 2 - 2 lowerCAmelCase__ : Dict = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowerCAmelCase__ : Optional[Any] = min(UpperCamelCase , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowerCAmelCase__ : Optional[Any] = pre_process_datasets(UpperCamelCase , UpperCamelCase , UpperCamelCase , *UpperCamelCase ) lowerCAmelCase__ : Tuple = tensor_datasets[0], tensor_datasets[1] lowerCAmelCase__ : Tuple = TensorDataset(*UpperCamelCase ) lowerCAmelCase__ : Optional[int] = RandomSampler(UpperCamelCase ) lowerCAmelCase__ : int = DataLoader(UpperCamelCase , sampler=UpperCamelCase , batch_size=args.train_batch_size ) lowerCAmelCase__ : Optional[int] = TensorDataset(*UpperCamelCase ) lowerCAmelCase__ : Dict = SequentialSampler(UpperCamelCase ) lowerCAmelCase__ : Any = DataLoader(UpperCamelCase , sampler=UpperCamelCase , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowerCAmelCase__ : Dict = args.max_steps lowerCAmelCase__ : Optional[int] = args.max_steps // (len(UpperCamelCase ) // args.gradient_accumulation_steps) + 1 else: lowerCAmelCase__ : Dict = len(UpperCamelCase ) // args.gradient_accumulation_steps * args.num_train_epochs lowerCAmelCase__ : Tuple = list(model.named_parameters() ) lowerCAmelCase__ : List[str] = ['''bias''', '''LayerNorm.bias''', '''LayerNorm.weight'''] lowerCAmelCase__ : Optional[Any] = [ { '''params''': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], '''weight_decay''': args.weight_decay, }, {'''params''': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0}, ] lowerCAmelCase__ : Optional[int] = AdamW(UpperCamelCase , lr=args.learning_rate , eps=args.adam_epsilon ) lowerCAmelCase__ : str = get_linear_schedule_with_warmup( UpperCamelCase , num_warmup_steps=args.warmup_steps , num_training_steps=UpperCamelCase ) if args.do_train: lowerCAmelCase__ : Any = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='''Epoch''' ): lowerCAmelCase__ : str = 0 lowerCAmelCase__ : List[str] = 0 lowerCAmelCase__ : Any = tqdm(UpperCamelCase , desc='''Training''' ) for step, batch in enumerate(UpperCamelCase ): lowerCAmelCase__ : Union[str, Any] = tuple(t.to(UpperCamelCase ) for t in batch ) lowerCAmelCase__ : Optional[int] = batch lowerCAmelCase__ : Optional[Any] = model(UpperCamelCase , mc_token_ids=UpperCamelCase , lm_labels=UpperCamelCase , mc_labels=UpperCamelCase ) lowerCAmelCase__ : int = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowerCAmelCase__ : List[str] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowerCAmelCase__ : Dict = '''Training loss: {:.2e} lr: {:.2e}'''.format(UpperCamelCase , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowerCAmelCase__ : Dict = model.module if hasattr(UpperCamelCase , '''module''' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowerCAmelCase__ : Optional[Any] = os.path.join(args.output_dir , UpperCamelCase ) lowerCAmelCase__ : int = os.path.join(args.output_dir , UpperCamelCase ) torch.save(model_to_save.state_dict() , UpperCamelCase ) model_to_save.config.to_json_file(UpperCamelCase ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowerCAmelCase__ : str = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowerCAmelCase__ : List[Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(UpperCamelCase ) if args.do_eval: model.eval() lowerCAmelCase__ : List[str] = 0, 0 lowerCAmelCase__ : Any = 0, 0 for batch in tqdm(UpperCamelCase , desc='''Evaluating''' ): lowerCAmelCase__ : str = tuple(t.to(UpperCamelCase ) for t in batch ) lowerCAmelCase__ : str = batch with torch.no_grad(): lowerCAmelCase__ : Optional[Any] = model( UpperCamelCase , mc_token_ids=UpperCamelCase , lm_labels=UpperCamelCase , mc_labels=UpperCamelCase ) lowerCAmelCase__ : Optional[int] = mc_logits.detach().cpu().numpy() lowerCAmelCase__ : List[Any] = mc_labels.to('''cpu''' ).numpy() lowerCAmelCase__ : List[Any] = accuracy(UpperCamelCase , UpperCamelCase ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowerCAmelCase__ : Union[str, Any] = eval_loss / nb_eval_steps lowerCAmelCase__ : Optional[Any] = eval_accuracy / nb_eval_examples lowerCAmelCase__ : List[str] = tr_loss / nb_tr_steps if args.do_train else None lowerCAmelCase__ : Optional[int] = {'''eval_loss''': eval_loss, '''eval_accuracy''': eval_accuracy, '''train_loss''': train_loss} lowerCAmelCase__ : Dict = os.path.join(args.output_dir , '''eval_results.txt''' ) with open(UpperCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , UpperCamelCase , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) if __name__ == "__main__": main()
701
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class _lowerCAmelCase ( _lowercase ): A__ = 42 class _lowerCAmelCase ( _lowercase , _lowercase ): @register_to_config def __init__( self , __UpperCAmelCase = 6_5536 , __UpperCAmelCase = None , __UpperCAmelCase = 2 , __UpperCAmelCase = 2 , __UpperCAmelCase = 0 , __UpperCAmelCase = "fourier" , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = 0.0 , __UpperCAmelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , __UpperCAmelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , __UpperCAmelCase = "UNetMidBlock1D" , __UpperCAmelCase = None , __UpperCAmelCase = (32, 32, 64) , __UpperCAmelCase = None , __UpperCAmelCase = 8 , __UpperCAmelCase = 1 , __UpperCAmelCase = False , ): super().