code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Any = '''https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg''' _lowerCamelCase : str = Image.open(requests.get(A_, stream=A_ ).raw ).convert('''RGB''' ) return image def snake_case_ ( A_ : Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.embeddings.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.embeddings.layernorm.bias''') ) # fmt: on return rename_keys def snake_case_ ( A_ : str, A_ : Optional[Any], A_ : Dict ): '''simple docstring''' _lowerCamelCase : List[Any] = dct.pop(A_ ) _lowerCamelCase : Dict = val def snake_case_ ( A_ : List[Any], A_ : List[Any] ): '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _lowerCamelCase : Tuple = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) _lowerCamelCase : Any = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict _lowerCamelCase : Union[str, Any] = torch.cat((q_bias, torch.zeros_like(A_, requires_grad=A_ ), v_bias) ) _lowerCamelCase : Any = qkv_bias def snake_case_ ( A_ : int ): '''simple docstring''' _lowerCamelCase : Tuple = 3_64 if '''coco''' in model_name else 2_24 _lowerCamelCase : Optional[int] = InstructBlipVisionConfig(image_size=A_ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: _lowerCamelCase : List[str] = TaConfig.from_pretrained('''google/flan-t5-xl''', dense_act_fn='''gelu''', bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _lowerCamelCase : int = TaConfig.from_pretrained('''google/flan-t5-xxl''', dense_act_fn='''gelu''', bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: _lowerCamelCase : int = LlamaConfig.from_pretrained('''decapoda-research/llama-7b-hf''', vocab_size=3_20_01 ).to_dict() elif "vicuna-13b" in model_name: _lowerCamelCase : Dict = LlamaConfig.from_pretrained('''decapoda-research/llama-13b-hf''', vocab_size=3_20_01 ).to_dict() else: raise ValueError('''Model name not supported''' ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 _lowerCamelCase : Any = InstructBlipQFormerConfig(vocab_size=3_05_23 ).to_dict() _lowerCamelCase : List[Any] = InstructBlipConfig(vision_config=A_, text_config=A_, qformer_config=A_ ) return config, image_size @torch.no_grad() def snake_case_ ( A_ : str, A_ : Any=None, A_ : str=False ): '''simple docstring''' _lowerCamelCase : Dict = AutoTokenizer.from_pretrained('''bert-base-uncased''', truncation_side='''left''' ) qformer_tokenizer.add_special_tokens({'''bos_token''': '''[DEC]'''} ) if "t5" in model_name: _lowerCamelCase : Dict = TaTokenizerFast.from_pretrained('''google/flan-t5-xl''', truncation_side='''left''' ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) _lowerCamelCase : Optional[int] = LlamaTokenizerFast.from_pretrained( '''huggyllama/llama-7b''', truncation_side='''left''', bos_token='''</s>''', unk_token='''</s>''' ) tokenizer.add_special_tokens({'''pad_token''': '''[PAD]'''} ) _lowerCamelCase , _lowerCamelCase : Dict = get_blipa_config(A_ ) _lowerCamelCase : Dict = InstructBlipForConditionalGeneration(A_ ).eval() _lowerCamelCase : Optional[int] = { '''instructblip-vicuna-7b''': ('''blip2_vicuna_instruct''', '''vicuna7b'''), '''instructblip-vicuna-13b''': ('''blip2_vicuna_instruct''', '''vicuna13b'''), '''instructblip-flan-t5-xl''': ('''blip2_t5_instruct''', '''flant5xl'''), '''instructblip-flan-t5-xxl''': ('''blip2_t5_instruct''', '''flant5xxl'''), } _lowerCamelCase , _lowerCamelCase : Any = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) _lowerCamelCase : Tuple = '''cuda:1''' if torch.cuda.is_available() else '''cpu''' _lowerCamelCase : Dict = '''cuda:2''' if torch.cuda.is_available() else '''cpu''' _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = load_model_and_preprocess( name=A_, model_type=A_, is_eval=A_, device=A_ ) original_model.eval() print('''Done!''' ) # update state dict keys _lowerCamelCase : Tuple = original_model.state_dict() _lowerCamelCase : Tuple = create_rename_keys(A_ ) for src, dest in rename_keys: rename_key(A_, A_, A_ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _lowerCamelCase : Tuple = state_dict.pop(A_ ) if key.startswith('''Qformer.bert''' ): _lowerCamelCase : str = key.replace('''Qformer.bert''', '''qformer''' ) if "attention.self" in key: _lowerCamelCase : List[Any] = key.replace('''self''', '''attention''' ) if "llm_proj" in key: _lowerCamelCase : Dict = key.replace('''llm_proj''', '''language_projection''' ) if "t5_proj" in key: _lowerCamelCase : List[Any] = key.replace('''t5_proj''', '''language_projection''' ) if key.startswith('''llm_model''' ): _lowerCamelCase : Optional[int] = key.replace('''llm_model''', '''language_model''' ) if key.startswith('''t5''' ): _lowerCamelCase : List[Any] = key.replace('''t5''', '''language''' ) _lowerCamelCase : List[Any] = val # read in qv biases read_in_q_v_bias(A_, A_ ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(A_, strict=A_ ) _lowerCamelCase : str = load_demo_image() _lowerCamelCase : Union[str, Any] = '''What is unusual about this image?''' # create processor _lowerCamelCase : Tuple = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size}, image_mean=A_, image_std=A_ ) _lowerCamelCase : List[str] = InstructBlipProcessor( image_processor=A_, tokenizer=A_, qformer_tokenizer=A_, ) _lowerCamelCase : Dict = processor(images=A_, text=A_, return_tensors='''pt''' ).to(A_ ) # make sure processor creates exact same pixel values _lowerCamelCase : Optional[Any] = vis_processors['''eval'''](A_ ).unsqueeze(0 ).to(A_ ) _lowerCamelCase : List[Any] = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ), A_ ) original_model.to(A_ ) hf_model.to(A_ ) with torch.no_grad(): if "vicuna" in model_name: _lowerCamelCase : List[Any] = original_model({'''image''': original_pixel_values, '''text_input''': [prompt]} ).logits _lowerCamelCase : List[Any] = hf_model(**A_ ).logits else: _lowerCamelCase : Tuple = original_model( {'''image''': original_pixel_values, '''text_input''': [prompt], '''text_output''': ['''\n''']} ).logits _lowerCamelCase : str = tokenizer('''\n''', return_tensors='''pt''' ).input_ids.to(A_ ) _lowerCamelCase : Optional[Any] = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id, -1_00 ) _lowerCamelCase : Any = hf_model(**A_, labels=A_ ).logits print('''First values of original logits:''', original_logits[0, :3, :3] ) print('''First values of HF logits:''', logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape _lowerCamelCase : Tuple = 1E-4 if '''vicuna''' in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ), A_, atol=A_ ) print('''Looks ok!''' ) print('''Generating with original model...''' ) _lowerCamelCase : str = original_model.generate({'''image''': original_pixel_values, '''prompt''': prompt}, num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print('''Generating with HF model...''' ) _lowerCamelCase : Tuple = hf_model.generate( **A_, do_sample=A_, num_beams=5, max_length=2_56, min_length=1, top_p=0.9, repetition_penalty=1.5, length_penalty=1.0, temperature=1, ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? _lowerCamelCase : Union[str, Any] = 2 print('''Original generation:''', A_ ) _lowerCamelCase : Dict = processor.batch_decode(A_, skip_special_tokens=A_ ) _lowerCamelCase : str = [text.strip() for text in output_text] print('''HF generation:''', A_ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(A_ ) hf_model.save_pretrained(A_ ) if push_to_hub: processor.push_to_hub(F'''Salesforce/{model_name}''' ) hf_model.push_to_hub(F'''Salesforce/{model_name}''' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() lowerCAmelCase__ = [ '''instructblip-vicuna-7b''', '''instructblip-vicuna-13b''', '''instructblip-flan-t5-xl''', '''instructblip-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''instructblip-flan-t5-xl''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) lowerCAmelCase__ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
83
import os def a ( a = "matrix.txt" ) ->int: '''simple docstring''' with open(os.path.join(os.path.dirname(a ) , a ) ) as in_file: SCREAMING_SNAKE_CASE = in_file.read() SCREAMING_SNAKE_CASE = [[int(a ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] SCREAMING_SNAKE_CASE = [[0 for cell in row] for row in grid] SCREAMING_SNAKE_CASE = len(grid[0] ) SCREAMING_SNAKE_CASE = [[0 for i in range(a )] for j in range(a )] SCREAMING_SNAKE_CASE = grid[0][0] for i in range(1 , a ): SCREAMING_SNAKE_CASE = grid[0][i] + dp[0][i - 1] for i in range(1 , a ): SCREAMING_SNAKE_CASE = grid[i][0] + dp[i - 1][0] for i in range(1 , a ): for j in range(1 , a ): SCREAMING_SNAKE_CASE = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F'''{solution() = }''')
201
0
"""simple docstring""" import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef __lowerCAmelCase : List[str] = ( """This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" warnings.warn(_lowerCamelCase , _lowerCamelCase ) requires_backends(_lowerCamelCase , """sklearn""" ) return (preds == labels).mean() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" warnings.warn(_lowerCamelCase , _lowerCamelCase ) requires_backends(_lowerCamelCase , """sklearn""" ) lowerCAmelCase__ = simple_accuracy(_lowerCamelCase , _lowerCamelCase ) lowerCAmelCase__ = fa_score(y_true=_lowerCamelCase , y_pred=_lowerCamelCase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" warnings.warn(_lowerCamelCase , _lowerCamelCase ) requires_backends(_lowerCamelCase , """sklearn""" ) lowerCAmelCase__ = pearsonr(_lowerCamelCase , _lowerCamelCase )[0] lowerCAmelCase__ = spearmanr(_lowerCamelCase , _lowerCamelCase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" warnings.warn(_lowerCamelCase , _lowerCamelCase ) requires_backends(_lowerCamelCase , """sklearn""" ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ), f"""Predictions and labels have mismatched lengths {len(_lowerCamelCase )} and {len(_lowerCamelCase )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(_lowerCamelCase , _lowerCamelCase )} elif task_name == "sst-2": return {"acc": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} elif task_name == "mrpc": return acc_and_fa(_lowerCamelCase , _lowerCamelCase ) elif task_name == "sts-b": return pearson_and_spearman(_lowerCamelCase , _lowerCamelCase ) elif task_name == "qqp": return acc_and_fa(_lowerCamelCase , _lowerCamelCase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} elif task_name == "qnli": return {"acc": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} elif task_name == "rte": return {"acc": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} elif task_name == "wnli": return {"acc": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} elif task_name == "hans": return {"acc": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} else: raise KeyError(_lowerCamelCase ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" warnings.warn(_lowerCamelCase , _lowerCamelCase ) requires_backends(_lowerCamelCase , """sklearn""" ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError(f"""Predictions and labels have mismatched lengths {len(_lowerCamelCase )} and {len(_lowerCamelCase )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(_lowerCamelCase , _lowerCamelCase )} else: raise KeyError(_lowerCamelCase )
700
"""simple docstring""" import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : Optional[Any] = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Tuple = PegasusTokenizer UpperCamelCase_ : Any = PegasusTokenizerFast UpperCamelCase_ : int = True UpperCamelCase_ : Any = True def _SCREAMING_SNAKE_CASE ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : Optional[Any] ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any] ): return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = """</s>""" lowerCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(snake_case__ ) , 1103 ) def _SCREAMING_SNAKE_CASE ( self : Any ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase__ = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" lowerCAmelCase__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowerCAmelCase__ = """To ensure a smooth flow of bank resolutions.""" lowerCAmelCase__ = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] lowerCAmelCase__ = tokenizer([raw_input_str] , return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = ["""This is going to be way too long.""" * 150, """short example"""] lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) lowerCAmelCase__ = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def _SCREAMING_SNAKE_CASE ( self : str ): # fmt: off lowerCAmelCase__ = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : str = PegasusTokenizer UpperCamelCase_ : Optional[int] = PegasusTokenizerFast UpperCamelCase_ : Union[str, Any] = True UpperCamelCase_ : Optional[int] = True def _SCREAMING_SNAKE_CASE ( self : List[str] ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = PegasusTokenizer(snake_case__ , offset=0 , mask_token_sent=snake_case__ , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Dict ): return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **snake_case__ : List[Any] ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Dict ): return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase__ = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) lowerCAmelCase__ = rust_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] lowerCAmelCase__ = py_tokenizer([raw_input_str] , return_tensors=snake_case__ , add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = ["""This is going to be way too long.""" * 1000, """short example"""] lowerCAmelCase__ = ["""not super long but more than 5 tokens""", """tiny"""] lowerCAmelCase__ = self._large_tokenizer(snake_case__ , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) lowerCAmelCase__ = self._large_tokenizer( text_target=snake_case__ , max_length=5 , padding=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) lowerCAmelCase__ = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
674
0
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def lowerCamelCase( a__): return (data["data"], data["target"]) def lowerCamelCase( a__ ,a__): _SCREAMING_SNAKE_CASE =XGBClassifier() classifier.fit(a__ ,a__) return classifier def lowerCamelCase( ): _SCREAMING_SNAKE_CASE =load_iris() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =data_handling(a__) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =train_test_split( a__ ,a__ ,test_size=0.25) _SCREAMING_SNAKE_CASE =iris['''target_names'''] # Create an XGBoost Classifier from the training data _SCREAMING_SNAKE_CASE =xgboost(a__ ,a__) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( a__ ,a__ ,a__ ,display_labels=a__ ,cmap='''Blues''' ,normalize='''true''' ,) plt.title('''Normalized Confusion Matrix - IRIS Dataset''') plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
691
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings snake_case_ : Optional[Any] = R''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(UpperCamelCase__ ) class A__ ( UpperCamelCase__ ): UpperCAmelCase = "rag" UpperCAmelCase = True def __init__( self : Tuple , _a : List[Any]=None , _a : Tuple=True , _a : Optional[Any]=None , _a : int=None , _a : List[str]=None , _a : int=None , _a : Optional[int]=None , _a : str=" / " , _a : Any=" // " , _a : Optional[Any]=5 , _a : int=300 , _a : Optional[Any]=768 , _a : Any=8 , _a : List[str]="wiki_dpr" , _a : Dict="train" , _a : Union[str, Any]="compressed" , _a : str=None , _a : Union[str, Any]=None , _a : int=False , _a : Any=False , _a : Any=0.0 , _a : Any=True , _a : List[str]=False , _a : Optional[int]=False , _a : int=False , _a : Union[str, Any]=True , _a : Optional[int]=None , **_a : List[str] , ) -> List[Any]: """simple docstring""" super().__init__( bos_token_id=_a , pad_token_id=_a , eos_token_id=_a , decoder_start_token_id=_a , forced_eos_token_id=_a , is_encoder_decoder=_a , prefix=_a , vocab_size=_a , **_a , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _SCREAMING_SNAKE_CASE =kwargs.pop('''question_encoder''' ) _SCREAMING_SNAKE_CASE =question_encoder_config.pop('''model_type''' ) _SCREAMING_SNAKE_CASE =kwargs.pop('''generator''' ) _SCREAMING_SNAKE_CASE =decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig _SCREAMING_SNAKE_CASE =AutoConfig.for_model(_a , **_a ) _SCREAMING_SNAKE_CASE =AutoConfig.for_model(_a , **_a ) _SCREAMING_SNAKE_CASE =reduce_loss _SCREAMING_SNAKE_CASE =label_smoothing _SCREAMING_SNAKE_CASE =exclude_bos_score _SCREAMING_SNAKE_CASE =do_marginalize _SCREAMING_SNAKE_CASE =title_sep _SCREAMING_SNAKE_CASE =doc_sep _SCREAMING_SNAKE_CASE =n_docs _SCREAMING_SNAKE_CASE =max_combined_length _SCREAMING_SNAKE_CASE =dataset _SCREAMING_SNAKE_CASE =dataset_split _SCREAMING_SNAKE_CASE =index_name _SCREAMING_SNAKE_CASE =retrieval_vector_size _SCREAMING_SNAKE_CASE =retrieval_batch_size _SCREAMING_SNAKE_CASE =passages_path _SCREAMING_SNAKE_CASE =index_path _SCREAMING_SNAKE_CASE =use_dummy_dataset _SCREAMING_SNAKE_CASE =output_retrieved _SCREAMING_SNAKE_CASE =do_deduplication _SCREAMING_SNAKE_CASE =use_cache if self.forced_eos_token_id is None: _SCREAMING_SNAKE_CASE =getattr(self.generator , '''forced_eos_token_id''' , _a ) @classmethod def __UpperCamelCase ( cls : Optional[int] , _a : PretrainedConfig , _a : PretrainedConfig , **_a : Dict ) -> PretrainedConfig: """simple docstring""" return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **_a ) def __UpperCamelCase ( self : Optional[Any] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ ) _SCREAMING_SNAKE_CASE =self.question_encoder.to_dict() _SCREAMING_SNAKE_CASE =self.generator.to_dict() _SCREAMING_SNAKE_CASE =self.__class__.model_type return output
691
1
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _a ( ): """simple docstring""" UpperCAmelCase = ArgumentParser( description=( """PyTorch TPU distributed training launch """ """helper utility that will spawn up """ """multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=__A , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=__A , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=__A ) return parser.parse_args() def _a ( ): """simple docstring""" UpperCAmelCase = parse_args() # Import training_script as a module. UpperCAmelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) UpperCAmelCase = script_fpath.stem UpperCAmelCase = importlib.import_module(__A ) # Patch sys.argv UpperCAmelCase = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
708
"""simple docstring""" from math import sqrt def _a ( _snake_case = 100_0000 ): """simple docstring""" UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_snake_case , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"""{solution() = }""")
74
0
"""simple docstring""" import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) __magic_name__ = logging.getLogger(__name__) __magic_name__ = "Hello world! cécé herlolip" __magic_name__ = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__ ) -> Any: '''simple docstring''' a__ = BertAbsConfig( temp_dir='.',finetune_bert=UpperCAmelCase__,large=UpperCAmelCase__,share_emb=UpperCAmelCase__,use_bert_emb=UpperCAmelCase__,encoder='bert',max_pos=5_12,enc_layers=6,enc_hidden_size=5_12,enc_heads=8,enc_ff_size=5_12,enc_dropout=0.2,dec_layers=6,dec_hidden_size=7_68,dec_heads=8,dec_ff_size=20_48,dec_dropout=0.2,) a__ = torch.load(UpperCAmelCase__,lambda UpperCAmelCase__,UpperCAmelCase__ : storage ) a__ = AbsSummarizer(UpperCAmelCase__,torch.device('cpu' ),UpperCAmelCase__ ) original.eval() a__ = BertAbsSummarizer(UpperCAmelCase__,torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) a__ = BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs a__ = tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (5_12 - len(UpperCAmelCase__ )) ) a__ = torch.tensor(UpperCAmelCase__ ).unsqueeze(0 ) a__ = tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (5_12 - len(UpperCAmelCase__ )) ) a__ = torch.tensor(UpperCAmelCase__ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass a__ = encoder_input_ids a__ = decoder_input_ids a__ = a__ = None a__ = None a__ = a__ = None a__ = a__ = None a__ = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical a__ = original(UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ )[0] a__ = original.generator(UpperCAmelCase__ ) a__ = new_model( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ )[0] a__ = new_model.generator(UpperCAmelCase__ ) a__ = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(UpperCAmelCase__ ) ) a__ = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(UpperCAmelCase__ ) ) a__ = torch.allclose(UpperCAmelCase__,UpperCAmelCase__,atol=1e-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict(),'./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) __magic_name__ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
232
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : int ) -> Optional[Any]: '''simple docstring''' a__ = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) a__ = AutoTokenizer.from_pretrained('xlm-roberta-base' ) a__ = 'The dog is cute and lives in the garden house' a__ = jnp.array([tokenizer.encode(_snake_case )] ) a__ = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim a__ = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) a__ = model(_snake_case )['last_hidden_state'] self.assertEqual(output.shape , _snake_case ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , _snake_case , atol=1E-3 ) )
232
1
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Any ) -> Union[str, Any]: """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer __lowerCamelCase = flax_key_tuple[:-1] + ('weight',) __lowerCamelCase = torch.permute(UpperCamelCase__ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(UpperCamelCase__ ): # linear layer __lowerCamelCase = flax_key_tuple[:-1] + ('weight',) __lowerCamelCase = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __lowerCamelCase = flax_key_tuple[:-1] + ('weight',) return flax_key_tuple, flax_tensor def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] ) -> List[str]: """simple docstring""" if "metadata" in layer: __lowerCamelCase = layer.split('metadata' ) __lowerCamelCase = ''.join(split_layer[0] )[:-1] __lowerCamelCase = [tuple(('metadata' + split_layer[1]).split('/' ) )] elif "kvstore" in layer: __lowerCamelCase = layer.split('kvstore' ) __lowerCamelCase = ''.join(split_layer[0] )[:-1] __lowerCamelCase = [tuple(('kvstore' + split_layer[1]).split('/' ) )] else: __lowerCamelCase = layer.split('/' ) __lowerCamelCase = '/'.join(split_layer[:-1] ) __lowerCamelCase = (split_layer[-1],) if "kvstore/path" in layer: __lowerCamelCase = F"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: __lowerCamelCase = 'file' else: __lowerCamelCase = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def lowerCamelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = rename_keys(UpperCamelCase__ ) __lowerCamelCase = {} for k, v in current_block.items(): __lowerCamelCase = v __lowerCamelCase = new_current_block torch.save(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : str = WEIGHTS_NAME ) -> Dict: """simple docstring""" __lowerCamelCase = convert_file_size_to_int(UpperCamelCase__ ) __lowerCamelCase = [] __lowerCamelCase = {} __lowerCamelCase = 0 __lowerCamelCase = 0 os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) with gfile.GFile(switch_checkpoint_path + '/checkpoint' , 'rb' ) as fp: __lowerCamelCase = serialization.msgpack_restore(fp.read() )['optimizer']['target'] __lowerCamelCase = flatten_dict(UpperCamelCase__ , sep='/' ) __lowerCamelCase = {} for layer in checkpoint_info.keys(): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = get_key_and_tensorstore_dict( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if curr_real_layer_name in all_layers: __lowerCamelCase = content else: __lowerCamelCase = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file __lowerCamelCase = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() __lowerCamelCase = torch.tensor(UpperCamelCase__ ) __lowerCamelCase = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts __lowerCamelCase , __lowerCamelCase = rename_base_flax_keys(tuple(key.split('/' ) ) , UpperCamelCase__ ) __lowerCamelCase = '/'.join(UpperCamelCase__ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: __lowerCamelCase = os.path.join( UpperCamelCase__ , weights_name.replace('.bin' , F"""-{len(UpperCamelCase__ )+1:05d}-of-???.bin""" ) ) rename_and_save_block(UpperCamelCase__ , UpperCamelCase__ ) sharded_state_dicts.append(current_block.keys() ) del current_block __lowerCamelCase = {} __lowerCamelCase = 0 __lowerCamelCase = raw_weights.to(getattr(UpperCamelCase__ , UpperCamelCase__ ) ) current_block_size += weight_size total_size += weight_size # Add the last block __lowerCamelCase = os.path.join(UpperCamelCase__ , weights_name.replace('.bin' , F"""-{len(UpperCamelCase__ )+1:05d}-of-???.bin""" ) ) rename_and_save_block(UpperCamelCase__ , UpperCamelCase__ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(UpperCamelCase__ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index __lowerCamelCase = {} __lowerCamelCase = {} for idx, shard in enumerate(UpperCamelCase__ ): __lowerCamelCase = weights_name.replace( '.bin' , F"""-{idx+1:05d}-of-{len(UpperCamelCase__ ):05d}.bin""" ) # len(sharded_state_dicts):05d} __lowerCamelCase = os.path.join(UpperCamelCase__ , weights_name.replace('.bin' , F"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(UpperCamelCase__ , os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) __lowerCamelCase = shard for key in shard: __lowerCamelCase = shard_file # Add the metadata __lowerCamelCase = {'total_size': total_size} __lowerCamelCase = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , 'w' , encoding='utf-8' ) as f: __lowerCamelCase = json.dumps(UpperCamelCase__ , indent=2 , sort_keys=UpperCamelCase__ ) + '\n' f.write(UpperCamelCase__ ) return metadata, index if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size") parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted", type=str, required=False, help="Path to the output pytorch model.", ) __A = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def lowerCamelCase_ ( ) -> List[Any]: """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer __lowerCamelCase = SwitchTransformersConfig.from_pretrained('google/switch-base-8' ) config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted' ) __lowerCamelCase = SwitchTransformersForConditionalGeneration.from_pretrained( '/home/arthur_huggingface_co/transformers/switch_converted' , device_map='auto' ) __lowerCamelCase = TaTokenizer.from_pretrained('t5-small' ) __lowerCamelCase = 'A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.' __lowerCamelCase = tokenizer(UpperCamelCase__ , return_tensors='pt' ).input_ids __lowerCamelCase = model.generate(UpperCamelCase__ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
167
def lowerCamelCase_ ( UpperCamelCase__ : int ) -> int: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ), F"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: __lowerCamelCase = F"""The input value of [n={number}] has to be > 0""" raise ValueError(UpperCamelCase__ ) else: __lowerCamelCase = sylvester(number - 1 ) __lowerCamelCase = num - 1 __lowerCamelCase = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
167
1
'''simple docstring''' from scipy.stats import spearmanr import datasets SCREAMING_SNAKE_CASE = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' SCREAMING_SNAKE_CASE = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' SCREAMING_SNAKE_CASE = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def A__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'''] , ) def A__ ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any=False ) -> Dict: '''simple docstring''' lowercase : List[Any] =spearmanr(UpperCAmelCase , UpperCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
94
'''simple docstring''' import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ComputeEnvironment.AMAZON_SAGEMAKER UpperCamelCase_ = True UpperCamelCase_ = '''ml.p3.2xlarge''' UpperCamelCase_ = '''accelerate_sagemaker_execution_role''' UpperCamelCase_ = '''hf-sm''' UpperCamelCase_ = '''us-east-1''' UpperCamelCase_ = 1 UpperCamelCase_ = '''accelerate-sagemaker-1''' UpperCamelCase_ = '''1.6''' UpperCamelCase_ = '''4.4''' UpperCamelCase_ = '''train.py''' UpperCamelCase_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] UpperCamelCase_ = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : int ) -> Dict: '''simple docstring''' lowercase : str =_convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['''model_name_or_path'''] , UpperCAmelCase ) assert isinstance(converted_args['''do_train'''] , UpperCAmelCase ) assert isinstance(converted_args['''epochs'''] , UpperCAmelCase ) assert isinstance(converted_args['''learning_rate'''] , UpperCAmelCase ) assert isinstance(converted_args['''max_steps'''] , UpperCAmelCase ) with pytest.raises(UpperCAmelCase ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
94
1
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCAmelCase__ ( ): __a : Tuple = ArgumentParser( description=( 'PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=_lowerCamelCase , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=_lowerCamelCase , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=_lowerCamelCase ) return parser.parse_args() def UpperCAmelCase__ ( ): __a : str = parse_args() # Import training_script as a module. __a : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __a : Tuple = script_fpath.stem __a : Dict = importlib.import_module(_lowerCamelCase ) # Patch sys.argv __a : int = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
717
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. SCREAMING_SNAKE_CASE__ = abspath(join(dirname(dirname(dirname(__file__))), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def UpperCAmelCase__ ( lowerCamelCase_ : str ): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowerCamelCase_ ) def UpperCAmelCase__ ( lowerCamelCase_ : Union[str, Any] ): from transformers.testing_utils import pytest_terminal_summary_main __a : Dict = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(lowerCamelCase_ , id=lowerCamelCase_ )
577
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase : int = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[Any] = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowercase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
649
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __a ( A__ , A__ , A__ ) -> str: # Initialise PyTorch model lowerCAmelCase = BertConfig.from_json_file(A__ ) print(f"Building PyTorch model from configuration: {config}" ) lowerCAmelCase = BertForPreTraining(A__ ) # Load weights from tf checkpoint load_tf_weights_in_bert(A__ , A__ , A__ ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--bert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowercase : int = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
649
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class __a ( __A ): '''simple docstring''' UpperCAmelCase__ : int = """unispeech-sat""" def __init__( self , UpperCamelCase__=32 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=0.02 , UpperCamelCase__=1E-5 , UpperCamelCase__="group" , UpperCamelCase__="gelu" , UpperCamelCase__=(512, 512, 512, 512, 512, 512, 512) , UpperCamelCase__=(5, 2, 2, 2, 2, 2, 2) , UpperCamelCase__=(10, 3, 3, 3, 3, 2, 2) , UpperCamelCase__=False , UpperCamelCase__=128 , UpperCamelCase__=16 , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=0.05 , UpperCamelCase__=10 , UpperCamelCase__=2 , UpperCamelCase__=0.0 , UpperCamelCase__=10 , UpperCamelCase__=0 , UpperCamelCase__=320 , UpperCamelCase__=2 , UpperCamelCase__=0.1 , UpperCamelCase__=100 , UpperCamelCase__=256 , UpperCamelCase__=256 , UpperCamelCase__=0.1 , UpperCamelCase__="mean" , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=256 , UpperCamelCase__=(512, 512, 512, 512, 1500) , UpperCamelCase__=(5, 3, 3, 1, 1) , UpperCamelCase__=(1, 2, 3, 1, 1) , UpperCamelCase__=512 , UpperCamelCase__=0 , UpperCamelCase__=1 , UpperCamelCase__=2 , UpperCamelCase__=504 , **UpperCamelCase__ , ): super().__init__(**UpperCamelCase__ , pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : int = hidden_size SCREAMING_SNAKE_CASE_ : List[Any] = feat_extract_norm SCREAMING_SNAKE_CASE_ : str = feat_extract_activation SCREAMING_SNAKE_CASE_ : str = list(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = list(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = conv_bias SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_conv_pos_embeddings SCREAMING_SNAKE_CASE_ : str = num_conv_pos_embedding_groups SCREAMING_SNAKE_CASE_ : int = len(self.conv_dim ) SCREAMING_SNAKE_CASE_ : int = num_hidden_layers SCREAMING_SNAKE_CASE_ : Dict = intermediate_size SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_act SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : Tuple = hidden_dropout SCREAMING_SNAKE_CASE_ : Optional[Any] = attention_dropout SCREAMING_SNAKE_CASE_ : Any = activation_dropout SCREAMING_SNAKE_CASE_ : Any = feat_proj_dropout SCREAMING_SNAKE_CASE_ : str = final_dropout SCREAMING_SNAKE_CASE_ : Optional[int] = layerdrop SCREAMING_SNAKE_CASE_ : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE_ : str = vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = num_clusters SCREAMING_SNAKE_CASE_ : Tuple = do_stable_layer_norm SCREAMING_SNAKE_CASE_ : str = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE_ : Dict = apply_spec_augment SCREAMING_SNAKE_CASE_ : Any = mask_time_prob SCREAMING_SNAKE_CASE_ : Optional[Any] = mask_time_length SCREAMING_SNAKE_CASE_ : str = mask_time_min_masks SCREAMING_SNAKE_CASE_ : int = mask_feature_prob SCREAMING_SNAKE_CASE_ : int = mask_feature_length SCREAMING_SNAKE_CASE_ : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations SCREAMING_SNAKE_CASE_ : List[str] = num_codevectors_per_group SCREAMING_SNAKE_CASE_ : Tuple = num_codevector_groups SCREAMING_SNAKE_CASE_ : List[str] = contrastive_logits_temperature SCREAMING_SNAKE_CASE_ : Optional[Any] = feat_quantizer_dropout SCREAMING_SNAKE_CASE_ : Any = num_negatives SCREAMING_SNAKE_CASE_ : Any = codevector_dim SCREAMING_SNAKE_CASE_ : Tuple = proj_codevector_dim SCREAMING_SNAKE_CASE_ : Optional[int] = diversity_loss_weight # ctc loss SCREAMING_SNAKE_CASE_ : Optional[int] = ctc_loss_reduction SCREAMING_SNAKE_CASE_ : Union[str, Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE_ : Dict = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = list(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Any = list(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : int = xvector_output_dim @property def __snake_case ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
97
def _lowerCamelCase( ): '''simple docstring''' return 1 def _lowerCamelCase( lowerCAmelCase__ : int ): '''simple docstring''' return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def _lowerCamelCase( lowerCAmelCase__ : int ): '''simple docstring''' return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowerCAmelCase__ ) def _lowerCamelCase( lowerCAmelCase__ : int ): '''simple docstring''' return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowerCAmelCase__ ) def _lowerCamelCase( lowerCAmelCase__ : int ): '''simple docstring''' return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowerCAmelCase__ ) def _lowerCamelCase( lowerCAmelCase__ : int ): '''simple docstring''' return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowerCAmelCase__ ) def _lowerCamelCase( lowerCAmelCase__ : int ): '''simple docstring''' return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowerCAmelCase__ ) def _lowerCamelCase( lowerCAmelCase__ : int ): '''simple docstring''' return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowerCAmelCase__ ) def _lowerCamelCase( lowerCAmelCase__ : int = 200 ): '''simple docstring''' return two_pound(lowerCAmelCase__ ) if __name__ == "__main__": print(solution(int(input().strip())))
97
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Optional[int] = logging.get_logger(__name__) A__ : List[Any] = { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/config.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/config.json''' # See all FNet models at https://huggingface.co/models?filter=fnet } class lowercase__ ( _UpperCAmelCase ): _UpperCAmelCase :Tuple = "fnet" def __init__( self : Dict , snake_case__ : Dict=3_2000 , snake_case__ : Dict=768 , snake_case__ : str=12 , snake_case__ : Optional[int]=3072 , snake_case__ : Dict="gelu_new" , snake_case__ : str=0.1 , snake_case__ : Tuple=512 , snake_case__ : Optional[Any]=4 , snake_case__ : List[Any]=0.02 , snake_case__ : List[Any]=1E-12 , snake_case__ : Any=False , snake_case__ : Dict=512 , snake_case__ : int=3 , snake_case__ : List[Any]=1 , snake_case__ : Optional[Any]=2 , **snake_case__ : Any , ): super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) lowerCamelCase_ : Tuple =vocab_size lowerCamelCase_ : Optional[int] =max_position_embeddings lowerCamelCase_ : Any =hidden_size lowerCamelCase_ : Any =num_hidden_layers lowerCamelCase_ : Union[str, Any] =intermediate_size lowerCamelCase_ : List[str] =hidden_act lowerCamelCase_ : Dict =hidden_dropout_prob lowerCamelCase_ : Union[str, Any] =initializer_range lowerCamelCase_ : Optional[Any] =type_vocab_size lowerCamelCase_ : List[str] =layer_norm_eps lowerCamelCase_ : Optional[Any] =use_tpu_fourier_optimizations lowerCamelCase_ : Tuple =tpu_short_seq_length
153
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : str , lowercase_ : Optional[Any] ): # noqa: E741 while r - l > 1: lowercase = (l + r) // 2 if v[m] >= key: lowercase = m else: lowercase = m # noqa: E741 return r def SCREAMING_SNAKE_CASE ( lowercase_ : list[int] ): if len(lowercase_ ) == 0: return 0 lowercase = [0] * len(lowercase_ ) lowercase = 1 lowercase = v[0] for i in range(1 , len(lowercase_ ) ): if v[i] < tail[0]: lowercase = v[i] elif v[i] > tail[length - 1]: lowercase = v[i] length += 1 else: lowercase = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
588
0
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder _snake_case = "base_with_context" def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = nn.Parameter(torch.FloatTensor(weights["token_embedder"]["embedding"] ) ) _lowerCAmelCase : Any = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=_lowerCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): _lowerCAmelCase : Optional[Any] = weights[F"layers_{lyr_num}"] _lowerCAmelCase : Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) _lowerCAmelCase : Dict = ly_weight["attention"] _lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) _lowerCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) _lowerCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) _lowerCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) _lowerCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) _lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) _lowerCAmelCase : int = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) _lowerCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) _lowerCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(weights["input_proj"]["kernel"].T ) ) _lowerCAmelCase : str = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=_lowerCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): _lowerCAmelCase : List[str] = weights[F"layers_{lyr_num}"] _lowerCAmelCase : List[Any] = ly_weight["attention"] _lowerCAmelCase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) _lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) _lowerCAmelCase : Dict = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) _lowerCAmelCase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) _lowerCAmelCase : Optional[Any] = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) _lowerCAmelCase : int = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) _lowerCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) _lowerCAmelCase : Any = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) _lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) _lowerCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(weights["time_emb_dense0"]["kernel"].T ) ) _lowerCAmelCase : List[Any] = nn.Parameter(torch.FloatTensor(weights["time_emb_dense1"]["kernel"].T ) ) _lowerCAmelCase : Optional[Any] = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = nn.Parameter( torch.FloatTensor(weights["continuous_inputs_projection"]["kernel"].T ) ) for lyr_num, lyr in enumerate(model.decoders ): _lowerCAmelCase : List[Any] = weights[F"layers_{lyr_num}"] _lowerCAmelCase : Optional[Any] = nn.Parameter( torch.FloatTensor(ly_weight["pre_self_attention_layer_norm"]["scale"] ) ) _lowerCAmelCase : Any = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T ) ) _lowerCAmelCase : int = ly_weight["self_attention"] _lowerCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) _lowerCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) _lowerCAmelCase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) _lowerCAmelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) _lowerCAmelCase : int = ly_weight["MultiHeadDotProductAttention_0"] _lowerCAmelCase : Dict = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) _lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) _lowerCAmelCase : int = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) _lowerCAmelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) _lowerCAmelCase : int = nn.Parameter( torch.FloatTensor(ly_weight["pre_cross_attention_layer_norm"]["scale"] ) ) _lowerCAmelCase : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) _lowerCAmelCase : List[str] = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T ) ) _lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) _lowerCAmelCase : int = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) _lowerCAmelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) _lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["decoder_norm"]["scale"] ) ) _lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["spec_out_dense"]["kernel"].T ) ) return model def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = checkpoints.load_tax_checkpoint(args.checkpoint_path ) _lowerCAmelCase : Optional[int] = jnp.tree_util.tree_map(onp.array , _lowerCamelCase ) _lowerCAmelCase : int = [ "from __gin__ import dynamic_registration", "from music_spectrogram_diffusion.models.diffusion import diffusion_utils", "diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0", "diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()", ] _lowerCAmelCase : Any = os.path.join(args.checkpoint_path , ".." , "config.gin" ) _lowerCAmelCase : Dict = inference.parse_training_gin_file(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = inference.InferenceModel(args.checkpoint_path , _lowerCamelCase ) _lowerCAmelCase : str = DDPMScheduler(beta_schedule="squaredcos_cap_v2" , variance_type="fixed_large" ) _lowerCAmelCase : List[str] = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["inputs"] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) _lowerCAmelCase : str = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["targets_context"] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) _lowerCAmelCase : Dict = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["targets_context"] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) _lowerCAmelCase : List[str] = load_notes_encoder(ta_checkpoint["target"]["token_encoder"] , _lowerCamelCase ) _lowerCAmelCase : int = load_continuous_encoder(ta_checkpoint["target"]["continuous_encoder"] , _lowerCamelCase ) _lowerCAmelCase : List[str] = load_decoder(ta_checkpoint["target"]["decoder"] , _lowerCamelCase ) _lowerCAmelCase : List[str] = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder" ) _lowerCAmelCase : int = SpectrogramDiffusionPipeline( notes_encoder=_lowerCamelCase , continuous_encoder=_lowerCamelCase , decoder=_lowerCamelCase , scheduler=_lowerCamelCase , melgan=_lowerCamelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument( "--checkpoint_path", default=f'''{MODEL}/checkpoint_500000''', type=str, required=False, help="Path to the original jax model checkpoint.", ) _snake_case = parser.parse_args() main(args)
658
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase_ ( a , a): lowerCamelCase__ = 'focalnet' def __init__( self, __a=224, __a=4, __a=3, __a=96, __a=False, __a=[192, 384, 768, 768], __a=[2, 2, 6, 2], __a=[2, 2, 2, 2], __a=[3, 3, 3, 3], __a="gelu", __a=4.0, __a=0.0, __a=0.1, __a=False, __a=1E-4, __a=False, __a=False, __a=False, __a=0.02, __a=1E-5, __a=32, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : str = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : List[Any] = use_conv_embed _lowerCAmelCase : Any = hidden_sizes _lowerCAmelCase : Tuple = depths _lowerCAmelCase : Dict = focal_levels _lowerCAmelCase : Optional[Any] = focal_windows _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Union[str, Any] = mlp_ratio _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Dict = drop_path_rate _lowerCAmelCase : str = use_layerscale _lowerCAmelCase : str = layerscale_value _lowerCAmelCase : Union[str, Any] = use_post_layernorm _lowerCAmelCase : Optional[int] = use_post_layernorm_in_modulation _lowerCAmelCase : str = normalize_modulator _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Any = encoder_stride _lowerCAmelCase : List[str] = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)] _lowerCAmelCase , _lowerCAmelCase : List[str] = get_aligned_output_features_output_indices( out_features=__a, out_indices=__a, stage_names=self.stage_names)
658
1
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) lowercase_ = 'https://openaipublic.azureedge.net/jukebox/models/' lowercase_ = { 'jukebox-1b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '1b_lyrics/prior_level_2.pth.tar', ], 'jukebox-5b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '5b_lyrics/prior_level_2.pth.tar', ], } def UpperCAmelCase ( _lowercase : Tuple ) -> Tuple: """simple docstring""" if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 1_0: lowerCAmelCase_ = key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 1_0: lowerCAmelCase_ = key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 1_0: lowerCAmelCase_ = key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 1_0: lowerCAmelCase_ = key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: lowerCAmelCase_ = key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: lowerCAmelCase_ = key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: lowerCAmelCase_ = key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: lowerCAmelCase_ = key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def UpperCAmelCase ( _lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : Any , _lowercase : Dict ) -> Any: """simple docstring""" lowerCAmelCase_ = {} import re lowerCAmelCase_ = re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCAmelCase_ = re.compile( r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCAmelCase_ = re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCAmelCase_ = re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCAmelCase_ = re.compile( r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCAmelCase_ = re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCAmelCase_ = re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) lowerCAmelCase_ = re.compile( r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCAmelCase_ = re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(__lowercase ): lowerCAmelCase_ = re_encoder_block_conv_in.match(__lowercase ) lowerCAmelCase_ = regex_match.groups() lowerCAmelCase_ = int(groups[2] ) * 2 + int(groups[3] ) lowerCAmelCase_ = F"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" lowerCAmelCase_ = re_encoder_block_conv_in.sub(__lowercase , __lowercase ) elif re_encoder_block_resnet.fullmatch(__lowercase ): lowerCAmelCase_ = re_encoder_block_resnet.match(__lowercase ) lowerCAmelCase_ = regex_match.groups() lowerCAmelCase_ = int(groups[2] ) * 2 + int(groups[3] ) lowerCAmelCase_ = {'1': 1, '3': 2}[groups[-2]] lowerCAmelCase_ = F"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" lowerCAmelCase_ = F"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" lowerCAmelCase_ = prefix + resnet_block lowerCAmelCase_ = re_encoder_block_resnet.sub(__lowercase , __lowercase ) elif re_encoder_block_proj_out.fullmatch(__lowercase ): lowerCAmelCase_ = re_encoder_block_proj_out.match(__lowercase ) lowerCAmelCase_ = regex_match.groups() lowerCAmelCase_ = F"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" lowerCAmelCase_ = re_encoder_block_proj_out.sub(__lowercase , __lowercase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(__lowercase ): lowerCAmelCase_ = re_decoder_block_conv_out.match(__lowercase ) lowerCAmelCase_ = regex_match.groups() lowerCAmelCase_ = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCAmelCase_ = F"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" lowerCAmelCase_ = re_decoder_block_conv_out.sub(__lowercase , __lowercase ) elif re_decoder_block_resnet.fullmatch(__lowercase ): lowerCAmelCase_ = re_decoder_block_resnet.match(__lowercase ) lowerCAmelCase_ = regex_match.groups() lowerCAmelCase_ = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCAmelCase_ = {'1': 1, '3': 2}[groups[-2]] lowerCAmelCase_ = F"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" lowerCAmelCase_ = F"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" lowerCAmelCase_ = prefix + resnet_block lowerCAmelCase_ = re_decoder_block_resnet.sub(__lowercase , __lowercase ) elif re_decoder_block_proj_in.fullmatch(__lowercase ): lowerCAmelCase_ = re_decoder_block_proj_in.match(__lowercase ) lowerCAmelCase_ = regex_match.groups() lowerCAmelCase_ = F"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" lowerCAmelCase_ = re_decoder_block_proj_in.sub(__lowercase , __lowercase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(__lowercase ): lowerCAmelCase_ = re_prior_cond_conv_out.match(__lowercase ) lowerCAmelCase_ = regex_match.groups() lowerCAmelCase_ = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCAmelCase_ = F"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" lowerCAmelCase_ = re_prior_cond_conv_out.sub(__lowercase , __lowercase ) elif re_prior_cond_resnet.fullmatch(__lowercase ): lowerCAmelCase_ = re_prior_cond_resnet.match(__lowercase ) lowerCAmelCase_ = regex_match.groups() lowerCAmelCase_ = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCAmelCase_ = {'1': 1, '3': 2}[groups[-2]] lowerCAmelCase_ = F"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" lowerCAmelCase_ = F"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" lowerCAmelCase_ = prefix + resnet_block lowerCAmelCase_ = re_prior_cond_resnet.sub(__lowercase , __lowercase ) elif re_prior_cond_proj_in.fullmatch(__lowercase ): lowerCAmelCase_ = re_prior_cond_proj_in.match(__lowercase ) lowerCAmelCase_ = regex_match.groups() lowerCAmelCase_ = F"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" lowerCAmelCase_ = re_prior_cond_proj_in.sub(__lowercase , __lowercase ) # keep original key else: lowerCAmelCase_ = original_key lowerCAmelCase_ = replace_key(__lowercase ) if F"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(F"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[F"""{key_prefix}.{key}"""].shape: lowerCAmelCase_ = model_state_dict[F"""{key_prefix}.{key}"""] print(F"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) lowerCAmelCase_ = original_key lowerCAmelCase_ = original_key lowerCAmelCase_ = value return new_dict @torch.no_grad() def UpperCAmelCase ( _lowercase : Optional[Any]=None , _lowercase : List[Any]=None ) -> Dict: """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ): lowerCAmelCase_ = requests.get(F"""{PREFIX}{file}""" , allow_redirects=__lowercase ) os.makedirs(F"""{pytorch_dump_folder_path}/""" , exist_ok=__lowercase ) open(F"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , '''wb''' ).write(r.content ) lowerCAmelCase_ = MODEL_MAPPING[model_name.split('''/''' )[-1]] lowerCAmelCase_ = JukeboxConfig.from_pretrained(__lowercase ) lowerCAmelCase_ = JukeboxModel(__lowercase ) lowerCAmelCase_ = [] lowerCAmelCase_ = {} for i, dict_name in enumerate(__lowercase ): lowerCAmelCase_ = torch.load(F"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )['model'] lowerCAmelCase_ = {} for k in old_dic.keys(): if k.endswith('''.b''' ): lowerCAmelCase_ = old_dic[k] elif k.endswith('''.w''' ): lowerCAmelCase_ = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: lowerCAmelCase_ = old_dic[k] else: lowerCAmelCase_ = old_dic[k] lowerCAmelCase_ = 'vqvae' if i == 0 else F"""priors.{3 - i}""" lowerCAmelCase_ = fix_jukebox_keys(__lowercase , model.state_dict() , __lowercase , __lowercase ) weight_dict.append(__lowercase ) lowerCAmelCase_ = weight_dict.pop(0 ) model.vqvae.load_state_dict(__lowercase ) for i in range(len(__lowercase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(__lowercase ).mkdir(exist_ok=__lowercase ) with open(F"""{pytorch_dump_folder_path}/mapping.json""" , '''w''' ) as txtfile: json.dump(__lowercase , __lowercase ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowercase ) return weight_dict if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='jukebox-5b-lyrics', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='jukebox-5b-lyrics-converted', type=str, help='Path to the output PyTorch model directory.', ) lowercase_ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
552
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """google/bit-50""": """https://huggingface.co/google/bit-50/resolve/main/config.json""", } class UpperCAmelCase ( __A , __A ): '''simple docstring''' lowerCamelCase_ = '''bit''' lowerCamelCase_ = ['''preactivation''', '''bottleneck'''] lowerCamelCase_ = ['''SAME''', '''VALID'''] def __init__( self , lowercase=3 , lowercase=6_4 , lowercase=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , lowercase=[3, 4, 6, 3] , lowercase="preactivation" , lowercase="relu" , lowercase=None , lowercase=3_2 , lowercase=0.0 , lowercase=False , lowercase=3_2 , lowercase=1 , lowercase=None , lowercase=None , **lowercase , ): """simple docstring""" super().__init__(**lowercase ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: A_ : Tuple = global_padding.upper() else: raise ValueError(F'''Padding strategy {global_padding} not supported''' ) A_ : Any = num_channels A_ : Any = embedding_size A_ : List[Any] = hidden_sizes A_ : int = depths A_ : Union[str, Any] = layer_type A_ : List[Any] = hidden_act A_ : Tuple = global_padding A_ : List[str] = num_groups A_ : int = drop_path_rate A_ : str = embedding_dynamic_padding A_ : Dict = output_stride A_ : Any = width_factor A_ : int = ['stem'] + [F'''stage{idx}''' for idx in range(1 , len(lowercase ) + 1 )] A_ , A_ : List[Any] = get_aligned_output_features_output_indices( out_features=lowercase , out_indices=lowercase , stage_names=self.stage_names )
558
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase ( _lowercase ): """simple docstring""" a__ = "facebook/bart-large-mnli" a__ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) a__ = "text_classifier" a__ = AutoTokenizer a__ = AutoModelForSequenceClassification a__ = ["text", ["text"]] a__ = ["text"] def A__ ( self): super().setup() _UpperCamelCase : List[Any] = self.model.config _UpperCamelCase : Optional[int] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail'): _UpperCamelCase : Tuple = int(__snake_case) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.') def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : List[Any] = labels return self.pre_processor( [text] * len(__snake_case) , [f'''This example is {label}''' for label in labels] , return_tensors='pt' , padding='max_length' , ) def A__ ( self , __snake_case): _UpperCamelCase : str = outputs.logits _UpperCamelCase : Optional[Any] = torch.argmax(logits[:, 2]).item() return self._labels[label_id]
719
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowercase ( _lowercase ): """simple docstring""" a__ = "facebook/bart-large-mnli" a__ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) a__ = "text_classifier" a__ = AutoTokenizer a__ = AutoModelForSequenceClassification a__ = ["text", ["text"]] a__ = ["text"] def A__ ( self): super().setup() _UpperCamelCase : List[Any] = self.model.config _UpperCamelCase : Optional[int] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail'): _UpperCamelCase : Tuple = int(__snake_case) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.') def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : List[Any] = labels return self.pre_processor( [text] * len(__snake_case) , [f'''This example is {label}''' for label in labels] , return_tensors='pt' , padding='max_length' , ) def A__ ( self , __snake_case): _UpperCamelCase : str = outputs.logits _UpperCamelCase : Optional[Any] = torch.argmax(logits[:, 2]).item() return self._labels[label_id]
648
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase): _UpperCAmelCase : str = AltDiffusionPipeline _UpperCAmelCase : Tuple = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase__ ( self ): torch.manual_seed(0 ) lowerCamelCase : List[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , ) lowerCamelCase : Union[str, Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , ) torch.manual_seed(0 ) lowerCamelCase : List[str] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) lowerCamelCase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_2 , ) lowerCamelCase : List[Any] = CLIPTextModel(__magic_name__ ) lowerCamelCase : List[Any] = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) lowerCamelCase : Optional[int] = 7_7 lowerCamelCase : Dict = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCamelCase__ ( self , __magic_name__ , __magic_name__=0 ): if str(__magic_name__ ).startswith("""mps""" ): lowerCamelCase : Union[str, Any] = torch.manual_seed(__magic_name__ ) else: lowerCamelCase : Dict = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) lowerCamelCase : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCamelCase__ ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def UpperCamelCase__ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def UpperCamelCase__ ( self ): lowerCamelCase : int = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase : Any = self.get_dummy_components() torch.manual_seed(0 ) lowerCamelCase : Dict = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder lowerCamelCase : Any = RobertaSeriesModelWithTransformation(__magic_name__ ) lowerCamelCase : Dict = text_encoder lowerCamelCase : Optional[int] = AltDiffusionPipeline(**__magic_name__ ) lowerCamelCase : Tuple = alt_pipe.to(__magic_name__ ) alt_pipe.set_progress_bar_config(disable=__magic_name__ ) lowerCamelCase : Optional[int] = self.get_dummy_inputs(__magic_name__ ) lowerCamelCase : Tuple = """A photo of an astronaut""" lowerCamelCase : List[Any] = alt_pipe(**__magic_name__ ) lowerCamelCase : Optional[int] = output.images lowerCamelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCamelCase : List[str] = np.array( [0.5_748_162, 0.60_447_145, 0.48_821_217, 0.50_100_636, 0.5_431_185, 0.45_763_683, 0.49_657_696, 0.48_132_733, 0.47_573_093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase__ ( self ): lowerCamelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase : List[Any] = self.get_dummy_components() lowerCamelCase : str = PNDMScheduler(skip_prk_steps=__magic_name__ ) torch.manual_seed(0 ) lowerCamelCase : Optional[Any] = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder lowerCamelCase : List[str] = RobertaSeriesModelWithTransformation(__magic_name__ ) lowerCamelCase : str = text_encoder lowerCamelCase : Union[str, Any] = AltDiffusionPipeline(**__magic_name__ ) lowerCamelCase : Union[str, Any] = alt_pipe.to(__magic_name__ ) alt_pipe.set_progress_bar_config(disable=__magic_name__ ) lowerCamelCase : List[str] = self.get_dummy_inputs(__magic_name__ ) lowerCamelCase : List[Any] = alt_pipe(**__magic_name__ ) lowerCamelCase : List[str] = output.images lowerCamelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCamelCase : Tuple = np.array( [0.51_605_093, 0.5_707_241, 0.47_365_507, 0.50_578_886, 0.5_633_877, 0.4_642_503, 0.5_182_081, 0.48_763_484, 0.49_084_237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class A__ ( unittest.TestCase): def UpperCamelCase__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): # make sure here that pndm scheduler skips prk lowerCamelCase : Any = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , safety_checker=__magic_name__ ) lowerCamelCase : int = alt_pipe.to(__magic_name__ ) alt_pipe.set_progress_bar_config(disable=__magic_name__ ) lowerCamelCase : Dict = """A painting of a squirrel eating a burger""" lowerCamelCase : Any = torch.manual_seed(0 ) lowerCamelCase : List[Any] = alt_pipe([prompt] , generator=__magic_name__ , guidance_scale=6.0 , num_inference_steps=2_0 , output_type="""np""" ) lowerCamelCase : Union[str, Any] = output.images lowerCamelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCamelCase : List[str] = np.array([0.1_010, 0.0_800, 0.0_794, 0.0_885, 0.0_843, 0.0_762, 0.0_769, 0.0_729, 0.0_586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase__ ( self ): lowerCamelCase : Optional[Any] = DDIMScheduler.from_pretrained("""BAAI/AltDiffusion""" , subfolder="""scheduler""" ) lowerCamelCase : Tuple = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , scheduler=__magic_name__ , safety_checker=__magic_name__ ) lowerCamelCase : Optional[Any] = alt_pipe.to(__magic_name__ ) alt_pipe.set_progress_bar_config(disable=__magic_name__ ) lowerCamelCase : Union[str, Any] = """A painting of a squirrel eating a burger""" lowerCamelCase : int = torch.manual_seed(0 ) lowerCamelCase : Optional[int] = alt_pipe([prompt] , generator=__magic_name__ , num_inference_steps=2 , output_type="""numpy""" ) lowerCamelCase : List[Any] = output.images lowerCamelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCamelCase : Optional[int] = np.array([0.4_019, 0.4_052, 0.3_810, 0.4_119, 0.3_916, 0.3_982, 0.4_651, 0.4_195, 0.5_323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
681
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable _lowerCamelCase ={ """configuration_gpt_neox_japanese""": ["""GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXJapaneseConfig"""], """tokenization_gpt_neox_japanese""": ["""GPTNeoXJapaneseTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ """GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXJapaneseForCausalLM""", """GPTNeoXJapaneseLayer""", """GPTNeoXJapaneseModel""", """GPTNeoXJapanesePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys _lowerCamelCase =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
681
1
