code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import qiskit def __A ( UpperCAmelCase ,UpperCAmelCase ) -> Dict: '''simple docstring''' _UpperCamelCase : List[Any] = qiskit.Aer.get_backend("aer_simulator" ) _UpperCamelCase : Optional[Any] = qiskit.QuantumCircuit(4 ,2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 ,2 ) qc_ha.cx(1 ,2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 ,1 ,3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 ,0 ) # extract XOR value qc_ha.measure(3 ,1 ) # extract AND value # Execute the circuit on the qasm simulator _UpperCamelCase : Tuple = qiskit.execute(_snake_case ,_snake_case ,shots=1_0_0_0 ) # Return the histogram data of the results of the experiment return job.result().get_counts(_snake_case ) if __name__ == "__main__": lowerCAmelCase_ : str = half_adder(1, 1) print(f"""Half Adder Output Qubit Counts: {counts}""")
435
"""simple docstring""" import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase__ : Dict = {'vocab_file': 'spiece.model'} UpperCAmelCase__ : Tuple = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), } } UpperCAmelCase__ : Optional[int] = { 'google/bigbird-roberta-base': 4_0_9_6, 'google/bigbird-roberta-large': 4_0_9_6, 'google/bigbird-base-trivia-itc': 4_0_9_6, } class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Optional[int] = VOCAB_FILES_NAMES __UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : List[str] = ['''input_ids''', '''attention_mask'''] __UpperCamelCase : List[int] = [] def __init__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__="[SEP]" , SCREAMING_SNAKE_CASE__="[MASK]" , SCREAMING_SNAKE_CASE__="[CLS]" , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else bos_token SCREAMING_SNAKE_CASE__ : Dict = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else eos_token SCREAMING_SNAKE_CASE__ : Tuple = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else unk_token SCREAMING_SNAKE_CASE__ : List[str] = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else pad_token SCREAMING_SNAKE_CASE__ : Optional[Any] = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else cls_token SCREAMING_SNAKE_CASE__ : int = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE__ : List[Any] = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token SCREAMING_SNAKE_CASE__ : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) SCREAMING_SNAKE_CASE__ : List[Any] = vocab_file SCREAMING_SNAKE_CASE__ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE__ ) @property def __magic_name__ (self ) -> Tuple: """simple docstring""" return self.sp_model.get_piece_size() def __magic_name__ (self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.__dict__.copy() SCREAMING_SNAKE_CASE__ : Tuple = None return state def __setstate__(self , SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): SCREAMING_SNAKE_CASE__ : Optional[Any] = {} SCREAMING_SNAKE_CASE__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" return self.sp_model.piece_to_id(SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__ ) return token def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = [] SCREAMING_SNAKE_CASE__ : List[str] = """""" SCREAMING_SNAKE_CASE__ : Any = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) + token SCREAMING_SNAKE_CASE__ : Union[str, Any] = True SCREAMING_SNAKE_CASE__ : Optional[Any] = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) return out_string.strip() def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = True , **SCREAMING_SNAKE_CASE__ , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = kwargs.pop("""use_source_tokenizer""" , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : str = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] sub_texts.append(SCREAMING_SNAKE_CASE__ ) else: current_sub_text.append(SCREAMING_SNAKE_CASE__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(SCREAMING_SNAKE_CASE__ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: SCREAMING_SNAKE_CASE__ : Optional[Any] = re.sub(r""" (\[(MASK|SEP)\])""" , r"""\1""" , """ """.join(SCREAMING_SNAKE_CASE__ ) ) else: SCREAMING_SNAKE_CASE__ : Any = """""".join(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.clean_up_tokenization(SCREAMING_SNAKE_CASE__ ) return clean_text else: return text def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , """wb""" ) as fi: SCREAMING_SNAKE_CASE__ : Optional[int] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE__ : Optional[Any] = [self.cls_token_id] SCREAMING_SNAKE_CASE__ : Dict = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = [self.sep_token_id] SCREAMING_SNAKE_CASE__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
223
0
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "cache" _lowerCamelCase : List[str] = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowerCamelCase : str = TextDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_text_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : int = tmp_path / "cache" _lowerCamelCase : Tuple = {"text": "string"} _lowerCamelCase : Optional[Any] = features.copy() if features else default_expected_features _lowerCamelCase : List[Any] = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) _lowerCamelCase : Any = TextDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_text_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Union[str, Any] = tmp_path / "cache" _lowerCamelCase : List[Any] = {"text": "string"} _lowerCamelCase : Dict = TextDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , split=_lowerCAmelCase ).read() _check_text_dataset(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] ): """simple docstring""" if issubclass(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : Dict = text_path elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase : int = [text_path] _lowerCamelCase : List[Any] = tmp_path / "cache" _lowerCamelCase : Optional[int] = {"text": "string"} _lowerCamelCase : Union[str, Any] = TextDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_text_dataset(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : List[Any]=("train",) ): """simple docstring""" assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) for split in splits: _lowerCamelCase : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : Optional[int] = tmp_path / "cache" _lowerCamelCase : Dict = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowerCamelCase : Dict = TextDatasetReader({"train": text_path} , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_text_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : List[Any] = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" _lowerCamelCase : Optional[int] = {"text": "string"} _lowerCamelCase : Optional[int] = features.copy() if features else default_expected_features _lowerCamelCase : str = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) _lowerCamelCase : Tuple = TextDatasetReader({"train": text_path} , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_text_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" if split: _lowerCamelCase : Tuple = {split: text_path} else: _lowerCamelCase : List[str] = "train" _lowerCamelCase : List[str] = {"train": text_path, "test": text_path} _lowerCamelCase : str = tmp_path / "cache" _lowerCamelCase : int = {"text": "string"} _lowerCamelCase : str = TextDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_text_datasetdict(_lowerCAmelCase , _lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
703
'''simple docstring''' import random from typing import Any def A_ ( _lowerCAmelCase : list ): """simple docstring""" for _ in range(len(_lowerCAmelCase ) ): _lowerCamelCase : Any = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase : List[str] = random.randint(0 , len(_lowerCAmelCase ) - 1 ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = data[b], data[a] return data if __name__ == "__main__": UpperCAmelCase_ : Any = [0, 1, 2, 3, 4, 5, 6, 7] UpperCAmelCase_ : Dict = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
11
0
def lowercase ( __A : int ) -> bool: '''simple docstring''' return str(__A ) == str(__A )[::-1] def lowercase ( __A : int ) -> int: '''simple docstring''' return int(__A ) + int(str(__A )[::-1] ) def lowercase ( __A : int = 1_0000 ) -> int: '''simple docstring''' snake_case : str = [] for num in range(1 , __A ): snake_case : Union[str, Any] = 0 snake_case : str = num while iterations < 50: snake_case : int = sum_reverse(__A ) iterations += 1 if is_palindrome(__A ): break else: lychrel_nums.append(__A ) return len(__A ) if __name__ == "__main__": print(f'''{solution() = }''')
36
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(""".""") def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( """`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got """ F'''{test_file} instead.''' ) UpperCAmelCase = components[-1] if not test_fn.endswith("""py""" ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith("""test_modeling_""" ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) UpperCAmelCase = components[:-1] + [test_fn.replace(""".py""" , """""" )] UpperCAmelCase = """.""".join(_snake_case ) return test_module_path def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = get_module_path(_snake_case ) UpperCAmelCase = importlib.import_module(_snake_case ) return test_module def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = get_test_module(_snake_case ) for attr in dir(_snake_case ): if attr.endswith("""ModelTester""" ): tester_classes.append(getattr(_snake_case , _snake_case ) ) # sort with class names return sorted(_snake_case , key=lambda _snake_case : x.__name__ ) def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = get_test_module(_snake_case ) for attr in dir(_snake_case ): UpperCAmelCase = getattr(_snake_case , _snake_case ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). UpperCAmelCase = getattr(_snake_case , """all_model_classes""" , [] ) if len(_snake_case ) > 0: test_classes.append(_snake_case ) # sort with class names return sorted(_snake_case , key=lambda _snake_case : x.__name__ ) def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = get_test_classes(_snake_case ) UpperCAmelCase = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(_snake_case , key=lambda _snake_case : x.__name__ ) def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = test_class() if hasattr(_snake_case , """setUp""" ): test.setUp() UpperCAmelCase = None if hasattr(_snake_case , """model_tester""" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: UpperCAmelCase = test.model_tester.__class__ return model_tester def _a ( _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = get_test_classes(_snake_case ) UpperCAmelCase = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(_snake_case ) # sort with class names return sorted(_snake_case , key=lambda _snake_case : x.__name__ ) def _a ( _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = get_test_classes_for_model(_snake_case , _snake_case ) UpperCAmelCase = [] for test_class in test_classes: UpperCAmelCase = get_model_tester_from_test_class(_snake_case ) if tester_class is not None: tester_classes.append(_snake_case ) # sort with class names return sorted(_snake_case , key=lambda _snake_case : x.__name__ ) def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = get_test_classes(_snake_case ) UpperCAmelCase = {test_class: get_model_tester_from_test_class(_snake_case ) for test_class in test_classes} return test_tester_mapping def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = get_model_classes(_snake_case ) UpperCAmelCase = { model_class: get_test_classes_for_model(_snake_case , _snake_case ) for model_class in model_classes } return model_test_mapping def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = get_model_classes(_snake_case ) UpperCAmelCase = { model_class: get_tester_classes_for_model(_snake_case , _snake_case ) for model_class in model_classes } return model_to_tester_mapping def _a ( _snake_case ): """simple docstring""" if isinstance(_snake_case , _snake_case ): return o elif isinstance(_snake_case , _snake_case ): return o.__name__ elif isinstance(_snake_case , (list, tuple) ): return [to_json(_snake_case ) for x in o] elif isinstance(_snake_case , _snake_case ): return {to_json(_snake_case ): to_json(_snake_case ) for k, v in o.items()} else: return o
341
0
'''simple docstring''' from __future__ import annotations from random import random class UpperCamelCase__: """simple docstring""" def __init__( self : Tuple , snake_case__ : int = None ): """simple docstring""" A =value A =random() A =None A =None def __repr__( self : List[str] ): """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return f'''\'{self.value}: {self.prior:.5}\'''' else: return pformat( {f'''{self.value}: {self.prior:.5}''': (self.left, self.right)} , indent=1 ) def __str__( self : Optional[int] ): """simple docstring""" A =str(self.value ) + " " A =str(self.left or "" ) A =str(self.right or "" ) return value + left + right def UpperCamelCase_ ( a_ , a_ ) ->tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: A =split(root.left , __snake_case ) return left, root else: A =split(root.right , __snake_case ) return root, right def UpperCamelCase_ ( a_ , a_ ) ->Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: A =merge(left.right , __snake_case ) return left else: A =merge(__snake_case , right.left ) return right def UpperCamelCase_ ( a_ , a_ ) ->Node | None: A =Node(__snake_case ) A =split(__snake_case , __snake_case ) return merge(merge(__snake_case , __snake_case ) , __snake_case ) def UpperCamelCase_ ( a_ , a_ ) ->Node | None: A =split(__snake_case , value - 1 ) A =split(__snake_case , __snake_case ) return merge(__snake_case , __snake_case ) def UpperCamelCase_ ( a_ ) ->None: if not root: # None return else: inorder(root.left ) print(root.value , end="," ) inorder(root.right ) def UpperCamelCase_ ( a_ , a_ ) ->Node | None: for arg in args.split(): if arg[0] == "+": A =insert(__snake_case , int(arg[1:] ) ) elif arg[0] == "-": A =erase(__snake_case , int(arg[1:] ) ) else: print("Unknown command" ) return root def UpperCamelCase_ ( ) ->None: A =None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. " ) A =input() while args != "q": A =interact_treap(__snake_case , __snake_case ) print(__snake_case ) A =input() print("good by!" ) if __name__ == "__main__": import doctest doctest.testmod() main()
713
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = "Wav2Vec2FeatureExtractor" _A = "AutoTokenizer" def __init__( self : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] ): """simple docstring""" super().__init__(snake_case__ , snake_case__ ) A =self.feature_extractor A =False @classmethod def _a ( cls : List[str] , snake_case__ : Union[str, Any] , **snake_case__ : Dict ): """simple docstring""" try: return super().from_pretrained(snake_case__ , **snake_case__ ) except OSError: warnings.warn( f'''Loading a tokenizer inside {cls.__name__} from a config that does not''' " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " , snake_case__ , ) A =WavaVecaFeatureExtractor.from_pretrained(snake_case__ , **snake_case__ ) A =WavaVecaCTCTokenizer.from_pretrained(snake_case__ , **snake_case__ ) return cls(feature_extractor=snake_case__ , tokenizer=snake_case__ ) def __call__( self : Optional[Any] , *snake_case__ : Union[str, Any] , **snake_case__ : Optional[int] ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*snake_case__ , **snake_case__ ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) A =kwargs.pop("raw_speech" ) else: A =kwargs.pop("audio" , snake_case__ ) A =kwargs.pop("sampling_rate" , snake_case__ ) A =kwargs.pop("text" , snake_case__ ) if len(snake_case__ ) > 0: A =args[0] A =args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: A =self.feature_extractor(snake_case__ , *snake_case__ , sampling_rate=snake_case__ , **snake_case__ ) if text is not None: A =self.tokenizer(snake_case__ , **snake_case__ ) if text is None: return inputs elif audio is None: return encodings else: A =encodings["input_ids"] return inputs def _a ( self : Tuple , *snake_case__ : Union[str, Any] , **snake_case__ : Union[str, Any] ): """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*snake_case__ , **snake_case__ ) A =kwargs.pop("input_features" , snake_case__ ) A =kwargs.pop("labels" , snake_case__ ) if len(snake_case__ ) > 0: A =args[0] A =args[1:] if input_features is not None: A =self.feature_extractor.pad(snake_case__ , *snake_case__ , **snake_case__ ) if labels is not None: A =self.tokenizer.pad(snake_case__ , **snake_case__ ) if labels is None: return input_features elif input_features is None: return labels else: A =labels["input_ids"] return input_features def _a ( self : List[str] , *snake_case__ : Dict , **snake_case__ : int ): """simple docstring""" return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def _a ( self : List[str] , *snake_case__ : Optional[int] , **snake_case__ : List[Any] ): """simple docstring""" return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @contextmanager def _a ( self : int ): """simple docstring""" warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) A =True A =self.tokenizer yield A =self.feature_extractor A =False
689
0
import logging import os from .state import PartialState class lowerCamelCase (logging.LoggerAdapter ): """simple docstring""" @staticmethod def A_ ( _UpperCAmelCase : Optional[int] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def A_ ( self : Optional[Any], _UpperCAmelCase : Dict, _UpperCAmelCase : str, *_UpperCAmelCase : Union[str, Any], **_UpperCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) SCREAMING_SNAKE_CASE__ : List[Any] = kwargs.pop("main_process_only", A_ ) SCREAMING_SNAKE_CASE__ : int = kwargs.pop("in_order", A_ ) if self.isEnabledFor(A_ ): if self._should_log(A_ ): SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Optional[Any] = self.process(A_, A_ ) self.logger.log(A_, A_, *A_, **A_ ) elif in_order: SCREAMING_SNAKE_CASE__ : Optional[Any] = PartialState() for i in range(state.num_processes ): if i == state.process_index: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Dict = self.process(A_, A_ ) self.logger.log(A_, A_, *A_, **A_ ) state.wait_for_everyone() def _a ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str = None ) -> Union[str, Any]: '''simple docstring''' if log_level is None: SCREAMING_SNAKE_CASE__ : Optional[Any] = os.environ.get("ACCELERATE_LOG_LEVEL" , _snake_case ) SCREAMING_SNAKE_CASE__ : Dict = logging.getLogger(_snake_case ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_snake_case , {} )
663
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _A = logging.getLogger(__name__) _A = "pytorch_model.bin" @dataclasses.dataclass class __UpperCAmelCase : """simple docstring""" _snake_case : str = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) _snake_case : Optional[str] = dataclasses.field( default=snake_case__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class __UpperCAmelCase : """simple docstring""" _snake_case : str = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) _snake_case : str = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) _snake_case : Optional[str] = dataclasses.field( default=snake_case__ , metadata={'help': 'A csv or a json file containing the validation data.'} ) _snake_case : Optional[str] = dataclasses.field( default=snake_case__ , metadata={'help': 'The name of the task to train on.'} , ) _snake_case : Optional[List[str]] = dataclasses.field( default=snake_case__ , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class __UpperCAmelCase : """simple docstring""" _snake_case : str = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) _snake_case : Optional[str] = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) _snake_case : Optional[str] = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } , ) _snake_case : Optional[int] = dataclasses.field( default=1_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) _snake_case : Optional[float] = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) _snake_case : Optional[bool] = dataclasses.field( default=snake_case__ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) _snake_case : Optional[bool] = dataclasses.field( default=snake_case__ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) _snake_case : Optional[bool] = dataclasses.field( default=snake_case__ , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) _snake_case : Optional[float] = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) _snake_case : Optional[int] = dataclasses.field( default=1_0_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) _snake_case : Optional[int] = dataclasses.field( default=snake_case__ , metadata={'help': 'Random seed for initialization.'} , ) def lowercase (_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ) -> str: '''simple docstring''' __UpperCamelCase = datasets.concatenate_datasets([infer_input, infer_output] ,axis=1 ) if args.do_filter_by_confidence: __UpperCamelCase = dataset.filter(lambda _snake_case : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 __UpperCamelCase = int(eval_result * len(_snake_case ) ) print(_snake_case ) __UpperCamelCase = dataset.sort("probability" ,reverse=_snake_case ) __UpperCamelCase = dataset.select(range(_snake_case ) ) __UpperCamelCase = dataset.remove_columns(["label", "probability"] ) __UpperCamelCase = dataset.rename_column("prediction" ,"label" ) __UpperCamelCase = dataset.map(lambda _snake_case : {"label": idalabel[example["label"]]} ) __UpperCamelCase = dataset.shuffle(seed=args.seed ) __UpperCamelCase = os.path.join(_snake_case ,f"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(_snake_case ,index=_snake_case ) else: dataset.to_json(_snake_case ) def lowercase (_snake_case ,_snake_case ,_snake_case ,_snake_case ,**_snake_case ) -> List[str]: '''simple docstring''' __UpperCamelCase = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" ,datefmt="%m/%d/%Y %H:%M:%S" ,level=logging.INFO ,) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() __UpperCamelCase = STModelArguments(model_name_or_path=_snake_case ) __UpperCamelCase = STDataArguments(train_file=_snake_case ,infer_file=_snake_case ) __UpperCamelCase = STTrainingArguments(output_dir=_snake_case ) __UpperCamelCase = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_snake_case ).items(): setattr(_snake_case ,_snake_case ,_snake_case ) for key, value in kwargs.items(): if hasattr(_snake_case ,_snake_case ): setattr(_snake_case ,_snake_case ,_snake_case ) # Sanity checks __UpperCamelCase = {} __UpperCamelCase = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None __UpperCamelCase = args.train_file __UpperCamelCase = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None __UpperCamelCase = args.eval_file for key in data_files: __UpperCamelCase = data_files[key].split("." )[-1] assert extension in ["csv", "json"], f"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: __UpperCamelCase = extension else: assert extension == args.data_file_extension, f"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), f"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("Creating the initial data directory for self-training..." ) __UpperCamelCase = f"""{args.output_dir}/self-train_iter-{{}}""".format __UpperCamelCase = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir ,exist_ok=_snake_case ) os.makedirs(_snake_case ,exist_ok=_snake_case ) accelerator.wait_for_everyone() __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = 0 __UpperCamelCase = False # Show the progress bar __UpperCamelCase = tqdm(range(args.max_selftrain_iterations ) ,disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 ,int(args.max_selftrain_iterations ) ): __UpperCamelCase = data_dir_format(_snake_case ) assert os.path.exists(_snake_case ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 __UpperCamelCase = os.path.join(_snake_case ,"stage-1" ) __UpperCamelCase = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_snake_case ,_snake_case ): arguments_dict.update({key: value} ) __UpperCamelCase = os.path.join(_snake_case ,"best-checkpoint" ,_snake_case ) if os.path.exists(_snake_case ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." ,_snake_case ,_snake_case ,) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****" ,_snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info("Self-training job completed: iteration: %d, stage: 1." ,_snake_case ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data __UpperCamelCase = os.path.join(_snake_case ,"best-checkpoint" ) __UpperCamelCase = os.path.join(_snake_case ,"stage-2" ) # Update arguments_dict __UpperCamelCase = model_path __UpperCamelCase = data_files["train"] __UpperCamelCase = current_output_dir __UpperCamelCase = os.path.join(_snake_case ,"best-checkpoint" ,_snake_case ) if os.path.exists(_snake_case ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." ,_snake_case ,_snake_case ,) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****" ,_snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info("Self-training job completed: iteration: %d, stage: 2." ,_snake_case ) __UpperCamelCase = iteration __UpperCamelCase = data_dir_format(iteration + 1 ) __UpperCamelCase = AutoConfig.from_pretrained(os.path.join(_snake_case ,"best-checkpoint" ) ) __UpperCamelCase = config.idalabel __UpperCamelCase = os.path.join(_snake_case ,"eval_results_best-checkpoint.json" ) __UpperCamelCase = os.path.join(_snake_case ,"test_results_best-checkpoint.json" ) assert os.path.exists(_snake_case ) with open(_snake_case ,"r" ) as f: __UpperCamelCase = float(json.load(_snake_case )[args.eval_metric] ) __UpperCamelCase = os.path.join(_snake_case ,"infer_output_best-checkpoint.csv" ) assert os.path.exists(_snake_case ) # Loading the dataset from local csv or json files. __UpperCamelCase = load_dataset(args.data_file_extension ,data_files={"data": data_files["infer"]} )["data"] __UpperCamelCase = load_dataset("csv" ,data_files={"data": infer_output_file} )["data"] if accelerator.is_main_process: os.makedirs(_snake_case ,exist_ok=_snake_case ) shutil.copy(_snake_case ,os.path.join(_snake_case ,f"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(_snake_case ): shutil.copy(_snake_case ,os.path.join(_snake_case ,f"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ) accelerator.wait_for_everyone() __UpperCamelCase = os.path.join(_snake_case ,f"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: __UpperCamelCase = eval_result if best_iteration is None: __UpperCamelCase = new_iteration __UpperCamelCase = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: __UpperCamelCase = new_iteration __UpperCamelCase = new_eval_result __UpperCamelCase = 0 else: if new_eval_result == best_eval_result: __UpperCamelCase = new_iteration __UpperCamelCase = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: __UpperCamelCase = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d" ,_snake_case ) logger.info("Best evaluation result: %s = %f" ,args.eval_metric ,_snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case ,f"""eval_results_iter-{iteration}.json""" ) ,os.path.join(_snake_case ,"eval_results_best-iteration.json" ) ,) else: # Assume that the last iteration is the best logger.info("Best iteration: %d" ,args.max_selftrain_iterations - 1 ) logger.info("Best evaluation result: %s = %f" ,args.eval_metric ,_snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case ,f"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) ,os.path.join(_snake_case ,"eval_results_best-iteration.json" ) ,)
505
0
'''simple docstring''' import math def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(UpperCAmelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="""malus_law""")
718
'''simple docstring''' from random import randint, random def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = 5 , ): lowercase__ : Optional[Any] = [[-1] * number_of_cells] # Create a highway without any car lowercase__ : List[str] = 0 lowercase__ : Optional[Any] = max(UpperCAmelCase , 0 ) while i < number_of_cells: lowercase__ : str = ( randint(0 , UpperCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : str = 0 lowercase__ : Union[str, Any] = highway_now[car_index + 1 :] for cell in range(len(UpperCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(UpperCAmelCase , -1 ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase__ : Union[str, Any] = len(UpperCAmelCase ) # Beforce calculations, the highway is empty lowercase__ : List[Any] = [-1] * number_of_cells for car_index in range(UpperCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed lowercase__ : int = min(highway_now[car_index] + 1 , UpperCAmelCase ) # Number of empty cell before the next car lowercase__ : Dict = get_distance(UpperCAmelCase , UpperCAmelCase ) - 1 # We can't have the car causing an accident lowercase__ : int = min(next_highway[car_index] , UpperCAmelCase ) if random() < probability: # Randomly, a driver will slow down lowercase__ : Any = max(next_highway[car_index] - 1 , 0 ) return next_highway def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase__ : Dict = len(highway[0] ) for i in range(UpperCAmelCase ): lowercase__ : Union[str, Any] = update(highway[i] , UpperCAmelCase , UpperCAmelCase ) lowercase__ : Dict = [-1] * number_of_cells for car_index in range(UpperCAmelCase ): lowercase__ : int = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) lowercase__ : List[str] = (car_index + speed) % number_of_cells # Commit the change of position lowercase__ : Union[str, Any] = speed highway.append(UpperCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
428
0
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class __lowercase (_lowerCamelCase , unittest.TestCase ): """simple docstring""" _UpperCAmelCase = PriorTransformer _UpperCAmelCase = """hidden_states""" @property def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = 4 SCREAMING_SNAKE_CASE_ : Optional[int] = 8 SCREAMING_SNAKE_CASE_ : int = 7 SCREAMING_SNAKE_CASE_ : Dict = floats_tensor((batch_size, embedding_dim) ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = floats_tensor((batch_size, embedding_dim) ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase__ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def UpperCamelCase__ ( self , lowerCAmelCase__=0 ): """simple docstring""" torch.manual_seed(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 4 SCREAMING_SNAKE_CASE_ : List[Any] = 8 SCREAMING_SNAKE_CASE_ : Tuple = 7 SCREAMING_SNAKE_CASE_ : Any = torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase__ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def UpperCamelCase__ ( self ): """simple docstring""" return (4, 8) @property def UpperCamelCase__ ( self ): """simple docstring""" return (4, 8) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = { 'num_attention_heads': 2, 'attention_head_dim': 4, 'num_layers': 2, 'embedding_dim': 8, 'num_embeddings': 7, 'additional_embeddings': 4, } SCREAMING_SNAKE_CASE_ : List[Any] = self.dummy_input return init_dict, inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = PriorTransformer.from_pretrained( 'hf-internal-testing/prior-dummy' , output_loading_info=lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ : Optional[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ : str = ['hidden_states', 'timestep'] self.assertListEqual(arg_names[:2] , lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = PriorTransformer.from_pretrained('hf-internal-testing/prior-dummy' ) SCREAMING_SNAKE_CASE_ : int = model.to(lowerCAmelCase__ ) if hasattr(lowerCAmelCase__ , 'set_default_attn_processor' ): model.set_default_attn_processor() SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_seed_input() with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Dict = model(**lowerCAmelCase__ )[0] SCREAMING_SNAKE_CASE_ : Dict = output[0, :5].flatten().cpu() print(lowerCAmelCase__ ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. SCREAMING_SNAKE_CASE_ : str = torch.tensor([-1.3_436, -0.2_870, 0.7_538, 0.4_368, -0.0_239] ) self.assertTrue(torch_all_close(lowerCAmelCase__ , lowerCAmelCase__ , rtol=1E-2 ) ) @slow class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self , lowerCAmelCase__=1 , lowerCAmelCase__=7_6_8 , lowerCAmelCase__=7_7 , lowerCAmelCase__=0 ): """simple docstring""" torch.manual_seed(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = batch_size SCREAMING_SNAKE_CASE_ : Any = embedding_dim SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_embeddings SCREAMING_SNAKE_CASE_ : int = torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase__ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [1_3, [-0.5_861, 0.1_283, -0.0_931, 0.0_882, 0.4_476, 0.1_329, -0.0_498, 0.0_640]], [3_7, [-0.4_913, 0.0_110, -0.0_483, 0.0_541, 0.4_954, -0.0_170, 0.0_354, 0.1_651]], # fmt: on ] ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = PriorTransformer.from_pretrained('kandinsky-community/kandinsky-2-1-prior' , subfolder='prior' ) model.to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_dummy_seed_input(seed=lowerCAmelCase__ ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : List[Any] = model(**lowerCAmelCase__ )[0] assert list(sample.shape ) == [1, 7_6_8] SCREAMING_SNAKE_CASE_ : Optional[Any] = sample[0, :8].flatten().cpu() print(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor(lowerCAmelCase__ ) assert torch_all_close(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 )
101
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _UpperCamelCase : Optional[Any] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _UpperCamelCase : Optional[int] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _UpperCamelCase : Union[str, Any] = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _UpperCamelCase : int = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _UpperCamelCase : List[str] = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _UpperCamelCase : List[Any] = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def __snake_case ( lowerCAmelCase : int ): __UpperCAmelCase = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , lowerCAmelCase ) return [m.group(0 ) for m in matches] def __snake_case ( ): __UpperCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __UpperCAmelCase = { config.replace('Config' , '' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __UpperCAmelCase = collections.defaultdict(lowerCAmelCase ) __UpperCAmelCase = collections.defaultdict(lowerCAmelCase ) __UpperCAmelCase = collections.defaultdict(lowerCAmelCase ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(lowerCAmelCase ): __UpperCAmelCase = None if _re_tf_models.match(lowerCAmelCase ) is not None: __UpperCAmelCase = tf_models __UpperCAmelCase = _re_tf_models.match(lowerCAmelCase ).groups()[0] elif _re_flax_models.match(lowerCAmelCase ) is not None: __UpperCAmelCase = flax_models __UpperCAmelCase = _re_flax_models.match(lowerCAmelCase ).groups()[0] elif _re_pt_models.match(lowerCAmelCase ) is not None: __UpperCAmelCase = pt_models __UpperCAmelCase = _re_pt_models.match(lowerCAmelCase ).groups()[0] if lookup_dict is not None: while len(lowerCAmelCase ) > 0: if attr_name in model_prefix_to_model_type: __UpperCAmelCase = True break # Try again after removing the last word in the name __UpperCAmelCase = ''.join(camel_case_split(lowerCAmelCase )[:-1] ) __UpperCAmelCase = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) __UpperCAmelCase = list(lowerCAmelCase ) all_models.sort() __UpperCAmelCase = {'model_type': all_models} __UpperCAmelCase = [pt_models[t] for t in all_models] __UpperCAmelCase = [tf_models[t] for t in all_models] __UpperCAmelCase = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __UpperCAmelCase = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __UpperCAmelCase = 'AutoProcessor' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __UpperCAmelCase = 'AutoTokenizer' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __UpperCAmelCase = 'AutoFeatureExtractor' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __UpperCAmelCase = 'AutoTokenizer' __UpperCAmelCase = [processors[t] for t in all_models] return pd.DataFrame(lowerCAmelCase ) def __snake_case ( lowerCAmelCase : Any ): __UpperCAmelCase = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __UpperCAmelCase = [model_mapping, F"""TF_{model_mapping}""", F"""FLAX_{model_mapping}"""] __UpperCAmelCase = [auto_class, F"""TF_{auto_class}""", F"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): # The type of pipeline may not exist in this framework if not hasattr(lowerCAmelCase , lowerCAmelCase ): continue # First extract all model_names __UpperCAmelCase = [] for name in getattr(lowerCAmelCase , lowerCAmelCase ).values(): if isinstance(lowerCAmelCase , lowerCAmelCase ): model_names.append(lowerCAmelCase ) else: model_names.extend(list(lowerCAmelCase ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def __snake_case ( lowerCAmelCase : str , lowerCAmelCase : int ): __UpperCAmelCase = get_frameworks_table() __UpperCAmelCase = Dataset.from_pandas(lowerCAmelCase ) __UpperCAmelCase = hf_hub_download( 'huggingface/transformers-metadata' , 'pipeline_tags.json' , repo_type='dataset' , token=lowerCAmelCase ) __UpperCAmelCase = Dataset.from_json(lowerCAmelCase ) __UpperCAmelCase = { tags_dataset[i]['model_class']: (tags_dataset[i]['pipeline_tag'], tags_dataset[i]['auto_class']) for i in range(len(lowerCAmelCase ) ) } __UpperCAmelCase = update_pipeline_and_auto_class_table(lowerCAmelCase ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __UpperCAmelCase = sorted(table.keys() ) __UpperCAmelCase = pd.DataFrame( { 'model_class': model_classes, 'pipeline_tag': [table[m][0] for m in model_classes], 'auto_class': [table[m][1] for m in model_classes], } ) __UpperCAmelCase = Dataset.from_pandas(lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(lowerCAmelCase , 'frameworks.json' ) ) tags_dataset.to_json(os.path.join(lowerCAmelCase , 'pipeline_tags.json' ) ) if commit_sha is not None: __UpperCAmelCase = ( F"""Update with commit {commit_sha}\n\nSee: """ F"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: __UpperCAmelCase = 'Update' upload_folder( repo_id='huggingface/transformers-metadata' , folder_path=lowerCAmelCase , repo_type='dataset' , token=lowerCAmelCase , commit_message=lowerCAmelCase , ) def __snake_case ( ): __UpperCAmelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __UpperCAmelCase = transformers_module.pipelines.SUPPORTED_TASKS __UpperCAmelCase = [] for key in pipeline_tasks: if key not in in_table: __UpperCAmelCase = pipeline_tasks[key]['pt'] if isinstance(lowerCAmelCase , (list, tuple) ): __UpperCAmelCase = model[0] __UpperCAmelCase = model.__name__ if model not in in_table.values(): missing.append(lowerCAmelCase ) if len(lowerCAmelCase ) > 0: __UpperCAmelCase = ', '.join(lowerCAmelCase ) raise ValueError( 'The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ' F"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": _UpperCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _UpperCamelCase : Optional[Any] = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
396
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Dict = logging.get_logger(__name__) __lowerCamelCase : int = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class A_ (a_ ): """simple docstring""" a__ = '''rwkv''' a__ = {'''max_position_embeddings''': '''context_length'''} def __init__( self :Optional[int] , lowerCAmelCase__ :Any=50_277 , lowerCAmelCase__ :Optional[int]=1_024 , lowerCAmelCase__ :Tuple=4_096 , lowerCAmelCase__ :Optional[int]=32 , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :List[str]=None , lowerCAmelCase__ :List[str]=1E-5 , lowerCAmelCase__ :Any=0 , lowerCAmelCase__ :int=0 , lowerCAmelCase__ :Optional[Any]=6 , lowerCAmelCase__ :List[Any]=False , lowerCAmelCase__ :str=True , **lowerCAmelCase__ :Optional[int] , ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[str] = vocab_size snake_case_ : str = context_length snake_case_ : int = hidden_size snake_case_ : int = num_hidden_layers snake_case_ : Optional[int] = attention_hidden_size if attention_hidden_size is not None else hidden_size snake_case_ : Any = intermediate_size if intermediate_size is not None else 4 * hidden_size snake_case_ : Tuple = layer_norm_epsilon snake_case_ : str = rescale_every snake_case_ : Dict = use_cache snake_case_ : Union[str, Any] = bos_token_id snake_case_ : int = eos_token_id super().__init__( tie_word_embeddings=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
656
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :str ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = torch.nn.Linear(10 , 10 ) snake_case_ : Dict = torch.optim.SGD(model.parameters() , 0.1 ) snake_case_ : Tuple = Accelerator() snake_case_ : Optional[Any] = accelerator.prepare(lowerCAmelCase__ ) try: pickle.loads(pickle.dumps(lowerCAmelCase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
656
1
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: Tuple ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase__ ( self: Dict ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return model @property def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , ) return model @property def lowerCAmelCase__ ( self: Optional[int] ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , ) UpperCAmelCase_ =UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return vqvae, unet @slow def lowerCAmelCase__ ( self: Union[str, Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ ="cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ =Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) UpperCAmelCase_ =DDPMScheduler() UpperCAmelCase_ =AudioDiffusionPipeline(vqvae=_lowerCAmelCase , unet=self.dummy_unet , mel=_lowerCAmelCase , scheduler=_lowerCAmelCase ) UpperCAmelCase_ =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(42 ) UpperCAmelCase_ =pipe(generator=_lowerCAmelCase , steps=4 ) UpperCAmelCase_ =output.audios[0] UpperCAmelCase_ =output.images[0] UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(42 ) UpperCAmelCase_ =pipe(generator=_lowerCAmelCase , steps=4 , return_dict=_lowerCAmelCase ) UpperCAmelCase_ =output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) UpperCAmelCase_ =np.frombuffer(image.tobytes() , dtype="uint8" )[:10] UpperCAmelCase_ =np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10] UpperCAmelCase_ =np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 UpperCAmelCase_ =Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) UpperCAmelCase_ =DDIMScheduler() UpperCAmelCase_ =self.dummy_vqvae_and_unet UpperCAmelCase_ =AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=_lowerCAmelCase , scheduler=_lowerCAmelCase ) UpperCAmelCase_ =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) np.random.seed(0 ) UpperCAmelCase_ =np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(42 ) UpperCAmelCase_ =pipe(raw_audio=_lowerCAmelCase , generator=_lowerCAmelCase , start_step=5 , steps=10 ) UpperCAmelCase_ =output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) UpperCAmelCase_ =np.frombuffer(image.tobytes() , dtype="uint8" )[:10] UpperCAmelCase_ =np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 UpperCAmelCase_ =self.dummy_unet_condition UpperCAmelCase_ =AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=_lowerCAmelCase , mel=_lowerCAmelCase , scheduler=_lowerCAmelCase ) UpperCAmelCase_ =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) np.random.seed(0 ) UpperCAmelCase_ =torch.rand((1, 1, 10) ) UpperCAmelCase_ =pipe(generator=_lowerCAmelCase , encoding=_lowerCAmelCase ) UpperCAmelCase_ =output.images[0] UpperCAmelCase_ =np.frombuffer(image.tobytes() , dtype="uint8" )[:10] UpperCAmelCase_ =np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =torch_device UpperCAmelCase_ =DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) UpperCAmelCase_ =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(42 ) UpperCAmelCase_ =pipe(generator=_lowerCAmelCase ) UpperCAmelCase_ =output.audios[0] UpperCAmelCase_ =output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] UpperCAmelCase_ =np.frombuffer(image.tobytes() , dtype="uint8" )[:10] UpperCAmelCase_ =np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
54
"""simple docstring""" from string import ascii_uppercase _lowerCAmelCase :str = {str(ord(c) - 55): c for c in ascii_uppercase} def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : int ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError('''int() can\'t convert non-string with explicit base''' ) if num < 0: raise ValueError('''parameter must be positive int''' ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError('''\'str\' object cannot be interpreted as an integer''' ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError('''\'float\' object cannot be interpreted as an integer''' ) if base in (0, 1): raise ValueError('''base must be >= 2''' ) if base > 36: raise ValueError('''base must be <= 36''' ) _UpperCAmelCase : Optional[int] = '''''' _UpperCAmelCase : List[Any] = 0 _UpperCAmelCase : Dict = 0 while div != 1: _UpperCAmelCase , _UpperCAmelCase : List[str] = divmod(UpperCamelCase__ , UpperCamelCase__ ) if base >= 11 and 9 < mod < 36: _UpperCAmelCase : Optional[int] = ALPHABET_VALUES[str(UpperCamelCase__ )] else: _UpperCAmelCase : Any = str(UpperCamelCase__ ) new_value += actual_value _UpperCAmelCase : Tuple = num // base _UpperCAmelCase : Union[str, Any] = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(UpperCamelCase__ ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1_000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
506
0
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :List[str] ) -> str: __lowerCAmelCase : Dict = [] for line in lines: __lowerCAmelCase : Optional[int] = re.sub(r"""#.*""" , """""" , SCREAMING_SNAKE_CASE ) # remove comments if line: filtered_lines.append(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = """\n""".join(SCREAMING_SNAKE_CASE ) # Make a hash from all this code __lowerCAmelCase : Dict = full_str.encode("""utf-8""" ) return shaaaa(SCREAMING_SNAKE_CASE ).hexdigest() # get importable module names and hash for caching _UpperCAmelCase = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions _UpperCAmelCase = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _UpperCAmelCase = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name _UpperCAmelCase = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
700
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig _UpperCAmelCase = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring _UpperCAmelCase = 'UperNetConfig' class snake_case_ ( nn.Module ): def __init__( self : List[str] , _snake_case : int , _snake_case : int , _snake_case : Union[int, Tuple[int, int]] , _snake_case : Union[int, Tuple[int, int], str] = 0 , _snake_case : bool = False , _snake_case : Union[int, Tuple[int, int]] = 1 , )->None: '''simple docstring''' super().__init__() __lowerCAmelCase : Tuple = nn.Convad( in_channels=_snake_case , out_channels=_snake_case , kernel_size=_snake_case , padding=_snake_case , bias=_snake_case , dilation=_snake_case , ) __lowerCAmelCase : Any = nn.BatchNormad(_snake_case ) __lowerCAmelCase : Union[str, Any] = nn.ReLU() def UpperCAmelCase__ ( self : Tuple , _snake_case : torch.Tensor )->torch.Tensor: '''simple docstring''' __lowerCAmelCase : List[str] = self.conv(_snake_case ) __lowerCAmelCase : Any = self.batch_norm(_snake_case ) __lowerCAmelCase : List[Any] = self.activation(_snake_case ) return output class snake_case_ ( nn.Module ): def __init__( self : Dict , _snake_case : int , _snake_case : int , _snake_case : int )->None: '''simple docstring''' super().__init__() __lowerCAmelCase : int = [ nn.AdaptiveAvgPoolad(_snake_case ), UperNetConvModule(_snake_case , _snake_case , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(_snake_case ) , _snake_case ) def UpperCAmelCase__ ( self : List[str] , _snake_case : torch.Tensor )->torch.Tensor: '''simple docstring''' __lowerCAmelCase : List[Any] = input for layer in self.layers: __lowerCAmelCase : List[Any] = layer(_snake_case ) return hidden_state class snake_case_ ( nn.Module ): def __init__( self : Union[str, Any] , _snake_case : Tuple[int, ...] , _snake_case : int , _snake_case : int , _snake_case : bool )->None: '''simple docstring''' super().__init__() __lowerCAmelCase : str = pool_scales __lowerCAmelCase : List[Any] = align_corners __lowerCAmelCase : Tuple = in_channels __lowerCAmelCase : Optional[int] = channels __lowerCAmelCase : Optional[int] = [] for i, pool_scale in enumerate(_snake_case ): __lowerCAmelCase : List[str] = UperNetPyramidPoolingBlock(pool_scale=_snake_case , in_channels=_snake_case , channels=_snake_case ) self.blocks.append(_snake_case ) self.add_module(str(_snake_case ) , _snake_case ) def UpperCAmelCase__ ( self : List[Any] , _snake_case : torch.Tensor )->List[torch.Tensor]: '''simple docstring''' __lowerCAmelCase : Any = [] for ppm in self.blocks: __lowerCAmelCase : Dict = ppm(_snake_case ) __lowerCAmelCase : Any = nn.functional.interpolate( _snake_case , size=x.size()[2:] , mode="""bilinear""" , align_corners=self.align_corners ) ppm_outs.append(_snake_case ) return ppm_outs class snake_case_ ( nn.Module ): def __init__( self : Optional[Any] , _snake_case : Optional[int] , _snake_case : int )->Optional[Any]: '''simple docstring''' super().__init__() __lowerCAmelCase : List[Any] = config __lowerCAmelCase : Union[str, Any] = config.pool_scales # e.g. (1, 2, 3, 6) __lowerCAmelCase : str = in_channels __lowerCAmelCase : str = config.hidden_size __lowerCAmelCase : Union[str, Any] = False __lowerCAmelCase : List[str] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module __lowerCAmelCase : Any = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) __lowerCAmelCase : List[Any] = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module __lowerCAmelCase : Any = nn.ModuleList() __lowerCAmelCase : List[Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer __lowerCAmelCase : str = UperNetConvModule(_snake_case , self.channels , kernel_size=1 ) __lowerCAmelCase : Any = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(_snake_case ) self.fpn_convs.append(_snake_case ) __lowerCAmelCase : int = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def UpperCAmelCase__ ( self : Optional[Any] )->Any: '''simple docstring''' self.apply(self._init_weights ) def UpperCAmelCase__ ( self : Any , _snake_case : Optional[Any] )->Union[str, Any]: '''simple docstring''' if isinstance(_snake_case , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase__ ( self : Tuple , _snake_case : int )->List[Any]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = inputs[-1] __lowerCAmelCase : Optional[Any] = [x] psp_outs.extend(self.psp_modules(_snake_case ) ) __lowerCAmelCase : Optional[int] = torch.cat(_snake_case , dim=1 ) __lowerCAmelCase : List[Any] = self.bottleneck(_snake_case ) return output def UpperCAmelCase__ ( self : List[str] , _snake_case : torch.Tensor )->torch.Tensor: '''simple docstring''' __lowerCAmelCase : str = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(_snake_case ) ) # build top-down path __lowerCAmelCase : Union[str, Any] = len(_snake_case ) for i in range(used_backbone_levels - 1 , 0 , -1 ): __lowerCAmelCase : Optional[Any] = laterals[i - 1].shape[2:] __lowerCAmelCase : Dict = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=_snake_case , mode="""bilinear""" , align_corners=self.align_corners ) # build outputs __lowerCAmelCase : Union[str, Any] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): __lowerCAmelCase : Optional[Any] = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="""bilinear""" , align_corners=self.align_corners ) __lowerCAmelCase : Dict = torch.cat(_snake_case , dim=1 ) __lowerCAmelCase : Optional[int] = self.fpn_bottleneck(_snake_case ) __lowerCAmelCase : List[str] = self.classifier(_snake_case ) return output class snake_case_ ( nn.Module ): def __init__( self : Dict , _snake_case : List[Any] , _snake_case : int = 2 , _snake_case : int = 3 , _snake_case : Union[int, Tuple[int, int]] = 1 )->None: '''simple docstring''' super().__init__() __lowerCAmelCase : List[str] = config __lowerCAmelCase : Optional[int] = config.auxiliary_in_channels __lowerCAmelCase : Tuple = config.auxiliary_channels __lowerCAmelCase : Any = config.auxiliary_num_convs __lowerCAmelCase : List[Any] = config.auxiliary_concat_input __lowerCAmelCase : Optional[Any] = in_index __lowerCAmelCase : Union[str, Any] = (kernel_size // 2) * dilation __lowerCAmelCase : List[str] = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=_snake_case , padding=_snake_case , dilation=_snake_case ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=_snake_case , padding=_snake_case , dilation=_snake_case ) ) if self.num_convs == 0: __lowerCAmelCase : Union[str, Any] = nn.Identity() else: __lowerCAmelCase : int = nn.Sequential(*_snake_case ) if self.concat_input: __lowerCAmelCase : Dict = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=_snake_case , padding=kernel_size // 2 ) __lowerCAmelCase : List[str] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def UpperCAmelCase__ ( self : List[Any] )->Tuple: '''simple docstring''' self.apply(self._init_weights ) def UpperCAmelCase__ ( self : Any , _snake_case : Any )->int: '''simple docstring''' if isinstance(_snake_case , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCAmelCase__ ( self : List[Any] , _snake_case : torch.Tensor )->torch.Tensor: '''simple docstring''' __lowerCAmelCase : List[str] = encoder_hidden_states[self.in_index] __lowerCAmelCase : List[str] = self.convs(_snake_case ) if self.concat_input: __lowerCAmelCase : Tuple = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) __lowerCAmelCase : Any = self.classifier(_snake_case ) return output class snake_case_ ( __lowercase ): A_ = UperNetConfig A_ = 'pixel_values' A_ = True def UpperCAmelCase__ ( self : Optional[Any] , _snake_case : List[str] )->Optional[int]: '''simple docstring''' if isinstance(_snake_case , _snake_case ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def UpperCAmelCase__ ( self : Any )->Tuple: '''simple docstring''' self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def UpperCAmelCase__ ( self : Tuple , _snake_case : Union[str, Any] , _snake_case : List[Any]=False )->str: '''simple docstring''' if isinstance(_snake_case , _snake_case ): __lowerCAmelCase : List[Any] = value _UpperCAmelCase = R'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' _UpperCAmelCase = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.' ,__lowercase ,) class snake_case_ ( __lowercase ): def __init__( self : str , _snake_case : Optional[int] )->Union[str, Any]: '''simple docstring''' super().__init__(_snake_case ) __lowerCAmelCase : List[Any] = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) __lowerCAmelCase : Tuple = UperNetHead(_snake_case , in_channels=self.backbone.channels ) __lowerCAmelCase : str = UperNetFCNHead(_snake_case ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("""batch_size, sequence_length""" ) ) @replace_return_docstrings(output_type=_snake_case , config_class=_CONFIG_FOR_DOC ) def UpperCAmelCase__ ( self : Tuple , _snake_case : Optional[torch.Tensor] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[torch.Tensor] = None , _snake_case : Optional[bool] = None , )->Union[tuple, SemanticSegmenterOutput]: '''simple docstring''' __lowerCAmelCase : Dict = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase : Optional[int] = output_attentions if output_attentions is not None else self.config.output_attentions __lowerCAmelCase : Any = self.backbone.forward_with_filtered_kwargs( _snake_case , output_hidden_states=_snake_case , output_attentions=_snake_case ) __lowerCAmelCase : int = outputs.feature_maps __lowerCAmelCase : Union[str, Any] = self.decode_head(_snake_case ) __lowerCAmelCase : str = nn.functional.interpolate(_snake_case , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=_snake_case ) __lowerCAmelCase : int = None if self.auxiliary_head is not None: __lowerCAmelCase : List[Any] = self.auxiliary_head(_snake_case ) __lowerCAmelCase : Tuple = nn.functional.interpolate( _snake_case , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=_snake_case ) __lowerCAmelCase : Dict = None if labels is not None: if self.config.num_labels == 1: raise ValueError("""The number of labels should be greater than one""" ) else: # compute weighted loss __lowerCAmelCase : Dict = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) __lowerCAmelCase : Any = loss_fct(_snake_case , _snake_case ) __lowerCAmelCase : Optional[Any] = loss_fct(_snake_case , _snake_case ) __lowerCAmelCase : Any = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: __lowerCAmelCase : List[Any] = (logits,) + outputs[1:] else: __lowerCAmelCase : Union[str, Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=_snake_case , logits=_snake_case , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
240
0
"""simple docstring""" import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __snake_case = """▁""" __snake_case = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class _lowerCAmelCase ( snake_case_ , unittest.TestCase ): __UpperCAmelCase : Optional[Any] = BertGenerationTokenizer __UpperCAmelCase : List[str] = False __UpperCAmelCase : Tuple = True def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' super().setUp() snake_case : Dict = BertGenerationTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : Any = "<s>" snake_case : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def lowerCamelCase ( self ) -> int: '''simple docstring''' snake_case : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(UpperCamelCase__ ) , 1002 ) def lowerCamelCase ( self ) -> Dict: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' snake_case : List[str] = BertGenerationTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) snake_case : Optional[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(UpperCamelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [285, 46, 10, 170, 382] , ) snake_case : Tuple = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) snake_case : Dict = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) snake_case : Dict = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) @slow def lowerCamelCase ( self ) -> Dict: '''simple docstring''' snake_case : Any = "Hello World!" snake_case : Any = [1_8536, 2260, 101] self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' snake_case : Any = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) snake_case : List[str] = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @require_torch @slow def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence snake_case : Union[str, Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] snake_case : Tuple = " ".join(UpperCamelCase__ ) snake_case : Optional[int] = self.big_tokenizer.encode_plus(UpperCamelCase__ , return_tensors="pt" , return_token_type_ids=UpperCamelCase__ ) snake_case : Dict = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=UpperCamelCase__ ) snake_case : List[Any] = BertGenerationConfig() snake_case : Dict = BertGenerationEncoder(UpperCamelCase__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCamelCase__ ) model(**UpperCamelCase__ ) @slow def lowerCamelCase ( self ) -> Dict: '''simple docstring''' snake_case : Optional[Any] = {"input_ids": [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="google/bert_for_seq_generation_L-24_bbc_encoder" , revision="c817d1fd1be2ffa69431227a1fe320544943d4db" , )
178
"""simple docstring""" import math from collections.abc import Iterator from itertools import takewhile def __lowerCAmelCase ( lowercase : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowerCAmelCase ( ) -> Iterator[int]: """simple docstring""" snake_case : Optional[int] = 2 while True: if is_prime(lowercase ): yield num num += 1 def __lowerCAmelCase ( lowercase : int = 200_0000 ) -> int: """simple docstring""" return sum(takewhile(lambda lowercase : x < n , prime_generator() ) ) if __name__ == "__main__": print(F'''{solution() = }''')
178
1
'''simple docstring''' import math def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __SCREAMING_SNAKE_CASE ( _UpperCamelCase = 1_0001 ): """simple docstring""" try: lowercase_ : List[Any] = int(_UpperCamelCase ) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int." ) from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one." ) lowercase_ : list[int] = [] lowercase_ : Dict = 2 while len(_UpperCamelCase ) < nth: if is_prime(_UpperCamelCase ): primes.append(_UpperCamelCase ) num += 1 else: num += 1 return primes[len(_UpperCamelCase ) - 1] if __name__ == "__main__": print(f"""{solution() = }""")
714
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Dict = 0 lowercase_ : Optional[Any] = len(_UpperCamelCase ) # No of vertices in graph lowercase_ : Union[str, Any] = [0] * n lowercase_ : Optional[int] = [False] * n def dfs(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): lowercase_ : Union[str, Any] = True lowercase_ : Dict = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , id_ ) lowercase_ : str = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge lowercase_ : Optional[int] = min(low[at] , low[to] ) lowercase_ : list[tuple[int, int]] = [] for i in range(_UpperCamelCase ): if not visited[i]: dfs(_UpperCamelCase , -1 , _UpperCamelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
640
0
'''simple docstring''' lowercase__ = { '''a''': '''AAAAA''', '''b''': '''AAAAB''', '''c''': '''AAABA''', '''d''': '''AAABB''', '''e''': '''AABAA''', '''f''': '''AABAB''', '''g''': '''AABBA''', '''h''': '''AABBB''', '''i''': '''ABAAA''', '''j''': '''BBBAA''', '''k''': '''ABAAB''', '''l''': '''ABABA''', '''m''': '''ABABB''', '''n''': '''ABBAA''', '''o''': '''ABBAB''', '''p''': '''ABBBA''', '''q''': '''ABBBB''', '''r''': '''BAAAA''', '''s''': '''BAAAB''', '''t''': '''BAABA''', '''u''': '''BAABB''', '''v''': '''BBBAB''', '''w''': '''BABAA''', '''x''': '''BABAB''', '''y''': '''BABBA''', '''z''': '''BABBB''', ''' ''': ''' ''', } lowercase__ = {value: key for key, value in encode_dict.items()} def __snake_case ( lowercase : str ): snake_case_ = "" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("encode() accepts only letters of the alphabet and spaces" ) return encoded def __snake_case ( lowercase : str ): if set(lowercase ) - {"A", "B", " "} != set(): raise Exception("decode() accepts only 'A', 'B' and spaces" ) snake_case_ = "" for word in coded.split(): while len(lowercase ) != 0: decoded += decode_dict[word[:5]] snake_case_ = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
508
'''simple docstring''' import argparse import math import traceback import dateutil.parser as date_parser import requests def __snake_case ( lowercase : Dict ): snake_case_ = {} snake_case_ = job["started_at"] snake_case_ = job["completed_at"] snake_case_ = date_parser.parse(lowercase ) snake_case_ = date_parser.parse(lowercase ) snake_case_ = round((end_datetime - start_datetime).total_seconds() / 60.0 ) snake_case_ = start snake_case_ = end snake_case_ = duration_in_min return job_info def __snake_case ( lowercase : Tuple , lowercase : Dict=None ): snake_case_ = None if token is not None: snake_case_ = {"Accept": "application/vnd.github+json", "Authorization": f'''Bearer {token}'''} snake_case_ = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' snake_case_ = requests.get(lowercase , headers=lowercase ).json() snake_case_ = {} try: job_time.update({job["name"]: extract_time_from_single_job(lowercase ) for job in result["jobs"]} ) snake_case_ = math.ceil((result["total_count"] - 100) / 100 ) for i in range(lowercase ): snake_case_ = requests.get(url + f'''&page={i + 2}''' , headers=lowercase ).json() job_time.update({job["name"]: extract_time_from_single_job(lowercase ) for job in result["jobs"]} ) return job_time except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') lowercase__ = parser.parse_args() lowercase__ = get_job_time(args.workflow_run_id) lowercase__ = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"""{k}: {v['duration']}""")
508
1