__init__() lowerCAmelCase__ : Dict = sample_size # time if time_embedding_type == "fourier": lowerCAmelCase__ : str = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=__UpperCAmelCase , log=__UpperCAmelCase , flip_sin_to_cos=__UpperCAmelCase ) lowerCAmelCase__ : int = 2 * block_out_channels[0] elif time_embedding_type == "positional": lowerCAmelCase__ : int = Timesteps( block_out_channels[0] , flip_sin_to_cos=__UpperCAmelCase , downscale_freq_shift=__UpperCAmelCase ) lowerCAmelCase__ : str = block_out_channels[0] if use_timestep_embedding: lowerCAmelCase__ : str = block_out_channels[0] * 4 lowerCAmelCase__ : Dict = TimestepEmbedding( in_channels=__UpperCAmelCase , time_embed_dim=__UpperCAmelCase , act_fn=__UpperCAmelCase , out_dim=block_out_channels[0] , ) lowerCAmelCase__ : str = nn.ModuleList([] ) lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : Optional[int] = nn.ModuleList([] ) lowerCAmelCase__ : Optional[Any] = None # down lowerCAmelCase__ : List[Any] = in_channels for i, down_block_type in enumerate(__UpperCAmelCase ): lowerCAmelCase__ : List[str] = output_channel lowerCAmelCase__ : Any = block_out_channels[i] if i == 0: input_channel += extra_in_channels lowerCAmelCase__ : Any = i == len(__UpperCAmelCase ) - 1 lowerCAmelCase__ : Any = get_down_block( __UpperCAmelCase , num_layers=__UpperCAmelCase , in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(__UpperCAmelCase ) # mid lowerCAmelCase__ : Optional[int] = get_mid_block( __UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=__UpperCAmelCase , add_downsample=__UpperCAmelCase , ) # up lowerCAmelCase__ : Union[str, Any] = list(reversed(__UpperCAmelCase ) ) lowerCAmelCase__ : List[str] = reversed_block_out_channels[0] if out_block_type is None: lowerCAmelCase__ : Optional[int] = out_channels else: lowerCAmelCase__ : int = block_out_channels[0] for i, up_block_type in enumerate(__UpperCAmelCase ): lowerCAmelCase__ : Optional[int] = output_channel lowerCAmelCase__ : Any = ( reversed_block_out_channels[i + 1] if i < len(__UpperCAmelCase ) - 1 else final_upsample_channels ) lowerCAmelCase__ : Optional[int] = i == len(__UpperCAmelCase ) - 1 lowerCAmelCase__ : Optional[int] = get_up_block( __UpperCAmelCase , num_layers=__UpperCAmelCase , in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(__UpperCAmelCase ) lowerCAmelCase__ : int = output_channel # out lowerCAmelCase__ : Union[str, Any] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) lowerCAmelCase__ : Dict = get_out_block( out_block_type=__UpperCAmelCase , num_groups_out=__UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=__UpperCAmelCase , act_fn=__UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True , ): lowerCAmelCase__ : int = timestep if not torch.is_tensor(__UpperCAmelCase ): lowerCAmelCase__ : Any = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(__UpperCAmelCase ) and len(timesteps.shape ) == 0: lowerCAmelCase__ : Any = timesteps[None].to(sample.device ) lowerCAmelCase__ : int = self.time_proj(__UpperCAmelCase ) if self.config.use_timestep_embedding: lowerCAmelCase__ : str = self.time_mlp(__UpperCAmelCase ) else: lowerCAmelCase__ : Tuple = timestep_embed[..., None] lowerCAmelCase__ : Union[str, Any] = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) lowerCAmelCase__ : Any = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down lowerCAmelCase__ : int = () for downsample_block in self.down_blocks: lowerCAmelCase__ , lowerCAmelCase__ : int = downsample_block(hidden_states=__UpperCAmelCase , temb=__UpperCAmelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: lowerCAmelCase__ : Dict = self.mid_block(__UpperCAmelCase , __UpperCAmelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): lowerCAmelCase__ : Tuple = down_block_res_samples[-1:] lowerCAmelCase__ : int = down_block_res_samples[:-1] lowerCAmelCase__ : Optional[int] = upsample_block(__UpperCAmelCase , res_hidden_states_tuple=__UpperCAmelCase , temb=__UpperCAmelCase ) # 5. post-process if self.out_block: lowerCAmelCase__ : Any = self.out_block(__UpperCAmelCase , __UpperCAmelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=__UpperCAmelCase )
470
0
import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ : Dict ) -> int: return 1.0 / (1.0 + np.exp(-_outputs )) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Tuple: _lowercase = np.max(_outputs , axis=-1 , keepdims=SCREAMING_SNAKE_CASE_ ) _lowercase = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=SCREAMING_SNAKE_CASE_ ) class a_ ( __lowerCamelCase ): a : Dict = 'sigmoid' a : Any = 'softmax' a : Union[str, Any] = 'none' @add_end_docstrings( __lowerCamelCase , R'''\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ''' , ) class a_ ( __lowerCamelCase ): a : List[Any] = False a : Any = ClassificationFunction.NONE def __init__( self , **__UpperCamelCase ): super().__init__(**lowerCamelCase__ ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def UpperCamelCase_ ( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase="" , **__UpperCamelCase ): _lowercase = tokenizer_kwargs _lowercase = {} if hasattr(self.model.config , """return_all_scores""" ) and return_all_scores is None: _lowercase = self.model.config.return_all_scores if isinstance(lowerCamelCase__ , lowerCamelCase__ ) or top_k is None: _lowercase = top_k _lowercase = False elif return_all_scores is not None: warnings.warn( """`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of""" """ `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.""" , lowerCamelCase__ , ) if return_all_scores: _lowercase = None else: _lowercase = 1 if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _lowercase = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: _lowercase = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *__UpperCamelCase , **__UpperCamelCase ): _lowercase = super().