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _A = get_tests_dir("fixtures") class _lowerCAmelCase ( unittest.TestCase ): def __a ( self ) -> str: # A mock response for an HTTP head request to emulate server down lowerCAmelCase_ = mock.Mock() lowerCAmelCase_ = 500 lowerCAmelCase_ = {} lowerCAmelCase_ = HTTPError lowerCAmelCase_ = {} # Download this model to make sure it's in the cache. lowerCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=_UpperCamelCase ) as mock_head: lowerCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # This check we did call the fake head request mock_head.assert_called() def __a ( self ) -> Dict: # This test is for deprecated behavior and can be removed in v5 lowerCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" ) @is_staging_test class _lowerCAmelCase ( unittest.TestCase ): @classmethod def __a ( cls ) -> int: lowerCAmelCase_ = TOKEN HfFolder.save_token(_UpperCamelCase ) @classmethod def __a ( cls ) -> int: try: delete_repo(token=cls._token , repo_id="test-feature-extractor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor" ) except HTTPError: pass def __a ( self ) -> Optional[int]: lowerCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained(_UpperCamelCase ) feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token ) lowerCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained(f"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _UpperCamelCase , repo_id="test-feature-extractor" , push_to_hub=_UpperCamelCase , use_auth_token=self._token ) lowerCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained(f"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained(_UpperCamelCase ) feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token ) lowerCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _UpperCamelCase , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=_UpperCamelCase , use_auth_token=self._token ) lowerCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) def __a ( self ) -> Tuple: CustomFeatureExtractor.register_for_auto_class() lowerCAmelCase_ = CustomFeatureExtractor.from_pretrained(_UpperCamelCase ) feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , ) lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained( f"""{USER}/test-dynamic-feature-extractor""" , trust_remote_code=_UpperCamelCase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor" )
721
from ...processing_utils import ProcessorMixin class _lowerCAmelCase ( __a ): _lowercase ='''SpeechT5FeatureExtractor''' _lowercase ='''SpeechT5Tokenizer''' def __init__( self , _UpperCamelCase , _UpperCamelCase ) -> int: super().__init__(_UpperCamelCase , _UpperCamelCase ) def __call__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: lowerCAmelCase_ = kwargs.pop("audio" , _UpperCamelCase ) lowerCAmelCase_ = kwargs.pop("text" , _UpperCamelCase ) lowerCAmelCase_ = kwargs.pop("text_target" , _UpperCamelCase ) lowerCAmelCase_ = kwargs.pop("audio_target" , _UpperCamelCase ) lowerCAmelCase_ = kwargs.pop("sampling_rate" , _UpperCamelCase ) if audio is not None and text is not None: raise ValueError( "Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?" ) if audio_target is not None and text_target is not None: raise ValueError( "Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( "You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process." ) if audio is not None: lowerCAmelCase_ = self.feature_extractor(_UpperCamelCase , *_UpperCamelCase , sampling_rate=_UpperCamelCase , **_UpperCamelCase ) elif text is not None: lowerCAmelCase_ = self.tokenizer(_UpperCamelCase , **_UpperCamelCase ) else: lowerCAmelCase_ = None if audio_target is not None: lowerCAmelCase_ = self.feature_extractor(audio_target=_UpperCamelCase , *_UpperCamelCase , sampling_rate=_UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase_ = targets["input_values"] elif text_target is not None: lowerCAmelCase_ = self.tokenizer(_UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase_ = targets["input_ids"] else: lowerCAmelCase_ = None if inputs is None: return targets if targets is not None: lowerCAmelCase_ = labels lowerCAmelCase_ = targets.get("attention_mask" ) if decoder_attention_mask is not None: lowerCAmelCase_ = decoder_attention_mask return inputs def __a ( self , *_UpperCamelCase , **_UpperCamelCase ) -> str: lowerCAmelCase_ = kwargs.pop("input_values" , _UpperCamelCase ) lowerCAmelCase_ = kwargs.pop("input_ids" , _UpperCamelCase ) lowerCAmelCase_ = kwargs.pop("labels" , _UpperCamelCase ) if input_values is not None and input_ids is not None: raise ValueError("Cannot process both `input_values` and `input_ids` inputs." ) if input_values is None and input_ids is None and labels is None: raise ValueError( "You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded." ) if input_values is not None: lowerCAmelCase_ = self.feature_extractor.pad(_UpperCamelCase , *_UpperCamelCase , **_UpperCamelCase ) elif input_ids is not None: lowerCAmelCase_ = self.tokenizer.pad(_UpperCamelCase , **_UpperCamelCase ) else: lowerCAmelCase_ = None if labels is not None: if "input_ids" in labels or (isinstance(_UpperCamelCase , _UpperCamelCase ) and "input_ids" in labels[0]): lowerCAmelCase_ = self.tokenizer.pad(_UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase_ = targets["input_ids"] else: lowerCAmelCase_ = self.feature_extractor.feature_size lowerCAmelCase_ = self.feature_extractor.num_mel_bins lowerCAmelCase_ = self.feature_extractor.pad(_UpperCamelCase , *_UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase_ = feature_size_hack lowerCAmelCase_ = targets["input_values"] else: lowerCAmelCase_ = None if inputs is None: return targets if targets is not None: lowerCAmelCase_ = labels lowerCAmelCase_ = targets.get("attention_mask" ) if decoder_attention_mask is not None: lowerCAmelCase_ = decoder_attention_mask return inputs def __a ( self , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def __a ( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase )
279
0
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings snake_case__ : Dict = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class snake_case ( _snake_case ): '''simple docstring''' UpperCamelCase__ : bool = field(default=_snake_case , metadata={"help": "Whether to use SortishSampler or not."} ) UpperCamelCase__ : bool = field( default=_snake_case , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) UpperCamelCase__ : Optional[int] = field( default=_snake_case , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) UpperCamelCase__ : Optional[int] = field( default=_snake_case , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) UpperCamelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=_snake_case , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def UpperCAmelCase ( self : Dict ) ->Tuple: '''simple docstring''' UpperCAmelCase__ = super().to_dict() for k, v in d.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase__ = v.to_dict() return d
392
from bisect import bisect from itertools import accumulate def lowercase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ = sorted(zip(_lowerCAmelCase , _lowerCAmelCase ) , key=lambda _lowerCAmelCase : x[0] / x[1] , reverse=_lowerCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ = [i[0] for i in r], [i[1] for i in r] UpperCAmelCase__ = list(accumulate(_lowerCAmelCase ) ) UpperCAmelCase__ = bisect(_lowerCAmelCase , _lowerCAmelCase ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
392
1
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() _UpperCamelCase : int = logging.get_logger(__name__) _UpperCamelCase : int = """Hello, World!""" _UpperCamelCase : Optional[int] = """en_XX""" def __UpperCamelCase ( snake_case , snake_case , snake_case ) -> Union[str, Any]: '''simple docstring''' __A = Path('''data_bin''' ) __A = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(snake_case ).parent ) , checkpoint_file=Path(snake_case ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(snake_case ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(snake_case ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , ) xmod.eval() # disable dropout print(snake_case ) __A = xmod.model.encoder.sentence_encoder __A = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __A = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , snake_case ) __A = XmodForSequenceClassification(snake_case ) if classification_head else XmodForMaskedLM(snake_case ) model.eval() # Now let's copy all the weights. # Embeddings __A = xmod_sent_encoder.embed_tokens.weight __A = xmod_sent_encoder.embed_positions.weight __A = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __A = xmod_sent_encoder.layernorm_embedding.weight __A = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __A = model.roberta.encoder.layer[i] __A = xmod_sent_encoder.layers[i] # self attention __A = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('''Dimensions of self-attention weights do not match.''' ) __A = xmod_layer.self_attn.q_proj.weight __A = xmod_layer.self_attn.q_proj.bias __A = xmod_layer.self_attn.k_proj.weight __A = xmod_layer.self_attn.k_proj.bias __A = xmod_layer.self_attn.v_proj.weight __A = xmod_layer.self_attn.v_proj.bias # self-attention output __A = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''' ) __A = xmod_layer.self_attn.out_proj.weight __A = xmod_layer.self_attn.out_proj.bias __A = xmod_layer.self_attn_layer_norm.weight __A = xmod_layer.self_attn_layer_norm.bias # intermediate __A = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''' ) __A = xmod_layer.fca.weight __A = xmod_layer.fca.bias # output __A = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''' ) __A = xmod_layer.fca.weight __A = xmod_layer.fca.bias __A = xmod_layer.final_layer_norm.weight __A = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __A = xmod_layer.adapter_layer_norm.weight __A = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('''Lists of language adapters do not match.''' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __A = bert_output.adapter_modules[lang_code] __A = xmod_layer.adapter_modules[lang_code] __A = from_adapter.fca.weight __A = from_adapter.fca.bias __A = from_adapter.fca.weight __A = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __A = xmod_sent_encoder.layer_norm.weight __A = xmod_sent_encoder.layer_norm.bias if classification_head: __A = xmod.model.classification_heads['''mnli'''].dense.weight __A = xmod.model.classification_heads['''mnli'''].dense.bias __A = xmod.model.classification_heads['''mnli'''].out_proj.weight __A = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head __A = xmod.model.encoder.lm_head.dense.weight __A = xmod.model.encoder.lm_head.dense.bias __A = xmod.model.encoder.lm_head.layer_norm.weight __A = xmod.model.encoder.lm_head.layer_norm.bias __A = xmod.model.encoder.lm_head.weight __A = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __A = xmod.encode(snake_case ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(snake_case ) __A = model(snake_case )[0] if classification_head: __A = xmod.model.classification_heads['''mnli'''](xmod.extract_features(snake_case ) ) else: __A = xmod.model(snake_case , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __A = torch.max(torch.abs(our_output - their_output ) ).item() print(F"max_absolute_diff = {max_absolute_diff}" ) # ~ 1e-7 __A = torch.allclose(snake_case , snake_case , atol=1E-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) Path(snake_case ).mkdir(parents=snake_case , exist_ok=snake_case ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case ) if __name__ == "__main__": _UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) _UpperCamelCase : int = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
341
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCamelCase ( snake_case ) -> Dict: '''simple docstring''' __A = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def __UpperCamelCase ( snake_case , snake_case ) -> List[str]: '''simple docstring''' __A = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def __UpperCamelCase ( snake_case ) -> Any: '''simple docstring''' __A = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", '''stage2.cls_token''') ) return token def __UpperCamelCase ( ) -> Tuple: '''simple docstring''' __A = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def __UpperCamelCase ( snake_case , snake_case , snake_case , snake_case ) -> List[Any]: '''simple docstring''' __A = '''imagenet-1k-id2label.json''' __A = 1_0_0_0 __A = '''huggingface/label-files''' __A = num_labels __A = json.load(open(cached_download(hf_hub_url(snake_case , snake_case , repo_type='''dataset''' ) ) , '''r''' ) ) __A = {int(snake_case ): v for k, v in idalabel.items()} __A = idalabel __A = {v: k for k, v in idalabel.items()} __A = __A = CvtConfig(num_labels=snake_case , idalabel=snake_case , labelaid=snake_case ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": __A = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": __A = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __A = [2, 2, 2_0] __A = [3, 1_2, 1_6] __A = [1_9_2, 7_6_8, 1_0_2_4] __A = CvtForImageClassification(snake_case ) __A = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) __A = image_size __A = torch.load(snake_case , map_location=torch.device('''cpu''' ) ) __A = OrderedDict() __A = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: __A = list_of_state_dict + cls_token(snake_case ) __A = list_of_state_dict + embeddings(snake_case ) for cnt in range(config.depth[idx] ): __A = list_of_state_dict + attention(snake_case , snake_case ) __A = list_of_state_dict + final() for gg in list_of_state_dict: print(snake_case ) for i in range(len(snake_case ) ): __A = original_weights[list_of_state_dict[i][1]] model.load_state_dict(snake_case ) model.save_pretrained(snake_case ) image_processor.save_pretrained(snake_case ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _UpperCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--cvt_model""", default="""cvt-w24""", type=str, help="""Name of the cvt model you'd like to convert.""", ) parser.add_argument( """--image_size""", default=3_8_4, type=int, help="""Input Image Size""", ) parser.add_argument( """--cvt_file_name""", default=r"""cvtmodels\CvT-w24-384x384-IN-22k.pth""", type=str, help="""Input Image Size""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _UpperCamelCase : str = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
341
1
"""simple docstring""" from __future__ import annotations from typing import Any class lowercase_ : '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : int = 6 ): _A = None _A = None self.create_linked_list(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : int ): _A = Node() _A = current_node _A = current_node _A = current_node for _ in range(1 , _UpperCAmelCase ): _A = Node() _A = current_node _A = previous_node _A = current_node _A = self.front _A = previous_node def lowerCAmelCase_ ( self : int ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def lowerCAmelCase_ ( self : List[str] ): self.check_can_perform_operation() return self.front.data if self.front else None def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Any ): if self.rear is None: return self.check_is_full() if not self.is_empty(): _A = self.rear.next if self.rear: _A = data def lowerCAmelCase_ ( self : List[Any] ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: _A = self.front.data _A = None return data _A = self.front _A = old_front.next _A = old_front.data _A = None return data def lowerCAmelCase_ ( self : Tuple ): if self.is_empty(): raise Exception('Empty Queue' ) def lowerCAmelCase_ ( self : Any ): if self.rear and self.rear.next == self.front: raise Exception('Full Queue' ) class lowercase_ : '''simple docstring''' def __init__( self : Union[str, Any] ): _A = None _A = None _A = None if __name__ == "__main__": import doctest doctest.testmod()
7
def lowercase_ (A : int , A : int ): if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) snake_case__ : List[str] = str(bin(A ) )[2:] # remove the leading "0b" snake_case__ : int = str(bin(A ) )[2:] # remove the leading "0b" snake_case__ : Dict = max(len(A ) , len(A ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(A ) , b_binary.zfill(A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
478
0
'''simple docstring''' def __lowercase (_lowercase ) -> list[int]: """simple docstring""" __lowerCamelCase : int = len(_lowercase ) for i in range(_lowercase ): for j in range(i + 1, _lowercase ): if numbers[j] < numbers[i]: __lowerCamelCase , __lowerCamelCase : int = numbers[j], numbers[i] return numbers if __name__ == "__main__": UpperCAmelCase__ :Optional[int] = input("""Enter numbers separated by a comma:\n""").strip() UpperCAmelCase__ :Union[str, Any] = [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
483
'''simple docstring''' import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def __lowercase (_lowercase, _lowercase, _lowercase ) -> Optional[Any]: """simple docstring""" # Initialise PyTorch model __lowerCamelCase : str = RemBertConfig.from_json_file(_lowercase ) print("""Building PyTorch model from configuration: {}""".format(str(_lowercase ) ) ) __lowerCamelCase : List[Any] = RemBertModel(_lowercase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(_lowercase, _lowercase, _lowercase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(_lowercase ) ) torch.save(model.state_dict(), _lowercase ) if __name__ == "__main__": UpperCAmelCase__ :Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--rembert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained RemBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase__ :List[Any] = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
483
1
from collections import Counter from timeit import timeit def a__ ( _UpperCamelCase : str = "" ,): return sum(c % 2 for c in Counter(input_str.replace(''' ''' ,'''''' ).lower() ).values() ) < 2 def a__ ( _UpperCamelCase : str = "" ): if len(_UpperCamelCase ) == 0: return True __lowerCamelCase = input_str.replace(''' ''' ,'''''' ).lower() # character_freq_dict: Stores the frequency of every character in the input string __lowerCamelCase = {} for character in lower_case_input_str: __lowerCamelCase = character_freq_dict.get(_UpperCamelCase ,0 ) + 1 __lowerCamelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def a__ ( _UpperCamelCase : str = "" ): print('''\nFor string = ''' ,_UpperCamelCase ,''':''' ) print( '''> can_string_be_rearranged_as_palindrome_counter()''' ,'''\tans =''' ,can_string_be_rearranged_as_palindrome_counter(_UpperCamelCase ) ,'''\ttime =''' ,timeit( '''z.can_string_be_rearranged_as_palindrome_counter(z.check_str)''' ,setup='''import __main__ as z''' ,) ,'''seconds''' ,) print( '''> can_string_be_rearranged_as_palindrome()''' ,'''\tans =''' ,can_string_be_rearranged_as_palindrome(_UpperCamelCase ) ,'''\ttime =''' ,timeit( '''z.can_string_be_rearranged_as_palindrome(z.check_str)''' ,setup='''import __main__ as z''' ,) ,'''seconds''' ,) if __name__ == "__main__": a_ = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) a_ = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"{check_str} can {'' if status else 'not '}be rearranged as a palindrome")
175
import numpy # List of input, output pairs a_ = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) a_ = (((515, 22, 13), 555), ((61, 35, 49), 150)) a_ = [2, 4, 1, 5] a_ = len(train_data) a_ = 0.0_09 def a__ ( _UpperCamelCase : str ,_UpperCamelCase : List[Any]="train" ): return calculate_hypothesis_value(_UpperCamelCase ,_UpperCamelCase ) - output( _UpperCamelCase ,_UpperCamelCase ) def a__ ( _UpperCamelCase : Optional[Any] ): __lowerCamelCase = 0 for i in range(len(_UpperCamelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def a__ ( _UpperCamelCase : Tuple ,_UpperCamelCase : List[Any] ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def a__ ( _UpperCamelCase : List[Any] ,_UpperCamelCase : Union[str, Any] ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def a__ ( _UpperCamelCase : Dict ,_UpperCamelCase : Dict=m ): __lowerCamelCase = 0 for i in range(_UpperCamelCase ): if index == -1: summation_value += _error(_UpperCamelCase ) else: summation_value += _error(_UpperCamelCase ) * train_data[i][0][index] return summation_value def a__ ( _UpperCamelCase : Optional[int] ): __lowerCamelCase = summation_of_cost_derivative(_UpperCamelCase ,_UpperCamelCase ) / m return cost_derivative_value def a__ ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output __lowerCamelCase = 0.000_002 __lowerCamelCase = 0 __lowerCamelCase = 0 while True: j += 1 __lowerCamelCase = [0, 0, 0, 0] for i in range(0 ,len(_UpperCamelCase ) ): __lowerCamelCase = get_cost_derivative(i - 1 ) __lowerCamelCase = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( _UpperCamelCase ,_UpperCamelCase ,atol=_UpperCamelCase ,rtol=_UpperCamelCase ,): break __lowerCamelCase = temp_parameter_vector print(('''Number of iterations:''', j) ) def a__ ( ): for i in range(len(_UpperCamelCase ) ): print(('''Actual output value:''', output(_UpperCamelCase ,'''test''' )) ) print(('''Hypothesis output:''', calculate_hypothesis_value(_UpperCamelCase ,'''test''' )) ) if __name__ == "__main__": run_gradient_descent() print("""\nTesting gradient descent for a linear hypothesis function.\n""") test_gradient_descent()
175
1
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a : def __init__( self : Optional[int] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Any=13 , lowerCamelCase_ : Optional[int]=30 , lowerCamelCase_ : Dict=2 , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : Dict=True , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : List[Any]=32 , lowerCamelCase_ : Any=2 , lowerCamelCase_ : Optional[Any]=4 , lowerCamelCase_ : Tuple=37 , lowerCamelCase_ : List[str]="gelu" , lowerCamelCase_ : str=0.1 , lowerCamelCase_ : Tuple=0.1 , lowerCamelCase_ : Optional[int]=10 , lowerCamelCase_ : List[Any]=0.02 , lowerCamelCase_ : int=3 , lowerCamelCase_ : int=None , lowerCamelCase_ : List[str]=2 , ) -> List[Any]: __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = is_training __a = use_labels __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = type_sequence_label_size __a = initializer_range __a = scope __a = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __a = (image_size // patch_size) ** 2 __a = num_patches + 2 def lowerCAmelCase_ ( self : Dict ) -> List[str]: __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self : Optional[int] ) -> int: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowerCAmelCase_ ( self : int , lowerCamelCase_ : List[str] , lowerCamelCase_ : str , lowerCamelCase_ : str ) -> Optional[Any]: __a = TFDeiTModel(config=lowerCamelCase_ ) __a = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] ) -> Any: __a = TFDeiTForMaskedImageModeling(config=lowerCamelCase_ ) __a = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __a = 1 __a = TFDeiTForMaskedImageModeling(lowerCamelCase_ ) __a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __a = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCAmelCase_ ( self : List[str] , lowerCamelCase_ : str , lowerCamelCase_ : Any , lowerCamelCase_ : str ) -> Dict: __a = self.type_sequence_label_size __a = TFDeiTForImageClassification(lowerCamelCase_ ) __a = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __a = 1 __a = TFDeiTForImageClassification(lowerCamelCase_ ) __a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __a = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase_ ( self : List[str] ) -> List[str]: __a = self.prepare_config_and_inputs() __a , __a , __a = config_and_inputs __a = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class a ( A_ , A_ , unittest.TestCase ): A_ : str = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) A_ : Tuple = ( { """feature-extraction""": TFDeiTModel, """image-classification""": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) A_ : Union[str, Any] = False A_ : List[str] = False A_ : List[str] = False A_ : List[Any] = False def lowerCAmelCase_ ( self : int ) -> Any: __a = TFDeiTModelTester(self ) __a = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 ) def lowerCAmelCase_ ( self : str ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def lowerCAmelCase_ ( self : Tuple ) -> Dict: pass def lowerCAmelCase_ ( self : List[str] ) -> Union[str, Any]: __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ , tf.keras.layers.Dense ) ) def lowerCAmelCase_ ( self : int ) -> str: __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(lowerCamelCase_ ) __a = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCAmelCase_ ( self : Dict ) -> List[str]: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCAmelCase_ ( self : Any ) -> Optional[Any]: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def lowerCAmelCase_ ( self : Optional[int] ) -> int: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) def lowerCAmelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple=False ) -> List[str]: __a = super()._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def lowerCAmelCase_ ( self : List[str] ) -> List[Any]: for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = TFDeiTModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def UpperCamelCase ( ): __a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class a ( unittest.TestCase ): @cached_property def lowerCAmelCase_ ( self : Union[str, Any] ) -> str: return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def lowerCAmelCase_ ( self : str ) -> Dict: __a = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=lowerCamelCase_ , return_tensors="""tf""" ) # forward pass __a = model(**lowerCamelCase_ ) # verify the logits __a = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) __a = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1E-4 ) )
716
"""simple docstring""" import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class a ( A_ , A_ , A_ ): @register_to_config def __init__( self : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : float , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : str , lowerCamelCase_ : bool = False , ) -> List[str]: super().__init__() __a = nn.Embedding(lowerCamelCase_ , lowerCamelCase_ ) __a = nn.Embedding(lowerCamelCase_ , lowerCamelCase_ ) __a = False __a = nn.Dropout(p=lowerCamelCase_ ) __a = TaConfig( vocab_size=lowerCamelCase_ , d_model=lowerCamelCase_ , num_heads=lowerCamelCase_ , d_kv=lowerCamelCase_ , d_ff=lowerCamelCase_ , dropout_rate=lowerCamelCase_ , feed_forward_proj=lowerCamelCase_ , is_decoder=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , ) __a = nn.ModuleList() for lyr_num in range(lowerCamelCase_ ): __a = TaBlock(lowerCamelCase_ ) self.encoders.append(lowerCamelCase_ ) __a = TaLayerNorm(lowerCamelCase_ ) __a = nn.Dropout(p=lowerCamelCase_ ) def lowerCAmelCase_ ( self : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : int ) -> Tuple: __a = self.token_embedder(lowerCamelCase_ ) __a = encoder_input_tokens.shape[1] __a = torch.arange(lowerCamelCase_ , device=encoder_input_tokens.device ) x += self.position_encoding(lowerCamelCase_ ) __a = self.dropout_pre(lowerCamelCase_ ) # inverted the attention mask __a = encoder_input_tokens.size() __a = self.get_extended_attention_mask(lowerCamelCase_ , lowerCamelCase_ ) for lyr in self.encoders: __a = lyr(lowerCamelCase_ , lowerCamelCase_ )[0] __a = self.layer_norm(lowerCamelCase_ ) return self.dropout_post(lowerCamelCase_ ), encoder_inputs_mask
173
0
from __future__ import annotations def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->Optional[int]: # Checks if the entire collection has been sorted if len(lowerCAmelCase_ ) <= 1 or n <= 1: return insert_next(lowerCAmelCase_ , n - 1 ) rec_insertion_sort(lowerCAmelCase_ , n - 1 ) def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->Dict: # Checks order between adjacent elements if index >= len(lowerCAmelCase_ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order UpperCAmelCase , UpperCAmelCase = ( collection[index], collection[index - 1], ) insert_next(lowerCAmelCase_ , index + 1 ) if __name__ == "__main__": __a = input("""Enter integers separated by spaces: """) __a = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
377
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowercase ( __snake_case ): UpperCamelCase = ['''image_processor''', '''tokenizer'''] UpperCamelCase = '''BridgeTowerImageProcessor''' UpperCamelCase = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self : int , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" super().__init__(__lowerCamelCase , __lowerCamelCase ) def __call__( self : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase : bool = True , __lowerCamelCase : Union[bool, str, PaddingStrategy] = False , __lowerCamelCase : Union[bool, str, TruncationStrategy] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : int = 0 , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[str, TensorType]] = None , **__lowerCamelCase : Dict , ) -> BatchEncoding: """simple docstring""" UpperCAmelCase = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) # add pixel_values + pixel_mask UpperCAmelCase = self.image_processor( __lowerCamelCase , return_tensors=__lowerCamelCase , do_normalize=__lowerCamelCase , do_center_crop=__lowerCamelCase , **__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def _lowercase ( self : Optional[Any] , *__lowerCamelCase : Optional[int] , **__lowerCamelCase : List[str] ) -> str: """simple docstring""" return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def _lowercase ( self : Dict , *__lowerCamelCase : Any , **__lowerCamelCase : List[Any] ) -> Optional[int]: """simple docstring""" return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property def _lowercase ( self : List[Any] ) -> Optional[int]: """simple docstring""" UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
377
1
"""simple docstring""" from math import pi def __lowerCAmelCase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] ) -> Tuple: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(9_0, 1_0))
715
"""simple docstring""" class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self , lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : List[str] = size _UpperCamelCase : Optional[int] = [0] * size _UpperCamelCase : List[str] = [0] * size @staticmethod def lowercase_ (lowerCAmelCase__ ): '''simple docstring''' return index | (index + 1) @staticmethod def lowercase_ (lowerCAmelCase__ ): '''simple docstring''' return (index & (index + 1)) - 1 def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : Dict = value while index < self.size: _UpperCamelCase : Any = self.get_prev(lowerCAmelCase__ ) + 1 if current_left_border == index: _UpperCamelCase : List[str] = value else: _UpperCamelCase : List[str] = max(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase : List[str] = self.get_next(lowerCAmelCase__ ) def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' right -= 1 # Because of right is exclusive _UpperCamelCase : Tuple = 0 while left <= right: _UpperCamelCase : List[str] = self.get_prev(lowerCAmelCase__ ) if left <= current_left: _UpperCamelCase : Optional[Any] = max(lowerCAmelCase__ , self.tree[right] ) _UpperCamelCase : Tuple = current_left else: _UpperCamelCase : Optional[int] = max(lowerCAmelCase__ , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
239
0
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record SCREAMING_SNAKE_CASE__ : List[Any] = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' SCREAMING_SNAKE_CASE__ : Any = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' SCREAMING_SNAKE_CASE__ : Tuple = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Dict: return float((preds == labels).mean() ) def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE="binary" ) -> int: lowerCamelCase : str = simple_accuracy(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) lowerCamelCase : str = float(fa_score(y_true=_SCREAMING_SNAKE_CASE ,y_pred=_SCREAMING_SNAKE_CASE ,average=_SCREAMING_SNAKE_CASE ) ) return { "accuracy": acc, "f1": fa, } def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> int: lowerCamelCase : Union[str, Any] = {} for id_pred, label in zip(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): lowerCamelCase : List[Any] = f'''{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}''' lowerCamelCase : Optional[int] = id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCamelCase : int = [(pred, label)] lowerCamelCase , lowerCamelCase : str = [], [] for question, preds_labels in question_map.items(): lowerCamelCase , lowerCamelCase : List[Any] = zip(*_SCREAMING_SNAKE_CASE ) lowerCamelCase : Dict = fa_score(y_true=_SCREAMING_SNAKE_CASE ,y_pred=_SCREAMING_SNAKE_CASE ,average="macro" ) fas.append(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Tuple = int(sum(pred == label for pred, label in preds_labels ) == len(_SCREAMING_SNAKE_CASE ) ) ems.append(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Optional[Any] = float(sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE ) ) lowerCamelCase : List[Any] = sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE ) lowerCamelCase : List[str] = float(fa_score(y_true=_SCREAMING_SNAKE_CASE ,y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ (datasets.Metric ): '''simple docstring''' def _lowercase ( self ) -> List[str]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , ) def _lowercase ( self ) -> List[Any]: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "prediction_text": datasets.Value("string" ), }, "references": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "answers": datasets.Sequence(datasets.Value("string" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64" ), "paragraph": datasets.Value("int64" ), "question": datasets.Value("int64" ), }, "prediction": datasets.Value("int64" ), }, "references": datasets.Value("int64" ), } else: return { "predictions": datasets.Value("int64" ), "references": datasets.Value("int64" ), } def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(UpperCamelCase__ , UpperCamelCase__ )} elif self.config_name == "cb": return acc_and_fa(UpperCamelCase__ , UpperCamelCase__ , fa_avg="macro" ) elif self.config_name == "record": lowerCamelCase : Any = [ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] lowerCamelCase : Optional[int] = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(UpperCamelCase__ , UpperCamelCase__ )[0] elif self.config_name == "multirc": return evaluate_multirc(UpperCamelCase__ , UpperCamelCase__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(UpperCamelCase__ , UpperCamelCase__ )} else: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
311
from statistics import mean, stdev def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = 3 ) -> list: lowerCamelCase : Optional[int] = min(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Union[str, Any] = max(_SCREAMING_SNAKE_CASE ) # normalize data return [round((x - x_min) / (x_max - x_min) ,_SCREAMING_SNAKE_CASE ) for x in data] def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = 3 ) -> list: lowerCamelCase : Union[str, Any] = mean(_SCREAMING_SNAKE_CASE ) lowerCamelCase : int = stdev(_SCREAMING_SNAKE_CASE ) # standardize data return [round((x - mu) / (sigma) ,_SCREAMING_SNAKE_CASE ) for x in data]
311
1
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor UpperCAmelCase__ : int =logging.get_logger(__name__) class __A ( a ): def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ): warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , UpperCAmelCase_ , ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ )
712
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ : Tuple =logging.get_logger(__name__) UpperCAmelCase__ : str =['''model.decoder.embed_positions.weights'''] def _lowercase ( _UpperCAmelCase ) -> List[Any]: if "emb" in name: lowerCamelCase =name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: lowerCamelCase =name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: lowerCamelCase =name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: lowerCamelCase =name.replace("""linear1""" , """fc1""" ) if "linear2" in name: lowerCamelCase =name.replace("""linear2""" , """fc2""" ) if "norm1" in name: lowerCamelCase =name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: lowerCamelCase =name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: lowerCamelCase =name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: lowerCamelCase =name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: lowerCamelCase =name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: lowerCamelCase =name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> Tuple[Dict, Dict]: lowerCamelCase =list(state_dict.keys() ) lowerCamelCase ={} for key in keys: lowerCamelCase =state_dict.pop(_UpperCAmelCase ) lowerCamelCase =rename_keys(_UpperCAmelCase ) if "in_proj_weight" in key: # split fused qkv proj lowerCamelCase =val[:hidden_size, :] lowerCamelCase =val[hidden_size : 2 * hidden_size, :] lowerCamelCase =val[-hidden_size:, :] elif "enc_to_dec_proj" in key: lowerCamelCase =val else: lowerCamelCase =val return state_dict, enc_dec_proj_state_dict def _lowercase ( _UpperCAmelCase ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values lowerCamelCase =10_24 lowerCamelCase =24 lowerCamelCase =16 elif checkpoint == "medium": lowerCamelCase =15_36 lowerCamelCase =48 lowerCamelCase =24 elif checkpoint == "large": lowerCamelCase =20_48 lowerCamelCase =48 lowerCamelCase =32 else: raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) lowerCamelCase =MusicgenDecoderConfig( hidden_size=_UpperCAmelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , ) return config @torch.no_grad() def _lowercase ( _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="cpu" ) -> Dict: lowerCamelCase =MusicGen.get_pretrained(_UpperCAmelCase , device=_UpperCAmelCase ) lowerCamelCase =decoder_config_from_checkpoint(_UpperCAmelCase ) lowerCamelCase =fairseq_model.lm.state_dict() lowerCamelCase , lowerCamelCase =rename_state_dict( _UpperCAmelCase , hidden_size=decoder_config.hidden_size ) lowerCamelCase =TaEncoderModel.from_pretrained("""t5-base""" ) lowerCamelCase =EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) lowerCamelCase =MusicgenForCausalLM(_UpperCAmelCase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection lowerCamelCase , lowerCamelCase =decoder.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" ) if len(_UpperCAmelCase ) > 0: raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model lowerCamelCase =MusicgenForConditionalGeneration(text_encoder=_UpperCAmelCase , audio_encoder=_UpperCAmelCase , decoder=_UpperCAmelCase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(_UpperCAmelCase ) # check we can do a forward pass lowerCamelCase =torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) lowerCamelCase =input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): lowerCamelCase =model(input_ids=_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase ).logits if logits.shape != (8, 1, 20_48): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor lowerCamelCase =AutoTokenizer.from_pretrained("""t5-base""" ) lowerCamelCase =AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) lowerCamelCase =MusicgenProcessor(feature_extractor=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) # set the appropriate bos/pad token ids lowerCamelCase =20_48 lowerCamelCase =20_48 # set other default generation config params lowerCamelCase =int(30 * audio_encoder.config.frame_rate ) lowerCamelCase =True lowerCamelCase =3.0 if pytorch_dump_folder is not None: Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) if repo_id: logger.info(F"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(_UpperCAmelCase ) processor.push_to_hub(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ : List[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint''', default='''small''', type=str, help='''Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.''', ) parser.add_argument( '''--pytorch_dump_folder''', required=True, default=None, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) parser.add_argument( '''--device''', default='''cpu''', type=str, help='''Torch device to run the conversion, either cpu or cuda.''' ) UpperCAmelCase__ : Optional[Any] =parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
269
0
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging UpperCamelCase = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class lowerCAmelCase_ ( _lowercase ): def __init__( self , _lowerCAmelCase = 1_0_1 ): _lowercase : List[str] = length def __len__( self ): return self.length def __getitem__( self , _lowerCAmelCase ): return i class lowerCAmelCase_ : def __call__( self , _lowerCAmelCase ): return {"input_ids": torch.tensor(__UpperCamelCase ), "labels": torch.tensor(__UpperCamelCase )} class lowerCAmelCase_ ( nn.Module ): def __init__( self ): super().__init__() # Add some (unused) params otherwise DDP will complain. _lowercase : str = nn.Linear(1_2_0 , 8_0 ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None ): if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class lowerCAmelCase_ ( _lowercase ): @require_torch_neuroncore def __a ( self ): _lowercase : Union[str, Any] = F"""--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() _lowercase : Any = self.get_auto_remove_tmp_dir() _lowercase : Dict = F"""--output_dir {output_dir}""".split() _lowercase : Any = ['torchrun'] + distributed_args + args execute_subprocess_async(__UpperCamelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class lowerCAmelCase_ ( _lowercase ): @require_torch_multi_gpu def __a ( self ): _lowercase : Optional[int] = F"""--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() _lowercase : Optional[int] = self.get_auto_remove_tmp_dir() _lowercase : Any = F"""--output_dir {output_dir}""".split() _lowercase : List[str] = ['torchrun'] + distributed_args + args execute_subprocess_async(__UpperCamelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py UpperCamelCase = HfArgumentParser((TrainingArguments,)) UpperCamelCase = parser.parse_args_into_dataclasses()[0] logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ''' f'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}''' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: UpperCamelCase = DummyDataset(dataset_length) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Dict: _lowercase : List[str] = list(range(len(a__ ) ) ) _lowercase : Tuple = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( 'Predictions and/or labels do not match expected results:\n - predictions: ' F"""{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}""" ) return {"success": success} UpperCamelCase = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) UpperCamelCase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) UpperCamelCase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) UpperCamelCase = 2 UpperCamelCase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) UpperCamelCase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) UpperCamelCase = None
66
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json""", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class UpperCAmelCase_ ( _lowercase): snake_case__ = '''gpt_neox''' def __init__( self : Dict , __UpperCamelCase : int=5_0432 , __UpperCamelCase : List[Any]=6144 , __UpperCamelCase : str=44 , __UpperCamelCase : List[str]=64 , __UpperCamelCase : int=2_4576 , __UpperCamelCase : Tuple="gelu" , __UpperCamelCase : Dict=0.2_5 , __UpperCamelCase : int=1_0000 , __UpperCamelCase : Optional[Any]=0.0 , __UpperCamelCase : List[Any]=0.0 , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : Dict=2048 , __UpperCamelCase : Optional[Any]=0.0_2 , __UpperCamelCase : Optional[Any]=1E-5 , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Optional[int]=0 , __UpperCamelCase : Union[str, Any]=2 , __UpperCamelCase : List[Any]=False , __UpperCamelCase : List[str]=True , __UpperCamelCase : Optional[Any]=None , **__UpperCamelCase : Union[str, Any] , ) -> Union[str, Any]: super().__init__(bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) _UpperCamelCase = vocab_size _UpperCamelCase = max_position_embeddings _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = rotary_pct _UpperCamelCase = rotary_emb_base _UpperCamelCase = attention_dropout _UpperCamelCase = hidden_dropout _UpperCamelCase = classifier_dropout _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = use_cache _UpperCamelCase = tie_word_embeddings _UpperCamelCase = use_parallel_residual _UpperCamelCase = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( '''The hidden size is not divisble by the number of attention heads! Make sure to update them!''' ) def _UpperCamelCase ( self : Optional[int] ) -> Tuple: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __UpperCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F'''got {self.rope_scaling}''' ) _UpperCamelCase = self.rope_scaling.get('''type''' , __UpperCamelCase ) _UpperCamelCase = self.rope_scaling.get('''factor''' , __UpperCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(__UpperCamelCase , __UpperCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
420
0
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE_: int =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: str ={ 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } SCREAMING_SNAKE_CASE_: Optional[int] =[ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def lowerCAmelCase_ ( snake_case_ : Tuple , snake_case_ : List[str] , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Tuple ) -> Optional[Any]: '''simple docstring''' for attribute in key.split("." ): UpperCAmelCase_ = getattr(snake_case_ , snake_case_ ) if weight_type is not None: UpperCAmelCase_ = getattr(snake_case_ , snake_case_ ).shape else: UpperCAmelCase_ = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase_ = value elif weight_type == "weight_g": UpperCAmelCase_ = value elif weight_type == "weight_v": UpperCAmelCase_ = value elif weight_type == "bias": UpperCAmelCase_ = value else: UpperCAmelCase_ = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( snake_case_ : Optional[Any] , snake_case_ : Dict ) -> Dict: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = fairseq_model.state_dict() UpperCAmelCase_ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight UpperCAmelCase_ = None for name, value in fairseq_dict.items(): UpperCAmelCase_ = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase_ = True elif name.split("." )[0] == "proj": UpperCAmelCase_ = fairseq_model.proj UpperCAmelCase_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase_ = True if "*" in mapped_key: UpperCAmelCase_ = name.split(snake_case_ )[0].split("." )[-2] UpperCAmelCase_ = mapped_key.replace("*" , snake_case_ ) if "weight_g" in name: UpperCAmelCase_ = "weight_g" elif "weight_v" in name: UpperCAmelCase_ = "weight_v" elif "bias" in name: UpperCAmelCase_ = "bias" elif "weight" in name: UpperCAmelCase_ = "weight" else: UpperCAmelCase_ = None set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) return proj_weight def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : Optional[int] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = full_name.split("conv_layers." )[-1] UpperCAmelCase_ = name.split("." ) UpperCAmelCase_ = int(items[0] ) UpperCAmelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Any ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = emb.weight.shape UpperCAmelCase_ = nn.Linear(snake_case_ , snake_case_ , bias=snake_case_ ) UpperCAmelCase_ = emb.weight.data return lin_layer def lowerCAmelCase_ ( snake_case_ : List[str] ) -> Tuple: '''simple docstring''' with open(snake_case_ , "r" , encoding="utf-8" ) as f: UpperCAmelCase_ = f.readlines() UpperCAmelCase_ = [line.split(" " )[0] for line in lines] UpperCAmelCase_ = len(snake_case_ ) UpperCAmelCase_ = { "<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3, } vocab_dict.update(dict(zip(snake_case_ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : List[str] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : List[str] , snake_case_ : str , snake_case_ : Dict , ) -> Dict: '''simple docstring''' UpperCAmelCase_ = WavaVecaConfig.from_pretrained(snake_case_ ) UpperCAmelCase_ = SpeechaTextaConfig.from_pretrained( snake_case_ , vocab_size=snake_case_ , decoder_layers=snake_case_ , do_stable_layer_norm=snake_case_ ) UpperCAmelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=snake_case_ , return_attention_mask=snake_case_ , ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) UpperCAmelCase_ = model[0].eval() # set weights for wav2vec2 encoder UpperCAmelCase_ = WavaVecaModel(snake_case_ ) UpperCAmelCase_ = recursively_load_weights_wavaveca(model.encoder , snake_case_ ) UpperCAmelCase_ = SpeechaTextaForCausalLM(snake_case_ ) UpperCAmelCase_ , UpperCAmelCase_ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=snake_case_ ) # set output linear layer unexpected_keys.remove("embed_out" ) UpperCAmelCase_ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) UpperCAmelCase_ = SpeechEncoderDecoderModel(encoder=snake_case_ , decoder=snake_case_ ) UpperCAmelCase_ = False # add projection layer UpperCAmelCase_ = nn.Parameter(projection_layer.weight ) UpperCAmelCase_ = nn.Parameter(projection_layer.bias ) UpperCAmelCase_ = create_vocab_dict(snake_case_ ) with open(os.path.join(snake_case_ , "vocab.json" ) , "w" ) as fp: json.dump(snake_case_ , snake_case_ ) UpperCAmelCase_ = SpeechaTextaTokenizer(os.path.join(snake_case_ , "vocab.json" ) ) tokenizer.save_pretrained(snake_case_ ) UpperCAmelCase_ = hf_wavavec.config.to_dict() UpperCAmelCase_ = tokenizer.pad_token_id UpperCAmelCase_ = tokenizer.bos_token_id UpperCAmelCase_ = tokenizer.eos_token_id UpperCAmelCase_ = "speech_to_text_2" UpperCAmelCase_ = "wav2vec2" UpperCAmelCase_ = SpeechEncoderDecoderConfig.from_dict(snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) feature_extractor.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: List[Any] =argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=1_02_24, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') SCREAMING_SNAKE_CASE_: int =parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
415
'''simple docstring''' import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __A ( UpperCamelCase__ ): a__ : Tuple = ["""image_processor""", """tokenizer"""] a__ : int = """FlavaImageProcessor""" a__ : Dict = ("""BertTokenizer""", """BertTokenizerFast""") def __init__(self : int , __a : Any=None , __a : List[str]=None , **__a : Any ): UpperCAmelCase_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __a , ) UpperCAmelCase_ = kwargs.pop("feature_extractor" ) UpperCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__a , __a ) UpperCAmelCase_ = self.image_processor def __call__(self : Tuple , __a : Optional[ImageInput] = None , __a : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , __a : bool = True , __a : Union[bool, str, PaddingStrategy] = False , __a : Union[bool, str, TruncationStrategy] = False , __a : Optional[int] = None , __a : int = 0 , __a : Optional[int] = None , __a : Optional[bool] = None , __a : Optional[bool] = None , __a : Optional[bool] = None , __a : Optional[bool] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : Optional[Union[str, TensorType]] = None , **__a : Optional[Any] , ): if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: UpperCAmelCase_ = self.tokenizer( text=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_token_type_ids=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) if images is not None: UpperCAmelCase_ = self.image_processor( __a , return_image_mask=__a , return_codebook_pixels=__a , return_tensors=__a , **__a , ) if text is not None and images is not None: encoding.update(__a ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__a ) , tensor_type=__a ) def _lowercase (self : Optional[int] , *__a : str , **__a : Any ): return self.tokenizer.batch_decode(*__a , **__a ) def _lowercase (self : Dict , *__a : int , **__a : Optional[Any] ): return self.tokenizer.decode(*__a , **__a ) @property def _lowercase (self : int ): UpperCAmelCase_ = self.tokenizer.model_input_names UpperCAmelCase_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowercase (self : Any ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __a , ) return self.image_processor_class @property def _lowercase (self : Optional[int] ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __a , ) return self.image_processor
415
1
"""simple docstring""" import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _a : def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : List[str]=3 , SCREAMING_SNAKE_CASE__ : int=4 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : List[str]=99 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=36 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3 , SCREAMING_SNAKE_CASE__ : int=4 , SCREAMING_SNAKE_CASE__ : Optional[int]=37 , SCREAMING_SNAKE_CASE__ : Tuple="gelu" , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5_12 , SCREAMING_SNAKE_CASE__ : str=16 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE__ : str=6 , SCREAMING_SNAKE_CASE__ : Dict=6 , SCREAMING_SNAKE_CASE__ : Any=3 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=4 , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : List[str]=10_00 , ): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = num_channels lowerCamelCase__ = image_size lowerCamelCase__ = patch_size lowerCamelCase__ = text_seq_length lowerCamelCase__ = is_training lowerCamelCase__ = use_input_mask lowerCamelCase__ = use_token_type_ids lowerCamelCase__ = use_labels lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = type_sequence_label_size lowerCamelCase__ = initializer_range lowerCamelCase__ = coordinate_size lowerCamelCase__ = shape_size lowerCamelCase__ = num_labels lowerCamelCase__ = num_choices lowerCamelCase__ = scope lowerCamelCase__ = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowerCamelCase__ = text_seq_length lowerCamelCase__ = (image_size // patch_size) ** 2 + 1 lowerCamelCase__ = self.text_seq_length + self.image_seq_length def _UpperCamelCase ( self : int ): lowerCamelCase__ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) lowerCamelCase__ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCamelCase__ = bbox[i, j, 3] lowerCamelCase__ = bbox[i, j, 1] lowerCamelCase__ = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCamelCase__ = bbox[i, j, 2] lowerCamelCase__ = bbox[i, j, 0] lowerCamelCase__ = t lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ = None if self.use_input_mask: lowerCamelCase__ = random_attention_mask([self.batch_size, self.text_seq_length] ) lowerCamelCase__ = None if self.use_token_type_ids: lowerCamelCase__ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) lowerCamelCase__ = None lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) lowerCamelCase__ = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] ): lowerCamelCase__ = LayoutLMvaModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() # text + image lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , pixel_values=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model( SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , pixel_values=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , pixel_values=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , pixel_values=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowerCamelCase__ = model(pixel_values=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any ): lowerCamelCase__ = self.num_labels lowerCamelCase__ = LayoutLMvaForSequenceClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCamelCase__ = model( SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , pixel_values=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): lowerCamelCase__ = self.num_labels lowerCamelCase__ = LayoutLMvaForTokenClassification(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCamelCase__ = model( SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , pixel_values=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _UpperCamelCase ( self : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ): lowerCamelCase__ = LayoutLMvaForQuestionAnswering(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCamelCase__ = model( SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , pixel_values=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , start_positions=SCREAMING_SNAKE_CASE__ , end_positions=SCREAMING_SNAKE_CASE__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self : List[Any] ): lowerCamelCase__ = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) = config_and_inputs lowerCamelCase__ = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class _a ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : Optional[int] = False a_ : List[Any] = False a_ : Tuple = False a_ : List[str] = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) a_ : List[Any] = ( {'document-question-answering': LayoutLMvaForQuestionAnswering, 'feature-extraction': LayoutLMvaModel} if is_torch_available() else {} ) def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ = LayoutLMvaModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def _UpperCamelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ): lowerCamelCase__ = copy.deepcopy(SCREAMING_SNAKE_CASE__ ) if model_class in get_values(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) elif model_class in get_values(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) elif model_class in [ *get_values(SCREAMING_SNAKE_CASE__ ), ]: lowerCamelCase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) elif model_class in [ *get_values(SCREAMING_SNAKE_CASE__ ), ]: lowerCamelCase__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ , ) return inputs_dict def _UpperCamelCase ( self : str ): self.config_tester.run_common_tests() def _UpperCamelCase ( self : Dict ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : str ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase__ = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Optional[Any] ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[Any] ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE__ ) @slow def _UpperCamelCase ( self : Dict ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = LayoutLMvaModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def snake_case ( )-> str: '''simple docstring''' lowerCamelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class _a ( unittest.TestCase ): @cached_property def _UpperCamelCase ( self : Dict ): return LayoutLMvaImageProcessor(apply_ocr=SCREAMING_SNAKE_CASE__ ) if is_vision_available() else None @slow def _UpperCamelCase ( self : Optional[int] ): lowerCamelCase__ = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.default_image_processor lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values.to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = torch.tensor([[1, 2]] ) lowerCamelCase__ = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass lowerCamelCase__ = model( input_ids=input_ids.to(SCREAMING_SNAKE_CASE__ ) , bbox=bbox.to(SCREAMING_SNAKE_CASE__ ) , pixel_values=pixel_values.to(SCREAMING_SNAKE_CASE__ ) , ) # verify the logits lowerCamelCase__ = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
510
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu _snake_case = False class _a ( unittest.TestCase ): def _UpperCamelCase ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCamelCase ( self : Tuple ): return 12 @property def _UpperCamelCase ( self : str ): return 12 @property def _UpperCamelCase ( self : Optional[int] ): return 32 @property def _UpperCamelCase ( self : Optional[Any] ): torch.manual_seed(0 ) lowerCamelCase__ = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _UpperCamelCase ( self : Union[str, Any] ): torch.manual_seed(0 ) lowerCamelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(SCREAMING_SNAKE_CASE__ ) @property def _UpperCamelCase ( self : Any ): torch.manual_seed(0 ) lowerCamelCase__ = 12 lowerCamelCase__ = 12 lowerCamelCase__ = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } lowerCamelCase__ = TransformeraDModel(**SCREAMING_SNAKE_CASE__ ) return model def _UpperCamelCase ( self : int ): lowerCamelCase__ = 'cpu' lowerCamelCase__ = self.dummy_vqvae lowerCamelCase__ = self.dummy_text_encoder lowerCamelCase__ = self.dummy_tokenizer lowerCamelCase__ = self.dummy_transformer lowerCamelCase__ = VQDiffusionScheduler(self.num_embed ) lowerCamelCase__ = LearnedClassifierFreeSamplingEmbeddings(learnable=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = VQDiffusionPipeline( vqvae=SCREAMING_SNAKE_CASE__ , text_encoder=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , transformer=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ , learned_classifier_free_sampling_embeddings=SCREAMING_SNAKE_CASE__ , ) lowerCamelCase__ = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = 'teddy bear playing in the pool' lowerCamelCase__ = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(0 ) lowerCamelCase__ = pipe([prompt] , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , output_type='np' ) lowerCamelCase__ = output.images lowerCamelCase__ = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(0 ) lowerCamelCase__ = pipe( [prompt] , generator=SCREAMING_SNAKE_CASE__ , output_type='np' , return_dict=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 )[0] lowerCamelCase__ = image[0, -3:, -3:, -1] lowerCamelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) lowerCamelCase__ = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCamelCase ( self : int ): lowerCamelCase__ = 'cpu' lowerCamelCase__ = self.dummy_vqvae lowerCamelCase__ = self.dummy_text_encoder lowerCamelCase__ = self.dummy_tokenizer lowerCamelCase__ = self.dummy_transformer lowerCamelCase__ = VQDiffusionScheduler(self.num_embed ) lowerCamelCase__ = LearnedClassifierFreeSamplingEmbeddings( learnable=SCREAMING_SNAKE_CASE__ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) lowerCamelCase__ = VQDiffusionPipeline( vqvae=SCREAMING_SNAKE_CASE__ , text_encoder=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , transformer=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ , learned_classifier_free_sampling_embeddings=SCREAMING_SNAKE_CASE__ , ) lowerCamelCase__ = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = 'teddy bear playing in the pool' lowerCamelCase__ = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(0 ) lowerCamelCase__ = pipe([prompt] , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , output_type='np' ) lowerCamelCase__ = output.images lowerCamelCase__ = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(0 ) lowerCamelCase__ = pipe( [prompt] , generator=SCREAMING_SNAKE_CASE__ , output_type='np' , return_dict=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 )[0] lowerCamelCase__ = image[0, -3:, -3:, -1] lowerCamelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) lowerCamelCase__ = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class _a ( unittest.TestCase ): def _UpperCamelCase ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self : Optional[Any] ): lowerCamelCase__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) lowerCamelCase__ = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) lowerCamelCase__ = pipeline.to(SCREAMING_SNAKE_CASE__ ) pipeline.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though lowerCamelCase__ = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(0 ) lowerCamelCase__ = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=SCREAMING_SNAKE_CASE__ , output_type='np' , ) lowerCamelCase__ = output.images[0] assert image.shape == (2_56, 2_56, 3) assert np.abs(expected_image - image ).max() < 2.0
510
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) class a ( __snake_case ): SCREAMING_SNAKE_CASE : str = """upernet""" def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Optional[Any]=512 , __SCREAMING_SNAKE_CASE : List[str]=0.02 , __SCREAMING_SNAKE_CASE : List[Any]=[1, 2, 3, 6] , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : List[str]=0.4 , __SCREAMING_SNAKE_CASE : int=384 , __SCREAMING_SNAKE_CASE : str=256 , __SCREAMING_SNAKE_CASE : Optional[Any]=1 , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : List[Any]=255 , **__SCREAMING_SNAKE_CASE : str , ) -> Any: super().__init__(**__SCREAMING_SNAKE_CASE ) if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowerCamelCase_ = CONFIG_MAPPING['resnet'](out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowerCamelCase_ = backbone_config.get('model_type' ) lowerCamelCase_ = CONFIG_MAPPING[backbone_model_type] lowerCamelCase_ = config_class.from_dict(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = backbone_config lowerCamelCase_ = hidden_size lowerCamelCase_ = initializer_range lowerCamelCase_ = pool_scales lowerCamelCase_ = use_auxiliary_head lowerCamelCase_ = auxiliary_loss_weight lowerCamelCase_ = auxiliary_in_channels lowerCamelCase_ = auxiliary_channels lowerCamelCase_ = auxiliary_num_convs lowerCamelCase_ = auxiliary_concat_input lowerCamelCase_ = loss_ignore_index def UpperCamelCase ( self : List[Any] ) -> List[str]: lowerCamelCase_ = copy.deepcopy(self.__dict__ ) lowerCamelCase_ = self.backbone_config.to_dict() lowerCamelCase_ = self.__class__.model_type return output