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __A : Tuple = numpy.array([0, 0]) __A : Dict = numpy.array([0.5, 0.8_66_02_54]) __A : Optional[Any] = numpy.array([1, 0]) __A : List[Any] = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def lowerCamelCase_ ( lowercase__ , lowercase__): lowerCamelCase__ = initial_vectors for _ in range(__lowercase): lowerCamelCase__ = iteration_step(__lowercase) return vectors def lowerCamelCase_ ( lowercase__): lowerCamelCase__ = [] for i, start_vector in enumerate(vectors[:-1]): lowerCamelCase__ = vectors[i + 1] new_vectors.append(__lowercase) lowerCamelCase__ = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60)) new_vectors.append(start_vector + difference_vector * 2 / 3) new_vectors.append(vectors[-1]) return new_vectors def lowerCamelCase_ ( lowercase__ , lowercase__): lowerCamelCase__ = numpy.radians(__lowercase) lowerCamelCase__ = numpy.cos(__lowercase), numpy.sin(__lowercase) lowerCamelCase__ = numpy.array(((c, -s), (s, c))) return numpy.dot(__lowercase , __lowercase) def lowerCamelCase_ ( lowercase__): lowerCamelCase__ = plt.gca() axes.set_aspect("equal") # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() lowerCamelCase__ = zip(*__lowercase) plt.plot(__lowercase , __lowercase) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __A : Tuple = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
704
'''simple docstring''' import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): __A : List[Any] = True from torch.cuda.amp import autocast __A : List[Any] = logging.getLogger(__name__) @dataclass class lowercase : '''simple docstring''' lowerCAmelCase__ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCAmelCase__ = field( default=_lowerCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCAmelCase__ = field( default=_lowerCamelCase , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) lowerCAmelCase__ = field( default=_lowerCamelCase , metadata={"help": "Whether to log verbose messages or not."} , ) lowerCAmelCase__ = field( default=2.0 , metadata={"help": "Maximum temperature for gumbel softmax."} ) lowerCAmelCase__ = field( default=0.5 , metadata={"help": "Minimum temperature for gumbel softmax."} ) lowerCAmelCase__ = field( default=0.999995 , metadata={"help": "Decay of gumbel temperature during training."} ) def lowerCamelCase_ ( lowercase__ , lowercase__): logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout)] , ) lowerCamelCase__ = logging.WARNING if model_args.verbose_logging: lowerCamelCase__ = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank): lowerCamelCase__ = logging.INFO logger.setLevel(lowercase__) @dataclass class lowercase : '''simple docstring''' lowerCAmelCase__ = field( default=_lowerCamelCase , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) lowerCAmelCase__ = field( default=_lowerCamelCase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase__ = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) lowerCAmelCase__ = field( default="validation" , metadata={ "help": ( "The name of the validation data set split to use (via the datasets library). Defaults to 'validation'" ) } , ) lowerCAmelCase__ = field( default="file" , metadata={"help": "Column in the dataset that contains speech file path. Defaults to 'file'"} , ) lowerCAmelCase__ = field( default=_lowerCamelCase , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) lowerCAmelCase__ = field( default=1 , metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" } , ) lowerCAmelCase__ = field( default=_lowerCamelCase , metadata={"help": "The number of processes to use for the preprocessing."} , ) lowerCAmelCase__ = field( default=20.0 , metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"} ) @dataclass class lowercase : '''simple docstring''' lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = "longest" lowerCAmelCase__ = None lowerCAmelCase__ = None def __call__( self : Optional[int] , __lowerCamelCase : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: '''simple docstring''' lowerCamelCase__ = self.feature_extractor.pad( __lowerCamelCase , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) lowerCamelCase__ = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1] ) lowerCamelCase__ = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula lowerCamelCase__ = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1 ) ).to( torch.long ) lowerCamelCase__ = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["input_values"].device ) # these two operations makes sure that all values # before the output lengths indices are attended to lowerCamelCase__ = 1 lowerCamelCase__ = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices lowerCamelCase__ = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=__lowerCamelCase , min_masks=2 , ) return batch class lowercase ( _lowerCamelCase ): '''simple docstring''' def __init__( self : str , *__lowerCamelCase : Union[str, Any] , __lowerCamelCase : int=1 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : str=1.0 , **__lowerCamelCase : Optional[Any] ) -> str: '''simple docstring''' super().__init__(*__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ = 0 lowerCamelCase__ = max_gumbel_temp lowerCamelCase__ = min_gumbel_temp lowerCamelCase__ = gumbel_temp_decay def a__ ( self : Tuple , __lowerCamelCase : nn.Module , __lowerCamelCase : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: '''simple docstring''' model.train() lowerCamelCase__ = self._prepare_inputs(__lowerCamelCase ) if self.use_amp: with autocast(): lowerCamelCase__ = self.compute_loss(__lowerCamelCase , __lowerCamelCase ) else: lowerCamelCase__ = self.compute_loss(__lowerCamelCase , __lowerCamelCase ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": lowerCamelCase__ = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": lowerCamelCase__ = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: lowerCamelCase__ = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__lowerCamelCase ).backward() elif self.use_apex: with amp.scale_loss(__lowerCamelCase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__lowerCamelCase ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def lowerCamelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = parser.parse_args_into_dataclasses() configure_logger(lowercase__ , lowercase__) # Downloading and loading a dataset from the hub. lowerCamelCase__ = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" lowerCamelCase__ = DatasetDict() lowerCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}[:{data_args.validation_split_percentage}%]''' , cache_dir=model_args.cache_dir , ) lowerCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}[{data_args.validation_split_percentage}%:]''' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" lowerCamelCase__ = DatasetDict() lowerCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) lowerCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}''' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported lowerCamelCase__ = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=lowercase__) def prepare_dataset(lowercase__): # check that all files have the correct sampling rate lowerCamelCase__ , lowerCamelCase__ = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate) return batch # load audio files into numpy arrays lowerCamelCase__ = datasets.map( lowercase__ , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names) # filter audio files that are too long lowerCamelCase__ = vectorized_datasets.filter( lambda lowercase__: len(data["speech"]) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate)) def normalize(lowercase__): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate) # normalize and transform to `BatchFeatures` lowerCamelCase__ = vectorized_datasets.map( lowercase__ , batched=lowercase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 lowerCamelCase__ = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'") lowerCamelCase__ = WavaVecaForPreTraining(lowercase__) lowerCamelCase__ = DataCollatorForWavaVecaPretraining(model=lowercase__ , feature_extractor=lowercase__) lowerCamelCase__ = WavaVecaPreTrainer( model=lowercase__ , data_collator=lowercase__ , args=lowercase__ , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=lowercase__ , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
187
0
"""simple docstring""" import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def UpperCamelCase ( _A , _A , _A , _A , _A = None , _A = None , _A = None , ) -> Optional[int]: if config_name_or_path is None: lowercase : Optional[int] = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base''' if generator_tokenizer_name_or_path is None: lowercase : Optional[int] = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: lowercase : Dict = question_encoder_name_or_path lowercase : List[str] = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration # Save model. lowercase : Tuple = RagConfig.from_pretrained(_A ) lowercase : Dict = AutoConfig.from_pretrained(_A ) lowercase : Optional[Any] = AutoConfig.from_pretrained(_A ) lowercase : int = gen_config lowercase : Optional[Any] = question_encoder_config lowercase : str = model_class.from_pretrained_question_encoder_generator( _A , _A , config=_A ) rag_model.save_pretrained(_A ) # Sanity check. model_class.from_pretrained(_A ) # Save tokenizers. lowercase : Optional[Any] = AutoTokenizer.from_pretrained(_A ) gen_tokenizer.save_pretrained(dest_dir / """generator_tokenizer/""" ) lowercase : Any = AutoTokenizer.from_pretrained(_A ) question_encoder_tokenizer.save_pretrained(dest_dir / """question_encoder_tokenizer/""" ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_type', choices=['rag_sequence', 'rag_token'], required=True, type=str, help='RAG model type: rag_sequence, rag_token', ) parser.add_argument('--dest', type=str, required=True, help='Path to the output checkpoint directory.') parser.add_argument('--generator_name_or_path', type=str, required=True, help='Generator model identifier') parser.add_argument( '--question_encoder_name_or_path', type=str, required=True, help='Question encoder model identifier' ) parser.add_argument( '--generator_tokenizer_name_or_path', type=str, help='Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``', ) parser.add_argument( '--question_encoder_tokenizer_name_or_path', type=str, help='Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``', ) parser.add_argument( '--config_name_or_path', type=str, help=( 'Identifier of the model config to use, if not provided, resolves to a base config for a given' ' ``model_type``' ), ) _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
264
from __future__ import annotations def _a ( UpperCAmelCase ) -> None: """simple docstring""" create_state_space_tree(UpperCAmelCase , [] , 0 , [0 for i in range(len(UpperCAmelCase ) )] ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> None: """simple docstring""" if index == len(UpperCAmelCase ): print(UpperCAmelCase ) return for i in range(len(UpperCAmelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) lowerCamelCase__ : List[Any] = True create_state_space_tree(UpperCAmelCase , UpperCAmelCase , index + 1 , UpperCAmelCase ) current_sequence.pop() lowerCamelCase__ : str = False _A : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) _A : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
315
0
"""simple docstring""" from copy import deepcopy class SCREAMING_SNAKE_CASE__ : def __init__( self , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None ) -> None: '''simple docstring''' if arr is None and size is not None: UpperCAmelCase : List[Any] = size UpperCAmelCase : List[Any] = [0] * size elif arr is not None: self.init(_SCREAMING_SNAKE_CASE ) else: raise ValueError("""Either arr or size must be specified""" ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' UpperCAmelCase : List[Any] = len(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = deepcopy(_SCREAMING_SNAKE_CASE ) for i in range(1 , self.size ): UpperCAmelCase : Optional[Any] = self.next_(_SCREAMING_SNAKE_CASE ) if j < self.size: self.tree[j] += self.tree[i] def SCREAMING_SNAKE_CASE ( self ) -> list[int]: '''simple docstring''' UpperCAmelCase : Any = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): UpperCAmelCase : int = self.next_(_SCREAMING_SNAKE_CASE ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return index + (index & (-index)) @staticmethod def SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return index - (index & (-index)) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value UpperCAmelCase : Dict = self.next_(_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' self.add(_SCREAMING_SNAKE_CASE , value - self.get(_SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if right == 0: return 0 UpperCAmelCase : List[str] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] UpperCAmelCase : int = self.prev(_SCREAMING_SNAKE_CASE ) return result def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return self.prefix(_SCREAMING_SNAKE_CASE ) - self.prefix(_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return self.query(_SCREAMING_SNAKE_CASE , index + 1 ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' value -= self.tree[0] if value < 0: return -1 UpperCAmelCase : Union[str, Any] = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 UpperCAmelCase : int = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
359
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def _snake_case ( ): UpperCAmelCase : dict[int, int] = {} UpperCAmelCase : str = 2 while True: UpperCAmelCase : List[str] = factor_map.pop(UpperCamelCase , UpperCamelCase ) if factor: UpperCAmelCase : Dict = factor + prime while x in factor_map: x += factor UpperCAmelCase : Tuple = factor else: UpperCAmelCase : Optional[int] = prime yield prime prime += 1 def _snake_case ( UpperCamelCase : float = 1e1_0 ): UpperCAmelCase : Tuple = sieve() UpperCAmelCase : Optional[Any] = 1 while True: UpperCAmelCase : List[str] = next(UpperCamelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(UpperCamelCase ) n += 2 if __name__ == "__main__": print(solution())
359
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase: Optional[Any] ={ "configuration_mobilebert": [ "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertOnnxConfig", ], "tokenization_mobilebert": ["MobileBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: List[Any] =["MobileBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Dict =[ "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Optional[int] =[ "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys lowerCAmelCase: List[Any] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
607
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor A : Optional[Any] = logging.get_logger(__name__) class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , *__a , **__a ): warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
636
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class A__ ( A ): """simple docstring""" _lowercase : Any = '''yolos''' def __init__( self : int , A_ : Optional[Any]=7_6_8 , A_ : Any=1_2 , A_ : List[Any]=1_2 , A_ : Any=3_0_7_2 , A_ : Optional[int]="gelu" , A_ : List[str]=0.0 , A_ : Dict=0.0 , A_ : str=0.02 , A_ : Union[str, Any]=1E-12 , A_ : Optional[Any]=[5_1_2, 8_6_4] , A_ : List[Any]=1_6 , A_ : Dict=3 , A_ : int=True , A_ : Any=1_0_0 , A_ : Tuple=True , A_ : Any=False , A_ : str=1 , A_ : int=5 , A_ : Any=2 , A_ : Optional[int]=5 , A_ : str=2 , A_ : Dict=0.1 , **A_ : Optional[Any] , ): '''simple docstring''' super().__init__(**A_ ) _lowerCAmelCase : Optional[int] = hidden_size _lowerCAmelCase : Optional[Any] = num_hidden_layers _lowerCAmelCase : List[str] = num_attention_heads _lowerCAmelCase : List[Any] = intermediate_size _lowerCAmelCase : int = hidden_act _lowerCAmelCase : Dict = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : str = layer_norm_eps _lowerCAmelCase : Dict = image_size _lowerCAmelCase : int = patch_size _lowerCAmelCase : Dict = num_channels _lowerCAmelCase : Tuple = qkv_bias _lowerCAmelCase : Tuple = num_detection_tokens _lowerCAmelCase : Union[str, Any] = use_mid_position_embeddings _lowerCAmelCase : Optional[int] = auxiliary_loss # Hungarian matcher _lowerCAmelCase : Optional[int] = class_cost _lowerCAmelCase : Tuple = bbox_cost _lowerCAmelCase : str = giou_cost # Loss coefficients _lowerCAmelCase : Tuple = bbox_loss_coefficient _lowerCAmelCase : Dict = giou_loss_coefficient _lowerCAmelCase : Optional[int] = eos_coefficient class A__ ( A ): """simple docstring""" _lowercase : Union[str, Any] = version.parse('''1.11''' ) @property def __magic_name__ ( self : List[str] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __magic_name__ ( self : Optional[int] ): '''simple docstring''' return 1E-4 @property def __magic_name__ ( self : Optional[int] ): '''simple docstring''' return 1_2
503
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = { 'configuration_lxmert': ['LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LxmertConfig'], 'tokenization_lxmert': ['LxmertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['LxmertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'LxmertEncoder', 'LxmertForPreTraining', 'LxmertForQuestionAnswering', 'LxmertModel', 'LxmertPreTrainedModel', 'LxmertVisualFeatureEncoder', 'LxmertXLayer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLxmertForPreTraining', 'TFLxmertMainLayer', 'TFLxmertModel', 'TFLxmertPreTrainedModel', 'TFLxmertVisualFeatureEncoder', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
503
1
'''simple docstring''' from collections import defaultdict class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Tuple , a__ : Optional[int] , a__ : Union[str, Any] ): UpperCAmelCase = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 UpperCAmelCase = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(a__ ) ) ] UpperCAmelCase = defaultdict(a__ ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 UpperCAmelCase = (1 << len(a__ )) - 1 def __snake_case ( self : List[Any] , a__ : Union[str, Any] , a__ : List[str] ): # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement UpperCAmelCase = self.count_ways_until(a__ , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. UpperCAmelCase = total_ways_util return self.dp[mask][task_no] def __snake_case ( self : int , a__ : Optional[Any] ): # Store the list of persons for each task for i in range(len(a__ ) ): for j in task_performed[i]: self.task[j].append(a__ ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": a__ : List[Any] = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. a__ : List[Any] = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
51
'''simple docstring''' from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def lowerCamelCase( ) -> int: A_ = ArgumentParser('Transformers CLI tool' ,usage='transformers-cli <command> [<args>]' ) A_ = parser.add_subparsers(help='transformers-cli command helpers' ) # Register commands ConvertCommand.register_subcommand(SCREAMING_SNAKE_CASE_ ) DownloadCommand.register_subcommand(SCREAMING_SNAKE_CASE_ ) EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE_ ) RunCommand.register_subcommand(SCREAMING_SNAKE_CASE_ ) ServeCommand.register_subcommand(SCREAMING_SNAKE_CASE_ ) UserCommands.register_subcommand(SCREAMING_SNAKE_CASE_ ) AddNewModelCommand.register_subcommand(SCREAMING_SNAKE_CASE_ ) AddNewModelLikeCommand.register_subcommand(SCREAMING_SNAKE_CASE_ ) LfsCommands.register_subcommand(SCREAMING_SNAKE_CASE_ ) PTtoTFCommand.register_subcommand(SCREAMING_SNAKE_CASE_ ) # Let's go A_ = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE_ ,'func' ): parser.print_help() exit(1 ) # Run A_ = args.func(SCREAMING_SNAKE_CASE_ ) service.run() if __name__ == "__main__": main()
366
0
from __future__ import annotations import numpy as np def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = np.shape(a ) if rows != columns: SCREAMING_SNAKE_CASE_ : Optional[int] = ( '\'table\' has to be of square shaped array but got a ' f"{rows}x{columns} array:\n{table}" ) raise ValueError(a ) SCREAMING_SNAKE_CASE_ : List[str] = np.zeros((rows, columns) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.zeros((rows, columns) ) for i in range(a ): for j in range(a ): SCREAMING_SNAKE_CASE_ : Tuple = sum(lower[i][k] * upper[k][j] for k in range(a ) ) if upper[j][j] == 0: raise ArithmeticError('No LU decomposition exists' ) SCREAMING_SNAKE_CASE_ : List[Any] = (table[i][j] - total) / upper[j][j] SCREAMING_SNAKE_CASE_ : Dict = 1 for j in range(a , a ): SCREAMING_SNAKE_CASE_ : Any = sum(lower[i][k] * upper[k][j] for k in range(a ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
353
def A_ ( a , a ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
353
1
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration UpperCAmelCase_ : Tuple = { 'tiny.en': 'https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt', 'tiny': 'https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt', 'base.en': 'https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt', 'base': 'https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt', 'small.en': 'https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt', 'small': 'https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt', 'medium.en': 'https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt', 'medium': 'https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt', 'large': 'https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt', 'large-v2': 'https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt', } def SCREAMING_SNAKE_CASE_ ( __A : Any ) -> Tuple: """simple docstring""" a_ : List[str] = ['layers', 'blocks'] for k in ignore_keys: state_dict.pop(__A , __A ) UpperCAmelCase_ : Tuple = { 'blocks': 'layers', 'mlp.0': 'fc1', 'mlp.2': 'fc2', 'mlp_ln': 'final_layer_norm', '.attn.query': '.self_attn.q_proj', '.attn.key': '.self_attn.k_proj', '.attn.value': '.self_attn.v_proj', '.attn_ln': '.self_attn_layer_norm', '.attn.out': '.self_attn.out_proj', '.cross_attn.query': '.encoder_attn.q_proj', '.cross_attn.key': '.encoder_attn.k_proj', '.cross_attn.value': '.encoder_attn.v_proj', '.cross_attn_ln': '.encoder_attn_layer_norm', '.cross_attn.out': '.encoder_attn.out_proj', 'decoder.ln.': 'decoder.layer_norm.', 'encoder.ln.': 'encoder.layer_norm.', 'token_embedding': 'embed_tokens', 'encoder.positional_embedding': 'encoder.embed_positions.weight', 'decoder.positional_embedding': 'decoder.embed_positions.weight', 'ln_post': 'layer_norm', } def SCREAMING_SNAKE_CASE_ ( __A : List[Any] ) -> Optional[int]: """simple docstring""" a_ : Dict = list(s_dict.keys() ) for key in keys: a_ : Union[str, Any] = key for k, v in WHISPER_MAPPING.items(): if k in key: a_ : List[str] = new_key.replace(__A , __A ) print(F"""{key} -> {new_key}""" ) a_ : Any = s_dict.pop(__A ) return s_dict def SCREAMING_SNAKE_CASE_ ( __A : List[str] ) -> Union[str, Any]: """simple docstring""" a_ , a_ : List[Any] = emb.weight.shape a_ : int = nn.Linear(__A , __A , bias=__A ) a_ : Union[str, Any] = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE_ ( __A : List[Any] , __A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" os.makedirs(__A , exist_ok=__A ) a_ : Optional[int] = os.path.basename(__A ) a_ : List[str] = url.split('/' )[-2] a_ : Optional[int] = os.path.join(__A , __A ) if os.path.exists(__A ) and not os.path.isfile(__A ): raise RuntimeError(F"""{download_target} exists and is not a regular file""" ) if os.path.isfile(__A ): a_ : Optional[Any] = open(__A , 'rb' ).read() if hashlib.shaaaa(__A ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""" ) with urllib.request.urlopen(__A ) as source, open(__A , 'wb' ) as output: with tqdm( total=int(source.info().get('Content-Length' ) ) , ncols=80 , unit='iB' , unit_scale=__A , unit_divisor=10_24 ) as loop: while True: a_ : Union[str, Any] = source.read(81_92 ) if not buffer: break output.write(__A ) loop.update(len(__A ) ) a_ : str = open(__A , 'rb' ).read() if hashlib.shaaaa(__A ).hexdigest() != expected_shaaaa: raise RuntimeError( 'Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.' ) return model_bytes def SCREAMING_SNAKE_CASE_ ( __A : List[Any] , __A : Tuple ) -> List[str]: """simple docstring""" if ".pt" not in checkpoint_path: a_ : int = _download(_MODELS[checkpoint_path] ) else: a_ : Optional[Any] = torch.load(__A , map_location='cpu' ) a_ : Optional[int] = original_checkpoint['dims'] a_ : str = original_checkpoint['model_state_dict'] a_ : Union[str, Any] = state_dict['decoder.token_embedding.weight'] remove_ignore_keys_(__A ) rename_keys(__A ) a_ : int = True a_ : Tuple = state_dict['decoder.layers.0.fc1.weight'].shape[0] a_ : List[str] = WhisperConfig( vocab_size=dimensions['n_vocab'] , encoder_ffn_dim=__A , decoder_ffn_dim=__A , num_mel_bins=dimensions['n_mels'] , d_model=dimensions['n_audio_state'] , max_target_positions=dimensions['n_text_ctx'] , encoder_layers=dimensions['n_audio_layer'] , encoder_attention_heads=dimensions['n_audio_head'] , decoder_layers=dimensions['n_text_layer'] , decoder_attention_heads=dimensions['n_text_state'] , max_source_positions=dimensions['n_audio_ctx'] , ) a_ : Dict = WhisperForConditionalGeneration(__A ) a_ , a_ : Union[str, Any] = model.model.load_state_dict(__A , strict=__A ) if len(__A ) > 0 and not set(__A ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' F""" but all the following weights are missing {missing}""" ) if tie_embeds: a_ : str = make_linear_from_emb(model.model.decoder.embed_tokens ) else: a_ : Optional[int] = proj_out_weights model.save_pretrained(__A ) if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() # # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Patht to the downloaded checkpoints') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
570
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowercase_ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex lowercase_ = 10 lowercase_ = 256 def lowerCAmelCase (__A): """simple docstring""" if len(__A) < MIN_NUM_TOKENS: return None _a = MinHash(num_perm=__A) for token in set(__A): min_hash.update(token.encode()) return min_hash def lowerCAmelCase (__A): """simple docstring""" return {t for t in NON_ALPHA.split(__A) if len(t.strip()) > 0} class __A : '''simple docstring''' def __init__(self , *, A = 0.85 , ) -> Optional[int]: """simple docstring""" _a = duplication_jaccard_threshold _a = NUM_PERM _a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _a = defaultdict(A ) def a__ (self , A , A ) -> None: """simple docstring""" _a = self._index.query(A ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(A , A ) if len(A ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(A ) break else: self._duplicate_clusters[close_duplicates[0]].add(A ) def a__ (self ) -> List[List[Dict]]: """simple docstring""" _a = [] for base, duplicates in self._duplicate_clusters.items(): _a = [base] + list(A ) # reformat the cluster to be a list of dict _a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(A ) return duplicate_clusters def a__ (self , A ) -> None: """simple docstring""" _a = self.get_duplicate_clusters() with open(A , '''w''' ) as f: json.dump(A , A ) def lowerCAmelCase (__A): """simple docstring""" _a , _a = element _a = get_min_hash([t for t in NON_ALPHA.split(data['''content''']) if len(t.strip()) > 0]) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCAmelCase (__A): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__A , max_queue_size=10_000) , chunksize=100 , ): if data is not None: yield data def lowerCAmelCase (__A , __A): """simple docstring""" _a = DuplicationIndex(duplication_jaccard_threshold=__A) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__A)) , max_queue_size=100)): di.add(__A , __A) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCAmelCase (__A , __A): """simple docstring""" _a = get_tokens(__A) _a = get_tokens(__A) return len(tokensa & tokensa) / len(tokensa | tokensa) lowercase_ = None def lowerCAmelCase (__A , __A): """simple docstring""" _a = [] for elementa in cluster: _a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: _a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(__A , __A) >= jaccard_threshold: elementa["copies"] += 1 break else: _a = 1 extremes.append(__A) return extremes def lowerCAmelCase (__A , __A , __A): """simple docstring""" global _shared_dataset _a = dataset _a = [] _a = partial(_find_cluster_extremes_shared , jaccard_threshold=__A) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __A , __A , ) , total=len(__A) , ): extremes_list.append(__A) return extremes_list def lowerCAmelCase (__A , __A = 0.85): """simple docstring""" _a = make_duplicate_clusters(__A , __A) _a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} _a = {} _a = find_extremes(__A , __A , __A) for extremes in extremes_clusters: for element in extremes: _a = element _a = duplicate_indices - set(extreme_dict.keys()) _a = dataset.filter(lambda __A , __A: idx not in remove_indices , with_indices=__A) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _a = element['''base_index'''] in extreme_dict if element["is_extreme"]: _a = extreme_dict[element['''base_index''']]['''copies'''] print(F'''Original dataset size: {len(__A)}''') print(F'''Number of duplicate clusters: {len(__A)}''') print(F'''Files in duplicate cluster: {len(__A)}''') print(F'''Unique files in duplicate cluster: {len(__A)}''') print(F'''Filtered dataset size: {len(__A)}''') return ds_filter, duplicate_clusters
11
0
def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) __lowerCAmelCase = str(bin(__A ) ) binary_number += "0" * shift_amount return binary_number def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) __lowerCAmelCase = str(bin(__A ) )[2:] if shift_amount >= len(__A ): return "0b0" __lowerCAmelCase = binary_number[: len(__A ) - shift_amount] return "0b" + shifted_binary_number def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): if number >= 0: # Get binary representation of positive number __lowerCAmelCase = '''0''' + str(bin(__A ) ).strip("-" )[2:] else: # Get binary (2's complement) representation of negative number __lowerCAmelCase = len(bin(__A )[3:] ) # Find 2's complement of number __lowerCAmelCase = bin(abs(__A ) - (1 << binary_number_length) )[3:] __lowerCAmelCase = ( '''1''' + '''0''' * (binary_number_length - len(__A )) + binary_number ) if shift_amount >= len(__A ): return "0b" + binary_number[0] * len(__A ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__A ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
708
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCamelCase__ = logging.get_logger(__name__) @add_end_docstrings(snake_case__ ) class a__ ( snake_case__ ): def __init__( self , *_A , **_A ): """simple docstring""" super().__init__(*_A , **_A ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def __SCREAMING_SNAKE_CASE( self , _A=None ): """simple docstring""" __lowerCAmelCase = {} if top_k is not None: __lowerCAmelCase = top_k return {}, {}, postprocess_params def __call__( self , _A , **_A ): """simple docstring""" return super().__call__(_A , **_A ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = load_image(_A ) __lowerCAmelCase = self.image_processor(images=_A , return_tensors=self.framework ) return model_inputs def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = self.model(**_A ) return model_outputs def __SCREAMING_SNAKE_CASE( self , _A , _A=5 ): """simple docstring""" if top_k > self.model.config.num_labels: __lowerCAmelCase = self.model.config.num_labels if self.framework == "pt": __lowerCAmelCase = model_outputs.logits.softmax(-1 )[0] __lowerCAmelCase , __lowerCAmelCase = probs.topk(_A ) elif self.framework == "tf": __lowerCAmelCase = stable_softmax(model_outputs.logits , axis=-1 )[0] __lowerCAmelCase = tf.math.top_k(_A , k=_A ) __lowerCAmelCase , __lowerCAmelCase = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __lowerCAmelCase = scores.tolist() __lowerCAmelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_A , _A )]
552
0
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __a : List[str] = logging.getLogger(__name__) @dataclass class __lowercase : '''simple docstring''' SCREAMING_SNAKE_CASE = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) SCREAMING_SNAKE_CASE = field( default=lowercase_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE = field( default="NER" , metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) SCREAMING_SNAKE_CASE = field( default=lowercase_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE = field(default=lowercase_ , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. SCREAMING_SNAKE_CASE = field( default=lowercase_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __lowercase : '''simple docstring''' SCREAMING_SNAKE_CASE = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) SCREAMING_SNAKE_CASE = field( default=lowercase_ , metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} , ) SCREAMING_SNAKE_CASE = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) SCREAMING_SNAKE_CASE = field( default=lowercase_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" __A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __A , __A , __A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __A , __A , __A = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" """ --overwrite_output_dir to overcome.""" ) __A = import_module("""tasks""" ) try: __A = getattr(__lowercase , model_args.task_type ) __A = token_classification_task_clazz() except AttributeError: raise ValueError( f"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , __lowercase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task __A = token_classification_task.get_labels(data_args.labels ) __A = dict(enumerate(__lowercase ) ) __A = len(__lowercase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowercase , idalabel=__lowercase , labelaid={label: i for i, label in enumerate(__lowercase )} , cache_dir=model_args.cache_dir , ) __A = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) __A = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , ) # Get datasets __A = ( TokenClassificationDataset( token_classification_task=__lowercase , data_dir=data_args.data_dir , tokenizer=__lowercase , labels=__lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __A = ( TokenClassificationDataset( token_classification_task=__lowercase , data_dir=data_args.data_dir , tokenizer=__lowercase , labels=__lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(__lowercase : np.ndarray , __lowercase : np.ndarray ) -> Tuple[List[int], List[int]]: __A = np.argmax(__lowercase , axis=2 ) __A , __A = preds.shape __A = [[] for _ in range(__lowercase )] __A = [[] for _ in range(__lowercase )] for i in range(__lowercase ): for j in range(__lowercase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(__lowercase : EvalPrediction ) -> Dict: __A , __A = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(__lowercase , __lowercase ), "precision": precision_score(__lowercase , __lowercase ), "recall": recall_score(__lowercase , __lowercase ), "f1": fa_score(__lowercase , __lowercase ), } # Data collator __A = DataCollatorWithPadding(__lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __A = Trainer( model=__lowercase , args=__lowercase , train_dataset=__lowercase , eval_dataset=__lowercase , compute_metrics=__lowercase , data_collator=__lowercase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __A = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __A = trainer.evaluate() __A = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_process_zero(): with open(__lowercase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , __lowercase , __lowercase ) writer.write("""%s = %s\n""" % (key, value) ) results.update(__lowercase ) # Predict if training_args.do_predict: __A = TokenClassificationDataset( token_classification_task=__lowercase , data_dir=data_args.data_dir , tokenizer=__lowercase , labels=__lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) __A , __A , __A = trainer.predict(__lowercase ) __A , __A = align_predictions(__lowercase , __lowercase ) __A = os.path.join(training_args.output_dir , """test_results.txt""" ) if trainer.is_world_process_zero(): with open(__lowercase , """w""" ) as writer: for key, value in metrics.items(): logger.info(""" %s = %s""" , __lowercase , __lowercase ) writer.write("""%s = %s\n""" % (key, value) ) # Save predictions __A = os.path.join(training_args.output_dir , """test_predictions.txt""" ) if trainer.is_world_process_zero(): with open(__lowercase , """w""" ) as writer: with open(os.path.join(data_args.data_dir , """test.txt""" ) , """r""" ) as f: token_classification_task.write_predictions_to_file(__lowercase , __lowercase , __lowercase ) return results def _SCREAMING_SNAKE_CASE ( __lowercase : Any ) -> Optional[int]: """simple docstring""" main() if __name__ == "__main__": main()
637
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class __lowercase ( lowercase_ ): '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str]=13 , UpperCamelCase_ : int=7 , UpperCamelCase_ : Dict=True , UpperCamelCase_ : int=True , UpperCamelCase_ : str=False , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Union[str, Any]=99 , UpperCamelCase_ : Any=32 , UpperCamelCase_ : Union[str, Any]=5 , UpperCamelCase_ : List[str]=4 , UpperCamelCase_ : Union[str, Any]=64 , UpperCamelCase_ : Any="gelu" , UpperCamelCase_ : str=0.1 , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : int=512 , UpperCamelCase_ : Dict=16 , UpperCamelCase_ : List[str]=2 , UpperCamelCase_ : int=0.02 , UpperCamelCase_ : Dict=3 , UpperCamelCase_ : List[Any]=4 , UpperCamelCase_ : int=None , UpperCamelCase_ : Any=2 , UpperCamelCase_ : Any=2 , UpperCamelCase_ : int=2 , UpperCamelCase_ : Optional[Any]=2 , UpperCamelCase_ : str=4 , UpperCamelCase_ : List[str]=1 , ): """simple docstring""" __A = parent __A = batch_size __A = seq_length __A = is_training __A = use_input_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = num_labels __A = num_choices __A = scope __A = q_groups __A = k_groups __A = v_groups __A = post_attention_groups __A = intermediate_groups __A = output_groups def lowerCAmelCase_ ( self : Dict ): """simple docstring""" __A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.seq_length] ) __A = None __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __A = ids_tensor([self.batch_size] , self.num_choices ) __A = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : Any ): """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def lowerCAmelCase_ ( self : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Dict ): """simple docstring""" __A = SqueezeBertModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model(UpperCamelCase_ , UpperCamelCase_ ) __A = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : List[str] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[int] ): """simple docstring""" __A = SqueezeBertForMaskedLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] ): """simple docstring""" __A = SqueezeBertForQuestionAnswering(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : str , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any ): """simple docstring""" __A = self.num_labels __A = SqueezeBertForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : Any , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : int ): """simple docstring""" __A = self.num_labels __A = SqueezeBertForTokenClassification(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict ): """simple docstring""" __A = self.num_choices __A = SqueezeBertForMultipleChoice(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __A = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self : int ): """simple docstring""" __A = self.prepare_config_and_inputs() ((__A) , (__A) , (__A) , (__A) , (__A) , (__A)) = config_and_inputs __A = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __lowercase ( lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) SCREAMING_SNAKE_CASE = ( { "feature-extraction": SqueezeBertModel, "fill-mask": SqueezeBertForMaskedLM, "question-answering": SqueezeBertForQuestionAnswering, "text-classification": SqueezeBertForSequenceClassification, "token-classification": SqueezeBertForTokenClassification, "zero-shot": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" __A = SqueezeBertModelTester(self ) __A = ConfigTester(self , config_class=UpperCamelCase_ , dim=37 ) def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : str ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*UpperCamelCase_ ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*UpperCamelCase_ ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*UpperCamelCase_ ) def lowerCAmelCase_ ( self : Any ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*UpperCamelCase_ ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*UpperCamelCase_ ) def lowerCAmelCase_ ( self : Dict ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*UpperCamelCase_ ) @slow def lowerCAmelCase_ ( self : int ): """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = SqueezeBertModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @require_sentencepiece @require_tokenizers @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" __A = SqueezeBertForSequenceClassification.from_pretrained("""squeezebert/squeezebert-mnli""" ) __A = torch.tensor([[1, 29_414, 232, 328, 740, 1_140, 12_695, 69, 13, 1_588, 2]] ) __A = model(UpperCamelCase_ )[0] __A = torch.Size((1, 3) ) self.assertEqual(output.shape , UpperCamelCase_ ) __A = torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-4 ) )
637
1
import itertools import math def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _SCREAMING_SNAKE_CASE ( ) -> Dict: __lowerCAmelCase : Optional[Any] = 2 while True: if is_prime(SCREAMING_SNAKE_CASE ): yield num num += 1 def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int = 10_001 ) -> int: return next(itertools.islice(prime_generator() , nth - 1 , SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": print(f'''{solution() = }''')
240
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
240
1
'''simple docstring''' import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int __A : Any = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class __snake_case ( datasets.BuilderConfig): """simple docstring""" lowercase = None def UpperCamelCase_ ( A__ : "pyspark.sql.DataFrame" , A__ : List[int] , ): '''simple docstring''' import pyspark def generate_fn(): lowerCAmelCase_ : int = df.select("""*""" , pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) ) for partition_id in partition_order: lowerCAmelCase_ : Optional[int] = df_with_partition_id.select("""*""" ).where(f'part_id = {partition_id}' ).drop("""part_id""" ) lowerCAmelCase_ : int = partition_df.collect() lowerCAmelCase_ : Dict = 0 for row in rows: yield f'{partition_id}_{row_id}', row.asDict() row_id += 1 return generate_fn class __snake_case ( _BaseExamplesIterable): """simple docstring""" def __init__( self : Tuple , lowerCamelCase : Any , lowerCamelCase : Union[str, Any]=None , ) -> Any: lowerCAmelCase_ : Any = df lowerCAmelCase_ : List[Any] = partition_order or range(self.df.rdd.getNumPartitions() ) lowerCAmelCase_ : Tuple = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : List[Any] ) -> Dict: yield from self.generate_examples_fn() def __lowercase ( self : str , lowerCamelCase : Dict ) -> int: lowerCAmelCase_ : Optional[int] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(lowerCamelCase ) return SparkExamplesIterable(self.df , partition_order=lowerCamelCase ) def __lowercase ( self : Optional[int] , lowerCamelCase : Tuple , lowerCamelCase : List[Any] ) -> Tuple: lowerCAmelCase_ : Union[str, Any] = self.split_shard_indices_by_worker(lowerCamelCase , lowerCamelCase ) return SparkExamplesIterable(self.df , partition_order=lowerCamelCase ) @property def __lowercase ( self : Union[str, Any] ) -> Union[str, Any]: return len(self.partition_order ) class __snake_case ( datasets.DatasetBuilder): """simple docstring""" lowercase = SparkConfig def __init__( self : Tuple , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] = None , lowerCamelCase : Tuple = None , **lowerCamelCase : List[Any] , ) -> str: import pyspark lowerCAmelCase_ : Dict = pyspark.sql.SparkSession.builder.getOrCreate() lowerCAmelCase_ : Optional[Any] = df lowerCAmelCase_ : List[str] = working_dir super().__init__( cache_dir=lowerCamelCase , config_name=str(self.df.semanticHash() ) , **lowerCamelCase , ) def __lowercase ( self : Optional[Any] ) -> Optional[int]: # Returns the path of the created file. def create_cache_and_write_probe(lowerCamelCase : Any ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = os.path.join(self._cache_dir , """fs_test""" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(lowerCamelCase , """a""" ) return [probe_file] if self._spark.conf.get("""spark.master""" , """""" ).startswith("""local""" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: lowerCAmelCase_ : Dict = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(lowerCamelCase ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( """When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" ) def __lowercase ( self : Any ) -> Any: return datasets.DatasetInfo(features=self.config.features ) def __lowercase ( self : Tuple , lowerCamelCase : Optional[int] ) -> Tuple: return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def __lowercase ( self : Optional[int] , lowerCamelCase : Optional[int] ) -> Any: import pyspark def get_arrow_batch_size(lowerCamelCase : Any ): for batch in it: yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} ) lowerCAmelCase_ : List[str] = self.df.count() lowerCAmelCase_ : int = df_num_rows if df_num_rows <= 1_00 else 1_00 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. lowerCAmelCase_ : Optional[int] = ( self.df.limit(lowerCamelCase ) .repartition(1 ) .mapInArrow(lowerCamelCase , """batch_bytes: long""" ) .agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) ) .collect()[0] .sample_bytes / sample_num_rows ) lowerCAmelCase_ : List[str] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. lowerCAmelCase_ : int = min(lowerCamelCase , int(approx_total_size / max_shard_size ) ) lowerCAmelCase_ : str = self.df.repartition(lowerCamelCase ) def __lowercase ( self : Any , lowerCamelCase : str , lowerCamelCase : int , lowerCamelCase : Dict , ) -> Any: import pyspark lowerCAmelCase_ : Optional[Any] = ParquetWriter if file_format == """parquet""" else ArrowWriter lowerCAmelCase_ : Optional[Any] = os.path.join(self._working_dir , os.path.basename(lowerCamelCase ) ) if self._working_dir else fpath lowerCAmelCase_ : Any = file_format == """parquet""" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. lowerCAmelCase_ : Any = self.config.features lowerCAmelCase_ : str = self._writer_batch_size lowerCAmelCase_ : List[Any] = self._fs.storage_options def write_arrow(lowerCamelCase : Dict ): # Within the same SparkContext, no two task attempts will share the same attempt ID. lowerCAmelCase_ : int = pyspark.TaskContext().taskAttemptId() lowerCAmelCase_ : Union[str, Any] = next(lowerCamelCase , lowerCamelCase ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) lowerCAmelCase_ : str = 0 lowerCAmelCase_ : Optional[int] = writer_class( features=lowerCamelCase , path=working_fpath.replace("""SSSSS""" , F'{shard_id:05d}' ).replace("""TTTTT""" , F'{task_id:05d}' ) , writer_batch_size=lowerCamelCase , storage_options=lowerCamelCase , embed_local_files=lowerCamelCase , ) lowerCAmelCase_ : Tuple = pa.Table.from_batches([first_batch] ) writer.write_table(lowerCamelCase ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: lowerCAmelCase_, lowerCAmelCase_ : Optional[int] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) shard_id += 1 lowerCAmelCase_ : List[Any] = writer_class( features=writer._features , path=working_fpath.replace("""SSSSS""" , F'{shard_id:05d}' ).replace("""TTTTT""" , F'{task_id:05d}' ) , writer_batch_size=lowerCamelCase , storage_options=lowerCamelCase , embed_local_files=lowerCamelCase , ) lowerCAmelCase_ : Optional[int] = pa.Table.from_batches([batch] ) writer.write_table(lowerCamelCase ) if writer._num_bytes > 0: lowerCAmelCase_, lowerCAmelCase_ : Optional[Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(lowerCamelCase ) ): lowerCAmelCase_ : Tuple = os.path.join(os.path.dirname(lowerCamelCase ) , os.path.basename(lowerCamelCase ) ) shutil.move(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = ( self.df.mapInArrow(lowerCamelCase , """task_id: long, num_examples: long, num_bytes: long""" ) .groupBy("""task_id""" ) .agg( pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ) , pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ) , pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ) , pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def __lowercase ( self : str , lowerCamelCase : int , lowerCamelCase : Optional[Any] = "arrow" , lowerCamelCase : List[Any] = None , lowerCamelCase : Dict = None , **lowerCamelCase : List[Any] , ) -> Any: self._validate_cache_dir() lowerCAmelCase_ : List[Any] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = not is_remote_filesystem(self._fs ) lowerCAmelCase_ : List[Any] = os.path.join if is_local else posixpath.join lowerCAmelCase_ : Any = """-TTTTT-SSSSS-of-NNNNN""" lowerCAmelCase_ : Optional[int] = F'{self.name}-{split_generator.name}{SUFFIX}.{file_format}' lowerCAmelCase_ : Union[str, Any] = path_join(self._output_dir , lowerCamelCase ) lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : str = 0 lowerCAmelCase_ : Optional[int] = 0 lowerCAmelCase_ : str = [] lowerCAmelCase_ : Optional[int] = [] for task_id, content in self._prepare_split_single(lowerCamelCase , lowerCamelCase , lowerCamelCase ): ( ( lowerCAmelCase_ ), ( lowerCAmelCase_ ), ( lowerCAmelCase_ ), ( lowerCAmelCase_ ), ) : Union[str, Any] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(lowerCamelCase ) lowerCAmelCase_ : int = total_num_examples lowerCAmelCase_ : str = total_num_bytes # should rename everything at the end logger.debug(F'Renaming {total_shards} shards.' ) if total_shards > 1: lowerCAmelCase_ : int = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. lowerCAmelCase_ : Optional[int] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowerCamelCase : List[Any] , lowerCamelCase : List[Any] , lowerCamelCase : Tuple , ): rename( lowerCamelCase , fpath.replace("""SSSSS""" , F'{shard_id:05d}' ).replace("""TTTTT""" , F'{task_id:05d}' ) , fpath.replace("""TTTTT-SSSSS""" , F'{global_shard_id:05d}' ).replace("""NNNNN""" , F'{total_shards:05d}' ) , ) lowerCAmelCase_ : int = [] lowerCAmelCase_ : List[str] = 0 for i in range(len(lowerCamelCase ) ): lowerCAmelCase_, lowerCAmelCase_ : Tuple = task_id_and_num_shards[i] for shard_id in range(lowerCamelCase ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(lowerCamelCase , len(lowerCamelCase ) ).map(lambda lowerCamelCase : _rename_shard(*lowerCamelCase ) ).collect() else: # don't use any pattern lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : int = task_id_and_num_shards[0][0] self._rename( fpath.replace("""SSSSS""" , F'{shard_id:05d}' ).replace("""TTTTT""" , F'{task_id:05d}' ) , fpath.replace(lowerCamelCase , """""" ) , ) def __lowercase ( self : List[Any] , lowerCamelCase : Any , ) -> str: return SparkExamplesIterable(self.df )
275
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a : List[str] = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] _a : str = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] _a : Tuple = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): _a : Dict = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys _a : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
479
0
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class __magic_name__ ( unittest.TestCase ): UpperCAmelCase = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def _UpperCamelCase ( self : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] ) -> Optional[Any]: UpperCAmelCase = hf_hub_download( repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) UpperCAmelCase = VideoClassificationPipeline(model=lowerCamelCase__ , image_processor=lowerCamelCase__ , top_k=2 ) UpperCAmelCase = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def _UpperCamelCase ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple ) -> List[Any]: for example in examples: UpperCAmelCase = video_classifier(lowerCamelCase__ ) self.assertEqual( lowerCamelCase__ , [ {"score": ANY(lowerCamelCase__ ), "label": ANY(lowerCamelCase__ )}, {"score": ANY(lowerCamelCase__ ), "label": ANY(lowerCamelCase__ )}, ] , ) @require_torch def _UpperCamelCase ( self : Any ) -> List[Any]: UpperCAmelCase = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" UpperCAmelCase = VideoMAEFeatureExtractor( size={"shortest_edge": 1_0} , crop_size={"height": 1_0, "width": 1_0} ) UpperCAmelCase = pipeline( "video-classification" , model=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , frame_sampling_rate=4 ) UpperCAmelCase = hf_hub_download(repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) UpperCAmelCase = video_classifier(lowerCamelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase__ , decimals=4 ) , [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}] , ) UpperCAmelCase = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(lowerCamelCase__ , decimals=4 ) , [ [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], ] , ) @require_tf def _UpperCamelCase ( self : List[str] ) -> Optional[int]: pass
717
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py lowerCAmelCase__ = "src/diffusers" # Matches is_xxx_available() lowerCAmelCase__ = re.compile(r"is\_([a-z_]*)_available\(\)") # Matches from xxx import bla lowerCAmelCase__ = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") lowerCAmelCase__ = "\n{0} = None\n" lowerCAmelCase__ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n" lowerCAmelCase__ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" def _lowerCAmelCase( __A ): UpperCAmelCase = _re_backend.findall(__A ) if len(__A ) == 0: return None return "_and_".join(__A ) def _lowerCAmelCase( ): with open(os.path.join(__A , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase = f.readlines() # Get to the point we do the actual imports for type checking UpperCAmelCase = 0 UpperCAmelCase = {} # Go through the end of the file while line_index < len(__A ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCAmelCase = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 UpperCAmelCase = [] # Until we unindent, add backend objects to the list while line_index < len(__A ) and len(lines[line_index] ) > 1: UpperCAmelCase = lines[line_index] UpperCAmelCase = _re_single_line_import.search(__A ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__A ) > 0: UpperCAmelCase = objects else: line_index += 1 return backend_specific_objects def _lowerCAmelCase( __A , __A ): if name.isupper(): return DUMMY_CONSTANT.format(__A ) elif name.islower(): return DUMMY_FUNCTION.format(__A , __A ) else: return DUMMY_CLASS.format(__A , __A ) def _lowerCAmelCase( __A=None ): if backend_specific_objects is None: UpperCAmelCase = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCAmelCase = {} for backend, objects in backend_specific_objects.items(): UpperCAmelCase = "[" + ", ".join(F"\"{b}\"" for b in backend.split("_and_" ) ) + "]" UpperCAmelCase = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__A , __A ) for o in objects] ) UpperCAmelCase = dummy_file return dummy_files def _lowerCAmelCase( __A=False ): UpperCAmelCase = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCAmelCase = {"torch": "pt"} # Locate actual dummy modules and read their content. UpperCAmelCase = os.path.join(__A , "utils" ) UpperCAmelCase = { backend: os.path.join(__A , F"dummy_{short_names.get(__A , __A )}_objects.py" ) for backend in dummy_files.keys() } UpperCAmelCase = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__A ): with open(__A , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase = f.read() else: UpperCAmelCase = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F"Updating diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py as the main " "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " F"diffusers.utils.dummy_{short_names.get(__A , __A )}_objects.py. Run `make fix-copies` " "to fix this." ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowerCAmelCase__ = parser.parse_args() check_dummies(args.fix_and_overwrite)
1
0
'''simple docstring''' import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __A (unittest.TestCase ): def _snake_case ( self ): __UpperCAmelCase : List[str] = 0 @slow def _snake_case ( self ): for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): __UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(UpperCamelCase_ ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): __UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(UpperCamelCase_ ) , 0 ) def _snake_case ( self ): __UpperCAmelCase : Any = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def _snake_case ( self ): __UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def _snake_case ( self ): __UpperCAmelCase : Any = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) # Check that tokenizer_type ≠ model_type __UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(UpperCamelCase_ , config=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def _snake_case ( self ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt" , os.path.join(UpperCamelCase_ , "vocab.txt" ) ) __UpperCAmelCase : Any = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type="bert" , use_fast=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json" , os.path.join(UpperCamelCase_ , "vocab.json" ) ) shutil.copy("./tests/fixtures/merges.txt" , os.path.join(UpperCamelCase_ , "merges.txt" ) ) __UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type="gpt2" , use_fast=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) @require_tokenizers def _snake_case ( self ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt" , os.path.join(UpperCamelCase_ , "vocab.txt" ) ) __UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type="bert" ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json" , os.path.join(UpperCamelCase_ , "vocab.json" ) ) shutil.copy("./tests/fixtures/merges.txt" , os.path.join(UpperCamelCase_ , "merges.txt" ) ) __UpperCAmelCase : int = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type="gpt2" ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def _snake_case ( self ): with pytest.raises(UpperCamelCase_ ): AutoTokenizer.from_pretrained("./" , tokenizer_type="xxx" ) @require_tokenizers def _snake_case ( self ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: __UpperCAmelCase : Optional[Any] = tokenizer_class.from_pretrained("wietsedv/bert-base-dutch-cased" ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , UpperCamelCase_ ) else: self.assertEqual(tokenizer.do_lower_case , UpperCamelCase_ ) self.assertEqual(tokenizer.model_max_length , 5_12 ) @require_tokenizers def _snake_case ( self ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( UpperCamelCase_ , "julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier" , ): __UpperCAmelCase : List[str] = tokenizer_class.from_pretrained("julien-c/herlolip-not-exists" ) def _snake_case ( self ): __UpperCAmelCase : str = TOKENIZER_MAPPING.values() __UpperCAmelCase : Tuple = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(UpperCamelCase_ ) @require_tokenizers def _snake_case ( self ): self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" , use_fast=UpperCamelCase_ ) , UpperCamelCase_ ) self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" ) , UpperCamelCase_ ) @require_tokenizers def _snake_case ( self ): __UpperCAmelCase : int = AutoTokenizer.from_pretrained("distilbert-base-uncased" , do_lower_case=UpperCamelCase_ ) __UpperCAmelCase : int = 'Hello, world. How are you?' __UpperCAmelCase : List[str] = tokenizer.tokenize(UpperCamelCase_ ) self.assertEqual("[UNK]" , tokens[0] ) __UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained("microsoft/mpnet-base" , do_lower_case=UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = tokenizer.tokenize(UpperCamelCase_ ) self.assertEqual("[UNK]" , tokens[0] ) @require_tokenizers def _snake_case ( self ): __UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained("robot-test/dummy-tokenizer-fast-with-model-config" ) self.assertEqual(type(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(tokenizer.model_max_length , 5_12 ) self.assertEqual(tokenizer.vocab_size , 3_00_00 ) self.assertEqual(tokenizer.unk_token , "[UNK]" ) self.assertEqual(tokenizer.padding_side , "right" ) self.assertEqual(tokenizer.truncation_side , "right" ) def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) __UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def _snake_case ( self ): __UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained("ctrl" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def _snake_case ( self ): __UpperCAmelCase : int = get_tokenizer_config("bert-base-cased" ) __UpperCAmelCase : List[Any] = config.pop("_commit_hash" , UpperCamelCase_ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(UpperCamelCase_ , {"do_lower_case": False} ) # This model does not have a tokenizer_config so we get back an empty dict. __UpperCAmelCase : str = get_tokenizer_config(UpperCamelCase_ ) self.assertDictEqual(UpperCamelCase_ , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. __UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) __UpperCAmelCase : List[str] = get_tokenizer_config(UpperCamelCase_ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["tokenizer_class"] , "BertTokenizer" ) def _snake_case ( self ): try: AutoConfig.register("custom" , UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) __UpperCAmelCase : Any = CustomTokenizer.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def _snake_case ( self ): try: AutoConfig.register("custom" , UpperCamelCase_ ) # Can register in two steps AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoTokenizer.register(UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase : Optional[int] = BertTokenizerFast.from_pretrained(UpperCamelCase_ ) bert_tokenizer.save_pretrained(UpperCamelCase_ ) __UpperCAmelCase : Tuple = CustomTokenizerFast.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) __UpperCAmelCase : int = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained(UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def _snake_case ( self ): with self.assertRaises(UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=UpperCamelCase_ ) __UpperCAmelCase : int = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) __UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizerFast" ) # Test we can also load the slow version __UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) __UpperCAmelCase : int = AutoTokenizer.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , "NewTokenizer" ) @require_tokenizers def _snake_case ( self ): class __A (snake_case_ ): snake_case :Dict = False class __A (snake_case_ ): snake_case :List[str] = NewTokenizer snake_case :List[str] = False try: AutoConfig.register("custom" , UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) # If remote code is not set, the default is to use local __UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertFalse(tokenizer.special_attribute_present ) __UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" , use_fast=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. __UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertFalse(tokenizer.special_attribute_present ) __UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub __UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) self.assertTrue(tokenizer.special_attribute_present ) __UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def _snake_case ( self ): __UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy" , trust_remote_code=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) # Test we can also load the slow version __UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy" , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) def _snake_case ( self ): with self.assertRaisesRegex( UpperCamelCase_ , "bert-base is not a local folder and is not a valid model identifier" ): __UpperCAmelCase : str = AutoTokenizer.from_pretrained("bert-base" ) def _snake_case ( self ): with self.assertRaisesRegex( UpperCamelCase_ , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): __UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , revision="aaaaaa" ) def _snake_case ( self ): __UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: __UpperCAmelCase : Dict = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
168