__call__(*lowerCamelCase__ , **lowerCamelCase__ ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. _lowercase = """top_k""" not in kwargs if isinstance(args[0] , lowerCamelCase__ ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def UpperCamelCase_ ( self , __UpperCamelCase , **__UpperCamelCase ): _lowercase = self.framework if isinstance(lowerCamelCase__ , lowerCamelCase__ ): return self.tokenizer(**lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) == 1 and isinstance(inputs[0] , lowerCamelCase__ ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=lowerCamelCase__ , **lowerCamelCase__ ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( """The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a""" """ dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair.""" ) return self.tokenizer(lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ ) def UpperCamelCase_ ( self , __UpperCamelCase ): return self.model(**lowerCamelCase__ ) def UpperCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=1 , __UpperCamelCase=True ): if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: _lowercase = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: _lowercase = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , """function_to_apply""" ) and function_to_apply is None: _lowercase = self.model.config.function_to_apply else: _lowercase = ClassificationFunction.NONE _lowercase = model_outputs["""logits"""][0] _lowercase = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: _lowercase = sigmoid(lowerCamelCase__ ) elif function_to_apply == ClassificationFunction.SOFTMAX: _lowercase = softmax(lowerCamelCase__ ) elif function_to_apply == ClassificationFunction.NONE: _lowercase = outputs else: raise ValueError(f"""Unrecognized `function_to_apply` argument: {function_to_apply}""" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} _lowercase = [ {"""label""": self.model.config.idalabel[i], """score""": score.item()} for i, score in enumerate(lowerCamelCase__ ) ] if not _legacy: dict_scores.sort(key=lambda __UpperCamelCase : x["score"] , reverse=lowerCamelCase__ ) if top_k is not None: _lowercase = dict_scores[:top_k] return dict_scores
287
def _lowerCamelCase ( SCREAMING_SNAKE_CASE = 100 ): '''simple docstring''' A_ = 0 A_ = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f'{solution() = }')
203
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCamelCase ( ): '''simple docstring''' A_ : List[Any] = ArgumentParser('Accelerate CLI tool' ,usage='accelerate <command> [<args>]' ,allow_abbrev=__lowercase ) A_ : Any = parser.add_subparsers(help='accelerate command helpers' ) # Register commands get_config_parser(subparsers=__lowercase ) env_command_parser(subparsers=__lowercase ) launch_command_parser(subparsers=__lowercase ) tpu_command_parser(subparsers=__lowercase ) test_command_parser(subparsers=__lowercase ) # Let's go A_ : Optional[Any] = parser.parse_args() if not hasattr(__lowercase ,'func' ): parser.print_help() exit(1 ) # Run args.func(__lowercase ) if __name__ == "__main__": main()
707
def UpperCamelCase ( __lowercase : list ): '''simple docstring''' A_ : str = len(__lowercase ) for _ in range(__lowercase ): for i in range(_ % 2 ,arr_size - 1 ,2 ): if arr[i + 1] < arr[i]: A_ , A_ : Optional[Any] = arr[i + 1], arr[i] return arr if __name__ == "__main__": _UpperCAmelCase = list(range(10, 0, -1)) print(F"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
70
0
"""simple docstring""" import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __a (unittest.TestCase): '''simple docstring''' def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(_a ) ) def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(_a ) ) def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_a ) ) def _a ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] self.assertTrue(is_safetensors_compatible(_a ) ) def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", # Removed: 'text_encoder/model.safetensors', """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertFalse(is_safetensors_compatible(_a ) ) def _a ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE__ : Optional[int] = """fp16""" self.assertTrue(is_safetensors_compatible(_a , variant=_a ) ) def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = [ """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE__ : int = """fp16""" self.assertTrue(is_safetensors_compatible(_a , variant=_a ) ) def _a ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] SCREAMING_SNAKE_CASE__ : List[Any] = """fp16""" self.assertTrue(is_safetensors_compatible(_a , variant=_a ) ) def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] SCREAMING_SNAKE_CASE__ : List[Any] = """fp16""" self.assertFalse(is_safetensors_compatible(_a , variant=_a ) ) def _a ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = [ """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE__ : str = """fp16""" self.assertTrue(is_safetensors_compatible(_a , variant=_a ) ) def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] SCREAMING_SNAKE_CASE__ : Optional[Any] = """fp16""" self.assertTrue(is_safetensors_compatible(_a , variant=_a ) ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", # 'text_encoder/model.fp16.safetensors', """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE__ : Any = """fp16""" self.assertFalse(is_safetensors_compatible(_a , variant=_a ) )
680
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. __a : Optional[int] = 1_0 def __magic_name__ ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' for i in range(lowercase_ , lowercase_ ): if array[i] == target: return i return -1 def __magic_name__ ( lowercase_ , lowercase_ ) -> int: '''simple docstring''' UpperCamelCase = 0 UpperCamelCase = len(lowercase_ ) while left <= right: if right - left < precision: return lin_search(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCamelCase = (left + right) // 3 + 1 UpperCamelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCamelCase = one_third - 1 elif array[two_third] < target: UpperCamelCase = two_third + 1 else: UpperCamelCase = one_third + 1 UpperCamelCase = two_third - 1 else: return -1 def __magic_name__ ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' if left < right: if right - left < precision: return lin_search(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCamelCase = (left + right) // 3 + 1 UpperCamelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(lowercase_ , one_third - 1 , lowercase_ , lowercase_ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , lowercase_ , lowercase_ , lowercase_ ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , lowercase_ , lowercase_ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() __a : Optional[Any] = input("""Enter numbers separated by comma:\n""").strip() __a : Tuple = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." __a : Optional[Any] = int(input("""Enter the number to be found in the list:\n""").strip()) __a : Optional[Any] = ite_ternary_search(collection, target) __a : Tuple = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'Iterative search: {target} found at positions: {resulta}') print(F'Recursive search: {target} found at positions: {resulta}') else: print("""Not found""")