137
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class a ( unittest.TestCase ): def __init__( self : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int=7 , __SCREAMING_SNAKE_CASE : Tuple=3 , __SCREAMING_SNAKE_CASE : Tuple=18 , __SCREAMING_SNAKE_CASE : str=30 , __SCREAMING_SNAKE_CASE : Tuple=400 , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : str=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE : Tuple=[0.5, 0.5, 0.5] , ) -> Tuple: lowerCamelCase_ = size if size is not None else {'shortest_edge': 18} lowerCamelCase_ = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = num_channels lowerCamelCase_ = image_size lowerCamelCase_ = min_resolution lowerCamelCase_ = max_resolution lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = do_center_crop lowerCamelCase_ = crop_size lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean lowerCamelCase_ = image_std def UpperCamelCase ( self : int ) -> Tuple: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class a ( __snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE : Union[str, Any] = LevitImageProcessor if is_vision_available() else None def UpperCamelCase ( self : Optional[Any] ) -> Tuple: lowerCamelCase_ = LevitImageProcessingTester(self ) @property def UpperCamelCase ( self : Any ) -> List[str]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self : List[Any] ) -> Tuple: lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'image_mean' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'image_std' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'do_normalize' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'do_resize' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'do_center_crop' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'size' ) ) def UpperCamelCase ( self : Union[str, Any] ) -> Tuple: lowerCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCamelCase ( self : Optional[Any] ) -> str: pass def UpperCamelCase ( self : int ) -> Optional[Any]: # Initialize image_processing lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase_ = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase ( self : List[str] ) -> List[Any]: # Initialize image_processing lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase_ = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: # Initialize image_processing lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase_ = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
137
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase (A__ ,unittest.TestCase ): lowerCamelCase__ : Dict = KandinskyVaaControlnetImgaImgPipeline lowerCamelCase__ : str = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : int = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : List[Any] = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowerCamelCase__ : int = False @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: return 3_2 @property def SCREAMING_SNAKE_CASE ( self : Any ) -> int: return 3_2 @property def SCREAMING_SNAKE_CASE ( self : str ) -> int: return self.time_input_dim @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: return 1_0_0 @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } SCREAMING_SNAKE_CASE__ = UNetaDConditionModel(**__UpperCAmelCase ) return model @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = VQModel(**self.dummy_movq_kwargs ) return model def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.dummy_unet SCREAMING_SNAKE_CASE__ = self.dummy_movq SCREAMING_SNAKE_CASE__ = { """num_train_timesteps""": 1_0_0_0, """beta_schedule""": """linear""", """beta_start""": 0.00_085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } SCREAMING_SNAKE_CASE__ = DDIMScheduler(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def SCREAMING_SNAKE_CASE ( self : str , __UpperCAmelCase : Any , __UpperCAmelCase : Any=0 ) -> Tuple: SCREAMING_SNAKE_CASE__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __UpperCAmelCase ) # create init_image SCREAMING_SNAKE_CASE__ = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ = Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((2_5_6, 2_5_6) ) # create hint SCREAMING_SNAKE_CASE__ = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) if str(__UpperCAmelCase ).startswith("""mps""" ): SCREAMING_SNAKE_CASE__ = torch.manual_seed(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE__ = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 6_4, """width""": 6_4, """num_inference_steps""": 1_0, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: SCREAMING_SNAKE_CASE__ = """cpu""" SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = self.pipeline_class(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = pipe( **self.get_dummy_inputs(__UpperCAmelCase ) , return_dict=__UpperCAmelCase , )[0] SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) SCREAMING_SNAKE_CASE__ = np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class lowerCamelCase (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" ) SCREAMING_SNAKE_CASE__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) SCREAMING_SNAKE_CASE__ = init_image.resize((5_1_2, 5_1_2) ) SCREAMING_SNAKE_CASE__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) SCREAMING_SNAKE_CASE__ = torch.from_numpy(np.array(__UpperCAmelCase ) ).float() / 255.0 SCREAMING_SNAKE_CASE__ = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) SCREAMING_SNAKE_CASE__ = """A robot, 4k photo""" SCREAMING_SNAKE_CASE__ = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ = pipeline.to(__UpperCAmelCase ) pipeline.set_progress_bar_config(disable=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = pipe_prior( __UpperCAmelCase , image=__UpperCAmelCase , strength=0.85 , generator=__UpperCAmelCase , negative_prompt="""""" , ).to_tuple() SCREAMING_SNAKE_CASE__ = pipeline( image=__UpperCAmelCase , image_embeds=__UpperCAmelCase , negative_image_embeds=__UpperCAmelCase , hint=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=1_0_0 , height=5_1_2 , width=5_1_2 , strength=0.5 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
196
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments A_ : Optional[Any] = logging.getLogger(__name__) @dataclass class lowerCamelCase (A__ ): lowerCamelCase__ : Optional[float] = field( default=0.0 ,metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} ) lowerCamelCase__ : bool = field(default=A__ ,metadata={'help': 'Whether to SortishSamler or not.'} ) lowerCamelCase__ : bool = field( default=A__ ,metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) lowerCamelCase__ : bool = field(default=A__ ,metadata={'help': 'whether to use adafactor'} ) lowerCamelCase__ : Optional[float] = field( default=A__ ,metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} ) lowerCamelCase__ : Optional[float] = field( default=A__ ,metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} ) lowerCamelCase__ : Optional[float] = field(default=A__ ,metadata={'help': 'Dropout probability. Goes into model.config.'} ) lowerCamelCase__ : Optional[float] = field( default=A__ ,metadata={'help': 'Attention dropout probability. Goes into model.config.'} ) lowerCamelCase__ : Optional[str] = field( default='linear' ,metadata={'help': f"Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"} ,)
196
1
"""simple docstring""" from __future__ import annotations def A_ ( _lowercase ): '''simple docstring''' return [ord(_lowercase ) - 96 for elem in plain] def A_ ( _lowercase ): '''simple docstring''' return "".join(chr(elem + 96 ) for elem in encoded ) def A_ ( ): '''simple docstring''' snake_case_ :Optional[int] = encode(input("""-> """ ).strip().lower() ) print("""Encoded: """, _lowercase ) print("""Decoded:""", decode(_lowercase ) ) if __name__ == "__main__": main()
310
"""simple docstring""" from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def A_ ( ): '''simple docstring''' snake_case_ :Tuple = { """repo_name""": ["""test_repo1""", """test_repo2""", """test_repo3"""], """path""": ["""test_1.py""", """test_2.py""", """unit_test.py"""], """content""": ["""a """ * 20, """a """ * 30, """b """ * 7], } snake_case_ :Union[str, Any] = Dataset.from_dict(_lowercase ) return dataset class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' def lowerCAmelCase_ ( self: Optional[int] ) -> List[Any]: snake_case_ :Optional[Any] = get_dataset() snake_case_ :Any = make_duplicate_clusters(snake_case , 0.8_5 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def lowerCAmelCase_ ( self: List[str] ) -> str: snake_case_ :Optional[int] = get_dataset() snake_case_, snake_case_ :List[Any] = deduplicate_dataset(snake_case ) self.assertEqual(len(snake_case ) , 2 ) print(snake_case ) self.assertEqual(duplicate_clusters[0][0]["""copies"""] , 2 ) self.assertEqual(duplicate_clusters[0][0]["""is_extreme"""] , snake_case )
310
1
"""simple docstring""" from datetime import datetime as dt import os from github import Github _lowercase = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def _snake_case ( ): A = Github(os.environ['GITHUB_TOKEN'] ) A = g.get_repo('huggingface/transformers' ) A = repo.get_issues(state='open' ) for issue in open_issues: A = sorted([comment for comment in issue.get_comments()] , key=lambda snake_case__ : i.created_at , reverse=snake_case__ ) A = comments[0] if len(snake_case__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='closed' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
91
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Dict = ['image_processor', 'tokenizer'] _snake_case : int = 'BlipImageProcessor' _snake_case : Tuple = ('BertTokenizer', 'BertTokenizerFast') def __init__( self : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] ) -> int: '''simple docstring''' _UpperCamelCase = False super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = self.image_processor def __call__( self : int , lowerCAmelCase__ : ImageInput = None , lowerCAmelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase__ : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> BatchEncoding: '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _UpperCamelCase = self.tokenizer _UpperCamelCase = self.tokenizer( text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) return text_encoding # add pixel_values _UpperCamelCase = self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) if text is not None: _UpperCamelCase = self.tokenizer( text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) else: _UpperCamelCase = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase__ ) return encoding_image_processor def snake_case__ ( self : Any , *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : Dict ) -> List[str]: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : Tuple , *lowerCAmelCase__ : int , **lowerCAmelCase__ : Optional[int] ) -> Optional[int]: '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @property def snake_case__ ( self : Any ) -> str: '''simple docstring''' _UpperCamelCase = self.tokenizer.model_input_names _UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
98
0
'''simple docstring''' from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
709
import collections import importlib.util import os import re from pathlib import Path lowerCAmelCase__ = """src/transformers""" # Matches is_xxx_available() lowerCAmelCase__ = re.compile(R"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} lowerCAmelCase__ = re.compile(R"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCAmelCase__ = re.compile(R"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available lowerCAmelCase__ = re.compile(R"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") lowerCAmelCase__ = re.compile(R"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCAmelCase__ = re.compile(R"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", lowerCAmelCase__ = re.compile("""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], lowerCAmelCase__ = re.compile("""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo lowerCAmelCase__ = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: lowerCAmelCase__ = re.compile(R"""^\s*try:""") # Catches a line with else: lowerCAmelCase__ = re.compile(R"""^\s*else:""") def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Any ) -> int: '''simple docstring''' if _re_test_backend.search(SCREAMING_SNAKE_CASE_ ) is None: return None A__ = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE_ )] backends.sort() return "_and_".join(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Union[str, Any] ) -> Optional[Any]: '''simple docstring''' with open(SCREAMING_SNAKE_CASE_ , "r" , encoding="utf-8" , newline="\n" ) as f: A__ = f.readlines() A__ = 0 while line_index < len(SCREAMING_SNAKE_CASE_ ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(SCREAMING_SNAKE_CASE_ ): return None # First grab the objects without a specific backend in _import_structure A__ = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: A__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE_ ): A__ = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE_ ).groups()[0] A__ = re.findall("\[([^\]]+)\]" , SCREAMING_SNAKE_CASE_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue A__ = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE_ ) if single_line_import_search is not None: A__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(SCREAMING_SNAKE_CASE_ ) > 0] objects.extend(SCREAMING_SNAKE_CASE_ ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 A__ = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. A__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: A__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 A__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): A__ = lines[line_index] if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE_ ) is not None: objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE_ ).groups()[0] ) elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE_ ) is not None: A__ = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE_ ).groups()[0].split(", " ) A__ = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE_ ) > 0] objects.extend(SCREAMING_SNAKE_CASE_ ) elif _re_between_brackets.search(SCREAMING_SNAKE_CASE_ ) is not None: A__ = _re_between_brackets.search(SCREAMING_SNAKE_CASE_ ).groups()[0].split(", " ) A__ = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE_ ) > 0] objects.extend(SCREAMING_SNAKE_CASE_ ) elif _re_quote_object.search(SCREAMING_SNAKE_CASE_ ) is not None: objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE_ ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 1_2 + "\"" ): objects.append(line[1_3:-3] ) line_index += 1 A__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend A__ = [] while ( line_index < len(SCREAMING_SNAKE_CASE_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): A__ = lines[line_index] A__ = _re_import.search(SCREAMING_SNAKE_CASE_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 A__ = {"none": objects} # Let's continue with backend-specific objects while line_index < len(SCREAMING_SNAKE_CASE_ ): # If the line is an if is_backend_available, we grab all objects associated. A__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: A__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 A__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): A__ = lines[line_index] A__ = _re_import.search(SCREAMING_SNAKE_CASE_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 1_2 ): objects.append(line[1_2:-2] ) line_index += 1 A__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Dict , SCREAMING_SNAKE_CASE_: List[Any] ) -> Optional[int]: '''simple docstring''' def find_duplicates(SCREAMING_SNAKE_CASE_: str ): return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] A__ = [] for key in import_dict_objects.keys(): A__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'Duplicate _import_structure definitions for: {duplicate_imports}' ) A__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): A__ = "base imports" if key == "none" else F'{key} backend' errors.append(F'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F' {a} in _import_structure but not in TYPE_HINT.' ) return errors def lowerCAmelCase__ ( ) -> Dict: '''simple docstring''' A__ = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE_ ): if "__init__.py" in files: A__ = os.path.join(SCREAMING_SNAKE_CASE_ , "__init__.py" ) A__ = parse_init(SCREAMING_SNAKE_CASE_ ) if objects is not None: A__ = analyze_results(*SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: A__ = F'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append("\n".join(SCREAMING_SNAKE_CASE_ ) ) if len(SCREAMING_SNAKE_CASE_ ) > 0: raise ValueError("\n\n".join(SCREAMING_SNAKE_CASE_ ) ) def lowerCAmelCase__ ( ) -> Optional[Any]: '''simple docstring''' A__ = [] for path, directories, files in os.walk(SCREAMING_SNAKE_CASE_ ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(SCREAMING_SNAKE_CASE_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(SCREAMING_SNAKE_CASE_ ) / folder).glob("*.py" ) ) ) == 0: continue A__ = str((Path(SCREAMING_SNAKE_CASE_ ) / folder).relative_to(SCREAMING_SNAKE_CASE_ ) ) A__ = short_path.replace(os.path.sep , "." ) submodules.append(SCREAMING_SNAKE_CASE_ ) for fname in files: if fname == "__init__.py": continue A__ = str((Path(SCREAMING_SNAKE_CASE_ ) / fname).relative_to(SCREAMING_SNAKE_CASE_ ) ) A__ = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(SCREAMING_SNAKE_CASE_ ) return submodules lowerCAmelCase__ = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", ] def lowerCAmelCase__ ( ) -> Optional[int]: '''simple docstring''' A__ = importlib.util.spec_from_file_location( "transformers" , os.path.join(SCREAMING_SNAKE_CASE_ , "__init__.py" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) A__ = spec.loader.load_module() A__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(SCREAMING_SNAKE_CASE_ ) > 0: A__ = "\n".join(F'- {module}' for module in module_not_registered ) raise ValueError( "The following submodules are not properly registered in the main init of Transformers:\n" F'{list_of_modules}\n' "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
626
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. SCREAMING_SNAKE_CASE_ = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE__ : Tuple = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: SCREAMING_SNAKE_CASE__ : Any = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: SCREAMING_SNAKE_CASE__ : Any = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" _snake_case : List[Any] = pipeline( task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='pt' ) _snake_case : List[str] = text_classifier('This is great !' ) self.assertEqual(nested_simplify(snake_case ) , [{'label': 'LABEL_0', 'score': 0.504}] ) _snake_case : Any = text_classifier('This is great !' , top_k=2 ) self.assertEqual( nested_simplify(snake_case ) , [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}] ) _snake_case : List[str] = text_classifier(['This is great !', 'This is bad'] , top_k=2 ) self.assertEqual( nested_simplify(snake_case ) , [ [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}], [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}], ] , ) _snake_case : Optional[int] = text_classifier('This is great !' , top_k=1 ) self.assertEqual(nested_simplify(snake_case ) , [{'label': 'LABEL_0', 'score': 0.504}] ) # Legacy behavior _snake_case : str = text_classifier('This is great !' , return_all_scores=snake_case ) self.assertEqual(nested_simplify(snake_case ) , [{'label': 'LABEL_0', 'score': 0.504}] ) _snake_case : Dict = text_classifier('This is great !' , return_all_scores=snake_case ) self.assertEqual( nested_simplify(snake_case ) , [[{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}]] ) _snake_case : Optional[Any] = text_classifier(['This is great !', 'Something else'] , return_all_scores=snake_case ) self.assertEqual( nested_simplify(snake_case ) , [ [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}], [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}], ] , ) _snake_case : Any = text_classifier(['This is great !', 'Something else'] , return_all_scores=snake_case ) self.assertEqual( nested_simplify(snake_case ) , [ {'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_0', 'score': 0.504}, ] , ) @require_torch def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" import torch _snake_case : Optional[Any] = pipeline( task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='pt' , device=torch.device('cpu' ) , ) _snake_case : Optional[int] = text_classifier('This is great !' ) self.assertEqual(nested_simplify(snake_case ) , [{'label': 'LABEL_0', 'score': 0.504}] ) @require_tf def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" _snake_case : List[Any] = pipeline( task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='tf' ) _snake_case : str = text_classifier('This is great !' ) self.assertEqual(nested_simplify(snake_case ) , [{'label': 'LABEL_0', 'score': 0.504}] ) @slow @require_torch def __UpperCAmelCase ( self : List[str] ): """simple docstring""" _snake_case : int = pipeline('text-classification' ) _snake_case : Optional[Any] = text_classifier('This is great !' ) self.assertEqual(nested_simplify(snake_case ) , [{'label': 'POSITIVE', 'score': 1.0}] ) _snake_case : Union[str, Any] = text_classifier('This is bad !' ) self.assertEqual(nested_simplify(snake_case ) , [{'label': 'NEGATIVE', 'score': 1.0}] ) _snake_case : Dict = text_classifier('Birds are a type of animal' ) self.assertEqual(nested_simplify(snake_case ) , [{'label': 'POSITIVE', 'score': 0.988}] ) @slow @require_tf def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" _snake_case : Optional[int] = pipeline('text-classification' , framework='tf' ) _snake_case : Any = text_classifier('This is great !' ) self.assertEqual(nested_simplify(snake_case ) , [{'label': 'POSITIVE', 'score': 1.0}] ) _snake_case : Optional[int] = text_classifier('This is bad !' ) self.assertEqual(nested_simplify(snake_case ) , [{'label': 'NEGATIVE', 'score': 1.0}] ) _snake_case : Dict = text_classifier('Birds are a type of animal' ) self.assertEqual(nested_simplify(snake_case ) , [{'label': 'POSITIVE', 'score': 0.988}] ) def __UpperCAmelCase ( self : Union[str, Any] , snake_case : str , snake_case : Optional[int] , snake_case : Union[str, Any] ): """simple docstring""" _snake_case : Optional[int] = TextClassificationPipeline(model=snake_case , tokenizer=snake_case ) return text_classifier, ["HuggingFace is in", "This is another test"] def __UpperCAmelCase ( self : Tuple , snake_case : Any , snake_case : Dict ): """simple docstring""" _snake_case : str = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 _snake_case : Optional[int] = 'HuggingFace is in' _snake_case : Any = text_classifier(snake_case ) self.assertEqual(nested_simplify(snake_case ) , [{'label': ANY(snake_case ), 'score': ANY(snake_case )}] ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() ) _snake_case : Tuple = ['HuggingFace is in ', 'Paris is in France'] _snake_case : Union[str, Any] = text_classifier(snake_case ) self.assertEqual( nested_simplify(snake_case ) , [{'label': ANY(snake_case ), 'score': ANY(snake_case )}, {'label': ANY(snake_case ), 'score': ANY(snake_case )}] , ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() ) self.assertTrue(outputs[1]['label'] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format _snake_case : Optional[int] = text_classifier(snake_case , top_k=snake_case ) _snake_case : List[Any] = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(snake_case ) , [[{'label': ANY(snake_case ), 'score': ANY(snake_case )}] * N, [{'label': ANY(snake_case ), 'score': ANY(snake_case )}] * N] , ) _snake_case : Dict = {'text': 'HuggingFace is in ', 'text_pair': 'Paris is in France'} _snake_case : Optional[Any] = text_classifier(snake_case ) self.assertEqual( nested_simplify(snake_case ) , {'label': ANY(snake_case ), 'score': ANY(snake_case )} , ) self.assertTrue(outputs['label'] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. _snake_case : Optional[Any] = [['HuggingFace is in ', 'Paris is in France']] with self.assertRaises(snake_case ): text_classifier(snake_case ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility _snake_case : List[str] = text_classifier([[['HuggingFace is in ', 'Paris is in France']]] ) self.assertEqual( nested_simplify(snake_case ) , [{'label': ANY(snake_case ), 'score': ANY(snake_case )}] , ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() )
517
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets SCREAMING_SNAKE_CASE_ = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" SCREAMING_SNAKE_CASE_ = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n" SCREAMING_SNAKE_CASE_ = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html' ] , ) def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('float' ) ), "references": datasets.Sequence(datasets.Value('float' ) ), } else: return { "predictions": datasets.Value('float' ), "references": datasets.Value('float' ), } def __UpperCAmelCase ( self : Optional[int] , snake_case : str , snake_case : int , snake_case : Dict=None , snake_case : List[str]="uniform_average" , snake_case : Any=True ): """simple docstring""" _snake_case : str = mean_squared_error( snake_case , snake_case , sample_weight=snake_case , multioutput=snake_case , squared=snake_case ) return {"mse": mse}
517
1
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _A ( __lowerCamelCase ): '''simple docstring''' _snake_case : Optional[Any] = ["""image_processor""", """tokenizer"""] _snake_case : List[Any] = """AutoImageProcessor""" _snake_case : Tuple = """AutoTokenizer""" def __init__( self : str , lowerCamelCase : Tuple , lowerCamelCase : Tuple ): '''simple docstring''' super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) __lowercase = self.image_processor def __call__( self : List[Any] , lowerCamelCase : Tuple=None , lowerCamelCase : Any=None , lowerCamelCase : Optional[int]=None , **lowerCamelCase : Any ): '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: __lowercase = self.tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if images is not None: __lowercase = self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if text is not None and images is not None: __lowercase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase_ ) , tensor_type=UpperCAmelCase_ ) def _snake_case ( self : Dict , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : Tuple ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _snake_case ( self : str , *lowerCamelCase : List[Any] , **lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property def _snake_case ( self : Any ): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
706
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar snake_case__ : Union[str, Any] = TypeVar("""T""") snake_case__ : Optional[int] = TypeVar("""U""") class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : T | None , lowerCamelCase : U | None ): '''simple docstring''' __lowercase = key __lowercase = val __lowercase = None __lowercase = None def __repr__( self : Any ): '''simple docstring''' return ( f"""Node: key: {self.key}, val: {self.val}, """ f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase , __lowercase = self.rear, self.head def __repr__( self : Optional[Any] ): '''simple docstring''' __lowercase = ["DoubleLinkedList"] __lowercase = self.head while node.next is not None: rep.append(str(lowerCamelCase ) ) __lowercase = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' __lowercase = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None __lowercase = node __lowercase = previous __lowercase = node __lowercase = self.rear def _snake_case ( self : Optional[int] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' if node.prev is None or node.next is None: return None __lowercase = node.next __lowercase = node.prev __lowercase = None __lowercase = None return node class _A ( Generic[T, U] ): '''simple docstring''' _snake_case : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = DoubleLinkedList() __lowercase = capacity __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase = {} def __repr__( self : Optional[Any] ): '''simple docstring''' return ( f"""CacheInfo(hits={self.hits}, misses={self.miss}, """ f"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self : Dict , lowerCamelCase : T ): '''simple docstring''' return key in self.cache def _snake_case ( self : List[Any] , lowerCamelCase : T ): '''simple docstring''' if key in self.cache: self.hits += 1 __lowercase = self.cache[key] __lowercase = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowerCamelCase ) return node.val self.miss += 1 return None def _snake_case ( self : Union[str, Any] , lowerCamelCase : T , lowerCamelCase : U ): '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity __lowercase = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowerCamelCase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value __lowercase = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list __lowercase = value self.list.add(lowerCamelCase ) @classmethod def _snake_case ( cls : Union[str, Any] , lowerCamelCase : int = 128 ): '''simple docstring''' def cache_decorator_inner(lowerCamelCase : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*lowerCamelCase : T ) -> U: if func not in cls.decorator_function_to_instance_map: __lowercase = LRUCache(lowerCamelCase ) __lowercase = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: __lowercase = func(*lowerCamelCase ) cls.decorator_function_to_instance_map[func].put(args[0] , lowerCamelCase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowerCamelCase , "cache_info" , lowerCamelCase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
655
0
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCamelCase__ ( snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def _UpperCamelCase ( self ,A=0 ): UpperCAmelCase = floats_tensor((1, 3, 128, 128) ,rng=random.Random(A ) ) UpperCAmelCase = np.random.RandomState(A ) UpperCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """strength""": 0.75, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _UpperCamelCase ( self ): UpperCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase = self.get_dummy_inputs() UpperCAmelCase = pipe(**A ).images UpperCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) UpperCAmelCase = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _UpperCamelCase ( self ): UpperCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) UpperCAmelCase = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase = self.get_dummy_inputs() UpperCAmelCase = pipe(**A ).images UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _UpperCamelCase ( self ): UpperCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) UpperCAmelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A ) # warmup pass to apply optimizations UpperCAmelCase = pipe(**self.get_dummy_inputs() ) UpperCAmelCase = self.get_dummy_inputs() UpperCAmelCase = pipe(**A ).images UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _UpperCamelCase ( self ): UpperCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) UpperCAmelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase = self.get_dummy_inputs() UpperCAmelCase = pipe(**A ).images UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _UpperCamelCase ( self ): UpperCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) UpperCAmelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase = self.get_dummy_inputs() UpperCAmelCase = pipe(**A ).images UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _UpperCamelCase ( self ): UpperCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) UpperCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase = self.get_dummy_inputs() UpperCAmelCase = pipe(**A ).images UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): @property def _UpperCamelCase ( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _UpperCamelCase ( self ): UpperCAmelCase = ort.SessionOptions() UpperCAmelCase = False return options def _UpperCamelCase ( self ): UpperCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) UpperCAmelCase = init_image.resize((768, 512) ) # using the PNDM scheduler by default UpperCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" ,revision="""onnx""" ,safety_checker=A ,feature_extractor=A ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase = """A fantasy landscape, trending on artstation""" UpperCAmelCase = np.random.RandomState(0 ) UpperCAmelCase = pipe( prompt=A ,image=A ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=A ,output_type="""np""" ,) UpperCAmelCase = output.images UpperCAmelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) UpperCAmelCase = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _UpperCamelCase ( self ): UpperCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) UpperCAmelCase = init_image.resize((768, 512) ) UpperCAmelCase = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" ,subfolder="""scheduler""" ,revision="""onnx""" ) UpperCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" ,revision="""onnx""" ,scheduler=A ,safety_checker=A ,feature_extractor=A ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase = """A fantasy landscape, trending on artstation""" UpperCAmelCase = np.random.RandomState(0 ) UpperCAmelCase = pipe( prompt=A ,image=A ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=20 ,generator=A ,output_type="""np""" ,) UpperCAmelCase = output.images UpperCAmelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) UpperCAmelCase = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
341
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/config.json""", """funnel-transformer/small-base""": """https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json""", """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/config.json""", """funnel-transformer/medium-base""": """https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json""", """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/config.json""", """funnel-transformer/large-base""": """https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json""", """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json""", """funnel-transformer/xlarge-base""": """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json""", } class lowerCamelCase__ ( snake_case ): SCREAMING_SNAKE_CASE = '''funnel''' SCREAMING_SNAKE_CASE = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', } def __init__( self ,A=30_522 ,A=[4, 4, 4] ,A=None ,A=2 ,A=768 ,A=12 ,A=64 ,A=3_072 ,A="gelu_new" ,A=0.1 ,A=0.1 ,A=0.0 ,A=0.1 ,A=None ,A=1e-9 ,A="mean" ,A="relative_shift" ,A=True ,A=True ,A=True ,**A ,): UpperCAmelCase = vocab_size UpperCAmelCase = block_sizes UpperCAmelCase = [1] * len(A ) if block_repeats is None else block_repeats assert len(A ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." UpperCAmelCase = num_decoder_layers UpperCAmelCase = d_model UpperCAmelCase = n_head UpperCAmelCase = d_head UpperCAmelCase = d_inner UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = initializer_range UpperCAmelCase = initializer_std UpperCAmelCase = layer_norm_eps assert pooling_type in [ "mean", "max", ], F'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' UpperCAmelCase = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' UpperCAmelCase = attention_type UpperCAmelCase = separate_cls UpperCAmelCase = truncate_seq UpperCAmelCase = pool_q_only super().__init__(**A ) @property def _UpperCamelCase ( self ): return sum(self.block_sizes ) @num_hidden_layers.setter def _UpperCamelCase ( self ,A ): raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.""" ) @property def _UpperCamelCase ( self ): return len(self.block_sizes ) @num_blocks.setter def _UpperCamelCase ( self ,A ): raise NotImplementedError("""This model does not support the setting of `num_blocks`. Please set `block_sizes`.""" )
341
1
UpperCamelCase__ = { "meter": "m", "kilometer": "km", "megametre": "Mm", "gigametre": "Gm", "terametre": "Tm", "petametre": "Pm", "exametre": "Em", "zettametre": "Zm", "yottametre": "Ym", } # Exponent of the factor(meter) UpperCamelCase__ = { "m": 0, "km": 3, "Mm": 6, "Gm": 9, "Tm": 12, "Pm": 15, "Em": 18, "Zm": 21, "Ym": 24, } def _UpperCamelCase (a__ :float , a__ :str , a__ :str ): """simple docstring""" UpperCamelCase__ = from_type.lower().strip("""s""" ) UpperCamelCase__ = to_type.lower().strip("""s""" ) UpperCamelCase__ = UNIT_SYMBOL.get(a__ , a__ ) UpperCamelCase__ = UNIT_SYMBOL.get(a__ , a__ ) if from_sanitized not in METRIC_CONVERSION: UpperCamelCase__ = ( f"""Invalid 'from_type' value: {from_type!r}.\n""" f"""Conversion abbreviations are: {", ".join(a__ )}""" ) raise ValueError(a__ ) if to_sanitized not in METRIC_CONVERSION: UpperCamelCase__ = ( f"""Invalid 'to_type' value: {to_type!r}.\n""" f"""Conversion abbreviations are: {", ".join(a__ )}""" ) raise ValueError(a__ ) UpperCamelCase__ = METRIC_CONVERSION[from_sanitized] UpperCamelCase__ = METRIC_CONVERSION[to_sanitized] UpperCamelCase__ = 1 if from_exponent > to_exponent: UpperCamelCase__ = from_exponent - to_exponent else: UpperCamelCase__ = -(to_exponent - from_exponent) return value * pow(10 , a__ ) if __name__ == "__main__": from doctest import testmod testmod()
548
UpperCamelCase__ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def _UpperCamelCase (): """simple docstring""" UpperCamelCase__ = input("""Enter message: """ ) UpperCamelCase__ = input("""Enter key [alphanumeric]: """ ) UpperCamelCase__ = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): UpperCamelCase__ = """encrypt""" UpperCamelCase__ = encrypt_message(a__ , a__ ) elif mode.lower().startswith("""d""" ): UpperCamelCase__ = """decrypt""" UpperCamelCase__ = decrypt_message(a__ , a__ ) print(f"""\n{mode.title()}ed message:""" ) print(a__ ) def _UpperCamelCase (a__ :str , a__ :str ): """simple docstring""" return translate_message(a__ , a__ , """encrypt""" ) def _UpperCamelCase (a__ :str , a__ :str ): """simple docstring""" return translate_message(a__ , a__ , """decrypt""" ) def _UpperCamelCase (a__ :str , a__ :str , a__ :str ): """simple docstring""" UpperCamelCase__ = [] UpperCamelCase__ = 0 UpperCamelCase__ = key.upper() for symbol in message: UpperCamelCase__ = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(a__ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(a__ ): UpperCamelCase__ = 0 else: translated.append(a__ ) return "".join(a__ ) if __name__ == "__main__": main()
548
1
"""simple docstring""" import string def A_ ( snake_case__ ) -> str: _UpperCamelCase :int = '''''' for i in sequence: _UpperCamelCase :Optional[Any] = ord(snake_case_ ) if 65 <= extract <= 90: output += chr(1_55 - extract ) elif 97 <= extract <= 1_22: output += chr(2_19 - extract ) else: output += i return output def A_ ( snake_case__ ) -> str: _UpperCamelCase :List[Any] = string.ascii_letters _UpperCamelCase :List[Any] = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(snake_case_ )] if c in letters else c for c in sequence ) def A_ ( ) -> None: from timeit import timeit print('''Running performance benchmarks...''' ) _UpperCamelCase :Any = '''from string import printable ; from __main__ import atbash, atbash_slow''' print(f"> atbash_slow(): {timeit('atbash_slow(printable)' , setup=snake_case_ )} seconds" ) print(f"> atbash(): {timeit('atbash(printable)' , setup=snake_case_ )} seconds" ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F"""{example} encrypted in atbash: {atbash(example)}""") benchmark()
355
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> bool: A__ : List[Any] =len(snake_case_ ) + 1 A__ : List[Any] =len(snake_case_ ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. A__ : Dict =[[0 for i in range(snake_case_ )] for j in range(snake_case_ )] # since string of zero length match pattern of zero length A__ : Dict =1 # since pattern of zero length will never match with string of non-zero length for i in range(1, snake_case_ ): A__ : Optional[Any] =0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1, snake_case_ ): A__ : str =dp[0][j - 2] if pattern[j - 1] == '''*''' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1, snake_case_ ): for j in range(1, snake_case_ ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": A__ : str =dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: A__ : str =1 elif pattern[j - 2] in (input_string[i - 1], "."): A__ : Union[str, Any] =dp[i - 1][j] else: A__ : Optional[int] =0 else: A__ : str =0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") __lowerCamelCase : int = "aab" __lowerCamelCase : Dict = "c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F"{input_string} matches the given pattern {pattern}") else: print(F"{input_string} does not match with the given pattern {pattern}")
416
0
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. UpperCAmelCase_ = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. UpperCAmelCase_ = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. UpperCAmelCase_ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> tuple[str, float]: '''simple docstring''' _snake_case = len([g for position, g in enumerate(UpperCamelCase__ ) if g == main_target[position]] ) return (item, float(UpperCamelCase__ )) def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> tuple[str, str]: '''simple docstring''' _snake_case = random.randint(0 , len(UpperCamelCase__ ) - 1 ) _snake_case = parent_a[:random_slice] + parent_a[random_slice:] _snake_case = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : list[str] ) -> str: '''simple docstring''' _snake_case = list(UpperCamelCase__ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: _snake_case = random.choice(UpperCamelCase__ ) return "".join(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : tuple[str, float] , UpperCamelCase__ : list[tuple[str, float]] , UpperCamelCase__ : list[str] , ) -> list[str]: '''simple docstring''' _snake_case = [] # Generate more children proportionally to the fitness score. _snake_case = int(parent_a[1] * 100 ) + 1 _snake_case = 10 if child_n >= 10 else child_n for _ in range(UpperCamelCase__ ): _snake_case = population_score[random.randint(0 , UpperCamelCase__ )][0] _snake_case , _snake_case = crossover(parent_a[0] , UpperCamelCase__ ) # Append new string to the population list. pop.append(mutate(UpperCamelCase__ , UpperCamelCase__ ) ) pop.append(mutate(UpperCamelCase__ , UpperCamelCase__ ) ) return pop def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : list[str] , UpperCamelCase__ : bool = True ) -> tuple[int, int, str]: '''simple docstring''' if N_POPULATION < N_SELECTED: _snake_case = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(UpperCamelCase__ ) # Verify that the target contains no genes besides the ones inside genes variable. _snake_case = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _snake_case = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(UpperCamelCase__ ) # Generate random starting population. _snake_case = [] for _ in range(UpperCamelCase__ ): population.append(''.join([random.choice(UpperCamelCase__ ) for i in range(len(UpperCamelCase__ ) )] ) ) # Just some logs to know what the algorithms is doing. _snake_case , _snake_case = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(UpperCamelCase__ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _snake_case = [evaluate(UpperCamelCase__ , UpperCamelCase__ ) for item in population] # Check if there is a matching evolution. _snake_case = sorted(UpperCamelCase__ , key=lambda UpperCamelCase__ : x[1] , reverse=UpperCamelCase__ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _snake_case = population[: int(N_POPULATION / 3 )] population.clear() population.extend(UpperCamelCase__ ) # Normalize population score to be between 0 and 1. _snake_case = [ (item, score / len(UpperCamelCase__ )) for item, score in population_score ] # This is selection for i in range(UpperCamelCase__ ): population.extend(select(population_score[int(UpperCamelCase__ )] , UpperCamelCase__ , UpperCamelCase__ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(UpperCamelCase__ ) > N_POPULATION: break if __name__ == "__main__": UpperCAmelCase_ = ( """This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!""" ) UpperCAmelCase_ = list( """ ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm""" """nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\""" ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = basic(target_str, genes_list) print( F"\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}" )
541
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class UpperCamelCase_ : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=10 , lowerCAmelCase_=3 , lowerCAmelCase_=2 , lowerCAmelCase_=2 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=32 , lowerCAmelCase_=5 , lowerCAmelCase_=4 , lowerCAmelCase_=37 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=10 , lowerCAmelCase_=0.02 , lowerCAmelCase_="divided_space_time" , lowerCAmelCase_=None , ) -> Optional[Any]: _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = num_channels _snake_case = patch_size _snake_case = num_frames _snake_case = is_training _snake_case = use_labels _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = attention_type _snake_case = initializer_range _snake_case = scope _snake_case = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token _snake_case = (image_size // patch_size) ** 2 _snake_case = (num_frames) * self.num_patches_per_frame + 1 def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.num_labels ) _snake_case = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self ) -> str: _snake_case = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) _snake_case = self.num_labels return config def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: _snake_case = TimesformerModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple: _snake_case = TimesformerForVideoClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ ) # verify the logits shape _snake_case = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Any: _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowerCAmelCase_ = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = TimesformerModelTester(self ) _snake_case = ConfigTester( self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ) -> Any: _snake_case = copy.deepcopy(lowerCAmelCase_ ) if return_labels: if model_class in get_values(lowerCAmelCase_ ): _snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def lowerCAmelCase ( self ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='TimeSformer does not use inputs_embeds' ) def lowerCAmelCase ( self ) -> Tuple: pass def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowerCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear ) ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowerCAmelCase_ ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[str]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowerCAmelCase_ ) @slow def lowerCAmelCase ( self ) -> List[Any]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TimesformerModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Union[str, Any]: if not self.has_attentions: pass else: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = True for model_class in self.all_model_classes: _snake_case = self.model_tester.seq_length _snake_case = self.model_tester.num_frames _snake_case = True _snake_case = False _snake_case = True _snake_case = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) _snake_case = len(lowerCAmelCase_ ) # Check attention is always last and order is fine _snake_case = True _snake_case = True _snake_case = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase_ ) ) _snake_case = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def lowerCAmelCase ( self ) -> Dict: def check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case = outputs.hidden_states _snake_case = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) _snake_case = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCamelCase__ ( ) -> Tuple: '''simple docstring''' _snake_case = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) _snake_case = np.load(UpperCamelCase__ ) return list(UpperCamelCase__ ) @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def lowerCAmelCase ( self ) -> Dict: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self ) -> Optional[int]: _snake_case = TimesformerForVideoClassification.from_pretrained('facebook/timesformer-base-finetuned-k400' ).to( lowerCAmelCase_ ) _snake_case = self.default_image_processor _snake_case = prepare_video() _snake_case = image_processor(video[:8] , return_tensors='pt' ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): _snake_case = model(**lowerCAmelCase_ ) # verify the logits _snake_case = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _snake_case = torch.tensor([-0.30_16, -0.77_13, -0.42_05] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4 ) )
541
1
'''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = 65521 def _UpperCamelCase ( lowerCAmelCase__: str ) -> List[Any]: SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 0 for plain_chr in plain_text: SCREAMING_SNAKE_CASE_ = (a + ord(lowerCAmelCase__ )) % MOD_ADLER SCREAMING_SNAKE_CASE_ = (b + a) % MOD_ADLER return (b << 16) | a
294
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" __SCREAMING_SNAKE_CASE = '''detr''' __SCREAMING_SNAKE_CASE = ['''past_key_values'''] __SCREAMING_SNAKE_CASE = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=3 , lowerCamelCase=1_00 , lowerCamelCase=6 , lowerCamelCase=20_48 , lowerCamelCase=8 , lowerCamelCase=6 , lowerCamelCase=20_48 , lowerCamelCase=8 , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=True , lowerCamelCase="relu" , lowerCamelCase=2_56 , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.02 , lowerCamelCase=1.0 , lowerCamelCase=False , lowerCamelCase="sine" , lowerCamelCase="resnet50" , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=1 , lowerCamelCase=5 , lowerCamelCase=2 , lowerCamelCase=1 , lowerCamelCase=1 , lowerCamelCase=5 , lowerCamelCase=2 , lowerCamelCase=0.1 , **lowerCamelCase , ) -> int: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCamelCase : List[str] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCamelCase , lowerCamelCase ): UpperCamelCase : Dict = backbone_config.get("model_type" ) UpperCamelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type] UpperCamelCase : Dict = config_class.from_dict(lowerCamelCase ) # set timm attributes to None UpperCamelCase , UpperCamelCase , UpperCamelCase : int = None, None, None UpperCamelCase : str = use_timm_backbone UpperCamelCase : int = backbone_config UpperCamelCase : List[Any] = num_channels UpperCamelCase : int = num_queries UpperCamelCase : List[Any] = d_model UpperCamelCase : Union[str, Any] = encoder_ffn_dim UpperCamelCase : Optional[int] = encoder_layers UpperCamelCase : Tuple = encoder_attention_heads UpperCamelCase : Tuple = decoder_ffn_dim UpperCamelCase : int = decoder_layers UpperCamelCase : Dict = decoder_attention_heads UpperCamelCase : Optional[int] = dropout UpperCamelCase : List[Any] = attention_dropout UpperCamelCase : Tuple = activation_dropout UpperCamelCase : Any = activation_function UpperCamelCase : List[Any] = init_std UpperCamelCase : List[Any] = init_xavier_std UpperCamelCase : List[str] = encoder_layerdrop UpperCamelCase : Optional[int] = decoder_layerdrop UpperCamelCase : Any = encoder_layers UpperCamelCase : List[Any] = auxiliary_loss UpperCamelCase : Dict = position_embedding_type UpperCamelCase : Union[str, Any] = backbone UpperCamelCase : Tuple = use_pretrained_backbone UpperCamelCase : Any = dilation # Hungarian matcher UpperCamelCase : List[str] = class_cost UpperCamelCase : Optional[Any] = bbox_cost UpperCamelCase : Optional[Any] = giou_cost # Loss coefficients UpperCamelCase : Optional[int] = mask_loss_coefficient UpperCamelCase : Dict = dice_loss_coefficient UpperCamelCase : Tuple = bbox_loss_coefficient UpperCamelCase : Tuple = giou_loss_coefficient UpperCamelCase : Optional[int] = eos_coefficient super().__init__(is_encoder_decoder=lowerCamelCase , **lowerCamelCase ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' return self.d_model @classmethod def SCREAMING_SNAKE_CASE__ ( cls , lowerCamelCase , **lowerCamelCase ) -> Any: '''simple docstring''' return cls(backbone_config=lowerCamelCase , **lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict[str, any]: '''simple docstring''' UpperCamelCase : Tuple = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCamelCase : Tuple = self.backbone_config.to_dict() UpperCamelCase : Dict = self.__class__.model_type return output class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" __SCREAMING_SNAKE_CASE = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: '''simple docstring''' return 1e-5 @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' return 12
173
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : Tuple = { "configuration_biogpt": ["BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BioGptConfig"], "tokenization_biogpt": ["BioGptTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple = [ "BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST", "BioGptForCausalLM", "BioGptForTokenClassification", "BioGptForSequenceClassification", "BioGptModel", "BioGptPreTrainedModel", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys A_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
701
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging A_ : List[str] = logging.get_logger(__name__) A_ : Optional[Any] = "▁" A_ : Optional[Any] = {"vocab_file": "sentencepiece.bpe.model"} A_ : Dict = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } A_ : Optional[int] = { "facebook/nllb-200-distilled-600M": 1024, } # fmt: off A_ : Union[str, Any] = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = ['''input_ids''', '''attention_mask'''] lowerCamelCase__ = [] lowerCamelCase__ = [] def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): # Mask token behave like a normal word, i.e. include the space before it snake_case__ : Optional[Any] = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token snake_case__ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs snake_case__ : Union[str, Any] = legacy_behaviour super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) snake_case__ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) snake_case__ : int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token snake_case__ : Dict = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case__ : Union[str, Any] = 1 snake_case__ : List[Any] = len(self.sp_model ) snake_case__ : int = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__SCREAMING_SNAKE_CASE ) } snake_case__ : Any = {v: k for k, v in self.lang_code_to_id.items()} snake_case__ : List[str] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) snake_case__ : int = {v: k for k, v in self.fairseq_tokens_to_ids.items()} snake_case__ : Union[str, Any] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) snake_case__ : List[str] = src_lang if src_lang is not None else """eng_Latn""" snake_case__ : Optional[int] = self.lang_code_to_id[self._src_lang] snake_case__ : List[str] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): snake_case__ : List[str] = self.__dict__.copy() snake_case__ : Any = None snake_case__ : Tuple = self.sp_model.serialized_model_proto() return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): snake_case__ : Dict = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case__ : Any = {} snake_case__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __UpperCamelCase ( self ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __UpperCamelCase ( self ): return self._src_lang @src_lang.setter def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = [1] * len(self.prefix_tokens ) snake_case__ : Dict = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): snake_case__ : Dict = [self.sep_token_id] snake_case__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) snake_case__ : List[Any] = src_lang snake_case__ : Optional[Any] = self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tgt_lang_id return inputs def __UpperCamelCase ( self ): snake_case__ : int = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case__ : Optional[int] = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : List[Any] = """""".join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , """ """ ).strip() return out_string def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return snake_case__ : int = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , """wb""" ) as fi: snake_case__ : int = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "eng_Latn" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "fra_Latn" , **__SCREAMING_SNAKE_CASE , ): snake_case__ : Optional[int] = src_lang snake_case__ : Optional[Any] = tgt_lang return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[Any] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: snake_case__ : Tuple = [] snake_case__ : int = [self.eos_token_id, self.cur_lang_code] else: snake_case__ : Optional[int] = [self.cur_lang_code] snake_case__ : int = [self.eos_token_id] def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : int = self.lang_code_to_id[lang] if self.legacy_behaviour: snake_case__ : str = [] snake_case__ : int = [self.eos_token_id, self.cur_lang_code] else: snake_case__ : List[Any] = [self.cur_lang_code] snake_case__ : Union[str, Any] = [self.eos_token_id]
419
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __UpperCAmelCase ( snake_case__ , unittest.TestCase ): """simple docstring""" _snake_case : int = KandinskyImgaImgPipeline _snake_case : List[Any] = ['prompt', 'image_embeds', 'negative_image_embeds', 'image'] _snake_case : Union[str, Any] = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', ] _snake_case : Any = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] _snake_case : List[Any] = False @property def A ( self : Any )-> int: return 32 @property def A ( self : Tuple )-> List[str]: return 32 @property def A ( self : Optional[int] )-> Union[str, Any]: return self.time_input_dim @property def A ( self : str )-> Optional[int]: return self.time_input_dim * 4 @property def A ( self : Optional[int] )-> List[str]: return 1_00 @property def A ( self : List[str] )-> Optional[Any]: __UpperCamelCase = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def A ( self : Dict )-> Any: torch.manual_seed(0 ) __UpperCamelCase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __UpperCamelCase = MultilingualCLIP(A_ ) __UpperCamelCase = text_encoder.eval() return text_encoder @property def A ( self : int )-> str: torch.manual_seed(0 ) __UpperCamelCase = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } __UpperCamelCase = UNetaDConditionModel(**A_ ) return model @property def A ( self : List[str] )-> List[str]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A ( self : Optional[Any] )-> str: torch.manual_seed(0 ) __UpperCamelCase = VQModel(**self.dummy_movq_kwargs ) return model def A ( self : Union[str, Any] )-> str: __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = self.dummy_tokenizer __UpperCamelCase = self.dummy_unet __UpperCamelCase = self.dummy_movq __UpperCamelCase = { "num_train_timesteps": 10_00, "beta_schedule": "linear", "beta_start": 0.00_085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } __UpperCamelCase = DDIMScheduler(**A_ ) __UpperCamelCase = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def A ( self : Union[str, Any] , A_ : Dict , A_ : int=0 )-> Optional[Any]: __UpperCamelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(A_ ) ).to(A_ ) __UpperCamelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(A_ ) # create init_image __UpperCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(A_ ) ).to(A_ ) __UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCamelCase = Image.fromarray(np.uinta(A_ ) ).convert("RGB" ).resize((2_56, 2_56) ) if str(A_ ).startswith("mps" ): __UpperCamelCase = torch.manual_seed(A_ ) else: __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase = { "prompt": "horse", "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def A ( self : Union[str, Any] )-> Dict: __UpperCamelCase = "cpu" __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = self.pipeline_class(**A_ ) __UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = pipe(**self.get_dummy_inputs(A_ ) ) __UpperCamelCase = output.images __UpperCamelCase = pipe( **self.get_dummy_inputs(A_ ) , return_dict=A_ , )[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCamelCase = np.array( [0.61_474_943, 0.6_073_539, 0.43_308_544, 0.5_928_269, 0.47_493_595, 0.46_755_973, 0.4_613_838, 0.45_368_797, 0.50_119_233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def A ( self : Optional[int] )-> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Optional[int] )-> Optional[int]: __UpperCamelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_img2img_frog.npy" ) __UpperCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) __UpperCamelCase = "A red cartoon frog, 4k" __UpperCamelCase = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(A_ ) __UpperCamelCase = KandinskyImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1" , torch_dtype=torch.floataa ) __UpperCamelCase = pipeline.to(A_ ) pipeline.set_progress_bar_config(disable=A_ ) __UpperCamelCase = torch.Generator(device="cpu" ).manual_seed(0 ) __UpperCamelCase , __UpperCamelCase = pipe_prior( A_ , generator=A_ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() __UpperCamelCase = pipeline( A_ , image=A_ , image_embeds=A_ , negative_image_embeds=A_ , generator=A_ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="np" , ) __UpperCamelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(A_ , A_ )
505
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case__ ) class __UpperCAmelCase ( snake_case__ ): """simple docstring""" _snake_case : str = field(default='summarization' , metadata={'include_in_asdict_even_if_is_default': True} ) _snake_case : ClassVar[Features] = Features({'text': Value('string' )} ) _snake_case : ClassVar[Features] = Features({'summary': Value('string' )} ) _snake_case : str = "text" _snake_case : str = "summary" @property def A ( self : Any )-> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
505
1
"""simple docstring""" from collections import defaultdict def A( snake_case_ , snake_case_ ): """simple docstring""" lowercase__: List[Any] = first_str.lower().strip() lowercase__: List[Any] = second_str.lower().strip() # Remove whitespace lowercase__: Optional[Any] = first_str.replace(" " , "" ) lowercase__: Union[str, Any] = second_str.replace(" " , "" ) # Strings of different lengths are not anagrams if len(snake_case_ ) != len(snake_case_ ): return False # Default values for count should be 0 lowercase__: defaultdict[str, int] = defaultdict(snake_case_ ) # For each character in input strings, # increment count in the corresponding for i in range(len(snake_case_ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase = input("""Enter the first string """).strip() UpperCamelCase = input("""Enter the second string """).strip() UpperCamelCase = check_anagrams(input_a, input_b) print(F"{input_a} and {input_b} are {'' if status else 'not '}anagrams.")