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a_ = logging.get_logger(__name__) class _lowercase ( snake_case_ ): lowercase = ['pixel_values'] def __init__( self : Optional[int] , snake_case : bool = True , snake_case : int = 3_2 , snake_case : List[str]=PILImageResampling.BILINEAR , snake_case : bool = True , **snake_case : Tuple , ) -> None: """simple docstring""" UpperCamelCase_ : int = do_resize UpperCamelCase_ : Union[str, Any] = do_rescale UpperCamelCase_ : Any = size_divisor UpperCamelCase_ : str = resample super().__init__(**snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Dict , snake_case : np.ndarray , snake_case : int , snake_case : Optional[Any] , snake_case : Optional[ChannelDimension] = None , **snake_case : str ) -> np.ndarray: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : Dict = get_image_size(snake_case ) # Rounds the height and width down to the closest multiple of size_divisor UpperCamelCase_ : Optional[int] = height // size_divisor * size_divisor UpperCamelCase_ : Union[str, Any] = width // size_divisor * size_divisor UpperCamelCase_ : Any = resize(snake_case , (new_h, new_w) , resample=snake_case , data_format=snake_case , **snake_case ) return image def SCREAMING_SNAKE_CASE__ ( self : Dict , snake_case : np.ndarray , snake_case : float , snake_case : Optional[ChannelDimension] = None , **snake_case : Optional[int] ) -> np.ndarray: """simple docstring""" return rescale(image=snake_case , scale=snake_case , data_format=snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Dict , snake_case : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , snake_case : Optional[bool] = None , snake_case : Optional[int] = None , snake_case : str=None , snake_case : Optional[bool] = None , snake_case : Optional[Union[TensorType, str]] = None , snake_case : ChannelDimension = ChannelDimension.FIRST , **snake_case : Tuple , ) -> BatchFeature: """simple docstring""" UpperCamelCase_ : str = do_resize if do_resize is not None else self.do_resize UpperCamelCase_ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase_ : str = size_divisor if size_divisor is not None else self.size_divisor UpperCamelCase_ : int = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) UpperCamelCase_ : int = make_list_of_images(snake_case ) if not valid_images(snake_case ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. UpperCamelCase_ : Optional[int] = [to_numpy_array(snake_case ) for img in images] if do_resize: UpperCamelCase_ : List[str] = [self.resize(snake_case , size_divisor=snake_case , resample=snake_case ) for image in images] if do_rescale: UpperCamelCase_ : List[str] = [self.rescale(snake_case , scale=1 / 2_5_5 ) for image in images] UpperCamelCase_ : Tuple = [to_channel_dimension_format(snake_case , snake_case ) for image in images] UpperCamelCase_ : Dict = {'pixel_values': images} return BatchFeature(data=snake_case , tensor_type=snake_case )
417
0
'''simple docstring''' def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> int: return number | (1 << position) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> int: return number & ~(1 << position) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> int: return number ^ (1 << position) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> bool: return ((number >> position) & 1) == 1 def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> int: return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
301
'''simple docstring''' import unittest from transformers import DonutProcessor __a = "naver-clova-ix/donut-base" class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase ( self : str ): snake_case__ : Optional[int] = DonutProcessor.from_pretrained(snake_case_ ) def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Optional[int] = { """name""": """John Doe""", """age""": """99""", """city""": """Atlanta""", """state""": """GA""", """zip""": """30301""", """phone""": """123-4567""", """nicknames""": [{"""nickname""": """Johnny"""}, {"""nickname""": """JD"""}], } snake_case__ : Any = ( """<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>""" """<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>""" """<s_nicknames><s_nickname>Johnny</s_nickname>""" """<sep/><s_nickname>JD</s_nickname></s_nicknames>""" ) snake_case__ : Optional[int] = self.processor.tokenajson(snake_case_ ) self.assertDictEqual(snake_case_ , snake_case_ )
301
1
from sklearn.metrics import mean_squared_error import datasets UpperCAmelCase = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' UpperCAmelCase = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' UpperCAmelCase = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html' ] , ) def SCREAMING_SNAKE_CASE__ ( self ): if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('float' ) ), "references": datasets.Sequence(datasets.Value('float' ) ), } else: return { "predictions": datasets.Value('float' ), "references": datasets.Value('float' ), } def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case=None , snake_case="uniform_average" , snake_case=True ): lowercase = mean_squared_error( snake_case , snake_case , sample_weight=snake_case , multioutput=snake_case , squared=snake_case ) return {"mse": mse}
84
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def UpperCamelCase_( __magic_name__ : str , __magic_name__ : float | Decimal , __magic_name__ : float = 10**-10 ): """simple docstring""" _lowerCAmelCase :Optional[Any] = a while True: _lowerCAmelCase :str = Decimal(__magic_name__ ) - ( Decimal(eval(__magic_name__ ) ) / Decimal(eval(str(diff(__magic_name__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__magic_name__ ) ) < precision: # noqa: S307 return float(__magic_name__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
687
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
198
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""image_processor""", """tokenizer"""] snake_case_ : str = """ChineseCLIPImageProcessor""" snake_case_ : Tuple = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Any , lowerCAmelCase : Dict=None , lowerCAmelCase : List[Any]=None , **lowerCAmelCase : str) -> Optional[Any]: """simple docstring""" _snake_case : List[str] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowerCAmelCase , ) _snake_case : Tuple = kwargs.pop("""feature_extractor""") _snake_case : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""") if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""") super().__init__(lowerCAmelCase , lowerCAmelCase) _snake_case : Optional[int] = self.image_processor def __call__( self : List[Any] , lowerCAmelCase : str=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[Any]=None , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""") if text is not None: _snake_case : Dict = self.tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase) if images is not None: _snake_case : Any = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase) if text is not None and images is not None: _snake_case : Optional[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase) , tensor_type=lowerCAmelCase) def UpperCamelCase_ ( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase) def UpperCamelCase_ ( self : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : int) -> str: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase) @property def UpperCamelCase_ ( self : Union[str, Any]) -> List[str]: """simple docstring""" _snake_case : Dict = self.tokenizer.model_input_names _snake_case : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def UpperCamelCase_ ( self : str) -> Tuple: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowerCAmelCase , ) return self.image_processor_class
198
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Tuple =logging.get_logger(__name__) lowerCAmelCase : List[str] ={ '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class a_ ( __a ): __A = '''decision_transformer''' __A = ['''past_key_values'''] __A = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Dict , lowercase : str=17 , lowercase : Union[str, Any]=4 , lowercase : List[str]=128 , lowercase : int=4_096 , lowercase : Dict=True , lowercase : str=1 , lowercase : Any=1_024 , lowercase : int=3 , lowercase : Union[str, Any]=1 , lowercase : Optional[Any]=None , lowercase : int="relu" , lowercase : str=0.1 , lowercase : Tuple=0.1 , lowercase : List[Any]=0.1 , lowercase : List[Any]=1e-5 , lowercase : Optional[int]=0.02 , lowercase : List[str]=True , lowercase : Optional[Any]=True , lowercase : List[Any]=50_256 , lowercase : Any=50_256 , lowercase : Any=False , lowercase : Union[str, Any]=False , **lowercase : Optional[Any] , ): """simple docstring""" lowercase_ :Dict = state_dim lowercase_ :List[str] = act_dim lowercase_ :List[str] = hidden_size lowercase_ :List[str] = max_ep_len lowercase_ :Optional[Any] = action_tanh lowercase_ :Optional[Any] = vocab_size lowercase_ :Optional[int] = n_positions lowercase_ :Optional[Any] = n_layer lowercase_ :int = n_head lowercase_ :int = n_inner lowercase_ :Optional[Any] = activation_function lowercase_ :int = resid_pdrop lowercase_ :str = embd_pdrop lowercase_ :Dict = attn_pdrop lowercase_ :List[Any] = layer_norm_epsilon lowercase_ :int = initializer_range lowercase_ :List[str] = scale_attn_weights lowercase_ :Dict = use_cache lowercase_ :Union[str, Any] = scale_attn_by_inverse_layer_idx lowercase_ :Dict = reorder_and_upcast_attn lowercase_ :str = bos_token_id lowercase_ :Tuple = eos_token_id super().__init__(bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
172
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : UNetaDModel __lowercase : KarrasVeScheduler def __init__( self , lowerCAmelCase__ , lowerCAmelCase__): super().__init__() self.register_modules(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__) @torch.no_grad() def __call__( self , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 5_0 , lowerCAmelCase__ = None , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , **lowerCAmelCase__ , ): __SCREAMING_SNAKE_CASE = self.unet.config.sample_size __SCREAMING_SNAKE_CASE = (batch_size, 3, img_size, img_size) __SCREAMING_SNAKE_CASE = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) __SCREAMING_SNAKE_CASE = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=self.device) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(lowerCAmelCase__) for t in self.progress_bar(self.scheduler.timesteps): # here sigma_t == t_i from the paper __SCREAMING_SNAKE_CASE = self.scheduler.schedule[t] __SCREAMING_SNAKE_CASE = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.scheduler.add_noise_to_input(lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. __SCREAMING_SNAKE_CASE = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev __SCREAMING_SNAKE_CASE = self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. __SCREAMING_SNAKE_CASE = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2).sample __SCREAMING_SNAKE_CASE = self.scheduler.step_correct( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , step_output.prev_sample , step_output["""derivative"""] , ) __SCREAMING_SNAKE_CASE = step_output.prev_sample __SCREAMING_SNAKE_CASE = (sample / 2 + 0.5).clamp(0 , 1) __SCREAMING_SNAKE_CASE = sample.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE = self.numpy_to_pil(lowerCAmelCase__) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase__)
155
0
def A_( A , A , A ): UpperCAmelCase_ = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def A_( ): print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
721
from __future__ import annotations def A_( A ): if not nums: raise ValueError("""List is empty""" ) return sum(A ) / len(A ) if __name__ == "__main__": import doctest doctest.testmod()
486
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase ( a , a ) -> float: '''simple docstring''' __magic_name__ = sorted(numsa + numsa ) __magic_name__ , __magic_name__ = divmod(len(a ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = [float(x) for x in input("Enter the elements of first array: ").split()] _lowerCAmelCase = [float(x) for x in input("Enter the elements of second array: ").split()] print(F'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
432
'''simple docstring''' def UpperCamelCase ( a , a ) -> float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(F'''{price_plus_tax(100, 0.25) = }''') print(F'''{price_plus_tax(125.50, 0.05) = }''')
432
1
'''simple docstring''' def UpperCAmelCase_ ( lowerCamelCase_ = 1_0_0_0 ): """simple docstring""" lowerCAmelCase__ : Optional[int] = 3 lowerCAmelCase__ : Optional[int] = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 1_5 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'{solution() = }')
568
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( UpperCamelCase_ , unittest.TestCase ): A_ : Any = FunnelTokenizer A_ : Dict = FunnelTokenizerFast A_ : Dict = True A_ : Tuple = True def _A ( self : List[Any] ): '''simple docstring''' super().setUp() lowerCAmelCase__ : Dict = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCAmelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _A ( self : Union[str, Any] , **a__ : str ): '''simple docstring''' return FunnelTokenizer.from_pretrained(self.tmpdirname , **a__ ) def _A ( self : Optional[int] , **a__ : str ): '''simple docstring''' return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **a__ ) def _A ( self : Tuple , a__ : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = "UNwant\u00E9d,running" lowerCAmelCase__ : Union[str, Any] = "unwanted, running" return input_text, output_text def _A ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Any = self.tokenizer_class(self.vocab_file ) lowerCAmelCase__ : List[str] = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(a__ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , [7, 4, 5, 10, 8, 9] ) def _A ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.get_tokenizers(do_lower_case=a__ ) for tokenizer in tokenizers: lowerCAmelCase__ : Tuple = tokenizer("UNwant\u00E9d,running" ) lowerCAmelCase__ : str = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len ) lowerCAmelCase__ : Optional[int] = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len )
568
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class _A ( metaclass=lowerCAmelCase ): snake_case__ : Any = ['transformers', 'torch', 'note_seq'] def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" requires_backends(self , ["""transformers""", """torch""", """note_seq"""] ) @classmethod def A__ ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] ) @classmethod def A__ ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] )
359
"""simple docstring""" import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __lowerCAmelCase : List[str] =[ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class _A ( unittest.TestCase ): def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None ): """simple docstring""" lowercase = None lowercase = os.path.abspath(os.path.join("""examples""" , """by_feature""" ) ) lowercase = os.path.abspath("""examples""" ) for item in os.listdir(__lowerCAmelCase ): if item not in EXCLUDE_EXAMPLES: lowercase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if os.path.isfile(__lowerCAmelCase ) and ".py" in item_path: with self.subTest( tested_script=__lowerCAmelCase , feature_script=__lowerCAmelCase , tested_section="""main()""" if parser_only else """training_function()""" , ): lowercase = compare_against_test( os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowercase = """\n""".join(__lowerCAmelCase ) if special_strings is not None: for string in special_strings: lowercase = diff.replace(__lowerCAmelCase , """""" ) self.assertEqual(__lowerCAmelCase , """""" ) def A__ ( self ): """simple docstring""" self.one_complete_example("""complete_nlp_example.py""" , __lowerCAmelCase ) self.one_complete_example("""complete_nlp_example.py""" , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = os.path.abspath(os.path.join("""examples""" , """cv_example.py""" ) ) lowercase = [ """ """ * 16 + """{\n\n""", """ """ * 20 + """\"accuracy\": eval_metric[\"accuracy\"],\n\n""", """ """ * 20 + """\"f1\": eval_metric[\"f1\"],\n\n""", """ """ * 20 + """\"train_loss\": total_loss.item() / len(train_dataloader),\n\n""", """ """ * 20 + """\"epoch\": epoch,\n\n""", """ """ * 16 + """},\n\n""", """ """ * 16 + """step=epoch,\n""", """ """ * 12, """ """ * 8 + """for step, batch in enumerate(active_dataloader):\n""", ] self.one_complete_example("""complete_cv_example.py""" , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) self.one_complete_example("""complete_cv_example.py""" , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) @mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '1'} ) class _A ( lowerCAmelCase ): snake_case__ : Any = False @classmethod def A__ ( cls ): """simple docstring""" super().setUpClass() lowercase = tempfile.mkdtemp() lowercase = os.path.join(cls._tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) lowercase = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def A__ ( cls ): """simple docstring""" super().tearDownClass() shutil.rmtree(cls._tmpdir ) def A__ ( self ): """simple docstring""" lowercase = f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """epoch_0""" ) ) ) def A__ ( self ): """simple docstring""" lowercase = f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split() lowercase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """step_2""" ) ) ) def A__ ( self ): """simple docstring""" lowercase = f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}\n '.split() lowercase = run_command(self._launch_args + testargs , return_stdout=__lowerCAmelCase ) self.assertNotIn("""epoch 0:""" , __lowerCAmelCase ) self.assertIn("""epoch 1:""" , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}\n '.split() lowercase = run_command(self._launch_args + testargs , return_stdout=__lowerCAmelCase ) if torch.cuda.is_available(): lowercase = torch.cuda.device_count() else: lowercase = 1 if num_processes > 1: self.assertNotIn("""epoch 0:""" , __lowerCAmelCase ) self.assertIn("""epoch 1:""" , __lowerCAmelCase ) else: self.assertIn("""epoch 0:""" , __lowerCAmelCase ) self.assertIn("""epoch 1:""" , __lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" lowercase = """ examples/by_feature/cross_validation.py --num_folds 2 """.split() with mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """0"""} ): lowercase = run_command(self._launch_args + testargs , return_stdout=__lowerCAmelCase ) lowercase = re.findall("""({.+})""" , __lowerCAmelCase ) lowercase = [r for r in results if """accuracy""" in r][-1] lowercase = ast.literal_eval(__lowerCAmelCase ) self.assertGreaterEqual(results["""accuracy"""] , 0.7_5 ) def A__ ( self ): """simple docstring""" lowercase = ["""examples/by_feature/multi_process_metrics.py"""] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def A__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: lowercase = f'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__lowerCAmelCase , """tracking""" ) ) ) def A__ ( self ): """simple docstring""" lowercase = ["""examples/by_feature/gradient_accumulation.py"""] run_command(self._launch_args + testargs ) def A__ ( self ): """simple docstring""" lowercase = ["""examples/by_feature/local_sgd.py"""] run_command(self._launch_args + testargs )
359
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class __magic_name__ : def __init__( self , __magic_name__ , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = 1_3 _lowerCAmelCase = 7 _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = 9_9 _lowerCAmelCase = 3_2 _lowerCAmelCase = 2 _lowerCAmelCase = 4 _lowerCAmelCase = 3_7 _lowerCAmelCase = 'gelu' _lowerCAmelCase = 0.1 _lowerCAmelCase = 0.1 _lowerCAmelCase = 5_1_2 _lowerCAmelCase = 1_6 _lowerCAmelCase = 2 _lowerCAmelCase = 0.02 _lowerCAmelCase = 3 _lowerCAmelCase = 4 _lowerCAmelCase = None def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = TFDistilBertModel(config=__magic_name__ ) _lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} _lowerCAmelCase = model(__magic_name__ ) _lowerCAmelCase = [input_ids, input_mask] _lowerCAmelCase = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = TFDistilBertForMaskedLM(config=__magic_name__ ) _lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} _lowerCAmelCase = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = TFDistilBertForQuestionAnswering(config=__magic_name__ ) _lowerCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, } _lowerCAmelCase = model(__magic_name__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = TFDistilBertForSequenceClassification(__magic_name__ ) _lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} _lowerCAmelCase = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = self.num_choices _lowerCAmelCase = TFDistilBertForMultipleChoice(__magic_name__ ) _lowerCAmelCase = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, } _lowerCAmelCase = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = TFDistilBertForTokenClassification(__magic_name__ ) _lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} _lowerCAmelCase = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) = config_and_inputs _lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __magic_name__ ( _UpperCamelCase ,_UpperCamelCase ,unittest.TestCase ): UpperCamelCase : str = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) UpperCamelCase : List[str] = ( { "feature-extraction": TFDistilBertModel, "fill-mask": TFDistilBertForMaskedLM, "question-answering": TFDistilBertForQuestionAnswering, "text-classification": TFDistilBertForSequenceClassification, "token-classification": TFDistilBertForTokenClassification, "zero-shot": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase : Union[str, Any] = False UpperCamelCase : str = False def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = TFDistilBertModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=__magic_name__ , dim=3_7 ) def _lowerCamelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__magic_name__ ) @slow def _lowerCamelCase ( self ): """simple docstring""" for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): _lowerCAmelCase = TFDistilBertModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) @require_tf class __magic_name__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = TFDistilBertModel.from_pretrained('distilbert-base-uncased' ) _lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowerCAmelCase = model(__magic_name__ )[0] _lowerCAmelCase = [1, 6, 7_6_8] self.assertEqual(output.shape , __magic_name__ ) _lowerCAmelCase = tf.constant( [ [ [0.19_26_18_85, -0.13_73_29_55, 0.4_11_97_99], [0.22_15_01_56, -0.07_42_26_61, 0.39_03_72_04], [0.22_75_60_18, -0.0_89_64_14, 0.3_70_14_67], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __magic_name__ , atol=1e-4 )
309
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __magic_name__ ( unittest.TestCase ): def _lowerCamelCase ( self , __magic_name__ ): """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): _lowerCAmelCase = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = 'sshleifer/tiny-gpt2' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , ) _lowerCAmelCase = PyTorchBenchmark(__magic_name__ ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = 'sgugger/tiny-distilbert-classification' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , only_pretrain_model=__magic_name__ , ) _lowerCAmelCase = PyTorchBenchmark(__magic_name__ ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = 'sshleifer/tiny-gpt2' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , torchscript=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , ) _lowerCAmelCase = PyTorchBenchmark(__magic_name__ ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = 'sshleifer/tiny-gpt2' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , fpaa=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , ) _lowerCAmelCase = PyTorchBenchmark(__magic_name__ ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = 'sshleifer/tiny-gpt2' _lowerCAmelCase = AutoConfig.from_pretrained(__magic_name__ ) # set architectures equal to `None` _lowerCAmelCase = None _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , ) _lowerCAmelCase = PyTorchBenchmark(__magic_name__ , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = 'sshleifer/tiny-gpt2' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , ) _lowerCAmelCase = PyTorchBenchmark(__magic_name__ ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == 'cpu' , 'Can\'t do half precision' ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = 'sshleifer/tiny-gpt2' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__magic_name__ , multi_process=__magic_name__ , ) _lowerCAmelCase = PyTorchBenchmark(__magic_name__ ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = 'sshleifer/tiny-gpt2' _lowerCAmelCase = AutoConfig.from_pretrained(__magic_name__ ) _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , ) _lowerCAmelCase = PyTorchBenchmark(__magic_name__ , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = 'sshleifer/tinier_bart' _lowerCAmelCase = AutoConfig.from_pretrained(__magic_name__ ) _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , ) _lowerCAmelCase = PyTorchBenchmark(__magic_name__ , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = 'sshleifer/tiny-gpt2' _lowerCAmelCase = AutoConfig.from_pretrained(__magic_name__ ) _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , ) _lowerCAmelCase = PyTorchBenchmark(__magic_name__ , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = 'sshleifer/tinier_bart' _lowerCAmelCase = AutoConfig.from_pretrained(__magic_name__ ) _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__magic_name__ , ) _lowerCAmelCase = PyTorchBenchmark(__magic_name__ , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , save_to_csv=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__magic_name__ , 'inf_time.csv' ) , train_memory_csv_file=os.path.join(__magic_name__ , 'train_mem.csv' ) , inference_memory_csv_file=os.path.join(__magic_name__ , 'inf_mem.csv' ) , train_time_csv_file=os.path.join(__magic_name__ , 'train_time.csv' ) , env_info_csv_file=os.path.join(__magic_name__ , 'env.csv' ) , multi_process=__magic_name__ , ) _lowerCAmelCase = PyTorchBenchmark(__magic_name__ ) benchmark.run() self.assertTrue(Path(os.path.join(__magic_name__ , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__magic_name__ , 'train_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__magic_name__ , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__magic_name__ , 'train_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__magic_name__ , 'env.csv' ) ).exists() ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(__magic_name__ ): self.assertTrue(hasattr(__magic_name__ , 'sequential' ) ) self.assertTrue(hasattr(__magic_name__ , 'cumulative' ) ) self.assertTrue(hasattr(__magic_name__ , 'current' ) ) self.assertTrue(hasattr(__magic_name__ , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__magic_name__ , inference=__magic_name__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__magic_name__ , 'log.txt' ) , log_print=__magic_name__ , trace_memory_line_by_line=__magic_name__ , multi_process=__magic_name__ , ) _lowerCAmelCase = PyTorchBenchmark(__magic_name__ ) _lowerCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(__magic_name__ , 'log.txt' ) ).exists() )
309
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __lowercase : str =logging.get_logger(__name__) # pylint: disable=invalid-name class A ( __lowercase ): def __init__( self: Any , _lowerCAmelCase: WhisperForConditionalGeneration , _lowerCAmelCase: WhisperProcessor , _lowerCAmelCase: AutoencoderKL , _lowerCAmelCase: CLIPTextModel , _lowerCAmelCase: CLIPTokenizer , _lowerCAmelCase: UNetaDConditionModel , _lowerCAmelCase: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _lowerCAmelCase: StableDiffusionSafetyChecker , _lowerCAmelCase: CLIPImageProcessor , ) -> Union[str, Any]: '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( F'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( speech_model=_lowerCAmelCase , speech_processor=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Optional[Union[str, int]] = "auto" ) -> Optional[int]: '''simple docstring''' if slice_size == "auto": UpperCAmelCase_ =self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' self.enable_attention_slicing(_lowerCAmelCase ) @torch.no_grad() def __call__( self: str , _lowerCAmelCase: Dict , _lowerCAmelCase: Optional[int]=1_6000 , _lowerCAmelCase: int = 512 , _lowerCAmelCase: int = 512 , _lowerCAmelCase: int = 50 , _lowerCAmelCase: float = 7.5 , _lowerCAmelCase: Optional[Union[str, List[str]]] = None , _lowerCAmelCase: Optional[int] = 1 , _lowerCAmelCase: float = 0.0 , _lowerCAmelCase: Optional[torch.Generator] = None , _lowerCAmelCase: Optional[torch.FloatTensor] = None , _lowerCAmelCase: Optional[str] = "pil" , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _lowerCAmelCase: int = 1 , **_lowerCAmelCase: int , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.speech_processor.feature_extractor( _lowerCAmelCase , return_tensors="pt" , sampling_rate=_lowerCAmelCase ).input_features.to(self.device ) UpperCAmelCase_ =self.speech_model.generate(_lowerCAmelCase , max_length=48_0000 ) UpperCAmelCase_ =self.speech_processor.tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , normalize=_lowerCAmelCase )[ 0 ] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase_ =1 elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase_ =len(_lowerCAmelCase ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(_lowerCAmelCase )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(_lowerCAmelCase )}.' ) # get prompt text embeddings UpperCAmelCase_ =self.tokenizer( _lowerCAmelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) UpperCAmelCase_ =text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase_ =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) UpperCAmelCase_ =text_input_ids[:, : self.tokenizer.model_max_length] UpperCAmelCase_ =self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =text_embeddings.shape UpperCAmelCase_ =text_embeddings.repeat(1 , _lowerCAmelCase , 1 ) UpperCAmelCase_ =text_embeddings.view(bs_embed * num_images_per_prompt , _lowerCAmelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCAmelCase_ =guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCAmelCase_ =42 if negative_prompt is None: UpperCAmelCase_ =[""] * batch_size elif type(_lowerCAmelCase ) is not type(_lowerCAmelCase ): raise TypeError( F'`negative_prompt` should be the same type to `prompt`, but got {type(_lowerCAmelCase )} !=' F' {type(_lowerCAmelCase )}.' ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase_ =[negative_prompt] elif batch_size != len(_lowerCAmelCase ): raise ValueError( F'`negative_prompt`: {negative_prompt} has batch size {len(_lowerCAmelCase )}, but `prompt`:' F' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' " the batch size of `prompt`." ) else: UpperCAmelCase_ =negative_prompt UpperCAmelCase_ =text_input_ids.shape[-1] UpperCAmelCase_ =self.tokenizer( _lowerCAmelCase , padding="max_length" , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors="pt" , ) UpperCAmelCase_ =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase_ =uncond_embeddings.shape[1] UpperCAmelCase_ =uncond_embeddings.repeat(1 , _lowerCAmelCase , 1 ) UpperCAmelCase_ =uncond_embeddings.view(batch_size * num_images_per_prompt , _lowerCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase_ =torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCAmelCase_ =(batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCAmelCase_ =text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCAmelCase_ =torch.randn(_lowerCAmelCase , generator=_lowerCAmelCase , device="cpu" , dtype=_lowerCAmelCase ).to( self.device ) else: UpperCAmelCase_ =torch.randn(_lowerCAmelCase , generator=_lowerCAmelCase , device=self.device , dtype=_lowerCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) UpperCAmelCase_ =latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_lowerCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCAmelCase_ =self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase_ =latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase_ ="eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase_ ={} if accepts_eta: UpperCAmelCase_ =eta for i, t in enumerate(self.progress_bar(_lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ =self.scheduler.scale_model_input(_lowerCAmelCase , _lowerCAmelCase ) # predict the noise residual UpperCAmelCase_ =self.unet(_lowerCAmelCase , _lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase ).sample # perform guidance if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ =noise_pred.chunk(2 ) UpperCAmelCase_ =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ =self.scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =1 / 0.1_82_15 * latents UpperCAmelCase_ =self.vae.decode(_lowerCAmelCase ).sample UpperCAmelCase_ =(image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase_ =image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ =self.numpy_to_pil(_lowerCAmelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=_lowerCAmelCase , nsfw_content_detected=_lowerCAmelCase )
54
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __lowercase (_SCREAMING_SNAKE_CASE :Tuple ): if is_torch_version('''<''' , '''2.0.0''' ) or not hasattr(_SCREAMING_SNAKE_CASE , '''_dynamo''' ): return False return isinstance(_SCREAMING_SNAKE_CASE , torch._dynamo.eval_frame.OptimizedModule ) def __lowercase (_SCREAMING_SNAKE_CASE :Tuple , _SCREAMING_SNAKE_CASE :bool = True ): SCREAMING_SNAKE_CASE : Any = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) SCREAMING_SNAKE_CASE : Any = is_compiled_module(_SCREAMING_SNAKE_CASE ) if is_compiled: SCREAMING_SNAKE_CASE : int = model SCREAMING_SNAKE_CASE : Tuple = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : Any = model.module if not keep_fpaa_wrapper: SCREAMING_SNAKE_CASE : Optional[int] = getattr(_SCREAMING_SNAKE_CASE , '''forward''' ) SCREAMING_SNAKE_CASE : Tuple = model.__dict__.pop('''_original_forward''' , _SCREAMING_SNAKE_CASE ) if original_forward is not None: while hasattr(_SCREAMING_SNAKE_CASE , '''__wrapped__''' ): SCREAMING_SNAKE_CASE : Optional[Any] = forward.__wrapped__ if forward == original_forward: break SCREAMING_SNAKE_CASE : Tuple = forward if getattr(_SCREAMING_SNAKE_CASE , '''_converted_to_transformer_engine''' , _SCREAMING_SNAKE_CASE ): convert_model(_SCREAMING_SNAKE_CASE , to_transformer_engine=_SCREAMING_SNAKE_CASE ) if is_compiled: SCREAMING_SNAKE_CASE : List[Any] = model SCREAMING_SNAKE_CASE : int = compiled_model return model def __lowercase (): PartialState().wait_for_everyone() def __lowercase (_SCREAMING_SNAKE_CASE :str , _SCREAMING_SNAKE_CASE :Union[str, Any] ): if PartialState().distributed_type == DistributedType.TPU: xm.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif PartialState().local_process_index == 0: torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @contextmanager def __lowercase (**_SCREAMING_SNAKE_CASE :str ): for key, value in kwargs.items(): SCREAMING_SNAKE_CASE : str = str(_SCREAMING_SNAKE_CASE ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __lowercase (_SCREAMING_SNAKE_CASE :List[Any] ): if not hasattr(_SCREAMING_SNAKE_CASE , '''__qualname__''' ) and not hasattr(_SCREAMING_SNAKE_CASE , '''__name__''' ): SCREAMING_SNAKE_CASE : str = getattr(_SCREAMING_SNAKE_CASE , '''__class__''' , _SCREAMING_SNAKE_CASE ) if hasattr(_SCREAMING_SNAKE_CASE , '''__qualname__''' ): return obj.__qualname__ if hasattr(_SCREAMING_SNAKE_CASE , '''__name__''' ): return obj.__name__ return str(_SCREAMING_SNAKE_CASE ) def __lowercase (_SCREAMING_SNAKE_CASE :Optional[Any] , _SCREAMING_SNAKE_CASE :str ): for key, value in source.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : int = destination.setdefault(_SCREAMING_SNAKE_CASE , {} ) merge_dicts(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE : Dict = value return destination def __lowercase (_SCREAMING_SNAKE_CASE :int = None ): if port is None: SCREAMING_SNAKE_CASE : Dict = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('''localhost''', port) ) == 0
507
0
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging _UpperCAmelCase : List[Any] =logging.get_logger(__name__) _UpperCAmelCase : List[str] =R"""\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n""" class snake_case__( UpperCAmelCase__ ): '''simple docstring''' @add_start_docstrings(__lowerCAmelCase ) def __call__( self , __lowercase , __lowercase , **__lowercase ) -> Union[str, Any]: raise NotImplementedError('''StoppingCriteria needs to be subclassed''' ) class snake_case__( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , __lowercase , __lowercase = None ) -> str: lowerCAmelCase_ : Dict = max_length lowerCAmelCase_ : int = max_position_embeddings @add_start_docstrings(__lowerCAmelCase ) def __call__( self , __lowercase , __lowercase , **__lowercase ) -> Optional[Any]: lowerCAmelCase_ : int = input_ids.shape[-1] lowerCAmelCase_ : Tuple = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( '''This is a friendly reminder - the current text generation call will exceed the model\'s predefined ''' f"""maximum length ({self.max_position_embeddings}). Depending on the model, you may observe """ '''exceptions, performance degradation, or nothing at all.''' ) return is_done class snake_case__( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , __lowercase , __lowercase ) -> int: warnings.warn( '''The class `MaxNewTokensCriteria` is deprecated. ''' f"""Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` """ '''with `max_length = start_length + max_new_tokens` instead.''' , __lowerCAmelCase , ) lowerCAmelCase_ : Any = start_length lowerCAmelCase_ : Dict = max_new_tokens lowerCAmelCase_ : Union[str, Any] = start_length + max_new_tokens @add_start_docstrings(__lowerCAmelCase ) def __call__( self , __lowercase , __lowercase , **__lowercase ) -> Tuple: return input_ids.shape[-1] >= self.max_length class snake_case__( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , __lowercase , __lowercase = None ) -> Any: lowerCAmelCase_ : Dict = max_time lowerCAmelCase_ : Optional[int] = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(__lowerCAmelCase ) def __call__( self , __lowercase , __lowercase , **__lowercase ) -> Dict: return time.time() - self.initial_timestamp > self.max_time class snake_case__( UpperCAmelCase__ ): '''simple docstring''' @add_start_docstrings(__lowerCAmelCase ) def __call__( self , __lowercase , __lowercase , **__lowercase ) -> Tuple: return any(criteria(__lowerCAmelCase , __lowerCAmelCase ) for criteria in self ) @property def lowercase_ ( self ) -> Dict: for stopping_criterium in self: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): return stopping_criterium.max_length elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): return stopping_criterium.max_length return None def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> StoppingCriteriaList: lowerCAmelCase_ : List[Any] = stopping_criteria.max_length lowerCAmelCase_ : List[Any] = deepcopy(__snake_case ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn('''You set different `max_length` for stopping criteria and `max_length` parameter''' , __snake_case ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=__snake_case ) ) return new_stopping_criteria
707
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class snake_case__: '''simple docstring''' def __init__( self , __lowercase , __lowercase=2 , __lowercase=True , __lowercase=False , __lowercase=1_0 , __lowercase=3 , __lowercase=3_2 * 4 , __lowercase=3_2 * 6 , __lowercase=4 , __lowercase=3_2 , ) -> Union[str, Any]: lowerCAmelCase_ : str = parent lowerCAmelCase_ : Optional[Any] = batch_size lowerCAmelCase_ : List[Any] = is_training lowerCAmelCase_ : Optional[Any] = use_auxiliary_loss lowerCAmelCase_ : List[Any] = num_queries lowerCAmelCase_ : str = num_channels lowerCAmelCase_ : Dict = min_size lowerCAmelCase_ : List[str] = max_size lowerCAmelCase_ : Any = num_labels lowerCAmelCase_ : str = mask_feature_size def lowercase_ ( self ) -> List[Any]: lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __lowercase ) lowerCAmelCase_ : Optional[Any] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=__lowercase ) lowerCAmelCase_ : Union[str, Any] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__lowercase ) > 0.5 ).float() lowerCAmelCase_ : List[str] = (torch.rand((self.batch_size, self.num_labels) , device=__lowercase ) > 0.5).long() lowerCAmelCase_ : Dict = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase_ ( self ) -> List[str]: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=1_2_8 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def lowercase_ ( self ) -> Union[str, Any]: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : int = self.prepare_config_and_inputs() lowerCAmelCase_ : Union[str, Any] = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def lowercase_ ( self , __lowercase , __lowercase ) -> Any: lowerCAmelCase_ : Optional[int] = output.encoder_hidden_states lowerCAmelCase_ : List[Any] = output.pixel_decoder_hidden_states lowerCAmelCase_ : Optional[Any] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__lowercase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__lowercase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__lowercase ) , config.decoder_config.decoder_layers ) def lowercase_ ( self , __lowercase , __lowercase , __lowercase , __lowercase=False ) -> int: with torch.no_grad(): lowerCAmelCase_ : List[Any] = MaskFormerModel(config=__lowercase ) model.to(__lowercase ) model.eval() lowerCAmelCase_ : Optional[Any] = model(pixel_values=__lowercase , pixel_mask=__lowercase ) lowerCAmelCase_ : Optional[int] = model(__lowercase , output_hidden_states=__lowercase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__lowercase , __lowercase ) def lowercase_ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Any: lowerCAmelCase_ : Any = MaskFormerForInstanceSegmentation(config=__lowercase ) model.to(__lowercase ) model.eval() def comm_check_on_output(__lowercase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowerCAmelCase_ : int = model(pixel_values=__lowercase , pixel_mask=__lowercase ) lowerCAmelCase_ : Any = model(__lowercase ) comm_check_on_output(__lowercase ) lowerCAmelCase_ : List[Any] = model( pixel_values=__lowercase , pixel_mask=__lowercase , mask_labels=__lowercase , class_labels=__lowercase ) comm_check_on_output(__lowercase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class snake_case__( UpperCAmelCase__, UpperCAmelCase__, unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () SCREAMING_SNAKE_CASE__ : Tuple = ( {"""feature-extraction""": MaskFormerModel, """image-segmentation""": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : Tuple = False SCREAMING_SNAKE_CASE__ : Dict = False SCREAMING_SNAKE_CASE__ : Tuple = False SCREAMING_SNAKE_CASE__ : List[str] = False def lowercase_ ( self ) -> List[Any]: lowerCAmelCase_ : Any = MaskFormerModelTester(self ) lowerCAmelCase_ : str = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase ) def lowercase_ ( self ) -> Any: self.config_tester.run_common_tests() def lowercase_ ( self ) -> List[str]: lowerCAmelCase_ , lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__lowercase , **__lowercase , output_hidden_states=__lowercase ) def lowercase_ ( self ) -> Optional[Any]: lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*__lowercase ) @unittest.skip(reason='''MaskFormer does not use inputs_embeds''' ) def lowercase_ ( self ) -> str: pass @unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''' ) def lowercase_ ( self ) -> Optional[Any]: pass @unittest.skip(reason='''MaskFormer is not a generative model''' ) def lowercase_ ( self ) -> Optional[Any]: pass @unittest.skip(reason='''MaskFormer does not use token embeddings''' ) def lowercase_ ( self ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip( reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def lowercase_ ( self ) -> Optional[Any]: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase_ ( self ) -> Dict: pass def lowercase_ ( self ) -> List[str]: lowerCAmelCase_ , lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Tuple = model_class(__lowercase ) lowerCAmelCase_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : str = [*signature.parameters.keys()] lowerCAmelCase_ : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowercase ) @slow def lowercase_ ( self ) -> Optional[int]: for model_name in ["facebook/maskformer-swin-small-coco"]: lowerCAmelCase_ : str = MaskFormerModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def lowercase_ ( self ) -> List[Any]: lowerCAmelCase_ : Tuple = (self.model_tester.min_size,) * 2 lowerCAmelCase_ : List[Any] = { '''pixel_values''': torch.randn((2, 3, *size) , device=__lowercase ), '''mask_labels''': torch.randn((2, 1_0, *size) , device=__lowercase ), '''class_labels''': torch.zeros(2 , 1_0 , device=__lowercase ).long(), } lowerCAmelCase_ : Tuple = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(__lowercase ) lowerCAmelCase_ : Dict = model(**__lowercase ) self.assertTrue(outputs.loss is not None ) def lowercase_ ( self ) -> Dict: lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__lowercase , **__lowercase , output_hidden_states=__lowercase ) def lowercase_ ( self ) -> int: lowerCAmelCase_ , lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : List[str] = model_class(__lowercase ).to(__lowercase ) lowerCAmelCase_ : int = model(**__lowercase , output_attentions=__lowercase ) self.assertTrue(outputs.attentions is not None ) def lowercase_ ( self ) -> List[str]: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss lowerCAmelCase_ : int = self.all_model_classes[1] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() lowerCAmelCase_ : Optional[Any] = model_class(__lowercase ) model.to(__lowercase ) model.train() lowerCAmelCase_ : Optional[Any] = model(__lowercase , mask_labels=__lowercase , class_labels=__lowercase ).loss loss.backward() def lowercase_ ( self ) -> Optional[int]: # only MaskFormerForInstanceSegmentation has the loss lowerCAmelCase_ : Any = self.all_model_classes[1] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() lowerCAmelCase_ : Tuple = True lowerCAmelCase_ : Tuple = True lowerCAmelCase_ : Any = model_class(__lowercase ) model.to(__lowercase ) model.train() lowerCAmelCase_ : Any = model(__lowercase , mask_labels=__lowercase , class_labels=__lowercase ) lowerCAmelCase_ : Union[str, Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowerCAmelCase_ : str = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't lowerCAmelCase_ : str = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowerCAmelCase_ : Union[str, Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__lowercase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _UpperCAmelCase : Dict =1E-4 def lowerCAmelCase ( )-> Any: lowerCAmelCase_ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class snake_case__( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase_ ( self ) -> Union[str, Any]: return ( MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''' ) if is_vision_available() else None ) def lowercase_ ( self ) -> Any: lowerCAmelCase_ : Optional[Any] = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''' ).to(__lowercase ) lowerCAmelCase_ : Dict = self.default_image_processor lowerCAmelCase_ : int = prepare_img() lowerCAmelCase_ : Any = image_processor(__lowercase , return_tensors='''pt''' ).to(__lowercase ) lowerCAmelCase_ : Any = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(__lowercase , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): lowerCAmelCase_ : List[str] = model(**__lowercase ) lowerCAmelCase_ : Union[str, Any] = torch.tensor( [[-0.04_82, 0.92_28, 0.49_51], [-0.25_47, 0.80_17, 0.85_27], [-0.00_69, 0.33_85, -0.00_89]] ).to(__lowercase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __lowercase , atol=__lowercase ) ) lowerCAmelCase_ : List[Any] = torch.tensor( [[-0.84_22, -0.84_34, -0.97_18], [-1.01_44, -0.55_65, -0.41_95], [-1.00_38, -0.44_84, -0.19_61]] ).to(__lowercase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __lowercase , atol=__lowercase ) ) lowerCAmelCase_ : int = torch.tensor( [[0.28_52, -0.01_59, 0.97_35], [0.62_54, 0.18_58, 0.85_29], [-0.06_80, -0.41_16, 1.84_13]] ).to(__lowercase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __lowercase , atol=__lowercase ) ) def lowercase_ ( self ) -> Dict: lowerCAmelCase_ : Optional[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(__lowercase ) .eval() ) lowerCAmelCase_ : Tuple = self.default_image_processor lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : int = image_processor(__lowercase , return_tensors='''pt''' ).to(__lowercase ) lowerCAmelCase_ : Tuple = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(__lowercase , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): lowerCAmelCase_ : Dict = model(**__lowercase ) # masks_queries_logits lowerCAmelCase_ : Optional[int] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) lowerCAmelCase_ : Tuple = [ [-1.3_73_71_24, -1.7_72_49_37, -1.9_36_42_33], [-1.5_97_72_81, -1.9_86_79_39, -2.1_52_36_95], [-1.5_79_53_98, -1.9_26_98_32, -2.09_39_42], ] lowerCAmelCase_ : int = torch.tensor(__lowercase ).to(__lowercase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __lowercase , atol=__lowercase ) ) # class_queries_logits lowerCAmelCase_ : List[Any] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowerCAmelCase_ : Dict = torch.tensor( [ [1.6_512e00, -5.2_572e00, -3.3_519e00], [3.6_169e-02, -5.9_025e00, -2.9_313e00], [1.0_766e-04, -7.7_630e00, -5.1_263e00], ] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __lowercase , atol=__lowercase ) ) def lowercase_ ( self ) -> Optional[Any]: lowerCAmelCase_ : str = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''' ) .to(__lowercase ) .eval() ) lowerCAmelCase_ : int = self.default_image_processor lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : Dict = image_processor(__lowercase , return_tensors='''pt''' ).to(__lowercase ) lowerCAmelCase_ : Optional[Any] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(__lowercase , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): lowerCAmelCase_ : str = model(**__lowercase ) # masks_queries_logits lowerCAmelCase_ : List[str] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) lowerCAmelCase_ : Any = [[-0.90_46, -2.63_66, -4.60_62], [-3.41_79, -5.78_90, -8.80_57], [-4.91_79, -7.65_60, -10.77_11]] lowerCAmelCase_ : str = torch.tensor(__lowercase ).to(__lowercase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __lowercase , atol=__lowercase ) ) # class_queries_logits lowerCAmelCase_ : Optional[int] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowerCAmelCase_ : int = torch.tensor( [[4.71_88, -3.25_85, -2.88_57], [6.68_71, -2.91_81, -1.24_87], [7.24_49, -2.27_64, -2.18_74]] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __lowercase , atol=__lowercase ) ) def lowercase_ ( self ) -> Optional[Any]: lowerCAmelCase_ : Dict = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(__lowercase ) .eval() ) lowerCAmelCase_ : str = self.default_image_processor lowerCAmelCase_ : Union[str, Any] = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3) ), np.zeros((3, 8_0_0, 1_3_3_3) )] , segmentation_maps=[np.zeros((3_8_4, 3_8_4) ).astype(np.floataa ), np.zeros((3_8_4, 3_8_4) ).astype(np.floataa )] , return_tensors='''pt''' , ) lowerCAmelCase_ : Optional[Any] = inputs['''pixel_values'''].to(__lowercase ) lowerCAmelCase_ : int = [el.to(__lowercase ) for el in inputs['''mask_labels''']] lowerCAmelCase_ : Optional[Any] = [el.to(__lowercase ) for el in inputs['''class_labels''']] with torch.no_grad(): lowerCAmelCase_ : str = model(**__lowercase ) self.assertTrue(outputs.loss is not None )
619
0
"""simple docstring""" from math import pow def __lowercase ( snake_case_ : int ,snake_case_ : int ,snake_case_ : int ,snake_case_ : int ,snake_case_ : int ,) ->tuple[int, int]: '''simple docstring''' if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count __A : str = int(pow(snake_case_ ,snake_case_ ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n __A , __A : Optional[int] = backtrack( snake_case_ ,snake_case_ ,current_number + 1 ,snake_case_ ,snake_case_ ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. __A , __A : Optional[int] = backtrack( snake_case_ ,snake_case_ ,current_number + 1 ,snake_case_ ,snake_case_ ) return current_sum, solutions_count def __lowercase ( snake_case_ : int ,snake_case_ : int ) ->int: '''simple docstring''' if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( '''Invalid input\n''' '''needed_sum must be between 1 and 1000, power between 2 and 10.''' ) return backtrack(snake_case_ ,snake_case_ ,1 ,0 ,0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
177
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """sail/poolformer_s12""": """https://huggingface.co/sail/poolformer_s12/resolve/main/config.json""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = """poolformer""" def __init__( self , __lowerCamelCase=3 , __lowerCamelCase=16 , __lowerCamelCase=16 , __lowerCamelCase=3 , __lowerCamelCase=4.0 , __lowerCamelCase=[2, 2, 6, 2] , __lowerCamelCase=[64, 128, 320, 512] , __lowerCamelCase=[7, 3, 3, 3] , __lowerCamelCase=[4, 2, 2, 2] , __lowerCamelCase=[2, 1, 1, 1] , __lowerCamelCase=4 , __lowerCamelCase=0.0 , __lowerCamelCase="gelu" , __lowerCamelCase=True , __lowerCamelCase=1e-5 , __lowerCamelCase=0.0_2 , **__lowerCamelCase , ): '''simple docstring''' __A : str = num_channels __A : List[str] = patch_size __A : str = stride __A : Any = padding __A : Any = pool_size __A : Dict = hidden_sizes __A : Optional[Any] = mlp_ratio __A : Any = depths __A : List[str] = patch_sizes __A : Union[str, Any] = strides __A : List[str] = num_encoder_blocks __A : Optional[int] = drop_path_rate __A : Union[str, Any] = hidden_act __A : Optional[Any] = use_layer_scale __A : List[Any] = layer_scale_init_value __A : List[Any] = initializer_range super().__init__(**__lowerCamelCase ) class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = version.parse("""1.11""" ) @property def UpperCamelCase__( self ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCamelCase__( self ): '''simple docstring''' return 2e-3
177
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin a : Tuple = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right a : Any = 25_0004 a : Dict = 25_0020 @require_sentencepiece @require_tokenizers class a ( _lowerCamelCase , unittest.TestCase ): snake_case_ = MBartTokenizer snake_case_ = MBartTokenizerFast snake_case_ = True snake_case_ = True def A_ ( self : List[str] ): super().setUp() # We have a SentencePiece fixture for testing snake_case_ = MBartTokenizer(lowercase_ , keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self : str ): snake_case_ = MBartTokenizer(lowercase_ , keep_accents=lowercase_ ) snake_case_ = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowercase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) snake_case_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) snake_case_ = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) snake_case_ = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def A_ ( self : Optional[Any] ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return snake_case_ = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case_ = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) snake_case_ = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) snake_case_ = tempfile.mkdtemp() snake_case_ = tokenizer_r.save_pretrained(lowercase_ ) snake_case_ = tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) snake_case_ = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowercase_ , lowercase_ ) # Checks everything loads correctly in the same way snake_case_ = tokenizer_r.from_pretrained(lowercase_ ) snake_case_ = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=True snake_case_ = tempfile.mkdtemp() snake_case_ = tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ ) snake_case_ = tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files self.assertSequenceEqual(lowercase_ , lowercase_ ) # Checks everything loads correctly in the same way snake_case_ = tokenizer_r.from_pretrained(lowercase_ ) snake_case_ = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=False snake_case_ = tempfile.mkdtemp() snake_case_ = tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ ) snake_case_ = tokenizer_p.save_pretrained(lowercase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case_ = tokenizer_r.from_pretrained(lowercase_ ) snake_case_ = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) shutil.rmtree(lowercase_ ) @require_torch @require_sentencepiece @require_tokenizers class a ( unittest.TestCase ): snake_case_ = "facebook/mbart-large-en-ro" snake_case_ = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] snake_case_ = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] snake_case_ = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE] @classmethod def A_ ( cls : Tuple ): snake_case_ = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) snake_case_ = 1 return cls def A_ ( self : Tuple ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_0004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_0020 ) def A_ ( self : Optional[int] ): snake_case_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowercase_ ) def A_ ( self : str ): self.assertIn(lowercase_ , self.tokenizer.all_special_ids ) snake_case_ = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] snake_case_ = self.tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ ) snake_case_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertNotIn(self.tokenizer.eos_token , lowercase_ ) def A_ ( self : Optional[int] ): snake_case_ = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowercase_ ) snake_case_ = 10 snake_case_ = self.tokenizer(lowercase_ , max_length=lowercase_ , truncation=lowercase_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowercase_ ) self.assertEqual(len(lowercase_ ) , lowercase_ ) def A_ ( self : Any ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_0026, 25_0001] ) def A_ ( self : List[str] ): snake_case_ = tempfile.mkdtemp() snake_case_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowercase_ ) snake_case_ = MBartTokenizer.from_pretrained(lowercase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowercase_ ) @require_torch def A_ ( self : Union[str, Any] ): snake_case_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowercase_ , return_tensors='''pt''' ) snake_case_ = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def A_ ( self : Optional[Any] ): snake_case_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) snake_case_ = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) snake_case_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowercase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def A_ ( self : List[str] ): snake_case_ = self.tokenizer(self.src_text , padding=lowercase_ , truncation=lowercase_ , max_length=3 , return_tensors='''pt''' ) snake_case_ = self.tokenizer( text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=10 , return_tensors='''pt''' ) snake_case_ = targets['''input_ids'''] snake_case_ = shift_tokens_right(lowercase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def A_ ( self : Any ): snake_case_ = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(lowercase_ ) , { # A, test, EOS, en_XX '''input_ids''': [[62, 3034, 2, 25_0004]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_0001, } , )
714
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging a : Dict = logging.get_logger(__name__) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=False ) -> int: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: snake_case_ = os.path.abspath(__UpperCAmelCase ) logger.info(F"Loading PyTorch weights from {pt_path}" ) snake_case_ = torch.load(__UpperCAmelCase, map_location='''cpu''' ) logger.info(F"PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters." ) snake_case_ = convert_pytorch_state_dict_to_flax(__UpperCAmelCase, __UpperCAmelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files snake_case_ = convert_pytorch_sharded_state_dict_to_flax(__UpperCAmelCase, __UpperCAmelCase ) return flax_state_dict def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, ) -> (Tuple[str], np.ndarray): '''simple docstring''' def is_key_or_prefix_key_in_dict(__UpperCAmelCase ) -> bool: return len(set(__UpperCAmelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm snake_case_ = pt_tuple_key[:-1] + ('''scale''',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__UpperCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean snake_case_ = pt_tuple_key[:-1] + ('''mean''',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__UpperCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var snake_case_ = pt_tuple_key[:-1] + ('''var''',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__UpperCAmelCase ): return renamed_pt_tuple_key, pt_tensor # embedding snake_case_ = pt_tuple_key[:-1] + ('''embedding''',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__UpperCAmelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer snake_case_ = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__UpperCAmelCase ): snake_case_ = pt_tensor.transpose(2, 3, 1, 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer snake_case_ = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__UpperCAmelCase ): snake_case_ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight snake_case_ = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias snake_case_ = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 snake_case_ = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): snake_case_ = pt_tuple_key[-2] + '''_g''' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): snake_case_ = pt_tuple_key[-2] + '''_v''' if name is not None: snake_case_ = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' snake_case_ = {k: v.numpy() for k, v in pt_state_dict.items()} snake_case_ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: snake_case_ = flax_model.params['''params'''] else: snake_case_ = flax_model.params snake_case_ = flatten_dict(__UpperCAmelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: snake_case_ = flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(__UpperCAmelCase ) snake_case_ = {} snake_case_ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) snake_case_ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): snake_case_ = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary snake_case_ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: snake_case_ = pt_tuple_key[1:] # Correctly rename weight parameters snake_case_ ,snake_case_ = rename_key_and_reshape_tensor( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) # add model prefix if necessary snake_case_ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: snake_case_ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: snake_case_ = jnp.asarray(__UpperCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__UpperCAmelCase, __UpperCAmelCase ) continue # also add unexpected weight so that warning is thrown snake_case_ = jnp.asarray(__UpperCAmelCase ) else: # also add unexpected weight so that warning is thrown snake_case_ = jnp.asarray(__UpperCAmelCase ) return unflatten_dict(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' import torch # Load the index snake_case_ = {} for shard_file in shard_filenames: # load using msgpack utils snake_case_ = torch.load(__UpperCAmelCase ) snake_case_ = {k: v.numpy() for k, v in pt_state_dict.items()} snake_case_ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: snake_case_ = flax_model.params['''params'''] snake_case_ = flatten_dict(__UpperCAmelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: snake_case_ = flax_model.params snake_case_ = flatten_dict(__UpperCAmelCase ) snake_case_ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) snake_case_ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): snake_case_ = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary snake_case_ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: snake_case_ = pt_tuple_key[1:] # Correctly rename weight parameters snake_case_ ,snake_case_ = rename_key_and_reshape_tensor( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) # add model prefix if necessary snake_case_ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: snake_case_ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: snake_case_ = jnp.asarray(__UpperCAmelCase ) continue if "var" in flax_key[-1]: snake_case_ = jnp.asarray(__UpperCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__UpperCAmelCase, __UpperCAmelCase ) continue # also add unexpected weight so that warning is thrown snake_case_ = jnp.asarray(__UpperCAmelCase ) else: # also add unexpected weight so that warning is thrown snake_case_ = jnp.asarray(__UpperCAmelCase ) return unflatten_dict(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Any: '''simple docstring''' snake_case_ = os.path.abspath(__UpperCAmelCase ) logger.info(F"Loading Flax weights from {flax_checkpoint_path}" ) # import correct flax class snake_case_ = getattr(__UpperCAmelCase, '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(__UpperCAmelCase, '''rb''' ) as state_f: try: snake_case_ = from_bytes(__UpperCAmelCase, state_f.read() ) except UnpicklingError: raise EnvironmentError(F"Unable to convert {flax_checkpoint_path} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(__UpperCAmelCase, __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Dict: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights snake_case_ = flatten_dict(jax.tree_util.tree_map(lambda __UpperCAmelCase : x.dtype == jnp.bfloataa, __UpperCAmelCase ) ).values() if any(__UpperCAmelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) snake_case_ = jax.tree_util.tree_map( lambda __UpperCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params, __UpperCAmelCase ) snake_case_ = flatten_dict(__UpperCAmelCase ) snake_case_ = pt_model.state_dict() snake_case_ = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) snake_case_ = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys snake_case_ = [] snake_case_ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): snake_case_ = flax_key_tuple[0] == pt_model.base_model_prefix snake_case_ = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: snake_case_ = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: snake_case_ = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__UpperCAmelCase ) not in pt_model_dict: # conv layer snake_case_ = flax_key_tuple[:-1] + ('''weight''',) snake_case_ = jnp.transpose(__UpperCAmelCase, (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__UpperCAmelCase ) not in pt_model_dict: # linear layer snake_case_ = flax_key_tuple[:-1] + ('''weight''',) snake_case_ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: snake_case_ = flax_key_tuple[:-1] + ('''weight''',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: snake_case_ = flax_key_tuple[:-1] + ('''running_mean''',) elif "var" in flax_key_tuple[-1]: snake_case_ = flax_key_tuple[:-1] + ('''running_var''',) if "batch_stats" in flax_state: snake_case_ = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: snake_case_ = '''.'''.join(__UpperCAmelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. snake_case_ = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: snake_case_ = key.split('''.''' ) snake_case_ = None if key_components[-3::2] == ["parametrizations", "original0"]: snake_case_ = key_components[-2] + '''_g''' elif key_components[-3::2] == ["parametrizations", "original1"]: snake_case_ = key_components[-2] + '''_v''' if name is not None: snake_case_ = key_components[:-3] + [name] snake_case_ = '''.'''.join(__UpperCAmelCase ) snake_case_ = key if flax_key in special_pt_names: snake_case_ = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict snake_case_ = np.asarray(__UpperCAmelCase ) if not isinstance(__UpperCAmelCase, np.ndarray ) else flax_tensor snake_case_ = torch.from_numpy(__UpperCAmelCase ) # remove from missing keys missing_keys.remove(__UpperCAmelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__UpperCAmelCase ) pt_model.load_state_dict(__UpperCAmelCase ) # re-transform missing_keys to list snake_case_ = list(__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(F"All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n" ) if len(__UpperCAmelCase ) > 0: logger.warning( F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" ''' use it for predictions and inference.''' ) else: logger.warning( F"All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n" '''If your task is similar to the task the model of the checkpoint was trained on, ''' F"you can already use {pt_model.__class__.__name__} for predictions without further training." ) return pt_model
