code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Any , __A : Any , __A : Dict=1_3 , __A : List[Any]=1_0 , __A : List[Any]=3 , __A : List[str]=2 , __A : Union[str, Any]=2 , __A : Union[str, Any]=True , __A : Optional[int]=True , __A : List[Any]=3_2 , __A : Optional[Any]=5 , __A : Dict=4 , __A : int=3_7 , __A : str="gelu" , __A : str=0.1 , __A : List[Any]=0.1 , __A : Any=1_0 , __A : str=0.0_2 , __A : Union[str, Any]="divided_space_time" , __A : Any=None , ): snake_case__ : Tuple = parent snake_case__ : Optional[Any] = batch_size snake_case__ : Union[str, Any] = image_size snake_case__ : Tuple = num_channels snake_case__ : int = patch_size snake_case__ : str = num_frames snake_case__ : str = is_training snake_case__ : Dict = use_labels snake_case__ : Optional[int] = hidden_size snake_case__ : Dict = num_hidden_layers snake_case__ : List[str] = num_attention_heads snake_case__ : Union[str, Any] = intermediate_size snake_case__ : int = hidden_act snake_case__ : int = hidden_dropout_prob snake_case__ : Any = attention_probs_dropout_prob snake_case__ : Tuple = attention_type snake_case__ : Any = initializer_range snake_case__ : Optional[int] = scope snake_case__ : List[str] = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token snake_case__ : Any = (image_size // patch_size) ** 2 snake_case__ : List[str] = (num_frames) * self.num_patches_per_frame + 1 def _lowercase ( self : Union[str, Any] ): snake_case__ : Optional[int] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) snake_case__ : List[str] = None if self.use_labels: snake_case__ : Dict = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ : List[Any] = self.get_config() return config, pixel_values, labels def _lowercase ( self : List[str] ): snake_case__ : int = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) snake_case__ : Tuple = self.num_labels return config def _lowercase ( self : Optional[int] , __A : Union[str, Any] , __A : int , __A : Tuple ): snake_case__ : Dict = TimesformerModel(config=__A ) model.to(__A ) model.eval() snake_case__ : List[str] = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Any , __A : List[str] , __A : Union[str, Any] , __A : Union[str, Any] ): snake_case__ : Optional[int] = TimesformerForVideoClassification(__A ) model.to(__A ) model.eval() snake_case__ : Union[str, Any] = model(__A ) # verify the logits shape snake_case__ : Tuple = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __A ) def _lowercase ( self : Dict ): snake_case__ : str = self.prepare_config_and_inputs() snake_case__ : Union[str, Any] = config_and_inputs snake_case__ : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _a , _a , unittest.TestCase ): """simple docstring""" a_ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () a_ = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False def _lowercase ( self : Tuple ): snake_case__ : Union[str, Any] = TimesformerModelTester(self ) snake_case__ : Tuple = ConfigTester( self , config_class=__A , has_text_modality=__A , hidden_size=3_7 ) def _lowercase ( self : str , __A : Any , __A : List[Any] , __A : str=False ): snake_case__ : Tuple = copy.deepcopy(__A ) if return_labels: if model_class in get_values(__A ): snake_case__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) return inputs_dict def _lowercase ( self : List[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def _lowercase ( self : Optional[Any] ): pass def _lowercase ( self : str ): snake_case__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Tuple = model_class(__A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A , nn.Linear ) ) def _lowercase ( self : str ): snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Optional[int] = model_class(__A ) snake_case__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : List[str] = [*signature.parameters.keys()] snake_case__ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __A ) def _lowercase ( self : List[str] ): snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def _lowercase ( self : Dict ): snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__A ) @slow def _lowercase ( self : List[Any] ): for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Optional[Any] = TimesformerModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def _lowercase ( self : List[Any] ): if not self.has_attentions: pass else: snake_case__ : int = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Union[str, Any] = True for model_class in self.all_model_classes: snake_case__ : List[Any] = self.model_tester.seq_length snake_case__ : List[Any] = self.model_tester.num_frames snake_case__ : List[str] = True snake_case__ : Union[str, Any] = False snake_case__ : List[str] = True snake_case__ : List[Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): snake_case__ : Optional[Any] = model(**self._prepare_for_class(__A , __A ) ) snake_case__ : Optional[Any] = outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case__ : Dict = True snake_case__ : Optional[int] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): snake_case__ : Tuple = model(**self._prepare_for_class(__A , __A ) ) snake_case__ : List[Any] = outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) snake_case__ : Dict = len(__A ) # Check attention is always last and order is fine snake_case__ : Dict = True snake_case__ : Any = True snake_case__ : int = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): snake_case__ : Dict = model(**self._prepare_for_class(__A , __A ) ) self.assertEqual(out_len + 1 , len(__A ) ) snake_case__ : Optional[Any] = outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def _lowercase ( self : int ): def check_hidden_states_output(__A : str , __A : Optional[int] , __A : int ): snake_case__ : List[Any] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): snake_case__ : List[Any] = model(**self._prepare_for_class(__A , __A ) ) snake_case__ : str = outputs.hidden_states snake_case__ : List[Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__A ) , __A ) snake_case__ : Optional[Any] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Optional[Any] = True check_hidden_states_output(__A , __A , __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : List[str] = True check_hidden_states_output(__A , __A , __A ) def SCREAMING_SNAKE_CASE ( ): snake_case__ : List[Any] = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) snake_case__ : Dict = np.load(_UpperCamelCase ) return list(_UpperCamelCase ) @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Optional[Any] ): return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _lowercase ( self : List[Any] ): snake_case__ : Any = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( __A ) snake_case__ : List[str] = self.default_image_processor snake_case__ : List[str] = prepare_video() snake_case__ : int = image_processor(video[:8] , return_tensors="pt" ).to(__A ) # forward pass with torch.no_grad(): snake_case__ : Union[str, Any] = model(**__A ) # verify the logits snake_case__ : Any = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape , __A ) snake_case__ : Any = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __A , atol=1e-4 ) )
297
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class __lowerCAmelCase ( _a ): def __init__(self , __magic_name__ = "▁" , __magic_name__ = True , __magic_name__ = "<unk>" , __magic_name__ = "</s>" , __magic_name__ = "<pad>" , ) -> Dict: '''simple docstring''' snake_case_ : List[Any] = { '''pad''': {'''id''': 0, '''token''': pad_token}, '''eos''': {'''id''': 1, '''token''': eos_token}, '''unk''': {'''id''': 2, '''token''': unk_token}, } snake_case_ : List[str] = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): snake_case_ : int = token_dict['''token'''] snake_case_ : Optional[int] = Tokenizer(Unigram() ) snake_case_ : int = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(''' {2,}''' ) , ''' ''' ), normalizers.Lowercase(), ] ) snake_case_ : Optional[int] = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__magic_name__ , add_prefix_space=__magic_name__ ), pre_tokenizers.Digits(individual_digits=__magic_name__ ), pre_tokenizers.Punctuation(), ] ) snake_case_ : Tuple = decoders.Metaspace(replacement=__magic_name__ , add_prefix_space=__magic_name__ ) snake_case_ : Optional[Any] = TemplateProcessing( single=F'''$A {self.special_tokens["eos"]["token"]}''' , special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])] , ) snake_case_ : Optional[Any] = { '''model''': '''SentencePieceUnigram''', '''replacement''': replacement, '''add_prefix_space''': add_prefix_space, } super().__init__(__magic_name__ , __magic_name__ ) def lowerCamelCase (self , __magic_name__ , __magic_name__ = 8000 , __magic_name__ = True , ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = trainers.UnigramTrainer( vocab_size=__magic_name__ , special_tokens=self.special_tokens_list , show_progress=__magic_name__ , ) if isinstance(__magic_name__ , __magic_name__ ): snake_case_ : Dict = [files] self._tokenizer.train(__magic_name__ , trainer=__magic_name__ ) self.add_unk_id() def lowerCamelCase (self , __magic_name__ , __magic_name__ = 8000 , __magic_name__ = True , ) -> int: '''simple docstring''' snake_case_ : Any = trainers.UnigramTrainer( vocab_size=__magic_name__ , special_tokens=self.special_tokens_list , show_progress=__magic_name__ , ) self._tokenizer.train_from_iterator(__magic_name__ , trainer=__magic_name__ ) self.add_unk_id() def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = json.loads(self._tokenizer.to_str() ) snake_case_ : Union[str, Any] = self.special_tokens['''unk''']['''id'''] snake_case_ : Tuple = Tokenizer.from_str(json.dumps(__magic_name__ ) )
60
0
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __magic_name__ : '''simple docstring''' def __init__( self , _a , _a=13 , _a=3 , _a=True , _a=True , _a=0.1 , _a=0.1 , _a=224 , _a=1_000 , _a=[3, 3, 6, 4] , _a=[48, 56, 112, 220] , ): """simple docstring""" lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = num_channels lowerCamelCase = is_training lowerCamelCase = use_labels lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = num_labels lowerCamelCase = image_size lowerCamelCase = layer_depths lowerCamelCase = embed_dims def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase = None if self.use_labels: lowerCamelCase = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase = self.get_config() return config, pixel_values, labels def _lowerCAmelCase ( self ): """simple docstring""" return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_UpperCAmelCase , layer_scale_init_value=1e-5 , ) def _lowerCAmelCase ( self , _a , _a , _a ): """simple docstring""" lowerCamelCase = SwiftFormerModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowerCamelCase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _lowerCAmelCase ( self , _a , _a , _a ): """simple docstring""" lowerCamelCase = self.num_labels lowerCamelCase = SwiftFormerForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowerCamelCase = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) lowerCamelCase = SwiftFormerForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self ): """simple docstring""" ((lowerCamelCase) , (lowerCamelCase) , (lowerCamelCase)) = self.prepare_config_and_inputs() lowerCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () __UpperCamelCase = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = SwiftFormerModelTester(self ) lowerCamelCase = ConfigTester( self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _lowerCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def _lowerCAmelCase ( self ): """simple docstring""" pass def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase = model_class(_UpperCAmelCase ) lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase = model_class(_UpperCAmelCase ) lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase = [*signature.parameters.keys()] lowerCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def _lowerCAmelCase ( self ): """simple docstring""" for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase = SwiftFormerModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def _lowerCAmelCase ( self ): """simple docstring""" pass def _lowerCAmelCase ( self ): """simple docstring""" def check_hidden_states_output(_a , _a , _a ): lowerCamelCase = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): lowerCamelCase = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowerCamelCase = outputs.hidden_states lowerCamelCase = 8 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_UpperCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def _lowerCAmelCase ( self ): """simple docstring""" def _config_zero_init(_a ): lowerCamelCase = copy.deepcopy(_UpperCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_UpperCAmelCase , _UpperCAmelCase , 1e-1_0 ) if isinstance(getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase ): lowerCamelCase = _config_zero_init(getattr(_UpperCAmelCase , _UpperCAmelCase ) ) setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return configs_no_init lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: lowerCamelCase = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _lowerCAmelCase ( self ): """simple docstring""" pass def a__ ( ) -> Optional[int]: lowerCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCAmelCase ( self ): """simple docstring""" return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(_UpperCAmelCase ) lowerCamelCase = self.default_image_processor lowerCamelCase = prepare_img() lowerCamelCase = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCamelCase = model(**_UpperCAmelCase ) # verify the logits lowerCamelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) lowerCamelCase = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) )
714
"""simple docstring""" import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel lowerCAmelCase : List[str] = HfApi() lowerCAmelCase : Tuple = {} # fmt: off lowerCAmelCase : List[str] = torch.tensor([ -0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7, 1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9, -1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9, 0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7 ]) lowerCAmelCase : Dict = torch.tensor([ -2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6, 1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8, -2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8, 2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5 ]) lowerCAmelCase : str = torch.tensor([ -0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9, -0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4, -0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5, 0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3 ]) lowerCAmelCase : List[Any] = torch.tensor([ 0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2, -0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9, 0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5, -0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5 ]) lowerCAmelCase : int = torch.tensor([ 0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3, -0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5, 0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9, -0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6 ]) lowerCAmelCase : int = torch.tensor([ 0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8, -0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0, 0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3, -0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1 ]) lowerCAmelCase : Union[str, Any] = torch.tensor([ 0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2, -0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8, 0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4, -0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0 ]) lowerCAmelCase : List[str] = torch.tensor([ 0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2, -0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0, 0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6, -0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3 ]) lowerCAmelCase : Optional[int] = torch.tensor([ -1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0, 1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3, -2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0, 1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1]) lowerCAmelCase : Any = torch.tensor([ -1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4, 0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1, -2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9, 1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6 ]) lowerCAmelCase : Union[str, Any] = torch.tensor([ -1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2, 0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7, -2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1, 1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5 ]) lowerCAmelCase : str = torch.tensor([ -2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9, 1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1, -3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1, 3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6 ]) lowerCAmelCase : List[str] = torch.tensor([ -2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0, 1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8, -2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5, 2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3 ]) lowerCAmelCase : Optional[Any] = torch.tensor([ -2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6, 1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8, -3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0, 3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3 ]) lowerCAmelCase : int = torch.tensor([ -1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4, 1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1, -2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9, 1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9 ]) # fmt: on lowerCAmelCase : Optional[int] = api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": lowerCAmelCase : Dict = """/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1] print(F"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("""CompVis"""): lowerCAmelCase : str = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: lowerCAmelCase : Optional[Any] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) lowerCAmelCase : Dict = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) lowerCAmelCase : List[Any] = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): lowerCAmelCase : Optional[int] = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1e-3 ) print(F"""{mod.modelId} has passed successfully!!!""")
533
0
'''simple docstring''' import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration lowercase_ = { "tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt", "tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt", "base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt", "base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt", "small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt", "small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt", "medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt", "medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt", "large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt", "large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt", } def lowerCAmelCase (__A): """simple docstring""" _a = ['''layers''', '''blocks'''] for k in ignore_keys: state_dict.pop(__A , __A) lowercase_ = { "blocks": "layers", "mlp.0": "fc1", "mlp.2": "fc2", "mlp_ln": "final_layer_norm", ".attn.query": ".self_attn.q_proj", ".attn.key": ".self_attn.k_proj", ".attn.value": ".self_attn.v_proj", ".attn_ln": ".self_attn_layer_norm", ".attn.out": ".self_attn.out_proj", ".cross_attn.query": ".encoder_attn.q_proj", ".cross_attn.key": ".encoder_attn.k_proj", ".cross_attn.value": ".encoder_attn.v_proj", ".cross_attn_ln": ".encoder_attn_layer_norm", ".cross_attn.out": ".encoder_attn.out_proj", "decoder.ln.": "decoder.layer_norm.", "encoder.ln.": "encoder.layer_norm.", "token_embedding": "embed_tokens", "encoder.positional_embedding": "encoder.embed_positions.weight", "decoder.positional_embedding": "decoder.embed_positions.weight", "ln_post": "layer_norm", } def lowerCAmelCase (__A): """simple docstring""" _a = list(s_dict.keys()) for key in keys: _a = key for k, v in WHISPER_MAPPING.items(): if k in key: _a = new_key.replace(__A , __A) print(F'''{key} -> {new_key}''') _a = s_dict.pop(__A) return s_dict def lowerCAmelCase (__A): """simple docstring""" _a , _a = emb.weight.shape _a = nn.Linear(__A , __A , bias=__A) _a = emb.weight.data return lin_layer def lowerCAmelCase (__A , __A): """simple docstring""" os.makedirs(__A , exist_ok=__A) _a = os.path.basename(__A) _a = url.split('''/''')[-2] _a = os.path.join(__A , __A) if os.path.exists(__A) and not os.path.isfile(__A): raise RuntimeError(F'''{download_target} exists and is not a regular file''') if os.path.isfile(__A): _a = open(__A , '''rb''').read() if hashlib.shaaaa(__A).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F'''{download_target} exists, but the SHA256 checksum does not match; re-downloading the file''') with urllib.request.urlopen(__A) as source, open(__A , '''wb''') as output: with tqdm( total=int(source.info().get('''Content-Length''')) , ncols=80 , unit='''iB''' , unit_scale=__A , unit_divisor=1_024) as loop: while True: _a = source.read(8_192) if not buffer: break output.write(__A) loop.update(len(__A)) _a = open(__A , '''rb''').read() if hashlib.shaaaa(__A).hexdigest() != expected_shaaaa: raise RuntimeError( '''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''') return model_bytes def lowerCAmelCase (__A , __A): """simple docstring""" if ".pt" not in checkpoint_path: _a = _download(_MODELS[checkpoint_path]) else: _a = torch.load(__A , map_location='''cpu''') _a = original_checkpoint['''dims'''] _a = original_checkpoint['''model_state_dict'''] _a = state_dict['''decoder.token_embedding.weight'''] remove_ignore_keys_(__A) rename_keys(__A) _a = True _a = state_dict['''decoder.layers.0.fc1.weight'''].shape[0] _a = WhisperConfig( vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=__A , decoder_ffn_dim=__A , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , ) _a = WhisperForConditionalGeneration(__A) _a , _a = model.model.load_state_dict(__A , strict=__A) if len(__A) > 0 and not set(__A) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' F''' but all the following weights are missing {missing}''') if tie_embeds: _a = make_linear_from_emb(model.model.decoder.embed_tokens) else: _a = proj_out_weights model.save_pretrained(__A) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Patht to the downloaded checkpoints") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") lowercase_ = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
11