120
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def A( snake_case_ , snake_case_ , snake_case_ = 1 / sqrt(2 ) ): """simple docstring""" lowercase__: Dict = tau * frequency / samplerate lowercase__: List[str] = sin(snake_case_ ) lowercase__: Union[str, Any] = cos(snake_case_ ) lowercase__: Optional[Any] = _sin / (2 * q_factor) lowercase__: int = (1 - _cos) / 2 lowercase__: Tuple = 1 - _cos lowercase__: List[Any] = 1 + alpha lowercase__: Any = -2 * _cos lowercase__: Dict = 1 - alpha lowercase__: Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A( snake_case_ , snake_case_ , snake_case_ = 1 / sqrt(2 ) ): """simple docstring""" lowercase__: str = tau * frequency / samplerate lowercase__: Dict = sin(snake_case_ ) lowercase__: Dict = cos(snake_case_ ) lowercase__: Tuple = _sin / (2 * q_factor) lowercase__: Any = (1 + _cos) / 2 lowercase__: str = -1 - _cos lowercase__: Any = 1 + alpha lowercase__: List[str] = -2 * _cos lowercase__: Optional[Any] = 1 - alpha lowercase__: Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A( snake_case_ , snake_case_ , snake_case_ = 1 / sqrt(2 ) ): """simple docstring""" lowercase__: List[Any] = tau * frequency / samplerate lowercase__: Optional[int] = sin(snake_case_ ) lowercase__: List[Any] = cos(snake_case_ ) lowercase__: Any = _sin / (2 * q_factor) lowercase__: Any = _sin / 2 lowercase__: Optional[Any] = 0 lowercase__: Any = -ba lowercase__: Optional[int] = 1 + alpha lowercase__: Any = -2 * _cos lowercase__: Any = 1 - alpha lowercase__: Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A( snake_case_ , snake_case_ , snake_case_ = 1 / sqrt(2 ) ): """simple docstring""" lowercase__: List[str] = tau * frequency / samplerate lowercase__: Tuple = sin(snake_case_ ) lowercase__: List[str] = cos(snake_case_ ) lowercase__: Union[str, Any] = _sin / (2 * q_factor) lowercase__: List[str] = 1 - alpha lowercase__: Optional[Any] = -2 * _cos lowercase__: str = 1 + alpha lowercase__: List[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def A( snake_case_ , snake_case_ , snake_case_ , snake_case_ = 1 / sqrt(2 ) , ): """simple docstring""" lowercase__: Tuple = tau * frequency / samplerate lowercase__: Tuple = sin(snake_case_ ) lowercase__: Optional[Any] = cos(snake_case_ ) lowercase__: str = _sin / (2 * q_factor) lowercase__: Optional[Any] = 10 ** (gain_db / 40) lowercase__: Union[str, Any] = 1 + alpha * big_a lowercase__: str = -2 * _cos lowercase__: Tuple = 1 - alpha * big_a lowercase__: Union[str, Any] = 1 + alpha / big_a lowercase__: Dict = -2 * _cos lowercase__: Optional[Any] = 1 - alpha / big_a lowercase__: Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A( snake_case_ , snake_case_ , snake_case_ , snake_case_ = 1 / sqrt(2 ) , ): """simple docstring""" lowercase__: Optional[Any] = tau * frequency / samplerate lowercase__: Union[str, Any] = sin(snake_case_ ) lowercase__: Optional[Any] = cos(snake_case_ ) lowercase__: Optional[int] = _sin / (2 * q_factor) lowercase__: Optional[int] = 10 ** (gain_db / 40) lowercase__: List[Any] = (big_a + 1) - (big_a - 1) * _cos lowercase__: Union[str, Any] = (big_a + 1) + (big_a - 1) * _cos lowercase__: Any = (big_a - 1) - (big_a + 1) * _cos lowercase__: str = (big_a - 1) + (big_a + 1) * _cos lowercase__: int = 2 * sqrt(snake_case_ ) * alpha lowercase__: Union[str, Any] = big_a * (pmc + aaa) lowercase__: List[Any] = 2 * big_a * mpc lowercase__: Dict = big_a * (pmc - aaa) lowercase__: Dict = ppmc + aaa lowercase__: List[str] = -2 * pmpc lowercase__: int = ppmc - aaa lowercase__: Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def A( snake_case_ , snake_case_ , snake_case_ , snake_case_ = 1 / sqrt(2 ) , ): """simple docstring""" lowercase__: List[str] = tau * frequency / samplerate lowercase__: Dict = sin(snake_case_ ) lowercase__: Optional[Any] = cos(snake_case_ ) lowercase__: Tuple = _sin / (2 * q_factor) lowercase__: int = 10 ** (gain_db / 40) lowercase__: Dict = (big_a + 1) - (big_a - 1) * _cos lowercase__: Optional[int] = (big_a + 1) + (big_a - 1) * _cos lowercase__: Tuple = (big_a - 1) - (big_a + 1) * _cos lowercase__: Dict = (big_a - 1) + (big_a + 1) * _cos lowercase__: Dict = 2 * sqrt(snake_case_ ) * alpha lowercase__: Optional[int] = big_a * (ppmc + aaa) lowercase__: Dict = -2 * big_a * pmpc lowercase__: Dict = big_a * (ppmc - aaa) lowercase__: Tuple = pmc + aaa lowercase__: Optional[int] = 2 * mpc lowercase__: Union[str, Any] = pmc - aaa lowercase__: Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
120
1
"""simple docstring""" import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=3 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=9_9 , lowerCamelCase_=3_2 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=3_7 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=1_6 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=3 , lowerCamelCase_=4 , lowerCamelCase_=None , ) -> Union[str, Any]: UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = num_choices UpperCamelCase = scope def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices) UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self) -> List[str]: return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=lowerCamelCase_ , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: UpperCamelCase = FalconModel(config=lowerCamelCase_) model.to(lowerCamelCase_) model.eval() UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_) UpperCamelCase = model(lowerCamelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> str: UpperCamelCase = True UpperCamelCase = FalconModel(lowerCamelCase_) model.to(lowerCamelCase_) model.eval() UpperCamelCase = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , ) UpperCamelCase = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , ) UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> Tuple: UpperCamelCase = FalconForCausalLM(config=lowerCamelCase_) model.to(lowerCamelCase_) model.eval() UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> Optional[Any]: UpperCamelCase = True UpperCamelCase = True UpperCamelCase = FalconForCausalLM(config=lowerCamelCase_) model.to(lowerCamelCase_) model.eval() # first forward pass UpperCamelCase = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , use_cache=lowerCamelCase_ , ) UpperCamelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size) UpperCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1) UpperCamelCase = torch.cat([input_mask, next_mask] , dim=-1) UpperCamelCase = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , )["""hidden_states"""][0] UpperCamelCase = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , )["""hidden_states"""][0] # select random slice UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1]).item() UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3)) def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = self.prepare_config_and_inputs() ( UpperCamelCase ) = config_and_inputs UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class snake_case_ ( a_ , a_ , a_ , unittest.TestCase ): """simple docstring""" A_ = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) A_ = (FalconForCausalLM,) if is_torch_available() else () A_ = ( { "feature-extraction": FalconModel, "text-classification": FalconForSequenceClassification, "text-generation": FalconForCausalLM, "question-answering": FalconForQuestionAnswering, "token-classification": FalconForTokenClassification, "zero-shot": FalconForSequenceClassification, } if is_torch_available() else {} ) A_ = False A_ = False def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = FalconModelTester(self) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=3_7) def UpperCAmelCase__ ( self) -> Union[str, Any]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) -> int: UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_) def UpperCAmelCase__ ( self) -> Any: UpperCamelCase = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: UpperCamelCase = alibi self.model_tester.create_and_check_model(lowerCamelCase_ , *lowerCamelCase_) def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = input_dict["""input_ids"""] UpperCamelCase = input_ids.ne(1).to(lowerCamelCase_) UpperCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) UpperCamelCase = FalconForSequenceClassification(lowerCamelCase_) model.to(lowerCamelCase_) model.eval() UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = """single_label_classification""" UpperCamelCase = input_dict["""input_ids"""] UpperCamelCase = input_ids.ne(1).to(lowerCamelCase_) UpperCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) UpperCamelCase = FalconForSequenceClassification(lowerCamelCase_) model.to(lowerCamelCase_) model.eval() UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def UpperCAmelCase__ ( self) -> Dict: UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = input_dict["""input_ids"""] UpperCamelCase = FalconForCausalLM(lowerCamelCase_) model.to(lowerCamelCase_) model.eval() UpperCamelCase = model(lowerCamelCase_ , use_cache=lowerCamelCase_) UpperCamelCase = input_ids.shape[0] UpperCamelCase = model._convert_to_rw_cache(result.past_key_values) UpperCamelCase = model._convert_cache_to_standard_format(lowerCamelCase_ , lowerCamelCase_) for layer in range(len(lowerCamelCase_)): for tensor_idx in range(2): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx])) def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = """multi_label_classification""" UpperCamelCase = input_dict["""input_ids"""] UpperCamelCase = input_ids.ne(1).to(lowerCamelCase_) UpperCamelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) UpperCamelCase = FalconForSequenceClassification(lowerCamelCase_) model.to(lowerCamelCase_) model.eval() UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def UpperCAmelCase__ ( self) -> Any: for model_class in self.all_generative_model_classes: UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(lowerCamelCase_ , '''use_cache'''): return UpperCamelCase = model_class(lowerCamelCase_).to(lowerCamelCase_) if "use_cache" not in inputs: UpperCamelCase = True UpperCamelCase = model(**lowerCamelCase_) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return UpperCamelCase = ( getattr(lowerCamelCase_ , '''decoder_layers''' , lowerCamelCase_) or getattr(lowerCamelCase_ , '''num_decoder_layers''' , lowerCamelCase_) or config.num_hidden_layers ) UpperCamelCase = getattr(lowerCamelCase_ , '''num_kv_heads''' , config.num_attention_heads) UpperCamelCase = getattr(lowerCamelCase_ , '''d_model''' , config.hidden_size) UpperCamelCase = embed_dim // num_attention_heads UpperCamelCase = outputs["""past_key_values"""] self.assertEqual(len(lowerCamelCase_) , lowerCamelCase_) UpperCamelCase = inputs["""input_ids"""].shape for i in range(lowerCamelCase_): if config.new_decoder_architecture: UpperCamelCase = config.num_attention_heads elif config.multi_query: UpperCamelCase = 1 self.assertEqual(len(past_kv[0]) , 2) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim)) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim)) @require_torch class snake_case_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = AutoTokenizer.from_pretrained('''Rocketknight1/falcon-rw-1b''') UpperCamelCase = FalconForCausalLM.from_pretrained('''Rocketknight1/falcon-rw-1b''') model.eval() model.to(lowerCamelCase_) UpperCamelCase = tokenizer('''My favorite food is''' , return_tensors='''pt''').to(lowerCamelCase_) UpperCamelCase = ( """My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.""" ) UpperCamelCase = model.generate(**lowerCamelCase_ , do_sample=lowerCamelCase_ , max_new_tokens=1_9) UpperCamelCase = tokenizer.batch_decode(lowerCamelCase_)[0] self.assertEqual(lowerCamelCase_ , lowerCamelCase_) @slow def UpperCAmelCase__ ( self) -> int: for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: UpperCamelCase = AutoTokenizer.from_pretrained(lowerCamelCase_) UpperCamelCase = FalconForCausalLM.from_pretrained(lowerCamelCase_) model.eval() model.to(lowerCamelCase_) UpperCamelCase = tokenizer('''My favorite food is''' , return_tensors='''pt''').to(lowerCamelCase_) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**lowerCamelCase_ , do_sample=lowerCamelCase_ , max_new_tokens=4) model.generate(**lowerCamelCase_ , do_sample=lowerCamelCase_ , max_new_tokens=4) model.generate(**lowerCamelCase_ , num_beams=2 , max_new_tokens=4) @slow def UpperCAmelCase__ ( self) -> str: with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: UpperCamelCase = AutoTokenizer.from_pretrained(lowerCamelCase_) UpperCamelCase = FalconForCausalLM.from_pretrained(lowerCamelCase_) model.eval() model.to(device=lowerCamelCase_) UpperCamelCase = tokenizer('''My favorite food is''' , return_tensors='''pt''').to(lowerCamelCase_) # Test results are the same with and without cache UpperCamelCase = model.generate(**lowerCamelCase_ , do_sample=lowerCamelCase_ , max_new_tokens=2_0 , use_cache=lowerCamelCase_) UpperCamelCase = model.generate(**lowerCamelCase_ , do_sample=lowerCamelCase_ , max_new_tokens=2_0 , use_cache=lowerCamelCase_) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0)
34
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def snake_case_ (__A : Dict ) -> List[Any]: __lowerCAmelCase : Any = """huggingface/label-files""" __lowerCAmelCase : List[Any] = """imagenet-1k-id2label.json""" __lowerCAmelCase : Dict = json.load(open(hf_hub_download(__A , __A , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase : List[str] = {int(__A ): v for k, v in idalabel.items()} __lowerCAmelCase : Tuple = {v: k for k, v in idalabel.items()} __lowerCAmelCase : Tuple = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" __lowerCAmelCase : List[Any] = BitConfig( conv_layer=__A , num_labels=1_0_0_0 , idalabel=__A , labelaid=__A , ) return config def snake_case_ (__A : Dict ) -> str: if "stem.conv" in name: __lowerCAmelCase : List[str] = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: __lowerCAmelCase : str = name.replace("""blocks""" , """layers""" ) if "head.fc" in name: __lowerCAmelCase : str = name.replace("""head.fc""" , """classifier.1""" ) if name.startswith("""norm""" ): __lowerCAmelCase : List[Any] = """bit.""" + name if "bit" not in name and "classifier" not in name: __lowerCAmelCase : Optional[int] = """bit.encoder.""" + name return name def snake_case_ () -> Optional[int]: __lowerCAmelCase : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase : str = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def snake_case_ (__A : Optional[int] , __A : List[str] , __A : Any=False ) -> str: __lowerCAmelCase : int = get_config(__A ) # load original model from timm __lowerCAmelCase : Any = create_model(__A , pretrained=__A ) timm_model.eval() # load state_dict of original model __lowerCAmelCase : List[Any] = timm_model.state_dict() for key in state_dict.copy().keys(): __lowerCAmelCase : Dict = state_dict.pop(__A ) __lowerCAmelCase : str = val.squeeze() if """head""" in key else val # load HuggingFace model __lowerCAmelCase : Dict = BitForImageClassification(__A ) model.eval() model.load_state_dict(__A ) # create image processor __lowerCAmelCase : Optional[int] = create_transform(**resolve_data_config({} , model=__A ) ) __lowerCAmelCase : Optional[Any] = transform.transforms __lowerCAmelCase : List[Any] = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } __lowerCAmelCase : int = BitImageProcessor( do_resize=__A , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__A , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=__A , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) __lowerCAmelCase : str = prepare_img() __lowerCAmelCase : str = transform(__A ).unsqueeze(0 ) __lowerCAmelCase : Optional[int] = processor(__A , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(__A , __A ) # verify logits with torch.no_grad(): __lowerCAmelCase : Dict = model(__A ) __lowerCAmelCase : List[Any] = outputs.logits print("""Logits:""" , logits[0, :3] ) print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] ) __lowerCAmelCase : List[Any] = timm_model(__A ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__A , outputs.logits , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(__A ).mkdir(exist_ok=__A ) print(f'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__A ) processor.save_pretrained(__A ) if push_to_hub: print(f'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(f'''ybelkada/{model_name}''' ) processor.push_to_hub(f'''ybelkada/{model_name}''' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""resnetv2_50x1_bitm""", type=str, help="""Name of the BiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub.""", ) __UpperCAmelCase = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
651
0
'''simple docstring''' lowerCAmelCase_ : int = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def __a ( __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str ) -> str: '''simple docstring''' lowercase_ = [False] * len(__lowerCamelCase ) lowercase_ = [s] lowercase_ = True while queue: lowercase_ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__lowerCamelCase ) lowercase_ = True lowercase_ = u return visited[t] def __a ( __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : Any ) -> Optional[Any]: '''simple docstring''' lowercase_ = [-1] * (len(__lowerCamelCase )) lowercase_ = 0 lowercase_ = [] lowercase_ = [i[:] for i in graph] # Record original cut, copy. while bfs(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): lowercase_ = float("Inf" ) lowercase_ = sink while s != source: # Find the minimum value in select path lowercase_ = min(__lowerCamelCase , graph[parent[s]][s] ) lowercase_ = parent[s] max_flow += path_flow lowercase_ = sink while v != source: lowercase_ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowercase_ = parent[v] for i in range(len(__lowerCamelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
461
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ : List[Any] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class lowercase ( __lowerCamelCase , unittest.TestCase ): lowerCamelCase_ =ReformerTokenizer lowerCamelCase_ =ReformerTokenizerFast lowerCamelCase_ =True lowerCamelCase_ =False lowerCamelCase_ =True def __UpperCAmelCase ( self : Optional[Any]) -> Optional[Any]: super().setUp() lowercase_ = ReformerTokenizer(__lowerCAmelCase , keep_accents=__lowerCAmelCase) tokenizer.save_pretrained(self.tmpdirname) def __UpperCAmelCase ( self : int) -> int: lowercase_ = "<s>" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase) , __lowerCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase) , __lowerCAmelCase) def __UpperCAmelCase ( self : Tuple) -> Optional[int]: lowercase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , "<unk>") self.assertEqual(vocab_keys[1] , "<s>") self.assertEqual(vocab_keys[-1] , "j") self.assertEqual(len(__lowerCAmelCase) , 1000) def __UpperCAmelCase ( self : Union[str, Any]) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1000) def __UpperCAmelCase ( self : List[Any]) -> List[Any]: if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = "I was born in 92000, and this is falsé." lowercase_ = tokenizer.tokenize(__lowerCAmelCase) lowercase_ = rust_tokenizer.tokenize(__lowerCAmelCase) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase) lowercase_ = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase) lowercase_ = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(__lowerCAmelCase) lowercase_ = rust_tokenizer.encode(__lowerCAmelCase) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase) def __UpperCAmelCase ( self : Tuple , __lowerCAmelCase : List[str]=15) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase_ = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase) # Simple input lowercase_ = "This is a simple input" lowercase_ = ["This is a simple input 1", "This is a simple input 2"] lowercase_ = ("This is a simple input", "This is a pair") lowercase_ = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__lowerCAmelCase , tokenizer_r.encode , __lowerCAmelCase , max_length=__lowerCAmelCase , padding="max_length") # Simple input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding="max_length") # Simple input self.assertRaises( __lowerCAmelCase , tokenizer_r.batch_encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding="max_length" , ) # Pair input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode , __lowerCAmelCase , max_length=__lowerCAmelCase , padding="max_length") # Pair input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding="max_length") # Pair input self.assertRaises( __lowerCAmelCase , tokenizer_r.batch_encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding="max_length" , ) def __UpperCAmelCase ( self : Tuple) -> Tuple: pass def __UpperCAmelCase ( self : Any) -> Optional[Any]: lowercase_ = ReformerTokenizer(__lowerCAmelCase , keep_accents=__lowerCAmelCase) lowercase_ = tokenizer.tokenize("This is a test") self.assertListEqual(__lowerCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCAmelCase) , [285, 46, 10, 170, 382] , ) lowercase_ = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( __lowerCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowercase_ = tokenizer.convert_tokens_to_ids(__lowerCAmelCase) self.assertListEqual( __lowerCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowercase_ = tokenizer.convert_ids_to_tokens(__lowerCAmelCase) self.assertListEqual( __lowerCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def __UpperCAmelCase ( self : List[str]) -> Any: return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment") @slow def __UpperCAmelCase ( self : Tuple) -> str: lowercase_ = "Hello World!" lowercase_ = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(__lowerCAmelCase , self.big_tokenizer.encode(__lowerCAmelCase)) @slow def __UpperCAmelCase ( self : Any) -> Dict: lowercase_ = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) lowercase_ = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(__lowerCAmelCase , self.big_tokenizer.encode(__lowerCAmelCase)) @require_torch @slow def __UpperCAmelCase ( self : Any) -> Tuple: import torch from transformers import ReformerConfig, ReformerModel # Build sequence lowercase_ = list(self.big_tokenizer.get_vocab().keys())[:10] lowercase_ = " ".join(__lowerCAmelCase) lowercase_ = self.big_tokenizer.encode_plus(__lowerCAmelCase , return_tensors="pt") lowercase_ = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="pt") lowercase_ = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) lowercase_ = encoded_sequence["input_ids"].shape lowercase_ = ReformerModel(__lowerCAmelCase) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__lowerCAmelCase) model(**__lowerCAmelCase) @slow def __UpperCAmelCase ( self : List[Any]) -> Tuple: # fmt: off lowercase_ = {"input_ids": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 lowercase_ = [ "This is a very simple sentence.", "The quick brown fox jumps over the lazy dog.", ] self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase , model_name="google/reformer-crime-and-punishment" , revision="0e6c3decb8211d49bf881013425dc8b0448b3f5a" , padding=__lowerCAmelCase , sequences=__lowerCAmelCase , )
461
1
"""simple docstring""" from __future__ import annotations def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : list[int | str] ): '''simple docstring''' create_state_space_tree(SCREAMING_SNAKE_CASE , [] , 0 , [0 for i in range(len(SCREAMING_SNAKE_CASE ) )] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : list[int | str] , SCREAMING_SNAKE_CASE : list[int | str] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , ): '''simple docstring''' if index == len(SCREAMING_SNAKE_CASE ): print(SCREAMING_SNAKE_CASE ) return for i in range(len(SCREAMING_SNAKE_CASE ) ): if not index_used[i]: current_sequence.append(sequence[i] ) __lowerCamelCase : List[Any] =True create_state_space_tree(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index + 1 , SCREAMING_SNAKE_CASE ) current_sequence.pop() __lowerCamelCase : List[Any] =False _UpperCamelCase = [3, 1, 2, 4] generate_all_permutations(sequence) _UpperCamelCase = ["A", "B", "C"] generate_all_permutations(sequence_a)
179
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _UpperCamelCase = None _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _UpperCamelCase = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } _UpperCamelCase = { 'camembert-base': 512, } _UpperCamelCase = '▁' class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" __snake_case : List[str] = VOCAB_FILES_NAMES __snake_case : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : List[str] = ["""input_ids""", """attention_mask"""] __snake_case : List[Any] = CamembertTokenizer def __init__( self :List[Any] , __lowercase :Optional[int]=None , __lowercase :str=None , __lowercase :Optional[Any]="<s>" , __lowercase :List[str]="</s>" , __lowercase :Tuple="</s>" , __lowercase :int="<s>" , __lowercase :Union[str, Any]="<unk>" , __lowercase :Optional[int]="<pad>" , __lowercase :Union[str, Any]="<mask>" , __lowercase :Tuple=["<s>NOTUSED", "</s>NOTUSED"] , **__lowercase :List[str] , ): # Mask token behave like a normal word, i.e. include the space before it __lowerCamelCase : Optional[int] =AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token super().__init__( __lowercase , tokenizer_file=__lowercase , bos_token=__lowercase , eos_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , unk_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , additional_special_tokens=__lowercase , **__lowercase , ) __lowerCamelCase : Any =vocab_file __lowerCamelCase : Union[str, Any] =False if not self.vocab_file else True def __lowercase ( self :List[str] , __lowercase :List[int] , __lowercase :Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCamelCase : Tuple =[self.cls_token_id] __lowerCamelCase : str =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowercase ( self :Tuple , __lowercase :List[int] , __lowercase :Optional[List[int]] = None ): __lowerCamelCase : Any =[self.sep_token_id] __lowerCamelCase : str =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowercase ( self :List[Any] , __lowercase :str , __lowercase :Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCamelCase : List[str] =os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ): copyfile(self.vocab_file , __lowercase ) return (out_vocab_file,)
179
1
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance lowercase_ = 6_378_137.0 lowercase_ = 6_356_752.314_245 lowercase_ = 6_378_137 def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: lowercase__ = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude lowercase__ = atan((1 - flattening) * tan(radians(_SCREAMING_SNAKE_CASE ) ) ) lowercase__ = atan((1 - flattening) * tan(radians(_SCREAMING_SNAKE_CASE ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius lowercase__ = haversine_distance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) / EQUATORIAL_RADIUS # Intermediate P and Q values lowercase__ = (b_lata + b_lata) / 2 lowercase__ = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) lowercase__ = (sin(_SCREAMING_SNAKE_CASE ) ** 2) * (cos(_SCREAMING_SNAKE_CASE ) ** 2) lowercase__ = cos(sigma / 2 ) ** 2 lowercase__ = (sigma - sin(_SCREAMING_SNAKE_CASE )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) lowercase__ = (cos(_SCREAMING_SNAKE_CASE ) ** 2) * (sin(_SCREAMING_SNAKE_CASE ) ** 2) lowercase__ = sin(sigma / 2 ) ** 2 lowercase__ = (sigma + sin(_SCREAMING_SNAKE_CASE )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
719
def __UpperCamelCase (_SCREAMING_SNAKE_CASE = 50 ) -> int: lowercase__ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
45
0
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("""To use the rich extension, install rich with `pip install rich`""")
162
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMAEForPreTraining""", """ViTMAELayer""", """ViTMAEModel""", """ViTMAEPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """TFViTMAEForPreTraining""", """TFViTMAEModel""", """TFViTMAEPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
67
0
def snake_case__ ( UpperCAmelCase : list ): lowerCAmelCase__ :Union[str, Any] = len(UpperCAmelCase ) for _ in range(UpperCAmelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: lowerCAmelCase__ ,lowerCAmelCase__ :Optional[int] = arr[i + 1], arr[i] return arr if __name__ == "__main__": _a : List[str] = list(range(10, 0, -1)) print(f"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
111
import re def snake_case__ ( UpperCAmelCase : str ): return [char.split() for char in re.split(R"[^ a-z A-Z 0-9 \s]" , str_ )] def snake_case__ ( UpperCAmelCase : str ): lowerCAmelCase__ :List[Any] = split_input(str_ ) return "".join( ["".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def snake_case__ ( UpperCAmelCase : str , UpperCAmelCase : bool , UpperCAmelCase : str ): try: lowerCAmelCase__ :Dict = split_input(UpperCAmelCase ) if upper: lowerCAmelCase__ :Dict = "".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: lowerCAmelCase__ :Any = "".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def snake_case__ ( UpperCAmelCase : str ): return to_simple_case(UpperCAmelCase ) def snake_case__ ( UpperCAmelCase : str ): try: lowerCAmelCase__ :Any = to_simple_case(UpperCAmelCase ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def snake_case__ ( UpperCAmelCase : str , UpperCAmelCase : bool ): return to_complex_case(UpperCAmelCase , UpperCAmelCase , "_" ) def snake_case__ ( UpperCAmelCase : str , UpperCAmelCase : bool ): return to_complex_case(UpperCAmelCase , UpperCAmelCase , "-" ) if __name__ == "__main__": __import__("""doctest""").testmod()
111
1
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging UpperCamelCase_ = '''\ ''' UpperCamelCase_ = ''' Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity ''' UpperCamelCase_ = ''' Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to \'cuda\' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"] >>> results = perplexity.compute(model_id=\'gpt2\', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 78.22 >>> print(round(results["perplexities"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = datasets.load_dataset("wikitext", ... "wikitext-2-raw-v1", ... split="test")["text"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=\'\'] >>> results = perplexity.compute(model_id=\'gpt2\', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 60.35 >>> print(round(results["perplexities"][0], 2)) 81.12 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE( datasets.Metric ): def __lowerCamelCase ( self : List[str] ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'input_texts': datasets.Value('string' ), } ) , reference_urls=['https://huggingface.co/docs/transformers/perplexity'] , ) def __lowerCamelCase ( self : Optional[int] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : int = 16 , UpperCamelCase_ : bool = True , UpperCamelCase_ : List[str]=None ) -> Tuple: if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": SCREAMING_SNAKE_CASE__ :Any = """cuda""" else: SCREAMING_SNAKE_CASE__ :Any = """cuda""" if torch.cuda.is_available() else """cpu""" SCREAMING_SNAKE_CASE__ :Optional[Any] = AutoModelForCausalLM.from_pretrained(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Dict = model.to(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :int = AutoTokenizer.from_pretrained(UpperCamelCase_ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: SCREAMING_SNAKE_CASE__ :List[Any] = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(UpperCamelCase_ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" SCREAMING_SNAKE_CASE__ :str = model.config.max_length - 1 else: SCREAMING_SNAKE_CASE__ :str = model.config.max_length SCREAMING_SNAKE_CASE__ :Any = tokenizer( UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , return_tensors='pt' , return_attention_mask=UpperCamelCase_ , ).to(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :List[str] = encodings["""input_ids"""] SCREAMING_SNAKE_CASE__ :List[Any] = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." SCREAMING_SNAKE_CASE__ :Optional[int] = [] SCREAMING_SNAKE_CASE__ :Optional[int] = CrossEntropyLoss(reduction='none' ) for start_index in logging.tqdm(range(0 , len(UpperCamelCase_ ) , UpperCamelCase_ ) ): SCREAMING_SNAKE_CASE__ :int = min(start_index + batch_size , len(UpperCamelCase_ ) ) SCREAMING_SNAKE_CASE__ :Dict = encoded_texts[start_index:end_index] SCREAMING_SNAKE_CASE__ :Union[str, Any] = attn_masks[start_index:end_index] if add_start_token: SCREAMING_SNAKE_CASE__ :Optional[int] = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Any = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) SCREAMING_SNAKE_CASE__ :List[str] = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(UpperCamelCase_ ), attn_mask] , dim=1 ) SCREAMING_SNAKE_CASE__ :Tuple = encoded_batch with torch.no_grad(): SCREAMING_SNAKE_CASE__ :Optional[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ).logits SCREAMING_SNAKE_CASE__ :List[Any] = out_logits[..., :-1, :].contiguous() SCREAMING_SNAKE_CASE__ :Union[str, Any] = labels[..., 1:].contiguous() SCREAMING_SNAKE_CASE__ :int = attn_mask[..., 1:].contiguous() SCREAMING_SNAKE_CASE__ :Dict = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , UpperCamelCase_ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(UpperCamelCase_ )}
209
import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( _UpperCamelCase ): """simple docstring""" __magic_name__ : int = ['input_ids', 'attention_mask'] def __init__( self : List[Any] , lowerCAmelCase : Union[str, Any]="</s>" , lowerCAmelCase : Tuple="<unk>" , lowerCAmelCase : Union[str, Any]="<pad>" , lowerCAmelCase : Tuple=125 , lowerCAmelCase : str=None , **lowerCAmelCase : Optional[Any] , ) -> None: """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: __UpperCamelCase : str = [F'''<extra_id_{i}>''' for i in range(lowerCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __UpperCamelCase : Tuple = len(set(filter(lambda lowerCAmelCase : bool("""extra_id""" in str(lowerCAmelCase ) ) , lowerCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' """ provided to ByT5Tokenizer. In this case the additional_special_tokens must include the""" """ extra_ids tokens""" ) __UpperCamelCase : Tuple = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else pad_token __UpperCamelCase : Tuple = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else eos_token __UpperCamelCase : int = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else unk_token super().__init__( eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , extra_ids=lowerCAmelCase , additional_special_tokens=lowerCAmelCase , **lowerCAmelCase , ) __UpperCamelCase : Any = extra_ids __UpperCamelCase : List[Any] = 2**8 # utf is 8 bits # define special tokens dict __UpperCamelCase : Dict[int, str] = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } __UpperCamelCase : int = len(self.special_tokens_encoder ) __UpperCamelCase : Tuple = len(lowerCAmelCase ) for i, token in enumerate(lowerCAmelCase ): __UpperCamelCase : Optional[int] = self.vocab_size + i - n __UpperCamelCase : Dict[str, int] = {v: k for k, v in self.special_tokens_encoder.items()} @property def lowerCamelCase__ ( self : Any ) -> Optional[int]: """simple docstring""" return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowerCAmelCase )) + [1] return ([0] * len(lowerCAmelCase )) + [1] + ([0] * len(lowerCAmelCase )) + [1] def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : List[int] ) -> List[int]: """simple docstring""" if len(lowerCAmelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __UpperCamelCase : Any = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __UpperCamelCase : List[str] = self._add_eos_if_not_present(lowerCAmelCase ) if token_ids_a is None: return token_ids_a else: __UpperCamelCase : List[Any] = self._add_eos_if_not_present(lowerCAmelCase ) return token_ids_a + token_ids_a def lowerCamelCase__ ( self : str , lowerCAmelCase : str ) -> List[str]: """simple docstring""" __UpperCamelCase : Optional[int] = [chr(lowerCAmelCase ) for i in text.encode("""utf-8""" )] return tokens def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : Optional[int] ) -> int: """simple docstring""" if token in self.special_tokens_encoder: __UpperCamelCase : Dict = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: __UpperCamelCase : Tuple = self.added_tokens_encoder[token] elif len(lowerCAmelCase ) != 1: __UpperCamelCase : Dict = self.unk_token_id else: __UpperCamelCase : Union[str, Any] = ord(lowerCAmelCase ) + self._num_special_tokens return token_id def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" if index in self.special_tokens_decoder: __UpperCamelCase : str = self.special_tokens_decoder[index] else: __UpperCamelCase : Any = chr(index - self._num_special_tokens ) return token def lowerCamelCase__ ( self : str , lowerCAmelCase : List[Any] ) -> List[Any]: """simple docstring""" __UpperCamelCase : Union[str, Any] = b"""""" for token in tokens: if token in self.special_tokens_decoder: __UpperCamelCase : Optional[Any] = self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.added_tokens_decoder: __UpperCamelCase : Optional[int] = self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.special_tokens_encoder: __UpperCamelCase : Tuple = token.encode("""utf-8""" ) elif token in self.added_tokens_encoder: __UpperCamelCase : Tuple = token.encode("""utf-8""" ) else: __UpperCamelCase : Union[str, Any] = bytes([ord(lowerCAmelCase )] ) bstring += tok_string __UpperCamelCase : Optional[int] = bstring.decode("""utf-8""" , errors="""ignore""" ) return string def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" return ()
279
0
'''simple docstring''' import sys def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = len(__UpperCamelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = [[0 for x in range(__UpperCamelCase )] for x in range(__UpperCamelCase )] __SCREAMING_SNAKE_CASE : Tuple = [[0 for x in range(__UpperCamelCase )] for x in range(__UpperCamelCase )] for chain_length in range(2 , __UpperCamelCase ): for a in range(1 , n - chain_length + 1 ): __SCREAMING_SNAKE_CASE : Any = a + chain_length - 1 __SCREAMING_SNAKE_CASE : Union[str, Any] = sys.maxsize for c in range(__UpperCamelCase , __UpperCamelCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: __SCREAMING_SNAKE_CASE : Union[str, Any] = cost __SCREAMING_SNAKE_CASE : str = c return matrix, sol def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" if i == j: print('''A''' + str(__UpperCamelCase ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(__UpperCamelCase , __UpperCamelCase , optimal_solution[i][j] ) print_optiomal_solution(__UpperCamelCase , optimal_solution[i][j] + 1 , __UpperCamelCase ) print(''')''' , end=''' ''' ) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = [30, 35, 15, 5, 10, 20, 25] __SCREAMING_SNAKE_CASE : str = len(__UpperCamelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = matrix_chain_order(__UpperCamelCase ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__UpperCamelCase , 1 , n - 1 ) if __name__ == "__main__": main()
713
import pprint import requests lowercase_ = """https://zenquotes.io/api""" def a__ ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def a__ ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": lowercase_ = random_quotes() pprint.pprint(response)
131
0
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) lowerCamelCase_ = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_28, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') lowerCamelCase_ = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_55, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) lowerCamelCase_ = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_55) lowerCamelCase_ = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) lowerCamelCase_ = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions lowerCamelCase_ = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) lowerCamelCase_ = tf.keras.preprocessing.image.img_to_array(test_image) lowerCamelCase_ = np.expand_dims(test_image, axis=0) lowerCamelCase_ = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: lowerCamelCase_ = '''Normal''' if result[0][0] == 1: lowerCamelCase_ = '''Abnormality detected'''
330
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def __lowercase ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> int: '''simple docstring''' for attribute in key.split("." ): _A = getattr(__lowercase , __lowercase ) if weight_type is not None: _A = getattr(__lowercase , __lowercase ).shape else: _A = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _A = value elif weight_type == "weight_g": _A = value elif weight_type == "weight_v": _A = value elif weight_type == "bias": _A = value else: _A = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def __lowercase ( __lowercase , __lowercase , __lowercase ) -> str: '''simple docstring''' _A = [] _A = fairseq_model.state_dict() _A = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _A = False if "conv_layers" in name: load_conv_layer( __lowercase , __lowercase , __lowercase , __lowercase , hf_model.config.feat_extract_norm == "group" , ) _A = True else: for key, mapped_key in MAPPING.items(): _A = "hubert." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or (key.split("w2v_model." )[-1] == name.split("." )[0] and not is_finetuned): _A = True if "*" in mapped_key: _A = name.split(__lowercase )[0].split("." )[-2] _A = mapped_key.replace("*" , __lowercase ) if "weight_g" in name: _A = "weight_g" elif "weight_v" in name: _A = "weight_v" elif "weight" in name: _A = "weight" elif "bias" in name: _A = "bias" else: _A = None set_recursively(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) continue if not is_used: unused_weights.append(__lowercase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __lowercase ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Tuple: '''simple docstring''' _A = full_name.split("conv_layers." )[-1] _A = name.split("." ) _A = int(items[0] ) _A = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _A = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _A = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _A = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _A = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowercase ) @torch.no_grad() def __lowercase ( __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase=True ) -> int: '''simple docstring''' if config_path is not None: _A = HubertConfig.from_pretrained(__lowercase ) else: _A = HubertConfig() if is_finetuned: if dict_path: _A = Dictionary.load(__lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _A = target_dict.pad_index _A = target_dict.bos_index _A = target_dict.eos_index _A = len(target_dict.symbols ) _A = os.path.join(__lowercase , "vocab.json" ) if not os.path.isdir(__lowercase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__lowercase ) ) return os.makedirs(__lowercase , exist_ok=__lowercase ) with open(__lowercase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices , __lowercase ) _A = WavaVecaCTCTokenizer( __lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__lowercase , ) _A = True if config.feat_extract_norm == "layer" else False _A = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowercase , return_attention_mask=__lowercase , ) _A = WavaVecaProcessor(feature_extractor=__lowercase , tokenizer=__lowercase ) processor.save_pretrained(__lowercase ) _A = HubertForCTC(__lowercase ) else: _A = HubertModel(__lowercase ) if is_finetuned: _A , _A , _A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _A , _A , _A = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _A = model[0].eval() recursively_load_weights(__lowercase , __lowercase , __lowercase ) hf_wavavec.save_pretrained(__lowercase ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowerCamelCase_ = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
330
1
'''simple docstring''' from datetime import datetime import requests def __UpperCamelCase ( _UpperCAmelCase ): __UpperCAmelCase = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url=''' __UpperCAmelCase = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src'''] return requests.get(lowerCAmelCase_ ).content if __name__ == "__main__": lowerCAmelCase__ : Optional[Any] = input("Enter Video/IGTV url: ").strip() lowerCAmelCase__ : Any = f"{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4" with open(file_name, "wb") as fp: fp.write(download_video(url)) print(f"Done. Video saved to disk as {file_name}.")