606
0
import logging from transformers import PretrainedConfig lowercase : List[Any] = logging.getLogger(__name__) lowercase : Tuple = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Optional[Any] = 'bertabs' def __init__( self , _SCREAMING_SNAKE_CASE=3_0522 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=0.2 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=0.2 , **_SCREAMING_SNAKE_CASE , ) -> int: super().__init__(**_SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = vocab_size snake_case_ : Any = max_pos snake_case_ : str = enc_layers snake_case_ : Tuple = enc_hidden_size snake_case_ : List[Any] = enc_heads snake_case_ : Tuple = enc_ff_size snake_case_ : Dict = enc_dropout snake_case_ : List[str] = dec_layers snake_case_ : Tuple = dec_hidden_size snake_case_ : Tuple = dec_heads snake_case_ : Optional[int] = dec_ff_size snake_case_ : Optional[int] = dec_dropout
708
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available lowercase : int = { '''configuration_audio_spectrogram_transformer''': [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ASTConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ASTForAudioClassification''', '''ASTModel''', '''ASTPreTrainedModel''', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = ['''ASTFeatureExtractor'''] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys lowercase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
114
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __lowerCAmelCase = { "configuration_audio_spectrogram_transformer": [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ASTConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ["ASTFeatureExtractor"] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
536
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __lowerCAmelCase = TypeVar("T") class __SCREAMING_SNAKE_CASE (Generic[T] ): """simple docstring""" def __init__( self , UpperCamelCase__ ): """simple docstring""" a_ = data a_ = None def __str__( self ): """simple docstring""" return f'{self.data}' class __SCREAMING_SNAKE_CASE (Generic[T] ): """simple docstring""" def __init__( self ): """simple docstring""" a_ = None def __iter__( self ): """simple docstring""" a_ = self.top while node: yield node.data a_ = node.next def __str__( self ): """simple docstring""" return "->".join([str(UpperCamelCase__ ) for item in self] ) def __len__( self ): """simple docstring""" return len(tuple(iter(self ) ) ) def _a ( self ): """simple docstring""" return self.top is None def _a ( self , UpperCamelCase__ ): """simple docstring""" a_ = Node(UpperCamelCase__ ) if not self.is_empty(): a_ = self.top a_ = node def _a ( self ): """simple docstring""" if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , UpperCamelCase__ ) a_ = self.top a_ = self.top.next return pop_node.data def _a ( self ): """simple docstring""" if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def _a ( self ): """simple docstring""" a_ = None if __name__ == "__main__": from doctest import testmod testmod()
536
1
"""simple docstring""" import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class _UpperCamelCase ( lowerCamelCase__ ): """simple docstring""" snake_case_ = (CMStochasticIterativeScheduler,) snake_case_ = 1_0 def _UpperCAmelCase ( self : Union[str, Any] , **snake_case : Union[str, Any] ) -> Optional[int]: '''simple docstring''' __magic_name__ : Optional[int] = { '''num_train_timesteps''': 201, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } config.update(**snake_case ) return config def _UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' __magic_name__ : List[Any] = 10 __magic_name__ : List[Any] = self.get_scheduler_config() __magic_name__ : Any = self.scheduler_classes[0](**snake_case ) scheduler.set_timesteps(snake_case ) __magic_name__ : Dict = scheduler.timesteps[0] __magic_name__ : Any = scheduler.timesteps[1] __magic_name__ : List[str] = self.dummy_sample __magic_name__ : Dict = 0.1 * sample __magic_name__ : Any = scheduler.step(snake_case , snake_case , snake_case ).prev_sample __magic_name__ : Optional[Any] = scheduler.step(snake_case , snake_case , snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _UpperCAmelCase ( self : Tuple ) -> Optional[int]: '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=snake_case ) def _UpperCAmelCase ( self : str ) -> Tuple: '''simple docstring''' for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=snake_case ) def _UpperCAmelCase ( self : Any ) -> List[Any]: '''simple docstring''' __magic_name__ : Union[str, Any] = self.scheduler_classes[0] __magic_name__ : int = self.get_scheduler_config() __magic_name__ : Any = scheduler_class(**snake_case ) __magic_name__ : str = 1 scheduler.set_timesteps(snake_case ) __magic_name__ : Union[str, Any] = scheduler.timesteps __magic_name__ : Union[str, Any] = torch.manual_seed(0 ) __magic_name__ : List[str] = self.dummy_model() __magic_name__ : int = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(snake_case ): # 1. scale model input __magic_name__ : Tuple = scheduler.scale_model_input(snake_case , snake_case ) # 2. predict noise residual __magic_name__ : Optional[Any] = model(snake_case , snake_case ) # 3. predict previous sample x_t-1 __magic_name__ : Union[str, Any] = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ).prev_sample __magic_name__ : Union[str, Any] = pred_prev_sample __magic_name__ : str = torch.sum(torch.abs(snake_case ) ) __magic_name__ : Optional[Any] = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def _UpperCAmelCase ( self : Optional[Any] ) -> str: '''simple docstring''' __magic_name__ : Any = self.scheduler_classes[0] __magic_name__ : int = self.get_scheduler_config() __magic_name__ : Any = scheduler_class(**snake_case ) __magic_name__ : Any = [106, 0] scheduler.set_timesteps(timesteps=snake_case ) __magic_name__ : Optional[int] = scheduler.timesteps __magic_name__ : Dict = torch.manual_seed(0 ) __magic_name__ : Tuple = self.dummy_model() __magic_name__ : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input __magic_name__ : Tuple = scheduler.scale_model_input(snake_case , snake_case ) # 2. predict noise residual __magic_name__ : Tuple = model(snake_case , snake_case ) # 3. predict previous sample x_t-1 __magic_name__ : List[Any] = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ).prev_sample __magic_name__ : Union[str, Any] = pred_prev_sample __magic_name__ : Union[str, Any] = torch.sum(torch.abs(snake_case ) ) __magic_name__ : Dict = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def _UpperCAmelCase ( self : Dict ) -> str: '''simple docstring''' __magic_name__ : Union[str, Any] = self.scheduler_classes[0] __magic_name__ : Dict = self.get_scheduler_config() __magic_name__ : Tuple = scheduler_class(**snake_case ) __magic_name__ : Union[str, Any] = [39, 30, 12, 15, 0] with self.assertRaises(snake_case , msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=snake_case ) def _UpperCAmelCase ( self : Any ) -> Union[str, Any]: '''simple docstring''' __magic_name__ : Any = self.scheduler_classes[0] __magic_name__ : Optional[Any] = self.get_scheduler_config() __magic_name__ : Optional[Any] = scheduler_class(**snake_case ) __magic_name__ : List[Any] = [39, 30, 12, 1, 0] __magic_name__ : List[str] = len(snake_case ) with self.assertRaises(snake_case , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=snake_case , timesteps=snake_case ) def _UpperCAmelCase ( self : List[Any] ) -> Optional[int]: '''simple docstring''' __magic_name__ : List[str] = self.scheduler_classes[0] __magic_name__ : List[Any] = self.get_scheduler_config() __magic_name__ : int = scheduler_class(**snake_case ) __magic_name__ : int = [scheduler.config.num_train_timesteps] with self.assertRaises( snake_case , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=snake_case )
147
"""simple docstring""" from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json""" ), } class _UpperCamelCase ( lowerCamelCase__ ): """simple docstring""" snake_case_ = 'xlm-prophetnet' snake_case_ = ['past_key_values'] snake_case_ = { 'num_attention_heads': 'num_encoder_attention_heads', } def __init__( self : Tuple , snake_case : Optional[float] = 0.1 , snake_case : Optional[Union[str, Callable]] = "gelu" , snake_case : Optional[int] = 3_0522 , snake_case : Optional[int] = 1024 , snake_case : Optional[int] = 4096 , snake_case : Optional[int] = 12 , snake_case : Optional[int] = 16 , snake_case : Optional[int] = 4096 , snake_case : Optional[int] = 12 , snake_case : Optional[int] = 16 , snake_case : Optional[float] = 0.1 , snake_case : Optional[float] = 0.1 , snake_case : Optional[int] = 512 , snake_case : Optional[float] = 0.02 , snake_case : Optional[bool] = True , snake_case : Optional[bool] = True , snake_case : Optional[int] = 0 , snake_case : Optional[int] = 2 , snake_case : Optional[int] = 32 , snake_case : Optional[int] = 128 , snake_case : Optional[bool] = False , snake_case : Optional[float] = 0.0 , snake_case : Optional[bool] = True , snake_case : Optional[int] = 0 , snake_case : Optional[int] = 1 , snake_case : Optional[int] = 2 , **snake_case : List[str] , ) -> str: '''simple docstring''' __magic_name__ : List[str] = vocab_size __magic_name__ : Optional[int] = hidden_size __magic_name__ : Any = encoder_ffn_dim __magic_name__ : str = num_encoder_layers __magic_name__ : List[str] = num_encoder_attention_heads __magic_name__ : Dict = decoder_ffn_dim __magic_name__ : int = num_decoder_layers __magic_name__ : str = num_decoder_attention_heads __magic_name__ : Tuple = max_position_embeddings __magic_name__ : Optional[int] = init_std # Normal(0, this parameter) __magic_name__ : Optional[int] = activation_function # parameters for xlmprophetnet __magic_name__ : int = ngram __magic_name__ : List[Any] = num_buckets __magic_name__ : int = relative_max_distance __magic_name__ : List[str] = disable_ngram_loss __magic_name__ : Union[str, Any] = eps # 3 Types of Dropout __magic_name__ : Tuple = attention_dropout __magic_name__ : List[Any] = activation_dropout __magic_name__ : Optional[int] = dropout __magic_name__ : Dict = use_cache super().__init__( pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , is_encoder_decoder=snake_case , add_cross_attention=snake_case , decoder_start_token_id=snake_case , **snake_case , ) @property def _UpperCAmelCase ( self : Union[str, Any] ) -> int: '''simple docstring''' return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def _UpperCAmelCase ( self : List[Any] , snake_case : List[Any] ) -> Union[str, Any]: '''simple docstring''' raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and''' ''' `num_decoder_layers`.''' )
147
1