593
0
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin _lowerCamelCase : Dict = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowercase_ = BartphoTokenizer lowercase_ = False lowercase_ = True def __UpperCamelCase ( self ): '''simple docstring''' super().setUp() __A =['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] __A =dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) __A ={'''unk_token''': '''<unk>'''} __A =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ) with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(f'''{token} {vocab_tokens[token]}\n''' ) __A =BartphoTokenizer(lowercase__ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self , **lowercase__ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' __A ='''This is a là test''' __A ='''This is a<unk><unk> test''' return input_text, output_text def __UpperCamelCase ( self ): '''simple docstring''' __A =BartphoTokenizer(lowercase__ , self.monolingual_vocab_file , **self.special_tokens_map ) __A ='''This is a là test''' __A ='''▁This ▁is ▁a ▁l à ▁t est'''.split() __A =tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) __A =tokens + [tokenizer.unk_token] __A =[4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ )
184
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCamelCase : Tuple = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[str] = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _lowerCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
184
1
'''simple docstring''' import math _A: Tuple = 10 _A: Union[str, Any] = 7 _A: Optional[Any] = BALLS_PER_COLOUR * NUM_COLOURS def _lowerCAmelCase ( _lowerCAmelCase = 20 )-> str: __UpperCAmelCase = math.comb(_lowerCAmelCase , _lowerCAmelCase ) __UpperCAmelCase = math.comb(NUM_BALLS - BALLS_PER_COLOUR , _lowerCAmelCase ) __UpperCAmelCase = NUM_COLOURS * (1 - missing_colour / total) return F'{result:.9f}' if __name__ == "__main__": print(solution(20))
617
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter _A: str = """Create a default config file for Accelerate with only a few flags set.""" def _lowerCAmelCase ( _lowerCAmelCase="no" , _lowerCAmelCase = default_json_config_file , _lowerCAmelCase = False )-> List[Any]: __UpperCAmelCase = Path(_lowerCAmelCase ) path.parent.mkdir(parents=_lowerCAmelCase , exist_ok=_lowerCAmelCase ) if path.exists(): print( F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' ) return False __UpperCAmelCase = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' ) __UpperCAmelCase = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): __UpperCAmelCase = torch.cuda.device_count() __UpperCAmelCase = num_gpus __UpperCAmelCase = False if num_gpus > 1: __UpperCAmelCase = 'MULTI_GPU' else: __UpperCAmelCase = 'NO' elif is_xpu_available() and use_xpu: __UpperCAmelCase = torch.xpu.device_count() __UpperCAmelCase = num_xpus __UpperCAmelCase = False if num_xpus > 1: __UpperCAmelCase = 'MULTI_XPU' else: __UpperCAmelCase = 'NO' elif is_npu_available(): __UpperCAmelCase = torch.npu.device_count() __UpperCAmelCase = num_npus __UpperCAmelCase = False if num_npus > 1: __UpperCAmelCase = 'MULTI_NPU' else: __UpperCAmelCase = 'NO' else: __UpperCAmelCase = 0 __UpperCAmelCase = True __UpperCAmelCase = 1 __UpperCAmelCase = 'NO' __UpperCAmelCase = ClusterConfig(**_lowerCAmelCase ) config.to_json_file(_lowerCAmelCase ) return path def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase )-> List[str]: __UpperCAmelCase = parser.add_parser('default' , parents=_lowerCAmelCase , help=_lowerCAmelCase , formatter_class=_lowerCAmelCase ) parser.add_argument( '--config_file' , default=_lowerCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=_lowerCAmelCase , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=_lowerCAmelCase ) return parser def _lowerCAmelCase ( _lowerCAmelCase )-> Union[str, Any]: __UpperCAmelCase = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'accelerate configuration saved at {config_file}' )
617
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Optional[Any] = { '''configuration_clap''': [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapAudioConfig''', '''ClapConfig''', '''ClapTextConfig''', ], '''processing_clap''': ['''ClapProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapModel''', '''ClapPreTrainedModel''', '''ClapTextModel''', '''ClapTextModelWithProjection''', '''ClapAudioModel''', '''ClapAudioModelWithProjection''', ] a__ : Dict = ['''ClapFeatureExtractor'''] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys a__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
368
'''simple docstring''' import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor a__ : int = logging.get_logger(__name__) class __snake_case ( __magic_name__ ): def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ) -> None: warnings.warn( 'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PerceiverImageProcessor instead.' , UpperCamelCase_ , ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
368
1
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable __UpperCAmelCase = { """configuration_gpt_neox_japanese""": ["""GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXJapaneseConfig"""], """tokenization_gpt_neox_japanese""": ["""GPTNeoXJapaneseTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ """GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXJapaneseForCausalLM""", """GPTNeoXJapaneseLayer""", """GPTNeoXJapaneseModel""", """GPTNeoXJapanesePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
721
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED __UpperCAmelCase = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } __UpperCAmelCase = { 'allenai/led-base-16384': 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : Tuple = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) UpperCAmelCase__ : int = bs[:] UpperCAmelCase__ : Union[str, Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(__UpperCamelCase ) cs.append(2**8 + n ) n += 1 UpperCAmelCase__ : Tuple = [chr(__UpperCamelCase ) for n in cs] return dict(zip(__UpperCamelCase , __UpperCamelCase ) ) def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : int = set() UpperCAmelCase__ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase__ : Optional[Any] = char return pairs class __lowercase ( __lowerCamelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["""input_ids""", """attention_mask"""] def __init__( self : Union[str, Any] ,A : Any ,A : Dict ,A : Optional[Any]="replace" ,A : Dict="<s>" ,A : str="</s>" ,A : str="</s>" ,A : Dict="<s>" ,A : List[str]="<unk>" ,A : Union[str, Any]="<pad>" ,A : Any="<mask>" ,A : str=False ,**A : Optional[Any] ,): '''simple docstring''' UpperCAmelCase__ : List[str] = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else bos_token UpperCAmelCase__ : Any = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else eos_token UpperCAmelCase__ : List[str] = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else sep_token UpperCAmelCase__ : Tuple = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else cls_token UpperCAmelCase__ : Tuple = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else unk_token UpperCAmelCase__ : List[str] = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase__ : Union[str, Any] = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token super().__init__( errors=A ,bos_token=A ,eos_token=A ,unk_token=A ,sep_token=A ,cls_token=A ,pad_token=A ,mask_token=A ,add_prefix_space=A ,**A ,) with open(A ,encoding="""utf-8""" ) as vocab_handle: UpperCAmelCase__ : Tuple = json.load(A ) UpperCAmelCase__ : Any = {v: k for k, v in self.encoder.items()} UpperCAmelCase__ : List[Any] = errors # how to handle errors in decoding UpperCAmelCase__ : List[str] = bytes_to_unicode() UpperCAmelCase__ : int = {v: k for k, v in self.byte_encoder.items()} with open(A ,encoding="""utf-8""" ) as merges_handle: UpperCAmelCase__ : List[Any] = merges_handle.read().split("""\n""" )[1:-1] UpperCAmelCase__ : Tuple = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase__ : Any = dict(zip(A ,range(len(A ) ) ) ) UpperCAmelCase__ : Optional[Any] = {} UpperCAmelCase__ : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase__ : Union[str, Any] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def __lowercase ( self : List[Any] ): '''simple docstring''' return len(self.encoder ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def __lowercase ( self : Optional[int] ,A : Union[str, Any] ): '''simple docstring''' if token in self.cache: return self.cache[token] UpperCAmelCase__ : Optional[Any] = tuple(A ) UpperCAmelCase__ : int = get_pairs(A ) if not pairs: return token while True: UpperCAmelCase__ : str = min(A ,key=lambda A : self.bpe_ranks.get(A ,float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase__ , UpperCAmelCase__ : Tuple = bigram UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : Any = 0 while i < len(A ): try: UpperCAmelCase__ : Optional[Any] = word.index(A ,A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase__ : int = j if word[i] == first and i < len(A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase__ : List[str] = tuple(A ) UpperCAmelCase__ : str = new_word if len(A ) == 1: break else: UpperCAmelCase__ : str = get_pairs(A ) UpperCAmelCase__ : int = """ """.join(A ) UpperCAmelCase__ : List[str] = word return word def __lowercase ( self : Optional[Any] ,A : Any ): '''simple docstring''' UpperCAmelCase__ : Any = [] for token in re.findall(self.pat ,A ): UpperCAmelCase__ : Any = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A ).split(""" """ ) ) return bpe_tokens def __lowercase ( self : Dict ,A : int ): '''simple docstring''' return self.encoder.get(A ,self.encoder.get(self.unk_token ) ) def __lowercase ( self : Dict ,A : Optional[Any] ): '''simple docstring''' return self.decoder.get(A ) def __lowercase ( self : Optional[Any] ,A : int ): '''simple docstring''' UpperCAmelCase__ : int = """""".join(A ) UpperCAmelCase__ : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" ,errors=self.errors ) return text def __lowercase ( self : Optional[int] ,A : str ,A : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(A ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase__ : Any = os.path.join( A ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase__ : List[str] = os.path.join( A ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(A ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=A ,ensure_ascii=A ) + """\n""" ) UpperCAmelCase__ : Any = 0 with open(A ,"""w""" ,encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda A : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) UpperCAmelCase__ : Optional[int] = token_index writer.write(""" """.join(A ) + """\n""" ) index += 1 return vocab_file, merge_file def __lowercase ( self : Union[str, Any] ,A : List[int] ,A : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ : Dict = [self.cls_token_id] UpperCAmelCase__ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowercase ( self : int ,A : List[int] ,A : Optional[List[int]] = None ,A : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def __lowercase ( self : Tuple ,A : List[int] ,A : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : str = [self.sep_token_id] UpperCAmelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowercase ( self : Any ,A : str ,A : List[Any]=False ,**A : Tuple ): '''simple docstring''' UpperCAmelCase__ : Any = kwargs.pop("""add_prefix_space""" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A ) > 0 and not text[0].isspace()): UpperCAmelCase__ : Dict = """ """ + text return (text, kwargs) def __lowercase ( self : Dict ,A : Union[Dict[str, EncodedInput], BatchEncoding] ,A : Optional[int] = None ,A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD ,A : Optional[int] = None ,A : Optional[bool] = None ,): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = super()._pad( encoded_inputs=A ,max_length=A ,padding_strategy=A ,pad_to_multiple_of=A ,return_attention_mask=A ,) # Load from model defaults if return_attention_mask is None: UpperCAmelCase__ : str = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCAmelCase__ : Optional[int] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCAmelCase__ : Tuple = len(encoded_inputs["""global_attention_mask"""] ) != len(A ) if needs_to_be_padded: UpperCAmelCase__ : List[Any] = len(A ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCAmelCase__ : Tuple = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": UpperCAmelCase__ : Dict = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
194
0
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> float: return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(snake_case__ , snake_case__ ) ) ) def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> list[list[list[float] | float]]: if dataset.ndim != value_array.ndim: UpperCamelCase : int = ( 'Wrong input data\'s dimensions... ' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(snake_case__ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCamelCase : str = ( 'Wrong input data\'s shape... ' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(snake_case__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: UpperCamelCase : Dict = ( 'Input data have different datatype... ' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(snake_case__ ) UpperCamelCase : List[Any] = [] for value in value_array: UpperCamelCase : Optional[Any] = euclidean(snake_case__ , dataset[0] ) UpperCamelCase : Dict = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCamelCase : Union[str, Any] = euclidean(snake_case__ , snake_case__ ) if dist > temp_dist: UpperCamelCase : str = temp_dist UpperCamelCase : List[str] = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> float: return np.dot(snake_case__ , snake_case__ ) / (norm(snake_case__ ) * norm(snake_case__ )) if __name__ == "__main__": import doctest doctest.testmod()
40
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = VideoToVideoSDPipeline _lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""} ) - {"""image""", """width""", """height"""} _lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""} ) - {"""image"""} _lowercase = PipelineTesterMixin.required_optional_params - {"""latents"""} _lowercase = False # No `output_type`. _lowercase = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def snake_case_ ( self: List[str] ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D'),up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D'),cross_attention_dim=32,attention_head_dim=4,) __UpperCamelCase = DDIMScheduler( beta_start=0.0_0_0_8_5,beta_end=0.0_1_2,beta_schedule='scaled_linear',clip_sample=A_,set_alpha_to_one=A_,) torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,sample_size=128,) torch.manual_seed(0 ) __UpperCamelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,hidden_act='gelu',projection_dim=512,) __UpperCamelCase = CLIPTextModel(A_ ) __UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __UpperCamelCase = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def snake_case_ ( self: Union[str, Any],A_: Any,A_: Any=0 ): '''simple docstring''' __UpperCamelCase = floats_tensor((1, 3, 3, 32, 32),rng=random.Random(A_ ) ).to(A_ ) if str(A_ ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(A_ ) else: __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'video': video, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = VideoToVideoSDPipeline(**A_ ) __UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = self.get_dummy_inputs(A_ ) __UpperCamelCase = 'np' __UpperCamelCase = sd_pipe(**A_ ).frames __UpperCamelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) __UpperCamelCase = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(),reason='XFormers attention is only available with CUDA and `xformers` installed',) def snake_case_ ( self: Any ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A_,expected_max_diff=5E-3 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def snake_case_ ( self: str ): '''simple docstring''' pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def snake_case_ ( self: int ): '''simple docstring''' pass def snake_case_ ( self: Any ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL',torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames __UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 ) __UpperCamelCase = torch.randn((1, 10, 3, 1024, 576),generator=A_ ) __UpperCamelCase = video.to('cuda' ) __UpperCamelCase = 'Spiderman is surfing' __UpperCamelCase = pipe(A_,video=A_,generator=A_,num_inference_steps=3,output_type='pt' ).frames __UpperCamelCase = np.array([-1.0_4_5_8_9_8_4, -1.1_2_7_9_2_9_7, -0.9_6_6_3_0_8_6, -0.9_1_5_0_3_9_0_6, -0.7_5_0_9_7_6_5_6] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
1
0
"""simple docstring""" import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class UpperCamelCase : def __init__(self : Any , _A : Tuple , _A : Any=13 , _A : Union[str, Any]=7 , _A : Dict=True , _A : Any=True , _A : str=True , _A : Tuple=True , _A : Dict=99 , _A : int=32 , _A : int=5 , _A : str=4 , _A : Optional[int]=4 , _A : List[str]="gelu" , _A : List[str]=0.0 , _A : str=0.1 , _A : str=True , _A : Any=5_12 , _A : List[str]=16 , _A : List[str]=2 , _A : Tuple=0.02 , _A : Any=3 , _A : List[Any]=4 , _A : int=None , ) -> Optional[Any]: __snake_case : List[str] = parent __snake_case : str = batch_size __snake_case : int = seq_length __snake_case : Union[str, Any] = is_training __snake_case : int = use_input_mask __snake_case : List[str] = use_token_type_ids __snake_case : Optional[Any] = use_labels __snake_case : int = vocab_size __snake_case : str = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : List[str] = num_attention_heads __snake_case : Dict = intermediate_multiple_size __snake_case : Dict = hidden_act __snake_case : Union[str, Any] = hidden_dropout __snake_case : Any = attention_dropout __snake_case : str = weight_tying __snake_case : Optional[int] = max_position_embeddings __snake_case : Optional[int] = type_vocab_size __snake_case : int = type_sequence_label_size __snake_case : Tuple = initializer_range __snake_case : Optional[int] = num_labels __snake_case : Tuple = num_choices __snake_case : Union[str, Any] = scope def _lowercase (self : List[str]) -> Dict: __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __snake_case : str = None if self.use_input_mask: __snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length]) __snake_case : Tuple = None if self.use_labels: __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __snake_case : Optional[Any] = self.get_config() return config, input_ids, input_mask, token_labels def _lowercase (self : Dict) -> int: return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_A , initializer_range=self.initializer_range , ) def _lowercase (self : str) -> Optional[int]: __snake_case , __snake_case , __snake_case , __snake_case : Dict = self.prepare_config_and_inputs() __snake_case : List[str] = True return config, input_ids, input_mask, token_labels def _lowercase (self : Any , _A : Optional[Any] , _A : Any , _A : List[str]) -> Dict: __snake_case : Optional[int] = GPTNeoXJapaneseModel(config=_A) model.to(_A) model.eval() __snake_case : Dict = model(_A , attention_mask=_A) __snake_case : int = model(_A) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _lowercase (self : int , _A : Optional[Any] , _A : Optional[Any] , _A : Tuple) -> Dict: __snake_case : int = True __snake_case : int = GPTNeoXJapaneseModel(_A) model.to(_A) model.eval() __snake_case : Optional[Any] = model(_A , attention_mask=_A) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _lowercase (self : Union[str, Any] , _A : Any , _A : List[str] , _A : Any , _A : str) -> Optional[Any]: __snake_case : List[str] = GPTNeoXJapaneseForCausalLM(config=_A) model.to(_A) model.eval() __snake_case : int = model(_A , attention_mask=_A , labels=_A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowercase (self : str , _A : Any , _A : Optional[Any] , _A : Optional[Any]) -> Union[str, Any]: __snake_case : Tuple = True __snake_case : Union[str, Any] = GPTNeoXJapaneseForCausalLM(config=_A) model.to(_A) model.eval() # first forward pass __snake_case : List[Any] = model(_A , attention_mask=_A , use_cache=_A) __snake_case : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __snake_case : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size) __snake_case : str = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and __snake_case : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1) __snake_case : List[Any] = torch.cat([input_mask, next_mask] , dim=-1) __snake_case : Optional[Any] = model(_A , attention_mask=_A , output_hidden_states=_A) __snake_case : List[Any] = output_from_no_past['hidden_states'][0] __snake_case : Any = model( _A , attention_mask=_A , past_key_values=_A , output_hidden_states=_A , )['hidden_states'][0] # select random slice __snake_case : List[Any] = ids_tensor((1,) , output_from_past.shape[-1]).item() __snake_case : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case : Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_A , _A , atol=1E-3)) def _lowercase (self : int) -> Any: __snake_case : List[Any] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : str = config_and_inputs __snake_case : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase , lowercase , unittest.TestCase ): UpperCAmelCase : Dict = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () UpperCAmelCase : Tuple = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () UpperCAmelCase : Any = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) UpperCAmelCase : str = False UpperCAmelCase : Union[str, Any] = False UpperCAmelCase : str = False UpperCAmelCase : List[str] = False def _lowercase (self : Any) -> str: __snake_case : List[Any] = GPTNeoXJapaneseModelTester(self) __snake_case : Union[str, Any] = ConfigTester(self , config_class=_A , hidden_size=37) def _lowercase (self : Optional[int]) -> List[Any]: self.config_tester.run_common_tests() def _lowercase (self : Optional[Any]) -> List[str]: __snake_case , __snake_case , __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_A , _A , _A) def _lowercase (self : Any) -> List[str]: __snake_case , __snake_case , __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_A , _A , _A) def _lowercase (self : Dict) -> Dict: # This regression test was failing with PyTorch < 1.3 __snake_case , __snake_case , __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_decoder() __snake_case : str = None self.model_tester.create_and_check_model_as_decoder(_A , _A , _A) def _lowercase (self : Tuple) -> str: __snake_case , __snake_case , __snake_case , __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_A , _A , _A) def _lowercase (self : List[Any]) -> List[Any]: __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_A) @slow def _lowercase (self : Any) -> Any: __snake_case : Dict = 'abeja/gpt-neox-japanese-2.7b' __snake_case : List[Any] = ['データサイエンティストとは、', '100年後に必要とされる会社は、', 'フルリモートの環境で働くために必要なことは、', '国境の長いトンネルを抜けると', '美味しい日本食といえば、'] __snake_case : List[str] = [ 'データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。', '100年後に必要とされる会社は、「人」が中心の会社です。', 'フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。', '国境の長いトンネルを抜けると、そこは雪国だった。', '美味しい日本食といえば、やっぱりお寿司ですよね。', ] __snake_case : int = GPTNeoXJapaneseTokenizer.from_pretrained(_A) __snake_case : Union[str, Any] = GPTNeoXJapaneseForCausalLM.from_pretrained(_A) __snake_case : List[str] = [] for prompt in prompts: __snake_case : Union[str, Any] = tokenizer(_A , return_tensors='pt').input_ids __snake_case : Tuple = model.generate(_A , max_length=50) __snake_case : List[str] = tokenizer.batch_decode(_A , skip_special_tokens=_A) predicted_outputs += generated_string self.assertListEqual(_A , _A)
192
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : str ) -> list[int]: '''simple docstring''' __snake_case : Union[str, Any] = int(UpperCAmelCase_ ) # Initialize Result __snake_case : int = [] # Traverse through all denomination for denomination in reversed(UpperCAmelCase_ ): # Find denominations while int(UpperCAmelCase_ ) >= int(UpperCAmelCase_ ): total_value -= int(UpperCAmelCase_ ) answer.append(UpperCAmelCase_ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": _a : Optional[int]= [] _a : Optional[int]= "0" if ( input("Do you want to enter your denominations ? (yY/n): ").strip().lower() == "y" ): _a : int= int(input("Enter the number of denominations you want to add: ").strip()) for i in range(0, n): denominations.append(int(input(f'''Denomination {i}: ''').strip())) _a : Optional[int]= input("Enter the change you want to make in Indian Currency: ").strip() else: # All denominations of Indian Currency if user does not enter _a : Tuple= [1, 2, 5, 10, 20, 50, 100, 500, 2_000] _a : List[str]= input("Enter the change you want to make: ").strip() if int(value) == 0 or int(value) < 0: print("The total value cannot be zero or negative.") else: print(f'''Following is minimal change for {value}: ''') _a : List[Any]= find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=" ")
192
1
from math import pi def lowerCAmelCase__ ( a__ , a__ ) ->List[str]: '''simple docstring''' return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
547
"""simple docstring""" from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge A__ : Any = [ 'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the' ' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe' ' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.', 'The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal' ' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s' ' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the' ' body.', 'Amnesty International releases its annual report on the death penalty. The report catalogs the use of' ' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the' ' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital' ' punishment.', ] A__ : Tuple = [ 'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .' ' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz' ' had informed his Lufthansa training school of an episode of severe depression, airline says .', 'Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .' ' Israel and the United States opposed the move, which could open the door to war crimes investigations against' ' Israelis .', 'Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to' ' death . Organization claims that governments around the world are using the threat of terrorism to advance' ' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death' ' sentences up by 28% .', ] def _lowerCAmelCase ( ): """simple docstring""" _lowercase: Any = calculate_rouge(_UpperCamelCase , _UpperCamelCase , bootstrap_aggregation=_UpperCamelCase , rouge_keys=['''rouge2''', '''rougeL'''] ) assert isinstance(_UpperCamelCase , _UpperCamelCase ) _lowercase: List[Any] = calculate_rouge(_UpperCamelCase , _UpperCamelCase , bootstrap_aggregation=_UpperCamelCase , rouge_keys=['''rouge2'''] ) assert ( pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean() ) def _lowerCAmelCase ( ): """simple docstring""" _lowercase: Dict = '''rougeLsum''' _lowercase: Dict = calculate_rouge(_UpperCamelCase , _UpperCamelCase , newline_sep=_UpperCamelCase , rouge_keys=[k] )[k] _lowercase: List[str] = calculate_rouge(_UpperCamelCase , _UpperCamelCase , newline_sep=_UpperCamelCase , rouge_keys=[k] )[k] assert score > score_no_sep def _lowerCAmelCase ( ): """simple docstring""" _lowercase: Tuple = ['''rouge1''', '''rouge2''', '''rougeL'''] _lowercase: Dict = calculate_rouge(_UpperCamelCase , _UpperCamelCase , newline_sep=_UpperCamelCase , rouge_keys=_UpperCamelCase ) _lowercase: Optional[int] = calculate_rouge(_UpperCamelCase , _UpperCamelCase , newline_sep=_UpperCamelCase , rouge_keys=_UpperCamelCase ) assert score_sep == score_no_sep def _lowerCAmelCase ( ): """simple docstring""" _lowercase: Union[str, Any] = [ '''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''', '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''', ] _lowercase: Union[str, Any] = [ '''Margot Frank, died in 1945, a month earlier than previously thought.''', '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of''' ''' the final seconds on board Flight 9525.''', ] assert calculate_rouge(_UpperCamelCase , _UpperCamelCase , newline_sep=_UpperCamelCase ) == calculate_rouge(_UpperCamelCase , _UpperCamelCase , newline_sep=_UpperCamelCase ) def _lowerCAmelCase ( ): """simple docstring""" _lowercase: int = [ '''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ''' ] _lowercase: Union[str, Any] = [ ''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .''' ] _lowercase: List[Any] = calculate_rouge(_UpperCamelCase , _UpperCamelCase , rouge_keys=['''rougeLsum'''] , newline_sep=_UpperCamelCase )['''rougeLsum'''] _lowercase: Union[str, Any] = calculate_rouge(_UpperCamelCase , _UpperCamelCase , rouge_keys=['''rougeLsum'''] )['''rougeLsum'''] assert new_score > prev_score def _lowerCAmelCase ( ): """simple docstring""" _lowercase: List[str] = Path('''examples/seq2seq/test_data/wmt_en_ro''' ) _lowercase: int = calculate_rouge_path(data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) ) assert isinstance(_UpperCamelCase , _UpperCamelCase ) _lowercase: Optional[int] = calculate_rouge_path( data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) , bootstrap_aggregation=_UpperCamelCase ) assert isinstance(_UpperCamelCase , _UpperCamelCase )
353
0
'''simple docstring''' def lowerCAmelCase_ ( _lowerCamelCase: int , _lowerCamelCase: Tuple ): __SCREAMING_SNAKE_CASE : list[list[str]] = [[] for _ in range(_lowerCamelCase )] __SCREAMING_SNAKE_CASE : Optional[Any] = key - 1 if key <= 0: raise ValueError("""Height of grid can\'t be 0 or negative""" ) if key == 1 or len(_lowerCamelCase ) <= key: return input_string for position, character in enumerate(_lowerCamelCase ): __SCREAMING_SNAKE_CASE : Any = position % (lowest * 2) # puts it in bounds __SCREAMING_SNAKE_CASE : Any = min(_lowerCamelCase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Any = [''.join(_lowerCamelCase ) for row in temp_grid] __SCREAMING_SNAKE_CASE : List[Any] = ''.join(_lowerCamelCase ) return output_string def lowerCAmelCase_ ( _lowerCamelCase: str , _lowerCamelCase: Optional[int] ): __SCREAMING_SNAKE_CASE : Dict = [] __SCREAMING_SNAKE_CASE : Union[str, Any] = key - 1 if key <= 0: raise ValueError("""Height of grid can\'t be 0 or negative""" ) if key == 1: return input_string __SCREAMING_SNAKE_CASE : list[list[str]] = [[] for _ in range(_lowerCamelCase )] # generates template for position in range(len(_lowerCamelCase ) ): __SCREAMING_SNAKE_CASE : Optional[int] = position % (lowest * 2) # puts it in bounds __SCREAMING_SNAKE_CASE : Any = min(_lowerCamelCase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("""*""" ) __SCREAMING_SNAKE_CASE : List[Any] = 0 for row in temp_grid: # fills in the characters __SCREAMING_SNAKE_CASE : str = input_string[counter : counter + len(_lowerCamelCase )] grid.append(list(_lowerCamelCase ) ) counter += len(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = '' # reads as zigzag for position in range(len(_lowerCamelCase ) ): __SCREAMING_SNAKE_CASE : Dict = position % (lowest * 2) # puts it in bounds __SCREAMING_SNAKE_CASE : Any = min(_lowerCamelCase , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def lowerCAmelCase_ ( _lowerCamelCase: Any ): __SCREAMING_SNAKE_CASE : int = {} for key_guess in range(1 , len(_lowerCamelCase ) ): # tries every key __SCREAMING_SNAKE_CASE : str = decrypt(_lowerCamelCase , _lowerCamelCase ) return results if __name__ == "__main__": import doctest doctest.testmod()
711
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging UpperCamelCase__ : Tuple = logging.get_logger(__name__) UpperCamelCase__ : List[str] = { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/config.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/config.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/config.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/config.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/config.json''', } class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : Union[str, Any] = '''t5''' _A : Optional[Any] = ['''past_key_values'''] _A : Any = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : Union[str, Any] , lowerCAmelCase__ : List[str]=3_2_1_2_8 , lowerCAmelCase__ : Dict=5_1_2 , lowerCAmelCase__ : str=6_4 , lowerCAmelCase__ : Tuple=2_0_4_8 , lowerCAmelCase__ : Optional[Any]=6 , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Any=8 , lowerCAmelCase__ : Dict=3_2 , lowerCAmelCase__ : Dict=1_2_8 , lowerCAmelCase__ : Any=0.1 , lowerCAmelCase__ : str=1E-6 , lowerCAmelCase__ : str=1.0 , lowerCAmelCase__ : Optional[Any]="relu" , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Optional[Any]=0 , lowerCAmelCase__ : List[Any]=1 , **lowerCAmelCase__ : Dict , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = vocab_size __SCREAMING_SNAKE_CASE : str = d_model __SCREAMING_SNAKE_CASE : str = d_kv __SCREAMING_SNAKE_CASE : Optional[Any] = d_ff __SCREAMING_SNAKE_CASE : Optional[Any] = num_layers __SCREAMING_SNAKE_CASE : List[str] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __SCREAMING_SNAKE_CASE : Optional[int] = num_heads __SCREAMING_SNAKE_CASE : Any = relative_attention_num_buckets __SCREAMING_SNAKE_CASE : int = relative_attention_max_distance __SCREAMING_SNAKE_CASE : Optional[int] = dropout_rate __SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_epsilon __SCREAMING_SNAKE_CASE : Optional[int] = initializer_factor __SCREAMING_SNAKE_CASE : Any = feed_forward_proj __SCREAMING_SNAKE_CASE : str = use_cache __SCREAMING_SNAKE_CASE : List[str] = self.feed_forward_proj.split("""-""" ) __SCREAMING_SNAKE_CASE : Tuple = act_info[-1] __SCREAMING_SNAKE_CASE : int = act_info[0] == """gated""" if len(lowerCAmelCase__ ) > 1 and act_info[0] != "gated" or len(lowerCAmelCase__ ) > 2: raise ValueError( F"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __SCREAMING_SNAKE_CASE : List[Any] = """gelu_new""" super().__init__( pad_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ , ) class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' @property def UpperCamelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: __SCREAMING_SNAKE_CASE : Optional[Any] = """past_encoder_sequence + sequence""" __SCREAMING_SNAKE_CASE : Optional[Any] = {0: """batch"""} __SCREAMING_SNAKE_CASE : Optional[int] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: __SCREAMING_SNAKE_CASE : List[Any] = {0: """batch""", 1: """decoder_sequence"""} __SCREAMING_SNAKE_CASE : Optional[Any] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase__ , direction="""inputs""" ) return common_inputs @property def UpperCamelCase__ ( self : List[str] ): """simple docstring""" return 1_3
178
0
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("dataset_size" , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize("input_in_memory_max_size" , ["default", 0, 100 * 2**20, 900 * 2**20] ) def UpperCamelCase ( _A : str , _A : Dict , _A : Optional[int] )-> List[str]: """simple docstring""" if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , "IN_MEMORY_MAX_SIZE" , A_ ) A__ = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: A__ = dataset_size < in_memory_max_size else: A__ = False A__ = is_small_dataset(A_ ) assert result == expected
491
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor a_ = logging.get_logger(__name__) class UpperCAmelCase__ ( snake_case ): """simple docstring""" def __init__( self: Tuple , *__lowerCAmelCase: str , **__lowerCAmelCase: Optional[Any] ) -> None: '''simple docstring''' warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead." , __lowerCAmelCase , ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
221
0
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowercase__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase): UpperCamelCase_ = IFPipeline UpperCamelCase_ = TEXT_TO_IMAGE_PARAMS - {"""width""", """height""", """latents"""} UpperCamelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase_ = PipelineTesterMixin.required_optional_params - {"""latents"""} def __A ( self : Tuple ): '''simple docstring''' return self._get_dummy_components() def __A ( self : int , UpperCamelCase__ : Dict , UpperCamelCase__ : int=0 ): '''simple docstring''' if str(UpperCamelCase__ ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE : Dict = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : int = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __A ( self : List[str] ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def __A ( self : Any ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def __A ( self : Union[str, Any] ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __A ( self : List[Any] ): '''simple docstring''' self._test_save_load_local() def __A ( self : List[str] ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __A ( self : Tuple ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class lowercase__ ( unittest.TestCase): def __A ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = IFPipeline.from_pretrained('''DeepFloyd/IF-I-XL-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : str = IFSuperResolutionPipeline.from_pretrained( '''DeepFloyd/IF-II-L-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('''cuda''' ) SCREAMING_SNAKE_CASE : Dict = pipe_a.encode_prompt('''anime turtle''' , device='''cuda''' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : str = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img SCREAMING_SNAKE_CASE : Optional[int] = IFImgaImgPipeline(**pipe_a.components ) SCREAMING_SNAKE_CASE : Optional[int] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting SCREAMING_SNAKE_CASE : Tuple = IFInpaintingPipeline(**pipe_a.components ) SCREAMING_SNAKE_CASE : Optional[int] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __A ( self : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict ): '''simple docstring''' _start_torch_memory_measurement() SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe_a( prompt_embeds=UpperCamelCase__ , negative_prompt_embeds=UpperCamelCase__ , num_inference_steps=2 , generator=UpperCamelCase__ , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 SCREAMING_SNAKE_CASE : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy''' ) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__ ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = pipe_a( prompt_embeds=UpperCamelCase__ , negative_prompt_embeds=UpperCamelCase__ , image=UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Tuple = output.images[0] assert image.shape == (256, 256, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__ ) def __A ( self : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str ): '''simple docstring''' _start_torch_memory_measurement() SCREAMING_SNAKE_CASE : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = pipe_a( prompt_embeds=UpperCamelCase__ , negative_prompt_embeds=UpperCamelCase__ , image=UpperCamelCase__ , num_inference_steps=2 , generator=UpperCamelCase__ , output_type='''np''' , ) SCREAMING_SNAKE_CASE : int = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE : Optional[int] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 SCREAMING_SNAKE_CASE : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy''' ) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__ ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : str = pipe_a( prompt_embeds=UpperCamelCase__ , negative_prompt_embeds=UpperCamelCase__ , image=UpperCamelCase__ , original_image=UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Optional[int] = output.images[0] assert image.shape == (256, 256, 3) SCREAMING_SNAKE_CASE : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__ ) def __A ( self : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' _start_torch_memory_measurement() SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : int = pipe_a( prompt_embeds=UpperCamelCase__ , negative_prompt_embeds=UpperCamelCase__ , image=UpperCamelCase__ , mask_image=UpperCamelCase__ , num_inference_steps=2 , generator=UpperCamelCase__ , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Any = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 SCREAMING_SNAKE_CASE : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy''' ) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__ ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE : str = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : int = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = pipe_a( prompt_embeds=UpperCamelCase__ , negative_prompt_embeds=UpperCamelCase__ , image=UpperCamelCase__ , mask_image=UpperCamelCase__ , original_image=UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Optional[Any] = output.images[0] assert image.shape == (256, 256, 3) SCREAMING_SNAKE_CASE : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__ ) def A ( ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
707
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __UpperCamelCase : Dict = random.Random() def A ( _lowercase , _lowercase=1.0 , _lowercase=None , _lowercase=None ): if rng is None: SCREAMING_SNAKE_CASE : Any = global_rng SCREAMING_SNAKE_CASE : int = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowercase__ ( unittest.TestCase): def __init__( self : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str=7 , UpperCamelCase__ : Any=400 , UpperCamelCase__ : List[str]=2000 , UpperCamelCase__ : List[Any]=2048 , UpperCamelCase__ : Any=128 , UpperCamelCase__ : Union[str, Any]=1 , UpperCamelCase__ : List[Any]=512 , UpperCamelCase__ : str=30 , UpperCamelCase__ : Tuple=4_4100 , ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = parent SCREAMING_SNAKE_CASE : str = batch_size SCREAMING_SNAKE_CASE : str = min_seq_length SCREAMING_SNAKE_CASE : Dict = max_seq_length SCREAMING_SNAKE_CASE : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE : Optional[Any] = spectrogram_length SCREAMING_SNAKE_CASE : Optional[int] = feature_size SCREAMING_SNAKE_CASE : Tuple = num_audio_channels SCREAMING_SNAKE_CASE : Union[str, Any] = hop_length SCREAMING_SNAKE_CASE : List[Any] = chunk_length SCREAMING_SNAKE_CASE : str = sampling_rate def __A ( self : Optional[Any] ): '''simple docstring''' return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def __A ( self : Tuple , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : Optional[int]=False ): '''simple docstring''' def _flatten(UpperCamelCase__ : str ): return list(itertools.chain(*UpperCamelCase__ ) ) if equal_length: SCREAMING_SNAKE_CASE : List[str] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE : int = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE : Optional[Any] = [np.asarray(UpperCamelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase__ ( UpperCamelCase_ , unittest.TestCase): UpperCamelCase_ = TvltFeatureExtractor def __A ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = TvltFeatureExtractionTester(self ) def __A ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(UpperCamelCase__ , '''spectrogram_length''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''feature_size''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''num_audio_channels''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''hop_length''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''chunk_length''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''sampling_rate''' ) ) def __A ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : Optional[Any] = feat_extract_first.save_pretrained(UpperCamelCase__ )[0] check_json_file_has_correct_format(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = self.feature_extraction_class.from_pretrained(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = feat_extract_first.to_dict() SCREAMING_SNAKE_CASE : str = feat_extract_second.to_dict() SCREAMING_SNAKE_CASE : Optional[int] = dict_first.pop('''mel_filters''' ) SCREAMING_SNAKE_CASE : Optional[int] = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def __A ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : Tuple = os.path.join(UpperCamelCase__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[str] = self.feature_extraction_class.from_json_file(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = feat_extract_first.to_dict() SCREAMING_SNAKE_CASE : str = feat_extract_second.to_dict() SCREAMING_SNAKE_CASE : int = dict_first.pop('''mel_filters''' ) SCREAMING_SNAKE_CASE : Any = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE : Optional[int] = [np.asarray(UpperCamelCase__ ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE : List[Any] = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched SCREAMING_SNAKE_CASE : Optional[Any] = feature_extractor(UpperCamelCase__ , return_tensors='''np''' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking SCREAMING_SNAKE_CASE : List[str] = feature_extractor( UpperCamelCase__ , return_tensors='''np''' , sampling_rate=4_4100 , mask_audio=UpperCamelCase__ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE : Optional[Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE : Dict = np.asarray(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : str = feature_extractor(UpperCamelCase__ , return_tensors='''np''' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def __A ( self : Optional[int] , UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE : Dict = ds.sort('''id''' ).select(range(UpperCamelCase__ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def __A ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE : int = TvltFeatureExtractor() SCREAMING_SNAKE_CASE : List[Any] = feature_extractor(UpperCamelCase__ , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) SCREAMING_SNAKE_CASE : str = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , UpperCamelCase__ , atol=1E-4 ) )
34
0
import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase__ : str = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING UpperCAmelCase__ : List[Any] = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase : Tuple = AudioClassificationPipeline(model=__lowerCamelCase, feature_extractor=__lowerCamelCase ) # test with a raw waveform UpperCamelCase : str = np.zeros((3_4000,) ) UpperCamelCase : int = np.zeros((1_4000,) ) return audio_classifier, [audioa, audio] def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCamelCase : Optional[int] = examples UpperCamelCase : Optional[Any] = audio_classifier(__lowerCamelCase ) # by default a model is initialized with num_labels=2 self.assertEqual( __lowerCamelCase, [ {'score': ANY(__lowerCamelCase ), 'label': ANY(__lowerCamelCase )}, {'score': ANY(__lowerCamelCase ), 'label': ANY(__lowerCamelCase )}, ], ) UpperCamelCase : Union[str, Any] = audio_classifier(__lowerCamelCase, top_k=1 ) self.assertEqual( __lowerCamelCase, [ {'score': ANY(__lowerCamelCase ), 'label': ANY(__lowerCamelCase )}, ], ) self.run_torchaudio(__lowerCamelCase ) @require_torchaudio def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[str]: import datasets # test with a local file UpperCamelCase : Union[str, Any] = datasets.load_dataset('hf-internal-testing/librispeech_asr_dummy', 'clean', split='validation' ) UpperCamelCase : Dict = dataset[0]['''audio''']['''array'''] UpperCamelCase : List[str] = audio_classifier(__lowerCamelCase ) self.assertEqual( __lowerCamelCase, [ {'score': ANY(__lowerCamelCase ), 'label': ANY(__lowerCamelCase )}, {'score': ANY(__lowerCamelCase ), 'label': ANY(__lowerCamelCase )}, ], ) @require_torch def snake_case_ ( self ) -> Dict: UpperCamelCase : Tuple = '''anton-l/wav2vec2-random-tiny-classifier''' UpperCamelCase : List[str] = pipeline('audio-classification', model=__lowerCamelCase ) UpperCamelCase : Tuple = np.ones((8000,) ) UpperCamelCase : int = audio_classifier(__lowerCamelCase, top_k=4 ) UpperCamelCase : Union[str, Any] = [ {'''score''': 0.08_42, '''label''': '''no'''}, {'''score''': 0.08_38, '''label''': '''up'''}, {'''score''': 0.08_37, '''label''': '''go'''}, {'''score''': 0.08_34, '''label''': '''right'''}, ] UpperCamelCase : Optional[int] = [ {'''score''': 0.08_45, '''label''': '''stop'''}, {'''score''': 0.08_44, '''label''': '''on'''}, {'''score''': 0.08_41, '''label''': '''right'''}, {'''score''': 0.08_34, '''label''': '''left'''}, ] self.assertIn(nested_simplify(__lowerCamelCase, decimals=4 ), [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) UpperCamelCase : str = {'''array''': np.ones((8000,) ), '''sampling_rate''': audio_classifier.feature_extractor.sampling_rate} UpperCamelCase : Dict = audio_classifier(__lowerCamelCase, top_k=4 ) self.assertIn(nested_simplify(__lowerCamelCase, decimals=4 ), [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def snake_case_ ( self ) -> Optional[int]: import datasets UpperCamelCase : int = '''superb/wav2vec2-base-superb-ks''' UpperCamelCase : Dict = pipeline('audio-classification', model=__lowerCamelCase ) UpperCamelCase : Optional[int] = datasets.load_dataset('anton-l/superb_dummy', 'ks', split='test' ) UpperCamelCase : Union[str, Any] = np.array(dataset[3]['speech'], dtype=np.floataa ) UpperCamelCase : Union[str, Any] = audio_classifier(__lowerCamelCase, top_k=4 ) self.assertEqual( nested_simplify(__lowerCamelCase, decimals=3 ), [ {'score': 0.9_81, 'label': 'go'}, {'score': 0.0_07, 'label': 'up'}, {'score': 0.0_06, 'label': '_unknown_'}, {'score': 0.0_01, 'label': 'down'}, ], ) @require_tf @unittest.skip('Audio classification is not implemented for TF' ) def snake_case_ ( self ) -> Union[str, Any]: pass
40
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCamelCase__( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase__( self ): '''simple docstring''' torch.manual_seed(0 ) __A : List[Any] = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def UpperCamelCase__( self ): '''simple docstring''' torch.manual_seed(0 ) __A : str = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , ) return model @property def UpperCamelCase__( self ): '''simple docstring''' torch.manual_seed(0 ) __A : int = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) __A : int = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def UpperCamelCase__( self ): '''simple docstring''' __A : str = '''cpu''' # ensure determinism for the device-dependent torch.Generator __A : Union[str, Any] = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) __A : List[Any] = DDPMScheduler() __A : Optional[Any] = AudioDiffusionPipeline(vqvae=__lowerCamelCase , unet=self.dummy_unet , mel=__lowerCamelCase , scheduler=__lowerCamelCase ) __A : Tuple = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __A : Tuple = torch.Generator(device=__lowerCamelCase ).manual_seed(42 ) __A : List[str] = pipe(generator=__lowerCamelCase , steps=4 ) __A : Union[str, Any] = output.audios[0] __A : str = output.images[0] __A : List[Any] = torch.Generator(device=__lowerCamelCase ).manual_seed(42 ) __A : Any = pipe(generator=__lowerCamelCase , steps=4 , return_dict=__lowerCamelCase ) __A : int = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) __A : Tuple = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] __A : str = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:10] __A : Any = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 __A : int = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) __A : Any = DDIMScheduler() __A : Optional[Any] = self.dummy_vqvae_and_unet __A : int = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=__lowerCamelCase , scheduler=__lowerCamelCase ) __A : Any = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) np.random.seed(0 ) __A : str = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) __A : Union[str, Any] = torch.Generator(device=__lowerCamelCase ).manual_seed(42 ) __A : int = pipe(raw_audio=__lowerCamelCase , generator=__lowerCamelCase , start_step=5 , steps=10 ) __A : Any = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) __A : str = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] __A : Optional[Any] = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 __A : Union[str, Any] = self.dummy_unet_condition __A : List[str] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=__lowerCamelCase , mel=__lowerCamelCase , scheduler=__lowerCamelCase ) __A : Dict = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) np.random.seed(0 ) __A : int = torch.rand((1, 1, 10) ) __A : Optional[Any] = pipe(generator=__lowerCamelCase , encoding=__lowerCamelCase ) __A : str = output.images[0] __A : Optional[Any] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] __A : Tuple = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCamelCase__( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__( self ): '''simple docstring''' __A : int = torch_device __A : List[Any] = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) __A : List[Any] = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __A : Dict = torch.Generator(device=__lowerCamelCase ).manual_seed(42 ) __A : str = pipe(generator=__lowerCamelCase ) __A : Dict = output.audios[0] __A : List[Any] = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] __A : Optional[int] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] __A : Optional[Any] = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
177
0
"""simple docstring""" from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def a__ ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : int ): '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})" def a__ ( lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple=True ): '''simple docstring''' model.train() UpperCAmelCase__ : int = model(_lowerCamelCase ) UpperCAmelCase__ : Dict = F.mse_loss(_lowerCamelCase , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_lowerCamelCase ) def a__ ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int]=False ): '''simple docstring''' set_seed(42 ) UpperCAmelCase__ : str = RegressionModel() UpperCAmelCase__ : Dict = deepcopy(_lowerCamelCase ) UpperCAmelCase__ : List[Any] = RegressionDataset(length=80 ) UpperCAmelCase__ : Tuple = DataLoader(_lowerCamelCase , batch_size=16 ) model.to(accelerator.device ) if sched: UpperCAmelCase__ : Any = AdamW(params=model.parameters() , lr=1E-3 ) UpperCAmelCase__ : Tuple = AdamW(params=ddp_model.parameters() , lr=1E-3 ) UpperCAmelCase__ : Any = LambdaLR(_lowerCamelCase , lr_lambda=lambda lowerCAmelCase : epoch**0.65 ) UpperCAmelCase__ : Optional[Any] = LambdaLR(_lowerCamelCase , lr_lambda=lambda lowerCAmelCase : epoch**0.65 ) # Make a copy of `model` if sched: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def a__ ( lowerCAmelCase : Any ): '''simple docstring''' # Test when on a single CPU or GPU that the context manager does nothing UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = get_training_setup(_lowerCamelCase ) # Use a single batch UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = next(iter(_lowerCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase__ , UpperCAmelCase__ : str = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase ): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCAmelCase__ : Dict = ddp_input[torch.randperm(len(_lowerCamelCase ) )] def a__ ( lowerCAmelCase : Optional[int] ): '''simple docstring''' # Test on distributed setup that context manager behaves properly UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = get_training_setup(_lowerCamelCase ) # Use a single batch UpperCAmelCase__ , UpperCAmelCase__ : Any = next(iter(_lowerCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase__ , UpperCAmelCase__ : Tuple = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase ): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCAmelCase__ : Union[str, Any] = ddp_input[torch.randperm(len(_lowerCamelCase ) )] def a__ ( lowerCAmelCase : int=False , lowerCAmelCase : Optional[int]=False ): '''simple docstring''' UpperCAmelCase__ : Dict = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = get_training_setup(_lowerCamelCase ) for iteration, batch in enumerate(_lowerCamelCase ): UpperCAmelCase__ , UpperCAmelCase__ : int = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase__ , UpperCAmelCase__ : Tuple = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Do "gradient accumulation" (noop) with accelerator.accumulate(_lowerCamelCase ): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_lowerCamelCase ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCAmelCase__ : Dict = ddp_input[torch.randperm(len(_lowerCamelCase ) )] GradientState._reset_state() def a__ ( lowerCAmelCase : Tuple=False , lowerCAmelCase : Any=False ): '''simple docstring''' UpperCAmelCase__ : Any = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = get_training_setup(_lowerCamelCase , _lowerCamelCase ) for iteration, batch in enumerate(_lowerCamelCase ): UpperCAmelCase__ , UpperCAmelCase__ : Dict = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase__ , UpperCAmelCase__ : Dict = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase__ , UpperCAmelCase__ : int = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowerCamelCase )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_lowerCamelCase ): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n" UpperCAmelCase__ : str = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowerCamelCase )) if accelerator.num_processes > 1: check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def a__ ( ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = Accelerator() UpperCAmelCase__ : Optional[int] = RegressionDataset(length=80 ) UpperCAmelCase__ : int = DataLoader(_lowerCamelCase , batch_size=16 ) UpperCAmelCase__ : str = RegressionDataset(length=96 ) UpperCAmelCase__ : str = DataLoader(_lowerCamelCase , batch_size=16 ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_lowerCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(_lowerCamelCase ) if iteration < len(_lowerCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_lowerCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(_lowerCamelCase ) if batch_num < len(_lowerCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def a__ ( ): '''simple docstring''' UpperCAmelCase__ : List[Any] = Accelerator() UpperCAmelCase__ : Union[str, Any] = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(_lowerCamelCase ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(_lowerCamelCase ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation(_lowerCamelCase , _lowerCamelCase ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation_with_opt_and_scheduler(_lowerCamelCase , _lowerCamelCase ) def a__ ( lowerCAmelCase : str ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
700
"""simple docstring""" from timeit import timeit def a__ ( lowerCAmelCase : int ): '''simple docstring''' if number < 0: raise ValueError("the value of input must not be negative" ) UpperCAmelCase__ : Tuple = 0 while number: number &= number - 1 result += 1 return result def a__ ( lowerCAmelCase : int ): '''simple docstring''' if number < 0: raise ValueError("the value of input must not be negative" ) UpperCAmelCase__ : Union[str, Any] = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def a__ ( ): '''simple docstring''' def do_benchmark(lowerCAmelCase : int ) -> None: UpperCAmelCase__ : Dict = "import __main__ as z" print(F"Benchmark when {number = }:" ) print(F"{get_set_bits_count_using_modulo_operator(lowerCAmelCase ) = }" ) UpperCAmelCase__ : Tuple = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=lowerCAmelCase ) print(F"timeit() runs in {timing} seconds" ) print(F"{get_set_bits_count_using_brian_kernighans_algorithm(lowerCAmelCase ) = }" ) UpperCAmelCase__ : Any = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=lowerCAmelCase , ) print(F"timeit() runs in {timing} seconds" ) for number in (25, 37, 58, 0): do_benchmark(lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
660
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = "bert-generation" def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : Dict=5_0358 , __SCREAMING_SNAKE_CASE : str=1024 , __SCREAMING_SNAKE_CASE : Dict=24 , __SCREAMING_SNAKE_CASE : Optional[int]=16 , __SCREAMING_SNAKE_CASE : Any=4096 , __SCREAMING_SNAKE_CASE : str="gelu" , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : str=512 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.02 , __SCREAMING_SNAKE_CASE : Optional[int]=1e-12 , __SCREAMING_SNAKE_CASE : Any=0 , __SCREAMING_SNAKE_CASE : str=2 , __SCREAMING_SNAKE_CASE : Any=1 , __SCREAMING_SNAKE_CASE : Tuple="absolute" , __SCREAMING_SNAKE_CASE : List[str]=True , **__SCREAMING_SNAKE_CASE : Tuple , ) -> int: super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = vocab_size a_ : Optional[int] = hidden_size a_ : int = num_hidden_layers a_ : Any = num_attention_heads a_ : Optional[Any] = hidden_act a_ : Optional[Any] = intermediate_size a_ : Dict = hidden_dropout_prob a_ : Tuple = attention_probs_dropout_prob a_ : Optional[int] = max_position_embeddings a_ : Tuple = initializer_range a_ : List[str] = layer_norm_eps a_ : Optional[Any] = position_embedding_type a_ : Dict = use_cache