703
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE = ['''image_processor''', '''tokenizer'''] SCREAMING_SNAKE_CASE = '''BlipImageProcessor''' SCREAMING_SNAKE_CASE = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] ): """simple docstring""" __UpperCAmelCase : Optional[int] = False super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = self.image_processor def __call__( self : Optional[int] , UpperCAmelCase_ : ImageInput = None , UpperCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase_ : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase_ : List[str] , ): """simple docstring""" if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: __UpperCAmelCase : Optional[int] = self.tokenizer __UpperCAmelCase : Dict = self.tokenizer( text=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) return text_encoding # add pixel_values __UpperCAmelCase : Dict = self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ ) if text is not None: __UpperCAmelCase : Any = self.tokenizer( text=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) else: __UpperCAmelCase : str = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase_ ) return encoding_image_processor def lowerCamelCase_ ( self : Tuple , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : int ): """simple docstring""" return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def lowerCamelCase_ ( self : Any , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Tuple ): """simple docstring""" return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = self.tokenizer.model_input_names __UpperCAmelCase : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
329
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Optional[int] = logging.get_logger(__name__) snake_case_ : List[Any] = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class snake_case_ ( __A ): '''simple docstring''' lowerCamelCase = "pegasus" lowerCamelCase = ["past_key_values"] lowerCamelCase = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Dict , __magic_name__ : List[str]=5_0265 , __magic_name__ : Union[str, Any]=1024 , __magic_name__ : Optional[int]=12 , __magic_name__ : Dict=4096 , __magic_name__ : str=16 , __magic_name__ : str=12 , __magic_name__ : Optional[Any]=4096 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[Any]=0.0 , __magic_name__ : List[str]=True , __magic_name__ : List[Any]=True , __magic_name__ : str="gelu" , __magic_name__ : Tuple=1024 , __magic_name__ : str=0.1 , __magic_name__ : List[Any]=0.0 , __magic_name__ : Optional[int]=0.0 , __magic_name__ : str=0.02 , __magic_name__ : Dict=0 , __magic_name__ : Tuple=False , __magic_name__ : Optional[int]=0 , __magic_name__ : Any=1 , __magic_name__ : str=1 , **__magic_name__ : Tuple , ) -> Union[str, Any]: lowerCamelCase_ : Dict = vocab_size lowerCamelCase_ : Optional[int] = max_position_embeddings lowerCamelCase_ : Dict = d_model lowerCamelCase_ : Tuple = encoder_ffn_dim lowerCamelCase_ : str = encoder_layers lowerCamelCase_ : Dict = encoder_attention_heads lowerCamelCase_ : Dict = decoder_ffn_dim lowerCamelCase_ : str = decoder_layers lowerCamelCase_ : Optional[int] = decoder_attention_heads lowerCamelCase_ : Tuple = dropout lowerCamelCase_ : str = attention_dropout lowerCamelCase_ : str = activation_dropout lowerCamelCase_ : List[Any] = activation_function lowerCamelCase_ : List[str] = init_std lowerCamelCase_ : str = encoder_layerdrop lowerCamelCase_ : Optional[Any] = decoder_layerdrop lowerCamelCase_ : Dict = use_cache lowerCamelCase_ : Tuple = encoder_layers lowerCamelCase_ : str = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , is_encoder_decoder=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , forced_eos_token_id=_lowerCamelCase , **_lowerCamelCase , ) @property def __SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: return self.encoder_attention_heads @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: return self.d_model
488
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCamelCase ( A,unittest.TestCase ): '''simple docstring''' a_ : Union[str, Any] = CodeGenTokenizer a_ : str = CodeGenTokenizerFast a_ : int = True a_ : str = {"add_prefix_space": True} a_ : Optional[int] = False def _snake_case ( self : int ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCamelCase : List[Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] __lowerCamelCase : Union[str, Any] = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) __lowerCamelCase : Tuple = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowerCamelCase : Tuple = {"""unk_token""": """<unk>"""} __lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCamelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_lowerCamelCase ) ) def _snake_case ( self : int , **_lowerCamelCase : List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _snake_case ( self : Union[str, Any] , **_lowerCamelCase : List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _snake_case ( self : str , _lowerCamelCase : List[Any] ): '''simple docstring''' __lowerCamelCase : List[str] = """lower newer""" __lowerCamelCase : Tuple = """lower newer""" return input_text, output_text def _snake_case ( self : str ): '''simple docstring''' __lowerCamelCase : Tuple = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCamelCase : Optional[Any] = """lower newer""" __lowerCamelCase : Optional[int] = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __lowerCamelCase : List[str] = tokenizer.tokenize(_lowerCamelCase , add_prefix_space=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) __lowerCamelCase : Tuple = tokens + [tokenizer.unk_token] __lowerCamelCase : Optional[int] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) def _snake_case ( self : int ): '''simple docstring''' if not self.test_rust_tokenizer: return __lowerCamelCase : List[str] = self.get_tokenizer() __lowerCamelCase : Tuple = self.get_rust_tokenizer(add_prefix_space=_lowerCamelCase ) __lowerCamelCase : Tuple = """lower newer""" # Testing tokenization __lowerCamelCase : Any = tokenizer.tokenize(_lowerCamelCase , add_prefix_space=_lowerCamelCase ) __lowerCamelCase : Tuple = rust_tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) # Testing conversion to ids without special tokens __lowerCamelCase : List[Any] = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase , add_prefix_space=_lowerCamelCase ) __lowerCamelCase : Tuple = rust_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) # Testing conversion to ids with special tokens __lowerCamelCase : List[str] = self.get_rust_tokenizer(add_prefix_space=_lowerCamelCase ) __lowerCamelCase : List[str] = tokenizer.encode(_lowerCamelCase , add_prefix_space=_lowerCamelCase ) __lowerCamelCase : Optional[Any] = rust_tokenizer.encode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) # Testing the unknown token __lowerCamelCase : Any = tokens + [rust_tokenizer.unk_token] __lowerCamelCase : str = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) def _snake_case ( self : List[Any] , *_lowerCamelCase : Union[str, Any] , **_lowerCamelCase : Union[str, Any] ): '''simple docstring''' pass def _snake_case ( self : Optional[int] , _lowerCamelCase : Dict=1_5 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCamelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) # Simple input __lowerCamelCase : Optional[int] = """This is a simple input""" __lowerCamelCase : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] __lowerCamelCase : str = ("""This is a simple input""", """This is a pair""") __lowerCamelCase : Any = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(_lowerCamelCase , tokenizer_r.encode , _lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" ) # Simple input self.assertRaises(_lowerCamelCase , tokenizer_r.encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" ) # Simple input self.assertRaises( _lowerCamelCase , tokenizer_r.batch_encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" , ) # Pair input self.assertRaises(_lowerCamelCase , tokenizer_r.encode , _lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" ) # Pair input self.assertRaises(_lowerCamelCase , tokenizer_r.encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" ) # Pair input self.assertRaises( _lowerCamelCase , tokenizer_r.batch_encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" , ) def _snake_case ( self : List[Any] ): '''simple docstring''' __lowerCamelCase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input __lowerCamelCase : Dict = """This is a simple input""" __lowerCamelCase : str = ["""This is a simple input looooooooong""", """This is a simple input"""] __lowerCamelCase : Tuple = ("""This is a simple input""", """This is a pair""") __lowerCamelCase : List[Any] = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] __lowerCamelCase : List[Any] = tokenizer.pad_token_id __lowerCamelCase : Tuple = tokenizer(_lowerCamelCase , padding="""max_length""" , max_length=3_0 , return_tensors="""np""" ) __lowerCamelCase : Union[str, Any] = tokenizer(_lowerCamelCase , padding=_lowerCamelCase , truncate=_lowerCamelCase , return_tensors="""np""" ) __lowerCamelCase : Optional[int] = tokenizer(*_lowerCamelCase , padding="""max_length""" , max_length=6_0 , return_tensors="""np""" ) __lowerCamelCase : Dict = tokenizer(_lowerCamelCase , padding=_lowerCamelCase , truncate=_lowerCamelCase , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 3_0 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 6_0 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowerCamelCase : List[Any] = """$$$""" __lowerCamelCase : Optional[Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=_lowerCamelCase , add_bos_token=_lowerCamelCase ) __lowerCamelCase : Any = """This is a simple input""" __lowerCamelCase : Any = ["""This is a simple input 1""", """This is a simple input 2"""] __lowerCamelCase : str = tokenizer.bos_token_id __lowerCamelCase : Union[str, Any] = tokenizer(_lowerCamelCase ) __lowerCamelCase : Tuple = tokenizer(_lowerCamelCase ) self.assertEqual(out_s.input_ids[0] , _lowerCamelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) __lowerCamelCase : Any = tokenizer.decode(out_s.input_ids ) __lowerCamelCase : Tuple = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , _lowerCamelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def _snake_case ( self : Tuple ): '''simple docstring''' __lowerCamelCase : str = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" ) __lowerCamelCase : int = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" __lowerCamelCase : str = """\nif len_a > len_b: result = a\nelse: result = b""" __lowerCamelCase : Any = tokenizer.encode(_lowerCamelCase ) __lowerCamelCase : Dict = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""] __lowerCamelCase : List[str] = tokenizer.decode(_lowerCamelCase , truncate_before_pattern=_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _snake_case ( self : int ): '''simple docstring''' pass
519
0
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Tuple = ['''vqvae'''] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): super().__init__() self.register_modules(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , mel=lowerCAmelCase__ , vqvae=lowerCAmelCase__) def snake_case_ ( self): return 5_0 if isinstance(self.scheduler , lowerCAmelCase__) else 1_0_0_0 @torch.no_grad() def __call__( self , lowerCAmelCase__ = 1 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = None , lowerCAmelCase__ = 0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__=True , ): __SCREAMING_SNAKE_CASE = steps or self.get_default_steps() self.scheduler.set_timesteps(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size) == int: __SCREAMING_SNAKE_CASE = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: __SCREAMING_SNAKE_CASE = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=lowerCAmelCase__ , device=self.device , ) __SCREAMING_SNAKE_CASE = noise __SCREAMING_SNAKE_CASE = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.mel.audio_slice_to_image(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = np.frombuffer(input_image.tobytes() , dtype="""uint8""").reshape( (input_image.height, input_image.width)) __SCREAMING_SNAKE_CASE = (input_image / 2_5_5) * 2 - 1 __SCREAMING_SNAKE_CASE = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float).to(self.device) if self.vqvae is not None: __SCREAMING_SNAKE_CASE = self.vqvae.encode(torch.unsqueeze(lowerCAmelCase__ , 0)).latent_dist.sample( generator=lowerCAmelCase__)[0] __SCREAMING_SNAKE_CASE = self.vqvae.config.scaling_factor * input_images if start_step > 0: __SCREAMING_SNAKE_CASE = self.scheduler.add_noise(lowerCAmelCase__ , lowerCAmelCase__ , self.scheduler.timesteps[start_step - 1]) __SCREAMING_SNAKE_CASE = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) __SCREAMING_SNAKE_CASE = int(mask_start_secs * pixels_per_second) __SCREAMING_SNAKE_CASE = int(mask_end_secs * pixels_per_second) __SCREAMING_SNAKE_CASE = self.scheduler.add_noise(lowerCAmelCase__ , lowerCAmelCase__ , torch.tensor(self.scheduler.timesteps[start_step:])) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])): if isinstance(self.unet , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.unet(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__)["""sample"""] else: __SCREAMING_SNAKE_CASE = self.unet(lowerCAmelCase__ , lowerCAmelCase__)["""sample"""] if isinstance(self.scheduler , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.scheduler.step( model_output=lowerCAmelCase__ , timestep=lowerCAmelCase__ , sample=lowerCAmelCase__ , eta=lowerCAmelCase__ , generator=lowerCAmelCase__ , )["""prev_sample"""] else: __SCREAMING_SNAKE_CASE = self.scheduler.step( model_output=lowerCAmelCase__ , timestep=lowerCAmelCase__ , sample=lowerCAmelCase__ , generator=lowerCAmelCase__ , )["""prev_sample"""] if mask is not None: if mask_start > 0: __SCREAMING_SNAKE_CASE = mask[:, step, :, :mask_start] if mask_end > 0: __SCREAMING_SNAKE_CASE = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance __SCREAMING_SNAKE_CASE = 1 / self.vqvae.config.scaling_factor * images __SCREAMING_SNAKE_CASE = self.vqvae.decode(lowerCAmelCase__)["""sample"""] __SCREAMING_SNAKE_CASE = (images / 2 + 0.5).clamp(0 , 1) __SCREAMING_SNAKE_CASE = images.cpu().permute(0 , 2 , 3 , 1).numpy() __SCREAMING_SNAKE_CASE = (images * 2_5_5).round().astype("""uint8""") __SCREAMING_SNAKE_CASE = list( (Image.fromarray(_[:, :, 0]) for _ in images) if images.shape[3] == 1 else (Image.fromarray(lowerCAmelCase__ , mode="""RGB""").convert("""L""") for _ in images)) __SCREAMING_SNAKE_CASE = [self.mel.image_to_audio(lowerCAmelCase__) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(lowerCAmelCase__)[:, np.newaxis, :]) , **ImagePipelineOutput(lowerCAmelCase__)) @torch.no_grad() def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = 5_0): assert isinstance(self.scheduler , lowerCAmelCase__) self.scheduler.set_timesteps(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = np.array( [np.frombuffer(image.tobytes() , dtype="""uint8""").reshape((1, image.height, image.width)) for image in images]) __SCREAMING_SNAKE_CASE = (sample / 2_5_5) * 2 - 1 __SCREAMING_SNAKE_CASE = torch.Tensor(lowerCAmelCase__).to(self.device) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,))): __SCREAMING_SNAKE_CASE = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps __SCREAMING_SNAKE_CASE = self.scheduler.alphas_cumprod[t] __SCREAMING_SNAKE_CASE = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) __SCREAMING_SNAKE_CASE = 1 - alpha_prod_t __SCREAMING_SNAKE_CASE = self.unet(lowerCAmelCase__ , lowerCAmelCase__)["""sample"""] __SCREAMING_SNAKE_CASE = (1 - alpha_prod_t_prev) ** 0.5 * model_output __SCREAMING_SNAKE_CASE = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) __SCREAMING_SNAKE_CASE = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def snake_case_ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = acos(torch.dot(torch.flatten(lowerCAmelCase__) , torch.flatten(lowerCAmelCase__)) / torch.norm(lowerCAmelCase__) / torch.norm(lowerCAmelCase__)) return sin((1 - alpha) * theta) * xa / sin(lowerCAmelCase__) + sin(alpha * theta) * xa / sin(lowerCAmelCase__)
702
"""simple docstring""" from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class SCREAMING_SNAKE_CASE_ : """simple docstring""" def snake_case_ ( self , lowerCAmelCase__): raise NotImplementedError() def snake_case_ ( self): raise NotImplementedError() class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = False , **lowerCAmelCase__): __SCREAMING_SNAKE_CASE = tokenizer __SCREAMING_SNAKE_CASE = skip_prompt __SCREAMING_SNAKE_CASE = decode_kwargs # variables used in the streaming process __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = True def snake_case_ ( self , lowerCAmelCase__): if len(value.shape) > 1 and value.shape[0] > 1: raise ValueError("""TextStreamer only supports batch size 1""") elif len(value.shape) > 1: __SCREAMING_SNAKE_CASE = value[0] if self.skip_prompt and self.next_tokens_are_prompt: __SCREAMING_SNAKE_CASE = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist()) __SCREAMING_SNAKE_CASE = self.tokenizer.decode(self.token_cache , **self.decode_kwargs) # After the symbol for a new line, we flush the cache. if text.endswith("""\n"""): __SCREAMING_SNAKE_CASE = text[self.print_len :] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 0 # If the last token is a CJK character, we print the characters. elif len(lowerCAmelCase__) > 0 and self._is_chinese_char(ord(text[-1])): __SCREAMING_SNAKE_CASE = text[self.print_len :] self.print_len += len(lowerCAmelCase__) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: __SCREAMING_SNAKE_CASE = text[self.print_len : text.rfind(""" """) + 1] self.print_len += len(lowerCAmelCase__) self.on_finalized_text(lowerCAmelCase__) def snake_case_ ( self): # Flush the cache, if it exists if len(self.token_cache) > 0: __SCREAMING_SNAKE_CASE = self.tokenizer.decode(self.token_cache , **self.decode_kwargs) __SCREAMING_SNAKE_CASE = text[self.print_len :] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 0 else: __SCREAMING_SNAKE_CASE = """""" __SCREAMING_SNAKE_CASE = True self.on_finalized_text(lowerCAmelCase__ , stream_end=lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False): print(lowerCAmelCase__ , flush=lowerCAmelCase__ , end="""""" if not stream_end else None) def snake_case_ ( self , lowerCAmelCase__): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4_e_0_0 and cp <= 0X9_f_f_f) or (cp >= 0X3_4_0_0 and cp <= 0X4_d_b_f) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_a_6_d_f) # or (cp >= 0X2_a_7_0_0 and cp <= 0X2_b_7_3_f) # or (cp >= 0X2_b_7_4_0 and cp <= 0X2_b_8_1_f) # or (cp >= 0X2_b_8_2_0 and cp <= 0X2_c_e_a_f) # or (cp >= 0Xf_9_0_0 and cp <= 0Xf_a_f_f) or (cp >= 0X2_f_8_0_0 and cp <= 0X2_f_a_1_f) # ): # return True return False class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = False , lowerCAmelCase__ = None , **lowerCAmelCase__): super().__init__(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__) __SCREAMING_SNAKE_CASE = Queue() __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = timeout def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False): self.text_queue.put(lowerCAmelCase__ , timeout=self.timeout) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout) def __iter__( self): return self def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.text_queue.get(timeout=self.timeout) if value == self.stop_signal: raise StopIteration() else: return value
248
0
import os import re import shutil import sys import tempfile import unittest import black __snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. __snake_case = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) UpperCamelCase = self.transformer_dir shutil.copy( os.path.join(__magic_name__ , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = """src/transformers""" shutil.rmtree(self.transformer_dir ) def lowerCamelCase_ ( self : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any]=None ): """simple docstring""" UpperCamelCase = comment + F'\nclass {class_name}(nn.Module):\n' + class_code if overwrite_result is not None: UpperCamelCase = comment + F'\nclass {class_name}(nn.Module):\n' + overwrite_result UpperCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 ) UpperCamelCase = black.format_str(__magic_name__ , mode=__magic_name__ ) UpperCamelCase = os.path.join(self.transformer_dir , """new_code.py""" ) with open(__magic_name__ , """w""" , newline="""\n""" ) as f: f.write(__magic_name__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__magic_name__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=__magic_name__ ) with open(__magic_name__ , """r""" ) as f: self.assertTrue(f.read() , __magic_name__ ) def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(__magic_name__ , __magic_name__ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , __magic_name__ , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , __magic_name__ ) , ) # Copy consistency with a really long name UpperCamelCase = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F'# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}' , F'{long_class_name}LMPredictionHead' , re.sub("""Bert""" , __magic_name__ , __magic_name__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , __magic_name__ , overwrite_result=re.sub("""Bert""" , """TestModel""" , __magic_name__ ) , ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] UpperCamelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) UpperCamelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) UpperCamelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) UpperCamelCase , UpperCamelCase = check_copies.convert_to_localized_md( __magic_name__ , __magic_name__ , localized_readme["""format_model_list"""] ) self.assertFalse(__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) UpperCamelCase , UpperCamelCase = check_copies.convert_to_localized_md( __magic_name__ , __magic_name__ , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(__magic_name__ ) UpperCamelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) UpperCamelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) UpperCamelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) UpperCamelCase , UpperCamelCase = check_copies.convert_to_localized_md( __magic_name__ , __magic_name__ , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(__magic_name__ , __magic_name__ )
386
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort __snake_case = logging.get_logger(__name__) __snake_case = { "tensor(bool)": np.bool_, "tensor(int8)": np.inta, "tensor(uint8)": np.uinta, "tensor(int16)": np.intaa, "tensor(uint16)": np.uintaa, "tensor(int32)": np.intaa, "tensor(uint32)": np.uintaa, "tensor(int64)": np.intaa, "tensor(uint64)": np.uintaa, "tensor(float16)": np.floataa, "tensor(float)": np.floataa, "tensor(double)": np.floataa, } class UpperCAmelCase : def __init__( self : Dict , __magic_name__ : List[Any]=None , **__magic_name__ : List[str] ): """simple docstring""" logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) UpperCamelCase = model UpperCamelCase = kwargs.get("""model_save_dir""" , __magic_name__ ) UpperCamelCase = kwargs.get("""latest_model_name""" , __magic_name__ ) def __call__( self : Optional[Any] , **__magic_name__ : Dict ): """simple docstring""" UpperCamelCase = {k: np.array(__magic_name__ ) for k, v in kwargs.items()} return self.model.run(__magic_name__ , __magic_name__ ) @staticmethod def lowerCamelCase_ ( __magic_name__ : Union[str, Path] , __magic_name__ : Optional[int]=None , __magic_name__ : List[str]=None ): """simple docstring""" if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) UpperCamelCase = """CPUExecutionProvider""" return ort.InferenceSession(__magic_name__ , providers=[provider] , sess_options=__magic_name__ ) def lowerCamelCase_ ( self : Any , __magic_name__ : Union[str, Path] , __magic_name__ : Optional[str] = None , **__magic_name__ : Union[str, Any] ): """simple docstring""" UpperCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME UpperCamelCase = self.model_save_dir.joinpath(self.latest_model_name ) UpperCamelCase = Path(__magic_name__ ).joinpath(__magic_name__ ) try: shutil.copyfile(__magic_name__ , __magic_name__ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) UpperCamelCase = self.model_save_dir.joinpath(__magic_name__ ) if src_path.exists(): UpperCamelCase = Path(__magic_name__ ).joinpath(__magic_name__ ) try: shutil.copyfile(__magic_name__ , __magic_name__ ) except shutil.SameFileError: pass def lowerCamelCase_ ( self : Any , __magic_name__ : Union[str, os.PathLike] , **__magic_name__ : int , ): """simple docstring""" if os.path.isfile(__magic_name__ ): logger.error(F'Provided path ({save_directory}) should be a directory, not a file' ) return os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) # saving model weights/files self._save_pretrained(__magic_name__ , **__magic_name__ ) @classmethod def lowerCamelCase_ ( cls : List[str] , __magic_name__ : Union[str, Path] , __magic_name__ : Optional[Union[bool, str, None]] = None , __magic_name__ : Optional[Union[str, None]] = None , __magic_name__ : bool = False , __magic_name__ : Optional[str] = None , __magic_name__ : Optional[str] = None , __magic_name__ : Optional[str] = None , __magic_name__ : Optional["ort.SessionOptions"] = None , **__magic_name__ : List[Any] , ): """simple docstring""" UpperCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(__magic_name__ ): UpperCamelCase = OnnxRuntimeModel.load_model( os.path.join(__magic_name__ , __magic_name__ ) , provider=__magic_name__ , sess_options=__magic_name__ ) UpperCamelCase = Path(__magic_name__ ) # load model from hub else: # download model UpperCamelCase = hf_hub_download( repo_id=__magic_name__ , filename=__magic_name__ , use_auth_token=__magic_name__ , revision=__magic_name__ , cache_dir=__magic_name__ , force_download=__magic_name__ , ) UpperCamelCase = Path(__magic_name__ ).parent UpperCamelCase = Path(__magic_name__ ).name UpperCamelCase = OnnxRuntimeModel.load_model(__magic_name__ , provider=__magic_name__ , sess_options=__magic_name__ ) return cls(model=__magic_name__ , **__magic_name__ ) @classmethod def lowerCamelCase_ ( cls : Any , __magic_name__ : Union[str, Path] , __magic_name__ : bool = True , __magic_name__ : Optional[str] = None , __magic_name__ : Optional[str] = None , **__magic_name__ : str , ): """simple docstring""" UpperCamelCase = None if len(str(__magic_name__ ).split("""@""" ) ) == 2: UpperCamelCase , UpperCamelCase = model_id.split("""@""" ) return cls._from_pretrained( model_id=__magic_name__ , revision=__magic_name__ , cache_dir=__magic_name__ , force_download=__magic_name__ , use_auth_token=__magic_name__ , **__magic_name__ , )
386
1
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self : Optional[Any] ): __UpperCamelCase = tempfile.mkdtemp() # fmt: off __UpperCamelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) __UpperCamelCase = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } __UpperCamelCase = os.path.join(self.tmpdirname , snake_case ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(snake_case , snake_case ) def snake_case ( self : List[Any] , **snake_case : str ): return BertTokenizer.from_pretrained(self.tmpdirname , **snake_case ) def snake_case ( self : int , **snake_case : Any ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **snake_case ) def snake_case ( self : Optional[Any] ): shutil.rmtree(self.tmpdirname ) def snake_case ( self : Any ): __UpperCamelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __UpperCamelCase = [Image.fromarray(np.moveaxis(snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case ( self : Optional[int] ): __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = self.get_image_processor() __UpperCamelCase = VisionTextDualEncoderProcessor(tokenizer=snake_case , image_processor=snake_case ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case ) def snake_case ( self : Union[str, Any] ): __UpperCamelCase = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __UpperCamelCase = self.get_image_processor(do_normalize=snake_case , padding_value=1.0 ) __UpperCamelCase = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=snake_case , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case ) def snake_case ( self : int ): __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = VisionTextDualEncoderProcessor(tokenizer=snake_case , image_processor=snake_case ) __UpperCamelCase = self.prepare_image_inputs() __UpperCamelCase = image_processor(snake_case , return_tensors='''np''' ) __UpperCamelCase = processor(images=snake_case , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def snake_case ( self : List[Any] ): __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = VisionTextDualEncoderProcessor(tokenizer=snake_case , image_processor=snake_case ) __UpperCamelCase = '''lower newer''' __UpperCamelCase = processor(text=snake_case ) __UpperCamelCase = tokenizer(snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case ( self : List[str] ): __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = VisionTextDualEncoderProcessor(tokenizer=snake_case , image_processor=snake_case ) __UpperCamelCase = '''lower newer''' __UpperCamelCase = self.prepare_image_inputs() __UpperCamelCase = processor(text=snake_case , images=snake_case ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(snake_case ): processor() def snake_case ( self : Optional[int] ): __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = VisionTextDualEncoderProcessor(tokenizer=snake_case , image_processor=snake_case ) __UpperCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCamelCase = processor.batch_decode(snake_case ) __UpperCamelCase = tokenizer.batch_decode(snake_case ) self.assertListEqual(snake_case , snake_case ) def snake_case ( self : Optional[int] ): __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = VisionTextDualEncoderProcessor(tokenizer=snake_case , image_processor=snake_case ) __UpperCamelCase = '''lower newer''' __UpperCamelCase = self.prepare_image_inputs() __UpperCamelCase = processor(text=snake_case , images=snake_case ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
375
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 a_ = get_tests_dir("fixtures/dummy_feature_extractor_config.json") a_ = get_tests_dir("fixtures/vocab.json") a_ = get_tests_dir("fixtures") class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" lowerCAmelCase__ : Optional[int] = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def snake_case ( self : Optional[Any] ): __UpperCamelCase = 0 def snake_case ( self : Tuple ): __UpperCamelCase = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(snake_case , snake_case ) def snake_case ( self : List[Any] ): with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase = WavaVecaConfig() __UpperCamelCase = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(snake_case ) processor.save_pretrained(snake_case ) __UpperCamelCase = AutoProcessor.from_pretrained(snake_case ) self.assertIsInstance(snake_case , snake_case ) def snake_case ( self : Any ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(snake_case , os.path.join(snake_case , snake_case ) ) copyfile(snake_case , os.path.join(snake_case , '''vocab.json''' ) ) __UpperCamelCase = AutoProcessor.from_pretrained(snake_case ) self.assertIsInstance(snake_case , snake_case ) def snake_case ( self : List[Any] ): with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase = WavaVecaFeatureExtractor() __UpperCamelCase = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) __UpperCamelCase = WavaVecaProcessor(snake_case , snake_case ) # save in new folder processor.save_pretrained(snake_case ) # drop `processor_class` in tokenizer with open(os.path.join(snake_case , snake_case ) , '''r''' ) as f: __UpperCamelCase = json.load(snake_case ) config_dict.pop('''processor_class''' ) with open(os.path.join(snake_case , snake_case ) , '''w''' ) as f: f.write(json.dumps(snake_case ) ) __UpperCamelCase = AutoProcessor.from_pretrained(snake_case ) self.assertIsInstance(snake_case , snake_case ) def snake_case ( self : Tuple ): with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase = WavaVecaFeatureExtractor() __UpperCamelCase = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) __UpperCamelCase = WavaVecaProcessor(snake_case , snake_case ) # save in new folder processor.save_pretrained(snake_case ) # drop `processor_class` in feature extractor with open(os.path.join(snake_case , snake_case ) , '''r''' ) as f: __UpperCamelCase = json.load(snake_case ) config_dict.pop('''processor_class''' ) with open(os.path.join(snake_case , snake_case ) , '''w''' ) as f: f.write(json.dumps(snake_case ) ) __UpperCamelCase = AutoProcessor.from_pretrained(snake_case ) self.assertIsInstance(snake_case , snake_case ) def snake_case ( self : Dict ): with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(snake_case ) # copy relevant files copyfile(snake_case , os.path.join(snake_case , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(snake_case , snake_case ) , '''w''' ) as f: f.write('''{}''' ) __UpperCamelCase = AutoProcessor.from_pretrained(snake_case ) self.assertIsInstance(snake_case , snake_case ) def snake_case ( self : int ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(snake_case ): __UpperCamelCase = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case ): __UpperCamelCase = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=snake_case ) __UpperCamelCase = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=snake_case ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) __UpperCamelCase = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) __UpperCamelCase = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version __UpperCamelCase = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=snake_case , use_fast=snake_case ) __UpperCamelCase = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def snake_case ( self : List[Any] ): try: AutoConfig.register('''custom''' , snake_case ) AutoFeatureExtractor.register(snake_case , snake_case ) AutoTokenizer.register(snake_case , slow_tokenizer_class=snake_case ) AutoProcessor.register(snake_case , snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case ): AutoProcessor.register(snake_case , snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API __UpperCamelCase = CustomFeatureExtractor.from_pretrained(snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase = os.path.join(snake_case , '''vocab.txt''' ) with open(snake_case , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) __UpperCamelCase = CustomTokenizer(snake_case ) __UpperCamelCase = CustomProcessor(snake_case , snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(snake_case ) __UpperCamelCase = AutoProcessor.from_pretrained(snake_case ) self.assertIsInstance(snake_case , snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def snake_case ( self : Optional[int] ): class _lowerCamelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase__ : Tuple = False class _lowerCamelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase__ : Tuple = False class _lowerCamelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase__ : Any = "AutoFeatureExtractor" lowerCAmelCase__ : str = "AutoTokenizer" lowerCAmelCase__ : str = False try: AutoConfig.register('''custom''' , snake_case ) AutoFeatureExtractor.register(snake_case , snake_case ) AutoTokenizer.register(snake_case , slow_tokenizer_class=snake_case ) AutoProcessor.register(snake_case , snake_case ) # If remote code is not set, the default is to use local classes. __UpperCamelCase = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. __UpperCamelCase = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=snake_case ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. __UpperCamelCase = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=snake_case ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def snake_case ( self : Optional[int] ): __UpperCamelCase = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def snake_case ( self : str ): __UpperCamelCase = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" lowerCAmelCase__ : int = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def snake_case ( cls : List[str] ): __UpperCamelCase = TOKEN HfFolder.save_token(snake_case ) @classmethod def snake_case ( cls : Union[str, Any] ): try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def snake_case ( self : int ): __UpperCamelCase = WavaVecaProcessor.from_pretrained(snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(snake_case , '''test-processor''' ) , push_to_hub=snake_case , use_auth_token=self._token ) __UpperCamelCase = WavaVecaProcessor.from_pretrained(F"{USER}/test-processor" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(snake_case , getattr(new_processor.feature_extractor , snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def snake_case ( self : Any ): __UpperCamelCase = WavaVecaProcessor.from_pretrained(snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(snake_case , '''test-processor-org''' ) , push_to_hub=snake_case , use_auth_token=self._token , organization='''valid_org''' , ) __UpperCamelCase = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(snake_case , getattr(new_processor.feature_extractor , snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def snake_case ( self : List[str] ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() __UpperCamelCase = CustomFeatureExtractor.from_pretrained(snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase = os.path.join(snake_case , '''vocab.txt''' ) with open(snake_case , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) __UpperCamelCase = CustomTokenizer(snake_case ) __UpperCamelCase = CustomProcessor(snake_case , snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"{USER}/test-dynamic-processor" , token=self._token ) __UpperCamelCase = Repository(snake_case , clone_from=F"{USER}/test-dynamic-processor" , token=self._token ) processor.save_pretrained(snake_case ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(snake_case , '''tokenizer_config.json''' ) ) as f: __UpperCamelCase = json.load(snake_case ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(snake_case , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(snake_case , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(snake_case , '''custom_processing.py''' ) ) ) repo.push_to_hub() __UpperCamelCase = AutoProcessor.from_pretrained(F"{USER}/test-dynamic-processor" , trust_remote_code=snake_case ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
375
1
"""simple docstring""" def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' try: UpperCAmelCase__ : Union[str, Any] = float(__UpperCamelCase ) except ValueError: raise ValueError("""Please enter a valid number""" ) UpperCAmelCase__ : List[str] = decimal - int(__UpperCamelCase ) if fractional_part == 0: return int(__UpperCamelCase ), 1 else: UpperCAmelCase__ : Optional[Any] = len(str(__UpperCamelCase ).split(""".""" )[1] ) UpperCAmelCase__ : List[Any] = int(decimal * (10**number_of_frac_digits) ) UpperCAmelCase__ : Any = 10**number_of_frac_digits UpperCAmelCase__ , UpperCAmelCase__ : int = denominator, numerator while True: UpperCAmelCase__ : int = dividend % divisor if remainder == 0: break UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = divisor, remainder UpperCAmelCase__ , UpperCAmelCase__ : int = numerator / divisor, denominator / divisor return int(__UpperCamelCase ), int(__UpperCamelCase ) if __name__ == "__main__": print(F"{decimal_to_fraction(2) = }") print(F"{decimal_to_fraction(89.0) = }") print(F"{decimal_to_fraction('67') = }") print(F"{decimal_to_fraction('45.0') = }") print(F"{decimal_to_fraction(1.5) = }") print(F"{decimal_to_fraction('6.25') = }") print(F"{decimal_to_fraction('78td') = }")
65
"""simple docstring""" import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def lowercase (*SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Union[Dict, Any]] = None , SCREAMING_SNAKE_CASE_ : List[str]=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 ) -> Optional[int]: from .. import __version__ SCREAMING_SNAKE_CASE = take_from SCREAMING_SNAKE_CASE = () if not isinstance(args[0] , SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = (args,) for attribute, version_name, message in args: if version.parse(version.parse(SCREAMING_SNAKE_CASE_ ).base_version ) >= version.parse(SCREAMING_SNAKE_CASE_ ): raise ValueError( F'The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'' F' version {__version__} is >= {version_name}' ) SCREAMING_SNAKE_CASE = None if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(SCREAMING_SNAKE_CASE_ ),) SCREAMING_SNAKE_CASE = F'The `{attribute}` argument is deprecated and will be removed in version {version_name}.' elif hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): values += (getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ),) SCREAMING_SNAKE_CASE = F'The `{attribute}` attribute is deprecated and will be removed in version {version_name}.' elif deprecated_kwargs is None: SCREAMING_SNAKE_CASE = F'`{attribute}` is deprecated and will be removed in version {version_name}.' if warning is not None: SCREAMING_SNAKE_CASE = warning + ' ' if standard_warn else '' warnings.warn(warning + message , SCREAMING_SNAKE_CASE_ , stacklevel=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) > 0: SCREAMING_SNAKE_CASE = inspect.getouterframes(inspect.currentframe() )[1] SCREAMING_SNAKE_CASE = call_frame.filename SCREAMING_SNAKE_CASE = call_frame.lineno SCREAMING_SNAKE_CASE = call_frame.function SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`' ) if len(SCREAMING_SNAKE_CASE_ ) == 0: return elif len(SCREAMING_SNAKE_CASE_ ) == 1: return values[0] return values
247
0
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE : Union[str, Any] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class UpperCamelCase ( __a , unittest.TestCase ): a__ :Dict = XLMProphetNetTokenizer a__ :List[Any] = False a__ :str = True def A_ (self ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase_ : str = XLMProphetNetTokenizer(__UpperCamelCase , keep_accents=__UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def A_ (self ) -> str: UpperCamelCase_ : int = """[PAD]""" UpperCamelCase_ : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) , __UpperCamelCase ) def A_ (self ) -> int: UpperCamelCase_ : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """[PAD]""" ) self.assertEqual(vocab_keys[1] , """[CLS]""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(__UpperCamelCase ) , 1_012 ) def A_ (self ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size , 1_012 ) def A_ (self ) -> List[str]: UpperCamelCase_ : Dict = XLMProphetNetTokenizer(__UpperCamelCase , keep_accents=__UpperCamelCase ) UpperCamelCase_ : Optional[int] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__UpperCamelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCamelCase_ : Dict = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __UpperCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) UpperCamelCase_ : List[str] = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) UpperCamelCase_ : int = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """[UNK]""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """[UNK]""", """.""", ] , ) @cached_property def A_ (self ) -> Optional[int]: return XLMProphetNetTokenizer.from_pretrained("""microsoft/xprophetnet-large-wiki100-cased""" ) @slow def A_ (self ) -> Optional[Any]: UpperCamelCase_ : List[Any] = """Hello World!""" UpperCamelCase_ : Any = [35_389, 6_672, 49, 2] self.assertListEqual(__UpperCamelCase , self.big_tokenizer.encode(__UpperCamelCase ) ) @slow def A_ (self ) -> Optional[int]: # fmt: off UpperCamelCase_ : Optional[int] = {"""input_ids""": [[11_073, 82_783, 18, 26, 82_783, 549, 51_540, 248, 17_209, 1_301, 217, 20, 215_186, 1_325, 147, 17_209, 1_301, 217, 20, 56_370, 53, 122_020, 20, 16_477, 27, 87_355, 4_548, 20, 4_728, 78_392, 17, 159_969, 18, 26, 24_491, 629, 15, 538, 22_704, 5_439, 15, 2_788, 24_491, 9_885, 15, 43_534, 605, 15, 814, 18_403, 33_200, 29, 15, 43_534, 24_458, 12_410, 111, 24_966, 83_669, 9_637, 144_068, 26, 850, 22_346, 27, 147, 24_966, 83_669, 83_490, 26, 39_113, 735, 27, 689, 656, 2_800, 1_339, 4_600, 53, 122_020, 115_785, 34, 816, 1_339, 46_887, 18, 147, 53_905, 1_951, 42_238, 41_170, 17_732, 834, 436, 15, 27_523, 98_733, 217, 147, 5_542, 4_981, 930, 17_347, 16, 2], [20_091, 629, 94, 82_786, 58, 490, 20, 1_528, 84, 53_905, 344, 80_592, 110_128, 18_822, 5_267, 1_306, 62, 152_537, 308, 7_997, 401, 124_427, 549, 35_442, 225, 109, 15_055, 25_748, 147, 7_119, 43_712, 34, 767, 135_366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63_784, 119_466, 17, 147_808, 88_214, 18, 656, 81, 32, 3_296, 10_280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCamelCase , model_name="""microsoft/xprophetnet-large-wiki100-cased""" , revision="""1acad1643ddd54a44df6a1b797ada8373685d90e""" , )
138
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE : int = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Any = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[str] = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
138
1
'''simple docstring''' import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class _A ( unittest.TestCase ): def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" debug_launcher(test_script.main ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" debug_launcher(test_ops.main )
26
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" _lowerCAmelCase : Any = Mock() _lowerCAmelCase : Dict = conn, Mock() _lowerCAmelCase : Optional[int] = iter([1, None] ) _lowerCAmelCase : Union[str, Any] = lambda lowerCAmelCase__ : next(lowerCAmelCase__ ) # ===== invoke ===== send_file(filename="mytext.txt" , testing=lowerCAmelCase__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
424
0
'''simple docstring''' class _a : """simple docstring""" def __init__( self ): SCREAMING_SNAKE_CASE : Optional[Any] = {} def __a ( self ): print(self.vertex ) for i in self.vertex: print(UpperCamelCase__ ,' -> ' ,' -> '.join([str(UpperCamelCase__ ) for j in self.vertex[i]] ) ) def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ): # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(UpperCamelCase__ ) else: # else make a new vertex SCREAMING_SNAKE_CASE : Union[str, Any] = [to_vertex] def __a ( self ): # visited array for storing already visited nodes SCREAMING_SNAKE_CASE : List[Any] = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(UpperCamelCase__ ,UpperCamelCase__ ) def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ): # mark start vertex as visited SCREAMING_SNAKE_CASE : str = True print(UpperCamelCase__ ,end=' ' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(UpperCamelCase__ ,UpperCamelCase__ ) if __name__ == "__main__": __UpperCAmelCase = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
709
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def SCREAMING_SNAKE_CASE_ ( snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : Dict ) -> List[str]: # load base model SCREAMING_SNAKE_CASE : int = StableDiffusionPipeline.from_pretrained(snake_case_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors SCREAMING_SNAKE_CASE : List[str] = load_file(snake_case_ ) SCREAMING_SNAKE_CASE : List[str] = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: SCREAMING_SNAKE_CASE : int = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) SCREAMING_SNAKE_CASE : int = pipeline.text_encoder else: SCREAMING_SNAKE_CASE : Optional[int] = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipeline.unet # find the target layer SCREAMING_SNAKE_CASE : Union[str, Any] = layer_infos.pop(0 ) while len(snake_case_ ) > -1: try: SCREAMING_SNAKE_CASE : int = curr_layer.__getattr__(snake_case_ ) if len(snake_case_ ) > 0: SCREAMING_SNAKE_CASE : int = layer_infos.pop(0 ) elif len(snake_case_ ) == 0: break except Exception: if len(snake_case_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: SCREAMING_SNAKE_CASE : List[str] = layer_infos.pop(0 ) SCREAMING_SNAKE_CASE : str = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' , 'lora_up' ) ) pair_keys.append(snake_case_ ) else: pair_keys.append(snake_case_ ) pair_keys.append(key.replace('lora_up' , 'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: SCREAMING_SNAKE_CASE : Any = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) SCREAMING_SNAKE_CASE : List[str] = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(snake_case_ , snake_case_ ).unsqueeze(2 ).unsqueeze(3 ) else: SCREAMING_SNAKE_CASE : Tuple = state_dict[pair_keys[0]].to(torch.floataa ) SCREAMING_SNAKE_CASE : Any = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(snake_case_ , snake_case_ ) # update visited list for item in pair_keys: visited.append(snake_case_ ) return pipeline if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.' ) parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors' ) parser.add_argument( '--lora_prefix_text_encoder', default='lora_te', type=str, help='The prefix of text encoder weight in safetensors', ) parser.add_argument('--alpha', default=0.75, type=float, help='The merging ratio in W = W0 + alpha * deltaW') parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.' ) parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = args.base_model_path __UpperCAmelCase = args.checkpoint_path __UpperCAmelCase = args.dump_path __UpperCAmelCase = args.lora_prefix_unet __UpperCAmelCase = args.lora_prefix_text_encoder __UpperCAmelCase = args.alpha __UpperCAmelCase = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) __UpperCAmelCase = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
220
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE : Tuple = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : List[str] = { "yjernite/retribert-base-uncased": 512, } SCREAMING_SNAKE_CASE : Optional[Any] = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class UpperCamelCase ( lowercase__ ): '''simple docstring''' lowercase : int =VOCAB_FILES_NAMES lowercase : int =PRETRAINED_VOCAB_FILES_MAP lowercase : Union[str, Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[Any] =PRETRAINED_INIT_CONFIGURATION lowercase : Tuple =RetriBertTokenizer lowercase : Dict =["""input_ids""", """attention_mask"""] def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_="[UNK]" , UpperCamelCase_="[SEP]" , UpperCamelCase_="[PAD]" , UpperCamelCase_="[CLS]" , UpperCamelCase_="[MASK]" , UpperCamelCase_=True , UpperCamelCase_=None , **UpperCamelCase_ , ): super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) lowercase_ :Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars ): lowercase_ :Tuple = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) ) lowercase_ :int = do_lower_case lowercase_ :int = strip_accents lowercase_ :List[Any] = tokenize_chinese_chars lowercase_ :Tuple = normalizer_class(**UpperCamelCase_ ) lowercase_ :Any = do_lower_case def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_=None ): lowercase_ :str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ): lowercase_ :Optional[Any] = [self.sep_token_id] lowercase_ :Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ): lowercase_ :int = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
257
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 SCREAMING_SNAKE_CASE : Union[str, Any] = get_tests_dir("fixtures") class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self ): # A mock response for an HTTP head request to emulate server down lowercase_ :str = mock.Mock() lowercase_ :Dict = 500 lowercase_ :List[Any] = {} lowercase_ :str = HTTPError lowercase_ :Optional[int] = {} # Download this model to make sure it's in the cache. lowercase_ :Any = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=UpperCamelCase_ ) as mock_head: lowercase_ :Dict = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase ( self ): # This test is for deprecated behavior and can be removed in v5 lowercase_ :Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def UpperCamelCase ( cls ): lowercase_ :Optional[Any] = TOKEN HfFolder.save_token(UpperCamelCase_ ) @classmethod def UpperCamelCase ( cls ): try: delete_repo(token=cls._token , repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def UpperCamelCase ( self ): lowercase_ :int = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase_ ) feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token ) lowercase_ :List[Any] = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( UpperCamelCase_ , repo_id='''test-feature-extractor''' , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) lowercase_ :Optional[int] = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) def UpperCamelCase ( self ): lowercase_ :Tuple = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase_ ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token ) lowercase_ :str = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( UpperCamelCase_ , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) lowercase_ :Optional[Any] = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) def UpperCamelCase ( self ): CustomFeatureExtractor.register_for_auto_class() lowercase_ :str = CustomFeatureExtractor.from_pretrained(UpperCamelCase_ ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , ) lowercase_ :str = AutoFeatureExtractor.from_pretrained( f"{USER}/test-dynamic-feature-extractor" , trust_remote_code=UpperCamelCase_ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
257
1
"""simple docstring""" # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers lowercase__ :int = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
374
"""simple docstring""" import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ) ->Any: """simple docstring""" __UpperCAmelCase : Tuple = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' __UpperCAmelCase : Tuple = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ).convert('''RGB''' ) __UpperCAmelCase : Dict = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_145_466, 0.4_578_275, 0.40_821_073) , (0.26_862_954, 0.26_130_258, 0.27_577_711) ), ] ) __UpperCAmelCase : Optional[Any] = transform(UpperCAmelCase_ ).unsqueeze(0 ).to(UpperCAmelCase_ ) return image def lowerCamelCase_ ( UpperCAmelCase_ ) ->Optional[Any]: """simple docstring""" if "visual_encoder" in key: __UpperCAmelCase : Tuple = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , UpperCAmelCase_ ) if "blocks" in key: __UpperCAmelCase : List[str] = re.sub(R'''blocks''' , '''layers''' , UpperCAmelCase_ ) if "attn" in key: __UpperCAmelCase : Union[str, Any] = re.sub(R'''attn''' , '''self_attn''' , UpperCAmelCase_ ) if "norm1" in key: __UpperCAmelCase : Optional[Any] = re.sub(R'''norm1''' , '''layer_norm1''' , UpperCAmelCase_ ) if "norm2" in key: __UpperCAmelCase : Optional[int] = re.sub(R'''norm2''' , '''layer_norm2''' , UpperCAmelCase_ ) if "encoder.norm" in key: __UpperCAmelCase : Union[str, Any] = re.sub(R'''encoder.norm''' , '''post_layernorm''' , UpperCAmelCase_ ) if "encoder.patch_embed.proj" in key: __UpperCAmelCase : Optional[int] = re.sub(R'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , UpperCAmelCase_ ) if "encoder.pos_embed" in key: __UpperCAmelCase : List[Any] = re.sub(R'''encoder.pos_embed''' , '''embeddings.position_embedding''' , UpperCAmelCase_ ) if "encoder.cls_token" in key: __UpperCAmelCase : List[str] = re.sub(R'''encoder.cls_token''' , '''embeddings.class_embedding''' , UpperCAmelCase_ ) if "self_attn" in key: __UpperCAmelCase : Any = re.sub(R'''self_attn.proj''' , '''self_attn.projection''' , UpperCAmelCase_ ) return key @torch.no_grad() def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_=None ) ->Dict: """simple docstring""" if config_path is not None: __UpperCAmelCase : Optional[int] = BlipConfig.from_pretrained(UpperCAmelCase_ ) else: __UpperCAmelCase : Optional[int] = BlipConfig(projection_dim=5_12 , text_config={} , vision_config={} ) __UpperCAmelCase : Optional[Any] = BlipForConditionalGeneration(UpperCAmelCase_ ).eval() __UpperCAmelCase : List[str] = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' __UpperCAmelCase : List[Any] = blip_decoder(pretrained=UpperCAmelCase_ , image_size=3_84 , vit='''base''' ) __UpperCAmelCase : str = pt_model.eval() __UpperCAmelCase : List[Any] = pt_model.state_dict() for key in modified_state_dict.copy(): __UpperCAmelCase : List[str] = modified_state_dict.pop(UpperCAmelCase_ ) __UpperCAmelCase : Optional[int] = rename_key(UpperCAmelCase_ ) __UpperCAmelCase : List[Any] = value hf_model.load_state_dict(UpperCAmelCase_ ) __UpperCAmelCase : str = 3_84 __UpperCAmelCase : Tuple = load_demo_image(image_size=UpperCAmelCase_ , device='''cpu''' ) __UpperCAmelCase : Optional[Any] = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __UpperCAmelCase : Optional[int] = tokenizer(['''a picture of'''] ).input_ids __UpperCAmelCase : Union[str, Any] = hf_model.generate(UpperCAmelCase_ , UpperCAmelCase_ ) assert out[0].tolist() == [3_05_22, 10_37, 38_61, 19_97, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] __UpperCAmelCase : Optional[int] = hf_model.generate(UpperCAmelCase_ ) assert out[0].tolist() == [3_05_22, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(UpperCAmelCase_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' __UpperCAmelCase : Optional[Any] = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) __UpperCAmelCase : List[str] = blip_vqa(pretrained=UpperCAmelCase_ , image_size=UpperCAmelCase_ , vit='''base''' ) vqa_model.eval() __UpperCAmelCase : Dict = vqa_model.state_dict() for key in modified_state_dict.copy(): __UpperCAmelCase : List[Any] = modified_state_dict.pop(UpperCAmelCase_ ) __UpperCAmelCase : int = rename_key(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = value __UpperCAmelCase : List[str] = BlipForQuestionAnswering(UpperCAmelCase_ ) hf_vqa_model.load_state_dict(UpperCAmelCase_ ) __UpperCAmelCase : str = ['''How many dogs are in this image?'''] __UpperCAmelCase : Dict = tokenizer(UpperCAmelCase_ , return_tensors='''pt''' ).input_ids __UpperCAmelCase : Any = hf_vqa_model.generate(UpperCAmelCase_ , UpperCAmelCase_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) __UpperCAmelCase : List[Any] = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' __UpperCAmelCase : List[str] = blip_itm(pretrained=UpperCAmelCase_ , image_size=UpperCAmelCase_ , vit='''base''' ) itm_model.eval() __UpperCAmelCase : Any = itm_model.state_dict() for key in modified_state_dict.copy(): __UpperCAmelCase : List[str] = modified_state_dict.pop(UpperCAmelCase_ ) __UpperCAmelCase : Dict = rename_key(UpperCAmelCase_ ) __UpperCAmelCase : int = value __UpperCAmelCase : Optional[int] = BlipForImageTextRetrieval(UpperCAmelCase_ ) __UpperCAmelCase : List[str] = ['''A picture of a woman with a dog sitting in a beach'''] __UpperCAmelCase : Optional[int] = tokenizer( UpperCAmelCase_ , return_tensors='''pt''' , padding='''max_length''' , truncation=UpperCAmelCase_ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(UpperCAmelCase_ ) hf_itm_model.eval() __UpperCAmelCase : List[Any] = hf_itm_model(UpperCAmelCase_ , UpperCAmelCase_ , use_itm_head=UpperCAmelCase_ ) __UpperCAmelCase : int = hf_itm_model(UpperCAmelCase_ , UpperCAmelCase_ , use_itm_head=UpperCAmelCase_ ) assert out[0].item() == 0.2_110_687_494_277_954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45_698_845_386_505_127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": lowercase__ :str = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') lowercase__ :int = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
374
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch UpperCamelCase_ : int = logging.get_logger(__name__) @dataclass class __lowercase : def __init__(self : Dict , snake_case : List[str]=False , snake_case : int=False , snake_case : Tuple=6.0 , snake_case : List[str]=None , snake_case : Tuple=False , snake_case : Union[str, Any]=False , snake_case : Dict=None , snake_case : Dict="fp4" , snake_case : str=False , **snake_case : Dict , ) -> List[Any]: _lowercase : Tuple = load_in_abit _lowercase : str = load_in_abit _lowercase : Tuple = llm_inta_threshold _lowercase : Any = llm_inta_skip_modules _lowercase : Any = llm_inta_enable_fpaa_cpu_offload _lowercase : Union[str, Any] = llm_inta_has_fpaa_weight _lowercase : Any = bnb_abit_quant_type _lowercase : int = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: _lowercase : Optional[int] = torch.floataa elif isinstance(snake_case , snake_case ): _lowercase : Union[str, Any] = getattr(snake_case , snake_case ) elif isinstance(snake_case , torch.dtype ): _lowercase : int = bnb_abit_compute_dtype else: raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype" ) self.post_init() def _a(self : Union[str, Any] ) -> Optional[int]: if not isinstance(self.llm_inta_threshold , snake_case ): raise ValueError("llm_int8_threshold must be a float" ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , snake_case ): raise ValueError("llm_int8_skip_modules must be a list of strings" ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , snake_case ): raise ValueError("llm_int8_enable_fp32_cpu_offload must be a boolean" ) if not isinstance(self.llm_inta_has_fpaa_weight , snake_case ): raise ValueError("llm_int8_has_fp16_weight must be a boolean" ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError("bnb_4bit_compute_dtype must be torch.dtype" ) if not isinstance(self.bnb_abit_quant_type , snake_case ): raise ValueError("bnb_4bit_quant_type must be a string" ) if not isinstance(self.bnb_abit_use_double_quant , snake_case ): raise ValueError("bnb_4bit_use_double_quant must be a boolean" ) if self.load_in_abit and not version.parse(importlib.metadata.version("bitsandbytes" ) ) >= version.parse( "0.39.0" ): raise ValueError( "4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version" ) def _a(self : Tuple ) -> Union[str, Any]: return self.load_in_abit or self.load_in_abit def _a(self : Dict ) -> Union[str, Any]: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def _a(cls : List[Any] , snake_case : str , snake_case : Any , **snake_case : Tuple ) -> Optional[Any]: _lowercase : Dict = cls(**snake_case ) _lowercase : Optional[int] = [] for key, value in kwargs.items(): if hasattr(snake_case , snake_case ): setattr(snake_case , snake_case , snake_case ) to_remove.append(snake_case ) for key in to_remove: kwargs.pop(snake_case , snake_case ) if return_unused_kwargs: return config, kwargs else: return config def _a(self : int , snake_case : Union[str, os.PathLike] ) -> Union[str, Any]: with open(snake_case , "w" , encoding="utf-8" ) as writer: _lowercase : str = self.to_dict() _lowercase : Optional[int] = json.dumps(snake_case , indent=2 , sort_keys=snake_case ) + "\n" writer.write(snake_case ) def _a(self : Optional[Any] ) -> Dict[str, Any]: _lowercase : List[Any] = copy.deepcopy(self.__dict__ ) _lowercase : str = str(output["bnb_4bit_compute_dtype"] ).split("." )[1] return output def __repr__(self : Union[str, Any] ) -> int: return F"""{self.__class__.__name__} {self.to_json_string()}""" def _a(self : List[Any] , snake_case : bool = True ) -> str: if use_diff is True: _lowercase : Optional[Any] = self.to_diff_dict() else: _lowercase : List[str] = self.to_dict() return json.dumps(snake_case , indent=2 , sort_keys=snake_case ) + "\n" def _a(self : Optional[Any] ) -> Dict[str, Any]: _lowercase : Dict = self.to_dict() # get the default config dict _lowercase : Dict = BitsAndBytesConfig().to_dict() _lowercase : Dict = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: _lowercase : Optional[Any] = value return serializable_config_dict