"""simple docstring""" import os import jsonlines import numpy as np from tqdm import tqdm snake_case : Tuple = 2_0_4_8 snake_case : str = 4_0_9_6 snake_case : int = 4_2 snake_case : List[Any] = os.environ.pop("""PROCESS_TRAIN""", """false""") snake_case : List[str] = {"""null""": 0, """short""": 1, """long""": 2, """yes""": 3, """no""": 4} def A ( __snake_case: Any ) -> Optional[int]: """simple docstring""" def choose_first(__snake_case: Union[str, Any] , __snake_case: List[str]=False ): assert isinstance(__snake_case , __snake_case ) if len(__snake_case ) == 1: __magic_name__ = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: __magic_name__ = {k: [a[k]] for k in a} if len(a['start_token'] ) > 0: break return a __magic_name__ = {'id': example['id']} __magic_name__ = example['annotations'] __magic_name__ = annotation['yes_no_answer'] if 0 in yes_no_answer or 1 in yes_no_answer: __magic_name__ = ['yes'] if 1 in yes_no_answer else ['no'] __magic_name__ = __magic_name__ = [] __magic_name__ = __magic_name__ = [] __magic_name__ = ['<cls>'] else: __magic_name__ = ['short'] __magic_name__ = choose_first(annotation['short_answers'] ) if len(out['start_token'] ) == 0: # answer will be long if short is not available __magic_name__ = ['long'] __magic_name__ = choose_first(annotation['long_answer'] , is_long_answer=__snake_case ) __magic_name__ = [] answer.update(__snake_case ) # disregard some samples if len(answer['start_token'] ) > 1 or answer["start_token"] == answer["end_token"]: __magic_name__ = True else: __magic_name__ = False __magic_name__ = ['start_token', 'end_token', 'start_byte', 'end_byte', 'text'] if not all(isinstance(answer[k] , __snake_case ) for k in cols ): raise ValueError('Issue in ID' , example['id'] ) return answer def A ( __snake_case: Any , __snake_case: str=False ) -> Optional[Any]: """simple docstring""" __magic_name__ = _get_single_answer(__snake_case ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ = example['document']['tokens'] __magic_name__ = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) return { "context": " ".join(__snake_case ), "answer": { "start_token": -1_0_0, # ignore index in cross-entropy "end_token": -1_0_0, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples __magic_name__ = ['start_token', 'end_token'] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 __magic_name__ = example['document']['tokens'] __magic_name__ = answer['start_token'] __magic_name__ = answer['end_token'] __magic_name__ = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 __magic_name__ = ' '.join(context[start_token:end_token] ) # checking above code if assertion: __magic_name__ = doc['is_html'][answer['start_token'] : answer['end_token']] __magic_name__ = doc['token'][answer['start_token'] : answer['end_token']] __magic_name__ = ' '.join([old[i] for i in range(len(__snake_case ) ) if not is_html[i]] ) if new != old: print('ID:' , example['id'] ) print('New:' , __snake_case , end='\n' ) print('Old:' , __snake_case , end='\n\n' ) return { "context": " ".join(__snake_case ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def A ( __snake_case: List[Any] , __snake_case: int , __snake_case: Tuple=2_0_4_8 , __snake_case: List[str]=4_0_9_6 , __snake_case: Optional[int]=True ) -> Any: """simple docstring""" __magic_name__ = get_context_and_ans(__snake_case , assertion=__snake_case ) __magic_name__ = out['answer'] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } __magic_name__ = tokenizer(example['question']['text'] , out['context'] ).input_ids __magic_name__ = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element __magic_name__ = [] __magic_name__ = [] __magic_name__ = input_ids[:q_len] __magic_name__ = range(__snake_case , len(__snake_case ) , max_length - doc_stride ) for i in doc_start_indices: __magic_name__ = i + max_length - q_len __magic_name__ = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['category'][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-1_0_0] * len(__snake_case ), "end_token": [-1_0_0] * len(__snake_case ), "category": category, }, } __magic_name__ = out['context'].split() __magic_name__ = splitted_context[answer['end_token']] __magic_name__ = len( tokenizer( ' '.join(splitted_context[: answer['start_token']] ) , add_special_tokens=__snake_case , ).input_ids ) __magic_name__ = len( tokenizer(' '.join(splitted_context[: answer['end_token']] ) , add_special_tokens=__snake_case ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token __magic_name__ = len(tokenizer(__snake_case , add_special_tokens=__snake_case ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 __magic_name__ = input_ids[answer['start_token'] : answer['end_token'] + 1] # right & left are inclusive __magic_name__ = answer['start_token'] __magic_name__ = answer['end_token'] if assertion: __magic_name__ = tokenizer.decode(__snake_case ) if answer["span"] != new: print('ISSUE IN TOKENIZATION' ) print('OLD:' , answer['span'] ) print('NEW:' , __snake_case , end='\n\n' ) if len(__snake_case ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } __magic_name__ = input_ids[:q_len] __magic_name__ = range(__snake_case , len(__snake_case ) , max_length - doc_stride ) __magic_name__ = [] __magic_name__ = [] __magic_name__ = [] __magic_name__ = [] # null, yes, no, long, short for i in doc_start_indices: __magic_name__ = i + max_length - q_len __magic_name__ = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: __magic_name__ = start_token - i + q_len __magic_name__ = end_token - i + q_len answers_category.append(answer['category'][0] ) # ["short"] -> "short" else: __magic_name__ = -1_0_0 __magic_name__ = -1_0_0 answers_category.append('null' ) __magic_name__ = inputs[-1][start_token : end_token + 1] answers_start_token.append(__snake_case ) answers_end_token.append(__snake_case ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('ISSUE in strided for ID:' , example['id'] ) print('New:' , tokenizer.decode(__snake_case ) ) print('Old:' , tokenizer.decode(__snake_case ) , end='\n\n' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def A ( __snake_case: Tuple , __snake_case: Dict , __snake_case: Any=2_0_4_8 , __snake_case: List[Any]=4_0_9_6 , __snake_case: Any=False ) -> Tuple: """simple docstring""" __magic_name__ = get_strided_contexts_and_ans( __snake_case , __snake_case , doc_stride=__snake_case , max_length=__snake_case , assertion=__snake_case , ) return example def A ( __snake_case: Optional[int] , __snake_case: Union[str, Any] ) -> Dict: """simple docstring""" with jsonlines.open(__snake_case , 'a' ) as writer: for example in tqdm(__snake_case , total=len(__snake_case ) , desc='Saving samples ... ' ): __magic_name__ = example['labels'] for ids, start, end, cat in zip( example['input_ids'] , labels['start_token'] , labels['end_token'] , labels['category'] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { 'input_ids': ids, 'start_token': start, 'end_token': end, 'category': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer snake_case : Any = load_dataset("""natural_questions""") snake_case : List[Any] = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""") snake_case : Tuple = data["""train""" if PROCESS_TRAIN == """true""" else """validation"""] snake_case : List[Any] = { """tokenizer""": tokenizer, """doc_stride""": DOC_STRIDE, """max_length""": MAX_LENGTH, """assertion""": False, } snake_case : List[str] = data.map(prepare_inputs, fn_kwargs=fn_kwargs) snake_case : int = data.remove_columns(["""annotations""", """document""", """id""", """question"""]) print(data) np.random.seed(SEED) snake_case : Union[str, Any] = """nq-training.jsonl""" if PROCESS_TRAIN == """true""" else """nq-validation.jsonl""" save_to_disk(data, file_name=cache_file_name)
545
0
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) A_ = "hf-internal-testing/tiny-random-bert" A_ = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") A_ = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class _snake_case ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE:int = cached_file(UpperCamelCase_ ,UpperCamelCase_ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(UpperCamelCase_ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(UpperCamelCase_ ,UpperCamelCase_ ) ) ) with open(os.path.join(UpperCamelCase_ ,"refs" ,"main" ) ) as f: SCREAMING_SNAKE_CASE:Tuple = f.read() self.assertEqual(UpperCamelCase_ ,os.path.join(UpperCamelCase_ ,"snapshots" ,UpperCamelCase_ ,UpperCamelCase_ ) ) self.assertTrue(os.path.isfile(UpperCamelCase_ ) ) # File is cached at the same place the second time. SCREAMING_SNAKE_CASE:int = cached_file(UpperCamelCase_ ,UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ ,UpperCamelCase_ ) # Using a specific revision to test the full commit hash. SCREAMING_SNAKE_CASE:Optional[Any] = cached_file(UpperCamelCase_ ,UpperCamelCase_ ,revision="9b8c223" ) self.assertEqual(UpperCamelCase_ ,os.path.join(UpperCamelCase_ ,"snapshots" ,UpperCamelCase_ ,UpperCamelCase_ ) ) def __UpperCamelCase ( self : Dict ): with self.assertRaisesRegex(UpperCamelCase_ ,"is not a valid model identifier" ): SCREAMING_SNAKE_CASE:Tuple = cached_file("tiny-random-bert" ,UpperCamelCase_ ) with self.assertRaisesRegex(UpperCamelCase_ ,"is not a valid git identifier" ): SCREAMING_SNAKE_CASE:Optional[Any] = cached_file(UpperCamelCase_ ,UpperCamelCase_ ,revision="aaaa" ) with self.assertRaisesRegex(UpperCamelCase_ ,"does not appear to have a file named" ): SCREAMING_SNAKE_CASE:str = cached_file(UpperCamelCase_ ,"conf" ) def __UpperCamelCase ( self : Optional[int] ): with self.assertRaisesRegex(UpperCamelCase_ ,"does not appear to have a file named" ): SCREAMING_SNAKE_CASE:int = cached_file(UpperCamelCase_ ,"conf" ) with open(os.path.join(UpperCamelCase_ ,"refs" ,"main" ) ) as f: SCREAMING_SNAKE_CASE:Dict = f.read() self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase_ ,".no_exist" ,UpperCamelCase_ ,"conf" ) ) ) SCREAMING_SNAKE_CASE:Optional[int] = cached_file(UpperCamelCase_ ,"conf" ,_raise_exceptions_for_missing_entries=UpperCamelCase_ ) self.assertIsNone(UpperCamelCase_ ) SCREAMING_SNAKE_CASE:Optional[Any] = cached_file(UpperCamelCase_ ,"conf" ,local_files_only=UpperCamelCase_ ,_raise_exceptions_for_missing_entries=UpperCamelCase_ ) self.assertIsNone(UpperCamelCase_ ) SCREAMING_SNAKE_CASE:Optional[int] = mock.Mock() SCREAMING_SNAKE_CASE:Optional[Any] = 500 SCREAMING_SNAKE_CASE:List[Any] = {} SCREAMING_SNAKE_CASE:Optional[int] = HTTPError SCREAMING_SNAKE_CASE:int = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase_ ) as mock_head: SCREAMING_SNAKE_CASE:Any = cached_file(UpperCamelCase_ ,"conf" ,_raise_exceptions_for_connection_errors=UpperCamelCase_ ) self.assertIsNone(UpperCamelCase_ ) # This check we did call the fake head request mock_head.assert_called() def __UpperCamelCase ( self : Dict ): self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" ,UpperCamelCase_ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" ,UpperCamelCase_ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" ,UpperCamelCase_ ) ) def __UpperCamelCase ( self : str ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo("bert-base-cased" ,"ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(UpperCamelCase_ ,"is not a valid model identifier" ): get_file_from_repo("bert-base-case" ,UpperCamelCase_ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(UpperCamelCase_ ,"is not a valid git identifier" ): get_file_from_repo("bert-base-cased" ,UpperCamelCase_ ,revision="ahaha" ) SCREAMING_SNAKE_CASE:Dict = get_file_from_repo("bert-base-cased" ,UpperCamelCase_ ) # The name is the cached name which is not very easy to test, so instead we load the content. SCREAMING_SNAKE_CASE:Any = json.loads(open(UpperCamelCase_ ,"r" ).read() ) self.assertEqual(config["hidden_size"] ,768 ) def __UpperCamelCase ( self : str ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE:str = Path(UpperCamelCase_ ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(UpperCamelCase_ ,"a.txt" ) ,str(UpperCamelCase_ ) ) self.assertIsNone(get_file_from_repo(UpperCamelCase_ ,"b.txt" ) )
714
'''simple docstring''' # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers A_ = float("nan") class _snake_case : def __init__( self : Any ,SCREAMING_SNAKE_CASE__ : Optional[int] ): SCREAMING_SNAKE_CASE:Union[str, Any] = sys.stdout SCREAMING_SNAKE_CASE:List[Any] = open(SCREAMING_SNAKE_CASE__ ,"a" ) def __getattr__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any] ): return getattr(self.stdout ,SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : str ): self.stdout.write(SCREAMING_SNAKE_CASE__ ) # strip tqdm codes self.file.write(re.sub(R"^.*\r" ,"" ,SCREAMING_SNAKE_CASE__ ,0 ,re.M ) ) def A_ ( snake_case=80 , snake_case=False ): SCREAMING_SNAKE_CASE:Tuple = [] # deal with critical env vars SCREAMING_SNAKE_CASE:Optional[int] = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: SCREAMING_SNAKE_CASE:Any = os.environ.get(snake_case , snake_case ) if val is not None: cmd.append(F'''{key}={val}''' ) # python executable (not always needed if the script is executable) SCREAMING_SNAKE_CASE:Optional[int] = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(snake_case ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes SCREAMING_SNAKE_CASE:str = [] SCREAMING_SNAKE_CASE:str = "" while len(snake_case ) > 0: current_line += F'''{cmd.pop(0 )} ''' if len(snake_case ) == 0 or len(snake_case ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(snake_case ) SCREAMING_SNAKE_CASE:Tuple = "" return "\\\n".join(snake_case ) def A_ ( snake_case , snake_case ): # unwrap multi-line input SCREAMING_SNAKE_CASE:List[Any] = re.sub(r"[\\\n]+" , " " , args.base_cmd ) # remove --output_dir if any and set our own SCREAMING_SNAKE_CASE:int = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd ) args.base_cmd += F''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir SCREAMING_SNAKE_CASE:Union[str, Any] = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def A_ ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) SCREAMING_SNAKE_CASE:Union[str, Any] = subprocess.run(snake_case , capture_output=snake_case , text=snake_case ) if verbose: print("STDOUT" , result.stdout ) print("STDERR" , result.stderr ) # save the streams SCREAMING_SNAKE_CASE:Optional[Any] = variation.replace(" " , "-" ) with open(Path(snake_case ) / F'''log.{prefix}.stdout.txt''' , "w" ) as f: f.write(result.stdout ) with open(Path(snake_case ) / F'''log.{prefix}.stderr.txt''' , "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(F'''{output_dir}/all_results.json''' , "r" , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE:List[str] = json.load(snake_case ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def A_ ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): SCREAMING_SNAKE_CASE:str = [] SCREAMING_SNAKE_CASE:List[str] = [] SCREAMING_SNAKE_CASE:Any = F'''{id}: {variation:<{longest_variation_len}}''' SCREAMING_SNAKE_CASE:Tuple = F'''{preamble}: ''' SCREAMING_SNAKE_CASE:Any = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(snake_case ) , desc=snake_case , leave=snake_case ): SCREAMING_SNAKE_CASE:Dict = process_run_single( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) SCREAMING_SNAKE_CASE:Tuple = single_run_metrics[target_metric_key] if not math.isnan(snake_case ): metrics.append(snake_case ) results.append(snake_case ) outcome += "✓" else: outcome += "✘" SCREAMING_SNAKE_CASE:Union[str, Any] = F'''\33[2K\r{outcome}''' if len(snake_case ) > 0: SCREAMING_SNAKE_CASE:Dict = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} SCREAMING_SNAKE_CASE:Union[str, Any] = round(mean_metrics[target_metric_key] , 2 ) SCREAMING_SNAKE_CASE:int = F'''{outcome} {mean_target}''' if len(snake_case ) > 1: results_str += F''' {tuple(round(snake_case , 2 ) for x in results )}''' print(snake_case ) SCREAMING_SNAKE_CASE:List[str] = variation return mean_metrics else: print(snake_case ) return {variation_key: variation, target_metric_key: nan} def A_ ( ): SCREAMING_SNAKE_CASE:int = torch.cuda.get_device_properties(torch.device("cuda" ) ) return F''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def A_ ( snake_case , snake_case , snake_case , snake_case , snake_case ): SCREAMING_SNAKE_CASE:Optional[Any] = pd.DataFrame(snake_case ) SCREAMING_SNAKE_CASE:str = "variation" SCREAMING_SNAKE_CASE:str = "diff_%" SCREAMING_SNAKE_CASE:Union[str, Any] = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan SCREAMING_SNAKE_CASE:Any = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(snake_case ): # as a fallback, use the minimal value as the sentinel SCREAMING_SNAKE_CASE:Any = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(snake_case ): SCREAMING_SNAKE_CASE:Tuple = df.apply( lambda snake_case : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="columns" , ) # re-order columns SCREAMING_SNAKE_CASE:Tuple = [variation_key, target_metric_key, diff_key, *report_metric_keys] SCREAMING_SNAKE_CASE:Union[str, Any] = df.reindex(snake_case , axis="columns" ) # reorder cols # capitalize SCREAMING_SNAKE_CASE:str = df.rename(str.capitalize , axis="columns" ) # make the cols as narrow as possible SCREAMING_SNAKE_CASE:int = df.rename(lambda snake_case : c.replace("_" , "<br>" ) , axis="columns" ) SCREAMING_SNAKE_CASE:Dict = df.rename(lambda snake_case : c.replace("_" , "\n" ) , axis="columns" ) SCREAMING_SNAKE_CASE:List[Any] = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=snake_case , floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=snake_case , floatfmt=".2f" )] print("\n\n".join(snake_case ) ) def A_ ( ): SCREAMING_SNAKE_CASE:Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "--base-cmd" , default=snake_case , type=snake_case , required=snake_case , help="Base cmd" , ) parser.add_argument( "--variations" , default=snake_case , type=snake_case , nargs="+" , required=snake_case , help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'" , ) parser.add_argument( "--base-variation" , default=snake_case , type=snake_case , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , ) parser.add_argument( "--target-metric-key" , default=snake_case , type=snake_case , required=snake_case , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , ) parser.add_argument( "--report-metric-keys" , default="" , type=snake_case , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples" , ) parser.add_argument( "--repeat-times" , default=1 , type=snake_case , help="How many times to re-run each variation - an average will be reported" , ) parser.add_argument( "--output_dir" , default="output_benchmark" , type=snake_case , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , ) parser.add_argument( "--verbose" , default=snake_case , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , ) SCREAMING_SNAKE_CASE:int = parser.parse_args() SCREAMING_SNAKE_CASE:int = args.output_dir Path(snake_case ).mkdir(exist_ok=snake_case ) SCREAMING_SNAKE_CASE:Optional[int] = get_base_command(snake_case , snake_case ) # split each dimension into its --foo variations SCREAMING_SNAKE_CASE:Union[str, Any] = [list(map(str.strip , re.split(r"\|" , snake_case ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty SCREAMING_SNAKE_CASE:str = list(map(str.strip , map(" ".join , itertools.product(*snake_case ) ) ) ) SCREAMING_SNAKE_CASE:Dict = max(len(snake_case ) for x in variations ) # split wanted keys SCREAMING_SNAKE_CASE:Any = args.report_metric_keys.split() # capture prints into a log file for convenience SCREAMING_SNAKE_CASE:Any = F'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(F'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(F'''and this script\'s output is also piped into {report_fn}''' ) SCREAMING_SNAKE_CASE:Any = Tee(snake_case ) print(F'''\n*** Running {len(snake_case )} benchmarks:''' ) print(F'''Base command: {" ".join(snake_case )}''' ) SCREAMING_SNAKE_CASE:str = "variation" SCREAMING_SNAKE_CASE:Tuple = [] for id, variation in enumerate(tqdm(snake_case , desc="Total completion: " , leave=snake_case ) ): SCREAMING_SNAKE_CASE:List[str] = base_cmd + variation.split() results.append( process_run( id + 1 , snake_case , snake_case , snake_case , snake_case , args.target_metric_key , snake_case , args.repeat_times , snake_case , args.verbose , ) ) process_results(snake_case , args.target_metric_key , snake_case , args.base_variation , snake_case ) if __name__ == "__main__": main()
465
0
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class A ( unittest.TestCase ): '''simple docstring''' @parameterized.expand([(None,), ("""foo.json""",)] ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = GenerationConfig( do_sample=_UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_UpperCAmelCase , config_name=_UpperCAmelCase ) lowercase__ = GenerationConfig.from_pretrained(_UpperCAmelCase , config_name=_UpperCAmelCase ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , _UpperCAmelCase ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , _UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" lowercase__ = AutoConfig.from_pretrained("""gpt2""" ) lowercase__ = GenerationConfig.from_model_config(_UpperCAmelCase ) lowercase__ = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = GenerationConfig() lowercase__ = { """max_new_tokens""": 1024, """foo""": """bar""", } lowercase__ = copy.deepcopy(_UpperCAmelCase ) lowercase__ = generation_config.update(**_UpperCAmelCase ) # update_kwargs was not modified (no side effects) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(_UpperCAmelCase , {"""foo""": """bar"""} ) def lowerCamelCase__ (self : str ) -> Optional[int]: """simple docstring""" lowercase__ = GenerationConfig() lowercase__ = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(_UpperCAmelCase ) lowercase__ = GenerationConfig.from_pretrained(_UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) lowercase__ = GenerationConfig.from_model_config(_UpperCAmelCase ) assert not hasattr(_UpperCAmelCase , """foo""" ) # no new kwargs should be initialized if from config def lowerCamelCase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , _UpperCAmelCase ) self.assertEqual(default_config.num_beams , 1 ) lowercase__ = GenerationConfig( do_sample=_UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , _UpperCAmelCase ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_UpperCAmelCase ) lowercase__ = GenerationConfig.from_pretrained(_UpperCAmelCase , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , _UpperCAmelCase ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class A ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCamelCase__ (cls : int ) -> Optional[Any]: """simple docstring""" lowercase__ = TOKEN HfFolder.save_token(_UpperCAmelCase ) @classmethod def lowerCamelCase__ (cls : Tuple ) -> List[Any]: """simple docstring""" try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def lowerCamelCase__ (self : Dict ) -> str: """simple docstring""" lowercase__ = GenerationConfig( do_sample=_UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) lowercase__ = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _UpperCAmelCase , repo_id="""test-generation-config""" , push_to_hub=_UpperCAmelCase , use_auth_token=self._token ) lowercase__ = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = GenerationConfig( do_sample=_UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) lowercase__ = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _UpperCAmelCase , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=_UpperCAmelCase , use_auth_token=self._token ) lowercase__ = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) )
15
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = 0 def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:str ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case__ = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop('''image_processor_type''' ) snake_case__ = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved snake_case__ = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): with self.assertRaisesRegex( _a , '''clip-base is not a local folder and is not a valid model identifier''' ): snake_case__ = AutoImageProcessor.from_pretrained('''clip-base''' ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): with self.assertRaisesRegex( _a , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): snake_case__ = AutoImageProcessor.from_pretrained(_a , revision='''aaaaaa''' ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): with self.assertRaisesRegex( _a , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a , _a ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = Path(_a ) / '''preprocessor_config.json''' snake_case__ = Path(_a ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_a , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_a , '''w''' ) ) snake_case__ = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) snake_case__ = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[str] = True try: AutoConfig.register('''custom''' , _a ) AutoImageProcessor.register(_a , _a ) # If remote code is not set, the default is to use local snake_case__ = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case__ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_a , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