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCamelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class _SCREAMING_SNAKE_CASE ( snake_case, snake_case ): @register_to_config def __init__( self : str , snake_case_ : bool , snake_case_ : Optional[int] = None , snake_case_ : Optional[int] = None ): """simple docstring""" super().__init__() A : int = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" A : Optional[Any] = torch.zeros(snake_case_ , snake_case_ ) else: A : Optional[Any] = None A : Dict = torch.nn.Parameter(snake_case_ ) class _SCREAMING_SNAKE_CASE ( snake_case ): lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 def __init__( self : Union[str, Any] , snake_case_ : VQModel , snake_case_ : CLIPTextModel , snake_case_ : CLIPTokenizer , snake_case_ : TransformeraDModel , snake_case_ : VQDiffusionScheduler , snake_case_ : LearnedClassifierFreeSamplingEmbeddings , ): """simple docstring""" super().__init__() self.register_modules( vqvae=snake_case_ , transformer=snake_case_ , text_encoder=snake_case_ , tokenizer=snake_case_ , scheduler=snake_case_ , learned_classifier_free_sampling_embeddings=snake_case_ , ) def _UpperCAmelCase ( self : List[Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] ): """simple docstring""" A : Union[str, Any] = len(snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else 1 # get prompt text embeddings A : Optional[Any] = self.tokenizer( snake_case_ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) A : List[str] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: A : Optional[Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) A : Tuple = text_input_ids[:, : self.tokenizer.model_max_length] A : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 A : Optional[int] = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=snake_case_ ) # duplicate text embeddings for each generation per prompt A : int = prompt_embeds.repeat_interleave(snake_case_ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: A : Optional[Any] = self.learned_classifier_free_sampling_embeddings.embeddings A : List[Any] = negative_prompt_embeds.unsqueeze(0 ).repeat(snake_case_ , 1 , 1 ) else: A : int = [''''''] * batch_size A : Union[str, Any] = text_input_ids.shape[-1] A : Any = self.tokenizer( snake_case_ , padding='''max_length''' , max_length=snake_case_ , truncation=snake_case_ , return_tensors='''pt''' , ) A : List[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings A : Optional[int] = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=snake_case_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A : Optional[Any] = negative_prompt_embeds.shape[1] A : str = negative_prompt_embeds.repeat(1 , snake_case_ , 1 ) A : Dict = negative_prompt_embeds.view(batch_size * num_images_per_prompt , snake_case_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A : int = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : int , snake_case_ : Union[str, List[str]] , snake_case_ : int = 100 , snake_case_ : float = 5.0 , snake_case_ : float = 1.0 , snake_case_ : int = 1 , snake_case_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case_ : Optional[torch.FloatTensor] = None , snake_case_ : Optional[str] = "pil" , snake_case_ : bool = True , snake_case_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , snake_case_ : int = 1 , ): """simple docstring""" if isinstance(snake_case_ , snake_case_ ): A : Tuple = 1 elif isinstance(snake_case_ , snake_case_ ): A : int = len(snake_case_ ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(snake_case_ )}""" ) A : List[str] = batch_size * num_images_per_prompt A : List[str] = guidance_scale > 1.0 A : Dict = self._encode_prompt(snake_case_ , snake_case_ , snake_case_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case_ , snake_case_ ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(snake_case_ )}.""" ) # get the initial completely masked latents unless the user supplied it A : Dict = (batch_size, self.transformer.num_latent_pixels) if latents is None: A : List[Any] = self.transformer.num_vector_embeds - 1 A : str = torch.full(snake_case_ , snake_case_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' f""" {self.transformer.num_vector_embeds - 1} (inclusive).""" ) A : Union[str, Any] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case_ , device=self.device ) A : Any = self.scheduler.timesteps.to(self.device ) A : Optional[Any] = latents for i, t in enumerate(self.progress_bar(snake_case_ ) ): # expand the sample if we are doing classifier free guidance A : Dict = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` A : Dict = self.transformer(snake_case_ , encoder_hidden_states=snake_case_ , timestep=snake_case_ ).sample if do_classifier_free_guidance: A , A : Tuple = model_output.chunk(2 ) A : int = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(snake_case_ , dim=1 , keepdim=snake_case_ ) A : int = self.truncate(snake_case_ , snake_case_ ) # remove `log(0)`'s (`-inf`s) A : int = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 A : Dict = self.scheduler.step(snake_case_ , timestep=snake_case_ , sample=snake_case_ , generator=snake_case_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case_ , snake_case_ , snake_case_ ) A : Tuple = self.vqvae.config.vq_embed_dim A : str = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) A : str = self.vqvae.quantize.get_codebook_entry(snake_case_ , shape=snake_case_ ) A : List[Any] = self.vqvae.decode(snake_case_ , force_not_quantize=snake_case_ ).sample A : Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1 ) A : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A : Optional[int] = self.numpy_to_pil(snake_case_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case_ ) def _UpperCAmelCase ( self : List[Any] , snake_case_ : torch.FloatTensor , snake_case_ : float ): """simple docstring""" A , A : List[str] = torch.sort(snake_case_ , 1 , descending=snake_case_ ) A : Union[str, Any] = torch.exp(snake_case_ ) A : Any = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out A : Optional[Any] = torch.full_like(keep_mask[:, 0:1, :] , snake_case_ ) A : Optional[Any] = torch.cat((all_true, keep_mask) , dim=1 ) A : Union[str, Any] = keep_mask[:, :-1, :] A : int = keep_mask.gather(1 , indices.argsort(1 ) ) A : Tuple = log_p_x_0.clone() A : Any = -torch.inf # -inf = log(0) return rv