466
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _UpperCAmelCase ( __A : int ): a_ : Optional[Any] = FileLock(str(tmpdir / '''foo.lock''' ) ) a_ : Union[str, Any] = FileLock(str(tmpdir / '''foo.lock''' ) ) a_ : List[Any] = 0.01 with locka.acquire(): with pytest.raises(__A ): a_ : List[Any] = time.time() locka.acquire(__A ) assert time.time() - _start > timeout def _UpperCAmelCase ( __A : Tuple ): a_ : Tuple = '''a''' * 10_00 + '''.lock''' a_ : List[Any] = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(__A ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 a_ : Optional[int] = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__A ): locka.acquire(0 )
466
1
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class _SCREAMING_SNAKE_CASE : def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = True , lowerCamelCase = False ): snake_case__ = scheduler snake_case__ = optimizers if isinstance(lowerCamelCase , (list, tuple) ) else [optimizers] snake_case__ = split_batches snake_case__ = step_with_optimizer snake_case__ = GradientState() def A_ ( self , *lowerCamelCase , **lowerCamelCase ): if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*lowerCamelCase , **lowerCamelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*lowerCamelCase , **lowerCamelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step snake_case__ = AcceleratorState().num_processes for _ in range(lowerCamelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , "total_steps" ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*lowerCamelCase , **lowerCamelCase ) else: self.scheduler.step(*lowerCamelCase , **lowerCamelCase ) def A_ ( self ): return self.scheduler.get_last_lr() def A_ ( self ): return self.scheduler.state_dict() def A_ ( self , lowerCamelCase ): self.scheduler.load_state_dict(lowerCamelCase ) def A_ ( self ): return self.scheduler.get_lr() def A_ ( self , *lowerCamelCase , **lowerCamelCase ): return self.scheduler.print_lr(*lowerCamelCase , **lowerCamelCase )
711
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: snake_case__ = ksize + 1 snake_case__ = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__lowerCAmelCase ): for x in range(__lowerCAmelCase ): # distance from center snake_case__ = x - ksize // 2 snake_case__ = y - ksize // 2 # degree to radiant snake_case__ = theta / 180 * np.pi snake_case__ = np.cos(_theta ) snake_case__ = np.sin(_theta ) # get kernel x snake_case__ = cos_theta * px + sin_theta * py # get kernel y snake_case__ = -sin_theta * px + cos_theta * py # fill kernel snake_case__ = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __magic_name__ = imread('''../image_data/lena.jpg''') # turn image in gray scale value __magic_name__ = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __magic_name__ = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: __magic_name__ = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __magic_name__ = out / out.max() * 255 __magic_name__ = out.astype(np.uinta) imshow('''Original''', gray) imshow('''Gabor filter with 20x20 mask and 6 directions''', out) waitKey(0)
530
0
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging SCREAMING_SNAKE_CASE : List[str] = ["bart.large", "bart.large.mnli", "bart.large.cnn", "bart_xsum/model.pt"] SCREAMING_SNAKE_CASE : List[Any] = {"bart.large": BartModel, "bart.large.mnli": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("0.9.0"): raise Exception("requires fairseq >= 0.9.0") logging.set_verbosity_info() SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Dict = " Hello world! cécé herlolip" SCREAMING_SNAKE_CASE : Optional[int] = [ ("model.classification_heads.mnli.dense.weight", "classification_head.dense.weight"), ("model.classification_heads.mnli.dense.bias", "classification_head.dense.bias"), ("model.classification_heads.mnli.out_proj.weight", "classification_head.out_proj.weight"), ("model.classification_heads.mnli.out_proj.bias", "classification_head.out_proj.bias"), ] def lowerCamelCase_ ( __UpperCamelCase ): A_ = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', ] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): A_ = dct.pop(__UpperCAmelCase ) A_ = val def lowerCamelCase_ ( __UpperCamelCase ): A_ = torch.load(__UpperCAmelCase , map_location='''cpu''' ) A_ = torch.hub.load('''pytorch/fairseq''' , '''bart.large.cnn''' ).eval() hub_interface.model.load_state_dict(sd['''model'''] ) return hub_interface def lowerCamelCase_ ( __UpperCamelCase ): A_ = emb.weight.shape A_ = nn.Linear(__UpperCAmelCase , __UpperCAmelCase , bias=__UpperCAmelCase ) A_ = emb.weight.data return lin_layer @torch.no_grad() def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None ): if not os.path.exists(__UpperCAmelCase ): A_ = torch.hub.load('''pytorch/fairseq''' , __UpperCAmelCase ).eval() else: A_ = load_xsum_checkpoint(__UpperCAmelCase ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: A_ = checkpoint_path.replace('''.''' , '''-''' ) A_ = BartConfig.from_pretrained(__UpperCAmelCase ) A_ = bart.encode(__UpperCAmelCase ).unsqueeze(0 ) A_ = BartTokenizer.from_pretrained(__UpperCAmelCase ).encode(__UpperCAmelCase , return_tensors='''pt''' ).unsqueeze(0 ) if not torch.eq(__UpperCAmelCase , __UpperCAmelCase ).all(): raise ValueError( F"converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}" ) if checkpoint_path == "bart.large.mnli": A_ = bart.state_dict() remove_ignore_keys_(__UpperCAmelCase ) A_ = state_dict['model.decoder.embed_tokens.weight'] for src, dest in mnli_rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) A_ = BartForSequenceClassification(__UpperCAmelCase ).eval() model.load_state_dict(__UpperCAmelCase ) A_ = bart.predict('''mnli''' , __UpperCAmelCase , return_logits=__UpperCAmelCase ) A_ = model(__UpperCAmelCase )[0] # logits else: # no classification heads to worry about A_ = bart.model.state_dict() remove_ignore_keys_(__UpperCAmelCase ) A_ = state_dict['decoder.embed_tokens.weight'] A_ = bart.extract_features(__UpperCAmelCase ) if hf_checkpoint_name == "facebook/bart-large": A_ = BartModel(__UpperCAmelCase ).eval() model.load_state_dict(__UpperCAmelCase ) A_ = model(__UpperCAmelCase ).model[0] else: A_ = BartForConditionalGeneration(__UpperCAmelCase ).eval() # an existing summarization ckpt model.model.load_state_dict(__UpperCAmelCase ) if hasattr(__UpperCAmelCase , '''lm_head''' ): A_ = make_linear_from_emb(model.model.shared ) A_ = model.model(__UpperCAmelCase )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F"`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('''Some values in `fairseq_output` are different from `new_model_outputs`''' ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default=None, type=str, help="Which huggingface architecture to use: bart-large-xsum" ) SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
141
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __magic_name__ = '''bart''' __magic_name__ = True @st.cache(allow_output_mutation=__UpperCAmelCase ) def UpperCAmelCase__( ): if LOAD_DENSE_INDEX: __snake_case : str = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased' ) __snake_case : List[Any] = AutoModel.from_pretrained('yjernite/retribert-base-uncased' ).to('cuda:0' ) __snake_case : Any = qar_model.eval() else: __snake_case , __snake_case : Optional[int] = (None, None) if MODEL_TYPE == "bart": __snake_case : Tuple = AutoTokenizer.from_pretrained('yjernite/bart_eli5' ) __snake_case : List[str] = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5' ).to('cuda:0' ) __snake_case : List[Any] = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth' ) sas_model.load_state_dict(save_dict['model'] ) __snake_case : List[str] = sas_model.eval() else: __snake_case , __snake_case : Union[str, Any] = make_qa_sas_model( model_name='t5-small' , from_file='seq2seq_models/eli5_t5_model_1024_4.pth' , device='cuda:0' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=__UpperCAmelCase ) def UpperCAmelCase__( ): if LOAD_DENSE_INDEX: __snake_case : List[Any] = faiss.StandardGpuResources() __snake_case : List[Any] = datasets.load_dataset(path='wiki_snippets' , name='wiki40b_en_100_0' )['train'] __snake_case : Dict = np.memmap( 'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat' , dtype='float32' , mode='r' , shape=(wikiaab_passages.num_rows, 1_28) , ) __snake_case : List[str] = faiss.IndexFlatIP(1_28 ) __snake_case : int = faiss.index_cpu_to_gpu(__UpperCAmelCase , 1 , __UpperCAmelCase ) wikiaab_gpu_index_flat.add(__UpperCAmelCase ) # TODO fix for larger GPU else: __snake_case , __snake_case : Tuple = (None, None) __snake_case : List[str] = Elasticsearch([{'host': 'localhost', 'port': '9200'}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=__UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : str = datasets.load_dataset('eli5' , name='LFQA_reddit' ) __snake_case : List[Any] = elia['train_eli5'] __snake_case : Dict = np.memmap( 'eli5_questions_reps.dat' , dtype='float32' , mode='r' , shape=(elia_train.num_rows, 1_28) ) __snake_case : str = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(__UpperCAmelCase ) return (elia_train, eli5_train_q_index) __magic_name__ , __magic_name__ , __magic_name__ = load_indexes() __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = load_models() __magic_name__ , __magic_name__ = load_train_data() def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple=10 ): __snake_case : str = embed_questions_for_retrieval([question] , __UpperCAmelCase , __UpperCAmelCase ) __snake_case , __snake_case : Union[str, Any] = eli5_train_q_index.search(__UpperCAmelCase , __UpperCAmelCase ) __snake_case : Optional[int] = [elia_train[int(__UpperCAmelCase )] for i in I[0]] return nn_examples def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : int="wiki40b" , __UpperCAmelCase : List[str]="dense" , __UpperCAmelCase : Any=10 ): if source == "none": __snake_case , __snake_case : Union[str, Any] = (' <P> '.join(['' for _ in range(11 )] ).strip(), []) else: if method == "dense": __snake_case , __snake_case : int = query_qa_dense_index( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: __snake_case , __snake_case : Dict = query_es_index( __UpperCAmelCase , __UpperCAmelCase , index_name='english_wiki40b_snippets_100w' , n_results=__UpperCAmelCase , ) __snake_case : Union[str, Any] = [ (res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst ] __snake_case : Any = 'question: {} context: {}'.format(__UpperCAmelCase , __UpperCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda __UpperCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __UpperCAmelCase : None), } ) def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[str] , __UpperCAmelCase : str=64 , __UpperCAmelCase : int=2_56 , __UpperCAmelCase : int=False , __UpperCAmelCase : Tuple=2 , __UpperCAmelCase : Union[str, Any]=0.95 , __UpperCAmelCase : Tuple=0.8 ): with torch.no_grad(): __snake_case : Union[str, Any] = qa_sas_generate( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , num_answers=1 , num_beams=__UpperCAmelCase , min_len=__UpperCAmelCase , max_len=__UpperCAmelCase , do_sample=__UpperCAmelCase , temp=__UpperCAmelCase , top_p=__UpperCAmelCase , top_k=__UpperCAmelCase , max_input_length=10_24 , device='cuda:0' , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar __magic_name__ = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' __magic_name__ = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __magic_name__ = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) __magic_name__ = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] __magic_name__ = st.sidebar.checkbox('''Demo options''') if demo_options: __magic_name__ = st.sidebar.selectbox( '''''', action_list, index=3, ) __magic_name__ = action_list.index(action_st) __magic_name__ = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) __magic_name__ = show_type == '''Show full text of passages''' else: __magic_name__ = 3 __magic_name__ = True __magic_name__ = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: __magic_name__ = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) __magic_name__ = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) __magic_name__ = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: __magic_name__ = '''wiki40b''' __magic_name__ = '''dense''' __magic_name__ = '''beam''' __magic_name__ = 2 __magic_name__ = 64 __magic_name__ = 256 __magic_name__ = None __magic_name__ = None __magic_name__ = st.sidebar.checkbox('''Generation options''') if generate_options: __magic_name__ = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) __magic_name__ = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) __magic_name__ = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) __magic_name__ = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": __magic_name__ = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __magic_name__ = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __magic_name__ = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __magic_name__ = None # start main text __magic_name__ = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] __magic_name__ = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": __magic_name__ = st.text_input('''Enter your question here:''', '''''') else: __magic_name__ = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": __magic_name__ , __magic_name__ = make_support(question, source=wiki_source, method='''dense''', n_results=10) __magic_name__ , __magic_name__ = make_support(question, source=wiki_source, method='''sparse''', n_results=10) __magic_name__ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __magic_name__ = support_list[:10] __magic_name__ = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: __magic_name__ , __magic_name__ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __magic_name__ , __magic_name__ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): __magic_name__ = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) __magic_name__ = res[1].strip() if sec_titles == "": __magic_name__ = '''[{}]({})'''.format(res[0], wiki_url) else: __magic_name__ = sec_titles.split(''' & ''') __magic_name__ = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: __magic_name__ = find_nearest_training(question) __magic_name__ = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) __magic_name__ = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) __magic_name__ = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
576
0
import requests __snake_case = """YOUR API KEY""" def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = giphy_api_key ) ->list: lowercase_ = """+""".join(query.split() ) lowercase_ = f"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}""" lowercase_ = requests.get(SCREAMING_SNAKE_CASE_ ).json()["""data"""] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("""\n""".join(get_gifs("""space ship""")))
712
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = [ ["""attention""", """attn"""], ["""encoder_attention""", """encoder_attn"""], ["""q_lin""", """q_proj"""], ["""k_lin""", """k_proj"""], ["""v_lin""", """v_proj"""], ["""out_lin""", """out_proj"""], ["""norm_embeddings""", """layernorm_embedding"""], ["""position_embeddings""", """embed_positions"""], ["""embeddings""", """embed_tokens"""], ["""ffn.lin""", """fc"""], ] def A_ ( SCREAMING_SNAKE_CASE_ ) ->List[Any]: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: lowercase_ = k.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if k.startswith("""encoder""" ): lowercase_ = k.replace(""".attn""" , """.self_attn""" ) lowercase_ = k.replace("""norm1""" , """self_attn_layer_norm""" ) lowercase_ = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): lowercase_ = k.replace("""norm1""" , """self_attn_layer_norm""" ) lowercase_ = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) lowercase_ = k.replace("""norm3""" , """final_layer_norm""" ) return k def A_ ( SCREAMING_SNAKE_CASE_ ) ->List[str]: lowercase_ = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: lowercase_ = sd.pop(SCREAMING_SNAKE_CASE_ ) lowercase_ = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd lowercase_ = v __snake_case = ["""START"""] @torch.no_grad() def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->Optional[Any]: lowercase_ = torch.load(SCREAMING_SNAKE_CASE_ , map_location="""cpu""" ) lowercase_ = model["""model"""] lowercase_ = BlenderbotConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) lowercase_ = BlenderbotForConditionalGeneration(SCREAMING_SNAKE_CASE_ ) lowercase_ = m.model.state_dict().keys() lowercase_ = [] lowercase_ = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue lowercase_ = rename_state_dict_key(SCREAMING_SNAKE_CASE_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: lowercase_ = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(SCREAMING_SNAKE_CASE_ ) m.model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) m.half() m.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("""--src_path""", type=str, help="""like blenderbot-model.bin""") parser.add_argument("""--save_dir""", default="""hf_blenderbot""", type=str, help="""Where to save converted model.""") parser.add_argument( """--hf_config_json""", default="""blenderbot-3b-config.json""", type=str, help="""Path to config to use""" ) __snake_case = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
603
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class A__ ( metaclass=__a ): __UpperCamelCase : List[str] = ["""onnx"""] def __init__( self :Dict , *SCREAMING_SNAKE_CASE :Any , **SCREAMING_SNAKE_CASE :List[str] ) -> Any: '''simple docstring''' requires_backends(self , ["""onnx"""] ) @classmethod def __UpperCAmelCase ( cls :Union[str, Any] , *SCREAMING_SNAKE_CASE :Tuple , **SCREAMING_SNAKE_CASE :str ) -> List[str]: '''simple docstring''' requires_backends(cls , ["""onnx"""] ) @classmethod def __UpperCAmelCase ( cls :Dict , *SCREAMING_SNAKE_CASE :Tuple , **SCREAMING_SNAKE_CASE :Any ) -> str: '''simple docstring''' requires_backends(cls , ["""onnx"""] )
694
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase_ : Any = logging.get_logger(__name__) class __lowerCAmelCase ( __a ): snake_case : Optional[int] = ["""audio_values""", """audio_mask"""] def __init__(self , lowerCAmelCase__=2_0_4_8 , lowerCAmelCase__=1 , lowerCAmelCase__=[1_6, 1_6] , lowerCAmelCase__=1_2_8 , lowerCAmelCase__=4_4_1_0_0 , lowerCAmelCase__=8_6 , lowerCAmelCase__=2_0_4_8 , lowerCAmelCase__=0.0 , **lowerCAmelCase__ , ): super().__init__( feature_size=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , padding_value=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCAmelCase : Union[str, Any] = spectrogram_length _UpperCAmelCase : List[Any] = num_channels _UpperCAmelCase : Optional[Any] = patch_size _UpperCAmelCase : List[Any] = feature_size // self.patch_size[1] _UpperCAmelCase : List[str] = n_fft _UpperCAmelCase : int = sampling_rate // hop_length_to_sampling_rate _UpperCAmelCase : Optional[Any] = sampling_rate _UpperCAmelCase : List[Any] = padding_value _UpperCAmelCase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCAmelCase__ , min_frequency=0.0 , max_frequency=2_2_0_5_0.0 , sampling_rate=lowerCAmelCase__ , norm="""slaney""" , mel_scale="""slaney""" , ).T def snake_case_ (self , lowerCAmelCase__ ): _UpperCAmelCase : Dict = spectrogram( lowerCAmelCase__ , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=8_0.0 , ) _UpperCAmelCase : Tuple = log_spec[:, :-1] _UpperCAmelCase : Union[str, Any] = log_spec - 2_0.0 _UpperCAmelCase : List[Any] = np.clip(log_spec / 4_0.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__(self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , **lowerCAmelCase__ , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" F" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled" F" with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) _UpperCAmelCase : List[str] = isinstance(lowerCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) _UpperCAmelCase : Tuple = is_batched_numpy or ( isinstance(lowerCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _UpperCAmelCase : Dict = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ , np.ndarray ): _UpperCAmelCase : Dict = np.asarray(lowerCAmelCase__ , dtype=np.floataa ) elif isinstance(lowerCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _UpperCAmelCase : List[str] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _UpperCAmelCase : Any = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis _UpperCAmelCase : Dict = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , lowerCAmelCase__ ): _UpperCAmelCase : Optional[Any] = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask _UpperCAmelCase : Union[str, Any] = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: _UpperCAmelCase : Optional[Any] = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] _UpperCAmelCase : Optional[Any] = np.array(lowerCAmelCase__ ).astype(np.floataa ) # convert into correct format for padding _UpperCAmelCase : Optional[int] = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch _UpperCAmelCase : Dict = np.ones([len(lowerCAmelCase__ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) _UpperCAmelCase : Dict = padded_audio_features * self.padding_value for i in range(len(lowerCAmelCase__ ) ): _UpperCAmelCase : List[Any] = audio_features[i] _UpperCAmelCase : Tuple = feature # return as BatchFeature if return_attention_mask: _UpperCAmelCase : List[Any] = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: _UpperCAmelCase : List[Any] = {"""audio_values""": padded_audio_features} _UpperCAmelCase : List[str] = BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ ) return encoded_inputs
414
0
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal _lowerCamelCase : List[str] =logging.get_logger(__name__) _lowerCamelCase : List[Any] =TypeVar("DatasetType", Dataset, IterableDataset) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = None, lowerCAmelCase_ = None, lowerCAmelCase_ = None, lowerCAmelCase_ = "first_exhausted", ): """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(lowerCAmelCase_ ): if not isinstance(lowerCAmelCase_, (Dataset, IterableDataset) ): if isinstance(lowerCAmelCase_, (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( F'Dataset at position {i} has at least one split: {list(lowerCAmelCase_ )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(lowerCAmelCase_ ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowerCAmelCase_ ).__name__}.' ) if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =( (Dataset, IterableDataset) if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else (IterableDataset, Dataset) ) elif not isinstance(lowerCAmelCase_, lowerCAmelCase_ ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, info=lowerCAmelCase_, split=lowerCAmelCase_, stopping_strategy=lowerCAmelCase_ ) else: return _interleave_iterable_datasets( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, info=lowerCAmelCase_, split=lowerCAmelCase_, stopping_strategy=lowerCAmelCase_ ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = None, lowerCAmelCase_ = 0, ): """simple docstring""" if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(lowerCAmelCase_ ): if not isinstance(lowerCAmelCase_, (Dataset, IterableDataset) ): if isinstance(lowerCAmelCase_, (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( F'Dataset at position {i} has at least one split: {list(lowerCAmelCase_ )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(lowerCAmelCase_ ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowerCAmelCase_ ).__name__}.' ) if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =( (Dataset, IterableDataset) if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else (IterableDataset, Dataset) ) elif not isinstance(lowerCAmelCase_, lowerCAmelCase_ ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(lowerCAmelCase_, info=lowerCAmelCase_, split=lowerCAmelCase_, axis=lowerCAmelCase_ ) else: return _concatenate_iterable_datasets(lowerCAmelCase_, info=lowerCAmelCase_, split=lowerCAmelCase_, axis=lowerCAmelCase_ )
720
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =1 SCREAMING_SNAKE_CASE =3 SCREAMING_SNAKE_CASE =(32, 32) SCREAMING_SNAKE_CASE =floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(snake_case ) return image @property def _lowerCAmelCase ( self : Union[str, Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE =UNetaDConditionModel( block_out_channels=(32, 32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=7 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,attention_head_dim=8 ,use_linear_projection=snake_case ,only_cross_attention=(True, True, False) ,num_class_embeds=100 ,) return model @property def _lowerCAmelCase ( self : Union[str, Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE =AutoencoderKL( block_out_channels=[32, 32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,) return model @property def _lowerCAmelCase ( self : Union[str, Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE =CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,hidden_act='gelu' ,projection_dim=512 ,) return CLIPTextModel(snake_case ) def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE ='cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE =self.dummy_cond_unet_upscale SCREAMING_SNAKE_CASE =DDPMScheduler() SCREAMING_SNAKE_CASE =DDIMScheduler(prediction_type='v_prediction' ) SCREAMING_SNAKE_CASE =self.dummy_vae SCREAMING_SNAKE_CASE =self.dummy_text_encoder SCREAMING_SNAKE_CASE =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE =self.dummy_image.cpu().permute(0 ,2 ,3 ,1 )[0] SCREAMING_SNAKE_CASE =Image.fromarray(np.uinta(snake_case ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE =StableDiffusionUpscalePipeline( unet=snake_case ,low_res_scheduler=snake_case ,scheduler=snake_case ,vae=snake_case ,text_encoder=snake_case ,tokenizer=snake_case ,max_noise_level=350 ,) SCREAMING_SNAKE_CASE =sd_pipe.to(snake_case ) sd_pipe.set_progress_bar_config(disable=snake_case ) SCREAMING_SNAKE_CASE ='A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE =torch.Generator(device=snake_case ).manual_seed(0 ) SCREAMING_SNAKE_CASE =sd_pipe( [prompt] ,image=snake_case ,generator=snake_case ,guidance_scale=6.0 ,noise_level=20 ,num_inference_steps=2 ,output_type='np' ,) SCREAMING_SNAKE_CASE =output.images SCREAMING_SNAKE_CASE =torch.Generator(device=snake_case ).manual_seed(0 ) SCREAMING_SNAKE_CASE =sd_pipe( [prompt] ,image=snake_case ,generator=snake_case ,guidance_scale=6.0 ,noise_level=20 ,num_inference_steps=2 ,output_type='np' ,return_dict=snake_case ,)[0] SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE =image_from_tuple[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) SCREAMING_SNAKE_CASE =np.array([0.3_113, 0.3_910, 0.4_272, 0.4_859, 0.5_061, 0.4_652, 0.5_362, 0.5_715, 0.5_661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE ='cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE =self.dummy_cond_unet_upscale SCREAMING_SNAKE_CASE =DDPMScheduler() SCREAMING_SNAKE_CASE =DDIMScheduler(prediction_type='v_prediction' ) SCREAMING_SNAKE_CASE =self.dummy_vae SCREAMING_SNAKE_CASE =self.dummy_text_encoder SCREAMING_SNAKE_CASE =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE =self.dummy_image.cpu().permute(0 ,2 ,3 ,1 )[0] SCREAMING_SNAKE_CASE =Image.fromarray(np.uinta(snake_case ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE =StableDiffusionUpscalePipeline( unet=snake_case ,low_res_scheduler=snake_case ,scheduler=snake_case ,vae=snake_case ,text_encoder=snake_case ,tokenizer=snake_case ,max_noise_level=350 ,) SCREAMING_SNAKE_CASE =sd_pipe.to(snake_case ) sd_pipe.set_progress_bar_config(disable=snake_case ) SCREAMING_SNAKE_CASE ='A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE =sd_pipe( 2 * [prompt] ,image=2 * [low_res_image] ,guidance_scale=6.0 ,noise_level=20 ,num_inference_steps=2 ,output_type='np' ,) SCREAMING_SNAKE_CASE =output.images assert image.shape[0] == 2 SCREAMING_SNAKE_CASE =torch.Generator(device=snake_case ).manual_seed(0 ) SCREAMING_SNAKE_CASE =sd_pipe( [prompt] ,image=snake_case ,generator=snake_case ,num_images_per_prompt=2 ,guidance_scale=6.0 ,noise_level=20 ,num_inference_steps=2 ,output_type='np' ,) SCREAMING_SNAKE_CASE =output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != 'cuda' ,'This test requires a GPU' ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =self.dummy_cond_unet_upscale SCREAMING_SNAKE_CASE =DDPMScheduler() SCREAMING_SNAKE_CASE =DDIMScheduler(prediction_type='v_prediction' ) SCREAMING_SNAKE_CASE =self.dummy_vae SCREAMING_SNAKE_CASE =self.dummy_text_encoder SCREAMING_SNAKE_CASE =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE =self.dummy_image.cpu().permute(0 ,2 ,3 ,1 )[0] SCREAMING_SNAKE_CASE =Image.fromarray(np.uinta(snake_case ) ).convert('RGB' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 SCREAMING_SNAKE_CASE =unet.half() SCREAMING_SNAKE_CASE =text_encoder.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE =StableDiffusionUpscalePipeline( unet=snake_case ,low_res_scheduler=snake_case ,scheduler=snake_case ,vae=snake_case ,text_encoder=snake_case ,tokenizer=snake_case ,max_noise_level=350 ,) SCREAMING_SNAKE_CASE =sd_pipe.to(snake_case ) sd_pipe.set_progress_bar_config(disable=snake_case ) SCREAMING_SNAKE_CASE ='A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE =torch.manual_seed(0 ) SCREAMING_SNAKE_CASE =sd_pipe( [prompt] ,image=snake_case ,generator=snake_case ,num_inference_steps=2 ,output_type='np' ,).images SCREAMING_SNAKE_CASE =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) SCREAMING_SNAKE_CASE =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat.npy' ) SCREAMING_SNAKE_CASE ='stabilityai/stable-diffusion-x4-upscaler' SCREAMING_SNAKE_CASE =StableDiffusionUpscalePipeline.from_pretrained(snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE ='a cat sitting on a park bench' SCREAMING_SNAKE_CASE =torch.manual_seed(0 ) SCREAMING_SNAKE_CASE =pipe( prompt=snake_case ,image=snake_case ,generator=snake_case ,output_type='np' ,) SCREAMING_SNAKE_CASE =output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-3 def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) SCREAMING_SNAKE_CASE =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat_fp16.npy' ) SCREAMING_SNAKE_CASE ='stabilityai/stable-diffusion-x4-upscaler' SCREAMING_SNAKE_CASE =StableDiffusionUpscalePipeline.from_pretrained( snake_case ,torch_dtype=torch.floataa ,) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE ='a cat sitting on a park bench' SCREAMING_SNAKE_CASE =torch.manual_seed(0 ) SCREAMING_SNAKE_CASE =pipe( prompt=snake_case ,image=snake_case ,generator=snake_case ,output_type='np' ,) SCREAMING_SNAKE_CASE =output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _lowerCAmelCase ( self : List[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) SCREAMING_SNAKE_CASE ='stabilityai/stable-diffusion-x4-upscaler' SCREAMING_SNAKE_CASE =StableDiffusionUpscalePipeline.from_pretrained( snake_case ,torch_dtype=torch.floataa ,) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE ='a cat sitting on a park bench' SCREAMING_SNAKE_CASE =torch.manual_seed(0 ) SCREAMING_SNAKE_CASE =pipe( prompt=snake_case ,image=snake_case ,generator=snake_case ,num_inference_steps=5 ,output_type='np' ,) SCREAMING_SNAKE_CASE =torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
252
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ : Dict = { "configuration_roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaOnnxConfig"], "tokenization_roberta": ["RobertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[Any] = ["RobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Union[str, Any] = [ "ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaForCausalLM", "RobertaForMaskedLM", "RobertaForMultipleChoice", "RobertaForQuestionAnswering", "RobertaForSequenceClassification", "RobertaForTokenClassification", "RobertaModel", "RobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[Any] = [ "TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaForCausalLM", "TFRobertaForMaskedLM", "TFRobertaForMultipleChoice", "TFRobertaForQuestionAnswering", "TFRobertaForSequenceClassification", "TFRobertaForTokenClassification", "TFRobertaMainLayer", "TFRobertaModel", "TFRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = [ "FlaxRobertaForCausalLM", "FlaxRobertaForMaskedLM", "FlaxRobertaForMultipleChoice", "FlaxRobertaForQuestionAnswering", "FlaxRobertaForSequenceClassification", "FlaxRobertaForTokenClassification", "FlaxRobertaModel", "FlaxRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowercase__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
515
lowercase__ : Optional[int] = 9.8_0665 def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = g) -> float: if fluid_density <= 0: raise ValueError("Impossible fluid density") if volume < 0: raise ValueError("Impossible Object volume") if gravity <= 0: raise ValueError("Impossible Gravity") return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
515
1
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Tuple = "Wav2Vec2FeatureExtractor" snake_case__ : Any = "AutoTokenizer" def __init__( self : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] ) -> List[Any]: super().__init__(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.feature_extractor __SCREAMING_SNAKE_CASE = False @classmethod def UpperCAmelCase_ ( cls : Dict , UpperCAmelCase__ : Any , **UpperCAmelCase__ : Dict ) -> List[Any]: try: return super().from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) except OSError: warnings.warn( F"""Loading a tokenizer inside {cls.__name__} from a config that does not""" " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " , UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = WavaVecaCTCTokenizer.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) return cls(feature_extractor=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ ) def __call__( self : List[Any] , *UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : int ) -> Union[str, Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*UpperCAmelCase__ , **UpperCAmelCase__ ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) __SCREAMING_SNAKE_CASE = kwargs.pop("raw_speech" ) else: __SCREAMING_SNAKE_CASE = kwargs.pop("audio" , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = kwargs.pop("sampling_rate" , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = kwargs.pop("text" , UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 0: __SCREAMING_SNAKE_CASE = args[0] __SCREAMING_SNAKE_CASE = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: __SCREAMING_SNAKE_CASE = self.feature_extractor(UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__ ) if text is not None: __SCREAMING_SNAKE_CASE = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__ ) if text is None: return inputs elif audio is None: return encodings else: __SCREAMING_SNAKE_CASE = encodings["input_ids"] return inputs def UpperCAmelCase_ ( self : str , *UpperCAmelCase__ : str , **UpperCAmelCase__ : Optional[Any] ) -> Dict: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*UpperCAmelCase__ , **UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = kwargs.pop("input_features" , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = kwargs.pop("labels" , UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 0: __SCREAMING_SNAKE_CASE = args[0] __SCREAMING_SNAKE_CASE = args[1:] if input_features is not None: __SCREAMING_SNAKE_CASE = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__ ) if labels is not None: __SCREAMING_SNAKE_CASE = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__ ) if labels is None: return input_features elif input_features is None: return labels else: __SCREAMING_SNAKE_CASE = labels["input_ids"] return input_features def UpperCAmelCase_ ( self : str , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Any ) -> Union[str, Any]: return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : List[Any] ) -> str: return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__ ) @contextmanager def UpperCAmelCase_ ( self : Any ) -> Any: warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = self.tokenizer yield __SCREAMING_SNAKE_CASE = self.feature_extractor __SCREAMING_SNAKE_CASE = False
710
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor a__ : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : str , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Tuple ) -> None: warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead." , UpperCAmelCase__ , ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
553
0
"""simple docstring""" UpperCAmelCase =8.31_44_62 # Unit - J mol-1 K-1 def _A ( _a : float , _a : float , _a : float ): """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def _A ( _a : float , _a : float , _a : float ): """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
617
"""simple docstring""" import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): UpperCAmelCase =True from torch.cuda.amp import autocast UpperCAmelCase =logging.getLogger(__name__) @dataclass class lowerCamelCase__ : '''simple docstring''' _lowerCamelCase = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to log verbose messages or not.'''} , ) _lowerCamelCase = field( default=2.0 , metadata={'''help''': '''Maximum temperature for gumbel softmax.'''} ) _lowerCamelCase = field( default=0.5 , metadata={'''help''': '''Minimum temperature for gumbel softmax.'''} ) _lowerCamelCase = field( default=0.9_9_9_9_9_5 , metadata={'''help''': '''Decay of gumbel temperature during training.'''} ) def _A ( _a : ModelArguments , _a : TrainingArguments ): """simple docstring""" logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) A = logging.WARNING if model_args.verbose_logging: A = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): A = logging.INFO logger.setLevel(_a ) @dataclass class lowerCamelCase__ : '''simple docstring''' _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) _lowerCamelCase = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) _lowerCamelCase = field( default='''validation''' , metadata={ '''help''': ( '''The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) _lowerCamelCase = field( default='''file''' , metadata={'''help''': '''Column in the dataset that contains speech file path. Defaults to \'file\''''} , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) _lowerCamelCase = field( default=1 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) _lowerCamelCase = field( default=2_0.0 , metadata={'''help''': '''Filter audio files that are longer than `max_duration_in_seconds` seconds'''} ) @dataclass class lowerCamelCase__ : '''simple docstring''' _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = "longest" _lowerCamelCase = None _lowerCamelCase = None def __call__( self ,lowerCamelCase_ ) -> Dict[str, torch.Tensor]: # reformat list to dict and set to pytorch format A = self.feature_extractor.pad( lowerCamelCase_ ,max_length=self.max_length ,padding=self.padding ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors="""pt""" ,) A = self.model._get_feat_extract_output_lengths(batch["""input_values"""].shape[-1] ) A = batch["""input_values"""].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula A = self.model._get_feat_extract_output_lengths(batch["""attention_mask"""].sum(-1 ) ).to( torch.long ) A = torch.zeros( (batch_size, mask_indices_seq_length) ,dtype=torch.long ,device=batch["""input_values"""].device ) # these two operations makes sure that all values # before the output lengths indices are attended to A = 1 A = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices A = _compute_mask_indices( (batch_size, mask_indices_seq_length) ,self.model.config.mask_time_prob ,self.model.config.mask_time_length ,attention_mask=lowerCamelCase_ ,min_masks=2 ,) return batch class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,*lowerCamelCase_ ,lowerCamelCase_=1 ,lowerCamelCase_=0 ,lowerCamelCase_=1.0 ,**lowerCamelCase_ ) -> Union[str, Any]: super().__init__(*lowerCamelCase_ ,**lowerCamelCase_ ) A = 0 A = max_gumbel_temp A = min_gumbel_temp A = gumbel_temp_decay def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> torch.Tensor: model.train() A = self._prepare_inputs(lowerCamelCase_ ) if self.use_amp: with autocast(): A = self.compute_loss(lowerCamelCase_ ,lowerCamelCase_ ) else: A = self.compute_loss(lowerCamelCase_ ,lowerCamelCase_ ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": A = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": A = loss.sum() / (inputs["""mask_time_indices"""]).sum() else: raise ValueError(f'{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']' ) if self.args.gradient_accumulation_steps > 1: A = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowerCamelCase_ ).backward() elif self.use_apex: with amp.scale_loss(lowerCamelCase_ ,self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowerCamelCase_ ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step ,self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step ,self.min_gumbel_temp ) ) return loss.detach() def _A ( ): """simple docstring""" A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) A , A , A = parser.parse_args_into_dataclasses() configure_logger(_a , _a ) # Downloading and loading a dataset from the hub. A = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" A = DatasetDict() A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'{data_args.train_split_name}[:{data_args.validation_split_percentage}%]' , cache_dir=model_args.cache_dir , ) A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'{data_args.train_split_name}[{data_args.validation_split_percentage}%:]' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" A = DatasetDict() A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="""validation""" , cache_dir=model_args.cache_dir , ) A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'{data_args.train_split_name}' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported A = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_a ) def prepare_dataset(_a : Dict ): # check that all files have the correct sampling rate A , A = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays A = datasets.map( _a , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["""train"""].column_names ) # filter audio files that are too long A = vectorized_datasets.filter( lambda _a : len(data["""speech"""] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(_a : Optional[Any] ): return feature_extractor(batch["""speech"""] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` A = vectorized_datasets.map( _a , batched=_a , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["""train"""].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 A = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( """PreTraining is only supported for ``config.do_stable_layer_norm=True`` and""" """ ``config.feat_extract_norm='layer'""" ) A = WavaVecaForPreTraining(_a ) A = DataCollatorForWavaVecaPretraining(model=_a , feature_extractor=_a ) A = WavaVecaPreTrainer( model=_a , data_collator=_a , args=_a , train_dataset=vectorized_datasets["""train"""] , eval_dataset=vectorized_datasets["""validation"""] , tokenizer=_a , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
617
1
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) def __lowerCamelCase ( __a : Optional[int] , __a : Any ) -> List[Any]: _lowercase =nn.functional.normalize(__a ) _lowercase =nn.functional.normalize(__a ) return torch.mm(__a , normalized_text_embeds.t() ) class _a ( lowerCamelCase_ ): """simple docstring""" __SCREAMING_SNAKE_CASE = CLIPConfig __SCREAMING_SNAKE_CASE = ['CLIPEncoderLayer'] def __init__( self , lowerCAmelCase_ ): super().__init__(lowerCAmelCase_ ) _lowercase =CLIPVisionModel(config.vision_config ) _lowercase =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowerCAmelCase_ ) _lowercase =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowerCAmelCase_ ) _lowercase =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowerCAmelCase_ ) _lowercase =nn.Parameter(torch.ones(17 ) , requires_grad=lowerCAmelCase_ ) _lowercase =nn.Parameter(torch.ones(3 ) , requires_grad=lowerCAmelCase_ ) @torch.no_grad() def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): _lowercase =self.vision_model(lowerCAmelCase_ )[1] # pooled_output _lowercase =self.visual_projection(lowerCAmelCase_ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowercase =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ).cpu().float().numpy() _lowercase =cosine_distance(lowerCAmelCase_ , self.concept_embeds ).cpu().float().numpy() _lowercase =[] _lowercase =image_embeds.shape[0] for i in range(lowerCAmelCase_ ): _lowercase ={"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images _lowercase =0.0 for concept_idx in range(len(special_cos_dist[0] ) ): _lowercase =special_cos_dist[i][concept_idx] _lowercase =self.special_care_embeds_weights[concept_idx].item() _lowercase =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]} ) _lowercase =0.0_1 for concept_idx in range(len(cos_dist[0] ) ): _lowercase =cos_dist[i][concept_idx] _lowercase =self.concept_embeds_weights[concept_idx].item() _lowercase =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowerCAmelCase_ ) result.append(lowerCAmelCase_ ) _lowercase =[len(res["bad_concepts"] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): _lowercase =self.vision_model(lowerCAmelCase_ )[1] # pooled_output _lowercase =self.visual_projection(lowerCAmelCase_ ) _lowercase =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ) _lowercase =cosine_distance(lowerCAmelCase_ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images _lowercase =0.0 _lowercase =special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) _lowercase =torch.any(special_scores > 0 , dim=1 ) _lowercase =special_care * 0.0_1 _lowercase =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) _lowercase =(cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) _lowercase =torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
594
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def __lowerCamelCase ( __a : List[Any] , __a : Dict , __a : Optional[Any]=None , __a : List[Any]=None ) -> str: if attention_mask is None: _lowercase =tf.cast(tf.math.not_equal(__a , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class _a : """simple docstring""" __SCREAMING_SNAKE_CASE = OPTConfig __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = 'gelu' def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=7 , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=99 , lowerCAmelCase_=16 , lowerCAmelCase_=2 , lowerCAmelCase_=4 , lowerCAmelCase_=4 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=20 , lowerCAmelCase_=2 , lowerCAmelCase_=1 , lowerCAmelCase_=0 , lowerCAmelCase_=16 , lowerCAmelCase_=16 , ): _lowercase =parent _lowercase =batch_size _lowercase =seq_length _lowercase =is_training _lowercase =use_labels _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_act _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =eos_token_id _lowercase =pad_token_id _lowercase =bos_token_id _lowercase =embed_dim _lowercase =word_embed_proj_dim _lowercase =False def __lowerCAmelCase ( self ): _lowercase =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowercase =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowercase =tf.concat([input_ids, eos_tensor] , axis=1 ) _lowercase =self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowerCAmelCase_ , **self.config_updates , ) _lowercase =prepare_opt_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ ) return config, inputs_dict def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): _lowercase =TFOPTModel(config=lowerCAmelCase_ ) _lowercase =inputs_dict["input_ids"] _lowercase =input_ids[:1, :] _lowercase =inputs_dict["attention_mask"][:1, :] _lowercase =1 # first forward pass _lowercase =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) _lowercase , _lowercase =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowercase =ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowercase =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowercase =tf.concat([input_ids, next_tokens] , axis=-1 ) _lowercase =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowercase =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )[0] _lowercase =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowercase =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowercase =output_from_no_past[:, -3:, random_slice_idx] _lowercase =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1e-3 ) @require_tf class _a ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __SCREAMING_SNAKE_CASE = (TFOPTForCausalLM,) if is_tf_available() else () __SCREAMING_SNAKE_CASE = ( {'feature-extraction': TFOPTModel, 'text-generation': TFOPTForCausalLM} if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = 10 def __lowerCAmelCase ( self ): _lowercase =TFOPTModelTester(self ) _lowercase =ConfigTester(self , config_class=lowerCAmelCase_ ) def __lowerCAmelCase ( self ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self ): _lowercase =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ ) def __lowerCAmelCase ( self ): _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowerCAmelCase_ , lowerCAmelCase_ ): if hasattr(lowerCAmelCase_ , "weight" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowerCAmelCase_ , "weight" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _lowercase =model_class(config=lowerCAmelCase_ ) _lowercase =_get_word_embedding_weight(lowerCAmelCase_ , model.get_input_embeddings() ) _lowercase =_get_word_embedding_weight(lowerCAmelCase_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowerCAmelCase_ ) _lowercase =_get_word_embedding_weight(lowerCAmelCase_ , model.get_input_embeddings() ) _lowercase =_get_word_embedding_weight(lowerCAmelCase_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _lowercase =size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowerCAmelCase_ ) # check that weights remain the same after resizing _lowercase =True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowercase =False self.assertTrue(lowerCAmelCase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowerCAmelCase_ ) _lowercase =True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowercase =False self.assertTrue(lowerCAmelCase_ ) def __lowerCamelCase ( __a : Tuple ) -> Dict: return tf.constant(__a , dtype=tf.intaa ) @require_tf class _a ( unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE = 99 def __lowerCAmelCase ( self ): _lowercase =tf.ones((4, 1) , dtype=tf.intaa ) * 2 _lowercase =tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _lowercase =input_ids.shape[0] _lowercase =OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class _a ( unittest.TestCase ): """simple docstring""" @slow def __lowerCAmelCase ( self ): _lowercase =TFOPTModel.from_pretrained("facebook/opt-350m" ) _lowercase =_long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _lowercase =tf.not_equal(lowerCAmelCase_ , model.config.pad_token_id ) with tf.GradientTape(): _lowercase =model(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ).last_hidden_state _lowercase =(1, 11, 512) self.assertEqual(output.shape , lowerCAmelCase_ ) _lowercase =tf.constant( [[-0.2_8_7_3, -1.9_2_1_8, -0.3_0_3_3], [-1.2_7_1_0, -0.1_3_3_8, -0.1_9_0_2], [0.4_0_9_5, 0.1_2_1_4, -1.3_1_2_1]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=4e-3 ) ) _lowercase =tf.function(lowerCAmelCase_ , jit_compile=lowerCAmelCase_ ) _lowercase =xla_generate(lowerCAmelCase_ , lowerCAmelCase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=4e-2 ) ) @require_tf @slow class _a ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ): super().setUp() _lowercase ="facebook/opt-350m" def __lowerCAmelCase ( self ): _lowercase =TFOPTForCausalLM.from_pretrained(self.path_model ) _lowercase =GPTaTokenizer.from_pretrained(self.path_model ) _lowercase =[ "Today is a beautiful day and I want to", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _lowercase =tokenizer(lowerCAmelCase_ , return_tensors="tf" , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _lowercase =tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _lowercase =tf.constant( [ [1.3_8_5_1, -1_3.8_9_2_3, -1_0.5_2_2_9, -1_0.7_5_3_3, -0.2_3_0_9, -1_0.2_3_8_4, -0.5_3_6_5, -9.0_9_4_7, -5.1_6_7_0], [-4.7_0_7_3, -1_0.6_2_7_6, -3.9_4_1_5, -2_1.5_2_4_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2], [0.6_2_4_7, -3.4_2_2_9, -8.9_1_7_9, -1.4_2_9_7, -1_4.1_6_5_0, 1.4_1_4_6, -9.0_2_1_8, -0.2_7_0_3, -0.2_7_0_3], [6.4_7_8_3, -1.9_9_1_3, -1_0.7_9_2_6, -2.3_3_3_6, 1.5_0_9_2, -0.9_9_7_4, -6.8_2_1_3, 1.3_4_7_7, 1.3_4_7_7], ] ) self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-4 ) ) _lowercase =tf.function(lowerCAmelCase_ , jit_compile=lowerCAmelCase_ ) _lowercase =tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-4 ) ) @require_tf @slow class _a ( unittest.TestCase ): """simple docstring""" @property def __lowerCAmelCase ( self ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def __lowerCAmelCase ( self ): _lowercase ="facebook/opt-125m" _lowercase =[ "Today is a beautiful day and I want to", "In the city of New York, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] _lowercase =[] _lowercase =GPTaTokenizer.from_pretrained(lowerCAmelCase_ ) _lowercase =TFOPTForCausalLM.from_pretrained(lowerCAmelCase_ ) for prompt in self.prompts: _lowercase =tokenizer(lowerCAmelCase_ , return_tensors="tf" ).input_ids _lowercase =model.generate(lowerCAmelCase_ , max_length=10 ) _lowercase =tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self ): _lowercase ="facebook/opt-350m" _lowercase =GPTaTokenizer.from_pretrained(lowerCAmelCase_ ) _lowercase =TFOPTForCausalLM.from_pretrained(lowerCAmelCase_ ) _lowercase ="left" # use different length sentences to test batching _lowercase =[ "Hello, my dog is a little", "Today, I", ] _lowercase =tokenizer(lowerCAmelCase_ , return_tensors="tf" , padding=lowerCAmelCase_ ) _lowercase =inputs["input_ids"] _lowercase =model.generate(input_ids=lowerCAmelCase_ , attention_mask=inputs["attention_mask"] ) _lowercase =tokenizer(sentences[0] , return_tensors="tf" ).input_ids _lowercase =model.generate(input_ids=lowerCAmelCase_ ) _lowercase =inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["attention_mask"][-1] , tf.intaa ) ) _lowercase =tokenizer(sentences[1] , return_tensors="tf" ).input_ids _lowercase =model.generate(input_ids=lowerCAmelCase_ , max_length=model.config.max_length - num_paddings ) _lowercase =tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) _lowercase =tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase_ ) _lowercase =tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase_ ) _lowercase =[ "Hello, my dog is a little bit of a dork.\nI'm a little bit", "Today, I was in the middle of a conversation with a friend about the", ] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , [non_padded_sentence, padded_sentence] ) def __lowerCAmelCase ( self ): _lowercase ="facebook/opt-350m" _lowercase =[ "Today is a beautiful day and I want to", "In the city of San Francisco, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] _lowercase =[] _lowercase =GPTaTokenizer.from_pretrained(lowerCAmelCase_ ) _lowercase =TFOPTForCausalLM.from_pretrained(lowerCAmelCase_ ) for prompt in self.prompts: _lowercase =tokenizer(lowerCAmelCase_ , return_tensors="tf" ).input_ids _lowercase =model.generate(lowerCAmelCase_ , max_length=10 ) _lowercase =tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
594
1
def __magic_name__ ( lowercase = 10**9 ) -> str: """simple docstring""" lowercase_ : Dict = 1 lowercase_ : Union[str, Any] = 2 lowercase_ : Optional[int] = 0 lowercase_ : Tuple = 0 lowercase_ : List[str] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value lowercase_ : Union[str, Any] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F'''{solution() = }''')
458
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase: Tuple = logging.get_logger(__name__) lowerCAmelCase: Dict = '▁' lowerCAmelCase: Dict = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', } lowerCAmelCase: int = { 'vocab_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json' ), }, 'spm_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model' ) }, } lowerCAmelCase: Any = { 'facebook/s2t-small-librispeech-asr': 1_0_2_4, } lowerCAmelCase: Optional[int] = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de'] lowerCAmelCase: List[Any] = {'mustc': MUSTC_LANGS} class a__( lowerCamelCase__ ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = MAX_MODEL_INPUT_SIZES lowercase__ = ["""input_ids""", """attention_mask"""] lowercase__ = [] def __init__( self : int , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Optional[Any]="<s>" , __snake_case : Optional[int]="</s>" , __snake_case : Union[str, Any]="<pad>" , __snake_case : str="<unk>" , __snake_case : Dict=False , __snake_case : int=False , __snake_case : str=None , __snake_case : Optional[int]=None , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : Union[str, Any] , ): a : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , do_upper_case=__snake_case , do_lower_case=__snake_case , tgt_lang=__snake_case , lang_codes=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) a : Tuple = do_upper_case a : Optional[Any] = do_lower_case a : List[str] = load_json(__snake_case ) a : Dict = {v: k for k, v in self.encoder.items()} a : int = spm_file a : Tuple = load_spm(__snake_case , self.sp_model_kwargs ) if lang_codes is not None: a : Any = lang_codes a : str = LANGUAGES[lang_codes] a : Tuple = [F"""<lang:{lang}>""" for lang in self.langs] a : str = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs} a : Optional[Any] = self.lang_tokens a : Union[str, Any] = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: a : List[str] = {} @property def lowercase_ ( self : Optional[Any] ): return len(self.encoder ) @property def lowercase_ ( self : int ): return self._tgt_lang @tgt_lang.setter def lowercase_ ( self : int , __snake_case : Optional[int] ): a : Union[str, Any] = new_tgt_lang self.set_tgt_lang_special_tokens(__snake_case ) def lowercase_ ( self : str , __snake_case : str ): a : int = self.lang_code_to_id[tgt_lang] a : int = [lang_code_id] def lowercase_ ( self : Optional[int] , __snake_case : str ): return self.sp_model.encode(__snake_case , out_type=__snake_case ) def lowercase_ ( self : List[str] , __snake_case : List[Any] ): return self.encoder.get(__snake_case , self.encoder[self.unk_token] ) def lowercase_ ( self : List[Any] , __snake_case : int ): return self.decoder.get(__snake_case , self.unk_token ) def lowercase_ ( self : Union[str, Any] , __snake_case : List[str] ): a : List[Any] = [] a : List[Any] = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: a : Union[str, Any] = self.sp_model.decode(__snake_case ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " a : Optional[int] = [] else: current_sub_tokens.append(__snake_case ) a : Tuple = self.sp_model.decode(__snake_case ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowercase_ ( self : int , __snake_case : List[Any] , __snake_case : List[str]=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ ( self : Optional[int] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) a : Optional[int] = [1] * len(self.prefix_tokens ) a : Any = [1] if token_ids_a is None: return prefix_ones + ([0] * len(__snake_case )) + suffix_ones return prefix_ones + ([0] * len(__snake_case )) + ([0] * len(__snake_case )) + suffix_ones def lowercase_ ( self : Union[str, Any] ): a : Union[str, Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ): a : List[str] = self.__dict__.copy() a : Union[str, Any] = None return state def __setstate__( self : str , __snake_case : Dict ): a : Dict = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): a : int = {} a : Any = load_spm(self.spm_file , self.sp_model_kwargs ) def lowercase_ ( self : str , __snake_case : str , __snake_case : Optional[str] = None ): a : Union[str, Any] = Path(__snake_case ) assert save_dir.is_dir(), F"""{save_directory} should be a directory""" a : Any = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) a : List[Any] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , __snake_case ) if os.path.abspath(self.spm_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __snake_case ) elif not os.path.isfile(self.spm_file ): with open(__snake_case , 'wb' ) as fi: a : Tuple = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (str(__snake_case ), str(__snake_case )) def lowerCamelCase__ ( _A , _A ): a : List[Any] = sentencepiece.SentencePieceProcessor(**_A ) spm.Load(str(_A ) ) return spm def lowerCamelCase__ ( _A ): with open(_A , 'r' ) as f: return json.load(_A ) def lowerCamelCase__ ( _A , _A ): with open(_A , 'w' ) as f: json.dump(_A , _A , indent=2 )
526
0
'''simple docstring''' import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def __A ( lowerCAmelCase_ ): return (data["data"], data["target"]) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Optional[Any] = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(lowerCAmelCase_ , lowerCAmelCase_ ) # Predict target for test data _UpperCAmelCase : Tuple = xgb.predict(lowerCAmelCase_ ) _UpperCAmelCase : int = predictions.reshape(len(lowerCAmelCase_ ) , 1 ) return predictions def __A ( ): _UpperCAmelCase : str = fetch_california_housing() _UpperCAmelCase , _UpperCAmelCase : List[Any] = data_handling(lowerCAmelCase_ ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : int = train_test_split( lowerCAmelCase_ , lowerCAmelCase_ , test_size=0.25 , random_state=1 ) _UpperCAmelCase : Any = xgboost(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Error printing print(f"Mean Absolute Error : {mean_absolute_error(lowerCAmelCase_ , lowerCAmelCase_ )}" ) print(f"Mean Square Error : {mean_squared_error(lowerCAmelCase_ , lowerCAmelCase_ )}" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
156
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase_ : Dict = logging.getLogger(__name__) def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): return (preds == labels).mean() @dataclass class __lowerCAmelCase : snake_case : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) snake_case : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) snake_case : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) snake_case : Optional[str] = field( default=__a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __lowerCAmelCase : snake_case : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) snake_case : str = field(metadata={"""help""": """Should contain the data files for the task."""} ) snake_case : int = field( default=1_2_8 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) snake_case : bool = field( default=__a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def __A ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCAmelCase_ ) # Set seed set_seed(training_args.seed ) try: _UpperCAmelCase : Union[str, Any] = processors[data_args.task_name]() _UpperCAmelCase : int = processor.get_labels() _UpperCAmelCase : Optional[int] = len(lowerCAmelCase_ ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase_ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCAmelCase : Optional[int] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , ) # Get datasets _UpperCAmelCase : int = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCAmelCase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _UpperCAmelCase : Tuple = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCAmelCase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(lowerCAmelCase_ ) -> Dict: _UpperCAmelCase : Optional[Any] = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(lowerCAmelCase_ , p.label_ids )} # Data collator _UpperCAmelCase : List[str] = DataCollatorWithPadding(lowerCAmelCase_ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCAmelCase : List[Any] = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=lowerCAmelCase_ , eval_dataset=lowerCAmelCase_ , compute_metrics=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCAmelCase : Any = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _UpperCAmelCase : int = trainer.evaluate() _UpperCAmelCase : List[str] = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_master(): with open(lowerCAmelCase_ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , lowerCAmelCase_ , lowerCAmelCase_ ) writer.write("""%s = %s\n""" % (key, value) ) results.update(lowerCAmelCase_ ) return results def __A ( lowerCAmelCase_ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
156
1