33
0
'''simple docstring''' from __future__ import annotations def A__ ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float , ): if (stress, tangential_force, area).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif stress < 0: raise ValueError("""Stress cannot be negative""" ) elif tangential_force < 0: raise ValueError("""Tangential Force cannot be negative""" ) elif area < 0: raise ValueError("""Area cannot be negative""" ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
9
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME UpperCamelCase : Optional[Any] = ['small', 'medium', 'large'] UpperCamelCase : Dict = 'lm_head.decoder.weight' UpperCamelCase : int = 'lm_head.weight' def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ): lowerCamelCase__ = torch.load(__lowerCAmelCase ) lowerCamelCase__ = d.pop(__lowerCAmelCase ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) torch.save(__lowerCAmelCase , os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument('--dialogpt_path', default='.', type=str) UpperCamelCase : Dict = parser.parse_args() for MODEL in DIALOGPT_MODELS: UpperCamelCase : Any = os.path.join(args.dialogpt_path, F'{MODEL}_ft.pkl') UpperCamelCase : str = F'./DialoGPT-{MODEL}' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
9
1
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType UpperCamelCase : Optional[List[str]] = None UpperCamelCase : Tuple = """<""" if sys.byteorder == """little""" else """>""" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image UpperCamelCase : int = [ np.dtype("""|b1"""), np.dtype("""|u1"""), np.dtype("""<u2"""), np.dtype(""">u2"""), np.dtype("""<i2"""), np.dtype(""">i2"""), np.dtype("""<u4"""), np.dtype(""">u4"""), np.dtype("""<i4"""), np.dtype(""">i4"""), np.dtype("""<f4"""), np.dtype(""">f4"""), np.dtype("""<f8"""), np.dtype(""">f8"""), ] @dataclass class A__ : """simple docstring""" _lowercase = True _lowercase = None # Automatically constructed _lowercase = "PIL.Image.Image" _lowercase = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) _lowercase = field(default='Image' , init=A__ , repr=A__ ) def __call__( self : Optional[int] ): return self.pa_type def _UpperCamelCase( self : int , lowerCamelCase__ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): a__ : Union[str, Any] = np.array(lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): return {"path": value, "bytes": None} elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): return {"path": None, "bytes": value} elif isinstance(lowerCamelCase__ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(lowerCamelCase__ ) elif isinstance(lowerCamelCase__ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowerCamelCase__ ) elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def _UpperCamelCase( self : Any , lowerCamelCase__ : dict , lowerCamelCase__ : List[Any]=None ): if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead." ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support decoding images, please install 'Pillow'." ) if token_per_repo_id is None: a__ : List[Any] = {} a__, a__ : str = value["path"], value["bytes"] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(lowerCamelCase__ ): a__ : Optional[int] = PIL.Image.open(lowerCamelCase__ ) else: a__ : Any = path.split("::" )[-1] try: a__ : Tuple = string_to_dict(lowerCamelCase__ , config.HUB_DATASETS_URL )["repo_id"] a__ : int = token_per_repo_id.get(lowerCamelCase__ ) except ValueError: a__ : List[Any] = None with xopen(lowerCamelCase__ , "rb" , use_auth_token=lowerCamelCase__ ) as f: a__ : Tuple = BytesIO(f.read() ) a__ : Tuple = PIL.Image.open(bytes_ ) else: a__ : int = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def _UpperCamelCase( self : Dict ): from .features import Value return ( self if self.decode else { "bytes": Value("binary" ), "path": Value("string" ), } ) def _UpperCamelCase( self : Dict , lowerCamelCase__ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): if pa.types.is_string(storage.type ): a__ : Dict = pa.array([None] * len(lowerCamelCase__ ) , type=pa.binary() ) a__ : List[str] = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): a__ : str = pa.array([None] * len(lowerCamelCase__ ) , type=pa.string() ) a__ : Tuple = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: a__ : Any = storage.field("bytes" ) else: a__ : List[str] = pa.array([None] * len(lowerCamelCase__ ) , type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: a__ : Tuple = storage.field("path" ) else: a__ : List[Any] = pa.array([None] * len(lowerCamelCase__ ) , type=pa.string() ) a__ : Optional[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): a__ : Tuple = pa.array( [encode_np_array(np.array(lowerCamelCase__ ) )["bytes"] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) a__ : Tuple = pa.array([None] * len(lowerCamelCase__ ) , type=pa.string() ) a__ : Union[str, Any] = pa.StructArray.from_arrays( [bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(lowerCamelCase__ , self.pa_type ) def _UpperCamelCase( self : List[str] , lowerCamelCase__ : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(lowerCamelCase__ : Any ): with xopen(lowerCamelCase__ , "rb" ) as f: a__ : int = f.read() return bytes_ a__ : int = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) a__ : Union[str, Any] = pa.array( [os.path.basename(lowerCamelCase__ ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , ) a__ : Optional[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(lowerCamelCase__ , self.pa_type ) def UpperCamelCase_ ( ) -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() a__ : Union[str, Any] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def UpperCamelCase_ ( __a ) -> bytes: a__ : Optional[Any] = BytesIO() if image.format in list_image_compression_formats(): a__ : List[Any] = image.format else: a__ : Union[str, Any] = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF" image.save(__a , format=__a ) return buffer.getvalue() def UpperCamelCase_ ( __a ) -> dict: if hasattr(__a , "filename" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(__a )} def UpperCamelCase_ ( __a ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) a__ : List[Any] = array.dtype a__ : Tuple = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER a__ : Optional[int] = dtype.kind a__ : Any = dtype.itemsize a__ : int = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: a__ : Optional[Any] = np.dtype("|u1" ) if dtype_kind not in ["u", "i"]: raise TypeError( f'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: a__ : Optional[int] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: a__ : Optional[Any] = dtype_byteorder + dtype_kind + str(__a ) a__ : int = np.dtype(__a ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) a__ : Tuple = PIL.Image.fromarray(array.astype(__a ) ) return {"path": None, "bytes": image_to_bytes(__a )} def UpperCamelCase_ ( __a ) -> List[dict]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if objs: a__, a__ : Any = first_non_null_value(__a ) if isinstance(__a , __a ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(__a , np.ndarray ): a__ : Optional[Any] = no_op_if_value_is_null(__a ) return [obj_to_image_dict_func(__a ) for obj in objs] elif isinstance(__a , PIL.Image.Image ): a__ : Optional[int] = no_op_if_value_is_null(__a ) return [obj_to_image_dict_func(__a ) for obj in objs] else: return objs else: return objs
37
'''simple docstring''' import math import sys def snake_case_ ( __snake_case : str) -> str: lowerCAmelCase_ = '''''' try: with open(__snake_case , '''rb''') as binary_file: lowerCAmelCase_ = binary_file.read() for dat in data: lowerCAmelCase_ = F'''{dat:08b}''' result += curr_byte return result except OSError: print('''File not accessible''') sys.exit() def snake_case_ ( __snake_case : str) -> str: lowerCAmelCase_ = {'''0''': '''0''', '''1''': '''1'''} lowerCAmelCase_ ,lowerCAmelCase_ = '''''', '''''' lowerCAmelCase_ = len(__snake_case) for i in range(len(__snake_case)): curr_string += data_bits[i] if curr_string not in lexicon: continue lowerCAmelCase_ = lexicon[curr_string] result += last_match_id lowerCAmelCase_ = last_match_id + '''0''' if math.loga(__snake_case).is_integer(): lowerCAmelCase_ = {} for curr_key in list(__snake_case): lowerCAmelCase_ = lexicon.pop(__snake_case) lowerCAmelCase_ = new_lex lowerCAmelCase_ = last_match_id + '''1''' index += 1 lowerCAmelCase_ = '''''' return result def snake_case_ ( __snake_case : str , __snake_case : str) -> None: lowerCAmelCase_ = 8 try: with open(__snake_case , '''wb''') as opened_file: lowerCAmelCase_ = [ to_write[i : i + byte_length] for i in range(0 , len(__snake_case) , __snake_case) ] if len(result_byte_array[-1]) % byte_length == 0: result_byte_array.append('''10000000''') else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1]) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(__snake_case , 2).to_bytes(1 , byteorder='''big''')) except OSError: print('''File not accessible''') sys.exit() def snake_case_ ( __snake_case : str) -> str: lowerCAmelCase_ = 0 for letter in data_bits: if letter == "1": break counter += 1 lowerCAmelCase_ = data_bits[counter:] lowerCAmelCase_ = data_bits[counter + 1 :] return data_bits def snake_case_ ( __snake_case : str , __snake_case : str) -> None: lowerCAmelCase_ = read_file_binary(__snake_case) lowerCAmelCase_ = remove_prefix(__snake_case) lowerCAmelCase_ = decompress_data(__snake_case) write_file_binary(__snake_case , __snake_case) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
274
0
'''simple docstring''' from __future__ import annotations import math def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _A : Optional[int] =[num for num in range(3, 100_001, 2) if not is_prime(num)] def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> list[int]: if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) lowerCamelCase__ : int = [] for num in range(len(lowerCamelCase__ ) ): lowerCamelCase__ : List[Any] = 0 while 2 * i * i <= odd_composites[num]: lowerCamelCase__ : Tuple = odd_composites[num] - 2 * i * i if is_prime(lowerCamelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowerCamelCase__ ) == n: return list_nums return [] def SCREAMING_SNAKE_CASE_ () -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(F'{solution() = }')
710
'''simple docstring''' import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _lowercase ( _lowercase ): def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Dict = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCamelCase__ , """width_multiplier""" ) ) class _lowercase : def __init__( self: str , UpperCamelCase__: Optional[int] , UpperCamelCase__: str=13 , UpperCamelCase__: Any=64 , UpperCamelCase__: Optional[Any]=2 , UpperCamelCase__: str=3 , UpperCamelCase__: List[str]="swish" , UpperCamelCase__: Any=3 , UpperCamelCase__: Optional[int]=32 , UpperCamelCase__: Union[str, Any]=0.1 , UpperCamelCase__: int=0.02 , UpperCamelCase__: Dict=True , UpperCamelCase__: Dict=True , UpperCamelCase__: Any=10 , UpperCamelCase__: int=None , UpperCamelCase__: List[Any]=0.25 , UpperCamelCase__: str=0.0 , UpperCamelCase__: Optional[int]=0.0 , ): lowerCamelCase__ : Any = parent lowerCamelCase__ : Optional[Any] = batch_size lowerCamelCase__ : Optional[int] = image_size lowerCamelCase__ : str = patch_size lowerCamelCase__ : Optional[int] = num_channels lowerCamelCase__ : Optional[Any] = make_divisible(512 * width_multiplier , divisor=8 ) lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : Any = conv_kernel_size lowerCamelCase__ : Any = output_stride lowerCamelCase__ : Union[str, Any] = classifier_dropout_prob lowerCamelCase__ : List[str] = use_labels lowerCamelCase__ : Optional[Any] = is_training lowerCamelCase__ : List[str] = num_labels lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : List[Any] = scope lowerCamelCase__ : Tuple = width_multiplier lowerCamelCase__ : List[Any] = ffn_dropout lowerCamelCase__ : Any = attn_dropout def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = None lowerCamelCase__ : Optional[Any] = None if self.use_labels: lowerCamelCase__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase__ : str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCamelCase__ : Union[str, Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCamelCase_ ( self: List[Any] ): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: Optional[Any] , UpperCamelCase__: int , UpperCamelCase__: Tuple , UpperCamelCase__: Optional[int] ): lowerCamelCase__ : Union[str, Any] = MobileViTVaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : str = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Tuple ): lowerCamelCase__ : Tuple = self.num_labels lowerCamelCase__ : Dict = MobileViTVaForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : int = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Any , UpperCamelCase__: Optional[Any] , UpperCamelCase__: str ): lowerCamelCase__ : List[str] = self.num_labels lowerCamelCase__ : Union[str, Any] = MobileViTVaForSemanticSegmentation(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : Tuple = model(UpperCamelCase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowerCamelCase__ : List[Any] = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Any = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = config_and_inputs lowerCamelCase__ : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowercase ( _lowercase , _lowercase , unittest.TestCase ): a = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) a = ( { """feature-extraction""": MobileViTVaModel, """image-classification""": MobileViTVaForImageClassification, """image-segmentation""": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) a = False a = False a = False a = False def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : Tuple = MobileViTVaModelTester(self ) lowerCamelCase__ : List[str] = MobileViTVaConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ ) def lowerCamelCase_ ( self: Tuple ): self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" ) def lowerCamelCase_ ( self: int ): pass @unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" ) def lowerCamelCase_ ( self: List[str] ): pass @unittest.skip(reason="""MobileViTV2 does not output attentions""" ) def lowerCamelCase_ ( self: Union[str, Any] ): pass @require_torch_multi_gpu @unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" ) def lowerCamelCase_ ( self: int ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase_ ( self: Tuple ): pass def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Union[str, Any] = model_class(UpperCamelCase__ ) lowerCamelCase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : Tuple = [*signature.parameters.keys()] lowerCamelCase__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def lowerCamelCase_ ( self: str ): lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCamelCase_ ( self: List[str] ): def check_hidden_states_output(UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[str] , UpperCamelCase__: Optional[Any] ): lowerCamelCase__ : List[Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowerCamelCase__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) lowerCamelCase__ : Optional[int] = outputs.hidden_states lowerCamelCase__ : List[Any] = 5 self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowerCamelCase__ : int = 2 for i in range(len(UpperCamelCase__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) lowerCamelCase__ , lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : int = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : str = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCamelCase__ ) @slow def lowerCamelCase_ ( self: Union[str, Any] ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Union[str, Any] = MobileViTVaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ () -> Optional[int]: lowerCamelCase__ : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self: Tuple ): return ( MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Optional[Any] = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to( UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = self.default_image_processor lowerCamelCase__ : List[Any] = prepare_img() lowerCamelCase__ : Any = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCamelCase__ : int = model(**UpperCamelCase__ ) # verify the logits lowerCamelCase__ : str = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : int = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) lowerCamelCase__ : Optional[Any] = model.to(UpperCamelCase__ ) lowerCamelCase__ : Any = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Dict = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(**UpperCamelCase__ ) lowerCamelCase__ : str = outputs.logits # verify the logits lowerCamelCase__ : List[str] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , UpperCamelCase__ ) lowerCamelCase__ : Any = torch.tensor( [ [[7.0_863, 7.1_525, 6.8_201], [6.6_931, 6.8_770, 6.8_933], [6.2_978, 7.0_366, 6.9_636]], [[-3.7_134, -3.6_712, -3.6_675], [-3.5_825, -3.3_549, -3.4_777], [-3.3_435, -3.3_979, -3.2_857]], [[-2.9_329, -2.8_003, -2.7_369], [-3.0_564, -2.4_780, -2.0_207], [-2.6_889, -1.9_298, -1.7_640]], ] , device=UpperCamelCase__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : Optional[Any] = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) lowerCamelCase__ : List[Any] = model.to(UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) lowerCamelCase__ : Optional[Any] = prepare_img() lowerCamelCase__ : Dict = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCamelCase__ : Dict = model(**UpperCamelCase__ ) lowerCamelCase__ : List[str] = outputs.logits.detach().cpu() lowerCamelCase__ : List[Any] = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase__ , target_sizes=[(50, 60)] ) lowerCamelCase__ : int = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase__ ) lowerCamelCase__ : int = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , UpperCamelCase__ )
631
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = ["""image_processor""", """tokenizer"""] a_ = """ViltImageProcessor""" a_ = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : List[str] ,_a : List[str]=None ,_a : Optional[int]=None ,**_a : List[str] ): '''simple docstring''' A_ : Dict = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" ,_a ,) A_ : List[Any] = kwargs.pop("""feature_extractor""" ) A_ : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(_a ,_a ) A_ : Dict = self.image_processor def __call__( self : Tuple ,_a : List[str] ,_a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,_a : bool = True ,_a : Union[bool, str, PaddingStrategy] = False ,_a : Union[bool, str, TruncationStrategy] = None ,_a : Optional[int] = None ,_a : int = 0 ,_a : Optional[int] = None ,_a : Optional[bool] = None ,_a : Optional[bool] = None ,_a : bool = False ,_a : bool = False ,_a : bool = False ,_a : bool = False ,_a : bool = True ,_a : Optional[Union[str, TensorType]] = None ,**_a : List[Any] ,): '''simple docstring''' A_ : Tuple = self.tokenizer( text=_a ,add_special_tokens=_a ,padding=_a ,truncation=_a ,max_length=_a ,stride=_a ,pad_to_multiple_of=_a ,return_token_type_ids=_a ,return_attention_mask=_a ,return_overflowing_tokens=_a ,return_special_tokens_mask=_a ,return_offsets_mapping=_a ,return_length=_a ,verbose=_a ,return_tensors=_a ,**_a ,) # add pixel_values + pixel_mask A_ : List[Any] = self.image_processor(_a ,return_tensors=_a ) encoding.update(_a ) return encoding def _a ( self : int ,*_a : Any ,**_a : Any ): '''simple docstring''' return self.tokenizer.batch_decode(*_a ,**_a ) def _a ( self : str ,*_a : Union[str, Any] ,**_a : List[str] ): '''simple docstring''' return self.tokenizer.decode(*_a ,**_a ) @property def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : Dict = self.tokenizer.model_input_names A_ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _a ( self : Union[str, Any] ): '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" ,_a ,) return self.image_processor_class @property def _a ( self : Optional[Any] ): '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" ,_a ,) return self.image_processor
665
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class __lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] ,_a : List[Any] ,_a : Dict=13 ,_a : List[str]=7 ,_a : Dict=True ,_a : List[Any]=True ,_a : Dict=False ,_a : Optional[int]=True ,_a : List[Any]=99 ,_a : Any=32 ,_a : Optional[int]=5 ,_a : List[Any]=4 ,_a : int=37 ,_a : List[Any]="gelu" ,_a : List[str]=0.1 ,_a : Union[str, Any]=0.1 ,_a : Any=512 ,_a : int=16 ,_a : Optional[int]=2 ,_a : Any=0.02 ,_a : Any=3 ,_a : Any=4 ,_a : List[str]=None ,): '''simple docstring''' A_ : List[str] = parent A_ : Any = batch_size A_ : Tuple = seq_length A_ : List[str] = is_training A_ : Tuple = use_input_mask A_ : Dict = use_token_type_ids A_ : List[Any] = use_labels A_ : Union[str, Any] = vocab_size A_ : Any = hidden_size A_ : str = num_hidden_layers A_ : Optional[Any] = num_attention_heads A_ : str = intermediate_size A_ : Tuple = hidden_act A_ : Any = hidden_dropout_prob A_ : Any = attention_probs_dropout_prob A_ : List[str] = max_position_embeddings A_ : int = type_vocab_size A_ : Union[str, Any] = type_sequence_label_size A_ : Any = initializer_range A_ : List[Any] = num_labels A_ : Optional[Any] = num_choices A_ : List[Any] = scope def _a ( self : Optional[int] ): '''simple docstring''' A_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A_ : int = None if self.use_input_mask: A_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) A_ : Dict = None if self.use_token_type_ids: A_ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) A_ : str = None A_ : Any = None A_ : str = None if self.use_labels: A_ : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A_ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A_ : Optional[int] = ids_tensor([self.batch_size] ,self.num_choices ) A_ : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self : Optional[Any] ): '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_a ,initializer_range=self.initializer_range ,) def _a ( self : Union[str, Any] ,_a : Optional[Any] ,_a : Optional[Any] ,_a : Any ,_a : Any ,_a : Optional[Any] ,_a : Optional[Any] ,_a : Tuple ): '''simple docstring''' A_ : Any = LlamaModel(config=_a ) model.to(_a ) model.eval() A_ : Optional[Any] = model(_a ,attention_mask=_a ) A_ : Optional[int] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Optional[int] ,_a : int ,_a : List[str] ,_a : Any ,_a : Any ,_a : Dict ,_a : List[str] ,_a : Optional[int] ,_a : Any ,_a : List[str] ,): '''simple docstring''' A_ : List[str] = True A_ : Union[str, Any] = LlamaModel(_a ) model.to(_a ) model.eval() A_ : Tuple = model( _a ,attention_mask=_a ,encoder_hidden_states=_a ,encoder_attention_mask=_a ,) A_ : List[Any] = model( _a ,attention_mask=_a ,encoder_hidden_states=_a ,) A_ : int = model(_a ,attention_mask=_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Any ,_a : Any ,_a : Optional[int] ,_a : List[Any] ,_a : List[Any] ,_a : Dict ,_a : Tuple ,_a : Optional[int] ,_a : List[Any] ,_a : Union[str, Any] ,): '''simple docstring''' A_ : List[Any] = LlamaForCausalLM(config=_a ) model.to(_a ) model.eval() A_ : Dict = model(_a ,attention_mask=_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : str ,_a : List[Any] ,_a : Dict ,_a : str ,_a : Tuple ,_a : Tuple ,_a : Tuple ,_a : Optional[Any] ,_a : Dict ,_a : Union[str, Any] ,): '''simple docstring''' A_ : Optional[Any] = True A_ : Any = True A_ : Tuple = LlamaForCausalLM(config=_a ) model.to(_a ) model.eval() # first forward pass A_ : Optional[int] = model( _a ,attention_mask=_a ,encoder_hidden_states=_a ,encoder_attention_mask=_a ,use_cache=_a ,) A_ : Tuple = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A_ : int = ids_tensor((self.batch_size, 3) ,config.vocab_size ) A_ : List[Any] = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and A_ : Tuple = torch.cat([input_ids, next_tokens] ,dim=-1 ) A_ : int = torch.cat([input_mask, next_mask] ,dim=-1 ) A_ : List[str] = model( _a ,attention_mask=_a ,encoder_hidden_states=_a ,encoder_attention_mask=_a ,output_hidden_states=_a ,)["""hidden_states"""][0] A_ : Any = model( _a ,attention_mask=_a ,encoder_hidden_states=_a ,encoder_attention_mask=_a ,past_key_values=_a ,output_hidden_states=_a ,)["""hidden_states"""][0] # select random slice A_ : List[str] = ids_tensor((1,) ,output_from_past.shape[-1] ).item() A_ : str = output_from_no_past[:, -3:, random_slice_idx].detach() A_ : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_a ,_a ,atol=1e-3 ) ) def _a ( self : Optional[Any] ): '''simple docstring''' A_ : int = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : Any = config_and_inputs A_ : int = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a_ = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () a_ = (LlamaForCausalLM,) if is_torch_available() else () a_ = ( { """feature-extraction""": LlamaModel, """text-classification""": LlamaForSequenceClassification, """text-generation""": LlamaForCausalLM, """zero-shot""": LlamaForSequenceClassification, } if is_torch_available() else {} ) a_ = False a_ = False def _a ( self : List[Any] ): '''simple docstring''' A_ : Union[str, Any] = LlamaModelTester(self ) A_ : List[str] = ConfigTester(self ,config_class=_a ,hidden_size=37 ) def _a ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def _a ( self : Optional[Any] ): '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def _a ( self : Optional[Any] ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A_ : Dict = type self.model_tester.create_and_check_model(*_a ) def _a ( self : List[Any] ): '''simple docstring''' A_ , A_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() A_ : List[str] = 3 A_ : Any = input_dict["""input_ids"""] A_ : Union[str, Any] = input_ids.ne(1 ).to(_a ) A_ : Union[str, Any] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) A_ : List[Any] = LlamaForSequenceClassification(_a ) model.to(_a ) model.eval() A_ : int = model(_a ,attention_mask=_a ,labels=_a ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def _a ( self : Dict ): '''simple docstring''' A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() A_ : str = 3 A_ : Union[str, Any] = """single_label_classification""" A_ : Union[str, Any] = input_dict["""input_ids"""] A_ : List[Any] = input_ids.ne(1 ).to(_a ) A_ : Dict = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) A_ : List[Any] = LlamaForSequenceClassification(_a ) model.to(_a ) model.eval() A_ : List[str] = model(_a ,attention_mask=_a ,labels=_a ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def _a ( self : Optional[Any] ): '''simple docstring''' A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Dict = 3 A_ : Dict = """multi_label_classification""" A_ : Any = input_dict["""input_ids"""] A_ : Optional[Any] = input_ids.ne(1 ).to(_a ) A_ : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) A_ : Optional[int] = LlamaForSequenceClassification(_a ) model.to(_a ) model.eval() A_ : Any = model(_a ,attention_mask=_a ,labels=_a ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def _a ( self : Any ): '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _a ( self : Optional[Any] ,_a : List[Any] ): '''simple docstring''' A_ , A_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Tuple = ids_tensor([1, 10] ,config.vocab_size ) A_ : Union[str, Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A_ : int = LlamaModel(_a ) original_model.to(_a ) original_model.eval() A_ : Tuple = original_model(_a ).last_hidden_state A_ : Union[str, Any] = original_model(_a ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A_ : Tuple = {"""type""": scaling_type, """factor""": 10.0} A_ : int = LlamaModel(_a ) scaled_model.to(_a ) scaled_model.eval() A_ : List[Any] = scaled_model(_a ).last_hidden_state A_ : Any = scaled_model(_a ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_a ,_a ,atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_a ,_a ,atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_a ,_a ,atol=1e-5 ) ) @require_torch class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def _a ( self : Tuple ): '''simple docstring''' A_ : Any = [1, 306, 4658, 278, 6593, 310, 2834, 338] A_ : List[str] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" ,device_map="""auto""" ) A_ : str = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 A_ : Union[str, Any] = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) ,_a ,atol=1e-2 ,rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off A_ : str = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,_a ,atol=1e-5 ,rtol=1e-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def _a ( self : str ): '''simple docstring''' A_ : Dict = [1, 306, 4658, 278, 6593, 310, 2834, 338] A_ : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" ,device_map="""auto""" ) A_ : Tuple = model(torch.tensor(_a ) ) # Expected mean on dim = -1 A_ : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) ,_a ,atol=1e-2 ,rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off A_ : str = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,_a ,atol=1e-5 ,rtol=1e-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def _a ( self : Union[str, Any] ): '''simple docstring''' A_ : Union[str, Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] A_ : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ,device_map="""auto""" ) A_ : int = model(torch.tensor(_a ) ) # Expected mean on dim = -1 A_ : Union[str, Any] = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) ,_a ,atol=1e-2 ,rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off A_ : Optional[int] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) ,_a ,atol=1e-2 ,rtol=1e-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def _a ( self : Optional[Any] ): '''simple docstring''' A_ : Optional[int] = [1, 306, 4658, 278, 6593, 310, 2834, 338] A_ : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" ,device_map="""auto""" ) A_ : Tuple = model(torch.tensor(_a ) ) A_ : Dict = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] ,dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) ,_a ,atol=1e-2 ,rtol=1e-2 ) # fmt: off A_ : List[str] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,_a ,atol=1e-5 ,rtol=1e-5 ) @unittest.skip("""Model is curently gated""" ) @slow def _a ( self : Tuple ): '''simple docstring''' A_ : Union[str, Any] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" A_ : List[str] = """Simply put, the theory of relativity states that """ A_ : Any = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) A_ : Union[str, Any] = tokenizer.encode(_a ,return_tensors="""pt""" ) A_ : List[str] = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" ,device_map="""sequential""" ,use_safetensors=_a ) # greedy generation outputs A_ : str = model.generate(_a ,max_new_tokens=64 ,top_p=_a ,temperature=1 ,do_sample=_a ) A_ : Optional[Any] = tokenizer.decode(generated_ids[0] ,skip_special_tokens=_a ) self.assertEqual(_a ,_a )
665
1
'''simple docstring''' import torch from diffusers import DiffusionPipeline class _lowerCAmelCase ( __UpperCAmelCase ): def __init__(self , lowercase , lowercase ): super().__init__() self.register_modules(unet=lowercase , scheduler=lowercase ) def __call__(self ): A_ : str = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) A_ : Optional[Any] = 1 A_ : Tuple = self.unet(lowercase , lowercase ).sample A_ : Optional[int] = self.scheduler.step(lowercase , lowercase , lowercase ).prev_sample A_ : Any = scheduler_output - scheduler_output + torch.ones_like(lowercase ) return result
686
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split lowerCamelCase :int = datasets.load_iris() lowerCamelCase :str = np.array(data['''data''']) lowerCamelCase :Dict = np.array(data['''target''']) lowerCamelCase :Union[str, Any] = data['''target_names'''] lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase :str = train_test_split(X, y) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' return np.linalg.norm(np.array(lowerCamelCase__ ) - np.array(lowerCamelCase__ ) ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=5 ): '''simple docstring''' A_ : List[str] = zip(lowerCamelCase__ , lowerCamelCase__ ) # List of distances of all points from the point to be classified A_ : List[str] = [] for data_point in data: A_ : Any = euclidean_distance(data_point[0] , lowerCamelCase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. A_ : Optional[Any] = [i[1] for i in sorted(lowerCamelCase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified A_ : Tuple = Counter(lowerCamelCase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
686
1
'''simple docstring''' from importlib import import_module from .logging import get_logger lowerCamelCase :int = get_logger(__name__) class _lowerCAmelCase : def __init__(self , lowercase , lowercase=None ): A_ : Tuple = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("""__""" ): setattr(self , snake_case__ , getattr(snake_case__ , snake_case__ ) ) A_ : Union[str, Any] = module._original_module if isinstance(snake_case__ , _PatchedModuleObj ) else module class _lowerCAmelCase : __SCREAMING_SNAKE_CASE : List[str] = [] def __init__(self , lowercase , lowercase , lowercase , lowercase=None ): A_ : Optional[Any] = obj A_ : int = target A_ : Dict = new A_ : Union[str, Any] = target.split(""".""" )[0] A_ : Any = {} A_ : List[str] = attrs or [] def __enter__(self ): *A_, A_ : List[Any] = self.target.split(""".""" ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(snake_case__ ) ): try: A_ : Union[str, Any] = import_module(""".""".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): A_ : Dict = getattr(self.obj , snake_case__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(snake_case__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): A_ : List[Any] = obj_attr # patch at top level setattr(self.obj , snake_case__ , _PatchedModuleObj(snake_case__ , attrs=self.attrs ) ) A_ : Optional[Any] = getattr(self.obj , snake_case__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(snake_case__ , snake_case__ , _PatchedModuleObj(getattr(snake_case__ , snake_case__ , snake_case__ ) , attrs=self.attrs ) ) A_ : List[Any] = getattr(snake_case__ , snake_case__ ) # finally set the target attribute setattr(snake_case__ , snake_case__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: A_ : List[str] = getattr(import_module(""".""".join(snake_case__ ) ) , snake_case__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , snake_case__ ) is attr_value: A_ : Dict = getattr(self.obj , snake_case__ ) setattr(self.obj , snake_case__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" A_ : int = globals()["""__builtins__"""][target_attr] setattr(self.obj , snake_case__ , self.new ) else: raise RuntimeError(F'Tried to patch attribute {target_attr} instead of a submodule.' ) def __exit__(self , *lowercase ): for attr in list(self.original ): setattr(self.obj , snake_case__ , self.original.pop(snake_case__ ) ) def _a (self ): self.__enter__() self._active_patches.append(self ) def _a (self ): try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
667
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand a_ : int = ( "4S 3H 2C 7S 5H", "9D 8H 2C 6S 7H", "2D 6D 9D TH 7D", "TC 8C 2S JH 6C", "JH 8S TH AH QH", "TS KS 5S 9S AC", "KD 6S 9D TH AD", "KS 8D 4D 9S 4S", # pair "8C 4S KH JS 4D", # pair "QH 8H KD JH 8S", # pair "KC 4H KS 2H 8D", # pair "KD 4S KC 3H 8S", # pair "AH 8S AS KC JH", # pair "3H 4C 4H 3S 2H", # 2 pairs "5S 5D 2C KH KH", # 2 pairs "3C KH 5D 5S KH", # 2 pairs "AS 3C KH AD KH", # 2 pairs "7C 7S 3S 7H 5S", # 3 of a kind "7C 7S KH 2H 7H", # 3 of a kind "AC KH QH AH AS", # 3 of a kind "2H 4D 3C AS 5S", # straight (low ace) "3C 5C 4C 2C 6H", # straight "6S 8S 7S 5H 9H", # straight "JS QS 9H TS KH", # straight "QC KH TS JS AH", # straight (high ace) "8C 9C 5C 3C TC", # flush "3S 8S 9S 5S KS", # flush "4C 5C 9C 8C KC", # flush "JH 8H AH KH QH", # flush "3D 2H 3H 2C 2D", # full house "2H 2C 3S 3H 3D", # full house "KH KC 3S 3H 3D", # full house "JC 6H JS JD JH", # 4 of a kind "JC 7H JS JD JH", # 4 of a kind "JC KH JS JD JH", # 4 of a kind "2S AS 4S 5S 3S", # straight flush (low ace) "2D 6D 3D 4D 5D", # straight flush "5C 6C 3C 7C 4C", # straight flush "JH 9H TH KH QH", # straight flush "JH AH TH KH QH", # royal flush (high ace straight flush) ) a_ : int = ( ("2H 3H 4H 5H 6H", "KS AS TS QS JS", "Loss"), ("2H 3H 4H 5H 6H", "AS AD AC AH JD", "Win"), ("AS AH 2H AD AC", "JS JD JC JH 3D", "Win"), ("2S AH 2H AS AC", "JS JD JC JH AD", "Loss"), ("2S AH 2H AS AC", "2H 3H 5H 6H 7H", "Win"), ("AS 3S 4S 8S 2S", "2H 3H 5H 6H 7H", "Win"), ("2H 3H 5H 6H 7H", "2S 3H 4H 5S 6C", "Win"), ("2S 3H 4H 5S 6C", "3D 4C 5H 6H 2S", "Tie"), ("2S 3H 4H 5S 6C", "AH AC 5H 6H AS", "Win"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H AS", "Loss"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H 7S", "Win"), ("6S AD 7H 4S AS", "AH AC 5H 6H 7S", "Loss"), ("2S AH 4H 5S KC", "AH AC 5H 6H 7S", "Loss"), ("2S 3H 6H 7S 9C", "7H 3C TH 6H 9S", "Loss"), ("4S 5H 6H TS AC", "3S 5H 6H TS AC", "Win"), ("2S AH 4H 5S 6C", "AD 4C 5H 6H 2C", "Tie"), ("AS AH 3H AD AC", "AS AH 2H AD AC", "Win"), ("AH AC 5H 5C QS", "AH AC 5H 5C KS", "Loss"), ("AH AC 5H 5C QS", "KH KC 5H 5C QS", "Win"), ("7C 7S KH 2H 7H", "3C 3S AH 2H 3H", "Win"), ("3C 3S AH 2H 3H", "7C 7S KH 2H 7H", "Loss"), ("6H 5H 4H 3H 2H", "5H 4H 3H 2H AH", "Win"), ("5H 4H 3H 2H AH", "5H 4H 3H 2H AH", "Tie"), ("5H 4H 3H 2H AH", "6H 5H 4H 3H 2H", "Loss"), ("AH AD KS KC AC", "AH KD KH AC KC", "Win"), ("2H 4D 3C AS 5S", "2H 4D 3C 6S 5S", "Loss"), ("2H 3S 3C 3H 2S", "3S 3C 2S 2H 2D", "Win"), ("4D 6D 5D 2D JH", "3S 8S 3H TC KH", "Loss"), ("4S 6C 8S 3S 7S", "AD KS 2D 7D 7C", "Loss"), ("6S 4C 7H 8C 3H", "5H JC AH 9D 9C", "Loss"), ("9D 9H JH TC QH", "3C 2S JS 5C 7H", "Win"), ("2H TC 8S AD 9S", "4H TS 7H 2C 5C", "Win"), ("9D 3S 2C 7S 7C", "JC TD 3C TC 9H", "Loss"), ) a_ : Tuple = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", True), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", False), ("AS 3S 4S 8S 2S", True), ) a_ : Tuple = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", False), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", True), ) a_ : Optional[Any] = ( ("2H 4D 3C AS 5S", True, [5, 4, 3, 2, 14]), ("2H 5D 3C AS 5S", False, [14, 5, 5, 3, 2]), ("JH QD KC AS TS", False, [14, 13, 12, 11, 10]), ("9D 3S 2C 7S 7C", False, [9, 7, 7, 3, 2]), ) a_ : List[str] = ( ("JH AH TH KH QH", 0), ("JH 9H TH KH QH", 0), ("JC KH JS JD JH", 7), ("KH KC 3S 3H 3D", 6), ("8C 9C 5C 3C TC", 0), ("JS QS 9H TS KH", 0), ("7C 7S KH 2H 7H", 3), ("3C KH 5D 5S KH", 2), ("QH 8H KD JH 8S", 1), ("2D 6D 9D TH 7D", 0), ) a_ : Optional[Any] = ( ("JH AH TH KH QH", 23), ("JH 9H TH KH QH", 22), ("JC KH JS JD JH", 21), ("KH KC 3S 3H 3D", 20), ("8C 9C 5C 3C TC", 19), ("JS QS 9H TS KH", 18), ("7C 7S KH 2H 7H", 17), ("3C KH 5D 5S KH", 16), ("QH 8H KD JH 8S", 15), ("2D 6D 9D TH 7D", 14), ) def __lowerCAmelCase ( ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = randrange(len(_UpperCamelCase ) ), randrange(len(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __lowerCAmelCase ( _UpperCamelCase : int = 1_00 ) -> int: '''simple docstring''' return (generate_random_hand() for _ in range(_UpperCamelCase )) @pytest.mark.parametrize('hand, expected' , _UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : Optional[Any] ) -> int: '''simple docstring''' assert PokerHand(_UpperCamelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , _UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' assert PokerHand(_UpperCamelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , _UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : str , _UpperCamelCase : List[Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = PokerHand(_UpperCamelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , _UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : str ) -> int: '''simple docstring''' assert PokerHand(_UpperCamelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , _UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : str ) -> str: '''simple docstring''' assert PokerHand(_UpperCamelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , _UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : int , _UpperCamelCase : Dict ) -> Tuple: '''simple docstring''' assert PokerHand(_UpperCamelCase ).compare_with(PokerHand(_UpperCamelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Any , _UpperCamelCase : Tuple ) -> List[Any]: '''simple docstring''' assert PokerHand(_UpperCamelCase ).compare_with(PokerHand(_UpperCamelCase ) ) == expected def __lowerCAmelCase ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = [PokerHand(_UpperCamelCase ) for hand in SORTED_HANDS] SCREAMING_SNAKE_CASE = poker_hands.copy() shuffle(_UpperCamelCase ) SCREAMING_SNAKE_CASE = chain(sorted(_UpperCamelCase ) ) for index, hand in enumerate(_UpperCamelCase ): assert hand == poker_hands[index] def __lowerCAmelCase ( ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=_UpperCamelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __lowerCAmelCase ( ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = PokerHand('2C 4S AS 3D 5C' ) SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __lowerCAmelCase ( ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = os.path.abspath(os.path.dirname(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = os.path.join(_UpperCamelCase , 'poker_hands.txt' ) with open(_UpperCamelCase ) as file_hand: for line in file_hand: SCREAMING_SNAKE_CASE = line[:14].strip() SCREAMING_SNAKE_CASE = line[15:].strip() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = PokerHand(_UpperCamelCase ), PokerHand(_UpperCamelCase ) SCREAMING_SNAKE_CASE = player.compare_with(_UpperCamelCase ) if output == "Win": answer += 1 assert answer == 3_76
439
0
'''simple docstring''' import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: Union[str, Any] ) -> List[str]: """simple docstring""" __a = botoa.client('iam' ) __a = { 'Version': '2012-10-17', 'Statement': [ {'Effect': 'Allow', 'Principal': {'Service': 'sagemaker.amazonaws.com'}, 'Action': 'sts:AssumeRole'} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=SCREAMING_SNAKE_CASE__, AssumeRolePolicyDocument=json.dumps(SCREAMING_SNAKE_CASE__, indent=2 ) ) __a = { 'Version': '2012-10-17', 'Statement': [ { 'Effect': 'Allow', 'Action': [ 'sagemaker:*', 'ecr:GetDownloadUrlForLayer', 'ecr:BatchGetImage', 'ecr:BatchCheckLayerAvailability', 'ecr:GetAuthorizationToken', 'cloudwatch:PutMetricData', 'cloudwatch:GetMetricData', 'cloudwatch:GetMetricStatistics', 'cloudwatch:ListMetrics', 'logs:CreateLogGroup', 'logs:CreateLogStream', 'logs:DescribeLogStreams', 'logs:PutLogEvents', 'logs:GetLogEvents', 's3:CreateBucket', 's3:ListBucket', 's3:GetBucketLocation', 's3:GetObject', 's3:PutObject', ], 'Resource': '*', } ], } # attach policy to role iam_client.put_role_policy( RoleName=SCREAMING_SNAKE_CASE__, PolicyName=f"""{role_name}_policy_permission""", PolicyDocument=json.dumps(SCREAMING_SNAKE_CASE__, indent=2 ), ) except iam_client.exceptions.EntityAlreadyExistsException: print(f"""role {role_name} already exists. Using existing one""" ) def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: List[str] ) -> Optional[Any]: """simple docstring""" __a = botoa.client('iam' ) return iam_client.get_role(RoleName=SCREAMING_SNAKE_CASE__ )["Role"]["Arn"] def __UpperCAmelCase ( ) -> Any: """simple docstring""" __a = _ask_options( 'How do you want to authorize?', ['AWS Profile', 'Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '], SCREAMING_SNAKE_CASE__, ) __a = None if credentials_configuration == 0: __a = _ask_field('Enter your AWS Profile name: [default] ', default='default' ) __a = aws_profile else: print( 'Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,' '`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`' ) __a = _ask_field('AWS Access Key ID: ' ) __a = aws_access_key_id __a = _ask_field('AWS Secret Access Key: ' ) __a = aws_secret_access_key __a = _ask_field('Enter your AWS Region: [us-east-1]', default='us-east-1' ) __a = aws_region __a = _ask_options( 'Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?', ['Provide IAM Role name', 'Create new IAM role using credentials'], SCREAMING_SNAKE_CASE__, ) if role_management == 0: __a = _ask_field('Enter your IAM role name: ' ) else: __a = 'accelerate_sagemaker_execution_role' print(f"""Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials""" ) _create_iam_role_for_sagemaker(SCREAMING_SNAKE_CASE__ ) __a = _ask_field( 'Do you want to use custom Docker image? [yes/NO]: ', _convert_yes_no_to_bool, default=SCREAMING_SNAKE_CASE__, error_message='Please enter yes or no.', ) __a = None if is_custom_docker_image: __a = _ask_field('Enter your Docker image: ', lambda SCREAMING_SNAKE_CASE__ : str(SCREAMING_SNAKE_CASE__ ).lower() ) __a = _ask_field( 'Do you want to provide SageMaker input channels with data locations? [yes/NO]: ', _convert_yes_no_to_bool, default=SCREAMING_SNAKE_CASE__, error_message='Please enter yes or no.', ) __a = None if is_sagemaker_inputs_enabled: __a = _ask_field( 'Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ', lambda SCREAMING_SNAKE_CASE__ : str(SCREAMING_SNAKE_CASE__ ).lower(), ) __a = _ask_field( 'Do you want to enable SageMaker metrics? [yes/NO]: ', _convert_yes_no_to_bool, default=SCREAMING_SNAKE_CASE__, error_message='Please enter yes or no.', ) __a = None if is_sagemaker_metrics_enabled: __a = _ask_field( 'Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ', lambda SCREAMING_SNAKE_CASE__ : str(SCREAMING_SNAKE_CASE__ ).lower(), ) __a = _ask_options( 'What is the distributed mode?', ['No distributed training', 'Data parallelism'], _convert_sagemaker_distributed_mode, ) __a = {} __a = _ask_field( 'Do you wish to optimize your script with torch dynamo?[yes/NO]:', _convert_yes_no_to_bool, default=SCREAMING_SNAKE_CASE__, error_message='Please enter yes or no.', ) if use_dynamo: __a = 'dynamo_' __a = _ask_options( 'Which dynamo backend would you like to use?', [x.lower() for x in DYNAMO_BACKENDS], _convert_dynamo_backend, default=2, ) __a = _ask_field( 'Do you want to customize the defaults sent to torch.compile? [yes/NO]: ', _convert_yes_no_to_bool, default=SCREAMING_SNAKE_CASE__, error_message='Please enter yes or no.', ) if use_custom_options: __a = _ask_options( 'Which mode do you want to use?', SCREAMING_SNAKE_CASE__, lambda SCREAMING_SNAKE_CASE__ : TORCH_DYNAMO_MODES[int(SCREAMING_SNAKE_CASE__ )], default='default', ) __a = _ask_field( 'Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ', _convert_yes_no_to_bool, default=SCREAMING_SNAKE_CASE__, error_message='Please enter yes or no.', ) __a = _ask_field( 'Do you want to enable dynamic shape tracing? [yes/NO]: ', _convert_yes_no_to_bool, default=SCREAMING_SNAKE_CASE__, error_message='Please enter yes or no.', ) __a = 'Which EC2 instance type you want to use for your training?' if distributed_type != SageMakerDistributedType.NO: __a = _ask_options( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, lambda SCREAMING_SNAKE_CASE__ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(SCREAMING_SNAKE_CASE__ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" __a = _ask_field(SCREAMING_SNAKE_CASE__, lambda SCREAMING_SNAKE_CASE__ : str(SCREAMING_SNAKE_CASE__ ).lower(), default='ml.p3.2xlarge' ) __a = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): __a = _ask_field( 'How many machines do you want use? [1]: ', SCREAMING_SNAKE_CASE__, default=1, ) __a = _ask_options( 'Do you wish to use FP16 or BF16 (mixed precision)?', ['no', 'fp16', 'bf16', 'fp8'], _convert_mixed_precision, ) if use_dynamo and mixed_precision == "no": print( 'Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.' ) return SageMakerConfig( image_uri=SCREAMING_SNAKE_CASE__, compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER, distributed_type=SCREAMING_SNAKE_CASE__, use_cpu=SCREAMING_SNAKE_CASE__, dynamo_config=SCREAMING_SNAKE_CASE__, eca_instance_type=SCREAMING_SNAKE_CASE__, profile=SCREAMING_SNAKE_CASE__, region=SCREAMING_SNAKE_CASE__, iam_role_name=SCREAMING_SNAKE_CASE__, mixed_precision=SCREAMING_SNAKE_CASE__, num_machines=SCREAMING_SNAKE_CASE__, sagemaker_inputs_file=SCREAMING_SNAKE_CASE__, sagemaker_metrics_file=SCREAMING_SNAKE_CASE__, )