256
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( snake_case ): lowerCamelCase_ = (CMStochasticIterativeScheduler,) lowerCamelCase_ = 1_0 def _UpperCAmelCase ( self : Any , **snake_case_ : Tuple ): """simple docstring""" A : str = { '''num_train_timesteps''': 201, '''sigma_min''': 0.0_02, '''sigma_max''': 80.0, } config.update(**snake_case_ ) return config def _UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" A : List[str] = 10 A : Dict = self.get_scheduler_config() A : Optional[int] = self.scheduler_classes[0](**snake_case_ ) scheduler.set_timesteps(snake_case_ ) A : List[str] = scheduler.timesteps[0] A : Any = scheduler.timesteps[1] A : int = self.dummy_sample A : str = 0.1 * sample A : Tuple = scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample A : Tuple = scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _UpperCAmelCase ( self : Dict ): """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=snake_case_ ) def _UpperCAmelCase ( self : Dict ): """simple docstring""" for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=snake_case_ ) def _UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" A : List[Any] = self.scheduler_classes[0] A : Union[str, Any] = self.get_scheduler_config() A : List[str] = scheduler_class(**snake_case_ ) A : str = 1 scheduler.set_timesteps(snake_case_ ) A : Optional[int] = scheduler.timesteps A : int = torch.manual_seed(0 ) A : Optional[Any] = self.dummy_model() A : int = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(snake_case_ ): # 1. scale model input A : Dict = scheduler.scale_model_input(snake_case_ , snake_case_ ) # 2. predict noise residual A : List[Any] = model(snake_case_ , snake_case_ ) # 3. predict previous sample x_t-1 A : Union[str, Any] = scheduler.step(snake_case_ , snake_case_ , snake_case_ , generator=snake_case_ ).prev_sample A : Union[str, Any] = pred_prev_sample A : List[str] = torch.sum(torch.abs(snake_case_ ) ) A : int = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 1_92.76_14 ) < 1E-2 assert abs(result_mean.item() - 0.25_10 ) < 1E-3 def _UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" A : Tuple = self.scheduler_classes[0] A : Tuple = self.get_scheduler_config() A : str = scheduler_class(**snake_case_ ) A : Optional[int] = [106, 0] scheduler.set_timesteps(timesteps=snake_case_ ) A : Optional[int] = scheduler.timesteps A : Any = torch.manual_seed(0 ) A : Tuple = self.dummy_model() A : str = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input A : Tuple = scheduler.scale_model_input(snake_case_ , snake_case_ ) # 2. predict noise residual A : str = model(snake_case_ , snake_case_ ) # 3. predict previous sample x_t-1 A : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ , generator=snake_case_ ).prev_sample A : str = pred_prev_sample A : str = torch.sum(torch.abs(snake_case_ ) ) A : Union[str, Any] = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 3_47.63_57 ) < 1E-2 assert abs(result_mean.item() - 0.45_27 ) < 1E-3 def _UpperCAmelCase ( self : int ): """simple docstring""" A : Optional[int] = self.scheduler_classes[0] A : Optional[int] = self.get_scheduler_config() A : Any = scheduler_class(**snake_case_ ) A : Union[str, Any] = [39, 30, 12, 15, 0] with self.assertRaises(snake_case_ , msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=snake_case_ ) def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" A : List[str] = self.scheduler_classes[0] A : Dict = self.get_scheduler_config() A : Tuple = scheduler_class(**snake_case_ ) A : Any = [39, 30, 12, 1, 0] A : List[Any] = len(snake_case_ ) with self.assertRaises(snake_case_ , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=snake_case_ , timesteps=snake_case_ ) def _UpperCAmelCase ( self : Dict ): """simple docstring""" A : List[Any] = self.scheduler_classes[0] A : str = self.get_scheduler_config() A : List[Any] = scheduler_class(**snake_case_ ) A : Dict = [scheduler.config.num_train_timesteps] with self.assertRaises( snake_case_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=snake_case_ )
256
1
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: '''simple docstring''' if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(lowercase_ ): return ext raise Exception( f"Unable to determine file format from file extension {path}. " f"Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}" ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: '''simple docstring''' __UpperCAmelCase : Tuple = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) __UpperCAmelCase : Any = try_infer_format_from_ext(args.input ) if args.format == '''infer''' else args.format __UpperCAmelCase : int = PipelineDataFormat.from_str( format=lowercase_ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(lowercase_ , lowercase_ ) class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__): __UpperCAmelCase : Optional[int] = nlp __UpperCAmelCase : Any = reader @staticmethod def A( lowercase__): __UpperCAmelCase : Optional[int] = parser.add_parser('''run''' , help='''Run a pipeline through the CLI''') run_parser.add_argument('''--task''' , choices=get_supported_tasks() , help='''Task to run''') run_parser.add_argument('''--input''' , type=lowercase__ , help='''Path to the file to use for inference''') run_parser.add_argument('''--output''' , type=lowercase__ , help='''Path to the file that will be used post to write results.''') run_parser.add_argument('''--model''' , type=lowercase__ , help='''Name or path to the model to instantiate.''') run_parser.add_argument('''--config''' , type=lowercase__ , help='''Name