def _lowerCamelCase ( snake_case = 100 ): _lowerCAmelCase = (n * (n + 1) // 2) ** 2 _lowerCAmelCase = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"""{solution() = }""")
192
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowercase: Dict = logging.get_logger(__name__) def _lowerCamelCase ( snake_case ): _lowerCAmelCase = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: _lowerCAmelCase = [144, 192, 240] _lowerCAmelCase = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: _lowerCAmelCase = [96, 120, 144] _lowerCAmelCase = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: _lowerCAmelCase = [64, 80, 96] _lowerCAmelCase = [16, 16, 24, 48, 64, 80, 320] _lowerCAmelCase = 0.05 _lowerCAmelCase = 2.0 if mobilevit_name.startswith('deeplabv3_' ): _lowerCAmelCase = 512 _lowerCAmelCase = 16 _lowerCAmelCase = 21 _lowerCAmelCase = 'pascal-voc-id2label.json' else: _lowerCAmelCase = 1_000 _lowerCAmelCase = 'imagenet-1k-id2label.json' _lowerCAmelCase = 'huggingface/label-files' _lowerCAmelCase = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='dataset' ) , 'r' ) ) _lowerCAmelCase = {int(snake_case ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def _lowerCamelCase ( snake_case , snake_case=False ): for i in range(1 , 6 ): if F'layer_{i}.' in name: _lowerCAmelCase = name.replace(F'layer_{i}.' , F'encoder.layer.{i - 1}.' ) if "conv_1." in name: _lowerCAmelCase = name.replace('conv_1.' , 'conv_stem.' ) if ".block." in name: _lowerCAmelCase = name.replace('.block.' , '.' ) if "exp_1x1" in name: _lowerCAmelCase = name.replace('exp_1x1' , 'expand_1x1' ) if "red_1x1" in name: _lowerCAmelCase = name.replace('red_1x1' , 'reduce_1x1' ) if ".local_rep.conv_3x3." in name: _lowerCAmelCase = name.replace('.local_rep.conv_3x3.' , '.conv_kxk.' ) if ".local_rep.conv_1x1." in name: _lowerCAmelCase = name.replace('.local_rep.conv_1x1.' , '.conv_1x1.' ) if ".norm." in name: _lowerCAmelCase = name.replace('.norm.' , '.normalization.' ) if ".conv." in name: _lowerCAmelCase = name.replace('.conv.' , '.convolution.' ) if ".conv_proj." in name: _lowerCAmelCase = name.replace('.conv_proj.' , '.conv_projection.' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F'.{i}.{j}.' in name: _lowerCAmelCase = name.replace(F'.{i}.{j}.' , F'.{i}.layer.{j}.' ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F'.{i}.{j}.' in name: _lowerCAmelCase = name.replace(F'.{i}.{j}.' , F'.{i}.' ) if "expand_1x1" in name: _lowerCAmelCase = name.replace('expand_1x1' , 'downsampling_layer.expand_1x1' ) if "conv_3x3" in name: _lowerCAmelCase = name.replace('conv_3x3' , 'downsampling_layer.conv_3x3' ) if "reduce_1x1" in name: _lowerCAmelCase = name.replace('reduce_1x1' , 'downsampling_layer.reduce_1x1' ) for i in range(2 , 5 ): if F'.global_rep.{i}.weight' in name: _lowerCAmelCase = name.replace(F'.global_rep.{i}.weight' , '.layernorm.weight' ) if F'.global_rep.{i}.bias' in name: _lowerCAmelCase = name.replace(F'.global_rep.{i}.bias' , '.layernorm.bias' ) if ".global_rep." in name: _lowerCAmelCase = name.replace('.global_rep.' , '.transformer.' ) if ".pre_norm_mha.0." in name: _lowerCAmelCase = name.replace('.pre_norm_mha.0.' , '.layernorm_before.' ) if ".pre_norm_mha.1.out_proj." in name: _lowerCAmelCase = name.replace('.pre_norm_mha.1.out_proj.' , '.attention.output.dense.' ) if ".pre_norm_ffn.0." in name: _lowerCAmelCase = name.replace('.pre_norm_ffn.0.' , '.layernorm_after.' ) if ".pre_norm_ffn.1." in name: _lowerCAmelCase = name.replace('.pre_norm_ffn.1.' , '.intermediate.dense.' ) if ".pre_norm_ffn.4." in name: _lowerCAmelCase = name.replace('.pre_norm_ffn.4.' , '.output.dense.' ) if ".transformer." in name: _lowerCAmelCase = name.replace('.transformer.' , '.transformer.layer.' ) if ".aspp_layer." in name: _lowerCAmelCase = name.replace('.aspp_layer.' , '.' ) if ".aspp_pool." in name: _lowerCAmelCase = name.replace('.aspp_pool.' , '.' ) if "seg_head." in name: _lowerCAmelCase = name.replace('seg_head.' , 'segmentation_head.' ) if "segmentation_head.classifier.classifier." in name: _lowerCAmelCase = name.replace('segmentation_head.classifier.classifier.' , 'segmentation_head.classifier.' ) if "classifier.fc." in name: _lowerCAmelCase = name.replace('classifier.fc.' , 'classifier.' ) elif (not base_model) and ("segmentation_head." not in name): _lowerCAmelCase = 'mobilevit.' + name return name def _lowerCamelCase ( snake_case , snake_case , snake_case=False ): if base_model: _lowerCAmelCase = '' else: _lowerCAmelCase = 'mobilevit.' for key in orig_state_dict.copy().keys(): _lowerCAmelCase = orig_state_dict.pop(snake_case ) if key[:8] == "encoder.": _lowerCAmelCase = key[8:] if "qkv" in key: _lowerCAmelCase = key.split('.' ) _lowerCAmelCase = int(key_split[0][6:] ) - 1 _lowerCAmelCase = int(key_split[3] ) _lowerCAmelCase = model.get_submodule(F'{model_prefix}encoder.layer.{layer_num}' ) _lowerCAmelCase = layer.transformer.layer[transformer_num].attention.attention.all_head_size _lowerCAmelCase = ( F'{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.' ) if "weight" in key: _lowerCAmelCase = val[:dim, :] _lowerCAmelCase = val[dim : dim * 2, :] _lowerCAmelCase = val[-dim:, :] else: _lowerCAmelCase = val[:dim] _lowerCAmelCase = val[dim : dim * 2] _lowerCAmelCase = val[-dim:] else: _lowerCAmelCase = val return orig_state_dict def _lowerCamelCase ( ): _lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCAmelCase = Image.open(requests.get(snake_case , stream=snake_case ).raw ) return im @torch.no_grad() def _lowerCamelCase ( snake_case , snake_case , snake_case , snake_case=False ): _lowerCAmelCase = get_mobilevit_config(snake_case ) # load original state_dict _lowerCAmelCase = torch.load(snake_case , map_location='cpu' ) # load 🤗 model if mobilevit_name.startswith('deeplabv3_' ): _lowerCAmelCase = MobileViTForSemanticSegmentation(snake_case ).eval() else: _lowerCAmelCase = MobileViTForImageClassification(snake_case ).eval() _lowerCAmelCase = convert_state_dict(snake_case , snake_case ) model.load_state_dict(snake_case ) # Check outputs on an image, prepared by MobileViTImageProcessor _lowerCAmelCase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _lowerCAmelCase = image_processor(images=prepare_img() , return_tensors='pt' ) _lowerCAmelCase = model(**snake_case ) _lowerCAmelCase = outputs.logits if mobilevit_name.startswith('deeplabv3_' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": _lowerCAmelCase = torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": _lowerCAmelCase = torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": _lowerCAmelCase = torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(F'Unknown mobilevit_name: {mobilevit_name}' ) assert torch.allclose(logits[0, :3, :3, :3] , snake_case , atol=1E-4 ) else: assert logits.shape == (1, 1_000) if mobilevit_name == "mobilevit_s": _lowerCAmelCase = torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": _lowerCAmelCase = torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": _lowerCAmelCase = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(F'Unknown mobilevit_name: {mobilevit_name}' ) assert torch.allclose(logits[0, :3] , snake_case , atol=1E-4 ) Path(snake_case ).mkdir(exist_ok=snake_case ) print(F'Saving model {mobilevit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case ) if push_to_hub: _lowerCAmelCase = { 'mobilevit_s': 'mobilevit-small', 'mobilevit_xs': 'mobilevit-x-small', 'mobilevit_xxs': 'mobilevit-xx-small', 'deeplabv3_mobilevit_s': 'deeplabv3-mobilevit-small', 'deeplabv3_mobilevit_xs': 'deeplabv3-mobilevit-x-small', 'deeplabv3_mobilevit_xxs': 'deeplabv3-mobilevit-xx-small', } print('Pushing to the hub...' ) _lowerCAmelCase = model_mapping[mobilevit_name] image_processor.push_to_hub(snake_case , organization='apple' ) model.push_to_hub(snake_case , organization='apple' ) if __name__ == "__main__": _lowercase: Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowercase: List[str] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
192
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase (unittest.TestCase ): @slow def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" _snake_case : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=lowercase__ ).to(lowercase__ ) _snake_case : Optional[Any] = AutoTokenizer.from_pretrained('''google/mt5-small''' ) _snake_case : Optional[Any] = tokenizer('''Hello there''' , return_tensors='''pt''' ).input_ids _snake_case : Tuple = tokenizer('''Hi I am''' , return_tensors='''pt''' ).input_ids _snake_case : Any = model(input_ids.to(lowercase__ ) , labels=labels.to(lowercase__ ) ).loss _snake_case : int = -(labels.shape[-1] * loss.item()) _snake_case : Dict = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
47
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class lowerCamelCase (unittest.TestCase ): @slow def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Union[str, Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Any = TFAutoModel.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : str = AutoModel.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Optional[Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Dict = TFAutoModelForPreTraining.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = AutoModelForPreTraining.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Optional[int] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : Tuple = TFAutoModelForCausalLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Optional[Any] = AutoModelForCausalLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : List[str] = TFAutoModelForMaskedLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : int = AutoModelForMaskedLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Optional[int] = AutoModelForMaskedLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : List[str] = AutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Dict = AutoModelForSeqaSeqLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Any = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Any = TFAutoModelForSequenceClassification.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Dict = AutoModelForSequenceClassification.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : str = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : str = TFAutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Union[str, Any] = AutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) _snake_case : Tuple = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : List[str] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) _snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
47
1
'''simple docstring''' import comet # From: unbabel-comet import torch import datasets lowercase = datasets.logging.get_logger(__name__) lowercase = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' lowercase = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' lowercase = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): '''simple docstring''' def a_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://unbabel.github.io/COMET/html/index.html" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "sources": datasets.Value("string" , id="sequence" ), "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/Unbabel/COMET"] , reference_urls=[ "https://github.com/Unbabel/COMET", "https://www.aclweb.org/anthology/2020.emnlp-main.213/", "http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6", ] , ) def a_ ( self , a__ ): if self.config_name == "default": __SCREAMING_SNAKE_CASE : Union[str, Any] = comet.load_from_checkpoint(comet.download_model("wmt20-comet-da" ) ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def a_ ( self , a__ , a__ , a__ , a__=None , a__=False ): if gpus is None: __SCREAMING_SNAKE_CASE : List[str] = 1 if torch.cuda.is_available() else 0 __SCREAMING_SNAKE_CASE : Any = {"src": sources, "mt": predictions, "ref": references} __SCREAMING_SNAKE_CASE : int = [dict(zip(a__ , a__ ) ) for t in zip(*data.values() )] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = self.scorer.predict(a__ , gpus=a__ , progress_bar=a__ ) return {"mean_score": mean_score, "scores": scores}
211
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowerCamelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): super().__init__() if safety_checker is None: logger.warning( f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( speech_model=a__ , speech_processor=a__ , vae=a__ , text_encoder=a__ , tokenizer=a__ , unet=a__ , scheduler=a__ , feature_extractor=a__ , ) def a_ ( self , a__ = "auto" ): if slice_size == "auto": __SCREAMING_SNAKE_CASE : List[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(a__ ) def a_ ( self ): self.enable_attention_slicing(a__ ) @torch.no_grad() def __call__( self , a__ , a__=16000 , a__ = 512 , a__ = 512 , a__ = 50 , a__ = 7.5 , a__ = None , a__ = 1 , a__ = 0.0 , a__ = None , a__ = None , a__ = "pil" , a__ = True , a__ = None , a__ = 1 , **a__ , ): __SCREAMING_SNAKE_CASE : Optional[Any] = self.speech_processor.feature_extractor( a__ , return_tensors="pt" , sampling_rate=a__ ).input_features.to(self.device ) __SCREAMING_SNAKE_CASE : Optional[int] = self.speech_model.generate(a__ , max_length=480000 ) __SCREAMING_SNAKE_CASE : List[Any] = self.speech_processor.tokenizer.batch_decode(a__ , skip_special_tokens=a__ , normalize=a__ )[ 0 ] if isinstance(a__ , a__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = 1 elif isinstance(a__ , a__ ): __SCREAMING_SNAKE_CASE : Optional[int] = len(a__ ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(a__ )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(a__ , a__ ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(a__ )}.' ) # get prompt text embeddings __SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer( a__ , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) __SCREAMING_SNAKE_CASE : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __SCREAMING_SNAKE_CASE : Tuple = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) __SCREAMING_SNAKE_CASE : Tuple = text_input_ids[:, : self.tokenizer.model_max_length] __SCREAMING_SNAKE_CASE : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = text_embeddings.shape __SCREAMING_SNAKE_CASE : int = text_embeddings.repeat(1 , a__ , 1 ) __SCREAMING_SNAKE_CASE : Optional[int] = text_embeddings.view(bs_embed * num_images_per_prompt , a__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __SCREAMING_SNAKE_CASE : str = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE : List[str] if negative_prompt is None: __SCREAMING_SNAKE_CASE : Any = [""] * batch_size elif type(a__ ) is not type(a__ ): raise TypeError( f'`negative_prompt` should be the same type to `prompt`, but got {type(a__ )} !=' f' {type(a__ )}.' ) elif isinstance(a__ , a__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = [negative_prompt] elif batch_size != len(a__ ): raise ValueError( f'`negative_prompt`: {negative_prompt} has batch size {len(a__ )}, but `prompt`:' f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' " the batch size of `prompt`." ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = negative_prompt __SCREAMING_SNAKE_CASE : Optional[int] = text_input_ids.shape[-1] __SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer( a__ , padding="max_length" , max_length=a__ , truncation=a__ , return_tensors="pt" , ) __SCREAMING_SNAKE_CASE : Dict = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __SCREAMING_SNAKE_CASE : Dict = uncond_embeddings.shape[1] __SCREAMING_SNAKE_CASE : int = uncond_embeddings.repeat(1 , a__ , 1 ) __SCREAMING_SNAKE_CASE : Any = uncond_embeddings.view(batch_size * num_images_per_prompt , a__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __SCREAMING_SNAKE_CASE : Dict = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __SCREAMING_SNAKE_CASE : Dict = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __SCREAMING_SNAKE_CASE : int = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __SCREAMING_SNAKE_CASE : Optional[int] = torch.randn(a__ , generator=a__ , device="cpu" , dtype=a__ ).to( self.device ) else: __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randn(a__ , generator=a__ , device=self.device , dtype=a__ ) else: if latents.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) __SCREAMING_SNAKE_CASE : Dict = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(a__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __SCREAMING_SNAKE_CASE : List[str] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __SCREAMING_SNAKE_CASE : Union[str, Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __SCREAMING_SNAKE_CASE : str = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __SCREAMING_SNAKE_CASE : Union[str, Any] = {} if accepts_eta: __SCREAMING_SNAKE_CASE : Dict = eta for i, t in enumerate(self.progress_bar(a__ ) ): # expand the latents if we are doing classifier free guidance __SCREAMING_SNAKE_CASE : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler.scale_model_input(a__ , a__ ) # predict the noise residual __SCREAMING_SNAKE_CASE : List[Any] = self.unet(a__ , a__ , encoder_hidden_states=a__ ).sample # perform guidance if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = noise_pred.chunk(2 ) __SCREAMING_SNAKE_CASE : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __SCREAMING_SNAKE_CASE : Any = self.scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(a__ , a__ , a__ ) __SCREAMING_SNAKE_CASE : Any = 1 / 0.18215 * latents __SCREAMING_SNAKE_CASE : Optional[Any] = self.vae.decode(a__ ).sample __SCREAMING_SNAKE_CASE : List[str] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __SCREAMING_SNAKE_CASE : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE : int = self.numpy_to_pil(a__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=a__ , nsfw_content_detected=a__ )
211
1
"""simple docstring""" # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter A__ : int = logging.get_logger(__name__) A__ : Dict[Optional[str], Type[Formatter]] = {} A__ : Dict[Optional[str], str] = {} A__ : Dict[Optional[str], Exception] = {} def a__ ( lowerCAmelCase : type , lowerCAmelCase : Optional[str] , lowerCAmelCase : Optional[List[str]] = None , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" ) UpperCAmelCase__ : Union[str, Any] = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" ) UpperCAmelCase__ : Union[str, Any] = format_type def a__ ( lowerCAmelCase : Exception , lowerCAmelCase : Optional[str] , lowerCAmelCase : Optional[List[str]] = None ): '''simple docstring''' UpperCAmelCase__ : Dict = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): UpperCAmelCase__ : Any = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["""python"""]) _register_formatter(ArrowFormatter, """arrow""", aliases=["""pa""", """pyarrow"""]) _register_formatter(NumpyFormatter, """numpy""", aliases=["""np"""]) _register_formatter(PandasFormatter, """pandas""", aliases=["""pd"""]) _register_formatter(CustomFormatter, """custom""") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, """torch""", aliases=["""pt""", """pytorch"""]) else: A__ : Union[str, Any] = ValueError("""PyTorch needs to be installed to be able to return PyTorch tensors.""") _register_unavailable_formatter(_torch_error, """torch""", aliases=["""pt""", """pytorch"""]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, """tensorflow""", aliases=["""tf"""]) else: A__ : Union[str, Any] = ValueError("""Tensorflow needs to be installed to be able to return Tensorflow tensors.""") _register_unavailable_formatter(_tf_error, """tensorflow""", aliases=["""tf"""]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, """jax""", aliases=[]) else: A__ : Any = ValueError("""JAX needs to be installed to be able to return JAX arrays.""") _register_unavailable_formatter(_jax_error, """jax""", aliases=[]) def a__ ( lowerCAmelCase : Optional[str] ): '''simple docstring''' if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def a__ ( lowerCAmelCase : Optional[str] , **lowerCAmelCase : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = get_format_type_from_alias(lowerCAmelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**lowerCAmelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'" )
660
"""simple docstring""" from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = '' _A = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , )-> str: super().__init__(self , **__UpperCamelCase ) UpperCAmelCase__ : int = repo_info UpperCAmelCase__ : Optional[int] = token UpperCAmelCase__ : Optional[Any] = None def lowerCAmelCase__ ( self )-> Optional[Any]: if self.dir_cache is None: UpperCAmelCase__ : str = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes UpperCAmelCase__ : str = { "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(__UpperCamelCase ): {"name": str(__UpperCamelCase ), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = "rb" , **__UpperCamelCase , )-> List[Any]: if not isinstance(self.repo_info , __UpperCamelCase ): raise NotImplementedError(F"Open is only implemented for dataset repositories, but got {self.repo_info}" ) UpperCAmelCase__ : Union[str, Any] = hf_hub_url(self.repo_info.id , __UpperCamelCase , revision=self.repo_info.sha ) return fsspec.open( __UpperCamelCase , mode=__UpperCamelCase , headers=get_authentication_headers_for_url(__UpperCamelCase , use_auth_token=self.token ) , client_kwargs={"trust_env": True} , ).open() def lowerCAmelCase__ ( self , __UpperCamelCase , **__UpperCamelCase )-> List[str]: self._get_dirs() UpperCAmelCase__ : Union[str, Any] = self._strip_protocol(__UpperCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase=False , **__UpperCamelCase )-> str: self._get_dirs() UpperCAmelCase__ : str = PurePosixPath(path.strip("/" ) ) UpperCAmelCase__ : Optional[Any] = {} for p, f in self.dir_cache.items(): UpperCAmelCase__ : Optional[int] = PurePosixPath(p.strip("/" ) ) UpperCAmelCase__ : Dict = p.parent if root == path: UpperCAmelCase__ : Tuple = f UpperCAmelCase__ : List[Any] = list(paths.values() ) if detail: return out else: return sorted(f["name"] for f in out )
660
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class _UpperCamelCase ( metaclass=lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase__ = ["""note_seq"""] def __init__( self : List[Any] , *_lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : Optional[Any]): '''simple docstring''' requires_backends(self , ['note_seq']) @classmethod def __lowerCamelCase ( cls : Dict , *_lowerCAmelCase : str , **_lowerCAmelCase : Tuple): '''simple docstring''' requires_backends(cls , ['note_seq']) @classmethod def __lowerCamelCase ( cls : List[str] , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : List[str]): '''simple docstring''' requires_backends(cls , ['note_seq'])
474
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } SCREAMING_SNAKE_CASE_ = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 4 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = '''left''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<unk>" , lowerCamelCase_="<sep>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<cls>" , lowerCamelCase_="<mask>" , lowerCamelCase_=["<eop>", "<eod>"] , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) UpperCamelCase = 3 UpperCamelCase = do_lower_case UpperCamelCase = remove_space UpperCamelCase = keep_accents UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowerCamelCase_) @property def UpperCAmelCase__ ( self) -> List[str]: return len(self.sp_model) def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = {self.convert_ids_to_tokens(lowerCamelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Any: UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , lowerCamelCase_) -> str: UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]: if self.remove_space: UpperCamelCase = ''' '''.join(inputs.strip().split()) else: UpperCamelCase = inputs UpperCamelCase = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCamelCase = unicodedata.normalize('''NFKD''' , lowerCamelCase_) UpperCamelCase = ''''''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase_)]) if self.do_lower_case: UpperCamelCase = outputs.lower() return outputs def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[str]: UpperCamelCase = self.preprocess_text(lowerCamelCase_) UpperCamelCase = self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_) UpperCamelCase = [] for piece in pieces: if len(lowerCamelCase_) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase_ , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCamelCase = cur_pieces[1:] else: UpperCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(lowerCamelCase_) else: new_pieces.append(lowerCamelCase_) return new_pieces def UpperCAmelCase__ ( self , lowerCamelCase_) -> int: return self.sp_model.PieceToId(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[int]: return self.sp_model.IdToPiece(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict: UpperCamelCase = ''''''.join(lowerCamelCase_).replace(lowerCamelCase_ , ''' ''').strip() return out_string def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = True , **lowerCamelCase_ , ) -> str: UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , lowerCamelCase_) UpperCamelCase = self.convert_ids_to_tokens(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCamelCase = [] UpperCamelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) UpperCamelCase = [] sub_texts.append(lowerCamelCase_) else: current_sub_text.append(lowerCamelCase_) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCamelCase = ''''''.join(lowerCamelCase_) UpperCamelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCamelCase = self.clean_up_tokenization(lowerCamelCase_) return clean_text else: return text def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_) if token_ids_a is not None: return ([0] * len(lowerCamelCase_)) + [1] + ([0] * len(lowerCamelCase_)) + [1, 1] return ([0] * len(lowerCamelCase_)) + [1, 1] def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowerCamelCase_) elif not os.path.isfile(self.vocab_file): with open(lowerCamelCase_ , '''wb''') as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_) return (out_vocab_file,)
34
0
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( __lowerCAmelCase , unittest.TestCase): '''simple docstring''' A: Union[str, Any] = GPTSanJapaneseTokenizer A: Tuple = False A: Any = {"do_clean_text": False, "add_prefix_space": False} def UpperCAmelCase__ ( self : Any ) -> str: '''simple docstring''' super().setUp() # fmt: off UpperCamelCase__ : int = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on UpperCamelCase__ : Tuple = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 UpperCamelCase__ : Optional[int] = {'''unk_token''': '''<unk>'''} UpperCamelCase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file , '''w''' ) as emoji_writer: emoji_writer.write(json.dumps(lowerCamelCase__ ) ) def UpperCAmelCase__ ( self : Optional[int] , **lowerCamelCase__ : Optional[int] ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Dict ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : int = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' UpperCamelCase__ : List[Any] = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def UpperCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = self.get_input_output_texts(lowerCamelCase__ ) UpperCamelCase__ : List[str] = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) UpperCamelCase__ : str = tokenizer.decode(lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ ) return text, ids def UpperCAmelCase__ ( self : Any ) -> List[str]: '''simple docstring''' pass # TODO add if relevant def UpperCAmelCase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' pass # TODO add if relevant def UpperCAmelCase__ ( self : Any ) -> List[Any]: '''simple docstring''' pass # TODO add if relevant def UpperCAmelCase__ ( self : Any ) -> Any: '''simple docstring''' UpperCamelCase__ : Optional[Any] = self.get_tokenizer() # Testing tokenization UpperCamelCase__ : List[Any] = '''こんにちは、世界。 こんばんは、㔺界。''' UpperCamelCase__ : Optional[Any] = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] UpperCamelCase__ : int = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Testing conversion to ids without special tokens UpperCamelCase__ : List[str] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] UpperCamelCase__ : Any = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Testing conversion to ids with special tokens UpperCamelCase__ : str = tokens + [tokenizer.unk_token] UpperCamelCase__ : Tuple = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] UpperCamelCase__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Optional[int] = self.get_tokenizer() # Testing tokenization UpperCamelCase__ : Optional[int] = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' UpperCamelCase__ : Optional[Any] = '''こんにちは、、、、世界。こんばんは、、、、世界。''' UpperCamelCase__ : Tuple = tokenizer.encode(lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = tokenizer.decode(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) @slow def UpperCAmelCase__ ( self : int ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Dict = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization UpperCamelCase__ : str = '''こんにちは、世界。''' UpperCamelCase__ : Optional[int] = '''こんばんは、㔺界。😀''' UpperCamelCase__ : Optional[int] = '''こんにちは、世界。こんばんは、世界。😀''' UpperCamelCase__ : List[str] = tokenizer.encode(prefix_text + input_text ) UpperCamelCase__ : List[str] = tokenizer.encode('''''' , prefix_text=prefix_text + input_text ) UpperCamelCase__ : str = tokenizer.encode(lowerCamelCase__ , prefix_text=lowerCamelCase__ ) UpperCamelCase__ : Tuple = tokenizer.decode(lowerCamelCase__ ) UpperCamelCase__ : List[str] = tokenizer.decode(lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = tokenizer.decode(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) @slow def UpperCAmelCase__ ( self : Any ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : List[Any] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization UpperCamelCase__ : Optional[int] = '''こんにちは、世界。''' UpperCamelCase__ : Dict = '''こんばんは、㔺界。😀''' UpperCamelCase__ : Optional[int] = len(tokenizer.encode(lowerCamelCase__ ) ) - 2 UpperCamelCase__ : int = len(tokenizer.encode(lowerCamelCase__ ) ) - 2 UpperCamelCase__ : Optional[Any] = [1] + [0] * (len_prefix + len_text + 1) UpperCamelCase__ : Tuple = [1] * (len_prefix + len_text + 1) + [0] UpperCamelCase__ : int = [1] + [1] * (len_prefix) + [0] * (len_text + 1) UpperCamelCase__ : Tuple = tokenizer(prefix_text + input_text ).token_type_ids UpperCamelCase__ : Tuple = tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids UpperCamelCase__ : List[str] = tokenizer(lowerCamelCase__ , prefix_text=lowerCamelCase__ ).token_type_ids self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @slow def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Tuple = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) UpperCamelCase__ : str = tokenizer.encode('''あンいワ''' ) UpperCamelCase__ : Any = tokenizer.encode('''''' , prefix_text='''あンいワ''' ) UpperCamelCase__ : List[str] = tokenizer.encode('''いワ''' , prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(lowerCamelCase__ ) , tokenizer.decode(lowerCamelCase__ ) ) self.assertEqual(tokenizer.decode(lowerCamelCase__ ) , tokenizer.decode(lowerCamelCase__ ) ) self.assertNotEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertNotEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : List[Any] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) UpperCamelCase__ : Any = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] UpperCamelCase__ : Union[str, Any] = tokenizer(lowerCamelCase__ , padding=lowerCamelCase__ ) UpperCamelCase__ : Any = tokenizer.batch_encode_plus(lowerCamelCase__ , padding=lowerCamelCase__ ) # fmt: off UpperCamelCase__ : Union[str, Any] = [[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]] UpperCamelCase__ : str = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] UpperCamelCase__ : List[str] = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , lowerCamelCase__ ) self.assertListEqual(x_token.token_type_ids , lowerCamelCase__ ) self.assertListEqual(x_token.attention_mask , lowerCamelCase__ ) self.assertListEqual(x_token_a.input_ids , lowerCamelCase__ ) self.assertListEqual(x_token_a.token_type_ids , lowerCamelCase__ ) self.assertListEqual(x_token_a.attention_mask , lowerCamelCase__ ) def UpperCAmelCase__ ( self : int ) -> Any: '''simple docstring''' pass def UpperCAmelCase__ ( self : Dict ) -> Any: '''simple docstring''' pass
715
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __magic_name__ ( nn.Module): def __init__( self : Dict ) -> str: '''simple docstring''' super().__init__() UpperCamelCase__ : int = nn.Linear(3 , 4 ) UpperCamelCase__ : str = nn.BatchNormad(4 ) UpperCamelCase__ : List[str] = nn.Linear(4 , 5 ) def UpperCAmelCase__ ( self : int , lowerCamelCase__ : Dict ) -> Tuple: '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(lowerCamelCase__ ) ) ) class __magic_name__ ( __lowerCAmelCase): def UpperCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : Any , *lowerCamelCase__ : int , **lowerCamelCase__ : List[str] ) -> Any: '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class __magic_name__ ( __lowerCAmelCase): def UpperCAmelCase__ ( self : Any , lowerCamelCase__ : Any , lowerCamelCase__ : Any ) -> Any: '''simple docstring''' return output + 1 class __magic_name__ ( unittest.TestCase): def UpperCAmelCase__ ( self : Tuple ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Tuple = ModelForTest() UpperCamelCase__ : Union[str, Any] = ModelHook() add_hook_to_module(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(test_model._hf_hook , lowerCamelCase__ ) self.assertTrue(hasattr(lowerCamelCase__ , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(lowerCamelCase__ ) self.assertFalse(hasattr(lowerCamelCase__ , '''_hf_hook''' ) ) self.assertFalse(hasattr(lowerCamelCase__ , '''_old_forward''' ) ) def UpperCAmelCase__ ( self : Dict ) -> str: '''simple docstring''' UpperCamelCase__ : Dict = ModelForTest() UpperCamelCase__ : List[str] = ModelHook() add_hook_to_module(lowerCamelCase__ , lowerCamelCase__ ) add_hook_to_module(lowerCamelCase__ , lowerCamelCase__ , append=lowerCamelCase__ ) self.assertEqual(isinstance(test_model._hf_hook , lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(lowerCamelCase__ , '''_old_forward''' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['''x'''] ) remove_hook_from_module(lowerCamelCase__ ) self.assertFalse(hasattr(lowerCamelCase__ , '''_hf_hook''' ) ) self.assertFalse(hasattr(lowerCamelCase__ , '''_old_forward''' ) ) def UpperCAmelCase__ ( self : List[str] ) -> int: '''simple docstring''' UpperCamelCase__ : Optional[Any] = ModelForTest() UpperCamelCase__ : List[str] = torch.randn(2 , 3 ) UpperCamelCase__ : int = test_model(x + 1 ) UpperCamelCase__ : List[Any] = test_model(x + 2 ) UpperCamelCase__ : Optional[int] = PreForwardHook() add_hook_to_module(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : List[Any] = test_model(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain UpperCamelCase__ : Optional[Any] = PreForwardHook() add_hook_to_module(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : List[str] = test_model(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks UpperCamelCase__ : Tuple = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Any = test_model(lowerCamelCase__ ) assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-5 ) def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : Dict = ModelForTest() UpperCamelCase__ : str = torch.randn(2 , 3 ) UpperCamelCase__ : Any = test_model(lowerCamelCase__ ) UpperCamelCase__ : int = PostForwardHook() add_hook_to_module(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Dict = test_model(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__ , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain UpperCamelCase__ : Dict = PostForwardHook() add_hook_to_module(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : int = test_model(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__ , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks UpperCamelCase__ : List[Any] = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Tuple = test_model(lowerCamelCase__ ) assert torch.allclose(lowerCamelCase__ , output + 2 , atol=1E-5 ) def UpperCAmelCase__ ( self : List[Any] ) -> Dict: '''simple docstring''' UpperCamelCase__ : List[Any] = ModelForTest() UpperCamelCase__ : Tuple = torch.randn(2 , 3 ) UpperCamelCase__ : Tuple = test_model(lowerCamelCase__ ) UpperCamelCase__ : Union[str, Any] = PostForwardHook() add_hook_to_module(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Any = test_model(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__ , output + 1 ) ) self.assertTrue(outputa.requires_grad ) UpperCamelCase__ : Optional[int] = True UpperCamelCase__ : Optional[int] = test_model(lowerCamelCase__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def UpperCAmelCase__ ( self : Any ) -> Dict: '''simple docstring''' UpperCamelCase__ : int = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device UpperCamelCase__ : Tuple = torch.randn(2 , 3 ) UpperCamelCase__ : str = model(lowerCamelCase__ ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(lowerCamelCase__ , AlignDevicesHook(io_same_device=lowerCamelCase__ ) ) UpperCamelCase__ : Tuple = torch.randn(2 , 3 ).to(0 ) UpperCamelCase__ : Optional[int] = model(lowerCamelCase__ ) self.assertEqual(output.device , torch.device(0 ) ) def UpperCAmelCase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : Dict = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices UpperCamelCase__ : int = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**lowerCamelCase__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**lowerCamelCase__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**lowerCamelCase__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device UpperCamelCase__ : int = torch.device(hook_kwargs['''execution_device'''] ) self.assertEqual(model.batchnorm.running_mean.device , lowerCamelCase__ ) UpperCamelCase__ : Dict = torch.randn(2 , 3 ) UpperCamelCase__ : List[str] = model(lowerCamelCase__ ) self.assertEqual(output.device , lowerCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload UpperCamelCase__ : Optional[Any] = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**lowerCamelCase__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**lowerCamelCase__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**lowerCamelCase__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) UpperCamelCase__ : List[Any] = torch.randn(2 , 3 ) UpperCamelCase__ : str = model(lowerCamelCase__ ) self.assertEqual(output.device , lowerCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def UpperCAmelCase__ ( self : str ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : Optional[int] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices UpperCamelCase__ : Any = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(lowerCamelCase__ , execution_device=lowerCamelCase__ , offload=lowerCamelCase__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device UpperCamelCase__ : str = torch.device(lowerCamelCase__ ) self.assertEqual(model.batchnorm.running_mean.device , lowerCamelCase__ ) UpperCamelCase__ : int = torch.randn(2 , 3 ) UpperCamelCase__ : Tuple = model(lowerCamelCase__ ) self.assertEqual(output.device , lowerCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowerCamelCase__ ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook(lowerCamelCase__ , execution_device=lowerCamelCase__ , offload=lowerCamelCase__ , offload_buffers=lowerCamelCase__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) UpperCamelCase__ : int = torch.randn(2 , 3 ) UpperCamelCase__ : str = model(lowerCamelCase__ ) self.assertEqual(output.device , lowerCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowerCamelCase__ ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) def UpperCAmelCase__ ( self : int ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : List[str] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # This will move each submodule on different devices UpperCamelCase__ : List[str] = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( lowerCamelCase__ , execution_device=lowerCamelCase__ , offload=lowerCamelCase__ , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) # Buffers are not included in the offload by default, so are on the execution device UpperCamelCase__ : List[str] = torch.device(lowerCamelCase__ ) self.assertEqual(model.batchnorm.running_mean.device , lowerCamelCase__ ) UpperCamelCase__ : List[str] = torch.randn(2 , 3 ) UpperCamelCase__ : Any = model(lowerCamelCase__ ) self.assertEqual(output.device , lowerCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowerCamelCase__ ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) # Now test with buffers included in the offload attach_align_device_hook( lowerCamelCase__ , execution_device=lowerCamelCase__ , offload=lowerCamelCase__ , weights_map=model.state_dict() , offload_buffers=lowerCamelCase__ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''meta''' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''' ) ) UpperCamelCase__ : Union[str, Any] = torch.randn(2 , 3 ) UpperCamelCase__ : Optional[int] = model(lowerCamelCase__ ) self.assertEqual(output.device , lowerCamelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowerCamelCase__ ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''' ) ) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''' ) )
106
0
"""simple docstring""" from math import factorial def a__ ( snake_case__ , snake_case__ , snake_case__ ) -> float: if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) lowerCamelCase = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! lowerCamelCase = float(factorial(__UpperCAmelCase ) ) coefficient /= factorial(__UpperCAmelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("""Probability of 2 successes out of 4 trails""") print("""with probability of 0.75 is:""", end=""" """) print(binomial_distribution(2, 4, 0.7_5))
543
"""simple docstring""" from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _A = logging.get_logger(__name__) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class lowerCamelCase (_SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Tuple , **_snake_case : Dict ) -> List[str]: super().__init__(**_snake_case ) requires_backends(self , "vision" ) requires_backends(self , "torch" ) if self.framework != "pt": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) self.check_model_type(_snake_case ) def lowerCAmelCase_ ( self : int , **_snake_case : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = {} # preprocess args if "points_per_batch" in kwargs: SCREAMING_SNAKE_CASE__ = kwargs["points_per_batch"] if "points_per_crop" in kwargs: SCREAMING_SNAKE_CASE__ = kwargs["points_per_crop"] if "crops_n_layers" in kwargs: SCREAMING_SNAKE_CASE__ = kwargs["crops_n_layers"] if "crop_overlap_ratio" in kwargs: SCREAMING_SNAKE_CASE__ = kwargs["crop_overlap_ratio"] if "crop_n_points_downscale_factor" in kwargs: SCREAMING_SNAKE_CASE__ = kwargs["crop_n_points_downscale_factor"] # postprocess args if "pred_iou_thresh" in kwargs: SCREAMING_SNAKE_CASE__ = kwargs["pred_iou_thresh"] if "stability_score_offset" in kwargs: SCREAMING_SNAKE_CASE__ = kwargs["stability_score_offset"] if "mask_threshold" in kwargs: SCREAMING_SNAKE_CASE__ = kwargs["mask_threshold"] if "stability_score_thresh" in kwargs: SCREAMING_SNAKE_CASE__ = kwargs["stability_score_thresh"] if "crops_nms_thresh" in kwargs: SCREAMING_SNAKE_CASE__ = kwargs["crops_nms_thresh"] if "output_rle_mask" in kwargs: SCREAMING_SNAKE_CASE__ = kwargs["output_rle_mask"] if "output_bboxes_mask" in kwargs: SCREAMING_SNAKE_CASE__ = kwargs["output_bboxes_mask"] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : int , _snake_case : List[str] , *_snake_case : int , _snake_case : Union[str, Any]=None , _snake_case : List[str]=None , **_snake_case : Tuple ) -> str: return super().__call__(_snake_case , *_snake_case , num_workers=_snake_case , batch_size=_snake_case , **_snake_case ) def lowerCAmelCase_ ( self : List[Any] , _snake_case : int , _snake_case : List[Any]=64 , _snake_case : int = 0 , _snake_case : float = 512 / 1500 , _snake_case : Optional[int] = 32 , _snake_case : Optional[int] = 1 , ) -> int: SCREAMING_SNAKE_CASE__ = load_image(_snake_case ) SCREAMING_SNAKE_CASE__ = self.image_processor.size["longest_edge"] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.image_processor.generate_crop_boxes( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) SCREAMING_SNAKE_CASE__ = self.image_processor(images=_snake_case , return_tensors="pt" ) with self.device_placement(): if self.framework == "pt": SCREAMING_SNAKE_CASE__ = self.get_inference_context() with inference_context(): SCREAMING_SNAKE_CASE__ = self._ensure_tensor_on_device(_snake_case , device=self.device ) SCREAMING_SNAKE_CASE__ = self.model.get_image_embeddings(model_inputs.pop("pixel_values" ) ) SCREAMING_SNAKE_CASE__ = image_embeddings SCREAMING_SNAKE_CASE__ = grid_points.shape[1] SCREAMING_SNAKE_CASE__ = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( "Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. " "To return all points at once, set points_per_batch to None" ) for i in range(0 , _snake_case , _snake_case ): SCREAMING_SNAKE_CASE__ = grid_points[:, i : i + points_per_batch, :, :] SCREAMING_SNAKE_CASE__ = input_labels[:, i : i + points_per_batch] SCREAMING_SNAKE_CASE__ = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def lowerCAmelCase_ ( self : Tuple , _snake_case : Optional[int] , _snake_case : Dict=0.88 , _snake_case : List[Any]=0.95 , _snake_case : List[Any]=0 , _snake_case : List[str]=1 , ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = model_inputs.pop("input_boxes" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("is_last" ) SCREAMING_SNAKE_CASE__ = model_inputs.pop("original_sizes" ).tolist() SCREAMING_SNAKE_CASE__ = model_inputs.pop("reshaped_input_sizes" ).tolist() SCREAMING_SNAKE_CASE__ = self.model(**_snake_case ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks SCREAMING_SNAKE_CASE__ = model_outputs["pred_masks"] SCREAMING_SNAKE_CASE__ = self.image_processor.post_process_masks( _snake_case , _snake_case , _snake_case , _snake_case , binarize=_snake_case ) SCREAMING_SNAKE_CASE__ = model_outputs["iou_scores"] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , _snake_case , _snake_case , _snake_case , _snake_case , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def lowerCAmelCase_ ( self : List[str] , _snake_case : Union[str, Any] , _snake_case : Any=False , _snake_case : str=False , _snake_case : List[str]=0.7 , ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for model_output in model_outputs: all_scores.append(model_output.pop("iou_scores" ) ) all_masks.extend(model_output.pop("masks" ) ) all_boxes.append(model_output.pop("boxes" ) ) SCREAMING_SNAKE_CASE__ = torch.cat(_snake_case ) SCREAMING_SNAKE_CASE__ = torch.cat(_snake_case ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.image_processor.post_process_for_mask_generation( _snake_case , _snake_case , _snake_case , _snake_case ) SCREAMING_SNAKE_CASE__ = defaultdict(_snake_case ) for output in model_outputs: for k, v in output.items(): extra[k].append(_snake_case ) SCREAMING_SNAKE_CASE__ = {} if output_rle_mask: SCREAMING_SNAKE_CASE__ = rle_mask if output_bboxes_mask: SCREAMING_SNAKE_CASE__ = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
159
0
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowercase_ = """src/diffusers""" lowercase_ = """.""" # This is to make sure the diffusers module imported is the one in the repo. lowercase_ = importlib.util.spec_from_file_location( """diffusers""", os.path.join(DIFFUSERS_PATH, """__init__.py"""), submodule_search_locations=[DIFFUSERS_PATH], ) lowercase_ = spec.loader.load_module() def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: return line.startswith(__SCREAMING_SNAKE_CASE ) or len(__SCREAMING_SNAKE_CASE ) <= 1 or re.search(R'^\s*\)(\s*->.*:|:)\s*$' , __SCREAMING_SNAKE_CASE ) is not None def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[Any]: lowercase__ = object_name.split('.' ) lowercase__ = 0 # First let's find the module where our object lives. lowercase__ = parts[i] while i < len(__SCREAMING_SNAKE_CASE ) and not os.path.isfile(os.path.join(__SCREAMING_SNAKE_CASE , F"""{module}.py""" ) ): i += 1 if i < len(__SCREAMING_SNAKE_CASE ): lowercase__ = os.path.join(__SCREAMING_SNAKE_CASE , parts[i] ) if i >= len(__SCREAMING_SNAKE_CASE ): raise ValueError(F"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(__SCREAMING_SNAKE_CASE , F"""{module}.py""" ) , 'r' , encoding='utf-8' , newline='\n' ) as f: lowercase__ = f.readlines() # Now let's find the class / func in the code! lowercase__ = "" lowercase__ = 0 for name in parts[i + 1 :]: while ( line_index < len(__SCREAMING_SNAKE_CASE ) and re.search(RF"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__SCREAMING_SNAKE_CASE ): raise ValueError(F""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). lowercase__ = line_index while line_index < len(__SCREAMING_SNAKE_CASE ) and _should_continue(lines[line_index] , __SCREAMING_SNAKE_CASE ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowercase__ = lines[start_index:line_index] return "".join(__SCREAMING_SNAKE_CASE ) lowercase_ = re.compile(R"""^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)""") lowercase_ = re.compile(R"""^\s*(\S+)->(\S+)(\s+.*|$)""") lowercase_ = re.compile(R"""<FILL\s+[^>]*>""") def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> int: lowercase__ = code.split('\n' ) lowercase__ = 0 while idx < len(__SCREAMING_SNAKE_CASE ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__SCREAMING_SNAKE_CASE ): return re.search(R'^(\s*)\S' , lines[idx] ).groups()[0] return "" def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowercase__ = len(get_indent(__SCREAMING_SNAKE_CASE ) ) > 0 if has_indent: lowercase__ = F"""class Bla:\n{code}""" lowercase__ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=__SCREAMING_SNAKE_CASE ) lowercase__ = black.format_str(__SCREAMING_SNAKE_CASE , mode=__SCREAMING_SNAKE_CASE ) lowercase__ = style_docstrings_in_code(__SCREAMING_SNAKE_CASE ) return result[len('class Bla:\n' ) :] if has_indent else result def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Any: with open(__SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: lowercase__ = f.readlines() lowercase__ = [] lowercase__ = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__SCREAMING_SNAKE_CASE ): lowercase__ = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. lowercase__ = search.groups() lowercase__ = find_code_in_diffusers(__SCREAMING_SNAKE_CASE ) lowercase__ = get_indent(__SCREAMING_SNAKE_CASE ) lowercase__ = line_index + 1 if indent == theoretical_indent else line_index + 2 lowercase__ = theoretical_indent lowercase__ = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. lowercase__ = True while line_index < len(__SCREAMING_SNAKE_CASE ) and should_continue: line_index += 1 if line_index >= len(__SCREAMING_SNAKE_CASE ): break lowercase__ = lines[line_index] lowercase__ = _should_continue(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and re.search(F"""^{indent}# End copy""" , __SCREAMING_SNAKE_CASE ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowercase__ = lines[start_index:line_index] lowercase__ = "".join(__SCREAMING_SNAKE_CASE ) # Remove any nested `Copied from` comments to avoid circular copies lowercase__ = [line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(__SCREAMING_SNAKE_CASE ) is None] lowercase__ = "\n".join(__SCREAMING_SNAKE_CASE ) # Before comparing, use the `replace_pattern` on the original code. if len(__SCREAMING_SNAKE_CASE ) > 0: lowercase__ = replace_pattern.replace('with' , '' ).split(',' ) lowercase__ = [_re_replace_pattern.search(__SCREAMING_SNAKE_CASE ) for p in patterns] for pattern in patterns: if pattern is None: continue lowercase__ = pattern.groups() lowercase__ = re.sub(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if option.strip() == "all-casing": lowercase__ = re.sub(obja.lower() , obja.lower() , __SCREAMING_SNAKE_CASE ) lowercase__ = re.sub(obja.upper() , obja.upper() , __SCREAMING_SNAKE_CASE ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line lowercase__ = blackify(lines[start_index - 1] + theoretical_code ) lowercase__ = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: lowercase__ = lines[:start_index] + [theoretical_code] + lines[line_index:] lowercase__ = start_index + 1 if overwrite and len(__SCREAMING_SNAKE_CASE ) > 0: # Warn the user a file has been modified. print(F"""Detected changes, rewriting {filename}.""" ) with open(__SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(__SCREAMING_SNAKE_CASE ) return diffs def __UpperCamelCase (_SCREAMING_SNAKE_CASE = False ) -> Any: lowercase__ = glob.glob(os.path.join(__SCREAMING_SNAKE_CASE , '**/*.py' ) , recursive=__SCREAMING_SNAKE_CASE ) lowercase__ = [] for filename in all_files: lowercase__ = is_copy_consistent(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) diffs += [F"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(__SCREAMING_SNAKE_CASE ) > 0: lowercase__ = "\n".join(__SCREAMING_SNAKE_CASE ) raise Exception( 'Found the following copy inconsistencies:\n' + diff + '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") lowercase_ = parser.parse_args() check_copies(args.fix_and_overwrite)
703
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """facebook/deit-base-distilled-patch16-224""": ( """https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json""" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Any = 'deit' def __init__( self : Any , a : Union[str, Any]=768 , a : Optional[Any]=12 , a : Union[str, Any]=12 , a : Optional[int]=3_072 , a : Optional[int]="gelu" , a : Optional[Any]=0.0 , a : List[Any]=0.0 , a : int=0.02 , a : List[str]=1E-1_2 , a : Optional[int]=224 , a : Tuple=16 , a : List[Any]=3 , a : List[str]=True , a : Any=16 , **a : Union[str, Any] , )-> int: """simple docstring""" super().__init__(**a ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = qkv_bias lowercase__ = encoder_stride class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : List[Any] = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE_ ( self : int )-> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self : Any )-> float: """simple docstring""" return 1E-4
45
0
"""simple docstring""" import baseaa def _snake_case ( snake_case__ : str ): return baseaa.baaencode(string.encode('utf-8' ) ) def _snake_case ( snake_case__ : bytes ): return baseaa.baadecode(snake_case__ ).decode('utf-8' ) if __name__ == "__main__": _lowercase = '''Hello World!''' _lowercase = baseaa_encode(test) print(encoded) _lowercase = baseaa_decode(encoded) print(decoded)
91
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : int | str ): UpperCAmelCase = str(SCREAMING_SNAKE_CASE ) return n == n[::-1] def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : int = 100_0000 ): UpperCAmelCase = 0 for i in range(1 , SCREAMING_SNAKE_CASE ): if is_palindrome(SCREAMING_SNAKE_CASE ) and is_palindrome(bin(SCREAMING_SNAKE_CASE ).split('b' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
447
0
'''simple docstring''' __lowerCamelCase : Any = { 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
710
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __UpperCAmelCase ( __magic_name__=None )-> List[str]: """simple docstring""" if subparsers is not None: snake_case_ : List[str] = subparsers.add_parser("test" ) else: snake_case_ : List[Any] = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" ,default=__magic_name__ ,help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) ,) if subparsers is not None: parser.set_defaults(func=__magic_name__ ) return parser def __UpperCAmelCase ( __magic_name__ )-> Tuple: """simple docstring""" snake_case_ : Optional[Any] = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: snake_case_ : str = script_name else: snake_case_ : Any = F'''--config_file={args.config_file} {script_name}''' snake_case_ : Union[str, Any] = ["accelerate-launch"] + test_args.split() snake_case_ : Optional[int] = execute_subprocess_async(__magic_name__ ,env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def __UpperCAmelCase ( )-> int: """simple docstring""" snake_case_ : Dict = test_command_parser() snake_case_ : Dict = parser.parse_args() test_command(__magic_name__ ) if __name__ == "__main__": main()
656
0
"""simple docstring""" import math import qiskit def UpperCAmelCase__ (snake_case__ : int = 1 , snake_case__ : int = 1 , snake_case__ : int = 1 ): """simple docstring""" if ( isinstance(snake_case__ , snake_case__ ) or isinstance(snake_case__ , snake_case__ ) or isinstance(snake_case__ , snake_case__ ) ): raise TypeError("""inputs must be integers.""" ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("""inputs must be positive.""" ) if ( (math.floor(snake_case__ ) != input_a) or (math.floor(snake_case__ ) != input_a) or (math.floor(snake_case__ ) != carry_in) ): raise ValueError("""inputs must be exact integers.""" ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("""inputs must be less or equal to 2.""" ) # build registers _snake_case : Any = qiskit.QuantumRegister(4 , """qr""" ) _snake_case : List[str] = qiskit.ClassicalRegister(2 , """cr""" ) # list the entries _snake_case : Dict = [input_a, input_a, carry_in] _snake_case : Optional[Any] = qiskit.QuantumCircuit(snake_case__ , snake_case__ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(snake_case__ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(snake_case__ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(snake_case__ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , snake_case__ ) # measure the last two qbits _snake_case : List[Any] = qiskit.Aer.get_backend("""aer_simulator""" ) _snake_case : Union[str, Any] = qiskit.execute(snake_case__ , snake_case__ , shots=10_00 ) return job.result().get_counts(snake_case__ ) if __name__ == "__main__": print(F'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
609
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging A_ = logging.get_logger(__name__) class lowercase( __a ): '''simple docstring''' lowercase__ = ["pixel_values"] def __init__( self: List[Any], a_: bool = True, a_: Optional[Dict[str, int]] = None, a_: PILImageResampling = PILImageResampling.BICUBIC, a_: bool = True, a_: bool = True, a_: Union[int, float] = 1 / 255, a_: Dict[str, int] = None, a_: bool = True, a_: Optional[Union[float, List[float]]] = None, a_: Optional[Union[float, List[float]]] = None, **a_: Tuple, ): '''simple docstring''' super().__init__(**a_ ) _snake_case : Optional[Any] = size if size is not None else {"""height""": 224, """width""": 224} _snake_case : str = get_size_dict(a_ ) _snake_case : Optional[int] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _snake_case : Union[str, Any] = get_size_dict(a_, default_to_square=a_, param_name="""crop_size""" ) _snake_case : Union[str, Any] = do_resize _snake_case : Union[str, Any] = do_rescale _snake_case : List[str] = do_normalize _snake_case : int = do_center_crop _snake_case : str = crop_size _snake_case : Tuple = size _snake_case : Any = resample _snake_case : Tuple = rescale_factor _snake_case : str = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _snake_case : Tuple = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase_ ( self: int, a_: np.ndarray, a_: Dict[str, int], a_: PILImageResampling = PILImageResampling.BILINEAR, a_: Optional[Union[str, ChannelDimension]] = None, **a_: str, ): '''simple docstring''' _snake_case : Optional[Any] = get_size_dict(a_ ) if "shortest_edge" in size: _snake_case : Dict = get_resize_output_image_size(a_, size=size["""shortest_edge"""], default_to_square=a_ ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _snake_case : int = (size["""height"""], size["""width"""]) else: raise ValueError(f"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}" ) return resize(a_, size=a_, resample=a_, data_format=a_, **a_ ) def UpperCamelCase_ ( self: List[Any], a_: np.ndarray, a_: Dict[str, int], a_: Optional[Union[str, ChannelDimension]] = None, **a_: Optional[int], ): '''simple docstring''' _snake_case : List[str] = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(a_, size=(size["""height"""], size["""width"""]), data_format=a_, **a_ ) def UpperCamelCase_ ( self: Optional[int], a_: np.ndarray, a_: float, a_: Optional[Union[str, ChannelDimension]] = None, **a_: int ): '''simple docstring''' return rescale(a_, scale=a_, data_format=a_, **a_ ) def UpperCamelCase_ ( self: Dict, a_: np.ndarray, a_: Union[float, List[float]], a_: Union[float, List[float]], a_: Optional[Union[str, ChannelDimension]] = None, **a_: int, ): '''simple docstring''' return normalize(a_, mean=a_, std=a_, data_format=a_, **a_ ) def UpperCamelCase_ ( self: Optional[Any], a_: ImageInput, a_: Optional[bool] = None, a_: Dict[str, int] = None, a_: PILImageResampling = None, a_: bool = None, a_: int = None, a_: Optional[bool] = None, a_: Optional[float] = None, a_: Optional[bool] = None, a_: Optional[Union[float, List[float]]] = None, a_: Optional[Union[float, List[float]]] = None, a_: Optional[Union[str, TensorType]] = None, a_: Union[str, ChannelDimension] = ChannelDimension.FIRST, **a_: List[Any], ): '''simple docstring''' _snake_case : Optional[Any] = do_resize if do_resize is not None else self.do_resize _snake_case : str = do_rescale if do_rescale is not None else self.do_rescale _snake_case : int = do_normalize if do_normalize is not None else self.do_normalize _snake_case : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case : Dict = crop_size if crop_size is not None else self.crop_size _snake_case : int = get_size_dict(a_, param_name="""crop_size""", default_to_square=a_ ) _snake_case : Any = resample if resample is not None else self.resample _snake_case : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case : Tuple = image_mean if image_mean is not None else self.image_mean _snake_case : Any = image_std if image_std is not None else self.image_std _snake_case : Optional[int] = size if size is not None else self.size _snake_case : List[Any] = get_size_dict(a_ ) if not is_batched(a_ ): _snake_case : Tuple = [images] if not valid_images(a_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. _snake_case : str = [to_numpy_array(a_ ) for image in images] if do_resize: _snake_case : int = [self.resize(image=a_, size=a_, resample=a_ ) for image in images] if do_center_crop: _snake_case : Optional[Any] = [self.center_crop(image=a_, size=a_ ) for image in images] if do_rescale: _snake_case : Any = [self.rescale(image=a_, scale=a_ ) for image in images] if do_normalize: _snake_case : Any = [self.normalize(image=a_, mean=a_, std=a_ ) for image in images] _snake_case : Optional[Any] = [to_channel_dimension_format(a_, a_ ) for image in images] _snake_case : Optional[Any] = {"""pixel_values""": images} return BatchFeature(data=a_, tensor_type=a_ )
609
1
def __lowercase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple ): return base * power(__snake_case , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('''Raise base to the power of exponent using recursion...''') snake_case = int(input('''Enter the base: ''').strip()) snake_case = int(input('''Enter the exponent: ''').strip()) snake_case = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents snake_case = 1 / result print(f"""{base} to the power of {exponent} is {result}""")
707
from math import ceil, sqrt def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_0_0_0 ): a__ = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: a__ = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: a__ = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
657
0