461
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class __lowercase : _A = None _A = False _A = False _A = False _A = None _A = None _A = False _A = False _A = False _A = True _A = None _A = 1 _A = None _A = False _A = None _A = None def _a(self : str ) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(snake_case ) for k, v in self.__dict__.items()} )
461
1
def __magic_name__ ( __a : int , __a : int ): '''simple docstring''' return int((input_a, input_a).count(0 ) != 0 ) def __magic_name__ ( ): '''simple docstring''' assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
703
from PIL import Image def __magic_name__ ( __a : Image , __a : float ): '''simple docstring''' def brightness(__a : int ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(__a ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 lowerCamelCase_ = change_brightness(img, 1_00) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
86
0
"""simple docstring""" import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase = "▁" __lowerCamelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class _snake_case ( A__ , unittest.TestCase ): '''simple docstring''' UpperCamelCase__ =BigBirdTokenizer UpperCamelCase__ =BigBirdTokenizerFast UpperCamelCase__ =True UpperCamelCase__ =True def snake_case_ ( self : Union[str, Any] ): super().setUp() UpperCAmelCase_ :List[Any] = self.tokenizer_class(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case_ ( self : str ): UpperCAmelCase_ :List[str] = """<s>""" UpperCAmelCase_ :str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def snake_case_ ( self : Any ): UpperCAmelCase_ :Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''[MASK]''' ) self.assertEqual(len(lowerCamelCase__ ) , 1_004 ) def snake_case_ ( self : Optional[int] ): self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def snake_case_ ( self : Optional[Any] ): if not self.test_rust_tokenizer: return UpperCAmelCase_ :Any = self.get_tokenizer() UpperCAmelCase_ :str = self.get_rust_tokenizer() UpperCAmelCase_ :List[Any] = """I was born in 92000, and this is falsé.""" UpperCAmelCase_ :List[str] = tokenizer.tokenize(lowerCamelCase__ ) UpperCAmelCase_ :Optional[int] = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase_ :str = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) UpperCAmelCase_ :Union[str, Any] = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase_ :Tuple = self.get_rust_tokenizer() UpperCAmelCase_ :Any = tokenizer.encode(lowerCamelCase__ ) UpperCAmelCase_ :Tuple = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def snake_case_ ( self : Optional[Any] ): UpperCAmelCase_ :Dict = BigBirdTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) UpperCAmelCase_ :str = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCamelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [285, 46, 10, 170, 382] , ) UpperCAmelCase_ :List[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ :Tuple = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ :Optional[int] = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def snake_case_ ( self : Dict ): return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) @slow def snake_case_ ( self : List[str] ): UpperCAmelCase_ :Dict = """Hello World!""" UpperCAmelCase_ :Any = [65, 18_536, 2_260, 101, 66] self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) ) @slow def snake_case_ ( self : str ): UpperCAmelCase_ :Optional[Any] = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) # fmt: off UpperCAmelCase_ :Any = [65, 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, 66] # noqa: E231 # fmt: on self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) ) @require_torch @slow def snake_case_ ( self : str ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence UpperCAmelCase_ :Optional[Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCAmelCase_ :Optional[Any] = """ """.join(lowerCamelCase__ ) UpperCAmelCase_ :Optional[int] = self.big_tokenizer.encode_plus(lowerCamelCase__ , return_tensors='''pt''' , return_token_type_ids=lowerCamelCase__ ) UpperCAmelCase_ :List[Any] = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=lowerCamelCase__ ) UpperCAmelCase_ :Optional[int] = BigBirdConfig(attention_type='''original_full''' ) UpperCAmelCase_ :List[str] = BigBirdModel(lowerCamelCase__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCamelCase__ ) model(**lowerCamelCase__ ) @slow def snake_case_ ( self : List[str] ): UpperCAmelCase_ :Any = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) UpperCAmelCase_ :Any = tokenizer.decode(tokenizer('''Paris is the [MASK].''' ).input_ids ) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''' ) @slow def snake_case_ ( self : Union[str, Any] ): # fmt: off UpperCAmelCase_ :int = {"""input_ids""": [[65, 39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114, 66], [65, 448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
608
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def A ( lowercase__ : Optional[int] ) -> Optional[Any]: UpperCamelCase__ :Union[str, Any] = {} UpperCamelCase__ :Optional[int] = tokenizer(example["""content"""] , truncation=lowercase__ )["""input_ids"""] UpperCamelCase__ :int = len(example["""content"""] ) / len(output["""input_ids"""] ) return output UpperCamelCase = HfArgumentParser(PretokenizationArguments) UpperCamelCase = parser.parse_args() if args.num_workers is None: UpperCamelCase = multiprocessing.cpu_count() UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCamelCase = time.time() UpperCamelCase = load_dataset(args.dataset_name, split="train") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() UpperCamelCase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCamelCase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
45
0
"""simple docstring""" from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( __snake_case ): '''simple docstring''' lowerCamelCase__ = ["""pixel_values"""] def __init__( self , lowercase = True , lowercase = None , lowercase = PILImageResampling.BICUBIC , lowercase = True , lowercase = None , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = IMAGENET_DEFAULT_MEAN , lowercase = IMAGENET_DEFAULT_STD , **lowercase , ): super().__init__(**__UpperCamelCase ) _lowerCamelCase : Dict = size if size is not None else {'shortest_edge': 224} _lowerCamelCase : List[str] = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _lowerCamelCase : Union[str, Any] = crop_size if crop_size is not None else {'height': 224, 'width': 224} _lowerCamelCase : Any = get_size_dict(__UpperCamelCase , param_name='crop_size' ) _lowerCamelCase : Optional[Any] = do_resize _lowerCamelCase : Optional[Any] = size _lowerCamelCase : int = resample _lowerCamelCase : Union[str, Any] = do_center_crop _lowerCamelCase : Any = crop_size _lowerCamelCase : List[str] = do_rescale _lowerCamelCase : Tuple = rescale_factor _lowerCamelCase : Optional[int] = do_normalize _lowerCamelCase : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _lowerCamelCase : Dict = image_std if image_std is not None else IMAGENET_DEFAULT_STD def A_ ( self , lowercase , lowercase , lowercase = PILImageResampling.BICUBIC , lowercase = None , **lowercase , ): _lowerCamelCase : Union[str, Any] = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _lowerCamelCase : Optional[Any] = int((256 / 224) * size['shortest_edge'] ) _lowerCamelCase : Optional[Any] = get_resize_output_image_size(__UpperCamelCase , size=__UpperCamelCase , default_to_square=__UpperCamelCase ) _lowerCamelCase : List[Any] = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( __UpperCamelCase , size=(size_dict['height'], size_dict['width']) , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase , ): _lowerCamelCase : Dict = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(__UpperCamelCase , size=(size['height'], size['width']) , data_format=__UpperCamelCase , **__UpperCamelCase ) def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase , ): return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def A_ ( self , lowercase , lowercase , lowercase , lowercase = None , **lowercase , ): return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ): _lowerCamelCase : Dict = do_resize if do_resize is not None else self.do_resize _lowerCamelCase : Any = resample if resample is not None else self.resample _lowerCamelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCamelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Any = do_normalize if do_normalize is not None else self.do_normalize _lowerCamelCase : int = image_mean if image_mean is not None else self.image_mean _lowerCamelCase : Optional[Any] = image_std if image_std is not None else self.image_std _lowerCamelCase : List[Any] = size if size is not None else self.size _lowerCamelCase : Dict = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _lowerCamelCase : Union[str, Any] = crop_size if crop_size is not None else self.crop_size _lowerCamelCase : Optional[int] = get_size_dict(__UpperCamelCase , param_name='crop_size' ) _lowerCamelCase : Union[str, Any] = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _lowerCamelCase : List[Any] = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: _lowerCamelCase : Any = [self.resize(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) for image in images] if do_center_crop: _lowerCamelCase : Union[str, Any] = [self.center_crop(__UpperCamelCase , __UpperCamelCase ) for image in images] if do_rescale: _lowerCamelCase : Union[str, Any] = [self.rescale(__UpperCamelCase , __UpperCamelCase ) for image in images] if do_normalize: _lowerCamelCase : Dict = [self.normalize(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) for image in images] _lowerCamelCase : Optional[Any] = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] _lowerCamelCase : Tuple = {'pixel_values': images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
702
"""simple docstring""" def _snake_case ( lowercase__ ): return "".join(chr(ord(lowercase__ ) - 32 ) if 'a' <= char <= 'z' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
492
0
'''simple docstring''' def _snake_case ( A_ : int = 100 ): """simple docstring""" a_ : str = 0 a_ : int = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
577
'''simple docstring''' def _snake_case ( A_ : Optional[int] ): """simple docstring""" a_ : str = len(A_ ) for i in range(length - 1 ): a_ : List[Any] = i for k in range(i + 1 , A_ ): if collection[k] < collection[least]: a_ : Union[str, Any] = k if least != i: a_ , a_ : int = (collection[i], collection[least]) return collection if __name__ == "__main__": __snake_case: Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() __snake_case: Any = [int(item) for item in user_input.split(",")] print(selection_sort(unsorted))
577
1
'''simple docstring''' import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = FlaxAutoModelForSeqaSeqLM.from_config(config=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = """wi_0""" in tax_model["""target"""]["""encoder"""]["""layers_0"""]["""mlp"""] if config.model_type == "t5": _SCREAMING_SNAKE_CASE = """SelfAttention""" if config.model_type == "longt5" and config.encoder_attention_type == "local": _SCREAMING_SNAKE_CASE = """LocalSelfAttention""" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _SCREAMING_SNAKE_CASE = """TransientGlobalSelfAttention""" else: raise ValueError( """Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`""" """ attribute with a value from ['local', 'transient-global].""" ) # Encoder for layer_index in range(config.num_layers ): _SCREAMING_SNAKE_CASE = F"layers_{str(SCREAMING_SNAKE_CASE_ )}" # Self-Attention _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""key"""]["""kernel"""] _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""out"""]["""kernel"""] _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""query"""]["""kernel"""] _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""value"""]["""kernel"""] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""T5LayerNorm_0"""]["""scale"""] # Layer Normalization _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""encoder"""][layer_name]["""pre_attention_layer_norm"""]["""scale"""] if split_mlp_wi: _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""] _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""] else: _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""] _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""] # Layer Normalization _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""encoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""] # Assigning _SCREAMING_SNAKE_CASE = flax_model.params["""encoder"""]["""block"""][str(SCREAMING_SNAKE_CASE_ )]["""layer"""] _SCREAMING_SNAKE_CASE = tax_attention_key _SCREAMING_SNAKE_CASE = tax_attention_out _SCREAMING_SNAKE_CASE = tax_attention_query _SCREAMING_SNAKE_CASE = tax_attention_value _SCREAMING_SNAKE_CASE = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _SCREAMING_SNAKE_CASE = tax_global_layer_norm if split_mlp_wi: _SCREAMING_SNAKE_CASE = tax_mlp_wi_a _SCREAMING_SNAKE_CASE = tax_mlp_wi_a else: _SCREAMING_SNAKE_CASE = tax_mlp_wi _SCREAMING_SNAKE_CASE = tax_mlp_wo _SCREAMING_SNAKE_CASE = tax_mlp_layer_norm _SCREAMING_SNAKE_CASE = flax_model_encoder_layer_block # Only for layer 0: _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""encoder"""]["""relpos_bias"""]["""rel_embedding"""].T _SCREAMING_SNAKE_CASE = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""encoder"""]["""side_relpos_bias"""]["""rel_embedding"""].T _SCREAMING_SNAKE_CASE = tax_encoder_global_rel_embedding # Assigning _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""encoder"""]["""encoder_norm"""]["""scale"""] _SCREAMING_SNAKE_CASE = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): _SCREAMING_SNAKE_CASE = F"layers_{str(SCREAMING_SNAKE_CASE_ )}" # Self-Attention _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""key"""]["""kernel"""] _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""out"""]["""kernel"""] _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""query"""]["""kernel"""] _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""value"""]["""kernel"""] # Layer Normalization _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""decoder"""][layer_name]["""pre_self_attention_layer_norm"""][ """scale""" ] # Encoder-Decoder-Attention _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""decoder"""][layer_name]["""encoder_decoder_attention"""] _SCREAMING_SNAKE_CASE = tax_enc_dec_attention_module["""key"""]["""kernel"""] _SCREAMING_SNAKE_CASE = tax_enc_dec_attention_module["""out"""]["""kernel"""] _SCREAMING_SNAKE_CASE = tax_enc_dec_attention_module["""query"""]["""kernel"""] _SCREAMING_SNAKE_CASE = tax_enc_dec_attention_module["""value"""]["""kernel"""] # Layer Normalization _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""decoder"""][layer_name]["""pre_cross_attention_layer_norm"""]["""scale"""] # MLP if split_mlp_wi: _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""] _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""] else: _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""] _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""] # Layer Normalization _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""decoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""] # Assigning _SCREAMING_SNAKE_CASE = flax_model.params["""decoder"""]["""block"""][str(SCREAMING_SNAKE_CASE_ )]["""layer"""] _SCREAMING_SNAKE_CASE = tax_attention_key _SCREAMING_SNAKE_CASE = tax_attention_out _SCREAMING_SNAKE_CASE = tax_attention_query _SCREAMING_SNAKE_CASE = tax_attention_value _SCREAMING_SNAKE_CASE = tax_pre_attention_layer_norm _SCREAMING_SNAKE_CASE = tax_enc_dec_attention_key _SCREAMING_SNAKE_CASE = tax_enc_dec_attention_out _SCREAMING_SNAKE_CASE = tax_enc_dec_attention_query _SCREAMING_SNAKE_CASE = tax_enc_dec_attention_value _SCREAMING_SNAKE_CASE = tax_cross_layer_norm if split_mlp_wi: _SCREAMING_SNAKE_CASE = tax_mlp_wi_a _SCREAMING_SNAKE_CASE = tax_mlp_wi_a else: _SCREAMING_SNAKE_CASE = tax_mlp_wi _SCREAMING_SNAKE_CASE = tax_mlp_wo _SCREAMING_SNAKE_CASE = txa_mlp_layer_norm _SCREAMING_SNAKE_CASE = flax_model_decoder_layer_block # Decoder Normalization _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""decoder"""]["""decoder_norm"""]["""scale"""] _SCREAMING_SNAKE_CASE = txa_decoder_norm # Only for layer 0: _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""decoder"""]["""relpos_bias"""]["""rel_embedding"""].T _SCREAMING_SNAKE_CASE = tax_decoder_rel_embedding # Token Embeddings _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""token_embedder"""]["""embedding"""] _SCREAMING_SNAKE_CASE = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: _SCREAMING_SNAKE_CASE = tax_model["""target"""]["""decoder"""]["""logits_dense"""]["""kernel"""] flax_model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print("""T5X Model was sucessfully converted!""" ) if __name__ == "__main__": UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path the T5X checkpoint." ) parser.add_argument("--config_name", default=None, type=str, required=True, help="Config name of LongT5/T5 model.") parser.add_argument( "--flax_dump_folder_path", default=None, type=str, required=True, help="Path to the output FLAX model." ) UpperCamelCase__ : int = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
0
'''simple docstring''' import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput UpperCamelCase__ : Tuple = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _a (_lowerCamelCase): """simple docstring""" def __init__( self , *A__ , A__=None , A__=None , A__=None , **A__ ) -> Optional[int]: super().__init__(*A__ , **A__ ) _SCREAMING_SNAKE_CASE = eval_examples _SCREAMING_SNAKE_CASE = post_process_function _SCREAMING_SNAKE_CASE = quant_trainer_args _SCREAMING_SNAKE_CASE = 1_28 # default number of calibration samples def UpperCamelCase ( self , A__=None ) -> Union[str, Any]: if calib_dataset is None and self.calib_dataset is None: raise ValueError("""Trainer: calibration requires an calib_dataset.""" ) _SCREAMING_SNAKE_CASE = calib_dataset if calib_dataset is not None else self.calib_dataset _SCREAMING_SNAKE_CASE = self._remove_unused_columns(A__ , description="""Calibration""" ) return DataLoader( A__ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=A__ , ) def UpperCamelCase ( self , A__=None ) -> str: _SCREAMING_SNAKE_CASE = self.train_dataset if calib_dataset is None else calib_dataset _SCREAMING_SNAKE_CASE = self.get_calib_dataloader(A__ ) _SCREAMING_SNAKE_CASE = self.model quant_trainer.configure_model(A__ , self.quant_trainer_args , calib=A__ ) model.eval() quant_trainer.enable_calibration(A__ ) logger.info("""***** Running calibration *****""" ) logger.info(F" Num examples = {self.calib_num}" ) logger.info(F" Batch size = {calib_dataloader.batch_size}" ) for step, inputs in enumerate(A__ ): # Prediction step _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.prediction_step(A__ , A__ , prediction_loss_only=A__ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(A__ , self.quant_trainer_args ) _SCREAMING_SNAKE_CASE = model def UpperCamelCase ( self , A__=None , A__=None , A__=None , A__ = "eval" ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.eval_dataset if eval_dataset is None else eval_dataset _SCREAMING_SNAKE_CASE = self.get_eval_dataloader(A__ ) _SCREAMING_SNAKE_CASE = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _SCREAMING_SNAKE_CASE = self.compute_metrics _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _SCREAMING_SNAKE_CASE = eval_loop( A__ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A__ , ) finally: _SCREAMING_SNAKE_CASE = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: _SCREAMING_SNAKE_CASE = self.post_process_function(A__ , A__ , output.predictions ) _SCREAMING_SNAKE_CASE = self.compute_metrics(A__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): _SCREAMING_SNAKE_CASE = metrics.pop(A__ ) self.log(A__ ) else: _SCREAMING_SNAKE_CASE = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _SCREAMING_SNAKE_CASE = self.callback_handler.on_evaluate(self.args , self.state , self.control , A__ ) return metrics def UpperCamelCase ( self , A__ , A__ , A__=None , A__ = "test" ) -> List[str]: _SCREAMING_SNAKE_CASE = self.get_test_dataloader(A__ ) # Temporarily disable metric computation, we will do it in the loop here. _SCREAMING_SNAKE_CASE = self.compute_metrics _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _SCREAMING_SNAKE_CASE = eval_loop( A__ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A__ , ) finally: _SCREAMING_SNAKE_CASE = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output _SCREAMING_SNAKE_CASE = self.post_process_function(A__ , A__ , output.predictions , """predict""" ) _SCREAMING_SNAKE_CASE = self.compute_metrics(A__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): _SCREAMING_SNAKE_CASE = metrics.pop(A__ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=A__ ) def UpperCamelCase ( self , A__="./" ) -> Tuple: _SCREAMING_SNAKE_CASE = self.eval_dataset _SCREAMING_SNAKE_CASE = self.get_eval_dataloader(A__ ) _SCREAMING_SNAKE_CASE = next(iter(A__ ) ) # saving device - to make it consistent _SCREAMING_SNAKE_CASE = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) # convert to tuple _SCREAMING_SNAKE_CASE = tuple(v.to(A__ ) for k, v in batch.items() ) logger.info("""Converting model to be onnx compatible""" ) from pytorch_quantization.nn import TensorQuantizer _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = self.model.to(A__ ) model.eval() model.float() _SCREAMING_SNAKE_CASE = model.module if hasattr(A__ , """module""" ) else model quant_trainer.configure_model(A__ , self.quant_trainer_args ) _SCREAMING_SNAKE_CASE = os.path.join(A__ , """model.onnx""" ) logger.info(F"exporting model to {output_model_file}" ) _SCREAMING_SNAKE_CASE = {0: """batch_size""", 1: """seq_len"""} torch.onnx.export( A__ , A__ , A__ , export_params=A__ , opset_version=13 , do_constant_folding=A__ , input_names=["""input_ids""", """attention_mask""", """token_type_ids"""] , output_names=["""output_start_logits""", """output_end_logits"""] , dynamic_axes={ """input_ids""": axes, """attention_mask""": axes, """token_type_ids""": axes, """output_start_logits""": axes, """output_end_logits""": axes, } , verbose=A__ , ) logger.info("""onnx export finished""" )
0
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCamelCase = logging.get_logger(__name__) class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : Dict = ["pixel_values"] def __init__( self , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = 1 / 255 , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = True , **SCREAMING_SNAKE_CASE__ , ) -> None: super().__init__(**SCREAMING_SNAKE_CASE__ ) A__ = size if size is not None else {"height": 384, "width": 384} A__ = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) A__ = do_resize A__ = size A__ = resample A__ = do_rescale A__ = rescale_factor A__ = do_normalize A__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A__ = image_std if image_std is not None else OPENAI_CLIP_STD A__ = do_convert_rgb def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ) -> np.ndarray: A__ = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) A__ = (size["height"], size["width"]) return resize(SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ) -> str: return rescale(SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ) -> np.ndarray: return normalize(SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE__ , ) -> PIL.Image.Image: A__ = do_resize if do_resize is not None else self.do_resize A__ = resample if resample is not None else self.resample A__ = do_rescale if do_rescale is not None else self.do_rescale A__ = rescale_factor if rescale_factor is not None else self.rescale_factor A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = image_mean if image_mean is not None else self.image_mean A__ = image_std if image_std is not None else self.image_std A__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A__ = size if size is not None else self.size A__ = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) A__ = make_list_of_images(SCREAMING_SNAKE_CASE__ ) if not valid_images(SCREAMING_SNAKE_CASE__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: A__ = [convert_to_rgb(SCREAMING_SNAKE_CASE__ ) for image in images] # All transformations expect numpy arrays. A__ = [to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images] if do_resize: A__ = [self.resize(image=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ ) for image in images] if do_rescale: A__ = [self.rescale(image=SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ ) for image in images] if do_normalize: A__ = [self.normalize(image=SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ ) for image in images] A__ = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for image in images] A__ = BatchFeature(data={"pixel_values": images} , tensor_type=SCREAMING_SNAKE_CASE__ ) return encoded_outputs
104
"""simple docstring""" import random def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False ) -> dict: '''simple docstring''' lowerCamelCase__ ={i: [] for i in range(__lowerCAmelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(__lowerCAmelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(__lowerCAmelCase ): for j in range(i + 1 , __lowerCAmelCase ): if random.random() < probability: graph[i].append(__lowerCAmelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(__lowerCAmelCase ) return graph def lowerCamelCase_ ( __lowerCAmelCase ) -> dict: '''simple docstring''' return { i: [j for j in range(__lowerCAmelCase ) if i != j] for i in range(__lowerCAmelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
530
0
'''simple docstring''' import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 __snake_case = data_utils.TransfoXLTokenizer __snake_case = data_utils.TransfoXLCorpus __snake_case = data_utils __snake_case = data_utils def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->Any: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(SCREAMING_SNAKE_CASE_ , """rb""" ) as fp: lowercase_ = pickle.load(SCREAMING_SNAKE_CASE_ , encoding="""latin1""" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) lowercase_ = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""pretrained_vocab_file"""] print(f"""Save vocabulary to {pytorch_vocab_dump_path}""" ) lowercase_ = corpus.vocab.__dict__ torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = corpus.__dict__ corpus_dict_no_vocab.pop("""vocab""" , SCREAMING_SNAKE_CASE_ ) lowercase_ = pytorch_dump_folder_path + """/""" + CORPUS_NAME print(f"""Save dataset to {pytorch_dataset_dump_path}""" ) torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model lowercase_ = os.path.abspath(SCREAMING_SNAKE_CASE_ ) lowercase_ = os.path.abspath(SCREAMING_SNAKE_CASE_ ) print(f"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" ) # Initialise PyTorch model if transfo_xl_config_file == "": lowercase_ = TransfoXLConfig() else: lowercase_ = TransfoXLConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) print(f"""Building PyTorch model from configuration: {config}""" ) lowercase_ = TransfoXLLMHeadModel(SCREAMING_SNAKE_CASE_ ) lowercase_ = load_tf_weights_in_transfo_xl(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save pytorch-model lowercase_ = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print(f"""Save PyTorch model to {os.path.abspath(SCREAMING_SNAKE_CASE_ )}""" ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE_ ) print(f"""Save configuration file to {os.path.abspath(SCREAMING_SNAKE_CASE_ )}""" ) with open(SCREAMING_SNAKE_CASE_ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--tf_checkpoint_path""", default="""""", type=str, help="""An optional path to a TensorFlow checkpoint path to be converted.""", ) parser.add_argument( """--transfo_xl_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--transfo_xl_dataset_file""", default="""""", type=str, help="""An optional dataset file to be converted in a vocabulary.""", ) __snake_case = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
603
'''simple docstring''' # Lint as: python3 import itertools import os import re __snake_case = re.compile(r"""([A-Z]+)([A-Z][a-z])""") __snake_case = re.compile(r"""([a-z\d])([A-Z])""") __snake_case = re.compile(r"""(?<!_)_(?!_)""") __snake_case = re.compile(r"""(_{2,})""") __snake_case = r"""^\w+(\.\w+)*$""" __snake_case = r"""<>:/\|?*""" def A_ ( SCREAMING_SNAKE_CASE_ ) ->Union[str, Any]: lowercase_ = _uppercase_uppercase_re.sub(r"""\1_\2""" , SCREAMING_SNAKE_CASE_ ) lowercase_ = _lowercase_uppercase_re.sub(r"""\1_\2""" , SCREAMING_SNAKE_CASE_ ) return name.lower() def A_ ( SCREAMING_SNAKE_CASE_ ) ->List[Any]: lowercase_ = _single_underscore_re.split(SCREAMING_SNAKE_CASE_ ) lowercase_ = [_multiple_underscores_re.split(SCREAMING_SNAKE_CASE_ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_ ) if n != """""" ) def A_ ( SCREAMING_SNAKE_CASE_ ) ->Any: if os.path.basename(SCREAMING_SNAKE_CASE_ ) != name: raise ValueError(f"""Should be a dataset name, not a path: {name}""" ) return camelcase_to_snakecase(SCREAMING_SNAKE_CASE_ ) def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->Any: if os.path.basename(SCREAMING_SNAKE_CASE_ ) != name: raise ValueError(f"""Should be a dataset name, not a path: {name}""" ) if not re.match(_split_re , SCREAMING_SNAKE_CASE_ ): raise ValueError(f"""Split name should match '{_split_re}'' but got '{split}'.""" ) return f"""{filename_prefix_for_name(SCREAMING_SNAKE_CASE_ )}-{split}""" def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) ->Tuple: lowercase_ = filename_prefix_for_split(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if filetype_suffix: prefix += f""".{filetype_suffix}""" lowercase_ = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return f"""{filepath}*""" def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) ->Optional[Any]: lowercase_ = filename_prefix_for_split(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if shard_lengths: lowercase_ = len(SCREAMING_SNAKE_CASE_ ) lowercase_ = [f"""{prefix}-{shard_id:05d}-of-{num_shards:05d}""" for shard_id in range(SCREAMING_SNAKE_CASE_ )] if filetype_suffix: lowercase_ = [filename + f""".{filetype_suffix}""" for filename in filenames] return filenames else: lowercase_ = prefix if filetype_suffix: filename += f""".{filetype_suffix}""" return [filename]
603
1
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path a_ : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) a_ : list[int] = [ord(letter) for letter in string.ascii_lowercase] a_ : set[int] = {ord(char) for char in VALID_CHARS} a_ : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def a_ ( __snake_case : list[int] , __snake_case : tuple[int, ...] ) -> str | None: """simple docstring""" lowerCamelCase_ ="" lowerCamelCase_ =42 lowerCamelCase_ =42 lowerCamelCase_ =42 for keychar, cipherchar in zip(cycle(__snake_case ) , __snake_case ): lowerCamelCase_ =cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__snake_case ) return decoded def a_ ( __snake_case : list[int] ) -> list[str]: """simple docstring""" lowerCamelCase_ =[] for key in product(__snake_case , repeat=3 ): lowerCamelCase_ =try_key(__snake_case , __snake_case ) if encoded is not None: possibles.append(__snake_case ) return possibles def a_ ( __snake_case : list[str] , __snake_case : str ) -> list[str]: """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def a_ ( __snake_case : str = "p059_cipher.txt" ) -> int: """simple docstring""" lowerCamelCase_ =42 lowerCamelCase_ =42 lowerCamelCase_ =42 lowerCamelCase_ =42 lowerCamelCase_ =Path(__snake_case ).parent.joinpath(__snake_case ).read_text(encoding='''utf-8''' ) lowerCamelCase_ =[int(__snake_case ) for number in data.strip().split(''',''' )] lowerCamelCase_ =filter_valid_chars(__snake_case ) for common_word in COMMON_WORDS: lowerCamelCase_ =filter_common_word(__snake_case , __snake_case ) if len(__snake_case ) == 1: break lowerCamelCase_ =possibles[0] return sum(ord(__snake_case ) for char in decoded_text ) if __name__ == "__main__": print(F"""{solution() = }""")
676
def A__ ( lowercase: Any, lowercase: List[Any], lowercase: List[Any]=False ) -> Dict: if isinstance(lowercase, lowercase ) and isinstance(lowercase, lowercase ): A : int =len(set_a.intersection(lowercase ) ) if alternative_union: A : Tuple =len(lowercase ) + len(lowercase ) else: A : Any =len(set_a.union(lowercase ) ) return intersection / union if isinstance(lowercase, (list, tuple) ) and isinstance(lowercase, (list, tuple) ): A : int =[element for element in set_a if element in set_b] if alternative_union: A : Union[str, Any] =len(lowercase ) + len(lowercase ) return len(lowercase ) / union else: A : Optional[Any] =set_a + [element for element in set_b if element not in set_a] return len(lowercase ) / len(lowercase ) return len(lowercase ) / len(lowercase ) return None if __name__ == "__main__": _lowercase : str ={'''a''', '''b''', '''c''', '''d''', '''e'''} _lowercase : List[Any] ={'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
305
0
"""simple docstring""" # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration _A : List[Any] = """facebook/wmt19-en-de""" _A : Any = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model _A : Union[str, Any] = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) _A : int = FSMTForConditionalGeneration(config) print(F"num of params {tiny_model.num_parameters()}") # Test _A : List[Any] = tokenizer(["""Making tiny model"""], return_tensors="""pt""") _A : Dict = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save _A : Union[str, Any] = """tiny-wmt19-en-de""" tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"Generated {mname_tiny}") # Upload # transformers-cli upload tiny-wmt19-en-de
518
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class a__ ( unittest.TestCase ): @slow def __magic_name__ ( self ): lowercase : List[str] = AutoImageProcessor.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" ) lowercase : Any = AutoModelForImageClassification.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" ) model.to(_a ) from datasets import load_dataset lowercase : Any = load_dataset("nielsr/rvlcdip-demo" ) lowercase : List[str] = dataset["train"][0]["image"].convert("RGB" ) lowercase : str = image_processor(_a , return_tensors="pt" ).to(_a ) # forward pass with torch.no_grad(): lowercase : Tuple = model(**_a ) lowercase : Dict = outputs.logits lowercase : Union[str, Any] = torch.Size((1, 16) ) self.assertEqual(logits.shape , _a ) lowercase : int = torch.tensor( [-0.4_1_5_8, -0.4_0_9_2, -0.4_3_4_7] , device=_a , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , _a , atol=1E-4 ) )
518
1
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def UpperCamelCase ( lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' assert isinstance(lowercase_ , lowercase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' lowercase__ : Tuple = tmp_path / """cache""" lowercase__ : Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase__ : Optional[int] = SqlDatasetReader( """dataset""" , """sqlite:///""" + sqlite_path , cache_dir=lowercase_ , keep_in_memory=lowercase_ ).read() _check_sql_dataset(lowercase_ , lowercase_ ) @require_sqlalchemy @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' lowercase__ : Optional[int] = tmp_path / """cache""" lowercase__ : List[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowercase__ : Optional[int] = features.copy() if features else default_expected_features lowercase__ : str = ( Features({feature: Value(lowercase_ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase__ : Tuple = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , features=lowercase_ , cache_dir=lowercase_ ).read() _check_sql_dataset(lowercase_ , lowercase_ ) def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' with contextlib.closing(sqlitea.connect(lowercase_ ) ) as con: lowercase__ : str = con.cursor() cur.execute("""SELECT * FROM dataset""" ) for row in cur: yield row @require_sqlalchemy def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' lowercase__ : str = tmp_path / """cache""" lowercase__ : Optional[Any] = os.path.join(lowercase_ , """tmp.sql""" ) lowercase__ : Union[str, Any] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=lowercase_ ).read() SqlDatasetWriter(lowercase_ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=1 ).write() lowercase__ : Optional[Any] = iter_sql_file(lowercase_ ) lowercase__ : int = iter_sql_file(lowercase_ ) for rowa, rowa in zip(lowercase_ , lowercase_ ): assert rowa == rowa @require_sqlalchemy def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> str: '''simple docstring''' lowercase__ : List[str] = tmp_path / """cache""" lowercase__ : str = os.path.join(lowercase_ , """tmp.sql""" ) lowercase__ : List[str] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=lowercase_ ).read() SqlDatasetWriter(lowercase_ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=2 ).write() lowercase__ : List[Any] = iter_sql_file(lowercase_ ) lowercase__ : Tuple = iter_sql_file(lowercase_ ) for rowa, rowa in zip(lowercase_ , lowercase_ ): assert rowa == rowa @require_sqlalchemy def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' lowercase__ : Tuple = tmp_path / """cache""" lowercase__ : Union[str, Any] = os.path.join(lowercase_ , """tmp.sql""" ) lowercase__ : Dict = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=lowercase_ ).read() with pytest.raises(lowercase_ ): SqlDatasetWriter(lowercase_ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=0 ).write()
12
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowercase__( _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : PreTrainedTokenizer , _UpperCamelCase : int , _UpperCamelCase : Optional[int] = None , )-> List[Any]: """simple docstring""" _UpperCamelCase = {} if train_file is not None: _UpperCamelCase = [train_file] if eval_file is not None: _UpperCamelCase = [eval_file] if test_file is not None: _UpperCamelCase = [test_file] _UpperCamelCase = datasets.load_dataset("csv" , data_files=_UpperCamelCase ) _UpperCamelCase = list(ds[list(files.keys() )[0]].features.keys() ) _UpperCamelCase = features_name.pop(_UpperCamelCase ) _UpperCamelCase = list(set(ds[list(files.keys() )[0]][label_name] ) ) _UpperCamelCase = {label: i for i, label in enumerate(_UpperCamelCase )} _UpperCamelCase = tokenizer.model_input_names _UpperCamelCase = {} if len(_UpperCamelCase ) == 1: for k in files.keys(): _UpperCamelCase = ds[k].map( lambda _UpperCamelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=_UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) , batched=_UpperCamelCase , ) elif len(_UpperCamelCase ) == 2: for k in files.keys(): _UpperCamelCase = ds[k].map( lambda _UpperCamelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=_UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" , ) , batched=_UpperCamelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: _UpperCamelCase = {k: v for k, v in ex.items() if k in input_names} _UpperCamelCase = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: _UpperCamelCase = {k: v for k, v in ex.items() if k in input_names} _UpperCamelCase = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: _UpperCamelCase = {k: v for k, v in ex.items() if k in input_names} _UpperCamelCase = labelaid[ex[label_name]] yield (d, label) _UpperCamelCase = ( tf.data.Dataset.from_generator( _UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: _UpperCamelCase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) _UpperCamelCase = ( tf.data.Dataset.from_generator( _UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: _UpperCamelCase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) _UpperCamelCase = ( tf.data.Dataset.from_generator( _UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: _UpperCamelCase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid snake_case_ : Tuple = logging.getLogger(__name__) @dataclass class A_ : '''simple docstring''' _lowerCAmelCase = field(metadata={"""help""": """Which column contains the label"""} ) _lowerCAmelCase = field(default=lowerCAmelCase_ , metadata={"""help""": """The path of the training file"""} ) _lowerCAmelCase = field(default=lowerCAmelCase_ , metadata={"""help""": """The path of the development file"""} ) _lowerCAmelCase = field(default=lowerCAmelCase_ , metadata={"""help""": """The path of the test file"""} ) _lowerCAmelCase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _lowerCAmelCase = field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) @dataclass class A_ : '''simple docstring''' _lowerCAmelCase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _lowerCAmelCase = field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _lowerCAmelCase = field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _lowerCAmelCase = field(default=lowerCAmelCase_ , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _lowerCAmelCase = field( default=lowerCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) def lowercase__( )-> List[Any]: """simple docstring""" _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( f"n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, " f"16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_UpperCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_UpperCamelCase ) , labelaid=_UpperCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): _UpperCamelCase = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(_UpperCamelCase : EvalPrediction ) -> Dict: _UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer _UpperCamelCase = TFTrainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=_UpperCamelCase , eval_dataset=_UpperCamelCase , compute_metrics=_UpperCamelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(_UpperCamelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(f" {key} = {value}" ) writer.write(f"{key} = {value}\n" ) results.update(_UpperCamelCase ) return results if __name__ == "__main__": main()
138
0
"""simple docstring""" class _lowercase : def __init__( self : Union[str, Any] , a : str = "" , a : bool = False ): """simple docstring""" __snake_case : dict[str, RadixNode] ={} # A node will be a leaf if the tree contains its word __snake_case : Dict =is_leaf __snake_case : List[str] =prefix def _UpperCamelCase ( self : Dict , a : str ): """simple docstring""" __snake_case : Optional[Any] =0 for q, w in zip(self.prefix , a ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def _UpperCamelCase ( self : Tuple , a : list[str] ): """simple docstring""" for word in words: self.insert(a ) def _UpperCamelCase ( self : Optional[int] , a : str ): """simple docstring""" if self.prefix == word: __snake_case : Optional[Any] =True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: __snake_case : List[str] =RadixNode(prefix=a , is_leaf=a ) else: __snake_case : int =self.nodes[word[0]] __snake_case , __snake_case , __snake_case : Any =incoming_node.match( a ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(a ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: __snake_case : Union[str, Any] =remaining_prefix __snake_case : Optional[int] =self.nodes[matching_string[0]] __snake_case : Tuple =RadixNode(a , a ) __snake_case : Dict =aux_node if remaining_word == "": __snake_case : List[str] =True else: self.nodes[matching_string[0]].insert(a ) def _UpperCamelCase ( self : Optional[int] , a : str ): """simple docstring""" __snake_case : Any =self.nodes.get(word[0] , a ) if not incoming_node: return False else: __snake_case , __snake_case , __snake_case : Union[str, Any] =incoming_node.match( a ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(a ) def _UpperCamelCase ( self : Union[str, Any] , a : str ): """simple docstring""" __snake_case : List[str] =self.nodes.get(word[0] , a ) if not incoming_node: return False else: __snake_case , __snake_case , __snake_case : List[str] =incoming_node.match( a ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(a ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: __snake_case : Optional[Any] =list(self.nodes.values() )[0] __snake_case : List[str] =merging_node.is_leaf self.prefix += merging_node.prefix __snake_case : str =merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: __snake_case : Any =False # If there is 1 edge, we merge it with its child else: __snake_case : List[Any] =list(incoming_node.nodes.values() )[0] __snake_case : str =merging_node.is_leaf incoming_node.prefix += merging_node.prefix __snake_case : Any =merging_node.nodes return True def _UpperCamelCase ( self : int , a : int = 0 ): """simple docstring""" if self.prefix != "": print('''-''' * height , self.prefix , ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def __lowercase ( ) -> bool: __snake_case : Optional[Any] ='''banana bananas bandana band apple all beast'''.split() __snake_case : List[Any] =RadixNode() root.insert_many(a ) assert all(root.find(a ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def __lowercase ( ) -> None: assert test_trie() def __lowercase ( ) -> None: __snake_case : Optional[Any] =RadixNode() __snake_case : Optional[int] ='''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(a ) print('''Words:''' , a ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
497
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class _lowercase : def __init__( self : Optional[Any] , a : List[str] , a : List[Any]=1_3 , a : Any=7 , a : List[str]=True , a : int=True , a : Optional[int]=9_9 , a : List[Any]=3_2 , a : Optional[int]=5 , a : List[Any]=4 , a : Dict=3_7 , a : List[str]="gelu" , a : Union[str, Any]=0.1 , a : str=0.1 , a : List[str]=5_0 , a : Tuple=0.0_2 , a : Union[str, Any]=True , a : int=None , ): """simple docstring""" __snake_case : Optional[int] =parent __snake_case : Dict =batch_size __snake_case : Union[str, Any] =seq_length __snake_case : Optional[Any] =is_training __snake_case : Any =use_input_mask __snake_case : Union[str, Any] =vocab_size __snake_case : Union[str, Any] =hidden_size __snake_case : int =num_hidden_layers __snake_case : Optional[int] =num_attention_heads __snake_case : int =intermediate_size __snake_case : str =hidden_act __snake_case : str =hidden_dropout_prob __snake_case : Tuple =attention_probs_dropout_prob __snake_case : Tuple =max_position_embeddings __snake_case : Optional[Any] =initializer_range __snake_case : List[str] =use_labels __snake_case : List[Any] =scope def _UpperCamelCase ( self : List[Any] ): """simple docstring""" __snake_case : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Optional[int] =None if self.use_input_mask: __snake_case : Optional[Any] =random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: __snake_case : int =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Any =self.get_config() return config, input_ids, input_mask, token_labels def _UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=a , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Dict =self.prepare_config_and_inputs() __snake_case : Dict =True __snake_case : int =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __snake_case : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def _UpperCamelCase ( self : Optional[Any] , a : Union[str, Any] , a : Optional[int] , a : int , a : Tuple , **a : Any , ): """simple docstring""" __snake_case : List[Any] =BertGenerationEncoder(config=a ) model.to(a ) model.eval() __snake_case : Dict =model(a , attention_mask=a ) __snake_case : Tuple =model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Tuple , a : Union[str, Any] , a : Optional[Any] , a : str , a : List[Any] , a : Optional[int] , a : Optional[Any] , **a : int , ): """simple docstring""" __snake_case : Any =True __snake_case : List[str] =BertGenerationEncoder(config=a ) model.to(a ) model.eval() __snake_case : Union[str, Any] =model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , ) __snake_case : str =model( a , attention_mask=a , encoder_hidden_states=a , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Any , a : List[str] , a : Dict , a : Optional[Any] , a : Tuple , a : Dict , a : Tuple , **a : Tuple , ): """simple docstring""" __snake_case : List[Any] =True __snake_case : Any =True __snake_case : int =BertGenerationDecoder(config=a ).to(a ).eval() # first forward pass __snake_case : List[str] =model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , use_cache=a , ) __snake_case : Optional[int] =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __snake_case : List[str] =ids_tensor((self.batch_size, 3) , config.vocab_size ) __snake_case : List[Any] =ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __snake_case : Tuple =torch.cat([input_ids, next_tokens] , dim=-1 ) __snake_case : List[Any] =torch.cat([input_mask, next_mask] , dim=-1 ) __snake_case : Tuple =model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , output_hidden_states=a , )['''hidden_states'''][0] __snake_case : Any =model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , past_key_values=a , output_hidden_states=a , )['''hidden_states'''][0] # select random slice __snake_case : int =ids_tensor((1,) , output_from_past.shape[-1] ).item() __snake_case : int =output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case : int =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a , a , atol=1e-3 ) ) def _UpperCamelCase ( self : Optional[Any] , a : List[Any] , a : Dict , a : Optional[Any] , a : List[str] , *a : Dict , ): """simple docstring""" __snake_case : List[str] =BertGenerationDecoder(a ) model.to(a ) model.eval() __snake_case : Any =model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : List[Any] ): """simple docstring""" __snake_case , __snake_case , __snake_case , __snake_case : Any =self.prepare_config_and_inputs() __snake_case : List[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _lowercase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): _a : Union[str, Any] = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () _a : List[Any] = (BertGenerationDecoder,) if is_torch_available() else () _a : Union[str, Any] = ( {'''feature-extraction''': BertGenerationEncoder, '''text-generation''': BertGenerationDecoder} if is_torch_available() else {} ) def _UpperCamelCase ( self : List[str] ): """simple docstring""" __snake_case : int =BertGenerationEncoderTester(self ) __snake_case : Union[str, Any] =ConfigTester(self , config_class=a , hidden_size=3_7 ) def _UpperCamelCase ( self : str ): """simple docstring""" self.config_tester.run_common_tests() def _UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" __snake_case : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCamelCase ( self : Optional[Any] ): """simple docstring""" __snake_case , __snake_case , __snake_case , __snake_case : Tuple =self.model_tester.prepare_config_and_inputs() __snake_case : int ='''bert''' self.model_tester.create_and_check_model(a , a , a , a ) def _UpperCamelCase ( self : Dict ): """simple docstring""" __snake_case : List[str] =self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*a ) def _UpperCamelCase ( self : Tuple ): """simple docstring""" __snake_case : Dict =self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*a ) def _UpperCamelCase ( self : List[str] ): """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_decoder() __snake_case : Tuple =None self.model_tester.create_and_check_model_as_decoder( a , a , a , a , a , a , ) def _UpperCamelCase ( self : List[Any] ): """simple docstring""" __snake_case : Tuple =self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*a ) @slow def _UpperCamelCase ( self : Tuple ): """simple docstring""" __snake_case : Optional[int] =BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) self.assertIsNotNone(a ) @require_torch class _lowercase ( unittest.TestCase ): @slow def _UpperCamelCase ( self : Optional[int] ): """simple docstring""" __snake_case : List[Any] =BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) __snake_case : Any =torch.tensor([[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_2_6, 3_8_9_9, 2_0_0_3, 1_0_1_4_0, 1_0_2]] ) with torch.no_grad(): __snake_case : str =model(a )[0] __snake_case : List[str] =torch.Size([1, 8, 1_0_2_4] ) self.assertEqual(output.shape , a ) __snake_case : int =torch.tensor( [[[0.1_7_7_5, 0.0_0_8_3, -0.0_3_2_1], [1.6_0_0_2, 0.1_2_8_7, 0.3_9_1_2], [2.1_4_7_3, 0.5_7_9_1, 0.6_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , a , atol=1e-4 ) ) @require_torch class _lowercase ( unittest.TestCase ): @slow def _UpperCamelCase ( self : Any ): """simple docstring""" __snake_case : int =BertGenerationDecoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) __snake_case : Dict =torch.tensor([[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_2_6, 3_8_9_9, 2_0_0_3, 1_0_1_4_0, 1_0_2]] ) with torch.no_grad(): __snake_case : List[str] =model(a )[0] __snake_case : str =torch.Size([1, 8, 5_0_3_5_8] ) self.assertEqual(output.shape , a ) __snake_case : Optional[int] =torch.tensor( [[[-0.5_7_8_8, -2.5_9_9_4, -3.7_0_5_4], [0.0_4_3_8, 4.7_9_9_7, 1.8_7_9_5], [1.5_8_6_2, 6.6_4_0_9, 4.4_6_3_8]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , a , atol=1e-4 ) )
497
1
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str=None ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = None if token is not None: lowerCAmelCase__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"Bearer {token}"} lowerCAmelCase__ = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" lowerCAmelCase__ = requests.get(A_ , headers=A_ ).json() lowerCAmelCase__ = {} try: job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) lowerCAmelCase__ = math.ceil((result["total_count"] - 100) / 100 ) for i in range(A_ ): lowerCAmelCase__ = requests.get(url + F"&page={i + 2}" , headers=A_ ).json() job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return job_links except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def _a ( UpperCamelCase_ : str , UpperCamelCase_ : List[Any]=None ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = None if token is not None: lowerCAmelCase__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"Bearer {token}"} lowerCAmelCase__ = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100" lowerCAmelCase__ = requests.get(A_ , headers=A_ ).json() lowerCAmelCase__ = {} try: artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) lowerCAmelCase__ = math.ceil((result["total_count"] - 100) / 100 ) for i in range(A_ ): lowerCAmelCase__ = requests.get(url + F"&page={i + 2}" , headers=A_ ).json() artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) return artifacts except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def _a ( UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = None if token is not None: lowerCAmelCase__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"Bearer {token}"} lowerCAmelCase__ = requests.get(A_ , headers=A_ , allow_redirects=A_ ) lowerCAmelCase__ = result.headers["""Location"""] lowerCAmelCase__ = requests.get(A_ , allow_redirects=A_ ) lowerCAmelCase__ = os.path.join(A_ , F"{artifact_name}.zip" ) with open(A_ , "wb" ) as fp: fp.write(response.content ) def _a ( UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any]=None ) -> str: """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = None with zipfile.ZipFile(A_ ) as z: for filename in z.namelist(): if not os.path.isdir(A_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(A_ ) as f: for line in f: lowerCAmelCase__ = line.decode("UTF-8" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs lowerCAmelCase__ = line[: line.index(": " )] lowerCAmelCase__ = line[line.index(": " ) + len(": " ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("FAILED " ): # `test` is the test method that failed lowerCAmelCase__ = line[len("FAILED " ) :] failed_tests.append(A_ ) elif filename == "job_name.txt": lowerCAmelCase__ = line if len(A_ ) != len(A_ ): raise ValueError( F"`errors` and `failed_tests` should have the same number of elements. Got {len(A_ )} for `errors` " F"and {len(A_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some" " problem." ) lowerCAmelCase__ = None if job_name and job_links: lowerCAmelCase__ = job_links.get(A_ , A_ ) # A list with elements of the form (line of error, error, failed test) lowerCAmelCase__ = [x + [y] + [job_link] for x, y in zip(A_ , A_ )] return result def _a ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int]=None ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ = [os.path.join(A_ , A_ ) for p in os.listdir(A_ ) if p.endswith(".zip" )] for p in paths: errors.extend(get_errors_from_single_artifact(A_ , job_links=A_ ) ) return errors def _a ( UpperCamelCase_ : Dict , UpperCamelCase_ : int=None ) -> Dict: """simple docstring""" lowerCAmelCase__ = Counter() counter.update([x[1] for x in logs] ) lowerCAmelCase__ = counter.most_common() lowerCAmelCase__ = {} for error, count in counts: if error_filter is None or error not in error_filter: lowerCAmelCase__ = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} lowerCAmelCase__ = dict(sorted(r.items() , key=lambda UpperCamelCase_ : item[1]["count"] , reverse=A_ ) ) return r def _a ( UpperCamelCase_ : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = test.split("::" )[0] if test.startswith("tests/models/" ): lowerCAmelCase__ = test.split("/" )[2] else: lowerCAmelCase__ = None return test def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : Tuple=None ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = [(x[0], x[1], get_model(x[2] )) for x in logs] lowerCAmelCase__ = [x for x in logs if x[2] is not None] lowerCAmelCase__ = {x[2] for x in logs} lowerCAmelCase__ = {} for test in tests: lowerCAmelCase__ = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) lowerCAmelCase__ = counter.most_common() lowerCAmelCase__ = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} lowerCAmelCase__ = sum(error_counts.values() ) if n_errors > 0: lowerCAmelCase__ = {"""count""": n_errors, """errors""": error_counts} lowerCAmelCase__ = dict(sorted(r.items() , key=lambda UpperCamelCase_ : item[1]["count"] , reverse=A_ ) ) return r def _a ( UpperCamelCase_ : str ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = """| no. | error | status |""" lowerCAmelCase__ = """|-:|:-|:-|""" lowerCAmelCase__ = [header, sep] for error in reduced_by_error: lowerCAmelCase__ = reduced_by_error[error]["""count"""] lowerCAmelCase__ = F"| {count} | {error[:100]} | |" lines.append(A_ ) return "\n".join(A_ ) def _a ( UpperCamelCase_ : List[str] ) -> Dict: """simple docstring""" lowerCAmelCase__ = """| model | no. of errors | major error | count |""" lowerCAmelCase__ = """|-:|-:|-:|-:|""" lowerCAmelCase__ = [header, sep] for model in reduced_by_model: lowerCAmelCase__ = reduced_by_model[model]["""count"""] lowerCAmelCase__ = list(reduced_by_model[model]["errors"].items() )[0] lowerCAmelCase__ = F"| {model} | {count} | {error[:60]} | {_count} |" lines.append(A_ ) return "\n".join(A_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') a_ = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) a_ = get_job_links(args.workflow_run_id, token=args.token) a_ = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: a_ = k.find(''' / ''') a_ = k[index + len(''' / ''') :] a_ = v with open(os.path.join(args.output_dir, '''job_links.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) a_ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) a_ = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error a_ = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors a_ = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, '''errors.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) a_ = reduce_by_error(errors) a_ = reduce_by_model(errors) a_ = make_github_table(reduced_by_error) a_ = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, '''reduced_by_error.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa) with open(os.path.join(args.output_dir, '''reduced_by_model.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa)
339
'''simple docstring''' def _snake_case ( A_ : str , A_ : str ): """simple docstring""" if not (isinstance(A_ , A_ ) and isinstance(A_ , A_ )): raise ValueError("""longest_common_substring() takes two strings for inputs""" ) a_ : Optional[int] = len(A_ ) a_ : Dict = len(A_ ) a_ : Tuple = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] a_ : str = 0 a_ : Union[str, Any] = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: a_ : int = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: a_ : Tuple = i a_ : Union[str, Any] = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
577
0
from collections import deque from .hash_table import HashTable class UpperCamelCase ( snake_case__ ): """simple docstring""" def __init__( self : Any ,*_SCREAMING_SNAKE_CASE : Optional[int] ,**_SCREAMING_SNAKE_CASE : Optional[Any] ) -> int: '''simple docstring''' super().__init__(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def A( self : Optional[int] ,_SCREAMING_SNAKE_CASE : Optional[Any] ,_SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: '''simple docstring''' A = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_SCREAMING_SNAKE_CASE ) A = self.values[key] def A( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return ( sum(self.charge_factor - len(_SCREAMING_SNAKE_CASE ) for slot in self.values ) / self.size_table * self.charge_factor ) def A( self : Dict ,_SCREAMING_SNAKE_CASE : Optional[int] ,_SCREAMING_SNAKE_CASE : str=None ) -> Union[str, Any]: '''simple docstring''' if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_SCREAMING_SNAKE_CASE ) == 0 ): return key return super()._collision_resolution(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )
110