or path to the model\'s config to instantiate.''') run_parser.add_argument( '''--tokenizer''' , type=lowercase__ , help='''Name of the tokenizer to use. (default: same as the model name)''') run_parser.add_argument( '''--column''' , type=lowercase__ , help='''Name of the column to use as input. (For multi columns input as QA use column1,columns2)''' , ) run_parser.add_argument( '''--format''' , type=lowercase__ , default='''infer''' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='''Input format to read from''' , ) run_parser.add_argument( '''--device''' , type=lowercase__ , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) run_parser.add_argument('''--overwrite''' , action='''store_true''' , help='''Allow overwriting the output file.''') run_parser.set_defaults(func=lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase : List[Any] = self._nlp, [] for entry in self._reader: __UpperCAmelCase : Tuple = nlp(**lowercase__) if self._reader.is_multi_columns else nlp(lowercase__) if isinstance(lowercase__ , lowercase__): outputs.append(lowercase__) else: outputs += output # Saving data if self._nlp.binary_output: __UpperCAmelCase : Tuple = self._reader.save_binary(lowercase__) logger.warning(F"Current pipeline requires output to be in binary format, saving at {binary_path}") else: self._reader.save(lowercase__)
675
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=8 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __UpperCAmelCase : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase ( _UpperCamelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , ): super().__init__() self.register_modules( unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , ) __UpperCAmelCase : Any = 2 ** (len(self.movq.config.block_out_channels) - 1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): if latents is None: __UpperCAmelCase : Any = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}") __UpperCAmelCase : Union[str, Any] = latents.to(lowercase__) __UpperCAmelCase : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def A( self , lowercase__=0): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''') __UpperCAmelCase : List[str] = torch.device(F"cuda:{gpu_id}") __UpperCAmelCase : List[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase__ , lowercase__) def A( self , lowercase__=0): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0'''): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''') __UpperCAmelCase : Optional[Any] = torch.device(F"cuda:{gpu_id}") if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowercase__) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __UpperCAmelCase : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: __UpperCAmelCase , __UpperCAmelCase : List[str] = cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__) # We'll offload the last model manually. __UpperCAmelCase : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A( self): if not hasattr(self.unet , '''_hf_hook'''): return self.device for module in self.unet.modules(): if ( hasattr(lowercase__ , '''_hf_hook''') and hasattr(module._hf_hook , '''execution_device''') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(lowercase__) def __call__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 5_1_2 , lowercase__ = 5_1_2 , lowercase__ = 1_0_0 , lowercase__ = 4.0 , lowercase__ = 1 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , ): __UpperCAmelCase : str = self._execution_device __UpperCAmelCase : List[str] = guidance_scale > 1.0 if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Dict = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Tuple = torch.cat(lowercase__ , dim=0) if isinstance(lowercase__ , lowercase__): __UpperCAmelCase : Any = torch.cat(lowercase__ , dim=0) __UpperCAmelCase : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : List[Any] = hint.repeat_interleave(lowercase__ , dim=0) __UpperCAmelCase : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) __UpperCAmelCase : List[Any] = torch.cat([hint, hint] , dim=0).to(dtype=self.unet.dtype , device=lowercase__) self.scheduler.set_timesteps(lowercase__ , device=lowercase__) __UpperCAmelCase : List[Any] = self.scheduler.timesteps __UpperCAmelCase : Any = self.movq.config.latent_channels __UpperCAmelCase , __UpperCAmelCase : List[str] = downscale_height_and_width(lowercase__ , lowercase__ , self.movq_scale_factor) # create initial latent __UpperCAmelCase : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase__)): # expand the latents if we are doing classifier free guidance __UpperCAmelCase : List[Any] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __UpperCAmelCase : Union[str, Any] = {'''image_embeds''': image_embeds, '''hint''': hint} __UpperCAmelCase : Any = self.unet( sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0] if do_classifier_free_guidance: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) __UpperCAmelCase , __UpperCAmelCase : List[str] = noise_pred.chunk(2) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = variance_pred.chunk(2) __UpperCAmelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __UpperCAmelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , '''variance_type''') and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase : Tuple = self.scheduler.step( lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , )[0] # post-processing __UpperCAmelCase : str = self.movq.decode(lowercase__ , force_not_quantize=lowercase__)['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") if output_type in ["np", "pil"]: __UpperCAmelCase : Dict = image * 0.5 + 0.5 __UpperCAmelCase : Union[str, Any] = image.clamp(0 , 1) __UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": __UpperCAmelCase : List[str] = self.numpy_to_pil(lowercase__) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__)
675
1