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = '''▁''' snake_case = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } snake_case = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } snake_case = { '''facebook/s2t-small-librispeech-asr''': 1024, } snake_case = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] snake_case = {'''mustc''': MUSTC_LANGS} class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = MAX_MODEL_INPUT_SIZES __A = ["input_ids", "attention_mask"] __A = [] def __init__( self : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : str , __lowerCAmelCase : List[Any]="<s>" , __lowerCAmelCase : List[str]="</s>" , __lowerCAmelCase : Optional[Any]="<pad>" , __lowerCAmelCase : Optional[Any]="<unk>" , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Optional[Dict[str, Any]] = None , **__lowerCAmelCase : Union[str, Any] , ): """simple docstring""" _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , do_upper_case=__lowerCAmelCase , do_lower_case=__lowerCAmelCase , tgt_lang=__lowerCAmelCase , lang_codes=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) _lowerCAmelCase = do_upper_case _lowerCAmelCase = do_lower_case _lowerCAmelCase = load_json(__lowerCAmelCase ) _lowerCAmelCase = {v: k for k, v in self.encoder.items()} _lowerCAmelCase = spm_file _lowerCAmelCase = load_spm(__lowerCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: _lowerCAmelCase = lang_codes _lowerCAmelCase = LANGUAGES[lang_codes] _lowerCAmelCase = [F"<lang:{lang}>" for lang in self.langs] _lowerCAmelCase = {lang: self.sp_model.PieceToId(F"<lang:{lang}>" ) for lang in self.langs} _lowerCAmelCase = self.lang_tokens _lowerCAmelCase = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: _lowerCAmelCase = {} @property def a ( self : List[Any] ): """simple docstring""" return len(self.encoder ) @property def a ( self : Any ): """simple docstring""" return self._tgt_lang @tgt_lang.setter def a ( self : Dict , __lowerCAmelCase : int ): """simple docstring""" _lowerCAmelCase = new_tgt_lang self.set_tgt_lang_special_tokens(__lowerCAmelCase ) def a ( self : str , __lowerCAmelCase : str ): """simple docstring""" _lowerCAmelCase = self.lang_code_to_id[tgt_lang] _lowerCAmelCase = [lang_code_id] def a ( self : str , __lowerCAmelCase : str ): """simple docstring""" return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) def a ( self : Dict , __lowerCAmelCase : Optional[int] ): """simple docstring""" return self.encoder.get(__lowerCAmelCase , self.encoder[self.unk_token] ) def a ( self : int , __lowerCAmelCase : int ): """simple docstring""" return self.decoder.get(__lowerCAmelCase , self.unk_token ) def a ( self : Optional[Any] , __lowerCAmelCase : List[str] ): """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: _lowerCAmelCase = self.sp_model.decode(__lowerCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " _lowerCAmelCase = [] else: current_sub_tokens.append(__lowerCAmelCase ) _lowerCAmelCase = self.sp_model.decode(__lowerCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def a ( self : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : int=None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def a ( self : str , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) _lowerCAmelCase = [1] * len(self.prefix_tokens ) _lowerCAmelCase = [1] if token_ids_a is None: return prefix_ones + ([0] * len(__lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(__lowerCAmelCase )) + ([0] * len(__lowerCAmelCase )) + suffix_ones def a ( self : List[Any] ): """simple docstring""" _lowerCAmelCase = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): """simple docstring""" _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None return state def __setstate__( self : List[Any] , __lowerCAmelCase : Dict ): """simple docstring""" _lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _lowerCAmelCase = {} _lowerCAmelCase = load_spm(self.spm_file , self.sp_model_kwargs ) def a ( self : str , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ): """simple docstring""" _lowerCAmelCase = Path(__lowerCAmelCase ) assert save_dir.is_dir(), F"{save_directory} should be a directory" _lowerCAmelCase = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) _lowerCAmelCase = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , __lowerCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __lowerCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(__lowerCAmelCase , 'wb' ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) return (str(__lowerCAmelCase ), str(__lowerCAmelCase )) def A_ ( _lowerCamelCase : str , _lowerCamelCase : Dict[str, Any] ): _lowerCAmelCase = sentencepiece.SentencePieceProcessor(**_lowerCamelCase ) spm.Load(str(_lowerCamelCase ) ) return spm def A_ ( _lowerCamelCase : str ): with open(_lowerCamelCase , 'r' ) as f: return json.load(_lowerCamelCase ) def A_ ( _lowerCamelCase : Any , _lowerCamelCase : str ): with open(_lowerCamelCase , 'w' ) as f: json.dump(_lowerCamelCase , _lowerCamelCase , indent=2 )
309
'''simple docstring''' from __future__ import annotations import numpy as np def A_ ( _lowerCamelCase : list[float] ): return np.maximum(0 , _lowerCamelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
309
1
"""simple docstring""" import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets __lowerCAmelCase = """\ @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } """ __lowerCAmelCase = """\ IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. """ __lowerCAmelCase = """ Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset. Args: predictions: list of predictions to score (as int64), except for 'cvit-mkb-clsr' where each prediction is a vector (of float32). references: list of ground truth labels corresponding to the predictions (as int64), except for 'cvit-mkb-clsr' where each reference is a vector (of float32). Returns: depending on the IndicGLUE subset, one or several of: \"accuracy\": Accuracy \"f1\": F1 score \"precision\": Precision@10 Examples: >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr') >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'precision@10': 1.0} """ def A_ ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): return float((preds == labels).mean() ) def A_ ( __UpperCamelCase : Any , __UpperCamelCase : Optional[int] ): lowercase = simple_accuracy(UpperCamelCase__ , UpperCamelCase__ ) lowercase = float(fa_score(y_true=UpperCamelCase__ , y_pred=UpperCamelCase__ ) ) return { "accuracy": acc, "f1": fa, } def A_ ( __UpperCamelCase : List[str] , __UpperCamelCase : str ): lowercase = np.array(UpperCamelCase__ ) lowercase = np.array(UpperCamelCase__ ) lowercase = en_sentvecs.shape[0] # mean centering lowercase = en_sentvecs - np.mean(UpperCamelCase__ , axis=0 ) lowercase = in_sentvecs - np.mean(UpperCamelCase__ , axis=0 ) lowercase = cdist(UpperCamelCase__ , UpperCamelCase__ , '''cosine''' ) lowercase = np.array(range(UpperCamelCase__ ) ) lowercase = sim.argsort(axis=1 )[:, :10] lowercase = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): def _lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), '''references''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if self.config_name != '''cvit-mkb-clsr''' else None , ) def _lowerCAmelCase ( self : Tuple , a : List[str] , a : List[str] ) -> Optional[int]: """simple docstring""" if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(a , a )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(a , a ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(a , a )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' )
720
"""simple docstring""" def A_ ( __UpperCamelCase : list ): for i in range(len(__UpperCamelCase ) - 1 , 0 , -1 ): lowercase = False for j in range(__UpperCamelCase , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowercase , lowercase = unsorted[j - 1], unsorted[j] lowercase = True for j in range(__UpperCamelCase ): if unsorted[j] > unsorted[j + 1]: lowercase , lowercase = unsorted[j + 1], unsorted[j] lowercase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase = input('''Enter numbers separated by a comma:\n''').strip() __lowerCAmelCase = [int(item) for item in user_input.split(''',''')] print(f'''{cocktail_shaker_sort(unsorted) = }''')
396
0
"""simple docstring""" import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def __snake_case ( __A ,__A ,__A ,__A ,__A ) -> int: # load base model lowercase : int = StableDiffusionPipeline.from_pretrained(__A ,torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowercase : List[str] = load_file(__A ) lowercase : Optional[Any] = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowercase : List[str] = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) lowercase : List[str] = pipeline.text_encoder else: lowercase : Optional[int] = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) lowercase : Tuple = pipeline.unet # find the target layer lowercase : Dict = layer_infos.pop(0 ) while len(__A ) > -1: try: lowercase : int = curr_layer.__getattr__(__A ) if len(__A ) > 0: lowercase : List[Any] = layer_infos.pop(0 ) elif len(__A ) == 0: break except Exception: if len(__A ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowercase : List[Any] = layer_infos.pop(0 ) lowercase : Tuple = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" ,"""lora_up""" ) ) pair_keys.append(__A ) else: pair_keys.append(__A ) pair_keys.append(key.replace("""lora_up""" ,"""lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowercase : List[Any] = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowercase : Tuple = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__A ,__A ).unsqueeze(2 ).unsqueeze(3 ) else: lowercase : Optional[Any] = state_dict[pair_keys[0]].to(torch.floataa ) lowercase : Any = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__A ,__A ) # update visited list for item in pair_keys: visited.append(__A ) return pipeline if __name__ == "__main__": lowerCAmelCase: Optional[int] =argparse.ArgumentParser() parser.add_argument( "--base_model_path", default=None, type=str, required=True, help="Path to the base model in diffusers format." ) parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--lora_prefix_unet", default="lora_unet", type=str, help="The prefix of UNet weight in safetensors" ) parser.add_argument( "--lora_prefix_text_encoder", default="lora_te", type=str, help="The prefix of text encoder weight in safetensors", ) parser.add_argument("--alpha", default=0.7_5, type=float, help="The merging ratio in W = W0 + alpha * deltaW") parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not." ) parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") lowerCAmelCase: int =parser.parse_args() lowerCAmelCase: Any =args.base_model_path lowerCAmelCase: Any =args.checkpoint_path lowerCAmelCase: Optional[int] =args.dump_path lowerCAmelCase: List[Any] =args.lora_prefix_unet lowerCAmelCase: List[str] =args.lora_prefix_text_encoder lowerCAmelCase: Union[str, Any] =args.alpha lowerCAmelCase: Optional[Any] =convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) lowerCAmelCase: List[str] =pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
607
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def __snake_case ( __A ,__A = "cpu" ,__A = None ) -> None: lowercase : Optional[int] = torch.load(__A ,map_location=__A ) for k, v in tqdm(state_dict.items() ): if not isinstance(__A ,torch.Tensor ): raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" ) lowercase : List[str] = v.half() if save_path is None: # overwrite src_path lowercase : List[str] = src_path torch.save(__A ,__A ) if __name__ == "__main__": fire.Fire(convert)
607
1
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def A ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] ) -> str: '''simple docstring''' _UpperCAmelCase = BigBirdConfig.from_json_file(_UpperCAmelCase ) print(F"Building PyTorch model from configuration: {config}" ) if is_trivia_qa: _UpperCAmelCase = BigBirdForQuestionAnswering(_UpperCAmelCase ) else: _UpperCAmelCase = BigBirdForPreTraining(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(_UpperCAmelCase , _UpperCAmelCase , is_trivia_qa=_UpperCAmelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--big_bird_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head." ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
707
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = IFInpaintingPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" return self._get_dummy_components() def _lowerCamelCase ( self : Any , A : int , A : Dict=0) -> Tuple: """simple docstring""" if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" self._test_save_load_local() def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
639
0
from math import sqrt def a_ ( lowerCAmelCase_ : int ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" __lowerCAmelCase = True # 0 and 1 are none primes. if number <= 1: __lowerCAmelCase = False for divisor in range(2, int(round(sqrt(lowerCAmelCase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowerCAmelCase = False break # precondition assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ), "'status' must been from type bool" return status def a_ ( lowerCAmelCase_ : int ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowerCAmelCase = list(range(2, n + 1 ) ) __lowerCAmelCase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCAmelCase_ ) ): for j in range(i + 1, len(lowerCAmelCase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowerCAmelCase = 0 # filters actual prime numbers. __lowerCAmelCase = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ), "'ans' must been from type list" return ans def a_ ( lowerCAmelCase_ : int ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and (n > 2), "'N' must been an int and > 2" __lowerCAmelCase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2, n + 1 ): if is_prime(lowerCAmelCase_ ): ans.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ), "'ans' must been from type list" return ans def a_ ( lowerCAmelCase_ : Tuple ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and number >= 0, "'number' must been an int and >= 0" __lowerCAmelCase = [] # this list will be returns of the function. # potential prime number factors. __lowerCAmelCase = 2 __lowerCAmelCase = number if number == 0 or number == 1: ans.append(lowerCAmelCase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCAmelCase_ ): while quotient != 1: if is_prime(lowerCAmelCase_ ) and (quotient % factor == 0): ans.append(lowerCAmelCase_ ) quotient /= factor else: factor += 1 else: ans.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ), "'ans' must been from type list" return ans def a_ ( lowerCAmelCase_ : Dict ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCAmelCase_ ) __lowerCAmelCase = max(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ), "'ans' must been from type int" return ans def a_ ( lowerCAmelCase_ : Tuple ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCAmelCase_ ) __lowerCAmelCase = min(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ), "'ans' must been from type int" return ans def a_ ( lowerCAmelCase_ : Optional[Any] ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ), "'number' must been an int" assert isinstance(number % 2 == 0, lowerCAmelCase_ ), "compare bust been from type bool" return number % 2 == 0 def a_ ( lowerCAmelCase_ : str ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ), "'number' must been an int" assert isinstance(number % 2 != 0, lowerCAmelCase_ ), "compare bust been from type bool" return number % 2 != 0 def a_ ( lowerCAmelCase_ : Any ): assert ( isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and (number > 2) and is_even(lowerCAmelCase_ ) ), "'number' must been an int, even and > 2" __lowerCAmelCase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowerCAmelCase = get_prime_numbers(lowerCAmelCase_ ) __lowerCAmelCase = len(lowerCAmelCase_ ) # run variable for while-loops. __lowerCAmelCase = 0 __lowerCAmelCase = None # exit variable. for break up the loops __lowerCAmelCase = True while i < len_pn and loop: __lowerCAmelCase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowerCAmelCase = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and (len(lowerCAmelCase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : int ): assert ( isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 0 while numbera != 0: __lowerCAmelCase = numbera % numbera __lowerCAmelCase = numbera __lowerCAmelCase = rest # precondition assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : List[Any] ): assert ( isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowerCAmelCase = prime_factorization(lowerCAmelCase_ ) __lowerCAmelCase = prime_factorization(lowerCAmelCase_ ) elif numbera == 1 or numbera == 1: __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = max(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowerCAmelCase = prime_fac_a.count(lowerCAmelCase_ ) __lowerCAmelCase = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(max(lowerCAmelCase_, lowerCAmelCase_ ) ): ans *= n else: __lowerCAmelCase = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ): ans *= n done.append(lowerCAmelCase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowerCAmelCase = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ): ans *= n done.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def a_ ( lowerCAmelCase_ : str ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and (n >= 0), "'number' must been a positive int" __lowerCAmelCase = 0 __lowerCAmelCase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCAmelCase_ ): ans += 1 # precondition assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and is_prime( lowerCAmelCase_ ), "'ans' must been a prime number and from type int" return ans def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : str ): assert ( is_prime(lowerCAmelCase_ ) and is_prime(lowerCAmelCase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowerCAmelCase = p_number_a + 1 # jump to the next number __lowerCAmelCase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCAmelCase_ ): number += 1 while number < p_number_a: ans.append(lowerCAmelCase_ ) number += 1 # fetch the next prime number. while not is_prime(lowerCAmelCase_ ): number += 1 # precondition assert ( isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and ans[0] != p_number_a and ans[len(lowerCAmelCase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def a_ ( lowerCAmelCase_ : Optional[Any] ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and (n >= 1), "'n' must been int and >= 1" __lowerCAmelCase = [] # will be returned. for divisor in range(1, n + 1 ): if n % divisor == 0: ans.append(lowerCAmelCase_ ) # precondition assert ans[0] == 1 and ans[len(lowerCAmelCase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def a_ ( lowerCAmelCase_ : int ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and ( number > 1 ), "'number' must been an int and >= 1" __lowerCAmelCase = get_divisors(lowerCAmelCase_ ) # precondition assert ( isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and (divisors[0] == 1) and (divisors[len(lowerCAmelCase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Any ): assert ( isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowerCAmelCase = gcd(abs(lowerCAmelCase_ ), abs(lowerCAmelCase_ ) ) # precondition assert ( isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def a_ ( lowerCAmelCase_ : Dict ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and (n >= 0), "'n' must been a int and >= 0" __lowerCAmelCase = 1 # this will be return. for factor in range(1, n + 1 ): ans *= factor return ans def a_ ( lowerCAmelCase_ : Dict ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and (n >= 0), "'n' must been an int and >= 0" __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = 1 # this will be return for _ in range(n - 1 ): __lowerCAmelCase = ans ans += fiba __lowerCAmelCase = tmp return ans
53
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]="resnet50" , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Optional[Any]=True , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = out_indices if out_indices is not None else [4] __lowerCAmelCase = stage_names __lowerCAmelCase = out_features __lowerCAmelCase = backbone __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = use_pretrained_backbone __lowerCAmelCase = is_training def lowercase ( self : List[str] ) -> Any: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def lowercase ( self : List[Any] ) -> Union[str, Any]: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase ( self : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ) -> int: __lowerCAmelCase = TimmBackbone(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 1_4, 1_4) , ) def lowercase ( self : List[str] ) -> str: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (TimmBackbone,) if is_torch_available() else () a_ = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Tuple ) -> int: __lowerCAmelCase = TimmBackboneModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : Dict ) -> List[str]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Union[str, Any] ) -> Optional[int]: __lowerCAmelCase = 'resnet18' __lowerCAmelCase = 'microsoft/resnet-18' __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ , out_indices=[1, 2, 3] ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def lowercase ( self : List[str] ) -> Tuple: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def lowercase ( self : Dict ) -> int: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def lowercase ( self : str ) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase ( self : Any ) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase ( self : Optional[int] ) -> Optional[Any]: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def lowercase ( self : Dict ) -> Any: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Any ) -> Optional[int]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase ( self : Union[str, Any] ) -> Tuple: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase ( self : List[str] ) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Dict ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Tuple ) -> List[str]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def lowercase ( self : int ) -> Optional[int]: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def lowercase ( self : Union[str, Any] ) -> str: pass @unittest.skip('Safetensors is not supported by timm.' ) def lowercase ( self : Dict ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : List[str] ) -> Optional[Any]: pass def lowercase ( self : Union[str, Any] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = self.has_attentions # no need to test all models as different heads yield the same functionality __lowerCAmelCase = self.all_model_classes[0] __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = outputs[0][-1] # Encoder-/Decoder-only models __lowerCAmelCase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowerCAmelCase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowerCAmelCase_ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) __lowerCAmelCase = None __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) __lowerCAmelCase = False __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ )
53
1
from math import ceil def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = list(range(0 , _A ) ) SCREAMING_SNAKE_CASE__ = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check SCREAMING_SNAKE_CASE__ = [] for i in device_map_blocks: if device_map_blocks.count(_A ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(_A ) # Missing blocks SCREAMING_SNAKE_CASE__ = [i for i in blocks if i not in device_map_blocks] SCREAMING_SNAKE_CASE__ = [i for i in device_map_blocks if i not in blocks] if len(_A ) != 0: raise ValueError( '''Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.''' ''' These attention blocks were specified more than once: ''' + str(_A ) ) if len(_A ) != 0: raise ValueError( '''There are attention blocks for this model that are not specified in the device_map. Add these attention ''' '''blocks to a device on the device_map: ''' + str(_A ) ) if len(_A ) != 0: raise ValueError( '''The device_map contains more attention blocks than this model has. Remove these from the device_map:''' + str(_A ) ) def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = list(range(_A ) ) SCREAMING_SNAKE_CASE__ = int(ceil(n_layers / len(_A ) ) ) SCREAMING_SNAKE_CASE__ = [layers[i : i + n_blocks] for i in range(0 , _A , _A )] return dict(zip(_A , _A ) )
472
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase__ ( A__ , unittest.TestCase ): """simple docstring""" a = KandinskyImgaImgPipeline a = ["prompt", "image_embeds", "negative_image_embeds", "image"] a = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", ] a = [ "generator", "height", "width", "strength", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] a = False @property def lowercase_ ( self : str ) -> List[str]: return 32 @property def lowercase_ ( self : Optional[int] ) -> int: return 32 @property def lowercase_ ( self : Union[str, Any] ) -> int: return self.time_input_dim @property def lowercase_ ( self : List[str] ) -> int: return self.time_input_dim * 4 @property def lowercase_ ( self : Union[str, Any] ) -> Any: return 100 @property def lowercase_ ( self : Any ) -> List[Any]: SCREAMING_SNAKE_CASE__ = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def lowercase_ ( self : List[Any] ) -> List[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) SCREAMING_SNAKE_CASE__ = MultilingualCLIP(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = text_encoder.eval() return text_encoder @property def lowercase_ ( self : str ) -> Dict: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE__ = UNetaDConditionModel(**__lowerCamelCase ) return model @property def lowercase_ ( self : Dict ) -> Optional[Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase_ ( self : Tuple ) -> Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = VQModel(**self.dummy_movq_kwargs ) return model def lowercase_ ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.dummy_text_encoder SCREAMING_SNAKE_CASE__ = self.dummy_tokenizer SCREAMING_SNAKE_CASE__ = self.dummy_unet SCREAMING_SNAKE_CASE__ = self.dummy_movq SCREAMING_SNAKE_CASE__ = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.00085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } SCREAMING_SNAKE_CASE__ = DDIMScheduler(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def lowercase_ ( self : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any]=0 ) -> str: SCREAMING_SNAKE_CASE__ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__lowerCamelCase ) # create init_image SCREAMING_SNAKE_CASE__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) if str(__lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__ = torch.manual_seed(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE__ = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = { '''prompt''': '''horse''', '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def lowercase_ ( self : int ) -> Any: SCREAMING_SNAKE_CASE__ = '''cpu''' SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = self.pipeline_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = pipe(**self.get_dummy_inputs(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = pipe( **self.get_dummy_inputs(__lowerCamelCase ) , return_dict=__lowerCamelCase , )[0] SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Tuple ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : List[str] ) -> List[str]: SCREAMING_SNAKE_CASE__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_img2img_frog.npy''' ) SCREAMING_SNAKE_CASE__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE__ = '''A red cartoon frog, 4k''' SCREAMING_SNAKE_CASE__ = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = KandinskyImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ = pipeline.to(__lowerCamelCase ) pipeline.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = pipe_prior( __lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE__ = pipeline( __lowerCamelCase , image=__lowerCamelCase , image_embeds=__lowerCamelCase , negative_image_embeds=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase )
472
1
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCamelCase__ ( datasets.BuilderConfig ): '''simple docstring''' __a : Optional[Any] = None class UpperCamelCase__ ( datasets.ArrowBasedBuilder ): '''simple docstring''' __a : Dict = PandasConfig def snake_case__ ( self ) -> Dict: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def snake_case__ ( self, snake_case__ ) -> str: """simple docstring""" if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) lowercase_ : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCamelCase, (str, list, tuple) ): lowercase_ : Union[str, Any] = data_files if isinstance(_lowerCamelCase, _lowerCamelCase ): lowercase_ : List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowercase_ : Any = [dl_manager.iter_files(_lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"""files""": files} )] lowercase_ : Any = [] for split_name, files in data_files.items(): if isinstance(_lowerCamelCase, _lowerCamelCase ): lowercase_ : Any = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowercase_ : Union[str, Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCamelCase, gen_kwargs={"""files""": files} ) ) return splits def snake_case__ ( self, snake_case__ ) -> int: """simple docstring""" if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowercase_ : Dict = table_cast(_lowerCamelCase, self.config.features.arrow_schema ) return pa_table def snake_case__ ( self, snake_case__ ) -> List[str]: """simple docstring""" for i, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ): with open(_lowerCamelCase, """rb""" ) as f: lowercase_ : int = pa.Table.from_pandas(pd.read_pickle(_lowerCamelCase ) ) yield i, self._cast_table(_lowerCamelCase )
458
"""simple docstring""" import numpy as np def _UpperCAmelCase ( __lowerCamelCase : np.ndarray , __lowerCamelCase : np.ndarray , __lowerCamelCase : float = 1E-1_2 , __lowerCamelCase : int = 1_00 , ) -> tuple[float, np.ndarray]: assert np.shape(__lowerCamelCase )[0] == np.shape(__lowerCamelCase )[1] # Ensure proper dimensionality. assert np.shape(__lowerCamelCase )[0] == np.shape(__lowerCamelCase )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(__lowerCamelCase ) == np.iscomplexobj(__lowerCamelCase ) _snake_case = np.iscomplexobj(__lowerCamelCase ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(__lowerCamelCase , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _snake_case = False _snake_case = 0 _snake_case = 0 _snake_case = 1E1_2 while not convergence: # Multiple matrix by the vector. _snake_case = np.dot(__lowerCamelCase , __lowerCamelCase ) # Normalize the resulting output vector. _snake_case = w / np.linalg.norm(__lowerCamelCase ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _snake_case = vector.conj().T if is_complex else vector.T _snake_case = np.dot(__lowerCamelCase , np.dot(__lowerCamelCase , __lowerCamelCase ) ) # Check convergence. _snake_case = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _snake_case = True _snake_case = lambda_ if is_complex: _snake_case = np.real(lambda_ ) return lambda_, vector def _UpperCAmelCase ( ) -> None: _snake_case = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _snake_case = np.array([41, 4, 20] ) _snake_case = real_input_matrix.astype(np.complexaaa ) _snake_case = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _snake_case = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _snake_case = real_input_matrix _snake_case = real_vector elif problem_type == "complex": _snake_case = complex_input_matrix _snake_case = complex_vector # Our implementation. _snake_case , _snake_case = power_iteration(__lowerCamelCase , __lowerCamelCase ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _snake_case , _snake_case = np.linalg.eigh(__lowerCamelCase ) # Last eigenvalue is the maximum one. _snake_case = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _snake_case = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(__lowerCamelCase ) - np.abs(__lowerCamelCase ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
224
0
"""simple docstring""" from heapq import heappop, heappush import numpy as np def __snake_case ( SCREAMING_SNAKE_CASE: np.ndarray , SCREAMING_SNAKE_CASE: tuple[int, int] , SCREAMING_SNAKE_CASE: tuple[int, int] , SCREAMING_SNAKE_CASE: bool , ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = grid.shape _lowerCAmelCase = [-1, 1, 0, 0] _lowerCAmelCase = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] _lowerCAmelCase , _lowerCAmelCase = [(0, source)], set() _lowerCAmelCase = np.full((rows, cols) , np.inf ) _lowerCAmelCase = 0 _lowerCAmelCase = np.empty((rows, cols) , dtype=SCREAMING_SNAKE_CASE ) _lowerCAmelCase = None while queue: ((_lowerCAmelCase) , (_lowerCAmelCase)) = heappop(SCREAMING_SNAKE_CASE ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: _lowerCAmelCase = [] while (x, y) != source: path.append((x, y) ) _lowerCAmelCase , _lowerCAmelCase = predecessors[x, y] path.append(SCREAMING_SNAKE_CASE ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(SCREAMING_SNAKE_CASE ) ): _lowerCAmelCase , _lowerCAmelCase = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: _lowerCAmelCase = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(SCREAMING_SNAKE_CASE , (dist + 1, (nx, ny)) ) _lowerCAmelCase = dist + 1 _lowerCAmelCase = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
491
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params _snake_case = getLogger(__name__) _snake_case = '''cuda''' if torch.cuda.is_available() else '''cpu''' def __snake_case ( SCREAMING_SNAKE_CASE: List[str] , SCREAMING_SNAKE_CASE: str , SCREAMING_SNAKE_CASE: str , SCREAMING_SNAKE_CASE: int = 8 , SCREAMING_SNAKE_CASE: str = DEFAULT_DEVICE , SCREAMING_SNAKE_CASE: Optional[int]=False , SCREAMING_SNAKE_CASE: int="summarization" , SCREAMING_SNAKE_CASE: List[Any]=None , **SCREAMING_SNAKE_CASE: Tuple , ): """simple docstring""" _lowerCAmelCase = Path(SCREAMING_SNAKE_CASE ).open('w' , encoding='utf-8' ) _lowerCAmelCase = str(SCREAMING_SNAKE_CASE ) _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) if fpaa: _lowerCAmelCase = model.half() _lowerCAmelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. _lowerCAmelCase = time.time() # update config with task specific params use_task_specific_params(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if prefix is None: _lowerCAmelCase = prefix or getattr(model.config , 'prefix' , '' ) or '' for examples_chunk in tqdm(list(chunks(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ): _lowerCAmelCase = [prefix + text for text in examples_chunk] _lowerCAmelCase = tokenizer(SCREAMING_SNAKE_CASE , return_tensors='pt' , truncation=SCREAMING_SNAKE_CASE , padding='longest' ).to(SCREAMING_SNAKE_CASE ) _lowerCAmelCase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **SCREAMING_SNAKE_CASE , ) _lowerCAmelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE ) for hypothesis in dec: fout.write(hypothesis + '\n' ) fout.flush() fout.close() _lowerCAmelCase = int(time.time() - start_time ) # seconds _lowerCAmelCase = len(SCREAMING_SNAKE_CASE ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def __snake_case ( ): """simple docstring""" return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' ) def __snake_case ( SCREAMING_SNAKE_CASE: Any=True ): """simple docstring""" _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('model_name' , type=SCREAMING_SNAKE_CASE , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('input_path' , type=SCREAMING_SNAKE_CASE , help='like cnn_dm/test.source' ) parser.add_argument('save_path' , type=SCREAMING_SNAKE_CASE , help='where to save summaries' ) parser.add_argument('--reference_path' , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='like cnn_dm/test.target' ) parser.add_argument('--score_path' , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , default='metrics.json' , help='where to save metrics' ) parser.add_argument('--device' , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='cuda, cuda:1, cpu etc.' ) parser.add_argument( '--prefix' , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='will be added to the begininng of src examples' ) parser.add_argument('--task' , type=SCREAMING_SNAKE_CASE , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=SCREAMING_SNAKE_CASE , default=8 , required=SCREAMING_SNAKE_CASE , help='batch size' ) parser.add_argument( '--n_obs' , type=SCREAMING_SNAKE_CASE , default=-1 , required=SCREAMING_SNAKE_CASE , help='How many observations. Defaults to all.' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--dump-args' , action='store_true' , help='print the custom hparams with the results' ) parser.add_argument( '--info' , nargs='?' , type=SCREAMING_SNAKE_CASE , const=datetime_now() , help=( 'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.' ' lang=en-ru. If no value is passed, the current datetime string will be used.' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate _lowerCAmelCase , _lowerCAmelCase = parser.parse_known_args() _lowerCAmelCase = parse_numeric_n_bool_cl_kwargs(SCREAMING_SNAKE_CASE ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) _lowerCAmelCase = [' ' + x.rstrip() if 't5' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: _lowerCAmelCase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('Can\'t mix --fp16 and --device cpu' ) _lowerCAmelCase = generate_summaries_or_translations( SCREAMING_SNAKE_CASE , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **SCREAMING_SNAKE_CASE , ) if args.reference_path is None: return {} # Compute scores _lowerCAmelCase = calculate_bleu if 'translation' in args.task else calculate_rouge _lowerCAmelCase = [x.rstrip() for x in open(args.save_path ).readlines()] _lowerCAmelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(SCREAMING_SNAKE_CASE )] _lowerCAmelCase = score_fn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) scores.update(SCREAMING_SNAKE_CASE ) if args.dump_args: scores.update(SCREAMING_SNAKE_CASE ) if args.info: _lowerCAmelCase = args.info if verbose: print(SCREAMING_SNAKE_CASE ) if args.score_path is not None: json.dump(SCREAMING_SNAKE_CASE , open(args.score_path , 'w' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
491
1
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCAmelCase__ ( lowerCamelCase_ : BertModel , lowerCamelCase_ : str , lowerCamelCase_ : str ): __a : str = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value') __a : int = ( ('layer.', 'layer_'), ('word_embeddings.weight', 'word_embeddings'), ('position_embeddings.weight', 'position_embeddings'), ('token_type_embeddings.weight', 'token_type_embeddings'), ('.', '/'), ('LayerNorm/weight', 'LayerNorm/gamma'), ('LayerNorm/bias', 'LayerNorm/beta'), ('weight', 'kernel'), ) if not os.path.isdir(lowerCamelCase_ ): os.makedirs(lowerCamelCase_ ) __a : Union[str, Any] = model.state_dict() def to_tf_var_name(lowerCamelCase_ : str ): for patt, repl in iter(lowerCamelCase_ ): __a : Union[str, Any] = name.replace(lowerCamelCase_ , lowerCamelCase_ ) return f'''bert/{name}''' def create_tf_var(lowerCamelCase_ : np.ndarray , lowerCamelCase_ : str , lowerCamelCase_ : tf.Session ): __a : List[Any] = tf.dtypes.as_dtype(tensor.dtype ) __a : List[str] = tf.get_variable(dtype=lowerCamelCase_ , shape=tensor.shape , name=lowerCamelCase_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(lowerCamelCase_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __a : Optional[Any] = to_tf_var_name(lowerCamelCase_ ) __a : Optional[Any] = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __a : Union[str, Any] = torch_tensor.T __a : str = create_tf_var(tensor=lowerCamelCase_ , name=lowerCamelCase_ , session=lowerCamelCase_ ) tf.keras.backend.set_value(lowerCamelCase_ , lowerCamelCase_ ) __a : Union[str, Any] = session.run(lowerCamelCase_ ) print(f'''Successfully created {tf_name}: {np.allclose(lowerCamelCase_ , lowerCamelCase_ )}''' ) __a : Any = tf.train.Saver(tf.trainable_variables() ) saver.save(lowerCamelCase_ , os.path.join(lowerCamelCase_ , model_name.replace('-' , '_' ) + '.ckpt' ) ) def UpperCAmelCase__ ( lowerCamelCase_ : Union[str, Any]=None ): __a : str = argparse.ArgumentParser() parser.add_argument('--model_name' , type=lowerCamelCase_ , required=lowerCamelCase_ , help='model name e.g. bert-base-uncased' ) parser.add_argument( '--cache_dir' , type=lowerCamelCase_ , default=lowerCamelCase_ , required=lowerCamelCase_ , help='Directory containing pytorch model' ) parser.add_argument('--pytorch_model_path' , type=lowerCamelCase_ , required=lowerCamelCase_ , help='/path/to/<pytorch-model-name>.bin' ) parser.add_argument('--tf_cache_dir' , type=lowerCamelCase_ , required=lowerCamelCase_ , help='Directory in which to save tensorflow model' ) __a : List[Any] = parser.parse_args(lowerCamelCase_ ) __a : Optional[Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=lowerCamelCase_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
47
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : List[Any] = '''informer''' __SCREAMING_SNAKE_CASE : List[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : str = "student_t" , SCREAMING_SNAKE_CASE__ : str = "nll" , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : List[int] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, bool]] = "mean" , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : int = 6_4 , SCREAMING_SNAKE_CASE__ : int = 3_2 , SCREAMING_SNAKE_CASE__ : int = 3_2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : str = "gelu" , SCREAMING_SNAKE_CASE__ : float = 0.05 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : int = 1_0_0 , SCREAMING_SNAKE_CASE__ : float = 0.02 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : str = "prob" , SCREAMING_SNAKE_CASE__ : int = 5 , SCREAMING_SNAKE_CASE__ : bool = True , **SCREAMING_SNAKE_CASE__ : Tuple , ): '''simple docstring''' __a : Dict = prediction_length __a : Tuple = context_length or prediction_length __a : Tuple = distribution_output __a : Tuple = loss __a : str = input_size __a : Dict = num_time_features __a : Optional[int] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] __a : str = scaling __a : Tuple = num_dynamic_real_features __a : int = num_static_real_features __a : Dict = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(SCREAMING_SNAKE_CASE__ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) __a : Optional[Any] = cardinality else: __a : Optional[int] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(SCREAMING_SNAKE_CASE__ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) __a : int = embedding_dimension else: __a : List[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] __a : int = num_parallel_samples # Transformer architecture configuration __a : str = input_size * len(self.lags_sequence ) + self._number_of_features __a : Optional[int] = d_model __a : Union[str, Any] = encoder_attention_heads __a : int = decoder_attention_heads __a : Any = encoder_ffn_dim __a : Union[str, Any] = decoder_ffn_dim __a : List[Any] = encoder_layers __a : Optional[int] = decoder_layers __a : int = dropout __a : Optional[Any] = attention_dropout __a : Dict = activation_dropout __a : Union[str, Any] = encoder_layerdrop __a : Optional[int] = decoder_layerdrop __a : List[str] = activation_function __a : str = init_std __a : Optional[int] = use_cache # Informer __a : Union[str, Any] = attention_type __a : str = sampling_factor __a : Dict = distil super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def __lowerCAmelCase ( self : Any ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
47
1
'''simple docstring''' import random def a_ ( _UpperCAmelCase : list ,_UpperCAmelCase : List[Any] ) -> tuple: __snake_case , __snake_case , __snake_case : int = [], [], [] for element in data: if element < pivot: less.append(_UpperCAmelCase ) elif element > pivot: greater.append(_UpperCAmelCase ) else: equal.append(_UpperCAmelCase ) return less, equal, greater def a_ ( _UpperCAmelCase : list ,_UpperCAmelCase : int ) -> int: # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(_UpperCAmelCase ) or index < 0: return None __snake_case : int = items[random.randint(0 ,len(_UpperCAmelCase ) - 1 )] __snake_case : List[Any] = 0 __snake_case , __snake_case , __snake_case : Any = _partition(_UpperCAmelCase ,_UpperCAmelCase ) __snake_case : List[str] = len(_UpperCAmelCase ) __snake_case : int = len(_UpperCAmelCase ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(_UpperCAmelCase ,_UpperCAmelCase ) # must be in larger else: return quick_select(_UpperCAmelCase ,index - (m + count) )
124
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class snake_case__ ( SCREAMING_SNAKE_CASE_ ): def A_ ( self : Any ) -> Tuple: '''simple docstring''' __snake_case : List[str] = SMALL_MODEL_IDENTIFIER __snake_case : str = 'pt' __snake_case : int = 'tf' def A_ ( self : str , __a : Any ) -> Tuple: '''simple docstring''' __snake_case : str = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(__a ) def A_ ( self : List[Any] , __a : List[Any] ) -> str: '''simple docstring''' __snake_case : Any = TFAutoModel.from_pretrained(self.test_model , from_pt=__a ) model_tf.save_pretrained(__a ) def A_ ( self : Any ) -> Any: '''simple docstring''' __snake_case : Any = 'mock_framework' # Framework provided - return whatever the user provides __snake_case : int = FeaturesManager.determine_framework(self.test_model , __a ) self.assertEqual(__a , __a ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__a ) __snake_case : Dict = FeaturesManager.determine_framework(__a , __a ) self.assertEqual(__a , __a ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__a ) __snake_case : List[Any] = FeaturesManager.determine_framework(__a , __a ) self.assertEqual(__a , __a ) def A_ ( self : int ) -> List[str]: '''simple docstring''' # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__a ) __snake_case : Any = FeaturesManager.determine_framework(__a ) self.assertEqual(__a , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__a ) __snake_case : List[str] = FeaturesManager.determine_framework(__a ) self.assertEqual(__a , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__a ): __snake_case : List[str] = FeaturesManager.determine_framework(__a ) def A_ ( self : List[str] ) -> Any: '''simple docstring''' __snake_case : Union[str, Any] = MagicMock(return_value=__a ) with patch('transformers.onnx.features.is_tf_available' , __a ): __snake_case : Optional[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_pt ) # PyTorch not in environment -> use TensorFlow __snake_case : int = MagicMock(return_value=__a ) with patch('transformers.onnx.features.is_torch_available' , __a ): __snake_case : List[str] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_tf ) # Both in environment -> use PyTorch __snake_case : Tuple = MagicMock(return_value=__a ) __snake_case : Optional[Any] = MagicMock(return_value=__a ) with patch('transformers.onnx.features.is_tf_available' , __a ), patch( 'transformers.onnx.features.is_torch_available' , __a ): __snake_case : Optional[int] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_pt ) # Both not in environment -> raise error __snake_case : int = MagicMock(return_value=__a ) __snake_case : Optional[Any] = MagicMock(return_value=__a ) with patch('transformers.onnx.features.is_tf_available' , __a ), patch( 'transformers.onnx.features.is_torch_available' , __a ): with self.assertRaises(__a ): __snake_case : Any = FeaturesManager.determine_framework(self.test_model )
124
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : Any = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase : Any = { 'vocab_file': {'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'}, 'tokenizer_file': { 'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json' }, } lowerCamelCase : Optional[int] = {'mobilebert-uncased': 512} lowerCamelCase : Dict = {} class __lowerCAmelCase (A__ ): '''simple docstring''' lowerCAmelCase__ : str = VOCAB_FILES_NAMES lowerCAmelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ : List[Any] = MobileBertTokenizer def __init__(self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Dict=True , UpperCamelCase : Tuple="[UNK]" , UpperCamelCase : List[str]="[SEP]" , UpperCamelCase : List[str]="[PAD]" , UpperCamelCase : Any="[CLS]" , UpperCamelCase : List[Any]="[MASK]" , UpperCamelCase : str=True , UpperCamelCase : Tuple=None , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , snake_case_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , snake_case_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , snake_case_ ) != tokenize_chinese_chars ): lowercase__ = getattr(snake_case_ , normalizer_state.pop('''type''' ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**snake_case_ ) lowercase__ = do_lower_case def UpperCamelCase__ (self : Any , UpperCamelCase : Tuple , UpperCamelCase : Dict=None ): '''simple docstring''' lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ (self : List[Any] , UpperCamelCase : List[Any] , UpperCamelCase : int = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : int , UpperCamelCase : List[str] = None ): '''simple docstring''' lowercase__ = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
460
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def lowercase (_lowerCAmelCase ): if is_torch_version("""<""" , """2.0.0""" ) or not hasattr(_lowerCAmelCase , """_dynamo""" ): return False return isinstance(_lowerCAmelCase , torch._dynamo.eval_frame.OptimizedModule ) def lowercase (_lowerCAmelCase , _lowerCAmelCase = True ): __lowerCAmelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __lowerCAmelCase = is_compiled_module(_lowerCAmelCase ) if is_compiled: __lowerCAmelCase = model __lowerCAmelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = model.module if not keep_fpaa_wrapper: __lowerCAmelCase = getattr(_lowerCAmelCase , """forward""" ) __lowerCAmelCase = model.__dict__.pop("""_original_forward""" , _lowerCAmelCase ) if original_forward is not None: while hasattr(_lowerCAmelCase , """__wrapped__""" ): __lowerCAmelCase = forward.__wrapped__ if forward == original_forward: break __lowerCAmelCase = forward if getattr(_lowerCAmelCase , """_converted_to_transformer_engine""" , _lowerCAmelCase ): convert_model(_lowerCAmelCase , to_transformer_engine=_lowerCAmelCase ) if is_compiled: __lowerCAmelCase = model __lowerCAmelCase = compiled_model return model def lowercase (): PartialState().wait_for_everyone() def lowercase (_lowerCAmelCase , _lowerCAmelCase ): if PartialState().distributed_type == DistributedType.TPU: xm.save(_lowerCAmelCase , _lowerCAmelCase ) elif PartialState().local_process_index == 0: torch.save(_lowerCAmelCase , _lowerCAmelCase ) @contextmanager def lowercase (**_lowerCAmelCase ): for key, value in kwargs.items(): __lowerCAmelCase = str(_lowerCAmelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def lowercase (_lowerCAmelCase ): if not hasattr(_lowerCAmelCase , """__qualname__""" ) and not hasattr(_lowerCAmelCase , """__name__""" ): __lowerCAmelCase = getattr(_lowerCAmelCase , """__class__""" , _lowerCAmelCase ) if hasattr(_lowerCAmelCase , """__qualname__""" ): return obj.__qualname__ if hasattr(_lowerCAmelCase , """__name__""" ): return obj.__name__ return str(_lowerCAmelCase ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): for key, value in source.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = destination.setdefault(_lowerCAmelCase , {} ) merge_dicts(_lowerCAmelCase , _lowerCAmelCase ) else: __lowerCAmelCase = value return destination def lowercase (_lowerCAmelCase = None ): if port is None: __lowerCAmelCase = 2_9500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("""localhost""", port) ) == 0
465
0
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() a_ : Optional[int] = logging.get_logger(__name__) def __lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = UniSpeechSatForSequenceClassification.from_pretrained(_UpperCamelCase , config=_UpperCamelCase ) SCREAMING_SNAKE_CASE = downstream_dict['projector.weight'] SCREAMING_SNAKE_CASE = downstream_dict['projector.bias'] SCREAMING_SNAKE_CASE = downstream_dict['model.post_net.linear.weight'] SCREAMING_SNAKE_CASE = downstream_dict['model.post_net.linear.bias'] return model def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Dict ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = UniSpeechSatForAudioFrameClassification.from_pretrained(_UpperCamelCase , config=_UpperCamelCase ) SCREAMING_SNAKE_CASE = downstream_dict['model.linear.weight'] SCREAMING_SNAKE_CASE = downstream_dict['model.linear.bias'] return model def __lowerCAmelCase ( _UpperCamelCase : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = UniSpeechSatForXVector.from_pretrained(_UpperCamelCase , config=_UpperCamelCase ) SCREAMING_SNAKE_CASE = downstream_dict['connector.weight'] SCREAMING_SNAKE_CASE = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): SCREAMING_SNAKE_CASE = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] SCREAMING_SNAKE_CASE = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] SCREAMING_SNAKE_CASE = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] SCREAMING_SNAKE_CASE = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] SCREAMING_SNAKE_CASE = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] SCREAMING_SNAKE_CASE = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] SCREAMING_SNAKE_CASE = downstream_dict['objective.W'] return model @torch.no_grad() def __lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : str , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = torch.load(_UpperCamelCase , map_location='cpu' ) SCREAMING_SNAKE_CASE = checkpoint['Downstream'] SCREAMING_SNAKE_CASE = UniSpeechSatConfig.from_pretrained(_UpperCamelCase ) SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained( _UpperCamelCase , return_attention_mask=_UpperCamelCase , do_normalize=_UpperCamelCase ) SCREAMING_SNAKE_CASE = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): SCREAMING_SNAKE_CASE = convert_classification(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) elif arch.endswith('ForAudioFrameClassification' ): SCREAMING_SNAKE_CASE = convert_diarization(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) elif arch.endswith('ForXVector' ): SCREAMING_SNAKE_CASE = convert_xvector(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: SCREAMING_SNAKE_CASE = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(_UpperCamelCase ) hf_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ : Tuple = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") a_ : str = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
703
def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = abs(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 0 while n > 0: res += n % 10 n //= 10 return res def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = abs(_UpperCamelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' return sum(int(_UpperCamelCase ) for c in str(abs(_UpperCamelCase ) ) ) def __lowerCAmelCase ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(_UpperCamelCase : Callable , _UpperCamelCase : int ) -> None: SCREAMING_SNAKE_CASE = f"""{func.__name__}({value})""" SCREAMING_SNAKE_CASE = timeit(f"""__main__.{call}""" , setup='import __main__' ) print(f"""{call:56} = {func(_UpperCamelCase )} -- {timing:.4f} seconds""" ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(_UpperCamelCase , _UpperCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
673
0
import functools def lowerCamelCase__ ( __A :list[int] ,__A :list[int] ): """simple docstring""" if not isinstance(__A ,__A ) or not all(isinstance(__A ,__A ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(__A ) != 3 or not all(isinstance(__A ,__A ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(__A ) == 0: return 0 if min(__A ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(__A ) >= 3_6_6: raise ValueError("""All days elements should be less than 366""" ) __snake_case = set(__A ) @functools.cache def dynamic_programming(__A :int ) -> int: if index > 3_6_5: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) ,costs[1] + dynamic_programming(index + 7 ) ,costs[2] + dynamic_programming(index + 3_0 ) ,) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
268
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = '''▁''' UpperCamelCase__ = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } UpperCamelCase__ = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } UpperCamelCase__ = { '''facebook/s2t-small-librispeech-asr''': 1024, } UpperCamelCase__ = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] UpperCamelCase__ = {'''mustc''': MUSTC_LANGS} class __snake_case ( snake_case__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = MAX_MODEL_INPUT_SIZES __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] __SCREAMING_SNAKE_CASE = [] def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase="<s>" , _UpperCamelCase="</s>" , _UpperCamelCase="<pad>" , _UpperCamelCase="<unk>" , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase = None , **_UpperCamelCase , ) -> None: """simple docstring""" __snake_case = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , do_upper_case=_UpperCamelCase , do_lower_case=_UpperCamelCase , tgt_lang=_UpperCamelCase , lang_codes=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) __snake_case = do_upper_case __snake_case = do_lower_case __snake_case = load_json(_UpperCamelCase ) __snake_case = {v: k for k, v in self.encoder.items()} __snake_case = spm_file __snake_case = load_spm(_UpperCamelCase , self.sp_model_kwargs ) if lang_codes is not None: __snake_case = lang_codes __snake_case = LANGUAGES[lang_codes] __snake_case = [F'<lang:{lang}>' for lang in self.langs] __snake_case = {lang: self.sp_model.PieceToId(F'<lang:{lang}>' ) for lang in self.langs} __snake_case = self.lang_tokens __snake_case = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: __snake_case = {} @property def a ( self ) -> int: """simple docstring""" return len(self.encoder ) @property def a ( self ) -> str: """simple docstring""" return self._tgt_lang @tgt_lang.setter def a ( self , _UpperCamelCase ) -> None: """simple docstring""" __snake_case = new_tgt_lang self.set_tgt_lang_special_tokens(_UpperCamelCase ) def a ( self , _UpperCamelCase ) -> None: """simple docstring""" __snake_case = self.lang_code_to_id[tgt_lang] __snake_case = [lang_code_id] def a ( self , _UpperCamelCase ) -> List[str]: """simple docstring""" return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def a ( self , _UpperCamelCase ) -> Optional[Any]: """simple docstring""" return self.encoder.get(_UpperCamelCase , self.encoder[self.unk_token] ) def a ( self , _UpperCamelCase ) -> str: """simple docstring""" return self.decoder.get(_UpperCamelCase , self.unk_token ) def a ( self , _UpperCamelCase ) -> str: """simple docstring""" __snake_case = [] __snake_case = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __snake_case = self.sp_model.decode(_UpperCamelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __snake_case = [] else: current_sub_tokens.append(_UpperCamelCase ) __snake_case = self.sp_model.decode(_UpperCamelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def a ( self , _UpperCamelCase , _UpperCamelCase=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def a ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) __snake_case = [1] * len(self.prefix_tokens ) __snake_case = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCamelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCamelCase )) + ([0] * len(_UpperCamelCase )) + suffix_ones def a ( self ) -> Dict: """simple docstring""" __snake_case = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: """simple docstring""" __snake_case = self.__dict__.copy() __snake_case = None return state def __setstate__( self , _UpperCamelCase ) -> None: """simple docstring""" __snake_case = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __snake_case = {} __snake_case = load_spm(self.spm_file , self.sp_model_kwargs ) def a ( self , _UpperCamelCase , _UpperCamelCase = None ) -> Tuple[str]: """simple docstring""" __snake_case = Path(_UpperCamelCase ) assert save_dir.is_dir(), F'{save_directory} should be a directory' __snake_case = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) __snake_case = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , _UpperCamelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _UpperCamelCase ) elif not os.path.isfile(self.spm_file ): with open(_UpperCamelCase , """wb""" ) as fi: __snake_case = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (str(_UpperCamelCase ), str(_UpperCamelCase )) def lowerCamelCase__ ( __A :str ,__A :Dict[str, Any] ): """simple docstring""" __snake_case = sentencepiece.SentencePieceProcessor(**__A ) spm.Load(str(__A ) ) return spm def lowerCamelCase__ ( __A :str ): """simple docstring""" with open(__A ,"""r""" ) as f: return json.load(__A ) def lowerCamelCase__ ( __A :Optional[Any] ,__A :str ): """simple docstring""" with open(__A ,"""w""" ) as f: json.dump(__A ,__A ,indent=2 )
268
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowerCamelCase : List[str] = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = {'''vocab_file''': '''spiece.model'''} lowerCamelCase : Union[str, Any] = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : int , __a : Tuple , __a : List[str]=False , __a : Dict=True , __a : Optional[Any]=False , __a : Dict="<s>" , __a : Any="</s>" , __a : int="<unk>" , __a : int="<sep>" , __a : Any="<pad>" , __a : List[Any]="<cls>" , __a : str="<mask>" , __a : Union[str, Any]=["<eop>", "<eod>"] , __a : Optional[Dict[str, Any]] = None , **__a : str , ) -> None: """simple docstring""" __lowercase : List[str] = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token __lowercase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__a , remove_space=__a , keep_accents=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , additional_special_tokens=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) __lowercase : Dict = 3 __lowercase : List[Any] = do_lower_case __lowercase : Tuple = remove_space __lowercase : Optional[Any] = keep_accents __lowercase : str = vocab_file __lowercase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__a ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) __lowercase : int = jieba __lowercase : Tuple = str.maketrans(""" \n""" , """\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" return len(self.sp_model ) def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase : List[str] = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = self.__dict__.copy() __lowercase : Tuple = None return state def __setstate__( self : Any , __a : Dict ) -> Optional[int]: """simple docstring""" __lowercase : int = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowercase : Optional[Any] = {} __lowercase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase ( self : Dict , __a : List[Any] ) -> List[Any]: """simple docstring""" if self.remove_space: __lowercase : Optional[int] = """ """.join(inputs.strip().split() ) else: __lowercase : List[Any] = inputs __lowercase : Dict = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: __lowercase : int = unicodedata.normalize("""NFKD""" , __a ) __lowercase : Optional[Any] = """""".join([c for c in outputs if not unicodedata.combining(__a )] ) if self.do_lower_case: __lowercase : Optional[int] = outputs.lower() return outputs def lowerCAmelCase ( self : Any , __a : str ) -> List[str]: """simple docstring""" __lowercase : Optional[Any] = self.preprocess_text(__a ) __lowercase : List[str] = self.sp_model.encode(__a , out_type=__a ) __lowercase : str = [] for piece in pieces: if len(__a ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): __lowercase : str = self.sp_model.EncodeAsPieces(piece[:-1].replace(__a , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __lowercase : List[Any] = cur_pieces[1:] else: __lowercase : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__a ) else: new_pieces.append(__a ) return new_pieces def lowerCAmelCase ( self : str , __a : Optional[int] ) -> Optional[int]: """simple docstring""" return self.sp_model.PieceToId(__a ) def lowerCAmelCase ( self : List[str] , __a : List[str] ) -> List[str]: """simple docstring""" return self.sp_model.IdToPiece(__a ) def lowerCAmelCase ( self : Optional[int] , __a : List[str] ) -> List[str]: """simple docstring""" __lowercase : Dict = """""".join(__a ).replace(__a , """ """ ).strip() return out_string def lowerCAmelCase ( self : Tuple , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase : List[str] = [self.sep_token_id] __lowercase : Any = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowerCAmelCase ( self : Any , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) if token_ids_a is not None: return ([0] * len(__a )) + [1] + ([0] * len(__a )) + [1, 1] return ([0] * len(__a )) + [1, 1] def lowerCAmelCase ( self : Dict , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase : int = [self.sep_token_id] __lowercase : Any = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowerCAmelCase ( self : Optional[Any] , __a : str , __a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase : Optional[int] = os.path.join( __a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __a ) elif not os.path.isfile(self.vocab_file ): with open(__a , """wb""" ) as fi: __lowercase : str = self.sp_model.serialized_model_proto() fi.write(__a ) return (out_vocab_file,) def lowerCAmelCase ( self : str , *__a : Union[str, Any] , **__a : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : str = super()._decode(*__a , **__a ) __lowercase : Any = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" ) return text