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(snake_case__ ) class UpperCamelCase ( snake_case__ ): """simple docstring""" def __init__( self : str ,*_SCREAMING_SNAKE_CASE : List[Any] ,**_SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: '''simple docstring''' super().__init__(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) requires_backends(self ,'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def A( self : Union[str, Any] ,_SCREAMING_SNAKE_CASE : List[Any]=None ,_SCREAMING_SNAKE_CASE : List[str]=None ,_SCREAMING_SNAKE_CASE : int=None ) -> Any: '''simple docstring''' A = {} A = {} if prompt is not None: A = prompt if generate_kwargs is not None: A = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: A = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) A = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : int ,_SCREAMING_SNAKE_CASE : Union[str, List[str], "Image.Image", List["Image.Image"]] ,**_SCREAMING_SNAKE_CASE : List[str] ) -> Union[str, Any]: '''simple docstring''' return super().__call__(_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def A( self : Dict ,_SCREAMING_SNAKE_CASE : List[Any] ,_SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> int: '''simple docstring''' A = load_image(_SCREAMING_SNAKE_CASE ) if prompt is not None: if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): raise ValueError( f'Received an invalid text input, got - {type(_SCREAMING_SNAKE_CASE )} - but expected a single string. ' 'Note also that one single text can be provided for conditional image to text generation.' ) A = self.model.config.model_type if model_type == "git": A = self.image_processor(images=_SCREAMING_SNAKE_CASE ,return_tensors=self.framework ) A = self.tokenizer(text=_SCREAMING_SNAKE_CASE ,add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids A = [self.tokenizer.cls_token_id] + input_ids A = torch.tensor(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": A = self.image_processor(images=_SCREAMING_SNAKE_CASE ,header_text=_SCREAMING_SNAKE_CASE ,return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation A = self.image_processor(images=_SCREAMING_SNAKE_CASE ,return_tensors=self.framework ) A = self.tokenizer(_SCREAMING_SNAKE_CASE ,return_tensors=self.framework ) model_inputs.update(_SCREAMING_SNAKE_CASE ) else: raise ValueError(f'Model type {model_type} does not support conditional text generation' ) else: A = self.image_processor(images=_SCREAMING_SNAKE_CASE ,return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: A = None return model_inputs def A( self : str ,_SCREAMING_SNAKE_CASE : str ,_SCREAMING_SNAKE_CASE : Dict=None ) -> List[str]: '''simple docstring''' # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] ,_SCREAMING_SNAKE_CASE ) and all(x is None for x in model_inputs['input_ids'] ) ): A = None if generate_kwargs is None: A = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. A = model_inputs.pop(self.model.main_input_name ) A = self.model.generate(_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) return model_outputs def A( self : Dict ,_SCREAMING_SNAKE_CASE : Dict ) -> Optional[int]: '''simple docstring''' A = [] for output_ids in model_outputs: A = { 'generated_text': self.tokenizer.decode( _SCREAMING_SNAKE_CASE ,skip_special_tokens=_SCREAMING_SNAKE_CASE ,) } records.append(_SCREAMING_SNAKE_CASE ) return records
110
1
def UpperCAmelCase__ ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] ): __a : Any = '' for i in table: res += inp[i - 1] return res def UpperCAmelCase__ ( lowerCamelCase_ : Optional[Any] ): return data[1:] + data[0] def UpperCAmelCase__ ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int] ): __a : Optional[int] = '' for i in range(len(lowerCamelCase_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def UpperCAmelCase__ ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : str ): __a : List[str] = int('0b' + data[0] + data[-1] , 2 ) __a : List[str] = int('0b' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def UpperCAmelCase__ ( lowerCamelCase_ : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Optional[Any] ): __a : List[Any] = message[:4] __a : str = message[4:] __a : Any = apply_table(lowerCamelCase_ , lowerCamelCase_ ) __a : int = xor(lowerCamelCase_ , lowerCamelCase_ ) __a : Dict = apply_sbox(lowerCamelCase_ , temp[:4] ) # noqa: E741 __a : Tuple = apply_sbox(lowerCamelCase_ , temp[4:] ) __a : List[Any] = '0' * (2 - len(lowerCamelCase_ )) + l # noqa: E741 __a : List[str] = '0' * (2 - len(lowerCamelCase_ )) + r __a : List[Any] = apply_table(l + r , lowerCamelCase_ ) __a : Dict = xor(lowerCamelCase_ , lowerCamelCase_ ) return temp + right if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = input('''Enter 10 bit key: ''') SCREAMING_SNAKE_CASE__ = input('''Enter 8 bit message: ''') SCREAMING_SNAKE_CASE__ = [6, 3, 7, 4, 8, 5, 10, 9] SCREAMING_SNAKE_CASE__ = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] SCREAMING_SNAKE_CASE__ = [2, 4, 3, 1] SCREAMING_SNAKE_CASE__ = [2, 6, 3, 1, 4, 8, 5, 7] SCREAMING_SNAKE_CASE__ = [4, 1, 3, 5, 7, 2, 8, 6] SCREAMING_SNAKE_CASE__ = [4, 1, 2, 3, 2, 3, 4, 1] SCREAMING_SNAKE_CASE__ = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] SCREAMING_SNAKE_CASE__ = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation SCREAMING_SNAKE_CASE__ = apply_table(key, paa_table) SCREAMING_SNAKE_CASE__ = temp[:5] SCREAMING_SNAKE_CASE__ = temp[5:] SCREAMING_SNAKE_CASE__ = left_shift(left) SCREAMING_SNAKE_CASE__ = left_shift(right) SCREAMING_SNAKE_CASE__ = apply_table(left + right, pa_table) SCREAMING_SNAKE_CASE__ = left_shift(left) SCREAMING_SNAKE_CASE__ = left_shift(right) SCREAMING_SNAKE_CASE__ = left_shift(left) SCREAMING_SNAKE_CASE__ = left_shift(right) SCREAMING_SNAKE_CASE__ = apply_table(left + right, pa_table) # encryption SCREAMING_SNAKE_CASE__ = apply_table(message, IP) SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE__ = temp[4:] + temp[:4] SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE__ = apply_table(temp, IP_inv) print('''Cipher text is:''', CT) # decryption SCREAMING_SNAKE_CASE__ = apply_table(CT, IP) SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE__ = temp[4:] + temp[:4] SCREAMING_SNAKE_CASE__ = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE__ = apply_table(temp, IP_inv) print('''Plain text after decypting is:''', PT)
47
from string import ascii_lowercase, ascii_uppercase def UpperCAmelCase__ ( lowerCamelCase_ : str ): if not sentence: return "" __a : Union[str, Any] = dict(zip(lowerCamelCase_ , lowerCamelCase_ ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
47
1
"""simple docstring""" from collections.abc import Iterable from typing import Generic, TypeVar lowerCAmelCase_ = TypeVar('''_T''') class _snake_case ( Generic[_T] ): """simple docstring""" def __init__( self : Union[str, Any] , _A : Iterable[_T] | None = None): """simple docstring""" _SCREAMING_SNAKE_CASE : list[_T] = list(iterable or []) _SCREAMING_SNAKE_CASE : list[_T] = [] def __len__( self : List[Any]): """simple docstring""" return len(self._stacka) + len(self._stacka) def __repr__( self : Optional[Any]): """simple docstring""" return f"""Queue({tuple(self._stacka[::-1] + self._stacka)})""" def _lowerCAmelCase ( self : Dict , _A : _T): """simple docstring""" self._stacka.append(_A) def _lowerCAmelCase ( self : Union[str, Any]): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = self._stacka.pop _SCREAMING_SNAKE_CASE : List[str] = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop()) if not self._stacka: raise IndexError("""Queue is empty""") return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
706
"""simple docstring""" def lowerCamelCase_(__SCREAMING_SNAKE_CASE )-> int: if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise TypeError("""only integers accepted as input""" ) else: _SCREAMING_SNAKE_CASE : List[Any] = str(abs(__SCREAMING_SNAKE_CASE ) ) _SCREAMING_SNAKE_CASE : List[str] = [list(__SCREAMING_SNAKE_CASE ) for char in range(len(__SCREAMING_SNAKE_CASE ) )] for index in range(len(__SCREAMING_SNAKE_CASE ) ): num_transpositions[index].pop(__SCREAMING_SNAKE_CASE ) return max( int("""""".join(list(__SCREAMING_SNAKE_CASE ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
635
0
'''simple docstring''' import math import sys def _lowerCAmelCase ( __snake_case : int ) -> int: if number != int(__snake_case ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 __A : str = [-1] * (number + 1) __A : Dict = 0 for i in range(1 , number + 1 ): __A : int = sys.maxsize __A : int = int(math.sqrt(__snake_case ) ) for j in range(1 , root + 1 ): __A : str = 1 + answers[i - (j**2)] __A : Dict = min(__snake_case , __snake_case ) __A : Union[str, Any] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
8
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class __lowercase (_UpperCAmelCase , unittest.TestCase ): _UpperCamelCase = GPTSwaTokenizer _UpperCamelCase = False _UpperCamelCase = True _UpperCamelCase = False def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase : Dict = GPTSwaTokenizer(A_ , eos_token='''<unk>''' , bos_token='''<unk>''' , pad_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self , A_ ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Tuple = '''This is a test''' __lowerCAmelCase : Dict = '''This is a test''' return input_text, output_text def UpperCamelCase__ ( self ) ->int: '''simple docstring''' __lowerCAmelCase : Optional[Any] = '''<s>''' __lowerCAmelCase : Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(A_ ) , 2000 ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def UpperCamelCase__ ( self ) ->int: '''simple docstring''' __lowerCAmelCase : Dict = GPTSwaTokenizer(A_ ) __lowerCAmelCase : Union[str, Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(A_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [465, 287, 265, 631, 842] ) __lowerCAmelCase : int = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) # fmt: off self.assertListEqual( A_ , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.'''] , ) # fmt: on __lowerCAmelCase : List[Any] = tokenizer.convert_tokens_to_ids(A_ ) self.assertListEqual( A_ , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) __lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(A_ ) # fmt: off self.assertListEqual( A_ , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.'''] ) # fmt: on def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : str = GPTSwaTokenizer(A_ ) __lowerCAmelCase : str = ['''This is a test''', '''I was born in 92000, and this is falsé.'''] __lowerCAmelCase : List[Any] = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(A_ , A_ ): self.assertListEqual(tokenizer.encode_fast(A_ ) , A_ ) # Test that decode_fast returns the input text for text, token_ids in zip(A_ , A_ ): self.assertEqual(tokenizer.decode_fast(A_ ) , A_ ) @slow def UpperCamelCase__ ( self ) ->int: '''simple docstring''' __lowerCAmelCase : Tuple = [ '''<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')''', '''Hey there, how are you doing this fine day?''', '''This is a text with a trailing spaces followed by a dot .''', '''Häj sväjs lillebrör! =)''', '''Det är inget fel på Mr. Cool''', ] # fmt: off __lowerCAmelCase : Optional[int] = {'''input_ids''': [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ , model_name='''AI-Sweden/gpt-sw3-126m''' , sequences=A_ , )
492
0
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __UpperCamelCase ( A , A , A , A , A ): # Load configuration defined in the metadata file with open(A ) as metadata_file: UpperCamelCase__ = json.load(A ) UpperCamelCase__ = LukeConfig(use_entity_aware_attention=A , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path UpperCamelCase__ = torch.load(A , map_location='''cpu''' )['''module'''] # Load the entity vocab file UpperCamelCase__ = load_original_entity_vocab(A ) # add an entry for [MASK2] UpperCamelCase__ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 UpperCamelCase__ = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks UpperCamelCase__ = AddedToken('''<ent>''' , lstrip=A , rstrip=A ) UpperCamelCase__ = AddedToken('''<ent2>''' , lstrip=A , rstrip=A ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(A ) with open(os.path.join(A , '''tokenizer_config.json''' ) , '''r''' ) as f: UpperCamelCase__ = json.load(A ) UpperCamelCase__ = '''MLukeTokenizer''' with open(os.path.join(A , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(A , A ) with open(os.path.join(A , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(A , A ) UpperCamelCase__ = MLukeTokenizer.from_pretrained(A ) # Initialize the embeddings of the special tokens UpperCamelCase__ = tokenizer.convert_tokens_to_ids(['''@'''] )[0] UpperCamelCase__ = tokenizer.convert_tokens_to_ids(['''#'''] )[0] UpperCamelCase__ = state_dict['''embeddings.word_embeddings.weight'''] UpperCamelCase__ = word_emb[ent_init_index].unsqueeze(0 ) UpperCamelCase__ = word_emb[enta_init_index].unsqueeze(0 ) UpperCamelCase__ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: UpperCamelCase__ = state_dict[bias_name] UpperCamelCase__ = decoder_bias[ent_init_index].unsqueeze(0 ) UpperCamelCase__ = decoder_bias[enta_init_index].unsqueeze(0 ) UpperCamelCase__ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: UpperCamelCase__ = f"encoder.layer.{layer_index}.attention.self." UpperCamelCase__ = state_dict[prefix + matrix_name] UpperCamelCase__ = state_dict[prefix + matrix_name] UpperCamelCase__ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks UpperCamelCase__ = state_dict['''entity_embeddings.entity_embeddings.weight'''] UpperCamelCase__ = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) UpperCamelCase__ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' UpperCamelCase__ = state_dict['''entity_predictions.bias'''] UpperCamelCase__ = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) UpperCamelCase__ = torch.cat([entity_prediction_bias, entity_mask_bias] ) UpperCamelCase__ = LukeForMaskedLM(config=A ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) UpperCamelCase__ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): UpperCamelCase__ = state_dict[key] else: UpperCamelCase__ = state_dict[key] UpperCamelCase__ , UpperCamelCase__ = model.load_state_dict(A , strict=A ) if set(A ) != {"luke.embeddings.position_ids"}: raise ValueError(f"Unexpected unexpected_keys: {unexpected_keys}" ) if set(A ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"Unexpected missing_keys: {missing_keys}" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs UpperCamelCase__ = MLukeTokenizer.from_pretrained(A , task='''entity_classification''' ) UpperCamelCase__ = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' UpperCamelCase__ = (0, 9) UpperCamelCase__ = tokenizer(A , entity_spans=[span] , return_tensors='''pt''' ) UpperCamelCase__ = model(**A ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base UpperCamelCase__ = torch.Size((1, 33, 768) ) UpperCamelCase__ = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , A , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base UpperCamelCase__ = torch.Size((1, 1, 768) ) UpperCamelCase__ = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" f" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , A , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction UpperCamelCase__ = MLukeTokenizer.from_pretrained(A ) UpperCamelCase__ = '''Tokyo is the capital of <mask>.''' UpperCamelCase__ = (24, 30) UpperCamelCase__ = tokenizer(A , entity_spans=[span] , return_tensors='''pt''' ) UpperCamelCase__ = model(**A ) UpperCamelCase__ = encoding['''input_ids'''][0].tolist() UpperCamelCase__ = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) UpperCamelCase__ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(A ) UpperCamelCase__ = outputs.entity_logits[0][0].argmax().item() UpperCamelCase__ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(A ) ) model.save_pretrained(A ) def __UpperCamelCase ( A ): UpperCamelCase__ = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] UpperCamelCase__ = [json.loads(A ) for line in open(A )] UpperCamelCase__ = {} for entry in data: UpperCamelCase__ = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: UpperCamelCase__ = entity_id break UpperCamelCase__ = f"{language}:{entity_name}" UpperCamelCase__ = entity_id return new_mapping if __name__ == "__main__": __magic_name__ =argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) __magic_name__ =parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
469
from __future__ import annotations def __UpperCamelCase ( A , A ): UpperCamelCase__ = get_failure_array(A ) # 2) Step through text searching for pattern UpperCamelCase__ , UpperCamelCase__ = 0, 0 # index into text, pattern while i < len(A ): if pattern[j] == text[i]: if j == (len(A ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: UpperCamelCase__ = failure[j - 1] continue i += 1 return False def __UpperCamelCase ( A ): UpperCamelCase__ = [0] UpperCamelCase__ = 0 UpperCamelCase__ = 1 while j < len(A ): if pattern[i] == pattern[j]: i += 1 elif i > 0: UpperCamelCase__ = failure[i - 1] continue j += 1 failure.append(A ) return failure if __name__ == "__main__": # Test 1) __magic_name__ ='''abc1abc12''' __magic_name__ ='''alskfjaldsabc1abc1abc12k23adsfabcabc''' __magic_name__ ='''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) __magic_name__ ='''ABABX''' __magic_name__ ='''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) __magic_name__ ='''AAAB''' __magic_name__ ='''ABAAAAAB''' assert kmp(pattern, text) # Test 4) __magic_name__ ='''abcdabcy''' __magic_name__ ='''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) __magic_name__ ='''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
469
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer a_ :Tuple = logging.get_logger(__name__) a_ :Optional[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a_ :Optional[int] = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Dict = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Any = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Optional[int] = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_12, 'facebook/dpr-ctx_encoder-multiset-base': 5_12, } a_ :List[Any] = { 'facebook/dpr-question_encoder-single-nq-base': 5_12, 'facebook/dpr-question_encoder-multiset-base': 5_12, } a_ :Tuple = { 'facebook/dpr-reader-single-nq-base': 5_12, 'facebook/dpr-reader-multiset-base': 5_12, } a_ :str = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } a_ :Optional[int] = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } a_ :Any = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES lowerCamelCase : int = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : int = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Optional[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[int] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION a_ :List[str] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) a_ :Optional[int] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) a_ :Tuple = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(_UpperCAmelCase ) class lowercase : def __call__( self : List[Any] , _lowercase : Any , _lowercase : Optional[str] = None , _lowercase : Optional[str] = None , _lowercase : Union[bool, str] = False , _lowercase : Union[bool, str] = False , _lowercase : Optional[int] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[bool] = None , **_lowercase : str , ): if titles is None and texts is None: return super().__call__( _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE__ : List[str] = titles if texts is None else texts return super().__call__( _lowercase , _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = titles if not isinstance(_lowercase , _lowercase ) else [titles] SCREAMING_SNAKE_CASE__ : Optional[int] = texts if not isinstance(_lowercase , _lowercase ) else [texts] SCREAMING_SNAKE_CASE__ : List[Any] = len(_lowercase ) SCREAMING_SNAKE_CASE__ : str = questions if not isinstance(_lowercase , _lowercase ) else [questions] * n_passages if len(_lowercase ) != len(_lowercase ): raise ValueError( f"""There should be as many titles than texts but got {len(_lowercase )} titles and {len(_lowercase )} texts.""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = super().__call__(_lowercase , _lowercase , padding=_lowercase , truncation=_lowercase )['''input_ids'''] SCREAMING_SNAKE_CASE__ : Tuple = super().__call__(_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase )['''input_ids'''] SCREAMING_SNAKE_CASE__ : Optional[Any] = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_lowercase , _lowercase ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE__ : Optional[int] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE__ : Dict = attention_mask return self.pad(_lowercase , padding=_lowercase , max_length=_lowercase , return_tensors=_lowercase ) def lowercase__ ( self : List[Any] , _lowercase : BatchEncoding , _lowercase : DPRReaderOutput , _lowercase : int = 16 , _lowercase : int = 64 , _lowercase : int = 4 , ): SCREAMING_SNAKE_CASE__ : Optional[int] = reader_input['''input_ids'''] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = reader_output[:3] SCREAMING_SNAKE_CASE__ : Any = len(_lowercase ) SCREAMING_SNAKE_CASE__ : int = sorted(range(_lowercase ) , reverse=_lowercase , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE__ : Optional[int] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE__ : Any = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE__ : Dict = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE__ : List[str] = len(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_lowercase , top_spans=_lowercase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_lowercase , start_index=_lowercase , end_index=_lowercase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_lowercase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase__ ( self : Dict , _lowercase : List[int] , _lowercase : List[int] , _lowercase : int , _lowercase : int , ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] for start_index, start_score in enumerate(_lowercase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE__ : Optional[int] = sorted(_lowercase , key=lambda _lowercase : x[1] , reverse=_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"""Wrong span indices: [{start_index}:{end_index}]""" ) SCREAMING_SNAKE_CASE__ : Tuple = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_lowercase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class lowercase ( _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase : Dict = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = READER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : str = READER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase : List[Any] = ['''input_ids''', '''attention_mask''']
35
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __a : Dict = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase( snake_case_ ): """simple docstring""" a : bool = field(default=snake_case_ , metadata={"""help""": """Whether to use SortishSampler or not."""} ) a : bool = field( default=snake_case_ , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) a : Optional[int] = field( default=snake_case_ , metadata={ """help""": ( """The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `max_length` value of the model configuration.""" ) } , ) a : Optional[int] = field( default=snake_case_ , metadata={ """help""": ( """The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `num_beams` value of the model configuration.""" ) } , ) a : Optional[Union[str, Path, GenerationConfig]] = field( default=snake_case_ , metadata={ """help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.""" } , ) def __a ( self ) -> int: """simple docstring""" lowercase__ : List[str] = super().to_dict() for k, v in d.items(): if isinstance(lowerCamelCase , lowerCamelCase ): lowercase__ : Union[str, Any] = v.to_dict() return d
397
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) snake_case_ = { """configuration_speecht5""": [ """SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP""", """SpeechT5Config""", """SpeechT5HifiGanConfig""", ], """feature_extraction_speecht5""": ["""SpeechT5FeatureExtractor"""], """processing_speecht5""": ["""SpeechT5Processor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ["""SpeechT5Tokenizer"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """SpeechT5ForSpeechToText""", """SpeechT5ForSpeechToSpeech""", """SpeechT5ForTextToSpeech""", """SpeechT5Model""", """SpeechT5PreTrainedModel""", """SpeechT5HifiGan""", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
537
'''simple docstring''' from ..utils import DummyObject, requires_backends class _lowercase ( metaclass=a ): _UpperCamelCase = ["""onnx"""] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''onnx'''] ) @classmethod def snake_case ( cls , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(cls , ['''onnx'''] ) @classmethod def snake_case ( cls , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(cls , ['''onnx'''] )
537
1
import fire from utils import calculate_rouge, save_json def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , **__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = [x.strip() for x in open(__UpperCamelCase ).readlines()] SCREAMING_SNAKE_CASE_ = [x.strip() for x in open(__UpperCamelCase ).readlines()][: len(__UpperCamelCase )] SCREAMING_SNAKE_CASE_ = calculate_rouge(__UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) if save_path is not None: save_json(__UpperCamelCase , __UpperCamelCase , indent=__UpperCamelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
140
from numpy import exp, pi, sqrt def a__ ( __UpperCamelCase , __UpperCamelCase = 0.0 , __UpperCamelCase = 1.0 ): return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
140
1
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCAmelCase : Any = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") UpperCAmelCase : Union[str, Any] = ( subprocess.check_output(F"git diff --diff-filter=d --name-only {fork_point_sha}".split()).decode("utf-8").split() ) UpperCAmelCase : int = "|".join(sys.argv[1:]) UpperCAmelCase : Optional[int] = re.compile(rF"^({joined_dirs}).*?\.py$") UpperCAmelCase : Any = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
100
"""simple docstring""" from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder UpperCAmelCase : Union[str, Any] = datasets.utils.logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( folder_based_builder.FolderBasedBuilderConfig ): lowercase__ = None lowercase__ = None class SCREAMING_SNAKE_CASE__ ( folder_based_builder.FolderBasedBuilder ): lowercase__ = datasets.Audio() lowercase__ = "audio" lowercase__ = AudioFolderConfig lowercase__ = 42 # definition at the bottom of the script lowercase__ = AudioClassification(audio_column="audio" , label_column="label" ) UpperCAmelCase : Tuple = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] UpperCAmelCase : Any = AUDIO_EXTENSIONS
100
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : str = logging.get_logger(__name__) A_ : Union[str, Any] = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Tuple ='''open-llama''' def __init__( self , _lowerCamelCase=1_0_0_0_0_0 , _lowerCamelCase=4_0_9_6 , _lowerCamelCase=1_1_0_0_8 , _lowerCamelCase=3_2 , _lowerCamelCase=3_2 , _lowerCamelCase="silu" , _lowerCamelCase=2_0_4_8 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-6 , _lowerCamelCase=True , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=2 , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ): UpperCamelCase_: int = vocab_size UpperCamelCase_: List[Any] = max_position_embeddings UpperCamelCase_: Dict = hidden_size UpperCamelCase_: Dict = intermediate_size UpperCamelCase_: Union[str, Any] = num_hidden_layers UpperCamelCase_: Dict = num_attention_heads UpperCamelCase_: Union[str, Any] = hidden_act UpperCamelCase_: Union[str, Any] = initializer_range UpperCamelCase_: List[Any] = rms_norm_eps UpperCamelCase_: Union[str, Any] = use_cache UpperCamelCase_: Dict = kwargs.pop( 'use_memorry_efficient_attention' , _lowerCamelCase ) UpperCamelCase_: Union[str, Any] = hidden_dropout_prob UpperCamelCase_: Any = attention_dropout_prob UpperCamelCase_: int = use_stable_embedding UpperCamelCase_: Tuple = shared_input_output_embedding UpperCamelCase_: str = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , tie_word_embeddings=_lowerCamelCase , **_lowerCamelCase , ) def _a ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _lowerCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f'''got {self.rope_scaling}''' ) UpperCamelCase_: str = self.rope_scaling.get('type' , _lowerCamelCase ) UpperCamelCase_: int = self.rope_scaling.get('factor' , _lowerCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(_lowerCamelCase , _lowerCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
57
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class __lowercase (_UpperCAmelCase ): _UpperCamelCase = 42 _UpperCamelCase = 42 class __lowercase (nn.Module ): _UpperCamelCase = 42 _UpperCamelCase = (16, 32, 96, 256) _UpperCamelCase = jnp.floataa def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : int = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __lowerCAmelCase : List[str] = [] for i in range(len(self.block_out_channels ) - 1 ): __lowerCAmelCase : List[Any] = self.block_out_channels[i] __lowerCAmelCase : Dict = self.block_out_channels[i + 1] __lowerCAmelCase : Any = nn.Conv( A_ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(A_ ) __lowerCAmelCase : Any = nn.Conv( A_ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(A_ ) __lowerCAmelCase : List[str] = blocks __lowerCAmelCase : str = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , A_ ) ->Dict: '''simple docstring''' __lowerCAmelCase : Any = self.conv_in(A_ ) __lowerCAmelCase : int = nn.silu(A_ ) for block in self.blocks: __lowerCAmelCase : int = block(A_ ) __lowerCAmelCase : Union[str, Any] = nn.silu(A_ ) __lowerCAmelCase : List[Any] = self.conv_out(A_ ) return embedding @flax_register_to_config class __lowercase (nn.Module , _UpperCAmelCase , _UpperCAmelCase ): _UpperCamelCase = 32 _UpperCamelCase = 4 _UpperCamelCase = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _UpperCamelCase = False _UpperCamelCase = (320, 640, 1280, 1280) _UpperCamelCase = 2 _UpperCamelCase = 8 _UpperCamelCase = None _UpperCamelCase = 1280 _UpperCamelCase = 0.0 _UpperCamelCase = False _UpperCamelCase = jnp.floataa _UpperCamelCase = True _UpperCamelCase = 0 _UpperCamelCase = "rgb" _UpperCamelCase = (16, 32, 96, 256) def UpperCamelCase__ ( self , A_ ) ->FrozenDict: '''simple docstring''' __lowerCAmelCase : Optional[int] = (1, self.in_channels, self.sample_size, self.sample_size) __lowerCAmelCase : str = jnp.zeros(A_ , dtype=jnp.floataa ) __lowerCAmelCase : Tuple = jnp.ones((1,) , dtype=jnp.intaa ) __lowerCAmelCase : Optional[Any] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) __lowerCAmelCase : Any = (1, 3, self.sample_size * 8, self.sample_size * 8) __lowerCAmelCase : Optional[Any] = jnp.zeros(A_ , dtype=jnp.floataa ) __lowerCAmelCase, __lowerCAmelCase : Any = jax.random.split(A_ ) __lowerCAmelCase : int = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(A_ , A_ , A_ , A_ , A_ )["params"] def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' __lowerCAmelCase : List[Any] = self.block_out_channels __lowerCAmelCase : Optional[Any] = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __lowerCAmelCase : Optional[int] = self.num_attention_heads or self.attention_head_dim # input __lowerCAmelCase : List[Any] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __lowerCAmelCase : List[str] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) __lowerCAmelCase : str = FlaxTimestepEmbedding(A_ , dtype=self.dtype ) __lowerCAmelCase : Optional[int] = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) __lowerCAmelCase : Union[str, Any] = self.only_cross_attention if isinstance(A_ , A_ ): __lowerCAmelCase : Union[str, Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(A_ , A_ ): __lowerCAmelCase : str = (num_attention_heads,) * len(self.down_block_types ) # down __lowerCAmelCase : Optional[int] = [] __lowerCAmelCase : Union[str, Any] = [] __lowerCAmelCase : Optional[Any] = block_out_channels[0] __lowerCAmelCase : List[str] = nn.Conv( A_ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(A_ ) for i, down_block_type in enumerate(self.down_block_types ): __lowerCAmelCase : List[Any] = output_channel __lowerCAmelCase : Optional[int] = block_out_channels[i] __lowerCAmelCase : str = i == len(A_ ) - 1 if down_block_type == "CrossAttnDownBlock2D": __lowerCAmelCase : List[str] = FlaxCrossAttnDownBlockaD( in_channels=A_ , out_channels=A_ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: __lowerCAmelCase : List[Any] = FlaxDownBlockaD( in_channels=A_ , out_channels=A_ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(A_ ) for _ in range(self.layers_per_block ): __lowerCAmelCase : str = nn.Conv( A_ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(A_ ) if not is_final_block: __lowerCAmelCase : Any = nn.Conv( A_ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(A_ ) __lowerCAmelCase : int = down_blocks __lowerCAmelCase : Optional[int] = controlnet_down_blocks # mid __lowerCAmelCase : List[str] = block_out_channels[-1] __lowerCAmelCase : Any = FlaxUNetMidBlockaDCrossAttn( in_channels=A_ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) __lowerCAmelCase : Any = nn.Conv( A_ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , A_ , A_ , A_ , A_ , A_ = 1.0 , A_ = True , A_ = False , ) ->Union[FlaxControlNetOutput, Tuple]: '''simple docstring''' __lowerCAmelCase : int = self.controlnet_conditioning_channel_order if channel_order == "bgr": __lowerCAmelCase : List[Any] = jnp.flip(A_ , axis=1 ) # 1. time if not isinstance(A_ , jnp.ndarray ): __lowerCAmelCase : List[str] = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(A_ , jnp.ndarray ) and len(timesteps.shape ) == 0: __lowerCAmelCase : Optional[int] = timesteps.astype(dtype=jnp.floataa ) __lowerCAmelCase : Optional[Any] = jnp.expand_dims(A_ , 0 ) __lowerCAmelCase : Optional[int] = self.time_proj(A_ ) __lowerCAmelCase : str = self.time_embedding(A_ ) # 2. pre-process __lowerCAmelCase : List[str] = jnp.transpose(A_ , (0, 2, 3, 1) ) __lowerCAmelCase : Union[str, Any] = self.conv_in(A_ ) __lowerCAmelCase : Tuple = jnp.transpose(A_ , (0, 2, 3, 1) ) __lowerCAmelCase : int = self.controlnet_cond_embedding(A_ ) sample += controlnet_cond # 3. down __lowerCAmelCase : Tuple = (sample,) for down_block in self.down_blocks: if isinstance(A_ , A_ ): __lowerCAmelCase, __lowerCAmelCase : Dict = down_block(A_ , A_ , A_ , deterministic=not train ) else: __lowerCAmelCase, __lowerCAmelCase : Optional[Any] = down_block(A_ , A_ , deterministic=not train ) down_block_res_samples += res_samples # 4. mid __lowerCAmelCase : Union[str, Any] = self.mid_block(A_ , A_ , A_ , deterministic=not train ) # 5. contronet blocks __lowerCAmelCase : Union[str, Any] = () for down_block_res_sample, controlnet_block in zip(A_ , self.controlnet_down_blocks ): __lowerCAmelCase : List[Any] = controlnet_block(A_ ) controlnet_down_block_res_samples += (down_block_res_sample,) __lowerCAmelCase : Dict = controlnet_down_block_res_samples __lowerCAmelCase : int = self.controlnet_mid_block(A_ ) # 6. scaling __lowerCAmelCase : Tuple = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=A_ , mid_block_res_sample=A_ )
492
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase = { """vocab_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-german-cased""": ( """https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json""" ), """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase = { """distilbert-base-uncased""": 5_12, """distilbert-base-uncased-distilled-squad""": 5_12, """distilbert-base-cased""": 5_12, """distilbert-base-cased-distilled-squad""": 5_12, """distilbert-base-german-cased""": 5_12, """distilbert-base-multilingual-cased""": 5_12, } lowerCAmelCase = { """distilbert-base-uncased""": {"""do_lower_case""": True}, """distilbert-base-uncased-distilled-squad""": {"""do_lower_case""": True}, """distilbert-base-cased""": {"""do_lower_case""": False}, """distilbert-base-cased-distilled-squad""": {"""do_lower_case""": False}, """distilbert-base-german-cased""": {"""do_lower_case""": False}, """distilbert-base-multilingual-cased""": {"""do_lower_case""": False}, } class lowerCamelCase ( _A ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = PRETRAINED_INIT_CONFIGURATION snake_case_ = ["input_ids", "attention_mask"] snake_case_ = DistilBertTokenizer def __init__( self , a_=None , a_=None , a_=True , a_="[UNK]" , a_="[SEP]" , a_="[PAD]" , a_="[CLS]" , a_="[MASK]" , a_=True , a_=None , **a_ , ): super().__init__( a_ , tokenizer_file=a_ , do_lower_case=a_ , unk_token=a_ , sep_token=a_ , pad_token=a_ , cls_token=a_ , mask_token=a_ , tokenize_chinese_chars=a_ , strip_accents=a_ , **a_ , ) lowerCAmelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , a_ ) != do_lower_case or normalizer_state.get("strip_accents" , a_ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , a_ ) != tokenize_chinese_chars ): lowerCAmelCase : str = getattr(a_ , normalizer_state.pop("type" ) ) lowerCAmelCase : Optional[int] = do_lower_case lowerCAmelCase : Any = strip_accents lowerCAmelCase : Optional[Any] = tokenize_chinese_chars lowerCAmelCase : Tuple = normalizer_class(**a_ ) lowerCAmelCase : Union[str, Any] = do_lower_case def _lowerCamelCase ( self , a_ , a_=None ): lowerCAmelCase : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowerCamelCase ( self , a_ , a_ = None ): lowerCAmelCase : Tuple = [self.sep_token_id] lowerCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCamelCase ( self , a_ , a_ = None ): lowerCAmelCase : Union[str, Any] = self._tokenizer.model.save(a_ , name=a_ ) return tuple(a_ )
551
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCamelCase : def __init__( self , a_ , a_=2 , a_=True , a_=False , a_=10 , a_=3 , a_=32 * 8 , a_=32 * 8 , a_=4 , a_=64 , ): lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Optional[Any] = batch_size lowerCAmelCase : str = is_training lowerCAmelCase : Any = use_auxiliary_loss lowerCAmelCase : Dict = num_queries lowerCAmelCase : Dict = num_channels lowerCAmelCase : str = min_size lowerCAmelCase : Any = max_size lowerCAmelCase : int = num_labels lowerCAmelCase : Tuple = hidden_dim lowerCAmelCase : Optional[Any] = hidden_dim def _lowerCamelCase ( self ): lowerCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( a_ ) lowerCAmelCase : Optional[int] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=a_ ) lowerCAmelCase : str = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=a_ ) > 0.5 ).float() lowerCAmelCase : Union[str, Any] = (torch.rand((self.batch_size, self.num_labels) , device=a_ ) > 0.5).long() lowerCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _lowerCamelCase ( self ): lowerCAmelCase : Optional[Any] = MaskaFormerConfig( hidden_size=self.hidden_dim , ) lowerCAmelCase : Optional[Any] = self.num_queries lowerCAmelCase : Optional[Any] = self.num_labels lowerCAmelCase : str = [1, 1, 1, 1] lowerCAmelCase : Tuple = self.num_channels lowerCAmelCase : str = 64 lowerCAmelCase : Any = 128 lowerCAmelCase : List[str] = self.hidden_dim lowerCAmelCase : Optional[Any] = self.hidden_dim lowerCAmelCase : int = self.hidden_dim return config def _lowerCamelCase ( self ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = self.prepare_config_and_inputs() lowerCAmelCase : Optional[int] = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def _lowerCamelCase ( self , a_ , a_ ): lowerCAmelCase : str = output.encoder_hidden_states lowerCAmelCase : List[str] = output.pixel_decoder_hidden_states lowerCAmelCase : Any = output.transformer_decoder_hidden_states self.parent.assertTrue(len(a_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(a_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(a_ ) , config.decoder_layers ) def _lowerCamelCase ( self , a_ , a_ , a_ , a_=False ): with torch.no_grad(): lowerCAmelCase : Tuple = MaskaFormerModel(config=a_ ) model.to(a_ ) model.eval() lowerCAmelCase : Tuple = model(pixel_values=a_ , pixel_mask=a_ ) lowerCAmelCase : str = model(a_ , output_hidden_states=a_ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(a_ , a_ ) def _lowerCamelCase ( self , a_ , a_ , a_ , a_ , a_ ): lowerCAmelCase : Union[str, Any] = MaskaFormerForUniversalSegmentation(config=a_ ) model.to(a_ ) model.eval() def comm_check_on_output(a_ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowerCAmelCase : List[str] = model(pixel_values=a_ , pixel_mask=a_ ) lowerCAmelCase : Union[str, Any] = model(a_ ) comm_check_on_output(a_ ) lowerCAmelCase : str = model( pixel_values=a_ , pixel_mask=a_ , mask_labels=a_ , class_labels=a_ ) comm_check_on_output(a_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCamelCase ( _A , _A , unittest.TestCase ): snake_case_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () snake_case_ = {"feature-extraction": MaskaFormerModel} if is_torch_available() else {} snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def _lowerCamelCase ( self ): lowerCAmelCase : List[Any] = MaskaFormerModelTester(self ) lowerCAmelCase : Tuple = ConfigTester(self , config_class=a_ , has_text_modality=a_ ) def _lowerCamelCase ( self ): self.config_tester.run_common_tests() def _lowerCamelCase ( self ): lowerCAmelCase , lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(a_ , **a_ , output_hidden_states=a_ ) def _lowerCamelCase ( self ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*a_ ) @unittest.skip(reason="Mask2Former does not use inputs_embeds" ) def _lowerCamelCase ( self ): pass @unittest.skip(reason="Mask2Former does not have a get_input_embeddings method" ) def _lowerCamelCase ( self ): pass @unittest.skip(reason="Mask2Former is not a generative model" ) def _lowerCamelCase ( self ): pass @unittest.skip(reason="Mask2Former does not use token embeddings" ) def _lowerCamelCase ( self ): pass @require_torch_multi_gpu @unittest.skip( reason="Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def _lowerCamelCase ( self ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): lowerCAmelCase , lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(a_ ) lowerCAmelCase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : List[str] = [*signature.parameters.keys()] lowerCAmelCase : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , a_ ) @slow def _lowerCamelCase ( self ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: lowerCAmelCase : int = MaskaFormerModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def _lowerCamelCase ( self ): lowerCAmelCase : List[Any] = (self.model_tester.min_size,) * 2 lowerCAmelCase : Union[str, Any] = { "pixel_values": torch.randn((2, 3, *size) , device=a_ ), "mask_labels": torch.randn((2, 10, *size) , device=a_ ), "class_labels": torch.zeros(2 , 10 , device=a_ ).long(), } lowerCAmelCase : Optional[Any] = self.model_tester.get_config() lowerCAmelCase : List[Any] = MaskaFormerForUniversalSegmentation(a_ ).to(a_ ) lowerCAmelCase : Dict = model(**a_ ) self.assertTrue(outputs.loss is not None ) def _lowerCamelCase ( self ): lowerCAmelCase , lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(a_ , **a_ , output_hidden_states=a_ ) def _lowerCamelCase ( self ): lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Optional[int] = model_class(a_ ).to(a_ ) lowerCAmelCase : Union[str, Any] = model(**a_ , output_attentions=a_ ) self.assertTrue(outputs.attentions is not None ) def _lowerCamelCase ( self ): if not self.model_tester.is_training: return lowerCAmelCase : List[Any] = self.all_model_classes[1] lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() lowerCAmelCase : List[Any] = model_class(a_ ) model.to(a_ ) model.train() lowerCAmelCase : Union[str, Any] = model(a_ , mask_labels=a_ , class_labels=a_ ).loss loss.backward() def _lowerCamelCase ( self ): lowerCAmelCase : Optional[int] = self.all_model_classes[1] lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() lowerCAmelCase : Tuple = True lowerCAmelCase : int = True lowerCAmelCase : int = model_class(a_ ).to(a_ ) model.train() lowerCAmelCase : Any = model(a_ , mask_labels=a_ , class_labels=a_ ) lowerCAmelCase : List[Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowerCAmelCase : Optional[int] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() lowerCAmelCase : List[Any] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowerCAmelCase : Tuple = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=a_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowerCAmelCase = 1e-4 def __A ( ): lowerCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class lowerCamelCase ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def _lowerCamelCase ( self ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _lowerCamelCase ( self ): lowerCAmelCase : int = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(a_ ) lowerCAmelCase : Optional[int] = self.default_image_processor lowerCAmelCase : Dict = prepare_img() lowerCAmelCase : Any = image_processor(a_ , return_tensors="pt" ).to(a_ ) lowerCAmelCase : str = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(a_ , (1, 3, 384, 384) ) with torch.no_grad(): lowerCAmelCase : Dict = model(**a_ ) lowerCAmelCase : Union[str, Any] = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(a_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , a_ , atol=a_ ) ) lowerCAmelCase : Optional[Any] = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(a_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , a_ , atol=a_ ) ) lowerCAmelCase : Optional[int] = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(a_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , a_ , atol=a_ ) ) def _lowerCamelCase ( self ): lowerCAmelCase : Any = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(a_ ).eval() lowerCAmelCase : Union[str, Any] = self.default_image_processor lowerCAmelCase : Dict = prepare_img() lowerCAmelCase : Tuple = image_processor(a_ , return_tensors="pt" ).to(a_ ) lowerCAmelCase : Any = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(a_ , (1, 3, 384, 384) ) with torch.no_grad(): lowerCAmelCase : List[str] = model(**a_ ) # masks_queries_logits lowerCAmelCase : Optional[Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) lowerCAmelCase : Tuple = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] lowerCAmelCase : Tuple = torch.tensor(a_ ).to(a_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , a_ , atol=a_ ) ) # class_queries_logits lowerCAmelCase : str = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) lowerCAmelCase : List[str] = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(a_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , a_ , atol=a_ ) ) def _lowerCamelCase ( self ): lowerCAmelCase : Tuple = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(a_ ).eval() lowerCAmelCase : Optional[Any] = self.default_image_processor lowerCAmelCase : Optional[int] = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="pt" , ) lowerCAmelCase : Optional[int] = inputs["pixel_values"].to(a_ ) lowerCAmelCase : int = [el.to(a_ ) for el in inputs["mask_labels"]] lowerCAmelCase : Union[str, Any] = [el.to(a_ ) for el in inputs["class_labels"]] with torch.no_grad(): lowerCAmelCase : Optional[Any] = model(**a_ ) self.assertTrue(outputs.loss is not None )
551
1
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def __lowercase ( snake_case, snake_case, snake_case ): """simple docstring""" __magic_name__ :str = AutoConfig.from_pretrained(snake_case ) __magic_name__ :Dict = FlaxAutoModelForSeqaSeqLM.from_config(config=snake_case ) __magic_name__ :Any = checkpoints.load_tax_checkpoint(snake_case ) __magic_name__ :List[str] = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": __magic_name__ :Tuple = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": __magic_name__ :Optional[int] = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __magic_name__ :Any = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): __magic_name__ :Union[str, Any] = f'''layers_{str(snake_case )}''' # Self-Attention __magic_name__ :List[str] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] __magic_name__ :str = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] __magic_name__ :str = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] __magic_name__ :Tuple = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __magic_name__ :List[str] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization __magic_name__ :Any = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: __magic_name__ :Any = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] __magic_name__ :Tuple = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: __magic_name__ :List[str] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] __magic_name__ :List[str] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization __magic_name__ :Union[str, Any] = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning __magic_name__ :Optional[int] = flax_model.params['''encoder''']['''block'''][str(snake_case )]['''layer'''] __magic_name__ :List[Any] = tax_attention_key __magic_name__ :List[str] = tax_attention_out __magic_name__ :Optional[int] = tax_attention_query __magic_name__ :str = tax_attention_value __magic_name__ :Dict = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __magic_name__ :Any = tax_global_layer_norm if split_mlp_wi: __magic_name__ :str = tax_mlp_wi_a __magic_name__ :Dict = tax_mlp_wi_a else: __magic_name__ :Tuple = tax_mlp_wi __magic_name__ :Optional[int] = tax_mlp_wo __magic_name__ :Optional[int] = tax_mlp_layer_norm __magic_name__ :Any = flax_model_encoder_layer_block # Only for layer 0: __magic_name__ :Dict = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T __magic_name__ :List[Any] = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __magic_name__ :Any = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T __magic_name__ :Dict = tax_encoder_global_rel_embedding # Assigning __magic_name__ :Union[str, Any] = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] __magic_name__ :List[str] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): __magic_name__ :List[Any] = f'''layers_{str(snake_case )}''' # Self-Attention __magic_name__ :Union[str, Any] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] __magic_name__ :str = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] __magic_name__ :Union[str, Any] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] __magic_name__ :Optional[int] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization __magic_name__ :Optional[int] = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention __magic_name__ :Union[str, Any] = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] __magic_name__ :Tuple = tax_enc_dec_attention_module['''key''']['''kernel'''] __magic_name__ :Optional[int] = tax_enc_dec_attention_module['''out''']['''kernel'''] __magic_name__ :List[str] = tax_enc_dec_attention_module['''query''']['''kernel'''] __magic_name__ :Tuple = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization __magic_name__ :int = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: __magic_name__ :Optional[Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] __magic_name__ :Dict = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: __magic_name__ :int = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] __magic_name__ :Optional[Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization __magic_name__ :Dict = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning __magic_name__ :List[str] = flax_model.params['''decoder''']['''block'''][str(snake_case )]['''layer'''] __magic_name__ :Any = tax_attention_key __magic_name__ :List[str] = tax_attention_out __magic_name__ :Tuple = tax_attention_query __magic_name__ :Tuple = tax_attention_value __magic_name__ :Tuple = tax_pre_attention_layer_norm __magic_name__ :Optional[Any] = tax_enc_dec_attention_key __magic_name__ :str = tax_enc_dec_attention_out __magic_name__ :Union[str, Any] = tax_enc_dec_attention_query __magic_name__ :Any = tax_enc_dec_attention_value __magic_name__ :Tuple = tax_cross_layer_norm if split_mlp_wi: __magic_name__ :Optional[int] = tax_mlp_wi_a __magic_name__ :Union[str, Any] = tax_mlp_wi_a else: __magic_name__ :Optional[int] = tax_mlp_wi __magic_name__ :List[str] = tax_mlp_wo __magic_name__ :int = txa_mlp_layer_norm __magic_name__ :str = flax_model_decoder_layer_block # Decoder Normalization __magic_name__ :Optional[Any] = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] __magic_name__ :Tuple = txa_decoder_norm # Only for layer 0: __magic_name__ :Optional[Any] = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T __magic_name__ :str = tax_decoder_rel_embedding # Token Embeddings __magic_name__ :List[Any] = tax_model['''target''']['''token_embedder''']['''embedding'''] __magic_name__ :Any = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: __magic_name__ :int = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(snake_case ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path the T5X checkpoint.""" ) parser.add_argument("""--config_name""", default=None, type=str, required=True, help="""Config name of LongT5/T5 model.""") parser.add_argument( """--flax_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output FLAX model.""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
0
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput SCREAMING_SNAKE_CASE__ : List[str] = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowerCamelCase_ ( lowerCamelCase ): def __init__( self , *__lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ): """simple docstring""" super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) __magic_name__ :Any = eval_examples __magic_name__ :str = post_process_function __magic_name__ :int = quant_trainer_args __magic_name__ :List[str] = 1_2_8 # default number of calibration samples def A ( self , __lowerCAmelCase=None ): """simple docstring""" if calib_dataset is None and self.calib_dataset is None: raise ValueError('''Trainer: calibration requires an calib_dataset.''' ) __magic_name__ :Optional[Any] = calib_dataset if calib_dataset is not None else self.calib_dataset __magic_name__ :Optional[int] = self._remove_unused_columns(__lowerCAmelCase , description='''Calibration''' ) return DataLoader( __lowerCAmelCase , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=__lowerCAmelCase , ) def A ( self , __lowerCAmelCase=None ): """simple docstring""" __magic_name__ :Dict = self.train_dataset if calib_dataset is None else calib_dataset __magic_name__ :Any = self.get_calib_dataloader(__lowerCAmelCase ) __magic_name__ :List[str] = self.model quant_trainer.configure_model(__lowerCAmelCase , self.quant_trainer_args , calib=__lowerCAmelCase ) model.eval() quant_trainer.enable_calibration(__lowerCAmelCase ) logger.info('''***** Running calibration *****''' ) logger.info(F''' Num examples = {self.calib_num}''' ) logger.info(F''' Batch size = {calib_dataloader.batch_size}''' ) for step, inputs in enumerate(__lowerCAmelCase ): # Prediction step __magic_name__ , __magic_name__ , __magic_name__ :str = self.prediction_step(__lowerCAmelCase , __lowerCAmelCase , prediction_loss_only=__lowerCAmelCase ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(__lowerCAmelCase , self.quant_trainer_args ) __magic_name__ :Any = model def A ( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase = "eval" ): """simple docstring""" __magic_name__ :Tuple = self.eval_dataset if eval_dataset is None else eval_dataset __magic_name__ :Optional[Any] = self.get_eval_dataloader(__lowerCAmelCase ) __magic_name__ :str = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __magic_name__ :Any = self.compute_metrics __magic_name__ :List[Any] = None __magic_name__ :List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __magic_name__ :Optional[Any] = eval_loop( __lowerCAmelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCAmelCase , ) finally: __magic_name__ :Union[str, Any] = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: __magic_name__ :Union[str, Any] = self.post_process_function(__lowerCAmelCase , __lowerCAmelCase , output.predictions ) __magic_name__ :int = self.compute_metrics(__lowerCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): __magic_name__ :Dict = metrics.pop(__lowerCAmelCase ) self.log(__lowerCAmelCase ) else: __magic_name__ :List[str] = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __magic_name__ :Optional[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , __lowerCAmelCase ) return metrics def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase = "test" ): """simple docstring""" __magic_name__ :int = self.get_test_dataloader(__lowerCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. __magic_name__ :Dict = self.compute_metrics __magic_name__ :str = None __magic_name__ :Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __magic_name__ :int = eval_loop( __lowerCAmelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCAmelCase , ) finally: __magic_name__ :List[Any] = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output __magic_name__ :Optional[Any] = self.post_process_function(__lowerCAmelCase , __lowerCAmelCase , output.predictions , '''predict''' ) __magic_name__ :Dict = self.compute_metrics(__lowerCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): __magic_name__ :List[str] = metrics.pop(__lowerCAmelCase ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__lowerCAmelCase ) def A ( self , __lowerCAmelCase="./" ): """simple docstring""" __magic_name__ :List[Any] = self.eval_dataset __magic_name__ :Any = self.get_eval_dataloader(__lowerCAmelCase ) __magic_name__ :int = next(iter(__lowerCAmelCase ) ) # saving device - to make it consistent __magic_name__ :str = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) # convert to tuple __magic_name__ :int = tuple(v.to(__lowerCAmelCase ) for k, v in batch.items() ) logger.info('''Converting model to be onnx compatible''' ) from pytorch_quantization.nn import TensorQuantizer __magic_name__ :Any = True __magic_name__ :Optional[int] = self.model.to(__lowerCAmelCase ) model.eval() model.float() __magic_name__ :Any = model.module if hasattr(__lowerCAmelCase , '''module''' ) else model quant_trainer.configure_model(__lowerCAmelCase , self.quant_trainer_args ) __magic_name__ :int = os.path.join(__lowerCAmelCase , '''model.onnx''' ) logger.info(F'''exporting model to {output_model_file}''' ) __magic_name__ :Dict = {0: '''batch_size''', 1: '''seq_len'''} torch.onnx.export( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , export_params=__lowerCAmelCase , opset_version=1_3 , do_constant_folding=__lowerCAmelCase , input_names=['''input_ids''', '''attention_mask''', '''token_type_ids'''] , output_names=['''output_start_logits''', '''output_end_logits'''] , dynamic_axes={ '''input_ids''': axes, '''attention_mask''': axes, '''token_type_ids''': axes, '''output_start_logits''': axes, '''output_end_logits''': axes, } , verbose=__lowerCAmelCase , ) logger.info('''onnx export finished''' )
0
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ : Optional[Any] = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[Any] = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys a_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure)
714
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers a_ : str = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
148
0
from collections.abc import Sequence def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" return sum(c * (x**i) for i, c in enumerate(a_ ) ) def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" _lowerCAmelCase : List[str] = 0.0 for coeff in reversed(a_ ): _lowerCAmelCase : Tuple = result * x + coeff return result if __name__ == "__main__": snake_case = (0.0, 0.0, 5.0, 9.3, 7.0) snake_case = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
424
"""simple docstring""" import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline UpperCAmelCase = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def lowerCamelCase (a_ :Optional[int] , a_ :tuple , a_ :Path , a_ :str , a_ :int , a_ :List[Any] , a_ :Any , a_ :Union[str, Any]=False , ) -> Dict: output_path.parent.mkdir(parents=a_ , exist_ok=a_) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( a_ , a_ , f=output_path.as_posix() , input_names=a_ , output_names=a_ , dynamic_axes=a_ , do_constant_folding=a_ , use_external_data_format=a_ , enable_onnx_checker=a_ , opset_version=a_ , ) else: export( a_ , a_ , f=output_path.as_posix() , input_names=a_ , output_names=a_ , dynamic_axes=a_ , do_constant_folding=a_ , opset_version=a_ , ) @torch.no_grad() def lowerCamelCase (a_ :str , a_ :str , a_ :int , a_ :bool = False) -> Union[str, Any]: lowercase :Any = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowercase :Union[str, Any] = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''') else: lowercase :List[str] = '''cpu''' lowercase :List[str] = StableDiffusionPipeline.from_pretrained(a_ , torch_dtype=a_).to(a_) lowercase :List[Any] = Path(a_) # TEXT ENCODER lowercase :List[Any] = pipeline.text_encoder.config.max_position_embeddings lowercase :Dict = pipeline.text_encoder.config.hidden_size lowercase :Union[str, Any] = pipeline.tokenizer( '''A sample prompt''' , padding='''max_length''' , max_length=pipeline.tokenizer.model_max_length , truncation=a_ , return_tensors='''pt''' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=a_ , dtype=torch.intaa)) , output_path=output_path / '''text_encoder''' / '''model.onnx''' , ordered_input_names=['''input_ids'''] , output_names=['''last_hidden_state''', '''pooler_output'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''sequence'''}, } , opset=a_ , ) del pipeline.text_encoder # UNET lowercase :Any = pipeline.unet.config.in_channels lowercase :List[Any] = pipeline.unet.config.sample_size lowercase :Optional[int] = output_path / '''unet''' / '''model.onnx''' onnx_export( pipeline.unet , model_args=( torch.randn(2 , a_ , a_ , a_).to(device=a_ , dtype=a_), torch.randn(2).to(device=a_ , dtype=a_), torch.randn(2 , a_ , a_).to(device=a_ , dtype=a_), False, ) , output_path=a_ , ordered_input_names=['''sample''', '''timestep''', '''encoder_hidden_states''', '''return_dict'''] , output_names=['''out_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''timestep''': {0: '''batch'''}, '''encoder_hidden_states''': {0: '''batch''', 1: '''sequence'''}, } , opset=a_ , use_external_data_format=a_ , ) lowercase :List[Any] = str(unet_path.absolute().as_posix()) lowercase :str = os.path.dirname(a_) lowercase :Optional[Any] = onnx.load(a_) # clean up existing tensor files shutil.rmtree(a_) os.mkdir(a_) # collate external tensor files into one onnx.save_model( a_ , a_ , save_as_external_data=a_ , all_tensors_to_one_file=a_ , location='''weights.pb''' , convert_attribute=a_ , ) del pipeline.unet # VAE ENCODER lowercase :Tuple = pipeline.vae lowercase :Optional[Any] = vae_encoder.config.in_channels lowercase :Any = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder lowercase :Any = lambda a_ , a_: vae_encoder.encode(a_ , a_)[0].sample() onnx_export( a_ , model_args=( torch.randn(1 , a_ , a_ , a_).to(device=a_ , dtype=a_), False, ) , output_path=output_path / '''vae_encoder''' / '''model.onnx''' , ordered_input_names=['''sample''', '''return_dict'''] , output_names=['''latent_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=a_ , ) # VAE DECODER lowercase :Any = pipeline.vae lowercase :Dict = vae_decoder.config.latent_channels lowercase :Union[str, Any] = vae_decoder.config.out_channels # forward only through the decoder part lowercase :List[Any] = vae_encoder.decode onnx_export( a_ , model_args=( torch.randn(1 , a_ , a_ , a_).to(device=a_ , dtype=a_), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=a_ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: lowercase :Dict = pipeline.safety_checker lowercase :str = safety_checker.config.vision_config.num_channels lowercase :str = safety_checker.config.vision_config.image_size lowercase :List[str] = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , a_ , a_ , a_ , ).to(device=a_ , dtype=a_), torch.randn(1 , a_ , a_ , a_).to(device=a_ , dtype=a_), ) , output_path=output_path / '''safety_checker''' / '''model.onnx''' , ordered_input_names=['''clip_input''', '''images'''] , output_names=['''out_images''', '''has_nsfw_concepts'''] , dynamic_axes={ '''clip_input''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''images''': {0: '''batch''', 1: '''height''', 2: '''width''', 3: '''channels'''}, } , opset=a_ , ) del pipeline.safety_checker lowercase :Tuple = OnnxRuntimeModel.from_pretrained(output_path / '''safety_checker''') lowercase :Optional[Any] = pipeline.feature_extractor else: lowercase :int = None lowercase :Union[str, Any] = None lowercase :Optional[int] = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_encoder''') , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_decoder''') , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''text_encoder''') , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / '''unet''') , scheduler=pipeline.scheduler , safety_checker=a_ , feature_extractor=a_ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(a_) print('''ONNX pipeline saved to''' , a_) del pipeline del onnx_pipeline lowercase :Tuple = OnnxStableDiffusionPipeline.from_pretrained(a_ , provider='''CPUExecutionProvider''') print('''ONNX pipeline is loadable''') if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=14, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') UpperCAmelCase = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