718
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: List[Any] ) -> Dict: """simple docstring""" __a , __a = image.size __a , __a = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __a = image.resize((w, h), resample=PIL_INTERPOLATION['lanczos'] ) __a = np.array(SCREAMING_SNAKE_CASE__ ).astype(np.floataa ) / 2_5_5.0 __a = image[None].transpose(0, 3, 1, 2 ) __a = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) return 2.0 * image - 1.0 class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) ->Dict: '''simple docstring''' super().__init__() self.register_modules(vqvae=lowerCamelCase , unet=lowerCamelCase , scheduler=lowerCamelCase ) @torch.no_grad() def __call__( self , lowerCamelCase = None , lowerCamelCase = 1 , lowerCamelCase = 100 , lowerCamelCase = 0.0 , lowerCamelCase = None , lowerCamelCase = "pil" , lowerCamelCase = True , ) ->Union[Tuple, ImagePipelineOutput]: '''simple docstring''' if isinstance(lowerCamelCase , PIL.Image.Image ): __a = 1 elif isinstance(lowerCamelCase , torch.Tensor ): __a = image.shape[0] else: raise ValueError(F"""`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowerCamelCase )}""" ) if isinstance(lowerCamelCase , PIL.Image.Image ): __a = preprocess(lowerCamelCase ) __a , __a = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image __a = (batch_size, self.unet.config.in_channels // 2, height, width) __a = next(self.unet.parameters() ).dtype __a = randn_tensor(lowerCamelCase , generator=lowerCamelCase , device=self.device , dtype=lowerCamelCase ) __a = image.to(device=self.device , dtype=lowerCamelCase ) # set timesteps and move to the correct device self.scheduler.set_timesteps(lowerCamelCase , device=self.device ) __a = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler __a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __a = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __a = {} if accepts_eta: __a = eta for t in self.progress_bar(lowerCamelCase ): # concat latents and low resolution image in the channel dimension. __a = torch.cat([latents, image] , dim=1 ) __a = self.scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) # predict the noise residual __a = self.unet(lowerCamelCase , lowerCamelCase ).sample # compute the previous noisy sample x_t -> x_t-1 __a = self.scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample # decode the image latents with the VQVAE __a = self.vqvae.decode(lowerCamelCase ).sample __a = torch.clamp(lowerCamelCase , -1.0 , 1.0 ) __a = image / 2 + 0.5 __a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __a = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase )
270
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self ): """simple docstring""" A_ = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) A_ = get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(__snake_case ) ,torch_builtin(__snake_case ) ) ) self.assertFalse(torch.allclose(gelu_python(__snake_case ) ,gelu_new(__snake_case ) ) ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) A_ = get_activation('''gelu''' ) A_ = get_activation('''gelu_10''' ) A_ = torch_builtin(__snake_case ) A_ = geluaa(__snake_case ) A_ = torch.where(y_gelu_aa < 10.0 ,1 ,0 ) self.assertTrue(torch.max(__snake_case ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask ,y_gelu_aa * clipped_mask ) ) def __UpperCAmelCase ( self ): """simple docstring""" get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(__snake_case ): get_activation('''bogus''' ) with self.assertRaises(__snake_case ): get_activation(__snake_case ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = get_activation('''gelu''' ) A_ = 1 A_ = get_activation('''gelu''' ) self.assertEqual(acta.a ,1 ) with self.assertRaises(__snake_case ): A_ = acta.a
188
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : str = { 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = [ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys a__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
188
1
def lowercase__ ( __A: str ): '''simple docstring''' __magic_name__ : Dict = '''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def lowercase__ ( __A: str ): '''simple docstring''' __magic_name__ : Optional[int] = [chr(i + 6_5 ) for i in range(2_6 )] # Remove duplicate characters from key __magic_name__ : Union[str, Any] = remove_duplicates(key.upper() ) __magic_name__ : Dict = len(__A ) # First fill cipher with key characters __magic_name__ : Union[str, Any] = {alphabet[i]: char for i, char in enumerate(__A )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(__A ) ,2_6 ): __magic_name__ : List[str] = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __magic_name__ : List[Any] = alphabet[i - offset] __magic_name__ : Union[str, Any] = char return cipher_alphabet def lowercase__ ( __A: str ,__A: dict[str, str] ): '''simple docstring''' return "".join(cipher_map.get(__A ,__A ) for ch in message.upper() ) def lowercase__ ( __A: str ,__A: dict[str, str] ): '''simple docstring''' __magic_name__ : str = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(__A ,__A ) for ch in message.upper() ) def lowercase__ ( ): '''simple docstring''' __magic_name__ : Union[str, Any] = input('''Enter message to encode or decode: ''' ).strip() __magic_name__ : int = input('''Enter keyword: ''' ).strip() __magic_name__ : int = input('''Encipher or decipher? E/D:''' ).strip()[0].lower() try: __magic_name__ : Optional[Any] = {'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError('''invalid input option''' ) __magic_name__ : Tuple = create_cipher_map(__A ) print(func(__A ,__A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
501
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
501
1
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( _snake_case :Dict ) -> Optional[int]: _A = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: _A = 128 elif "12-12" in model_name: _A = 12 _A = 12 elif "14-14" in model_name: _A = 14 _A = 14 elif "16-16" in model_name: _A = 16 _A = 16 else: raise ValueError('''Model not supported''' ) _A = '''huggingface/label-files''' if "speech-commands" in model_name: _A = 35 _A = '''speech-commands-v2-id2label.json''' else: _A = 527 _A = '''audioset-id2label.json''' _A = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='''dataset''' ) , '''r''' ) ) _A = {int(_snake_case ): v for k, v in idalabel.items()} _A = idalabel _A = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE_ ( _snake_case :List[Any] ) -> Tuple: if "module.v" in name: _A = name.replace('''module.v''' , '''audio_spectrogram_transformer''' ) if "cls_token" in name: _A = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "dist_token" in name: _A = name.replace('''dist_token''' , '''embeddings.distillation_token''' ) if "pos_embed" in name: _A = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: _A = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) # transformer blocks if "blocks" in name: _A = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: _A = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: _A = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _A = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _A = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _A = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _A = name.replace('''mlp.fc2''' , '''output.dense''' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: _A = name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' ) # classifier head if "module.mlp_head.0" in name: _A = name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' ) if "module.mlp_head.1" in name: _A = name.replace('''module.mlp_head.1''' , '''classifier.dense''' ) return name def SCREAMING_SNAKE_CASE_ ( _snake_case :Any , _snake_case :List[str] ) -> List[Any]: for key in orig_state_dict.copy().keys(): _A = orig_state_dict.pop(_snake_case ) if "qkv" in key: _A = key.split('''.''' ) _A = int(key_split[3] ) _A = config.hidden_size if "weight" in key: _A = val[:dim, :] _A = val[dim : dim * 2, :] _A = val[-dim:, :] else: _A = val[:dim] _A = val[dim : dim * 2] _A = val[-dim:] else: _A = val return orig_state_dict def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] ) -> Dict: _A = [ '''module.v.head.weight''', '''module.v.head.bias''', '''module.v.head_dist.weight''', '''module.v.head_dist.bias''', ] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( _snake_case :Tuple , _snake_case :Dict , _snake_case :List[Any]=False ) -> Optional[Any]: _A = get_audio_spectrogram_transformer_config(_snake_case ) _A = { '''ast-finetuned-audioset-10-10-0.4593''': ( '''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.450''': ( '''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448''': ( '''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448-v2''': ( '''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1''' ), '''ast-finetuned-audioset-12-12-0.447''': ( '''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1''' ), '''ast-finetuned-audioset-14-14-0.443''': ( '''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1''' ), '''ast-finetuned-audioset-16-16-0.442''': ( '''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1''' ), '''ast-finetuned-speech-commands-v2''': ( '''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1''' ), } # load original state_dict _A = model_name_to_url[model_name] _A = torch.hub.load_state_dict_from_url(_snake_case , map_location='''cpu''' ) # remove some keys remove_keys(_snake_case ) # rename some keys _A = convert_state_dict(_snake_case , _snake_case ) # load 🤗 model _A = ASTForAudioClassification(_snake_case ) model.eval() model.load_state_dict(_snake_case ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 _A = -4.267_7393 if '''speech-commands''' not in model_name else -6.84_5978 _A = 4.568_9974 if '''speech-commands''' not in model_name else 5.565_4526 _A = 1_024 if '''speech-commands''' not in model_name else 128 _A = ASTFeatureExtractor(mean=_snake_case , std=_snake_case , max_length=_snake_case ) if "speech-commands" in model_name: _A = load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' ) _A = dataset[0]['''audio''']['''array'''] else: _A = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , ) _A , _A = torchaudio.load(_snake_case ) _A = waveform.squeeze().numpy() _A = feature_extractor(_snake_case , sampling_rate=16_000 , return_tensors='''pt''' ) # forward pass _A = model(**_snake_case ) _A = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": _A = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": _A = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": _A = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": _A = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": _A = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": _A = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": _A = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": _A = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError('''Unknown model name''' ) if not torch.allclose(logits[0, :3] , _snake_case , atol=1E-4 ): raise ValueError('''Logits don\'t match''' ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(F'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(_snake_case ) if push_to_hub: print('''Pushing model and feature extractor to the hub...''' ) model.push_to_hub(F'''MIT/{model_name}''' ) feature_extractor.push_to_hub(F'''MIT/{model_name}''' ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""ast-finetuned-audioset-10-10-0.4593""", type=str, help="""Name of the Audio Spectrogram Transformer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) UpperCAmelCase_ = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
2
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __magic_name__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , _lowercase : Optional[int] , _lowercase : Tuple=13 , _lowercase : str=7 , _lowercase : List[Any]=True , _lowercase : Optional[int]=True , _lowercase : str=True , _lowercase : Optional[int]=True , _lowercase : Dict=99 , _lowercase : List[Any]=32 , _lowercase : List[str]=5 , _lowercase : str=4 , _lowercase : int=37 , _lowercase : List[str]="gelu" , _lowercase : Any=0.1 , _lowercase : Optional[int]=0.1 , _lowercase : Dict=512 , _lowercase : int=16 , _lowercase : Optional[Any]=2 , _lowercase : Dict=0.02 , _lowercase : List[Any]=4 , ): """simple docstring""" _UpperCamelCase: List[str] = parent _UpperCamelCase: int = batch_size _UpperCamelCase: List[str] = seq_length _UpperCamelCase: Optional[int] = is_training _UpperCamelCase: Optional[Any] = use_attention_mask _UpperCamelCase: Any = use_token_type_ids _UpperCamelCase: List[str] = use_labels _UpperCamelCase: Optional[int] = vocab_size _UpperCamelCase: List[str] = hidden_size _UpperCamelCase: Union[str, Any] = num_hidden_layers _UpperCamelCase: Any = num_attention_heads _UpperCamelCase: List[str] = intermediate_size _UpperCamelCase: Union[str, Any] = hidden_act _UpperCamelCase: Dict = hidden_dropout_prob _UpperCamelCase: List[str] = attention_probs_dropout_prob _UpperCamelCase: str = max_position_embeddings _UpperCamelCase: Dict = type_vocab_size _UpperCamelCase: Tuple = type_sequence_label_size _UpperCamelCase: List[Any] = initializer_range _UpperCamelCase: str = num_choices def lowerCAmelCase ( self : str ): """simple docstring""" _UpperCamelCase: str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase: Any = None if self.use_attention_mask: _UpperCamelCase: List[str] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase: Optional[Any] = None if self.use_token_type_ids: _UpperCamelCase: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCamelCase: Tuple = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase ( self : int ): """simple docstring""" _UpperCamelCase: List[Any] = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase: int = config_and_inputs _UpperCamelCase: int = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class __magic_name__ ( __a , unittest.TestCase ): """simple docstring""" lowerCAmelCase : Any = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase ( self : Union[str, Any] ): """simple docstring""" _UpperCamelCase: Optional[int] = FlaxAlbertModelTester(self ) @slow def lowerCAmelCase ( self : Union[str, Any] ): """simple docstring""" for model_class_name in self.all_model_classes: _UpperCamelCase: int = model_class_name.from_pretrained('''albert-base-v2''' ) _UpperCamelCase: List[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class __magic_name__ ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase ( self : int ): """simple docstring""" _UpperCamelCase: Optional[int] = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) _UpperCamelCase: List[Any] = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) _UpperCamelCase: Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCamelCase: Optional[int] = model(_lowercase , attention_mask=_lowercase )[0] _UpperCamelCase: Tuple = (1, 11, 768) self.assertEqual(output.shape , _lowercase ) _UpperCamelCase: Tuple = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _lowercase , atol=1E-4 ) )
271
0
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class A ( __lowercase ): _snake_case =(DDIMParallelScheduler,) _snake_case =(('''eta''', 0.0), ('''num_inference_steps''', 50)) def lowerCAmelCase__ ( self: str , **_lowerCAmelCase: str ) -> str: '''simple docstring''' UpperCAmelCase_ ={ "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**_lowerCAmelCase ) return config def lowerCAmelCase__ ( self: int , **_lowerCAmelCase: Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ =self.scheduler_classes[0] UpperCAmelCase_ =self.get_scheduler_config(**_lowerCAmelCase ) UpperCAmelCase_ =scheduler_class(**_lowerCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ =10, 0.0 UpperCAmelCase_ =self.dummy_model() UpperCAmelCase_ =self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) for t in scheduler.timesteps: UpperCAmelCase_ =model(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample return sample def lowerCAmelCase__ ( self: Optional[int] ) -> Optional[int]: '''simple docstring''' for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> List[str]: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowerCAmelCase ) UpperCAmelCase_ =self.scheduler_classes[0] UpperCAmelCase_ =self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase_ =scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def lowerCAmelCase__ ( self: int ) -> Dict: '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Any: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCAmelCase ) def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def lowerCAmelCase__ ( self: Union[str, Any] ) -> List[Any]: '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_lowerCAmelCase ) def lowerCAmelCase__ ( self: Union[str, Any] ) -> Any: '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_lowerCAmelCase ) def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[Any]: '''simple docstring''' self.check_over_configs(thresholding=_lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: Union[str, Any] ) -> List[str]: '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any ) -> List[str]: '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=_lowerCAmelCase , num_inference_steps=_lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_lowerCAmelCase , eta=_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.scheduler_classes[0] UpperCAmelCase_ =self.get_scheduler_config() UpperCAmelCase_ =scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_47_71 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_24_60 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_09_79 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5 def lowerCAmelCase__ ( self: int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.scheduler_classes[0] UpperCAmelCase_ =self.get_scheduler_config() UpperCAmelCase_ =scheduler_class(**_lowerCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ =10, 0.0 scheduler.set_timesteps(_lowerCAmelCase ) UpperCAmelCase_ =self.dummy_model() UpperCAmelCase_ =self.dummy_sample_deter UpperCAmelCase_ =self.dummy_sample_deter + 0.1 UpperCAmelCase_ =self.dummy_sample_deter - 0.1 UpperCAmelCase_ =samplea.shape[0] UpperCAmelCase_ =torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCAmelCase_ =torch.arange(_lowerCAmelCase )[0:3, None].repeat(1 , _lowerCAmelCase ) UpperCAmelCase_ =model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCAmelCase_ =scheduler.batch_step_no_noise(_lowerCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _lowerCAmelCase ) UpperCAmelCase_ =torch.sum(torch.abs(_lowerCAmelCase ) ) UpperCAmelCase_ =torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2 assert abs(result_mean.item() - 0.49_82 ) < 1e-3 def lowerCAmelCase__ ( self: Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.full_loop() UpperCAmelCase_ =torch.sum(torch.abs(_lowerCAmelCase ) ) UpperCAmelCase_ =torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3 def lowerCAmelCase__ ( self: int ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.full_loop(prediction_type="v_prediction" ) UpperCAmelCase_ =torch.sum(torch.abs(_lowerCAmelCase ) ) UpperCAmelCase_ =torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 52.53_02 ) < 1e-2 assert abs(result_mean.item() - 0.06_84 ) < 1e-3 def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.full_loop(set_alpha_to_one=_lowerCAmelCase , beta_start=0.01 ) UpperCAmelCase_ =torch.sum(torch.abs(_lowerCAmelCase ) ) UpperCAmelCase_ =torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2 assert abs(result_mean.item() - 0.19_51 ) < 1e-3 def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =self.full_loop(set_alpha_to_one=_lowerCAmelCase , beta_start=0.01 ) UpperCAmelCase_ =torch.sum(torch.abs(_lowerCAmelCase ) ) UpperCAmelCase_ =torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2 assert abs(result_mean.item() - 0.19_41 ) < 1e-3
550
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar __lowercase : Optional[int] =TypeVar("""T""") def a__ ( lowercase__ ): '''simple docstring''' return (position - 1) // 2 def a__ ( lowercase__ ): '''simple docstring''' return (2 * position) + 1 def a__ ( lowercase__ ): '''simple docstring''' return (2 * position) + 2 class A ( Generic[T] ): def __init__( self: List[str] ) -> None: '''simple docstring''' UpperCAmelCase_ =[] UpperCAmelCase_ ={} UpperCAmelCase_ =0 def __len__( self: Union[str, Any] ) -> int: '''simple docstring''' return self.elements def __repr__( self: Dict ) -> str: '''simple docstring''' return str(self.heap ) def lowerCAmelCase__ ( self: Any ) -> bool: '''simple docstring''' return self.elements == 0 def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: T , _lowerCAmelCase: int ) -> None: '''simple docstring''' self.heap.append((elem, weight) ) UpperCAmelCase_ =self.elements self.elements += 1 self._bubble_up(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple ) -> T: '''simple docstring''' if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) UpperCAmelCase_ , UpperCAmelCase_ =self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: UpperCAmelCase_ , UpperCAmelCase_ =self.heap[0] self._bubble_down(_lowerCAmelCase ) return elem def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: T , _lowerCAmelCase: int ) -> None: '''simple docstring''' UpperCAmelCase_ =self.position_map[elem] UpperCAmelCase_ =(elem, weight) if position > 0: UpperCAmelCase_ =get_parent_position(_lowerCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ =self.heap[parent_position] if parent_weight > weight: self._bubble_up(_lowerCAmelCase ) else: self._bubble_down(_lowerCAmelCase ) else: self._bubble_down(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: T ) -> None: '''simple docstring''' UpperCAmelCase_ =self.position_map[elem] if curr_pos == 0: return None UpperCAmelCase_ =get_parent_position(_lowerCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ =self.heap[curr_pos] UpperCAmelCase_ , UpperCAmelCase_ =self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_lowerCAmelCase , _lowerCAmelCase ) return self._bubble_up(_lowerCAmelCase ) return None def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: T ) -> None: '''simple docstring''' UpperCAmelCase_ =self.position_map[elem] UpperCAmelCase_ , UpperCAmelCase_ =self.heap[curr_pos] UpperCAmelCase_ =get_child_left_position(_lowerCAmelCase ) UpperCAmelCase_ =get_child_right_position(_lowerCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: UpperCAmelCase_ , UpperCAmelCase_ =self.heap[child_left_position] UpperCAmelCase_ , UpperCAmelCase_ =self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_lowerCAmelCase , _lowerCAmelCase ) return self._bubble_down(_lowerCAmelCase ) if child_left_position < self.elements: UpperCAmelCase_ , UpperCAmelCase_ =self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_lowerCAmelCase , _lowerCAmelCase ) return self._bubble_down(_lowerCAmelCase ) else: return None if child_right_position < self.elements: UpperCAmelCase_ , UpperCAmelCase_ =self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_lowerCAmelCase , _lowerCAmelCase ) return self._bubble_down(_lowerCAmelCase ) return None def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: int , _lowerCAmelCase: int ) -> None: '''simple docstring''' UpperCAmelCase_ =self.heap[nodea_pos][0] UpperCAmelCase_ =self.heap[nodea_pos][0] UpperCAmelCase_ , UpperCAmelCase_ =( self.heap[nodea_pos], self.heap[nodea_pos], ) UpperCAmelCase_ =nodea_pos UpperCAmelCase_ =nodea_pos class A ( Generic[T] ): def __init__( self: Tuple ) -> None: '''simple docstring''' UpperCAmelCase_ ={} UpperCAmelCase_ =0 def __repr__( self: List[str] ) -> str: '''simple docstring''' return str(self.connections ) def __len__( self: Optional[Any] ) -> int: '''simple docstring''' return self.nodes def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: T ) -> None: '''simple docstring''' if node not in self.connections: UpperCAmelCase_ ={} self.nodes += 1 def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: T , _lowerCAmelCase: T , _lowerCAmelCase: int ) -> None: '''simple docstring''' self.add_node(_lowerCAmelCase ) self.add_node(_lowerCAmelCase ) UpperCAmelCase_ =weight UpperCAmelCase_ =weight def a__ ( lowercase__ , ): '''simple docstring''' UpperCAmelCase_ ={node: maxsize for node in graph.connections} UpperCAmelCase_ ={node: None for node in graph.connections} UpperCAmelCase_ =MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(lowercase__ , lowercase__ ) if priority_queue.is_empty(): return dist, parent # initialization UpperCAmelCase_ =priority_queue.extract_min() UpperCAmelCase_ =0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCAmelCase_ =dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowercase__ , dist[neighbour] ) UpperCAmelCase_ =node # running prim's algorithm while not priority_queue.is_empty(): UpperCAmelCase_ =priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCAmelCase_ =dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowercase__ , dist[neighbour] ) UpperCAmelCase_ =node return dist, parent