649
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowerCamelCase : Union[str, Any] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , __a : List[str] , __a : Optional[int]=16 , __a : Optional[Any]=13 , __a : str=7 , __a : List[str]=14 , __a : Any=10 , __a : str=19 , __a : int=5 , __a : Any=4 , __a : List[Any]=True , __a : Tuple=16 , __a : Dict=2 , __a : Tuple=4 , __a : int=4 , __a : List[Any]="gelu" , __a : Tuple=0.1 , __a : List[str]=0.1 , __a : int=[1, 2, 3, 4, 5] , __a : str=25 , __a : Any=5 , ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = d_model __lowercase : Dict = parent __lowercase : Tuple = batch_size __lowercase : Optional[int] = prediction_length __lowercase : List[str] = context_length __lowercase : Any = cardinality __lowercase : str = num_time_features __lowercase : Optional[int] = lags_sequence __lowercase : Optional[Any] = embedding_dimension __lowercase : List[Any] = is_training __lowercase : List[str] = hidden_size __lowercase : int = num_hidden_layers __lowercase : Any = num_attention_heads __lowercase : List[Any] = intermediate_size __lowercase : int = hidden_act __lowercase : str = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : str = context_length __lowercase : int = prediction_length + label_length __lowercase : Union[str, Any] = label_length __lowercase : Optional[int] = moving_average __lowercase : Optional[Any] = autocorrelation_factor def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowerCAmelCase ( self : Tuple , __a : str ) -> int: """simple docstring""" __lowercase : Any = config.context_length + max(config.lags_sequence ) __lowercase : Any = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowercase : Optional[int] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) __lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowercase : Dict = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowercase : str = floats_tensor([self.batch_size, config.prediction_length] ) __lowercase : List[str] = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_config() __lowercase : Any = self.prepare_autoformer_inputs_dict(__a ) return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase , __lowercase : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase ( self : Optional[Any] , __a : Tuple , __a : Optional[int] ) -> Any: """simple docstring""" __lowercase : List[str] = AutoformerModel(config=__a ).to(__a ).eval() __lowercase : Optional[int] = model(**__a ) __lowercase : Dict = outputs.encoder_last_hidden_state __lowercase : Tuple = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : List[str] = model.get_encoder() encoder.save_pretrained(__a ) __lowercase : List[str] = AutoformerEncoder.from_pretrained(__a ).to(__a ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase : Any = model.create_network_inputs(**__a ) __lowercase , __lowercase : Any = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowercase : Optional[Any] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowercase : Union[str, Any] = encoder(inputs_embeds=__a )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) __lowercase : str = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowercase : Optional[int] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowercase : Any = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowercase : Dict = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : Optional[Any] = model.get_decoder() decoder.save_pretrained(__a ) __lowercase : Tuple = AutoformerDecoder.from_pretrained(__a ).to(__a ) __lowercase : str = decoder( trend=__a , inputs_embeds=__a , encoder_hidden_states=__a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[str] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _A : List[Any] = (AutoformerForPrediction,) if is_torch_available() else () _A : Any = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _A : Dict = False _A : Tuple = False _A : Optional[int] = False _A : Tuple = False _A : str = False _A : Union[str, Any] = False def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" __lowercase : List[str] = AutoformerModelTester(self ) __lowercase : Dict = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase , __lowercase : Tuple = model_class.from_pretrained(__a , output_loading_info=__a ) self.assertEqual(info["""missing_keys"""] , [] ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def lowerCAmelCase ( self : str ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : Any = inspect.signature(getattr(__a , """forward""" ) ) # The main input is the name of the argument after `self` __lowercase : Optional[int] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __a ) def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Dict = model_class(__a ) __lowercase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Any = [*signature.parameters.keys()] __lowercase : int = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(__a )] , __a ) def lowerCAmelCase ( self : int ) -> int: """simple docstring""" __lowercase , __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : int = True __lowercase : Tuple = getattr(self.model_tester , """seq_length""" , __a ) __lowercase : Union[str, Any] = getattr(self.model_tester , """decoder_seq_length""" , __a ) __lowercase : List[str] = getattr(self.model_tester , """encoder_seq_length""" , __a ) __lowercase : List[Any] = getattr(self.model_tester , """d_model""" , __a ) __lowercase : Optional[int] = getattr(self.model_tester , """num_attention_heads""" , __a ) __lowercase : Any = d_model // num_attention_heads for model_class in self.all_model_classes: __lowercase : Dict = True __lowercase : List[str] = False __lowercase : Optional[int] = True __lowercase : str = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : int = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase : Optional[int] = True __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Union[str, Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Dict = outputs.encoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowercase : Tuple = len(__a ) __lowercase : str = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__a , __a ) # decoder attentions __lowercase : List[Any] = outputs.decoder_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowercase : Optional[int] = outputs.cross_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowercase : Tuple = True __lowercase : Union[str, Any] = True __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Any = model(**self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + 2 , len(__a ) ) __lowercase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def snake_case_ ( lowerCAmelCase_ : Optional[int]="train-batch.pt" ): __lowercase : Dict = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=lowerCAmelCase_ , repo_type="""dataset""" ) __lowercase : Optional[int] = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_ ) return batch @require_torch @slow class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" __lowercase : List[str] = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[Any] = prepare_batch() with torch.no_grad(): __lowercase : Tuple = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __lowercase : List[str] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" __lowercase : int = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : List[str] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : Optional[Any] = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __lowercase : List[str] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __a ) __lowercase : Optional[int] = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__a ) __lowercase : Optional[int] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __lowercase : int = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __lowercase : int = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __a ) __lowercase : Optional[Any] = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=__a ) __lowercase : Dict = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __a , rtol=1E-1 ) )
649
1
'''simple docstring''' def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" __magic_name__ : Optional[Any] = "" for word_or_phrase in separated: if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(UpperCamelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
436
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _SCREAMING_SNAKE_CASE : List[Any] = Lock() def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() __magic_name__ : Dict = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left __magic_name__ : int = min(UpperCamelCase__ , UpperCamelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() __magic_name__ : Optional[Any] = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right __magic_name__ : List[str] = max(UpperCamelCase__ , UpperCamelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(UpperCamelCase__ ) def _UpperCamelCase ( UpperCamelCase__ ): """simple docstring""" __magic_name__ : int = [] __magic_name__ : Union[str, Any] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop __magic_name__ : Union[str, Any] = Pipe() __magic_name__ : List[str] = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) __magic_name__ : int = temp_rs __magic_name__ : List[str] = temp_rr for i in range(1 , len(UpperCamelCase__ ) - 1 ): __magic_name__ : Optional[int] = Pipe() __magic_name__ : Optional[int] = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) __magic_name__ : int = temp_rs __magic_name__ : Union[str, Any] = temp_rr process_array_.append( Process( target=UpperCamelCase__ , args=( len(UpperCamelCase__ ) - 1, arr[len(UpperCamelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(UpperCamelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(UpperCamelCase__ ) ): __magic_name__ : str = result_pipe[p][0].recv() process_array_[p].join() return arr def _UpperCamelCase ( ): """simple docstring""" __magic_name__ : int = list(range(10 , 0 , -1 ) ) print("Initial List" ) print(*UpperCamelCase__ ) __magic_name__ : Tuple = odd_even_transposition(UpperCamelCase__ ) print("Sorted List\n" ) print(*UpperCamelCase__ ) if __name__ == "__main__": main()
436
1
a_ = { '''meter''': '''m''', '''kilometer''': '''km''', '''megametre''': '''Mm''', '''gigametre''': '''Gm''', '''terametre''': '''Tm''', '''petametre''': '''Pm''', '''exametre''': '''Em''', '''zettametre''': '''Zm''', '''yottametre''': '''Ym''', } # Exponent of the factor(meter) a_ = { '''m''': 0, '''km''': 3, '''Mm''': 6, '''Gm''': 9, '''Tm''': 12, '''Pm''': 15, '''Em''': 18, '''Zm''': 21, '''Ym''': 24, } def _a ( UpperCamelCase_ : float , UpperCamelCase_ : str , UpperCamelCase_ : str ) -> float: """simple docstring""" lowerCAmelCase__ = from_type.lower().strip("s" ) lowerCAmelCase__ = to_type.lower().strip("s" ) lowerCAmelCase__ = UNIT_SYMBOL.get(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = UNIT_SYMBOL.get(UpperCamelCase_ , UpperCamelCase_ ) if from_sanitized not in METRIC_CONVERSION: lowerCAmelCase__ = ( F"Invalid 'from_type' value: {from_type!r}.\n" F"Conversion abbreviations are: {', '.join(UpperCamelCase_ )}" ) raise ValueError(UpperCamelCase_ ) if to_sanitized not in METRIC_CONVERSION: lowerCAmelCase__ = ( F"Invalid 'to_type' value: {to_type!r}.\n" F"Conversion abbreviations are: {', '.join(UpperCamelCase_ )}" ) raise ValueError(UpperCamelCase_ ) lowerCAmelCase__ = METRIC_CONVERSION[from_sanitized] lowerCAmelCase__ = METRIC_CONVERSION[to_sanitized] lowerCAmelCase__ = 1 if from_exponent > to_exponent: lowerCAmelCase__ = from_exponent - to_exponent else: lowerCAmelCase__ = -(to_exponent - from_exponent) return value * pow(10 , UpperCamelCase_ ) if __name__ == "__main__": from doctest import testmod testmod()
115
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''Salesforce/codegen-350M-nl''': '''https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json''', '''Salesforce/codegen-350M-multi''': '''https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json''', '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json''', '''Salesforce/codegen-2B-nl''': '''https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json''', '''Salesforce/codegen-2B-multi''': '''https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json''', '''Salesforce/codegen-2B-mono''': '''https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json''', '''Salesforce/codegen-6B-nl''': '''https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json''', '''Salesforce/codegen-6B-multi''': '''https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json''', '''Salesforce/codegen-6B-mono''': '''https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json''', '''Salesforce/codegen-16B-nl''': '''https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json''', '''Salesforce/codegen-16B-multi''': '''https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json''', '''Salesforce/codegen-16B-mono''': '''https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json''', } class lowercase__ ( _UpperCAmelCase ): a_ ="""codegen""" a_ ={ """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __UpperCAmelCase=50400 , __UpperCAmelCase=2048 , __UpperCAmelCase=2048 , __UpperCAmelCase=4096 , __UpperCAmelCase=28 , __UpperCAmelCase=16 , __UpperCAmelCase=64 , __UpperCAmelCase=None , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , **__UpperCAmelCase , )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = vocab_size lowerCAmelCase__ = n_ctx lowerCAmelCase__ = n_positions lowerCAmelCase__ = n_embd lowerCAmelCase__ = n_layer lowerCAmelCase__ = n_head lowerCAmelCase__ = n_inner lowerCAmelCase__ = rotary_dim lowerCAmelCase__ = activation_function lowerCAmelCase__ = resid_pdrop lowerCAmelCase__ = embd_pdrop lowerCAmelCase__ = attn_pdrop lowerCAmelCase__ = layer_norm_epsilon lowerCAmelCase__ = initializer_range lowerCAmelCase__ = use_cache lowerCAmelCase__ = bos_token_id lowerCAmelCase__ = eos_token_id super().__init__( bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase ) class lowercase__ ( _UpperCAmelCase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase = "default" , __UpperCAmelCase = None , __UpperCAmelCase = False , )-> Any: '''simple docstring''' super().__init__(__UpperCAmelCase , task=__UpperCAmelCase , patching_specs=__UpperCAmelCase , use_past=__UpperCAmelCase ) if not getattr(self._config , "pad_token_id" , __UpperCAmelCase ): # TODO: how to do that better? lowerCAmelCase__ = 0 @property def UpperCAmelCase ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' lowerCAmelCase__ = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(__UpperCAmelCase , direction="inputs" ) lowerCAmelCase__ = {0: "batch", 1: "past_sequence + sequence"} else: lowerCAmelCase__ = {0: "batch", 1: "sequence"} return common_inputs @property def UpperCAmelCase ( self )-> int: '''simple docstring''' return self._config.n_layer @property def UpperCAmelCase ( self )-> int: '''simple docstring''' return self._config.n_head def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , )-> Mapping[str, Any]: '''simple docstring''' lowerCAmelCase__ = super(__UpperCAmelCase , self ).generate_dummy_inputs( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowerCAmelCase__ = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCAmelCase__ , lowerCAmelCase__ = common_inputs["input_ids"].shape # Not using the same length for past_key_values lowerCAmelCase__ = seqlen + 2 lowerCAmelCase__ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase__ = [ (torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(self.num_layers ) ] lowerCAmelCase__ = common_inputs["attention_mask"] if self.use_past: lowerCAmelCase__ = ordered_inputs["attention_mask"].dtype lowerCAmelCase__ = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def UpperCAmelCase ( self )-> int: '''simple docstring''' return 13
115
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase__ = { '''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''], '''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''MaskFormerFeatureExtractor'''] lowerCAmelCase__ = ['''MaskFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MaskFormerForInstanceSegmentation''', '''MaskFormerModel''', '''MaskFormerPreTrainedModel''', ] lowerCAmelCase__ = [ '''MaskFormerSwinBackbone''', '''MaskFormerSwinModel''', '''MaskFormerSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
83
"""simple docstring""" from torch import nn def snake_case_ ( A_ : int ): '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F'''Unsupported activation function: {act_fn}''' )
83
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer _UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) _UpperCAmelCase : Optional[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _UpperCAmelCase : str = { '''vocab_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt''' ), '''squeezebert/squeezebert-mnli''': '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt''', '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json''' ), }, } _UpperCAmelCase : Optional[Any] = { '''squeezebert/squeezebert-uncased''': 5_12, '''squeezebert/squeezebert-mnli''': 5_12, '''squeezebert/squeezebert-mnli-headless''': 5_12, } _UpperCAmelCase : Tuple = { '''squeezebert/squeezebert-uncased''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli-headless''': {'''do_lower_case''': True}, } class __magic_name__ ( UpperCamelCase__ ): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = SqueezeBertTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) lowercase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , snake_case_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , snake_case_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , snake_case_ ) != tokenize_chinese_chars ): lowercase =getattr(snake_case_ , normalizer_state.pop('''type''' ) ) lowercase =do_lower_case lowercase =strip_accents lowercase =tokenize_chinese_chars lowercase =normalizer_class(**snake_case_ ) lowercase =do_lower_case def _A( self , snake_case_ , snake_case_=None ): lowercase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _A( self , snake_case_ , snake_case_ = None ): lowercase =[self.sep_token_id] lowercase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _A( self , snake_case_ , snake_case_ = None ): lowercase =self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
717
'''simple docstring''' _UpperCAmelCase : Optional[Any] = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def UpperCamelCase ( ) -> None: '''simple docstring''' lowercase =input('''Enter message: ''' ) lowercase =input('''Enter key [alphanumeric]: ''' ) lowercase =input('''Encrypt/Decrypt [e/d]: ''' ) if mode.lower().startswith('''e''' ): lowercase ='''encrypt''' lowercase =encrypt_message(lowercase_ , lowercase_ ) elif mode.lower().startswith('''d''' ): lowercase ='''decrypt''' lowercase =decrypt_message(lowercase_ , lowercase_ ) print(f'\n{mode.title()}ed message:' ) print(lowercase_ ) def UpperCamelCase ( lowercase_ : str , lowercase_ : str ) -> str: '''simple docstring''' return translate_message(lowercase_ , lowercase_ , '''encrypt''' ) def UpperCamelCase ( lowercase_ : str , lowercase_ : str ) -> str: '''simple docstring''' return translate_message(lowercase_ , lowercase_ , '''decrypt''' ) def UpperCamelCase ( lowercase_ : str , lowercase_ : str , lowercase_ : str ) -> str: '''simple docstring''' lowercase =[] lowercase =0 lowercase =key.upper() for symbol in message: lowercase =LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(lowercase_ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(lowercase_ ): lowercase =0 else: translated.append(lowercase_ ) return "".join(lowercase_ ) if __name__ == "__main__": main()
145
0
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class a ( unittest.TestCase ): def _UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = 1 _UpperCAmelCase : Any = 3 _UpperCAmelCase : List[Any] = (32, 32) _UpperCAmelCase : Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A_ ) return image @property def _UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def _UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase : int = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(A_ ) @property def _UpperCAmelCase ( self ): '''simple docstring''' def extract(*A_ , **A_ ): class a : def __init__( self ): '''simple docstring''' _UpperCAmelCase : Optional[int] = torch.ones([0] ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' self.pixel_values.to(A_ ) return self return Out() return extract def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet _UpperCAmelCase : List[str] = PNDMScheduler(skip_prk_steps=A_ ) _UpperCAmelCase : Optional[int] = self.dummy_vae _UpperCAmelCase : Any = self.dummy_text_encoder _UpperCAmelCase : Tuple = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _UpperCAmelCase : Dict = 77 _UpperCAmelCase : Optional[int] = self.dummy_image.to(A_ ) _UpperCAmelCase : List[Any] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _UpperCAmelCase : Tuple = AltDiffusionImgaImgPipeline( unet=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , safety_checker=A_ , feature_extractor=self.dummy_extractor , ) _UpperCAmelCase : str = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A_ ) _UpperCAmelCase : Dict = alt_pipe.to(A_ ) alt_pipe.set_progress_bar_config(disable=A_ ) _UpperCAmelCase : List[str] = "A painting of a squirrel eating a burger" _UpperCAmelCase : Optional[int] = torch.Generator(device=A_ ).manual_seed(0 ) _UpperCAmelCase : Optional[int] = alt_pipe( [prompt] , generator=A_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=A_ , ) _UpperCAmelCase : str = output.images _UpperCAmelCase : Tuple = torch.Generator(device=A_ ).manual_seed(0 ) _UpperCAmelCase : Dict = alt_pipe( [prompt] , generator=A_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=A_ , return_dict=A_ , )[0] _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] _UpperCAmelCase : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCAmelCase : int = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : str = self.dummy_cond_unet _UpperCAmelCase : Any = PNDMScheduler(skip_prk_steps=A_ ) _UpperCAmelCase : Optional[Any] = self.dummy_vae _UpperCAmelCase : Any = self.dummy_text_encoder _UpperCAmelCase : Dict = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _UpperCAmelCase : Any = 77 _UpperCAmelCase : List[Any] = self.dummy_image.to(A_ ) # put models in fp16 _UpperCAmelCase : str = unet.half() _UpperCAmelCase : Optional[Any] = vae.half() _UpperCAmelCase : int = bert.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase : Optional[int] = AltDiffusionImgaImgPipeline( unet=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , safety_checker=A_ , feature_extractor=self.dummy_extractor , ) _UpperCAmelCase : int = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A_ ) _UpperCAmelCase : List[str] = alt_pipe.to(A_ ) alt_pipe.set_progress_bar_config(disable=A_ ) _UpperCAmelCase : List[str] = "A painting of a squirrel eating a burger" _UpperCAmelCase : str = torch.manual_seed(0 ) _UpperCAmelCase : int = alt_pipe( [prompt] , generator=A_ , num_inference_steps=2 , output_type="np" , image=A_ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 _UpperCAmelCase : Dict = init_image.resize((760, 504) ) _UpperCAmelCase : str = "BAAI/AltDiffusion" _UpperCAmelCase : str = AltDiffusionImgaImgPipeline.from_pretrained( A_ , safety_checker=A_ , ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() _UpperCAmelCase : Union[str, Any] = "A fantasy landscape, trending on artstation" _UpperCAmelCase : int = torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = pipe( prompt=A_ , image=A_ , strength=0.75 , guidance_scale=7.5 , generator=A_ , output_type="np" , ) _UpperCAmelCase : Union[str, Any] = output.images[0] _UpperCAmelCase : Optional[int] = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) _UpperCAmelCase : Optional[int] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class a ( unittest.TestCase ): def _UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) _UpperCAmelCase : Optional[int] = init_image.resize((768, 512) ) _UpperCAmelCase : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) _UpperCAmelCase : int = "BAAI/AltDiffusion" _UpperCAmelCase : Optional[int] = AltDiffusionImgaImgPipeline.from_pretrained( A_ , safety_checker=A_ , ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() _UpperCAmelCase : int = "A fantasy landscape, trending on artstation" _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : int = pipe( prompt=A_ , image=A_ , strength=0.75 , guidance_scale=7.5 , generator=A_ , output_type="np" , ) _UpperCAmelCase : Union[str, Any] = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
300
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch SCREAMING_SNAKE_CASE_ = random.Random() def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: Dict=1.0 , lowerCAmelCase: Any=None , lowerCAmelCase: Any=None ) -> Optional[int]: if rng is None: _UpperCAmelCase : int = global_rng _UpperCAmelCase : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class a ( unittest.TestCase ): def __init__( self , A_ , A_=7 , A_=400 , A_=2000 , A_=10 , A_=160 , A_=8 , A_=0.0 , A_=4000 , A_=False , A_=True , ): '''simple docstring''' _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : List[str] = min_seq_length _UpperCAmelCase : Any = max_seq_length _UpperCAmelCase : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCAmelCase : Optional[Any] = padding_value _UpperCAmelCase : Optional[int] = sampling_rate _UpperCAmelCase : Tuple = return_attention_mask _UpperCAmelCase : Any = do_normalize _UpperCAmelCase : Optional[Any] = feature_size _UpperCAmelCase : int = chunk_length _UpperCAmelCase : str = hop_length def _UpperCAmelCase ( self ): '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _UpperCAmelCase ( self , A_=False , A_=False ): '''simple docstring''' def _flatten(A_ ): return list(itertools.chain(*A_ ) ) if equal_length: _UpperCAmelCase : Dict = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _UpperCAmelCase : List[Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _UpperCAmelCase : Union[str, Any] = [np.asarray(A_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class a ( UpperCAmelCase , unittest.TestCase ): _lowercase = WhisperFeatureExtractor if is_speech_available() else None def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Dict = WhisperFeatureExtractionTester(self ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : Tuple = feat_extract_first.save_pretrained(A_ )[0] check_json_file_has_correct_format(A_ ) _UpperCAmelCase : Any = self.feature_extraction_class.from_pretrained(A_ ) _UpperCAmelCase : Union[str, Any] = feat_extract_first.to_dict() _UpperCAmelCase : List[str] = feat_extract_second.to_dict() _UpperCAmelCase : Optional[int] = feat_extract_first.mel_filters _UpperCAmelCase : Tuple = feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : int = os.path.join(A_ , "feat_extract.json" ) feat_extract_first.to_json_file(A_ ) _UpperCAmelCase : List[str] = self.feature_extraction_class.from_json_file(A_ ) _UpperCAmelCase : List[str] = feat_extract_first.to_dict() _UpperCAmelCase : Any = feat_extract_second.to_dict() _UpperCAmelCase : Any = feat_extract_first.mel_filters _UpperCAmelCase : List[str] = feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _UpperCAmelCase : Dict = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _UpperCAmelCase : Tuple = [np.asarray(A_ ) for speech_input in speech_inputs] # Test feature size _UpperCAmelCase : str = feature_extractor(A_ , padding="max_length" , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _UpperCAmelCase : str = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features _UpperCAmelCase : str = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) # Test batched _UpperCAmelCase : Tuple = feature_extractor(A_ , return_tensors="np" ).input_features _UpperCAmelCase : List[str] = feature_extractor(A_ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _UpperCAmelCase : str = [floats_list((1, x) )[0] for x in (800, 800, 800)] _UpperCAmelCase : Optional[int] = np.asarray(A_ ) _UpperCAmelCase : List[Any] = feature_extractor(A_ , return_tensors="np" ).input_features _UpperCAmelCase : Union[str, Any] = feature_extractor(A_ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) # Test truncation required _UpperCAmelCase : List[str] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _UpperCAmelCase : Tuple = [np.asarray(A_ ) for speech_input in speech_inputs] _UpperCAmelCase : int = [x[: feature_extractor.n_samples] for x in speech_inputs] _UpperCAmelCase : Optional[int] = [np.asarray(A_ ) for speech_input in speech_inputs_truncated] _UpperCAmelCase : int = feature_extractor(A_ , return_tensors="np" ).input_features _UpperCAmelCase : str = feature_extractor(A_ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) def _UpperCAmelCase ( self ): '''simple docstring''' import torch _UpperCAmelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase : int = np.random.rand(100 , 32 ).astype(np.floataa ) _UpperCAmelCase : Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _UpperCAmelCase : str = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _UpperCAmelCase : Optional[Any] = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : List[str] = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech _UpperCAmelCase : Union[str, Any] = ds.sort("id" ).select(range(A_ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[int] = torch.tensor( [ 0.11_93, -0.09_46, -0.10_98, -0.01_96, 0.02_25, -0.06_90, -0.17_36, 0.09_51, 0.09_71, -0.08_17, -0.07_02, 0.01_62, 0.02_60, 0.00_17, -0.01_92, -0.16_78, 0.07_09, -0.18_67, -0.06_55, -0.02_74, -0.02_34, -0.18_84, -0.05_16, -0.05_54, -0.02_74, -0.14_25, -0.14_23, 0.08_37, 0.03_77, -0.08_54 ] ) # fmt: on _UpperCAmelCase : Union[str, Any] = self._load_datasamples(1 ) _UpperCAmelCase : Optional[int] = WhisperFeatureExtractor() _UpperCAmelCase : Any = feature_extractor(A_ , return_tensors="pt" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , A_ , atol=1e-4 ) ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase : Optional[Any] = self._load_datasamples(1 )[0] _UpperCAmelCase : Union[str, Any] = ((audio - audio.min()) / (audio.max() - audio.min())) * 65535 # Rescale to [0, 65535] to show issue _UpperCAmelCase : List[str] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=A_ )[0] self.assertTrue(np.all(np.mean(A_ ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(A_ ) - 1 ) < 1e-3 ) )
300
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __SCREAMING_SNAKE_CASE :List[Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :Union[str, Any] = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class A_ ( __lowercase , __lowercase ): _lowerCamelCase : List[str] = 'resnet' _lowerCamelCase : Union[str, Any] = ['basic', 'bottleneck'] def __init__( self : Optional[Any] , snake_case_ : List[str]=3 , snake_case_ : int=6_4 , snake_case_ : Optional[int]=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , snake_case_ : int=[3, 4, 6, 3] , snake_case_ : str="bottleneck" , snake_case_ : Optional[int]="relu" , snake_case_ : Union[str, Any]=False , snake_case_ : Dict=None , snake_case_ : Union[str, Any]=None , **snake_case_ : Optional[Any] , ): super().__init__(**__A ) if layer_type not in self.layer_types: raise ValueError(f'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) _UpperCAmelCase = num_channels _UpperCAmelCase = embedding_size _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = layer_type _UpperCAmelCase = hidden_act _UpperCAmelCase = downsample_in_first_stage _UpperCAmelCase = ["stem"] + [f'stage{idx}' for idx in range(1 , len(__A ) + 1 )] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=__A , out_indices=__A , stage_names=self.stage_names ) class A_ ( __lowercase ): _lowerCamelCase : Tuple = version.parse("""1.11""" ) @property def lowercase ( self : List[Any] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase ( self : Optional[int] ): return 1e-3
714
'''simple docstring''' from math import ceil def UpperCAmelCase_ ( __lowercase : Any , __lowercase : int ) -> Any: '''simple docstring''' _UpperCAmelCase = list(range(0 , __lowercase ) ) _UpperCAmelCase = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check _UpperCAmelCase = [] for i in device_map_blocks: if device_map_blocks.count(__lowercase ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(__lowercase ) # Missing blocks _UpperCAmelCase = [i for i in blocks if i not in device_map_blocks] _UpperCAmelCase = [i for i in device_map_blocks if i not in blocks] if len(__lowercase ) != 0: raise ValueError( "Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device." " These attention blocks were specified more than once: " + str(__lowercase ) ) if len(__lowercase ) != 0: raise ValueError( "There are attention blocks for this model that are not specified in the device_map. Add these attention " "blocks to a device on the device_map: " + str(__lowercase ) ) if len(__lowercase ) != 0: raise ValueError( "The device_map contains more attention blocks than this model has. Remove these from the device_map:" + str(__lowercase ) ) def UpperCAmelCase_ ( __lowercase : Optional[int] , __lowercase : List[Any] ) -> Any: '''simple docstring''' _UpperCAmelCase = list(range(__lowercase ) ) _UpperCAmelCase = int(ceil(n_layers / len(__lowercase ) ) ) _UpperCAmelCase = [layers[i : i + n_blocks] for i in range(0 , __lowercase , __lowercase )] return dict(zip(__lowercase , __lowercase ) )
119
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { 'configuration_funnel': ['FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FunnelConfig'], 'convert_funnel_original_tf_checkpoint_to_pytorch': [], 'tokenization_funnel': ['FunnelTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['FunnelTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'FunnelBaseModel', 'FunnelForMaskedLM', 'FunnelForMultipleChoice', 'FunnelForPreTraining', 'FunnelForQuestionAnswering', 'FunnelForSequenceClassification', 'FunnelForTokenClassification', 'FunnelModel', 'FunnelPreTrainedModel', 'load_tf_weights_in_funnel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFFunnelBaseModel', 'TFFunnelForMaskedLM', 'TFFunnelForMultipleChoice', 'TFFunnelForPreTraining', 'TFFunnelForQuestionAnswering', 'TFFunnelForSequenceClassification', 'TFFunnelForTokenClassification', 'TFFunnelModel', 'TFFunnelPreTrainedModel', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
221
'''simple docstring''' import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# SCREAMING_SNAKE_CASE_: Dict =[ # (stable-diffusion, HF Diffusers) ('time_embed.0.weight', 'time_embedding.linear_1.weight'), ('time_embed.0.bias', 'time_embedding.linear_1.bias'), ('time_embed.2.weight', 'time_embedding.linear_2.weight'), ('time_embed.2.bias', 'time_embedding.linear_2.bias'), ('input_blocks.0.0.weight', 'conv_in.weight'), ('input_blocks.0.0.bias', 'conv_in.bias'), ('out.0.weight', 'conv_norm_out.weight'), ('out.0.bias', 'conv_norm_out.bias'), ('out.2.weight', 'conv_out.weight'), ('out.2.bias', 'conv_out.bias'), ] SCREAMING_SNAKE_CASE_: List[Any] =[ # (stable-diffusion, HF Diffusers) ('in_layers.0', 'norm1'), ('in_layers.2', 'conv1'), ('out_layers.0', 'norm2'), ('out_layers.3', 'conv2'), ('emb_layers.1', 'time_emb_proj'), ('skip_connection', 'conv_shortcut'), ] SCREAMING_SNAKE_CASE_: Union[str, Any] =[] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks SCREAMING_SNAKE_CASE_: Any =f"down_blocks.{i}.resnets.{j}." SCREAMING_SNAKE_CASE_: Tuple =f"input_blocks.{3*i + j + 1}.0." unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 SCREAMING_SNAKE_CASE_: Optional[Any] =f"down_blocks.{i}.attentions.{j}." SCREAMING_SNAKE_CASE_: List[str] =f"input_blocks.{3*i + j + 1}.1." unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks SCREAMING_SNAKE_CASE_: Union[str, Any] =f"up_blocks.{i}.resnets.{j}." SCREAMING_SNAKE_CASE_: Any =f"output_blocks.{3*i + j}.0." unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 SCREAMING_SNAKE_CASE_: int =f"up_blocks.{i}.attentions.{j}." SCREAMING_SNAKE_CASE_: Optional[int] =f"output_blocks.{3*i + j}.1." unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 SCREAMING_SNAKE_CASE_: Union[str, Any] =f"down_blocks.{i}.downsamplers.0.conv." SCREAMING_SNAKE_CASE_: Union[str, Any] =f"input_blocks.{3*(i+1)}.0.op." unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 SCREAMING_SNAKE_CASE_: int =f"up_blocks.{i}.upsamplers.0." SCREAMING_SNAKE_CASE_: List[Any] =f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}." unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) SCREAMING_SNAKE_CASE_: int ='mid_block.attentions.0.' SCREAMING_SNAKE_CASE_: List[Any] ='middle_block.1.' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): SCREAMING_SNAKE_CASE_: Tuple =f"mid_block.resnets.{j}." SCREAMING_SNAKE_CASE_: Tuple =f"middle_block.{2*j}." unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def lowerCAmelCase_ ( snake_case_ : Optional[Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: UpperCAmelCase_ = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: UpperCAmelCase_ = v.replace(snake_case_ , snake_case_ ) UpperCAmelCase_ = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: UpperCAmelCase_ = v.replace(snake_case_ , snake_case_ ) UpperCAmelCase_ = v UpperCAmelCase_ = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# SCREAMING_SNAKE_CASE_: int =[ # (stable-diffusion, HF Diffusers) ('nin_shortcut', 'conv_shortcut'), ('norm_out', 'conv_norm_out'), ('mid.attn_1.', 'mid_block.attentions.0.'), ] for i in range(4): # down_blocks have two resnets for j in range(2): SCREAMING_SNAKE_CASE_: Tuple =f"encoder.down_blocks.{i}.resnets.{j}." SCREAMING_SNAKE_CASE_: int =f"encoder.down.{i}.block.{j}." vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: SCREAMING_SNAKE_CASE_: int =f"down_blocks.{i}.downsamplers.0." SCREAMING_SNAKE_CASE_: str =f"down.{i}.downsample." vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) SCREAMING_SNAKE_CASE_: int =f"up_blocks.{i}.upsamplers.0." SCREAMING_SNAKE_CASE_: List[str] =f"up.{3-i}.upsample." vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): SCREAMING_SNAKE_CASE_: List[str] =f"decoder.up_blocks.{i}.resnets.{j}." SCREAMING_SNAKE_CASE_: Dict =f"decoder.up.{3-i}.block.{j}." vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): SCREAMING_SNAKE_CASE_: Any =f"mid_block.resnets.{i}." SCREAMING_SNAKE_CASE_: Tuple =f"mid.block_{i+1}." vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) SCREAMING_SNAKE_CASE_: int =[ # (stable-diffusion, HF Diffusers) ('norm.', 'group_norm.'), ('q.', 'query.'), ('k.', 'key.'), ('v.', 'value.'), ('proj_out.', 'proj_attn.'), ] def lowerCAmelCase_ ( snake_case_ : Tuple ) -> Tuple: '''simple docstring''' return w.reshape(*w.shape , 1 , 1 ) def lowerCAmelCase_ ( snake_case_ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: UpperCAmelCase_ = v.replace(snake_case_ , snake_case_ ) UpperCAmelCase_ = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: UpperCAmelCase_ = v.replace(snake_case_ , snake_case_ ) UpperCAmelCase_ = v UpperCAmelCase_ = {v: vae_state_dict[k] for k, v in mapping.items()} UpperCAmelCase_ = ["q", "k", "v", "proj_out"] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f"""mid.attn_1.{weight_name}.weight""" in k: print(f"""Reshaping {k} for SD format""" ) UpperCAmelCase_ = reshape_weight_for_sd(snake_case_ ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# SCREAMING_SNAKE_CASE_: List[Any] =[ # (stable-diffusion, HF Diffusers) ('resblocks.', 'text_model.encoder.layers.'), ('ln_1', 'layer_norm1'), ('ln_2', 'layer_norm2'), ('.c_fc.', '.fc1.'), ('.c_proj.', '.fc2.'), ('.attn', '.self_attn'), ('ln_final.', 'transformer.text_model.final_layer_norm.'), ('token_embedding.weight', 'transformer.text_model.embeddings.token_embedding.weight'), ('positional_embedding', 'transformer.text_model.embeddings.position_embedding.weight'), ] SCREAMING_SNAKE_CASE_: Dict ={re.escape(x[1]): x[0] for x in textenc_conversion_lst} SCREAMING_SNAKE_CASE_: str =re.compile('|'.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp SCREAMING_SNAKE_CASE_: List[Any] ={'q': 0, 'k': 1, 'v': 2} def lowerCAmelCase_ ( snake_case_ : Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = {} UpperCAmelCase_ = {} UpperCAmelCase_ = {} for k, v in text_enc_dict.items(): if ( k.endswith(".self_attn.q_proj.weight" ) or k.endswith(".self_attn.k_proj.weight" ) or k.endswith(".self_attn.v_proj.weight" ) ): UpperCAmelCase_ = k[: -len(".q_proj.weight" )] UpperCAmelCase_ = k[-len("q_proj.weight" )] if k_pre not in capture_qkv_weight: UpperCAmelCase_ = [None, None, None] UpperCAmelCase_ = v continue if ( k.endswith(".self_attn.q_proj.bias" ) or k.endswith(".self_attn.k_proj.bias" ) or k.endswith(".self_attn.v_proj.bias" ) ): UpperCAmelCase_ = k[: -len(".q_proj.bias" )] UpperCAmelCase_ = k[-len("q_proj.bias" )] if k_pre not in capture_qkv_bias: UpperCAmelCase_ = [None, None, None] UpperCAmelCase_ = v continue UpperCAmelCase_ = textenc_pattern.sub(lambda snake_case_ : protected[re.escape(m.group(0 ) )] , snake_case_ ) UpperCAmelCase_ = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing" ) UpperCAmelCase_ = textenc_pattern.sub(lambda snake_case_ : protected[re.escape(m.group(0 ) )] , snake_case_ ) UpperCAmelCase_ = torch.cat(snake_case_ ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing" ) UpperCAmelCase_ = textenc_pattern.sub(lambda snake_case_ : protected[re.escape(m.group(0 ) )] , snake_case_ ) UpperCAmelCase_ = torch.cat(snake_case_ ) return new_state_dict def lowerCAmelCase_ ( snake_case_ : List[Any] ) -> Union[str, Any]: '''simple docstring''' return text_enc_dict if __name__ == "__main__": SCREAMING_SNAKE_CASE_: str =argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--use_safetensors', action='store_true', help='Save weights use safetensors, default is ckpt.' ) SCREAMING_SNAKE_CASE_: Dict =parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors SCREAMING_SNAKE_CASE_: Any =osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.safetensors') SCREAMING_SNAKE_CASE_: Dict =osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.safetensors') SCREAMING_SNAKE_CASE_: Union[str, Any] =osp.join(args.model_path, 'text_encoder', 'model.safetensors') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): SCREAMING_SNAKE_CASE_: Union[str, Any] =load_file(unet_path, device='cpu') else: SCREAMING_SNAKE_CASE_: int =osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.bin') SCREAMING_SNAKE_CASE_: Dict =torch.load(unet_path, map_location='cpu') if osp.exists(vae_path): SCREAMING_SNAKE_CASE_: Tuple =load_file(vae_path, device='cpu') else: SCREAMING_SNAKE_CASE_: List[Any] =osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.bin') SCREAMING_SNAKE_CASE_: str =torch.load(vae_path, map_location='cpu') if osp.exists(text_enc_path): SCREAMING_SNAKE_CASE_: Tuple =load_file(text_enc_path, device='cpu') else: SCREAMING_SNAKE_CASE_: List[Any] =osp.join(args.model_path, 'text_encoder', 'pytorch_model.bin') SCREAMING_SNAKE_CASE_: Any =torch.load(text_enc_path, map_location='cpu') # Convert the UNet model SCREAMING_SNAKE_CASE_: List[Any] =convert_unet_state_dict(unet_state_dict) SCREAMING_SNAKE_CASE_: Any ={'model.diffusion_model.' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model SCREAMING_SNAKE_CASE_: List[Any] =convert_vae_state_dict(vae_state_dict) SCREAMING_SNAKE_CASE_: Dict ={'first_stage_model.' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper SCREAMING_SNAKE_CASE_: Dict ='text_model.encoder.layers.22.layer_norm2.bias' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm SCREAMING_SNAKE_CASE_: Any ={'transformer.' + k: v for k, v in text_enc_dict.items()} SCREAMING_SNAKE_CASE_: str =convert_text_enc_state_dict_vaa(text_enc_dict) SCREAMING_SNAKE_CASE_: int ={'cond_stage_model.model.' + k: v for k, v in text_enc_dict.items()} else: SCREAMING_SNAKE_CASE_: str =convert_text_enc_state_dict(text_enc_dict) SCREAMING_SNAKE_CASE_: Optional[int] ={'cond_stage_model.transformer.' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint SCREAMING_SNAKE_CASE_: List[str] ={**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: SCREAMING_SNAKE_CASE_: List[str] ={k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: SCREAMING_SNAKE_CASE_: str ={'state_dict': state_dict} torch.save(state_dict, args.checkpoint_path)
78
0
"""simple docstring""" import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowercase__ : List[Any] = False class _UpperCAmelCase ( unittest.TestCase): def _snake_case ( self : Optional[int] , lowercase_ : str=32 ): set_seed(0 ) snake_case_ : Any = UNetaDModel(sample_size=lowercase_ , in_channels=3 , out_channels=3 ) snake_case_ : Optional[int] = torch.optim.SGD(model.parameters() , lr=0.00_01 ) return model, optimizer @slow def _snake_case ( self : str ): snake_case_ : Dict = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable snake_case_ : List[str] = DDPMScheduler( num_train_timesteps=1000 , beta_start=0.00_01 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=lowercase_ , ) snake_case_ : Union[str, Any] = DDIMScheduler( num_train_timesteps=1000 , beta_start=0.00_01 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=lowercase_ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) snake_case_ : List[str] = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(lowercase_ ) for _ in range(4 )] snake_case_ : str = [torch.randn((4, 3, 32, 32) ).to(lowercase_ ) for _ in range(4 )] snake_case_ : Optional[int] = [torch.randint(0 , 1000 , (4,) ).long().to(lowercase_ ) for _ in range(4 )] # train with a DDPM scheduler snake_case_, snake_case_ : Optional[int] = self.get_model_optimizer(resolution=32 ) model.train().to(lowercase_ ) for i in range(4 ): optimizer.zero_grad() snake_case_ : Union[str, Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) snake_case_ : Any = model(lowercase_ , timesteps[i] ).sample snake_case_ : int = torch.nn.functional.mse_loss(lowercase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM snake_case_, snake_case_ : List[str] = self.get_model_optimizer(resolution=32 ) model.train().to(lowercase_ ) for i in range(4 ): optimizer.zero_grad() snake_case_ : Tuple = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) snake_case_ : Union[str, Any] = model(lowercase_ , timesteps[i] ).sample snake_case_ : int = torch.nn.functional.mse_loss(lowercase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1E-5 ) ) self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1E-5 ) )
485
"""simple docstring""" import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) lowercase__ : List[str] = { '''iou_prediction_head.layers.0''': '''iou_prediction_head.proj_in''', '''iou_prediction_head.layers.1''': '''iou_prediction_head.layers.0''', '''iou_prediction_head.layers.2''': '''iou_prediction_head.proj_out''', '''mask_decoder.output_upscaling.0''': '''mask_decoder.upscale_conv1''', '''mask_decoder.output_upscaling.1''': '''mask_decoder.upscale_layer_norm''', '''mask_decoder.output_upscaling.3''': '''mask_decoder.upscale_conv2''', '''mask_downscaling.0''': '''mask_embed.conv1''', '''mask_downscaling.1''': '''mask_embed.layer_norm1''', '''mask_downscaling.3''': '''mask_embed.conv2''', '''mask_downscaling.4''': '''mask_embed.layer_norm2''', '''mask_downscaling.6''': '''mask_embed.conv3''', '''point_embeddings''': '''point_embed''', '''pe_layer.positional_encoding_gaussian_matrix''': '''shared_embedding.positional_embedding''', '''image_encoder''': '''vision_encoder''', '''neck.0''': '''neck.conv1''', '''neck.1''': '''neck.layer_norm1''', '''neck.2''': '''neck.conv2''', '''neck.3''': '''neck.layer_norm2''', '''patch_embed.proj''': '''patch_embed.projection''', '''.norm''': '''.layer_norm''', '''blocks''': '''layers''', } def __lowercase ( _a ): snake_case_ : List[str] = {} state_dict.pop('''pixel_mean''' , _a ) state_dict.pop('''pixel_std''' , _a ) snake_case_ : Union[str, Any] = r'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*''' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: snake_case_ : Optional[int] = key.replace(_a , _a ) if re.match(_a , _a ): snake_case_ : Union[str, Any] = int(re.match(_a , _a ).group(2 ) ) if layer_nb == 0: snake_case_ : Optional[int] = key.replace('''layers.0''' , '''proj_in''' ) elif layer_nb == 1: snake_case_ : Union[str, Any] = key.replace('''layers.1''' , '''layers.0''' ) elif layer_nb == 2: snake_case_ : List[Any] = key.replace('''layers.2''' , '''proj_out''' ) snake_case_ : Optional[Any] = value snake_case_ : Tuple = model_state_dict[ '''prompt_encoder.shared_embedding.positional_embedding''' ] return model_state_dict def __lowercase ( _a , _a , _a , _a="ybelkada/segment-anything" ): snake_case_ : Optional[Any] = hf_hub_download(_a , f"checkpoints/{model_name}.pth" ) if "sam_vit_b" in model_name: snake_case_ : Tuple = SamConfig() elif "sam_vit_l" in model_name: snake_case_ : Optional[Any] = SamVisionConfig( hidden_size=1_024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) snake_case_ : Union[str, Any] = SamConfig( vision_config=_a , ) elif "sam_vit_h" in model_name: snake_case_ : Tuple = SamVisionConfig( hidden_size=1_280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) snake_case_ : List[str] = SamConfig( vision_config=_a , ) snake_case_ : Tuple = torch.load(_a , map_location='''cpu''' ) snake_case_ : Optional[Any] = replace_keys(_a ) snake_case_ : Any = SamImageProcessor() snake_case_ : Optional[Any] = SamProcessor(image_processor=_a ) snake_case_ : Tuple = SamModel(_a ) hf_model.load_state_dict(_a ) snake_case_ : Tuple = hf_model.to('''cuda''' ) snake_case_ : Union[str, Any] = '''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png''' snake_case_ : Union[str, Any] = Image.open(requests.get(_a , stream=_a ).raw ).convert('''RGB''' ) snake_case_ : Tuple = [[[400, 650]]] snake_case_ : List[str] = [[1]] snake_case_ : Optional[int] = processor(images=np.array(_a ) , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): snake_case_ : Optional[Any] = hf_model(**_a ) snake_case_ : Any = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_8902_5115_9668 snake_case_ : Optional[Any] = processor( images=np.array(_a ) , input_points=_a , input_labels=_a , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): snake_case_ : Optional[Any] = hf_model(**_a ) snake_case_ : Tuple = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712_6030_9219_3604 snake_case_ : Tuple = ((75, 275, 1_725, 850),) snake_case_ : Optional[Any] = processor(images=np.array(_a ) , input_boxes=_a , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): snake_case_ : Dict = hf_model(**_a ) snake_case_ : Any = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686_0156_0592_6514 # Test with 2 points and 1 image. snake_case_ : Union[str, Any] = [[[400, 650], [800, 650]]] snake_case_ : Optional[int] = [[1, 1]] snake_case_ : Tuple = processor( images=np.array(_a ) , input_points=_a , input_labels=_a , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): snake_case_ : Dict = hf_model(**_a ) snake_case_ : Dict = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936_0477_9243_4692 if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() lowercase__ : Any = ['''sam_vit_b_01ec64''', '''sam_vit_h_4b8939''', '''sam_vit_l_0b3195'''] parser.add_argument( '''--model_name''', default='''sam_vit_h_4b8939''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) parser.add_argument( '''--model_hub_id''', default='''ybelkada/segment-anything''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) lowercase__ : Tuple = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
485
1
snake_case__ : Optional[int] = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' snake_case__ : Union[str, Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] snake_case__ : Tuple = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
392
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Optional[Any] = logging.get_logger(__name__) def lowercase ( _lowerCAmelCase ): UpperCAmelCase__ = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: UpperCAmelCase__ = [144, 192, 240] UpperCAmelCase__ = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: UpperCAmelCase__ = [96, 120, 144] UpperCAmelCase__ = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: UpperCAmelCase__ = [64, 80, 96] UpperCAmelCase__ = [16, 16, 24, 48, 64, 80, 320] UpperCAmelCase__ = 0.05 UpperCAmelCase__ = 2.0 if mobilevit_name.startswith("""deeplabv3_""" ): UpperCAmelCase__ = 512 UpperCAmelCase__ = 16 UpperCAmelCase__ = 21 UpperCAmelCase__ = """pascal-voc-id2label.json""" else: UpperCAmelCase__ = 1000 UpperCAmelCase__ = """imagenet-1k-id2label.json""" UpperCAmelCase__ = """huggingface/label-files""" UpperCAmelCase__ = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase__ = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase__ = idalabel UpperCAmelCase__ = {v: k for k, v in idalabel.items()} return config def lowercase ( _lowerCAmelCase , _lowerCAmelCase=False ): for i in range(1 , 6 ): if F'''layer_{i}.''' in name: UpperCAmelCase__ = name.replace(F'''layer_{i}.''' , F'''encoder.layer.{i - 1}.''' ) if "conv_1." in name: UpperCAmelCase__ = name.replace("""conv_1.""" , """conv_stem.""" ) if ".block." in name: UpperCAmelCase__ = name.replace(""".block.""" , """.""" ) if "exp_1x1" in name: UpperCAmelCase__ = name.replace("""exp_1x1""" , """expand_1x1""" ) if "red_1x1" in name: UpperCAmelCase__ = name.replace("""red_1x1""" , """reduce_1x1""" ) if ".local_rep.conv_3x3." in name: UpperCAmelCase__ = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" ) if ".local_rep.conv_1x1." in name: UpperCAmelCase__ = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" ) if ".norm." in name: UpperCAmelCase__ = name.replace(""".norm.""" , """.normalization.""" ) if ".conv." in name: UpperCAmelCase__ = name.replace(""".conv.""" , """.convolution.""" ) if ".conv_proj." in name: UpperCAmelCase__ = name.replace(""".conv_proj.""" , """.conv_projection.""" ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F'''.{i}.{j}.''' in name: UpperCAmelCase__ = name.replace(F'''.{i}.{j}.''' , F'''.{i}.layer.{j}.''' ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F'''.{i}.{j}.''' in name: UpperCAmelCase__ = name.replace(F'''.{i}.{j}.''' , F'''.{i}.''' ) if "expand_1x1" in name: UpperCAmelCase__ = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" ) if "conv_3x3" in name: UpperCAmelCase__ = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" ) if "reduce_1x1" in name: UpperCAmelCase__ = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" ) for i in range(2 , 5 ): if F'''.global_rep.{i}.weight''' in name: UpperCAmelCase__ = name.replace(F'''.global_rep.{i}.weight''' , """.layernorm.weight""" ) if F'''.global_rep.{i}.bias''' in name: UpperCAmelCase__ = name.replace(F'''.global_rep.{i}.bias''' , """.layernorm.bias""" ) if ".global_rep." in name: UpperCAmelCase__ = name.replace(""".global_rep.""" , """.transformer.""" ) if ".pre_norm_mha.0." in name: UpperCAmelCase__ = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" ) if ".pre_norm_mha.1.out_proj." in name: UpperCAmelCase__ = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" ) if ".pre_norm_ffn.0." in name: UpperCAmelCase__ = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" ) if ".pre_norm_ffn.1." in name: UpperCAmelCase__ = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" ) if ".pre_norm_ffn.4." in name: UpperCAmelCase__ = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" ) if ".transformer." in name: UpperCAmelCase__ = name.replace(""".transformer.""" , """.transformer.layer.""" ) if ".aspp_layer." in name: UpperCAmelCase__ = name.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in name: UpperCAmelCase__ = name.replace(""".aspp_pool.""" , """.""" ) if "seg_head." in name: UpperCAmelCase__ = name.replace("""seg_head.""" , """segmentation_head.""" ) if "segmentation_head.classifier.classifier." in name: UpperCAmelCase__ = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" ) if "classifier.fc." in name: UpperCAmelCase__ = name.replace("""classifier.fc.""" , """classifier.""" ) elif (not base_model) and ("segmentation_head." not in name): UpperCAmelCase__ = """mobilevit.""" + name return name def lowercase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): if base_model: UpperCAmelCase__ = """""" else: UpperCAmelCase__ = """mobilevit.""" for key in orig_state_dict.copy().keys(): UpperCAmelCase__ = orig_state_dict.pop(_lowerCAmelCase ) if key[:8] == "encoder.": UpperCAmelCase__ = key[8:] if "qkv" in key: UpperCAmelCase__ = key.split(""".""" ) UpperCAmelCase__ = int(key_split[0][6:] ) - 1 UpperCAmelCase__ = int(key_split[3] ) UpperCAmelCase__ = model.get_submodule(F'''{model_prefix}encoder.layer.{layer_num}''' ) UpperCAmelCase__ = layer.transformer.layer[transformer_num].attention.attention.all_head_size UpperCAmelCase__ = ( F'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.''' ) if "weight" in key: UpperCAmelCase__ = val[:dim, :] UpperCAmelCase__ = val[dim : dim * 2, :] UpperCAmelCase__ = val[-dim:, :] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[dim : dim * 2] UpperCAmelCase__ = val[-dim:] else: UpperCAmelCase__ = val return orig_state_dict def lowercase ( ): UpperCAmelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase__ = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def lowercase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): UpperCAmelCase__ = get_mobilevit_config(_lowerCAmelCase ) # load original state_dict UpperCAmelCase__ = torch.load(_lowerCAmelCase , map_location="""cpu""" ) # load 🤗 model if mobilevit_name.startswith("""deeplabv3_""" ): UpperCAmelCase__ = MobileViTForSemanticSegmentation(_lowerCAmelCase ).eval() else: UpperCAmelCase__ = MobileViTForImageClassification(_lowerCAmelCase ).eval() UpperCAmelCase__ = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor UpperCAmelCase__ = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) UpperCAmelCase__ = image_processor(images=prepare_img() , return_tensors="""pt""" ) UpperCAmelCase__ = model(**_lowerCAmelCase ) UpperCAmelCase__ = outputs.logits if mobilevit_name.startswith("""deeplabv3_""" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": UpperCAmelCase__ = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": UpperCAmelCase__ = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": UpperCAmelCase__ = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ] ) else: raise ValueError(F'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3, :3, :3] , _lowerCAmelCase , atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": UpperCAmelCase__ = torch.tensor([-0.9866, 0.2392, -1.1241] ) elif mobilevit_name == "mobilevit_xs": UpperCAmelCase__ = torch.tensor([-2.4761, -0.9399, -1.9587] ) elif mobilevit_name == "mobilevit_xxs": UpperCAmelCase__ = torch.tensor([-1.9364, -1.2327, -0.4653] ) else: raise ValueError(F'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: UpperCAmelCase__ = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""" ) UpperCAmelCase__ = model_mapping[mobilevit_name] image_processor.push_to_hub(_lowerCAmelCase , organization="""apple""" ) model.push_to_hub(_lowerCAmelCase , organization="""apple""" ) if __name__ == "__main__": snake_case__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) snake_case__ : Optional[int] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
392
1
from __future__ import annotations import queue class snake_case_ : def __init__( self , __lowercase ) -> int: lowerCamelCase : int =data lowerCamelCase : str =None lowerCamelCase : Dict =None def A__ ( ) -> TreeNode: print('''\n********Press N to stop entering at any point of time********\n''' ) lowerCamelCase : Tuple =input('''Enter the value of the root node: ''' ).strip().lower() lowerCamelCase : queue.Queue =queue.Queue() lowerCamelCase : Dict =TreeNode(int(SCREAMING_SNAKE_CASE_ ) ) q.put(SCREAMING_SNAKE_CASE_ ) while not q.empty(): lowerCamelCase : Dict =q.get() lowerCamelCase : Optional[int] =F"Enter the left node of {node_found.data}: " lowerCamelCase : Tuple =input(SCREAMING_SNAKE_CASE_ ).strip().lower() or '''n''' if check == "n": return tree_node lowerCamelCase : Union[str, Any] =TreeNode(int(SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase : Optional[Any] =left_node q.put(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : List[Any] =F"Enter the right node of {node_found.data}: " lowerCamelCase : int =input(SCREAMING_SNAKE_CASE_ ).strip().lower() or '''n''' if check == "n": return tree_node lowerCamelCase : str =TreeNode(int(SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase : Optional[Any] =right_node q.put(SCREAMING_SNAKE_CASE_ ) raise def A__ ( SCREAMING_SNAKE_CASE_ ) -> None: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not node: return print(node.data , end=''',''' ) pre_order(node.left ) pre_order(node.right ) def A__ ( SCREAMING_SNAKE_CASE_ ) -> None: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not node: return in_order(node.left ) print(node.data , end=''',''' ) in_order(node.right ) def A__ ( SCREAMING_SNAKE_CASE_ ) -> None: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=''',''' ) def A__ ( SCREAMING_SNAKE_CASE_ ) -> None: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not node: return lowerCamelCase : queue.Queue =queue.Queue() q.put(SCREAMING_SNAKE_CASE_ ) while not q.empty(): lowerCamelCase : Optional[int] =q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def A__ ( SCREAMING_SNAKE_CASE_ ) -> None: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not node: return lowerCamelCase : queue.Queue =queue.Queue() q.put(SCREAMING_SNAKE_CASE_ ) while not q.empty(): lowerCamelCase : Tuple =[] while not q.empty(): lowerCamelCase : List[str] =q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(SCREAMING_SNAKE_CASE_ ) def A__ ( SCREAMING_SNAKE_CASE_ ) -> None: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not node: return lowerCamelCase : list[TreeNode] =[] lowerCamelCase : Tuple =node while n or stack: while n: # start from root node, find its left child print(n.data , end=''',''' ) stack.append(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Any =n.left # end of while means current node doesn't have left child lowerCamelCase : Tuple =stack.pop() # start to traverse its right child lowerCamelCase : Union[str, Any] =n.right def A__ ( SCREAMING_SNAKE_CASE_ ) -> None: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not node: return lowerCamelCase : list[TreeNode] =[] lowerCamelCase : List[Any] =node while n or stack: while n: stack.append(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : List[Any] =n.left lowerCamelCase : Dict =stack.pop() print(n.data , end=''',''' ) lowerCamelCase : Union[str, Any] =n.right def A__ ( SCREAMING_SNAKE_CASE_ ) -> None: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not node: return lowerCamelCase , lowerCamelCase : Optional[int] =[], [] lowerCamelCase : Dict =node stacka.append(SCREAMING_SNAKE_CASE_ ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCamelCase : int =stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(SCREAMING_SNAKE_CASE_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=''',''' ) def A__ ( SCREAMING_SNAKE_CASE_ = "" , SCREAMING_SNAKE_CASE_=5_0 , SCREAMING_SNAKE_CASE_="*" ) -> str: if not s: return "\n" + width * char lowerCamelCase , lowerCamelCase : Dict =divmod(width - len(SCREAMING_SNAKE_CASE_ ) - 2 , 2 ) return F"{left * char} {s} {(left + extra) * char}" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('''Binary Tree Traversals''')) snake_case_ = build_tree() print(prompt('''Pre Order Traversal''')) pre_order(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal''')) in_order(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal''')) post_order(node) print(prompt() + '''\n''') print(prompt('''Level Order Traversal''')) level_order(node) print(prompt() + '''\n''') print(prompt('''Actual Level Order Traversal''')) level_order_actual(node) print('''*''' * 5_0 + '''\n''') print(prompt('''Pre Order Traversal - Iteration Version''')) pre_order_iter(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal - Iteration Version''')) in_order_iter(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal - Iteration Version''')) post_order_iter(node) print(prompt())
262
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE_ ) -> bool: if len(SCREAMING_SNAKE_CASE_ ) < 2: raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' ) if any(i <= 0 for i in nums ): raise ValueError('''All values must be greater than 0''' ) lowerCamelCase : List[Any] =nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
262
1