677
0
def __a ( __lowerCAmelCase , __lowerCAmelCase = " " ) -> list: SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : List[Any] = 0 for index, char in enumerate(__lowerCAmelCase ): if char == separator: split_words.append(string[last_index:index] ) SCREAMING_SNAKE_CASE : Tuple = index + 1 elif index + 1 == len(__lowerCAmelCase ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
714
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) _lowerCamelCase : Dict = logging.getLogger(__name__) def __a ( __lowerCAmelCase , __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE : Optional[Any] = np.argmax(__lowerCAmelCase , axis=1 ) return np.sum(outputs == labels ) def __a ( __lowerCAmelCase ) -> Any: with open(__lowerCAmelCase , encoding='utf_8' ) as f: SCREAMING_SNAKE_CASE : Any = csv.reader(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] next(__lowerCAmelCase ) # skip the first line for line in tqdm(__lowerCAmelCase ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def __a ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: SCREAMING_SNAKE_CASE : Dict = [] for dataset in encoded_datasets: SCREAMING_SNAKE_CASE : Union[str, Any] = len(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : Optional[int] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) SCREAMING_SNAKE_CASE : Optional[Any] = np.zeros((n_batch, 2) , dtype=np.intaa ) SCREAMING_SNAKE_CASE : Dict = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) SCREAMING_SNAKE_CASE : Dict = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(__lowerCAmelCase ): SCREAMING_SNAKE_CASE : str = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] SCREAMING_SNAKE_CASE : Any = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] SCREAMING_SNAKE_CASE : List[str] = with_conta SCREAMING_SNAKE_CASE : Optional[Any] = with_conta SCREAMING_SNAKE_CASE : Dict = len(__lowerCAmelCase ) - 1 SCREAMING_SNAKE_CASE : str = len(__lowerCAmelCase ) - 1 SCREAMING_SNAKE_CASE : Tuple = with_conta SCREAMING_SNAKE_CASE : str = with_conta SCREAMING_SNAKE_CASE : Any = mc_label SCREAMING_SNAKE_CASE : List[str] = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(__lowerCAmelCase ) for t in all_inputs ) ) return tensor_datasets def __a ( ) -> Any: SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() parser.add_argument('--model_name' , type=__lowerCAmelCase , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=__lowerCAmelCase , default='' ) parser.add_argument('--eval_dataset' , type=__lowerCAmelCase , default='' ) parser.add_argument('--seed' , type=__lowerCAmelCase , default=42 ) parser.add_argument('--num_train_epochs' , type=__lowerCAmelCase , default=3 ) parser.add_argument('--train_batch_size' , type=__lowerCAmelCase , default=8 ) parser.add_argument('--eval_batch_size' , type=__lowerCAmelCase , default=16 ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=__lowerCAmelCase , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=__lowerCAmelCase , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=__lowerCAmelCase , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=__lowerCAmelCase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=__lowerCAmelCase , default=6.25E-5 ) parser.add_argument('--warmup_steps' , default=0 , type=__lowerCAmelCase , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=__lowerCAmelCase , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=__lowerCAmelCase , default=0.01 ) parser.add_argument('--lm_coef' , type=__lowerCAmelCase , default=0.9 ) parser.add_argument('--n_valid' , type=__lowerCAmelCase , default=374 ) parser.add_argument('--server_ip' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=__lowerCAmelCase , default='' , help='Can be used for distant debugging.' ) SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() print(__lowerCAmelCase ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__lowerCAmelCase ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) SCREAMING_SNAKE_CASE : Dict = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(__lowerCAmelCase , __lowerCAmelCase ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset SCREAMING_SNAKE_CASE : List[str] = ['_start_', '_delimiter_', '_classify_'] SCREAMING_SNAKE_CASE : int = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : Any = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(__lowerCAmelCase ) ) model.to(__lowerCAmelCase ) # Load and encode the datasets def tokenize_and_encode(__lowerCAmelCase ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(__lowerCAmelCase ) ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): return obj return [tokenize_and_encode(__lowerCAmelCase ) for o in obj] logger.info('Encoding dataset...' ) SCREAMING_SNAKE_CASE : str = load_rocstories_dataset(args.train_dataset ) SCREAMING_SNAKE_CASE : str = load_rocstories_dataset(args.eval_dataset ) SCREAMING_SNAKE_CASE : Tuple = (train_dataset, eval_dataset) SCREAMING_SNAKE_CASE : List[Any] = tokenize_and_encode(__lowerCAmelCase ) # Compute the max input length for the Transformer SCREAMING_SNAKE_CASE : Dict = model.config.n_positions // 2 - 2 SCREAMING_SNAKE_CASE : int = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) SCREAMING_SNAKE_CASE : str = min(__lowerCAmelCase , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders SCREAMING_SNAKE_CASE : List[str] = pre_process_datasets(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , *__lowerCAmelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = tensor_datasets[0], tensor_datasets[1] SCREAMING_SNAKE_CASE : str = TensorDataset(*__lowerCAmelCase ) SCREAMING_SNAKE_CASE : Dict = RandomSampler(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : Tuple = DataLoader(__lowerCAmelCase , sampler=__lowerCAmelCase , batch_size=args.train_batch_size ) SCREAMING_SNAKE_CASE : Any = TensorDataset(*__lowerCAmelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = SequentialSampler(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : Tuple = DataLoader(__lowerCAmelCase , sampler=__lowerCAmelCase , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: SCREAMING_SNAKE_CASE : List[str] = args.max_steps SCREAMING_SNAKE_CASE : Tuple = args.max_steps // (len(__lowerCAmelCase ) // args.gradient_accumulation_steps) + 1 else: SCREAMING_SNAKE_CASE : Dict = len(__lowerCAmelCase ) // args.gradient_accumulation_steps * args.num_train_epochs SCREAMING_SNAKE_CASE : Dict = list(model.named_parameters() ) SCREAMING_SNAKE_CASE : int = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] SCREAMING_SNAKE_CASE : Tuple = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] SCREAMING_SNAKE_CASE : Optional[int] = AdamW(__lowerCAmelCase , lr=args.learning_rate , eps=args.adam_epsilon ) SCREAMING_SNAKE_CASE : List[Any] = get_linear_schedule_with_warmup( __lowerCAmelCase , num_warmup_steps=args.warmup_steps , num_training_steps=__lowerCAmelCase ) if args.do_train: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = tqdm(__lowerCAmelCase , desc='Training' ) for step, batch in enumerate(__lowerCAmelCase ): SCREAMING_SNAKE_CASE : List[str] = tuple(t.to(__lowerCAmelCase ) for t in batch ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = batch SCREAMING_SNAKE_CASE : Tuple = model(__lowerCAmelCase , mc_token_ids=__lowerCAmelCase , lm_labels=__lowerCAmelCase , mc_labels=__lowerCAmelCase ) SCREAMING_SNAKE_CASE : str = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() SCREAMING_SNAKE_CASE : Optional[Any] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 SCREAMING_SNAKE_CASE : Tuple = 'Training loss: {:.2e} lr: {:.2e}'.format(__lowerCAmelCase , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer SCREAMING_SNAKE_CASE : Union[str, Any] = model.module if hasattr(__lowerCAmelCase , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(args.output_dir , __lowerCAmelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(args.output_dir , __lowerCAmelCase ) torch.save(model_to_save.state_dict() , __lowerCAmelCase ) model_to_save.config.to_json_file(__lowerCAmelCase ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned SCREAMING_SNAKE_CASE : List[Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) SCREAMING_SNAKE_CASE : List[str] = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(__lowerCAmelCase ) if args.do_eval: model.eval() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = 0, 0 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = 0, 0 for batch in tqdm(__lowerCAmelCase , desc='Evaluating' ): SCREAMING_SNAKE_CASE : Optional[int] = tuple(t.to(__lowerCAmelCase ) for t in batch ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = batch with torch.no_grad(): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = model( __lowerCAmelCase , mc_token_ids=__lowerCAmelCase , lm_labels=__lowerCAmelCase , mc_labels=__lowerCAmelCase ) SCREAMING_SNAKE_CASE : Any = mc_logits.detach().cpu().numpy() SCREAMING_SNAKE_CASE : List[Any] = mc_labels.to('cpu' ).numpy() SCREAMING_SNAKE_CASE : Optional[int] = accuracy(__lowerCAmelCase , __lowerCAmelCase ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 SCREAMING_SNAKE_CASE : Optional[int] = eval_loss / nb_eval_steps SCREAMING_SNAKE_CASE : str = eval_accuracy / nb_eval_examples SCREAMING_SNAKE_CASE : Any = tr_loss / nb_tr_steps if args.do_train else None SCREAMING_SNAKE_CASE : Dict = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} SCREAMING_SNAKE_CASE : List[Any] = os.path.join(args.output_dir , 'eval_results.txt' ) with open(__lowerCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , __lowerCAmelCase , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
308
0
'''simple docstring''' import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class _lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[Any]=1_3 , SCREAMING_SNAKE_CASE : Union[str, Any]=7 , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : Optional[int]=True , SCREAMING_SNAKE_CASE : Dict=True , SCREAMING_SNAKE_CASE : Optional[Any]=True , SCREAMING_SNAKE_CASE : Dict=9_9 , SCREAMING_SNAKE_CASE : Union[str, Any]=6_4 , SCREAMING_SNAKE_CASE : Any=5 , SCREAMING_SNAKE_CASE : Tuple=4 , SCREAMING_SNAKE_CASE : Union[str, Any]=3_7 , SCREAMING_SNAKE_CASE : Dict="gelu" , SCREAMING_SNAKE_CASE : Dict=0.1 , SCREAMING_SNAKE_CASE : Optional[int]=0.1 , SCREAMING_SNAKE_CASE : Union[str, Any]=5_1_2 , SCREAMING_SNAKE_CASE : Optional[int]=1_6 , SCREAMING_SNAKE_CASE : Dict=2 , SCREAMING_SNAKE_CASE : List[Any]=0.0_2 , SCREAMING_SNAKE_CASE : Optional[Any]=3 , SCREAMING_SNAKE_CASE : str=4 , SCREAMING_SNAKE_CASE : Optional[Any]=None , ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = vocab_size - 1 def __A ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = self.get_config() return config, input_ids, input_mask, token_labels def __A ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def __A ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase = True return config, input_ids, input_mask, token_labels def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase = GPTNeoXModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE ) lowerCAmelCase = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = True lowerCAmelCase = GPTNeoXModel(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : int , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str] ) -> Dict: """simple docstring""" lowerCAmelCase = GPTNeoXForCausalLM(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self : str , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] ) -> str: """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = GPTNeoXForQuestionAnswering(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[Any] ) -> str: """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = GPTNeoXForSequenceClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] ) -> Tuple: """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = GPTNeoXForTokenClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase = True lowerCAmelCase = GPTNeoXForCausalLM(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() # first forward pass lowerCAmelCase = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , use_cache=SCREAMING_SNAKE_CASE ) lowerCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE ) lowerCAmelCase = output_from_no_past["hidden_states"][0] lowerCAmelCase = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , past_key_values=SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE , )["hidden_states"][0] # select random slice lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) ) def __A ( self : Dict ) -> List[str]: """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs lowerCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase = (GPTNeoXForCausalLM,) if is_torch_available() else () lowerCAmelCase = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def __A ( self : str ) -> List[Any]: """simple docstring""" lowerCAmelCase = GPTNeoXModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=6_4 , num_attention_heads=8 ) def __A ( self : List[Any] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def __A ( self : Optional[Any] ) -> int: """simple docstring""" lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __A ( self : int ) -> int: """simple docstring""" lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __A ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCAmelCase = None self.model_tester.create_and_check_model_as_decoder(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __A ( self : List[str] ) -> int: """simple docstring""" lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __A ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*SCREAMING_SNAKE_CASE ) def __A ( self : List[str] ) -> int: """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE ) def __A ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE ) def __A ( self : Dict ) -> Any: """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE ) @unittest.skip(reason="Feed forward chunking is not implemented" ) def __A ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass @parameterized.expand([("linear",), ("dynamic",)] ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE : str ) -> int: """simple docstring""" lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = ids_tensor([1, 1_0] , config.vocab_size ) lowerCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase = GPTNeoXModel(SCREAMING_SNAKE_CASE ) original_model.to(SCREAMING_SNAKE_CASE ) original_model.eval() lowerCAmelCase = original_model(SCREAMING_SNAKE_CASE ).last_hidden_state lowerCAmelCase = original_model(SCREAMING_SNAKE_CASE ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase = {"type": scaling_type, "factor": 1_0.0} lowerCAmelCase = GPTNeoXModel(SCREAMING_SNAKE_CASE ) scaled_model.to(SCREAMING_SNAKE_CASE ) scaled_model.eval() lowerCAmelCase = scaled_model(SCREAMING_SNAKE_CASE ).last_hidden_state lowerCAmelCase = scaled_model(SCREAMING_SNAKE_CASE ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-5 ) ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def __A ( self : Tuple ) -> List[Any]: """simple docstring""" lowerCAmelCase = AutoTokenizer.from_pretrained("EleutherAI/pythia-410m-deduped" ) for checkpointing in [True, False]: lowerCAmelCase = GPTNeoXForCausalLM.from_pretrained("EleutherAI/pythia-410m-deduped" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(SCREAMING_SNAKE_CASE ) lowerCAmelCase = tokenizer("My favorite food is" , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 lowerCAmelCase = "My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure" lowerCAmelCase = model.generate(**SCREAMING_SNAKE_CASE , do_sample=SCREAMING_SNAKE_CASE , max_new_tokens=2_0 ) lowerCAmelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE )[0] self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
649
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __a ( A__ , A__ , A__ ) -> str: # Initialise PyTorch model lowerCAmelCase = BertConfig.from_json_file(A__ ) print(f"Building PyTorch model from configuration: {config}" ) lowerCAmelCase = BertForPreTraining(A__ ) # Load weights from tf checkpoint load_tf_weights_in_bert(A__ , A__ , A__ ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--bert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowercase : int = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
649
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowercase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase ( self ): __UpperCamelCase : List[Any] = 1 __UpperCamelCase : List[str] = 3 __UpperCamelCase : Dict = (3_2, 3_2) __UpperCamelCase : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCamelCase ) return image @property def lowerCAmelCase ( self ): torch.manual_seed(0 ) __UpperCamelCase : Any = UNetaDConditionModel( block_out_channels=(3_2, 3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=7 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=8 , use_linear_projection=_lowerCamelCase , only_cross_attention=(True, True, False) , num_class_embeds=1_0_0 , ) return model @property def lowerCAmelCase ( self ): torch.manual_seed(0 ) __UpperCamelCase : List[str] = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def lowerCAmelCase ( self ): torch.manual_seed(0 ) __UpperCamelCase : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) return CLIPTextModel(_lowerCamelCase ) def lowerCAmelCase ( self ): __UpperCamelCase : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase : str = self.dummy_cond_unet_upscale __UpperCamelCase : Union[str, Any] = DDPMScheduler() __UpperCamelCase : str = DDIMScheduler(prediction_type='v_prediction' ) __UpperCamelCase : Tuple = self.dummy_vae __UpperCamelCase : Tuple = self.dummy_text_encoder __UpperCamelCase : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __UpperCamelCase : Dict = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCamelCase : Any = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('RGB' ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk __UpperCamelCase : List[str] = StableDiffusionUpscalePipeline( unet=_lowerCamelCase , low_res_scheduler=_lowerCamelCase , scheduler=_lowerCamelCase , vae=_lowerCamelCase , text_encoder=_lowerCamelCase , tokenizer=_lowerCamelCase , max_noise_level=3_5_0 , ) __UpperCamelCase : List[Any] = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) __UpperCamelCase : List[str] = 'A painting of a squirrel eating a burger' __UpperCamelCase : int = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __UpperCamelCase : str = sd_pipe( [prompt] , image=_lowerCamelCase , generator=_lowerCamelCase , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type='np' , ) __UpperCamelCase : Any = output.images __UpperCamelCase : Union[str, Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __UpperCamelCase : Optional[Any] = sd_pipe( [prompt] , image=_lowerCamelCase , generator=_lowerCamelCase , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type='np' , return_dict=_lowerCamelCase , )[0] __UpperCamelCase : List[str] = image[0, -3:, -3:, -1] __UpperCamelCase : Dict = image_from_tuple[0, -3:, -3:, -1] __UpperCamelCase : str = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) __UpperCamelCase : Tuple = np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self ): __UpperCamelCase : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase : Tuple = self.dummy_cond_unet_upscale __UpperCamelCase : Optional[Any] = DDPMScheduler() __UpperCamelCase : Dict = DDIMScheduler(prediction_type='v_prediction' ) __UpperCamelCase : int = self.dummy_vae __UpperCamelCase : List[Any] = self.dummy_text_encoder __UpperCamelCase : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __UpperCamelCase : List[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCamelCase : Union[str, Any] = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('RGB' ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk __UpperCamelCase : Tuple = StableDiffusionUpscalePipeline( unet=_lowerCamelCase , low_res_scheduler=_lowerCamelCase , scheduler=_lowerCamelCase , vae=_lowerCamelCase , text_encoder=_lowerCamelCase , tokenizer=_lowerCamelCase , max_noise_level=3_5_0 , ) __UpperCamelCase : List[Any] = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) __UpperCamelCase : Optional[Any] = 'A painting of a squirrel eating a burger' __UpperCamelCase : Optional[Any] = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type='np' , ) __UpperCamelCase : Optional[int] = output.images assert image.shape[0] == 2 __UpperCamelCase : Optional[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __UpperCamelCase : List[Any] = sd_pipe( [prompt] , image=_lowerCamelCase , generator=_lowerCamelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type='np' , ) __UpperCamelCase : List[str] = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowerCAmelCase ( self ): __UpperCamelCase : int = self.dummy_cond_unet_upscale __UpperCamelCase : Tuple = DDPMScheduler() __UpperCamelCase : List[Any] = DDIMScheduler(prediction_type='v_prediction' ) __UpperCamelCase : str = self.dummy_vae __UpperCamelCase : Union[str, Any] = self.dummy_text_encoder __UpperCamelCase : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __UpperCamelCase : Union[str, Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCamelCase : Tuple = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('RGB' ).resize((6_4, 6_4) ) # put models in fp16, except vae as it overflows in fp16 __UpperCamelCase : Optional[int] = unet.half() __UpperCamelCase : int = text_encoder.half() # make sure here that pndm scheduler skips prk __UpperCamelCase : Optional[Any] = StableDiffusionUpscalePipeline( unet=_lowerCamelCase , low_res_scheduler=_lowerCamelCase , scheduler=_lowerCamelCase , vae=_lowerCamelCase , text_encoder=_lowerCamelCase , tokenizer=_lowerCamelCase , max_noise_level=3_5_0 , ) __UpperCamelCase : Optional[int] = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) __UpperCamelCase : Tuple = 'A painting of a squirrel eating a burger' __UpperCamelCase : Tuple = torch.manual_seed(0 ) __UpperCamelCase : Tuple = sd_pipe( [prompt] , image=_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=2 , output_type='np' , ).images __UpperCamelCase : Optional[Any] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self ): __UpperCamelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) __UpperCamelCase : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat.npy' ) __UpperCamelCase : Union[str, Any] = 'stabilityai/stable-diffusion-x4-upscaler' __UpperCamelCase : Tuple = StableDiffusionUpscalePipeline.from_pretrained(_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() __UpperCamelCase : Optional[Any] = 'a cat sitting on a park bench' __UpperCamelCase : Union[str, Any] = torch.manual_seed(0 ) __UpperCamelCase : Tuple = pipe( prompt=_lowerCamelCase , image=_lowerCamelCase , generator=_lowerCamelCase , output_type='np' , ) __UpperCamelCase : List[str] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 1E-3 def lowerCAmelCase ( self ): __UpperCamelCase : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) __UpperCamelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat_fp16.npy' ) __UpperCamelCase : str = 'stabilityai/stable-diffusion-x4-upscaler' __UpperCamelCase : Optional[Any] = StableDiffusionUpscalePipeline.from_pretrained( _lowerCamelCase , torch_dtype=torch.floataa , ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() __UpperCamelCase : Tuple = 'a cat sitting on a park bench' __UpperCamelCase : Any = torch.manual_seed(0 ) __UpperCamelCase : Union[str, Any] = pipe( prompt=_lowerCamelCase , image=_lowerCamelCase , generator=_lowerCamelCase , output_type='np' , ) __UpperCamelCase : Tuple = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5E-1 def lowerCAmelCase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCamelCase : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) __UpperCamelCase : Optional[Any] = 'stabilityai/stable-diffusion-x4-upscaler' __UpperCamelCase : Optional[int] = StableDiffusionUpscalePipeline.from_pretrained( _lowerCamelCase , torch_dtype=torch.floataa , ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __UpperCamelCase : str = 'a cat sitting on a park bench' __UpperCamelCase : List[str] = torch.manual_seed(0 ) __UpperCamelCase : List[Any] = pipe( prompt=_lowerCamelCase , image=_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=5 , output_type='np' , ) __UpperCamelCase : str = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 1_0**9
287
'''simple docstring''' import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup a= logging.get_logger(__name__) class __lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self , **_lowerCamelCase ): requires_backends(self , ['bs4'] ) super().__init__(**_lowerCamelCase ) def lowerCAmelCase ( self , _lowerCamelCase ): __UpperCamelCase : str = [] __UpperCamelCase : Dict = [] __UpperCamelCase : Union[str, Any] = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag __UpperCamelCase : str = parent.find_all(child.name , recursive=_lowerCamelCase ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_lowerCamelCase ) else next(i for i, s in enumerate(_lowerCamelCase , 1 ) if s is child ) ) __UpperCamelCase : Union[str, Any] = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def lowerCAmelCase ( self , _lowerCamelCase ): __UpperCamelCase : List[str] = BeautifulSoup(_lowerCamelCase , 'html.parser' ) __UpperCamelCase : int = [] __UpperCamelCase : List[Any] = [] __UpperCamelCase : int = [] for element in html_code.descendants: if type(_lowerCamelCase ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue __UpperCamelCase : Tuple = html.unescape(_lowerCamelCase ).strip() if not text_in_this_tag: continue all_doc_strings.append(_lowerCamelCase ) __UpperCamelCase , __UpperCamelCase : Union[str, Any] = self.xpath_soup(_lowerCamelCase ) stringaxtag_seq.append(_lowerCamelCase ) stringaxsubs_seq.append(_lowerCamelCase ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError('Number of doc strings and xtags does not correspond' ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError('Number of doc strings and xsubs does not correspond' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ): __UpperCamelCase : Dict = '' for tagname, subs in zip(_lowerCamelCase , _lowerCamelCase ): xpath += f"""/{tagname}""" if subs != 0: xpath += f"""[{subs}]""" return xpath def __call__( self , _lowerCamelCase ): __UpperCamelCase : List[Any] = False # Check that strings has a valid type if isinstance(_lowerCamelCase , _lowerCamelCase ): __UpperCamelCase : List[str] = True elif isinstance(_lowerCamelCase , (list, tuple) ): if len(_lowerCamelCase ) == 0 or isinstance(html_strings[0] , _lowerCamelCase ): __UpperCamelCase : Optional[int] = True if not valid_strings: raise ValueError( 'HTML strings must of type `str`, `List[str]` (batch of examples), ' f"""but is of type {type(_lowerCamelCase )}.""" ) __UpperCamelCase : Dict = bool(isinstance(_lowerCamelCase , (list, tuple) ) and (isinstance(html_strings[0] , _lowerCamelCase )) ) if not is_batched: __UpperCamelCase : Tuple = [html_strings] # Get nodes + xpaths __UpperCamelCase : Tuple = [] __UpperCamelCase : Tuple = [] for html_string in html_strings: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : str = self.get_three_from_single(_lowerCamelCase ) nodes.append(_lowerCamelCase ) __UpperCamelCase : Union[str, Any] = [] for node, tag_list, sub_list in zip(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): __UpperCamelCase : Optional[Any] = self.construct_xpath(_lowerCamelCase , _lowerCamelCase ) xpath_strings.append(_lowerCamelCase ) xpaths.append(_lowerCamelCase ) # return as Dict __UpperCamelCase : Optional[int] = {'nodes': nodes, 'xpaths': xpaths} __UpperCamelCase : Union[str, Any] = BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase ) return encoded_inputs
287
1
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _lowercase : str = 2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _lowercase : Any = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _lowercase : int = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def lowercase__ ( snake_case_ :str , snake_case_ :str ): __UpperCAmelCase = len([g for position, g in enumerate(snake_case_ ) if g == main_target[position]] ) return (item, float(snake_case_ )) def lowercase__ ( snake_case_ :str , snake_case_ :str ): __UpperCAmelCase = random.randint(0 , len(snake_case_ ) - 1 ) __UpperCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] __UpperCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowercase__ ( snake_case_ :str , snake_case_ :list[str] ): __UpperCAmelCase = list(snake_case_ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __UpperCAmelCase = random.choice(snake_case_ ) return "".join(snake_case_ ) def lowercase__ ( snake_case_ :tuple[str, float] , snake_case_ :list[tuple[str, float]] , snake_case_ :list[str] , ): __UpperCAmelCase = [] # Generate more children proportionally to the fitness score. __UpperCAmelCase = int(parent_a[1] * 100 ) + 1 __UpperCAmelCase = 10 if child_n >= 10 else child_n for _ in range(snake_case_ ): __UpperCAmelCase = population_score[random.randint(0 , snake_case_ )][0] __UpperCAmelCase , __UpperCAmelCase = crossover(parent_a[0] , snake_case_ ) # Append new string to the population list. pop.append(mutate(snake_case_ , snake_case_ ) ) pop.append(mutate(snake_case_ , snake_case_ ) ) return pop def lowercase__ ( snake_case_ :str , snake_case_ :list[str] , snake_case_ :bool = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: __UpperCAmelCase = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(snake_case_ ) # Verify that the target contains no genes besides the ones inside genes variable. __UpperCAmelCase = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __UpperCAmelCase = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(snake_case_ ) # Generate random starting population. __UpperCAmelCase = [] for _ in range(snake_case_ ): population.append(''''''.join([random.choice(snake_case_ ) for i in range(len(snake_case_ ) )] ) ) # Just some logs to know what the algorithms is doing. __UpperCAmelCase , __UpperCAmelCase = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(snake_case_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __UpperCAmelCase = [evaluate(snake_case_ , snake_case_ ) for item in population] # Check if there is a matching evolution. __UpperCAmelCase = sorted(snake_case_ , key=lambda snake_case_ : x[1] , reverse=snake_case_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __UpperCAmelCase = population[: int(N_POPULATION / 3 )] population.clear() population.extend(snake_case_ ) # Normalize population score to be between 0 and 1. __UpperCAmelCase = [ (item, score / len(snake_case_ )) for item, score in population_score ] # This is selection for i in range(snake_case_ ): population.extend(select(population_score[int(snake_case_ )] , snake_case_ , snake_case_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(snake_case_ ) > N_POPULATION: break if __name__ == "__main__": _lowercase : Optional[int] = ( 'This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!' ) _lowercase : Union[str, Any] = list( ' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm' 'nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\' ) _lowercase ,_lowercase ,_lowercase : Optional[int] = basic(target_str, genes_list) print( f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
49
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __lowercase : def __init__(self : Dict , snake_case : Dict , snake_case : List[Any]=13 , snake_case : int=7 , snake_case : List[str]=True , snake_case : List[Any]=True , snake_case : Union[str, Any]=True , snake_case : Dict=True , snake_case : Optional[Any]=99 , snake_case : str=32 , snake_case : Any=2 , snake_case : Optional[Any]=4 , snake_case : int=37 , snake_case : Dict="gelu" , snake_case : Dict=0.1 , snake_case : Dict=0.1 , snake_case : Optional[int]=512 , snake_case : Dict=16 , snake_case : Union[str, Any]=2 , snake_case : Dict=0.02 , snake_case : str=3 , snake_case : str=4 , snake_case : Optional[Any]=None , snake_case : str=0 , ) -> Optional[Any]: _lowercase : int = parent _lowercase : Tuple = batch_size _lowercase : str = seq_length _lowercase : Optional[Any] = is_training _lowercase : List[Any] = use_input_mask _lowercase : Tuple = use_token_type_ids _lowercase : List[Any] = use_labels _lowercase : List[str] = vocab_size _lowercase : Dict = hidden_size _lowercase : str = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Dict = intermediate_size _lowercase : List[Any] = hidden_act _lowercase : Optional[Any] = hidden_dropout_prob _lowercase : Dict = attention_probs_dropout_prob _lowercase : int = max_position_embeddings _lowercase : Tuple = type_vocab_size _lowercase : List[str] = type_sequence_label_size _lowercase : str = initializer_range _lowercase : Tuple = num_labels _lowercase : List[Any] = num_choices _lowercase : Dict = scope _lowercase : Optional[Any] = projection_dim def _a(self : Tuple ) -> List[str]: _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : Optional[int] = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _lowercase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : List[Any] = None if self.use_token_type_ids: _lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Tuple = None _lowercase : Optional[Any] = None _lowercase : Optional[Any] = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : List[str] = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Union[str, Any] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , ) _lowercase : Any = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a(self : Union[str, Any] , snake_case : Any , snake_case : Tuple , snake_case : str , snake_case : str , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : str ) -> List[str]: _lowercase : List[Any] = TFDPRContextEncoder(config=snake_case ) _lowercase : Dict = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) _lowercase : Optional[int] = model(snake_case , token_type_ids=snake_case ) _lowercase : Union[str, Any] = model(snake_case ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def _a(self : List[Any] , snake_case : List[str] , snake_case : Tuple , snake_case : Any , snake_case : int , snake_case : Optional[int] , snake_case : Any , snake_case : Union[str, Any] ) -> int: _lowercase : Optional[Any] = TFDPRQuestionEncoder(config=snake_case ) _lowercase : int = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) _lowercase : str = model(snake_case , token_type_ids=snake_case ) _lowercase : str = model(snake_case ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def _a(self : Union[str, Any] , snake_case : Any , snake_case : int , snake_case : List[str] , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Optional[Any] , snake_case : Union[str, Any] ) -> Any: _lowercase : Any = TFDPRReader(config=snake_case ) _lowercase : Optional[Any] = model(snake_case , attention_mask=snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def _a(self : int ) -> Optional[Any]: _lowercase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : int = config_and_inputs _lowercase : int = {"input_ids": input_ids} return config, inputs_dict @require_tf class __lowercase ( __snake_case , __snake_case , unittest.TestCase ): _A = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) _A = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} _A = False _A = False _A = False _A = False _A = False def _a(self : str ) -> List[str]: _lowercase : List[Any] = TFDPRModelTester(self ) _lowercase : Any = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def _a(self : str ) -> Union[str, Any]: self.config_tester.run_common_tests() def _a(self : Any ) -> Tuple: _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*snake_case ) def _a(self : Dict ) -> Optional[Any]: _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*snake_case ) def _a(self : List[Any] ) -> Any: _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*snake_case ) @slow def _a(self : int ) -> str: for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : str = TFDPRContextEncoder.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : List[str] = TFDPRContextEncoder.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : int = TFDPRQuestionEncoder.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Any = TFDPRReader.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_tf class __lowercase ( unittest.TestCase ): @slow def _a(self : Dict ) -> Any: _lowercase : Any = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base" ) _lowercase : Optional[int] = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 1_0140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] _lowercase : List[Any] = model(snake_case )[0] # embedding shape = (1, 768) # compare the actual values for a slice. _lowercase : Optional[Any] = tf.constant( [ [ 0.03_23_62_53, 0.12_75_33_35, 0.16_81_85_09, 0.00_27_97_86, 0.3_89_69_33, 0.24_26_49_45, 0.2_17_89_71, -0.02_33_52_27, -0.08_48_19_59, -0.14_32_41_17, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4 ) )
461
0
"""simple docstring""" import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase__ = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Any = _ask_options( '''In which compute environment are you running?''', ['''This machine''', '''AWS (Amazon SageMaker)'''], _convert_compute_environment, ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _lowerCamelCase : str = get_sagemaker_input() else: _lowerCamelCase : List[Any] = get_cluster_input() return config def snake_case_ ( A_ : Union[str, Any]=None ): '''simple docstring''' if subparsers is not None: _lowerCamelCase : Tuple = subparsers.add_parser('''config''', description=A_ ) else: _lowerCamelCase : str = argparse.ArgumentParser('''Accelerate config command''', description=A_ ) parser.add_argument( '''--config_file''', default=A_, help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ), ) if subparsers is not None: parser.set_defaults(func=A_ ) return parser def snake_case_ ( A_ : str ): '''simple docstring''' _lowerCamelCase : int = get_user_input() if args.config_file is not None: _lowerCamelCase : Dict = args.config_file else: if not os.path.isdir(A_ ): os.makedirs(A_ ) _lowerCamelCase : Optional[int] = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(A_ ) else: config.to_yaml_file(A_ ) print(F'''accelerate configuration saved at {config_file}''' ) def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Optional[Any] = config_command_parser() _lowerCamelCase : Any = parser.parse_args() config_command(A_ ) if __name__ == "__main__": main()
705
"""simple docstring""" import collections import os import re from pathlib import Path lowerCAmelCase__ = '''src/transformers''' # Matches is_xxx_available() lowerCAmelCase__ = re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} lowerCAmelCase__ = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCAmelCase__ = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available lowerCAmelCase__ = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") lowerCAmelCase__ = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCAmelCase__ = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", lowerCAmelCase__ = re.compile(R'''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], lowerCAmelCase__ = re.compile(R'''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo lowerCAmelCase__ = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: lowerCAmelCase__ = re.compile(R'''^\s*try:''') # Catches a line with else: lowerCAmelCase__ = re.compile(R'''^\s*else:''') def snake_case_ ( A_ : Optional[Any] ): '''simple docstring''' if _re_test_backend.search(A_ ) is None: return None _lowerCamelCase : Dict = [b[0] for b in _re_backend.findall(A_ )] backends.sort() return "_and_".join(A_ ) def snake_case_ ( A_ : Optional[Any] ): '''simple docstring''' with open(A_, '''r''', encoding='''utf-8''', newline='''\n''' ) as f: _lowerCamelCase : List[str] = f.readlines() _lowerCamelCase : Dict = 0 while line_index < len(A_ ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(A_ ): return None # First grab the objects without a specific backend in _import_structure _lowerCamelCase : Union[str, Any] = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: _lowerCamelCase : List[str] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(A_ ): _lowerCamelCase : Union[str, Any] = _re_one_line_import_struct.search(A_ ).groups()[0] _lowerCamelCase : List[str] = re.findall(R'''\[([^\]]+)\]''', A_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue _lowerCamelCase : List[Any] = _re_import_struct_key_value.search(A_ ) if single_line_import_search is not None: _lowerCamelCase : Dict = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(A_ ) > 0] objects.extend(A_ ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 _lowerCamelCase : Optional[int] = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. _lowerCamelCase : Dict = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _lowerCamelCase : Optional[int] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _lowerCamelCase : List[str] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): _lowerCamelCase : List[str] = lines[line_index] if _re_import_struct_add_one.search(A_ ) is not None: objects.append(_re_import_struct_add_one.search(A_ ).groups()[0] ) elif _re_import_struct_add_many.search(A_ ) is not None: _lowerCamelCase : Optional[Any] = _re_import_struct_add_many.search(A_ ).groups()[0].split(''', ''' ) _lowerCamelCase : Optional[int] = [obj[1:-1] for obj in imports if len(A_ ) > 0] objects.extend(A_ ) elif _re_between_brackets.search(A_ ) is not None: _lowerCamelCase : Union[str, Any] = _re_between_brackets.search(A_ ).groups()[0].split(''', ''' ) _lowerCamelCase : Optional[int] = [obj[1:-1] for obj in imports if len(A_ ) > 0] objects.extend(A_ ) elif _re_quote_object.search(A_ ) is not None: objects.append(_re_quote_object.search(A_ ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 _lowerCamelCase : Dict = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _lowerCamelCase : Optional[int] = [] while ( line_index < len(A_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): _lowerCamelCase : List[str] = lines[line_index] _lowerCamelCase : List[str] = _re_import.search(A_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 _lowerCamelCase : Optional[Any] = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(A_ ): # If the line is an if is_backend_available, we grab all objects associated. _lowerCamelCase : List[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _lowerCamelCase : Dict = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _lowerCamelCase : Optional[Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): _lowerCamelCase : int = lines[line_index] _lowerCamelCase : Any = _re_import.search(A_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 _lowerCamelCase : int = objects else: line_index += 1 return import_dict_objects, type_hint_objects def snake_case_ ( A_ : Dict, A_ : List[Any] ): '''simple docstring''' def find_duplicates(A_ : Dict ): return [k for k, v in collections.Counter(A_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _lowerCamelCase : Optional[int] = [] for key in import_dict_objects.keys(): _lowerCamelCase : Tuple = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) _lowerCamelCase : Optional[Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _lowerCamelCase : str = '''base imports''' if key == '''none''' else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : List[str] = [] for root, _, files in os.walk(A_ ): if "__init__.py" in files: _lowerCamelCase : Union[str, Any] = os.path.join(A_, '''__init__.py''' ) _lowerCamelCase : List[str] = parse_init(A_ ) if objects is not None: _lowerCamelCase : str = analyze_results(*A_ ) if len(A_ ) > 0: _lowerCamelCase : Dict = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(A_ ) ) if len(A_ ) > 0: raise ValueError('''\n\n'''.join(A_ ) ) def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Tuple = [] for path, directories, files in os.walk(A_ ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(A_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(A_ ) / folder).glob('''*.py''' ) ) ) == 0: continue _lowerCamelCase : str = str((Path(A_ ) / folder).relative_to(A_ ) ) _lowerCamelCase : Any = short_path.replace(os.path.sep, '''.''' ) submodules.append(A_ ) for fname in files: if fname == "__init__.py": continue _lowerCamelCase : List[str] = str((Path(A_ ) / fname).relative_to(A_ ) ) _lowerCamelCase : Any = short_path.replace('''.py''', '''''' ).replace(os.path.sep, '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(A_ ) return submodules lowerCAmelCase__ = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', '''models.esm.openfold_utils''', ] def snake_case_ ( ): '''simple docstring''' from transformers.utils import direct_transformers_import _lowerCamelCase : Union[str, Any] = direct_transformers_import(A_ ) _lowerCamelCase : Union[str, Any] = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(A_, '''__init__.py''' ), '''r''' ) as f: _lowerCamelCase : Tuple = f.read() import_structure_keys.update(set(re.findall(R'''import_structure\[\"([^\"]*)\"\]''', A_ ) ) ) _lowerCamelCase : List[Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(A_ ) > 0: _lowerCamelCase : Optional[Any] = '''\n'''.join(F'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' F'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
598
0
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : Any = DiTPipeline _UpperCamelCase : int = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : Dict = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } _UpperCamelCase : Union[str, Any] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Union[str, Any] = False def __a ( self ): torch.manual_seed(0 ) _lowercase : str = TransformeraDModel( sample_size=1_6 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_lowerCAmelCase , activation_fn='gelu-approximate' , num_embeds_ada_norm=1_0_0_0 , norm_type='ada_norm_zero' , norm_elementwise_affine=_lowerCAmelCase , ) _lowercase : int = AutoencoderKL() _lowercase : List[str] = DDIMScheduler() _lowercase : Optional[int] = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def __a ( self , _lowerCAmelCase , _lowerCAmelCase=0 ): if str(_lowerCAmelCase ).startswith('mps' ): _lowercase : List[str] = torch.manual_seed(_lowerCAmelCase ) else: _lowercase : Any = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) _lowercase : Union[str, Any] = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def __a ( self ): _lowercase : Dict = 'cpu' _lowercase : List[Any] = self.get_dummy_components() _lowercase : List[str] = self.pipeline_class(**_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowercase : Union[str, Any] = self.get_dummy_inputs(_lowerCAmelCase ) _lowercase : Dict = pipe(**_lowerCAmelCase ).images _lowercase : List[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 1_6, 1_6, 3) ) _lowercase : Optional[int] = np.array([0.29_46, 0.66_01, 0.43_29, 0.32_96, 0.41_44, 0.53_19, 0.72_73, 0.50_13, 0.44_57] ) _lowercase : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCAmelCase , 1E-3 ) def __a ( self ): self._test_inference_batch_single_identical(relax_max_difference=_lowerCAmelCase , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __a ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self ): _lowercase : List[Any] = torch.manual_seed(0 ) _lowercase : Optional[Any] = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) _lowercase : List[Any] = ['vase', 'umbrella', 'white shark', 'white wolf'] _lowercase : List[str] = pipe.get_label_ids(_lowerCAmelCase ) _lowercase : Tuple = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=4_0 , output_type='np' ).images for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = load_numpy( F"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1E-2 def __a ( self ): _lowercase : str = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) _lowercase : int = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) _lowercase : Optional[Any] = ['vase', 'umbrella'] _lowercase : List[Any] = pipe.get_label_ids(_lowerCAmelCase ) _lowercase : List[str] = torch.manual_seed(0 ) _lowercase : List[Any] = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=2_5 , output_type='np' ).images for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' F"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1E-1
66
'''simple docstring''' import requests from bsa import BeautifulSoup def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: snake_case__ : List[Any] = BeautifulSoup(requests.get(__SCREAMING_SNAKE_CASE , params=__SCREAMING_SNAKE_CASE ).content , 'html.parser' ) snake_case__ : Optional[int] = soup.find('div' , attrs={'class': 'gs_ri'} ) snake_case__ : Dict = div.find('div' , attrs={'class': 'gs_fl'} ).find_all('a' ) return anchors[2].get_text() if __name__ == "__main__": A_ = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
270
0
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 UpperCamelCase = get_tests_dir("""fixtures/dummy-config.json""") class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->Tuple: '''simple docstring''' A_ : str = 0 def _snake_case ( self )->int: '''simple docstring''' self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('''transformers.models.auto''' ) ) def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ : Union[str, Any] = AutoConfig.from_pretrained('''bert-base-uncased''' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : Tuple = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Tuple: '''simple docstring''' A_ : str = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : str = AutoConfig.for_model('''roberta''' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. A_ : str = os.path.join(_SCREAMING_SNAKE_CASE , '''fake-roberta''' ) os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , '''config.json''' ) , '''w''' ) as f: f.write(json.dumps({} ) ) A_ : Tuple = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertEqual(type(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Any: '''simple docstring''' try: AutoConfig.register('''custom''' , _SCREAMING_SNAKE_CASE ) # Wrong model type will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): AutoConfig.register('''model''' , _SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): AutoConfig.register('''bert''' , _SCREAMING_SNAKE_CASE ) # Now that the config is registered, it can be used as any other config with the auto-API A_ : int = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_SCREAMING_SNAKE_CASE ) A_ : str = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def _snake_case ( self )->Tuple: '''simple docstring''' with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , '''bert-base is not a local folder and is not a valid model identifier''' ): A_ : Any = AutoConfig.from_pretrained('''bert-base''' ) def _snake_case ( self )->List[Any]: '''simple docstring''' with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): A_ : int = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE , revision='''aaaaaa''' ) def _snake_case ( self )->List[Any]: '''simple docstring''' with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , '''hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.''' , ): A_ : int = AutoConfig.from_pretrained('''hf-internal-testing/no-config-test-repo''' ) def _snake_case ( self )->int: '''simple docstring''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ : Dict = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ : str = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=_SCREAMING_SNAKE_CASE ) A_ : str = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_SCREAMING_SNAKE_CASE ) A_ : Tuple = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(reloaded_config.__class__.__name__ , '''NewModelConfig''' ) def _snake_case ( self )->Union[str, Any]: '''simple docstring''' class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = """new-model""" try: AutoConfig.register('''new-model''' , _SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local A_ : Union[str, Any] = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''' ) # If remote code is disabled, we load the local one. A_ : Tuple = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''' ) # If remote is enabled, we load from the Hub A_ : List[Any] = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
716
UpperCamelCase = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ UpperCamelCase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] UpperCamelCase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
152
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version snake_case : Tuple = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-classification/requirements.txt""") snake_case : List[str] = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) snake_case : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def A ( __snake_case: str ) -> Tuple: """simple docstring""" with open(__snake_case , 'rb' ) as f: __magic_name__ = Image.open(__snake_case ) return im.convert('RGB' ) @dataclass class UpperCamelCase__ : """simple docstring""" __UpperCAmelCase = field( default=a_ , metadata={ """help""": """Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).""" } , ) __UpperCAmelCase = field( default=a_ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""}) __UpperCAmelCase = field(default=a_ , metadata={"""help""": """A folder containing the training data."""}) __UpperCAmelCase = field(default=a_ , metadata={"""help""": """A folder containing the validation data."""}) __UpperCAmelCase = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""}) __UpperCAmelCase = field( default=a_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __UpperCAmelCase = field( default=a_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def a__ ( self : Tuple ): '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( 'You must specify either a dataset name from the hub or a train and/or validation directory.' ) @dataclass class UpperCamelCase__ : """simple docstring""" __UpperCAmelCase = field( default="""google/vit-base-patch16-224-in21k""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , ) __UpperCAmelCase = field( default=a_ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(a_)} , ) __UpperCAmelCase = field( default=a_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""}) __UpperCAmelCase = field( default=a_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""}) __UpperCAmelCase = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __UpperCAmelCase = field(default=a_ , metadata={"""help""": """Name or path of preprocessor config."""}) __UpperCAmelCase = field( default=a_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) __UpperCAmelCase = field( default=a_ , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def A ( __snake_case: Dict ) -> Any: """simple docstring""" __magic_name__ = torch.stack([example['pixel_values'] for example in examples] ) __magic_name__ = torch.tensor([example['labels'] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def A ( ) -> List[str]: """simple docstring""" __magic_name__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __magic_name__ , __magic_name__ , __magic_name__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __magic_name__ , __magic_name__ , __magic_name__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_image_classification' , __snake_case , __snake_case ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __magic_name__ = training_args.get_process_log_level() logger.setLevel(__snake_case ) transformers.utils.logging.set_verbosity(__snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __magic_name__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __magic_name__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: __magic_name__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='image-classification' , use_auth_token=True if model_args.use_auth_token else None , ) else: __magic_name__ = {} if data_args.train_dir is not None: __magic_name__ = os.path.join(data_args.train_dir , '**' ) if data_args.validation_dir is not None: __magic_name__ = os.path.join(data_args.validation_dir , '**' ) __magic_name__ = load_dataset( 'imagefolder' , data_files=__snake_case , cache_dir=model_args.cache_dir , task='image-classification' , ) # If we don't have a validation split, split off a percentage of train as validation. __magic_name__ = None if 'validation' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __snake_case ) and data_args.train_val_split > 0.0: __magic_name__ = dataset['train'].train_test_split(data_args.train_val_split ) __magic_name__ = split['train'] __magic_name__ = split['test'] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. __magic_name__ = dataset['train'].features['labels'].names __magic_name__ , __magic_name__ = {}, {} for i, label in enumerate(__snake_case ): __magic_name__ = str(__snake_case ) __magic_name__ = label # Load the accuracy metric from the datasets package __magic_name__ = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__snake_case: str ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) __magic_name__ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__snake_case ) , labelaid=__snake_case , idalabel=__snake_case , finetuning_task='image-classification' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __magic_name__ = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) __magic_name__ = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: __magic_name__ = image_processor.size['shortest_edge'] else: __magic_name__ = (image_processor.size['height'], image_processor.size['width']) __magic_name__ = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) __magic_name__ = Compose( [ RandomResizedCrop(__snake_case ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) __magic_name__ = Compose( [ Resize(__snake_case ), CenterCrop(__snake_case ), ToTensor(), normalize, ] ) def train_transforms(__snake_case: str ): __magic_name__ = [ _train_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['image'] ] return example_batch def val_transforms(__snake_case: List[Any] ): __magic_name__ = [_val_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['image']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: __magic_name__ = ( dataset['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(__snake_case ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: __magic_name__ = ( dataset['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(__snake_case ) # Initalize our trainer __magic_name__ = Trainer( model=__snake_case , args=__snake_case , train_dataset=dataset['train'] if training_args.do_train else None , eval_dataset=dataset['validation'] if training_args.do_eval else None , compute_metrics=__snake_case , tokenizer=__snake_case , data_collator=__snake_case , ) # Training if training_args.do_train: __magic_name__ = None if training_args.resume_from_checkpoint is not None: __magic_name__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: __magic_name__ = last_checkpoint __magic_name__ = trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __magic_name__ = trainer.evaluate() trainer.log_metrics('eval' , __snake_case ) trainer.save_metrics('eval' , __snake_case ) # Write model card and (optionally) push to hub __magic_name__ = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'image-classification', 'dataset': data_args.dataset_name, 'tags': ['image-classification', 'vision'], } if training_args.push_to_hub: trainer.push_to_hub(**__snake_case ) else: trainer.create_model_card(**__snake_case ) if __name__ == "__main__": main()
545
"""simple docstring""" from maths.prime_check import is_prime def A ( __snake_case: int ) -> int: """simple docstring""" if not isinstance(__snake_case , __snake_case ): __magic_name__ = F"""Input value of [number={number}] must be an integer""" raise TypeError(__snake_case ) if is_prime(__snake_case ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
545
1
def SCREAMING_SNAKE_CASE ( snake_case_ : str ): return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") ) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : Tuple = credit_card_number snake_case__ : int = 0 snake_case__ : Optional[Any] = len(snake_case_ ) - 2 for i in range(snake_case_ , -1 , -2 ): # double the value of every second digit snake_case__ : str = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 snake_case__ : Union[str, Any] = cc_number[:i] + str(snake_case_ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(snake_case_ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : List[Any] = F'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(F'''{error_message} it has nonnumerical characters.''' ) return False if not 13 <= len(snake_case_ ) <= 16: print(F'''{error_message} of its length.''' ) return False if not validate_initial_digits(snake_case_ ): print(F'''{error_message} of its first two digits.''' ) return False if not luhn_validation(snake_case_ ): print(F'''{error_message} it fails the Luhn check.''' ) return False print(F'''{credit_card_number} is a valid credit card number.''' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
703
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowerCamelCase : Dict = abspath(join(dirname(dirname(__file__)), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : Any ): from diffusers.utils.testing_utils import pytest_terminal_summary_main snake_case__ : Optional[int] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
25
0