550
1
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
407
'''simple docstring''' import os from datetime import datetime as dt from github import Github __A =[ 'good first issue', 'feature request', 'wip', ] def _UpperCamelCase ( ): UpperCAmelCase__ : List[str] = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCAmelCase__ : Dict = g.get_repo("""huggingface/accelerate""" ) UpperCAmelCase__ : Any = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCAmelCase__ : Tuple = sorted([comment for comment in issue.get_comments()] , key=lambda UpperCamelCase__ : i.created_at , reverse=UpperCamelCase__ ) UpperCAmelCase__ : Any = comments[0] if len(UpperCamelCase__ ) > 0 else None UpperCAmelCase__ : Optional[Any] = dt.utcnow() UpperCAmelCase__ : Optional[int] = (current_time - issue.updated_at).days UpperCAmelCase__ : int = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="""closed""" ) elif ( days_since_updated > 2_3 and days_since_creation >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
407
1
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=3 , __UpperCAmelCase=32 , __UpperCAmelCase=3 , __UpperCAmelCase=10 , __UpperCAmelCase=[10, 20, 30, 40] , __UpperCAmelCase=[1, 1, 2, 1] , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase="relu" , __UpperCAmelCase=3 , __UpperCAmelCase=None , ) ->Any: a_ = parent a_ = batch_size a_ = image_size a_ = num_channels a_ = embeddings_size a_ = hidden_sizes a_ = depths a_ = is_training a_ = use_labels a_ = hidden_act a_ = num_labels a_ = scope a_ = len(__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Tuple: a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.num_labels) a_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self) ->int: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->List[Any]: a_ = RegNetModel(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->List[str]: a_ = self.num_labels a_ = RegNetForImageClassification(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase__ ( self) ->Optional[Any]: a_ = self.prepare_config_and_inputs() a_ , a_ , a_ = config_and_inputs a_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : int = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () a_ : Any = ( {"""feature-extraction""": RegNetModel, """image-classification""": RegNetForImageClassification} if is_torch_available() else {} ) a_ : Tuple = False a_ : Optional[int] = False a_ : Union[str, Any] = False a_ : Tuple = False def UpperCAmelCase__ ( self) ->List[Any]: a_ = RegNetModelTester(self) a_ = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase) def UpperCAmelCase__ ( self) ->str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self) ->List[str]: return @unittest.skip(reason="RegNet does not use inputs_embeds") def UpperCAmelCase__ ( self) ->Union[str, Any]: pass @unittest.skip(reason="RegNet does not support input and output embeddings") def UpperCAmelCase__ ( self) ->Any: pass def UpperCAmelCase__ ( self) ->Dict: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(__UpperCAmelCase) a_ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ = [*signature.parameters.keys()] a_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Tuple: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->str: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(config=__UpperCAmelCase) for name, module in model.named_modules(): if isinstance(__UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def UpperCAmelCase__ ( self) ->str: def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase): a_ = model_class(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() with torch.no_grad(): a_ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase)) a_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a_ = self.model_tester.num_stages self.assertEqual(len(__UpperCAmelCase) , expected_num_stages + 1) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: a_ = layer_type a_ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->int: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->List[Any]: for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = RegNetModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) def UpperCamelCase ( ) ->Any: """simple docstring""" a_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class snake_case ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self) ->Tuple: return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self) ->int: a_ = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(__UpperCAmelCase) a_ = self.default_image_processor a_ = prepare_img() a_ = image_processor(images=__UpperCAmelCase , return_tensors="pt").to(__UpperCAmelCase) # forward pass with torch.no_grad(): a_ = model(**__UpperCAmelCase) # verify the logits a_ = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __UpperCAmelCase) a_ = torch.tensor([-0.4_180, -1.5_051, -3.4_836]).to(__UpperCAmelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4))
210
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class snake_case ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : Tuple = LDMTextToImagePipeline a_ : Tuple = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } a_ : Optional[int] = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } a_ : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS a_ : int = False def UpperCAmelCase__ ( self) ->Tuple: torch.manual_seed(0) a_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) a_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0) a_ = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , latent_channels=4 , ) torch.manual_seed(0) a_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) a_ = CLIPTextModel(__UpperCAmelCase) a_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") a_ = { "unet": unet, "scheduler": scheduler, "vqvae": vae, "bert": text_encoder, "tokenizer": tokenizer, } return components def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase=0) ->Optional[Any]: if str(__UpperCAmelCase).startswith("mps"): a_ = torch.manual_seed(__UpperCAmelCase) else: a_ = torch.Generator(device=__UpperCAmelCase).manual_seed(__UpperCAmelCase) a_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def UpperCAmelCase__ ( self) ->List[Any]: a_ = "cpu" # ensure determinism for the device-dependent torch.Generator a_ = self.get_dummy_components() a_ = LDMTextToImagePipeline(**__UpperCAmelCase) pipe.to(__UpperCAmelCase) pipe.set_progress_bar_config(disable=__UpperCAmelCase) a_ = self.get_dummy_inputs(__UpperCAmelCase) a_ = pipe(**__UpperCAmelCase).images a_ = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) a_ = np.array([0.6_101, 0.6_156, 0.5_622, 0.4_895, 0.6_661, 0.3_804, 0.5_748, 0.6_136, 0.5_014]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 @slow @require_torch_gpu class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->int: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0) ->Union[str, Any]: a_ = torch.manual_seed(__UpperCAmelCase) a_ = np.random.RandomState(__UpperCAmelCase).standard_normal((1, 4, 32, 32)) a_ = torch.from_numpy(__UpperCAmelCase).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase) a_ = { "prompt": "A painting of a squirrel eating a burger", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def UpperCAmelCase__ ( self) ->str: a_ = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256").to(__UpperCAmelCase) pipe.set_progress_bar_config(disable=__UpperCAmelCase) a_ = self.get_inputs(__UpperCAmelCase) a_ = pipe(**__UpperCAmelCase).images a_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 2_56, 2_56, 3) a_ = np.array([0.51_825, 0.52_850, 0.52_543, 0.54_258, 0.52_304, 0.52_569, 0.54_363, 0.55_276, 0.56_878]) a_ = np.abs(expected_slice - image_slice).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0) ->List[Any]: a_ = torch.manual_seed(__UpperCAmelCase) a_ = np.random.RandomState(__UpperCAmelCase).standard_normal((1, 4, 32, 32)) a_ = torch.from_numpy(__UpperCAmelCase).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase) a_ = { "prompt": "A painting of a squirrel eating a burger", "latents": latents, "generator": generator, "num_inference_steps": 50, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def UpperCAmelCase__ ( self) ->Optional[Any]: a_ = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256").to(__UpperCAmelCase) pipe.set_progress_bar_config(disable=__UpperCAmelCase) a_ = self.get_inputs(__UpperCAmelCase) a_ = pipe(**__UpperCAmelCase).images[0] a_ = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy") a_ = np.abs(expected_image - image).max() assert max_diff < 1E-3
210
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class UpperCAmelCase_ : def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=99 , UpperCamelCase_=[1, 1, 2] , UpperCamelCase_=1 , UpperCamelCase_=32 , UpperCamelCase_=4 , UpperCamelCase_=8 , UpperCamelCase_=37 , UpperCamelCase_="gelu_new" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=5_12 , UpperCamelCase_=3 , UpperCamelCase_=0.0_2 , UpperCamelCase_=3 , UpperCamelCase_=4 , UpperCamelCase_=None , UpperCamelCase_=False , ) -> Tuple: __lowercase : int = parent __lowercase : Optional[int] = batch_size __lowercase : Dict = seq_length __lowercase : int = is_training __lowercase : int = use_input_mask __lowercase : str = use_token_type_ids __lowercase : List[Any] = use_labels __lowercase : Union[str, Any] = vocab_size __lowercase : Any = block_sizes __lowercase : Optional[Any] = num_decoder_layers __lowercase : Union[str, Any] = d_model __lowercase : str = n_head __lowercase : List[str] = d_head __lowercase : str = d_inner __lowercase : Tuple = hidden_act __lowercase : str = hidden_dropout __lowercase : Optional[Any] = attention_dropout __lowercase : Dict = activation_dropout __lowercase : Dict = max_position_embeddings __lowercase : int = type_vocab_size __lowercase : List[Any] = 2 __lowercase : Optional[int] = num_labels __lowercase : int = num_choices __lowercase : List[Any] = scope __lowercase : Optional[Any] = initializer_std # Used in the tests to check the size of the first attention layer __lowercase : List[str] = n_head # Used in the tests to check the size of the first hidden state __lowercase : Optional[int] = self.d_model # Used in the tests to check the number of output hidden states/attentions __lowercase : Any = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: __lowercase : Dict = self.num_hidden_layers + 2 def _lowerCamelCase ( self ) -> Optional[Any]: __lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Optional[int] = None if self.use_input_mask: __lowercase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Optional[int] = None if self.use_token_type_ids: __lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : List[Any] = None __lowercase : str = None __lowercase : Any = None if self.use_labels: __lowercase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : Optional[int] = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> Dict: __lowercase : Any = TFFunnelModel(config=UpperCamelCase_ ) __lowercase : Tuple = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase : str = model(UpperCamelCase_ ) __lowercase : int = [input_ids, input_mask] __lowercase : Optional[int] = model(UpperCamelCase_ ) __lowercase : Any = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __lowercase : int = False __lowercase : List[str] = TFFunnelModel(config=UpperCamelCase_ ) __lowercase : Optional[int] = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __lowercase : Tuple = False __lowercase : Any = TFFunnelModel(config=UpperCamelCase_ ) __lowercase : str = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> Union[str, Any]: __lowercase : Optional[int] = TFFunnelBaseModel(config=UpperCamelCase_ ) __lowercase : Tuple = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase : Any = model(UpperCamelCase_ ) __lowercase : List[Any] = [input_ids, input_mask] __lowercase : Any = model(UpperCamelCase_ ) __lowercase : Any = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) __lowercase : Any = False __lowercase : Optional[Any] = TFFunnelBaseModel(config=UpperCamelCase_ ) __lowercase : Optional[int] = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) __lowercase : Any = False __lowercase : str = TFFunnelBaseModel(config=UpperCamelCase_ ) __lowercase : Tuple = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> List[Any]: __lowercase : List[str] = TFFunnelForPreTraining(config=UpperCamelCase_ ) __lowercase : Tuple = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase : List[Any] = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> Any: __lowercase : str = TFFunnelForMaskedLM(config=UpperCamelCase_ ) __lowercase : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase : Any = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> Tuple: __lowercase : int = self.num_labels __lowercase : List[str] = TFFunnelForSequenceClassification(config=UpperCamelCase_ ) __lowercase : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase : Tuple = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> Dict: __lowercase : Optional[int] = self.num_choices __lowercase : List[Any] = TFFunnelForMultipleChoice(config=UpperCamelCase_ ) __lowercase : Union[str, Any] = tf.tile(tf.expand_dims(UpperCamelCase_ , 1 ) , (1, self.num_choices, 1) ) __lowercase : Tuple = tf.tile(tf.expand_dims(UpperCamelCase_ , 1 ) , (1, self.num_choices, 1) ) __lowercase : str = tf.tile(tf.expand_dims(UpperCamelCase_ , 1 ) , (1, self.num_choices, 1) ) __lowercase : Optional[Any] = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } __lowercase : List[str] = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> Union[str, Any]: __lowercase : str = self.num_labels __lowercase : Optional[Any] = TFFunnelForTokenClassification(config=UpperCamelCase_ ) __lowercase : Dict = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase : str = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> Optional[Any]: __lowercase : Any = TFFunnelForQuestionAnswering(config=UpperCamelCase_ ) __lowercase : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase : List[Any] = model(UpperCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self ) -> Optional[Any]: __lowercase : Tuple = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) : str = config_and_inputs __lowercase : List[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( snake_case , snake_case , unittest.TestCase ): UpperCamelCase =( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) UpperCamelCase =( { "feature-extraction": (TFFunnelBaseModel, TFFunnelModel), "fill-mask": TFFunnelForMaskedLM, "question-answering": TFFunnelForQuestionAnswering, "text-classification": TFFunnelForSequenceClassification, "token-classification": TFFunnelForTokenClassification, "zero-shot": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase =False UpperCamelCase =False def _lowerCamelCase ( self ) -> int: __lowercase : Optional[int] = TFFunnelModelTester(self ) __lowercase : Any = ConfigTester(self , config_class=UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowerCamelCase ( self ) -> Any: __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Dict: __lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase_ ) def _lowerCamelCase ( self ) -> List[str]: __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Optional[int]: __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase_ ) def _lowerCamelCase ( self ) -> List[Any]: __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase_ ) @require_tf class UpperCAmelCase_ ( snake_case , unittest.TestCase ): UpperCamelCase =( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) UpperCamelCase =False UpperCamelCase =False def _lowerCamelCase ( self ) -> str: __lowercase : List[str] = TFFunnelModelTester(self , base=UpperCamelCase_ ) __lowercase : Optional[Any] = ConfigTester(self , config_class=UpperCamelCase_ ) def _lowerCamelCase ( self ) -> List[str]: self.config_tester.run_common_tests() def _lowerCamelCase ( self ) -> Optional[Any]: __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*UpperCamelCase_ ) def _lowerCamelCase ( self ) -> List[str]: __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Tuple: __lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase_ )
76
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''Salesforce/codegen-350M-nl''': '''https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json''', '''Salesforce/codegen-350M-multi''': '''https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json''', '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json''', '''Salesforce/codegen-2B-nl''': '''https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json''', '''Salesforce/codegen-2B-multi''': '''https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json''', '''Salesforce/codegen-2B-mono''': '''https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json''', '''Salesforce/codegen-6B-nl''': '''https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json''', '''Salesforce/codegen-6B-multi''': '''https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json''', '''Salesforce/codegen-6B-mono''': '''https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json''', '''Salesforce/codegen-16B-nl''': '''https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json''', '''Salesforce/codegen-16B-multi''': '''https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json''', '''Salesforce/codegen-16B-mono''': '''https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json''', } class __a ( __a ): '''simple docstring''' _lowerCamelCase : List[Any] = """codegen""" _lowerCamelCase : List[str] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , _lowerCamelCase=50_400 , _lowerCamelCase=2_048 , _lowerCamelCase=2_048 , _lowerCamelCase=4_096 , _lowerCamelCase=28 , _lowerCamelCase=16 , _lowerCamelCase=64 , _lowerCamelCase=None , _lowerCamelCase="gelu_new" , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=1e-5 , _lowerCamelCase=0.02 , _lowerCamelCase=True , _lowerCamelCase=50_256 , _lowerCamelCase=50_256 , _lowerCamelCase=False , **_lowerCamelCase , ) -> Union[str, Any]: '''simple docstring''' __lowercase = vocab_size __lowercase = n_ctx __lowercase = n_positions __lowercase = n_embd __lowercase = n_layer __lowercase = n_head __lowercase = n_inner __lowercase = rotary_dim __lowercase = activation_function __lowercase = resid_pdrop __lowercase = embd_pdrop __lowercase = attn_pdrop __lowercase = layer_norm_epsilon __lowercase = initializer_range __lowercase = use_cache __lowercase = bos_token_id __lowercase = eos_token_id super().__init__( bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , tie_word_embeddings=_lowerCamelCase , **_lowerCamelCase ) class __a ( __a ): '''simple docstring''' def __init__( self , _lowerCamelCase , _lowerCamelCase = "default" , _lowerCamelCase = None , _lowerCamelCase = False , ) -> str: '''simple docstring''' super().__init__(_lowerCamelCase , task=_lowerCamelCase , patching_specs=_lowerCamelCase , use_past=_lowerCamelCase ) if not getattr(self._config , "pad_token_id" , _lowerCamelCase ): # TODO: how to do that better? __lowercase = 0 @property def SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' __lowercase = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(_lowerCamelCase , direction="inputs" ) __lowercase = {0: "batch", 1: "past_sequence + sequence"} else: __lowercase = {0: "batch", 1: "sequence"} return common_inputs @property def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return self._config.n_layer @property def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return self._config.n_head def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' __lowercase = super(_lowerCamelCase , self ).generate_dummy_inputs( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) # We need to order the input in the way they appears in the forward() __lowercase = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __lowercase , __lowercase = common_inputs["input_ids"].shape # Not using the same length for past_key_values __lowercase = seqlen + 2 __lowercase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowercase = [ (torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase )) for _ in range(self.num_layers ) ] __lowercase = common_inputs["attention_mask"] if self.use_past: __lowercase = ordered_inputs["attention_mask"].dtype __lowercase = torch.cat( [ordered_inputs["attention_mask"], torch.ones(_lowerCamelCase , _lowerCamelCase , dtype=_lowerCamelCase )] , dim=1 ) return ordered_inputs @property def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return 13
118
0
"""simple docstring""" import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = XCLIPTextConfig() # derive patch size from model name UpperCamelCase = model_name.find("patch" ) UpperCamelCase = int(model_name[start_idx + len("patch" ) : start_idx + len("patch" ) + 2] ) UpperCamelCase = XCLIPVisionConfig(patch_size=_SCREAMING_SNAKE_CASE , num_frames=_SCREAMING_SNAKE_CASE ) if "large" in model_name: UpperCamelCase = 768 UpperCamelCase = 3_072 UpperCamelCase = 12 UpperCamelCase = 1_024 UpperCamelCase = 4_096 UpperCamelCase = 16 UpperCamelCase = 24 UpperCamelCase = 768 UpperCamelCase = 3_072 if model_name == "xclip-large-patch14-16-frames": UpperCamelCase = 336 UpperCamelCase = XCLIPConfig.from_text_vision_configs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if "large" in model_name: UpperCamelCase = 768 return config def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" if name == "token_embedding.weight": UpperCamelCase = name.replace("token_embedding.weight" , "text_model.embeddings.token_embedding.weight" ) if name == "positional_embedding": UpperCamelCase = name.replace("positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "ln_1" in name: UpperCamelCase = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: UpperCamelCase = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: UpperCamelCase = name.replace("c_fc" , "fc1" ) if "c_proj" in name: UpperCamelCase = name.replace("c_proj" , "fc2" ) if name.startswith("transformer.resblocks" ): UpperCamelCase = name.replace("transformer.resblocks" , "text_model.encoder.layers" ) if "attn.out_proj" in name and "message" not in name: UpperCamelCase = name.replace("attn.out_proj" , "self_attn.out_proj" ) if "ln_final" in name: UpperCamelCase = name.replace("ln_final" , "text_model.final_layer_norm" ) # visual encoder if name == "visual.class_embedding": UpperCamelCase = name.replace("visual.class_embedding" , "vision_model.embeddings.class_embedding" ) if name == "visual.positional_embedding": UpperCamelCase = name.replace("visual.positional_embedding" , "vision_model.embeddings.position_embedding.weight" ) if name.startswith("visual.transformer.resblocks" ): UpperCamelCase = name.replace("visual.transformer.resblocks" , "vision_model.encoder.layers" ) if "visual.conv1" in name: UpperCamelCase = name.replace("visual.conv1" , "vision_model.embeddings.patch_embedding" ) if "visual.ln_pre" in name: UpperCamelCase = name.replace("visual.ln_pre" , "vision_model.pre_layernorm" ) if "visual.ln_post" in name: UpperCamelCase = name.replace("visual.ln_post" , "vision_model.post_layernorm" ) if "visual.proj" in name: UpperCamelCase = name.replace("visual.proj" , "visual_projection.weight" ) if "text_projection" in name: UpperCamelCase = name.replace("text_projection" , "text_projection.weight" ) # things on top if "prompts_visual_proj" in name: UpperCamelCase = name.replace("prompts_visual_proj" , "prompts_visual_projection" ) if "prompts_visual_ln" in name: UpperCamelCase = name.replace("prompts_visual_ln" , "prompts_visual_layernorm" ) # mit if name == "mit.positional_embedding": UpperCamelCase = name.replace("positional" , "position" ) if name.startswith("mit.resblocks" ): UpperCamelCase = name.replace("mit.resblocks" , "mit.encoder.layers" ) # prompts generator if name.startswith("prompts_generator.norm" ): UpperCamelCase = name.replace("prompts_generator.norm" , "prompts_generator.layernorm" ) return name def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "attn.in_proj" in key: UpperCamelCase = key.split("." ) if key.startswith("visual" ): UpperCamelCase = key_split[3] UpperCamelCase = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: UpperCamelCase = val[ :dim, : ] UpperCamelCase = val[ dim : dim * 2, : ] UpperCamelCase = val[ -dim:, : ] else: UpperCamelCase = val[ :dim ] UpperCamelCase = val[ dim : dim * 2 ] UpperCamelCase = val[ -dim: ] else: if "weight" in key: UpperCamelCase = val[ :dim, : ] UpperCamelCase = val[ dim : dim * 2, : ] UpperCamelCase = val[ -dim:, : ] else: UpperCamelCase = val[:dim] UpperCamelCase = val[ dim : dim * 2 ] UpperCamelCase = val[-dim:] elif key.startswith("mit" ): UpperCamelCase = key_split[2] UpperCamelCase = config.vision_config.mit_hidden_size if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] else: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = key_split[2] UpperCamelCase = config.text_config.hidden_size if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[ dim : dim * 2, : ] UpperCamelCase = val[-dim:, :] else: UpperCamelCase = val[:dim] UpperCamelCase = val[ dim : dim * 2 ] UpperCamelCase = val[-dim:] else: UpperCamelCase = rename_key(_SCREAMING_SNAKE_CASE ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: UpperCamelCase = val.T UpperCamelCase = val return orig_state_dict def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" if num_frames == 8: UpperCamelCase = "eating_spaghetti_8_frames.npy" elif num_frames == 16: UpperCamelCase = "eating_spaghetti.npy" elif num_frames == 32: UpperCamelCase = "eating_spaghetti_32_frames.npy" UpperCamelCase = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename=_SCREAMING_SNAKE_CASE , repo_type="dataset" , ) UpperCamelCase = np.load(_SCREAMING_SNAKE_CASE ) return list(_SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False ): """simple docstring""" UpperCamelCase = { # fully supervised kinetics-400 checkpoints "xclip-base-patch32": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth", "xclip-base-patch32-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth" ), "xclip-base-patch16": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth", "xclip-base-patch16-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth" ), "xclip-large-patch14": "https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb", "xclip-large-patch14-16-frames": "https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f", # fully supervised kinetics-600 checkpoints "xclip-base-patch16-kinetics-600": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth" ), "xclip-base-patch16-kinetics-600-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth" ), "xclip-large-patch14-kinetics-600": "https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be", # few shot "xclip-base-patch16-hmdb-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth" ), "xclip-base-patch16-hmdb-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth" ), "xclip-base-patch16-hmdb-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth" ), "xclip-base-patch16-hmdb-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth" ), "xclip-base-patch16-ucf-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth" ), "xclip-base-patch16-ucf-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth" ), "xclip-base-patch16-ucf-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth" ), "xclip-base-patch16-ucf-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth" ), # zero shot "xclip-base-patch16-zero-shot": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth", } UpperCamelCase = model_to_url[model_name] UpperCamelCase = 8 if "16-frames" in model_name: UpperCamelCase = 16 elif "shot" in model_name: UpperCamelCase = 32 UpperCamelCase = get_xclip_config(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = XCLIPModel(_SCREAMING_SNAKE_CASE ) model.eval() if "drive" in checkpoint_url: UpperCamelCase = "pytorch_model.bin" gdown.cached_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , quiet=_SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location="cpu" )["model"] else: UpperCamelCase = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE )["model"] UpperCamelCase = convert_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = XCLIPModel(_SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() UpperCamelCase = 336 if model_name == "xclip-large-patch14-16-frames" else 224 UpperCamelCase = VideoMAEImageProcessor(size=_SCREAMING_SNAKE_CASE ) UpperCamelCase = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32" ) UpperCamelCase = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32" ) UpperCamelCase = XCLIPProcessor(image_processor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE ) UpperCamelCase = prepare_video(_SCREAMING_SNAKE_CASE ) UpperCamelCase = processor( text=["playing sports", "eating spaghetti", "go shopping"] , videos=_SCREAMING_SNAKE_CASE , return_tensors="pt" , padding=_SCREAMING_SNAKE_CASE ) print("Shape of pixel values:" , inputs.pixel_values.shape ) with torch.no_grad(): UpperCamelCase = model(**_SCREAMING_SNAKE_CASE ) # Verify outputs UpperCamelCase = outputs.logits_per_video UpperCamelCase = logits_per_video.softmax(dim=1 ) print("Probs:" , _SCREAMING_SNAKE_CASE ) # kinetics-400 if model_name == "xclip-base-patch32": UpperCamelCase = torch.tensor([[0.00_19, 0.99_51, 0.00_30]] ) elif model_name == "xclip-base-patch32-16-frames": UpperCamelCase = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] ) elif model_name == "xclip-base-patch16": UpperCamelCase = torch.tensor([[0.00_83, 0.96_81, 0.02_36]] ) elif model_name == "xclip-base-patch16-16-frames": UpperCamelCase = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] ) elif model_name == "xclip-large-patch14": UpperCamelCase = torch.tensor([[0.00_62, 0.98_64, 0.00_75]] ) elif model_name == "xclip-large-patch14-16-frames": UpperCamelCase = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": UpperCamelCase = torch.tensor([[0.05_55, 0.89_14, 0.05_31]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": UpperCamelCase = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": UpperCamelCase = torch.tensor([[0.00_36, 0.99_20, 0.00_45]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": UpperCamelCase = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": UpperCamelCase = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": UpperCamelCase = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": UpperCamelCase = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": UpperCamelCase = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": UpperCamelCase = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": UpperCamelCase = torch.tensor([[0.00_27, 0.99_04, 0.00_70]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": UpperCamelCase = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": UpperCamelCase = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] ) else: raise ValueError(F"Model name {model_name} not supported" ) assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print("Pushing model, processor and slow tokenizer files to the hub..." ) model.push_to_hub(_SCREAMING_SNAKE_CASE , organization="nielsr" ) processor.push_to_hub(_SCREAMING_SNAKE_CASE , organization="nielsr" ) slow_tokenizer.push_to_hub(_SCREAMING_SNAKE_CASE , organization="nielsr" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''xclip-base-patch32''', type=str, help='''Name of the model.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCAmelCase__ = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
544
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class _lowerCamelCase ( unittest.TestCase ): UpperCAmelCase_ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def snake_case_ (self , __a , __a , __a ) -> str: UpperCamelCase = hf_hub_download( repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) UpperCamelCase = VideoClassificationPipeline(model=__a , image_processor=__a , top_k=2 ) UpperCamelCase = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def snake_case_ (self , __a , __a ) -> str: for example in examples: UpperCamelCase = video_classifier(__a ) self.assertEqual( __a , [ {"score": ANY(__a ), "label": ANY(__a )}, {"score": ANY(__a ), "label": ANY(__a )}, ] , ) @require_torch def snake_case_ (self ) -> int: UpperCamelCase = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" UpperCamelCase = VideoMAEFeatureExtractor( size={"shortest_edge": 10} , crop_size={"height": 10, "width": 10} ) UpperCamelCase = pipeline( "video-classification" , model=__a , feature_extractor=__a , frame_sampling_rate=4 ) UpperCamelCase = hf_hub_download(repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) UpperCamelCase = video_classifier(__a , top_k=2 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}] , ) UpperCamelCase = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], ] , ) @require_tf def snake_case_ (self ) -> Optional[Any]: pass
544
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __a: Dict = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: List[str] = ['''DeiTFeatureExtractor'''] __a: Union[str, Any] = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: Dict = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: List[Any] = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys __a: List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
108
import gc import threading import time import psutil import torch class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Union[str, Any] ) -> str: """simple docstring""" _UpperCAmelCase = psutil.Process() _UpperCAmelCase = False def lowerCamelCase ( self : List[Any] ) -> int: """simple docstring""" _UpperCAmelCase = -1 while True: _UpperCAmelCase = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def lowerCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase = True _UpperCAmelCase = threading.Thread(target=self.peak_monitor ) _UpperCAmelCase = True self.thread.start() def lowerCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _UpperCAmelCase = False self.thread.join() return self.cpu_memory_peak __a: Union[str, Any] = PeakCPUMemory() def _SCREAMING_SNAKE_CASE ( ) -> List[Any]: # Time _UpperCAmelCase = {"""time""": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem _UpperCAmelCase = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): _UpperCAmelCase = torch.cuda.memory_allocated(__snake_case ) torch.cuda.reset_peak_memory_stats() return measures def _SCREAMING_SNAKE_CASE ( __snake_case ) -> Union[str, Any]: # Time _UpperCAmelCase = {"""time""": time.time() - start_measures["""time"""]} gc.collect() torch.cuda.empty_cache() # CPU mem _UpperCAmelCase = (psutil.Process().memory_info().rss - start_measures["""cpu"""]) / 2**2_0 _UpperCAmelCase = (cpu_peak_tracker.stop() - start_measures["""cpu"""]) / 2**2_0 # GPU mem for i in range(torch.cuda.device_count() ): _UpperCAmelCase = (torch.cuda.memory_allocated(__snake_case ) - start_measures[str(__snake_case )]) / 2**2_0 _UpperCAmelCase = (torch.cuda.max_memory_allocated(__snake_case ) - start_measures[str(__snake_case )]) / 2**2_0 return measures def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> str: print(f"""{description}:""" ) print(f"""- Time: {measures["time"]:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(f"""- GPU {i} allocated: {measures[str(__snake_case )]:.2f}MiB""" ) _UpperCAmelCase = measures[f"""{i}-peak"""] print(f"""- GPU {i} peak: {peak:.2f}MiB""" ) print(f"""- CPU RAM allocated: {measures["cpu"]:.2f}MiB""" ) print(f"""- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB""" )
108
1
"""simple docstring""" import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class _UpperCamelCase : '''simple docstring''' def __init__( self , __lowercase , __lowercase=3 , __lowercase=7 , __lowercase=True , __lowercase=True , __lowercase=False , __lowercase=True , __lowercase=99 , __lowercase=32 , __lowercase=5 , __lowercase=4 , __lowercase=37 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=512 , __lowercase=16 , __lowercase=2 , __lowercase=0.02 , __lowercase=3 , __lowercase=4 , __lowercase=None , ): UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_input_mask UpperCAmelCase__ = use_token_type_ids UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_labels UpperCAmelCase__ = num_choices UpperCAmelCase__ = scope def A__ ( self ): UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self ): return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowercase , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=__lowercase , ) def A__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase__ = FalconModel(config=__lowercase ) model.to(__lowercase ) model.eval() UpperCAmelCase__ = model(__lowercase , attention_mask=__lowercase ) UpperCAmelCase__ = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ): UpperCAmelCase__ = True UpperCAmelCase__ = FalconModel(__lowercase ) model.to(__lowercase ) model.eval() UpperCAmelCase__ = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , ) UpperCAmelCase__ = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , ) UpperCAmelCase__ = model(__lowercase , attention_mask=__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ): UpperCAmelCase__ = FalconForCausalLM(config=__lowercase ) model.to(__lowercase ) model.eval() UpperCAmelCase__ = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ): UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = FalconForCausalLM(config=__lowercase ) model.to(__lowercase ) model.eval() # first forward pass UpperCAmelCase__ = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , use_cache=__lowercase , ) UpperCAmelCase__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase__ = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase__ = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , output_hidden_states=__lowercase , )["""hidden_states"""][0] UpperCAmelCase__ = model( __lowercase , attention_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , past_key_values=__lowercase , output_hidden_states=__lowercase , )["""hidden_states"""][0] # select random slice UpperCAmelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase__ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowercase , __lowercase , atol=1e-3 ) ) def A__ ( self ): UpperCAmelCase__ = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = config_and_inputs UpperCAmelCase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) __lowercase : Dict = (FalconForCausalLM,) if is_torch_available() else () __lowercase : int = ( { 'feature-extraction': FalconModel, 'text-classification': FalconForSequenceClassification, 'text-generation': FalconForCausalLM, 'question-answering': FalconForQuestionAnswering, 'token-classification': FalconForTokenClassification, 'zero-shot': FalconForSequenceClassification, } if is_torch_available() else {} ) __lowercase : List[Any] = False __lowercase : int = False def A__ ( self ): UpperCAmelCase__ = FalconModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__lowercase , hidden_size=37 ) def A__ ( self ): self.config_tester.run_common_tests() def A__ ( self ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def A__ ( self ): UpperCAmelCase__ , *UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: UpperCAmelCase__ = alibi self.model_tester.create_and_check_model(__lowercase , *__lowercase ) def A__ ( self ): UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = 3 UpperCAmelCase__ = input_dict["""input_ids"""] UpperCAmelCase__ = input_ids.ne(1 ).to(__lowercase ) UpperCAmelCase__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase__ = FalconForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() UpperCAmelCase__ = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A__ ( self ): UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = 3 UpperCAmelCase__ = """single_label_classification""" UpperCAmelCase__ = input_dict["""input_ids"""] UpperCAmelCase__ = input_ids.ne(1 ).to(__lowercase ) UpperCAmelCase__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase__ = FalconForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() UpperCAmelCase__ = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A__ ( self ): UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = input_dict["""input_ids"""] UpperCAmelCase__ = FalconForCausalLM(__lowercase ) model.to(__lowercase ) model.eval() UpperCAmelCase__ = model(__lowercase , use_cache=__lowercase ) UpperCAmelCase__ = input_ids.shape[0] UpperCAmelCase__ = model._convert_to_rw_cache(result.past_key_values ) UpperCAmelCase__ = model._convert_cache_to_standard_format(__lowercase , __lowercase ) for layer in range(len(__lowercase ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def A__ ( self ): UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = 3 UpperCAmelCase__ = """multi_label_classification""" UpperCAmelCase__ = input_dict["""input_ids"""] UpperCAmelCase__ = input_ids.ne(1 ).to(__lowercase ) UpperCAmelCase__ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase__ = FalconForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() UpperCAmelCase__ = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A__ ( self ): # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(__lowercase , """use_cache""" ): return UpperCAmelCase__ = model_class(__lowercase ).to(__lowercase ) if "use_cache" not in inputs: UpperCAmelCase__ = True UpperCAmelCase__ = model(**__lowercase ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return UpperCAmelCase__ = ( getattr(__lowercase , """decoder_layers""" , __lowercase ) or getattr(__lowercase , """num_decoder_layers""" , __lowercase ) or config.num_hidden_layers ) UpperCAmelCase__ = getattr(__lowercase , """num_kv_heads""" , config.num_attention_heads ) UpperCAmelCase__ = getattr(__lowercase , """d_model""" , config.hidden_size ) UpperCAmelCase__ = embed_dim // num_attention_heads UpperCAmelCase__ = outputs["""past_key_values"""] self.assertEqual(len(__lowercase ) , __lowercase ) UpperCAmelCase__ , UpperCAmelCase__ = inputs["""input_ids"""].shape for i in range(__lowercase ): if config.new_decoder_architecture: UpperCAmelCase__ = config.num_attention_heads elif config.multi_query: UpperCAmelCase__ = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self ): UpperCAmelCase__ = AutoTokenizer.from_pretrained("""Rocketknight1/falcon-rw-1b""" ) UpperCAmelCase__ = FalconForCausalLM.from_pretrained("""Rocketknight1/falcon-rw-1b""" ) model.eval() model.to(__lowercase ) UpperCAmelCase__ = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(__lowercase ) UpperCAmelCase__ = ( """My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.""" ) UpperCAmelCase__ = model.generate(**__lowercase , do_sample=__lowercase , max_new_tokens=19 ) UpperCAmelCase__ = tokenizer.batch_decode(__lowercase )[0] self.assertEqual(__lowercase , __lowercase ) @slow def A__ ( self ): # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: UpperCAmelCase__ = AutoTokenizer.from_pretrained(__lowercase ) UpperCAmelCase__ = FalconForCausalLM.from_pretrained(__lowercase ) model.eval() model.to(__lowercase ) UpperCAmelCase__ = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(__lowercase ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**__lowercase , do_sample=__lowercase , max_new_tokens=4 ) model.generate(**__lowercase , do_sample=__lowercase , max_new_tokens=4 ) model.generate(**__lowercase , num_beams=2 , max_new_tokens=4 ) @slow def A__ ( self ): # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: UpperCAmelCase__ = AutoTokenizer.from_pretrained(__lowercase ) UpperCAmelCase__ = FalconForCausalLM.from_pretrained(__lowercase ) model.eval() model.to(device=__lowercase ) UpperCAmelCase__ = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(__lowercase ) # Test results are the same with and without cache UpperCAmelCase__ = model.generate(**__lowercase , do_sample=__lowercase , max_new_tokens=20 , use_cache=__lowercase ) UpperCAmelCase__ = model.generate(**__lowercase , do_sample=__lowercase , max_new_tokens=20 , use_cache=__lowercase ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
422
"""simple docstring""" import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset a : Tuple = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , __lowercase ): super().__init__() UpperCAmelCase__ = torchvision.models.resnetaaa(pretrained=__lowercase ) UpperCAmelCase__ = list(model.children() )[:-2] UpperCAmelCase__ = nn.Sequential(*__lowercase ) UpperCAmelCase__ = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def A__ ( self , __lowercase ): # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 UpperCAmelCase__ = self.pool(self.model(__lowercase ) ) UpperCAmelCase__ = torch.flatten(__lowercase , start_dim=2 ) UpperCAmelCase__ = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class _UpperCamelCase ( __UpperCamelCase ): '''simple docstring''' def __init__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase__ = [json.loads(__lowercase ) for l in open(__lowercase )] UpperCAmelCase__ = os.path.dirname(__lowercase ) UpperCAmelCase__ = tokenizer UpperCAmelCase__ = labels UpperCAmelCase__ = len(__lowercase ) UpperCAmelCase__ = max_seq_length UpperCAmelCase__ = transforms def __len__( self ): return len(self.data ) def __getitem__( self , __lowercase ): UpperCAmelCase__ = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=__lowercase ) ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = sentence[0], sentence[1:-1], sentence[-1] UpperCAmelCase__ = sentence[: self.max_seq_length] UpperCAmelCase__ = torch.zeros(self.n_classes ) UpperCAmelCase__ = 1 UpperCAmelCase__ = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" ) UpperCAmelCase__ = self.transforms(__lowercase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def A__ ( self ): UpperCAmelCase__ = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def snake_case__ ( _SCREAMING_SNAKE_CASE ) ->List[str]: UpperCAmelCase__ = [len(row["""sentence"""] ) for row in batch] UpperCAmelCase__ , UpperCAmelCase__ = len(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = torch.zeros(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=torch.long ) UpperCAmelCase__ = torch.zeros(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ): UpperCAmelCase__ = input_row["""sentence"""] UpperCAmelCase__ = 1 UpperCAmelCase__ = torch.stack([row["""image"""] for row in batch] ) UpperCAmelCase__ = torch.stack([row["""label"""] for row in batch] ) UpperCAmelCase__ = torch.stack([row["""image_start_token"""] for row in batch] ) UpperCAmelCase__ = torch.stack([row["""image_end_token"""] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def snake_case__ ( ) ->int: return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def snake_case__ ( ) ->str: return transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize( mean=[0.4677_7044, 0.4453_1429, 0.4066_1017] , std=[0.1222_1994, 0.1214_5835, 0.1438_0469] , ), ] )
422
1
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging a : Dict = logging.get_logger(__name__) # TODO: upload to AWS a : Tuple = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class a_ ( _UpperCAmelCase ): a : int = 'retribert' def __init__( self : Optional[Any] , __UpperCamelCase : Optional[Any]=3_05_22 , __UpperCamelCase : int=7_68 , __UpperCamelCase : Any=8 , __UpperCamelCase : Dict=12 , __UpperCamelCase : List[Any]=30_72 , __UpperCamelCase : List[Any]="gelu" , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : int=0.1 , __UpperCamelCase : Union[str, Any]=5_12 , __UpperCamelCase : Dict=2 , __UpperCamelCase : Tuple=0.0_2 , __UpperCamelCase : List[str]=1e-12 , __UpperCamelCase : int=True , __UpperCamelCase : str=1_28 , __UpperCamelCase : Union[str, Any]=0 , **__UpperCamelCase : Any , ) ->List[Any]: '''simple docstring''' super().__init__(pad_token_id=__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = share_encoders _UpperCAmelCase = projection_dim
555
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a : Dict = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"transformer.encoder.layers.{i}.self_attn.out_proj.weight", F"encoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (F"transformer.encoder.layers.{i}.self_attn.out_proj.bias", F"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"encoder.layers.{i}.fc1.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"encoder.layers.{i}.fc1.bias")) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"encoder.layers.{i}.fc2.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"encoder.layers.{i}.fc2.bias")) rename_keys.append( (F"transformer.encoder.layers.{i}.norm1.weight", F"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.bias", F"encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.weight", F"encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"encoder.layers.{i}.final_layer_norm.bias")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"transformer.decoder.layers.{i}.self_attn.out_proj.weight", F"decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( F"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight", F"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( F"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias", F"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"decoder.layers.{i}.fc1.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"decoder.layers.{i}.fc1.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"decoder.layers.{i}.fc2.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"decoder.layers.{i}.fc2.bias")) rename_keys.append( (F"transformer.decoder.layers.{i}.norm1.weight", F"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.bias", F"decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append( (F"transformer.decoder.layers.{i}.norm2.weight", F"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm2.bias", F"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.weight", F"decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"decoder.layers.{i}.final_layer_norm.bias")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.encoder.norm.weight''', '''encoder.layernorm.weight'''), ('''transformer.encoder.norm.bias''', '''encoder.layernorm.bias'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) def _UpperCamelCase ( _A , _A , _A ) -> Tuple: """simple docstring""" _UpperCAmelCase = state_dict.pop(_A ) _UpperCAmelCase = val def _UpperCamelCase ( _A ) -> str: """simple docstring""" _UpperCAmelCase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: _UpperCAmelCase = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) _UpperCAmelCase = value else: _UpperCAmelCase = value return new_state_dict def _UpperCamelCase ( _A ) -> int: """simple docstring""" _UpperCAmelCase = """""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _UpperCAmelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) _UpperCAmelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[:2_5_6, :] _UpperCAmelCase = in_proj_bias[:2_5_6] _UpperCAmelCase = in_proj_weight[2_5_6:5_1_2, :] _UpperCAmelCase = in_proj_bias[2_5_6:5_1_2] _UpperCAmelCase = in_proj_weight[-2_5_6:, :] _UpperCAmelCase = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _UpperCAmelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) _UpperCAmelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[:2_5_6, :] _UpperCAmelCase = in_proj_bias[:2_5_6] _UpperCAmelCase = in_proj_weight[2_5_6:5_1_2, :] _UpperCAmelCase = in_proj_bias[2_5_6:5_1_2] _UpperCAmelCase = in_proj_weight[-2_5_6:, :] _UpperCAmelCase = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention _UpperCAmelCase = state_dict.pop( F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) _UpperCAmelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict _UpperCAmelCase = in_proj_weight_cross_attn[:2_5_6, :] _UpperCAmelCase = in_proj_bias_cross_attn[:2_5_6] _UpperCAmelCase = in_proj_weight_cross_attn[2_5_6:5_1_2, :] _UpperCAmelCase = in_proj_bias_cross_attn[2_5_6:5_1_2] _UpperCAmelCase = in_proj_weight_cross_attn[-2_5_6:, :] _UpperCAmelCase = in_proj_bias_cross_attn[-2_5_6:] def _UpperCamelCase ( _A , _A ) -> Optional[int]: """simple docstring""" _UpperCAmelCase ,_UpperCAmelCase = image.size _UpperCAmelCase = max(_A , _A ) _UpperCAmelCase = 8_0_0 if """detection""" in checkpoint_url else 1_0_0_0 _UpperCAmelCase = target_max_size / current_max_size _UpperCAmelCase = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def _UpperCamelCase ( _A ) -> str: """simple docstring""" _UpperCAmelCase = F.to_tensor(_A ) _UpperCAmelCase = F.normalize(_A , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def _UpperCamelCase ( _A , _A , _A ) -> str: """simple docstring""" logger.info("""Converting model...""" ) # load original state dict _UpperCAmelCase = torch.hub.load_state_dict_from_url(_A , map_location="""cpu""" ) # rename keys for src, dest in rename_keys: rename_key(_A , _A , _A ) _UpperCAmelCase = rename_backbone_keys(_A ) # query, key and value matrices need special treatment read_in_q_k_v(_A ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _UpperCAmelCase = """model.""" for key in state_dict.copy().keys(): if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): _UpperCAmelCase = state_dict.pop(_A ) _UpperCAmelCase = val # create HuggingFace model and load state dict _UpperCAmelCase = TableTransformerConfig( backbone="""resnet18""" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: _UpperCAmelCase = 1_5 _UpperCAmelCase = 2 _UpperCAmelCase = {0: """table""", 1: """table rotated"""} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} else: _UpperCAmelCase = 1_2_5 _UpperCAmelCase = 6 _UpperCAmelCase = { 0: """table""", 1: """table column""", 2: """table row""", 3: """table column header""", 4: """table projected row header""", 5: """table spanning cell""", } _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} _UpperCAmelCase = DetrImageProcessor( format="""coco_detection""" , max_size=8_0_0 if """detection""" in checkpoint_url else 1_0_0_0 ) _UpperCAmelCase = TableTransformerForObjectDetection(_A ) model.load_state_dict(_A ) model.eval() # verify our conversion _UpperCAmelCase = """example_pdf.png""" if """detection""" in checkpoint_url else """example_table.png""" _UpperCAmelCase = hf_hub_download(repo_id="""nielsr/example-pdf""" , repo_type="""dataset""" , filename=_A ) _UpperCAmelCase = Image.open(_A ).convert("""RGB""" ) _UpperCAmelCase = normalize(resize(_A , _A ) ).unsqueeze(0 ) _UpperCAmelCase = model(_A ) if "detection" in checkpoint_url: _UpperCAmelCase = (1, 1_5, 3) _UpperCAmelCase = torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) _UpperCAmelCase = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: _UpperCAmelCase = (1, 1_2_5, 7) _UpperCAmelCase = torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) _UpperCAmelCase = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , _A , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , _A , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_A ).mkdir(exist_ok=_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) if push_to_hub: # Push model to HF hub logger.info("""Pushing model to the hub...""" ) _UpperCAmelCase = ( """microsoft/table-transformer-detection""" if """detection""" in checkpoint_url else """microsoft/table-transformer-structure-recognition""" ) model.push_to_hub(_A ) image_processor.push_to_hub(_A ) if __name__ == "__main__": a : Dict = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', type=str, choices=[ '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth''', ], help='''URL of the Table Transformer checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a : int = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
555
1
_A = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _A = [{'type': 'code', 'content': INSTALL_CONTENT}] _A = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
719
def __SCREAMING_SNAKE_CASE ( UpperCamelCase : int ) -> bool: """simple docstring""" if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True a_ = 4 a_ = (1 << p) - 1 for _ in range(p - 2 ): a_ = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
403
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 10_00 ) -> int: '''simple docstring''' lowercase_ = 2**power lowercase_ = 0 while n: lowercase_ , lowercase_ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
567
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def _SCREAMING_SNAKE_CASE () -> Generator[int, None, None]: '''simple docstring''' lowercase_ = {} lowercase_ = 2 while True: lowercase_ = factor_map.pop(__lowerCAmelCase , __lowerCAmelCase ) if factor: lowercase_ = factor + prime while x in factor_map: x += factor lowercase_ = factor else: lowercase_ = prime yield prime prime += 1 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 1E10 ) -> int: '''simple docstring''' lowercase_ = sieve() lowercase_ = 1 while True: lowercase_ = next(__lowerCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__lowerCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
567
1
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __lowerCamelCase = datasets.utils.logging.get_logger(__name__) __lowerCamelCase = ["names", "prefix"] __lowerCamelCase = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] __lowerCamelCase = ["encoding_errors", "on_bad_lines"] __lowerCamelCase = ["date_format"] @dataclass class UpperCamelCase__( datasets.BuilderConfig ): lowerCAmelCase__ : List[Any] = ',' lowerCAmelCase__ : List[Any] = None lowerCAmelCase__ : int = 'infer' lowerCAmelCase__ : Optional[int] = None lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : Any = None lowerCAmelCase__ : Any = None lowerCAmelCase__ : List[str] = True lowerCAmelCase__ : Optional[int] = None lowerCAmelCase__ : Optional[int] = None lowerCAmelCase__ : str = None lowerCAmelCase__ : List[Any] = None lowerCAmelCase__ : Tuple = False lowerCAmelCase__ : Dict = None lowerCAmelCase__ : Dict = None lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : Tuple = True lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : str = False lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : Any = None lowerCAmelCase__ : Union[str, Any] = '.' lowerCAmelCase__ : Union[str, Any] = None lowerCAmelCase__ : Union[str, Any] = '"' lowerCAmelCase__ : List[str] = 0 lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : Optional[int] = None lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : Dict = 0 lowerCAmelCase__ : Optional[int] = True lowerCAmelCase__ : Optional[int] = False lowerCAmelCase__ : Any = None lowerCAmelCase__ : Tuple = 1_0000 lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : List[str] = 'strict' lowerCAmelCase__ : List[Any] = 'error' lowerCAmelCase__ : Dict = None def snake_case__ ( self ) -> int: if self.delimiter is not None: A__ = self.delimiter if self.column_names is not None: A__ = self.column_names @property def snake_case__ ( self ) -> Any: A__ = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() ,__UpperCAmelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class UpperCamelCase__( datasets.ArrowBasedBuilder ): lowerCAmelCase__ : Union[str, Any] = CsvConfig def snake_case__ ( self ) -> int: return datasets.DatasetInfo(features=self.config.features ) def snake_case__ ( self ,__UpperCAmelCase ) -> int: if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) A__ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__UpperCAmelCase ,(str, list, tuple) ): A__ = data_files if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): A__ = [files] A__ = [dl_manager.iter_files(__UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN ,gen_kwargs={'files': files} )] A__ = [] for split_name, files in data_files.items(): if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): A__ = [files] A__ = [dl_manager.iter_files(__UpperCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=__UpperCAmelCase ,gen_kwargs={'files': files} ) ) return splits def snake_case__ ( self ,__UpperCAmelCase ) -> pa.Table: if self.config.features is not None: A__ = self.config.features.arrow_schema if all(not require_storage_cast(__UpperCAmelCase ) for feature in self.config.features.values() ): # cheaper cast A__ = pa.Table.from_arrays([pa_table[field.name] for field in schema] ,schema=__UpperCAmelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example A__ = table_cast(__UpperCAmelCase ,__UpperCAmelCase ) return pa_table def snake_case__ ( self ,__UpperCAmelCase ) -> Union[str, Any]: A__ = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str A__ = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(__UpperCAmelCase ) else object for name, dtype, feature in zip(schema.names ,schema.types ,self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(__UpperCAmelCase ) ): A__ = pd.read_csv(__UpperCAmelCase ,iterator=__UpperCAmelCase ,dtype=__UpperCAmelCase ,**self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(__UpperCAmelCase ): A__ = pa.Table.from_pandas(__UpperCAmelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__UpperCAmelCase ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(__UpperCAmelCase )}: {e}''' ) raise
704
"""simple docstring""" def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" if len(UpperCamelCase__ ) <= 1: return [tuple(UpperCamelCase__ )] A__ = [] def generate(UpperCamelCase__ , UpperCamelCase__ ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , UpperCamelCase__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even A__ , A__ = arr[k - 1], arr[i] else: # k is odd A__ , A__ = arr[k - 1], arr[0] generate(k - 1 , UpperCamelCase__ ) generate(len(UpperCamelCase__ ) , UpperCamelCase__ ) return res if __name__ == "__main__": __lowerCamelCase = input("Enter numbers separated by a comma:\n").strip() __lowerCamelCase = [int(item) for item in user_input.split(",")] print(heaps(arr))
536
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
24
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[list[float]] ) -> list[list[float]]: __lowerCAmelCase : list[list[float]] = [] for data in source_data: for i, el in enumerate(SCREAMING_SNAKE_CASE ): if len(SCREAMING_SNAKE_CASE ) < i + 1: data_lists.append([] ) data_lists[i].append(float(SCREAMING_SNAKE_CASE ) ) return data_lists def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[list[float]] , SCREAMING_SNAKE_CASE :list[int] ) -> list[list[float]]: __lowerCAmelCase : list[list[float]] = [] for dlist, weight in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = min(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = max(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: __lowerCAmelCase : int = F'''Invalid weight of {weight:f} provided''' raise ValueError(SCREAMING_SNAKE_CASE ) score_lists.append(SCREAMING_SNAKE_CASE ) return score_lists def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[list[float]] ) -> list[float]: __lowerCAmelCase : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[str] = final_scores[j] + ele return final_scores def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[list[float]] , SCREAMING_SNAKE_CASE :list[int] ) -> list[list[float]]: __lowerCAmelCase : str = get_data(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = calculate_each_score(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = generate_final_scores(SCREAMING_SNAKE_CASE ) # append scores to source data for i, ele in enumerate(SCREAMING_SNAKE_CASE ): source_data[i].append(SCREAMING_SNAKE_CASE ) return source_data
504
0
"""simple docstring""" from datetime import datetime as dt import os from github import Github UpperCAmelCase = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def lowercase ( ) -> int: _UpperCamelCase = Github(os.environ['''GITHUB_TOKEN'''] ) _UpperCamelCase = g.get_repo('''huggingface/transformers''' ) _UpperCamelCase = repo.get_issues(state='''open''' ) for issue in open_issues: _UpperCamelCase = sorted([comment for comment in issue.get_comments()] , key=lambda a__ : i.created_at , reverse=a__ ) _UpperCamelCase = comments[0] if len(a__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
717
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase): def _UpperCamelCase ( self : List[Any] ) -> List[str]: _UpperCamelCase = 0 def _UpperCamelCase ( self : Any ) -> str: _UpperCamelCase = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def _UpperCamelCase ( self : Any ) -> Tuple: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = Path(__UpperCamelCase ) / '''preprocessor_config.json''' _UpperCamelCase = Path(__UpperCamelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__UpperCamelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__UpperCamelCase , '''w''' ) ) _UpperCamelCase = AutoImageProcessor.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def _UpperCamelCase ( self : Optional[Any] ) -> List[str]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = Path(__UpperCamelCase ) / '''preprocessor_config.json''' _UpperCamelCase = Path(__UpperCamelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__UpperCamelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__UpperCamelCase , '''w''' ) ) _UpperCamelCase = AutoImageProcessor.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def _UpperCamelCase ( self : int ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = CLIPConfig() # Create a dummy config file with image_proceesor_type _UpperCamelCase = Path(__UpperCamelCase ) / '''preprocessor_config.json''' _UpperCamelCase = Path(__UpperCamelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__UpperCamelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__UpperCamelCase , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally _UpperCamelCase = AutoImageProcessor.from_pretrained(__UpperCamelCase ).to_dict() config_dict.pop('''image_processor_type''' ) _UpperCamelCase = CLIPImageProcessor(**__UpperCamelCase ) # save in new folder model_config.save_pretrained(__UpperCamelCase ) config.save_pretrained(__UpperCamelCase ) _UpperCamelCase = AutoImageProcessor.from_pretrained(__UpperCamelCase ) # make sure private variable is not incorrectly saved _UpperCamelCase = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def _UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = Path(__UpperCamelCase ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__UpperCamelCase , '''w''' ) , ) _UpperCamelCase = AutoImageProcessor.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def _UpperCamelCase ( self : List[Any] ) -> List[Any]: with self.assertRaisesRegex( __UpperCamelCase , '''clip-base is not a local folder and is not a valid model identifier''' ): _UpperCamelCase = AutoImageProcessor.from_pretrained('''clip-base''' ) def _UpperCamelCase ( self : Dict ) -> Union[str, Any]: with self.assertRaisesRegex( __UpperCamelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): _UpperCamelCase = AutoImageProcessor.from_pretrained(__UpperCamelCase , revision='''aaaaaa''' ) def _UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: with self.assertRaisesRegex( __UpperCamelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): _UpperCamelCase = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def _UpperCamelCase ( self : int ) -> Any: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__UpperCamelCase ): _UpperCamelCase = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__UpperCamelCase ): _UpperCamelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__UpperCamelCase ) _UpperCamelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__UpperCamelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__UpperCamelCase ) _UpperCamelCase = AutoImageProcessor.from_pretrained(__UpperCamelCase , trust_remote_code=__UpperCamelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def _UpperCamelCase ( self : Optional[int] ) -> List[Any]: try: AutoConfig.register('''custom''' , __UpperCamelCase ) AutoImageProcessor.register(__UpperCamelCase , __UpperCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__UpperCamelCase ): AutoImageProcessor.register(__UpperCamelCase , __UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = Path(__UpperCamelCase ) / '''preprocessor_config.json''' _UpperCamelCase = Path(__UpperCamelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__UpperCamelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__UpperCamelCase , '''w''' ) ) _UpperCamelCase = CustomImageProcessor.from_pretrained(__UpperCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__UpperCamelCase ) _UpperCamelCase = AutoImageProcessor.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _UpperCamelCase ( self : List[str] ) -> Optional[Any]: class UpperCAmelCase_ ( _lowercase): snake_case__ = True try: AutoConfig.register('''custom''' , __UpperCamelCase ) AutoImageProcessor.register(__UpperCamelCase , __UpperCamelCase ) # If remote code is not set, the default is to use local _UpperCamelCase = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. _UpperCamelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__UpperCamelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub _UpperCamelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__UpperCamelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(__UpperCamelCase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
342
0
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class a__ ( a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : List[Any] = CpmAntTokenizer lowercase__ : Any = False def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: super().setUp() lowerCAmelCase__ = [ '''<d>''', '''</d>''', '''<s>''', '''</s>''', '''</_>''', '''<unk>''', '''<pad>''', '''</n>''', '''我''', '''是''', '''C''', '''P''', '''M''', '''A''', '''n''', '''t''', ] lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) @tooslow def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = CpmAntTokenizer.from_pretrained('''openbmb/cpm-ant-10b''' ) lowerCAmelCase__ = '''今天天气真好!''' lowerCAmelCase__ = ['''今天''', '''天气''', '''真''', '''好''', '''!'''] lowerCAmelCase__ = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = '''今天天气真好!''' lowerCAmelCase__ = [tokenizer.bos_token] + tokens lowerCAmelCase__ = [6, 98_02, 1_49_62, 20_82, 8_31, 2_44] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.decode(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
90
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class snake_case_ (nn.Module ): UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : bool = True UpperCAmelCase__ : bool = False UpperCAmelCase__ : bool = False UpperCAmelCase__ : bool = False UpperCAmelCase__ : jnp.dtype = jnp.floataa def lowerCamelCase__( self :int ) -> Dict: a__ = [] a__ = [] for i in range(self.num_layers ): a__ = self.in_channels if i == 0 else self.out_channels a__ = FlaxResnetBlockaD( in_channels=__snake_case ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(__snake_case ) a__ = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(__snake_case ) a__ = resnets a__ = attentions if self.add_downsample: a__ = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self :Dict ,__snake_case :str ,__snake_case :Optional[Any] ,__snake_case :Optional[int] ,__snake_case :Tuple=True ) -> Tuple: a__ = () for resnet, attn in zip(self.resnets ,self.attentions ): a__ = resnet(__snake_case ,__snake_case ,deterministic=__snake_case ) a__ = attn(__snake_case ,__snake_case ,deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: a__ = self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class snake_case_ (nn.Module ): UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : bool = True UpperCAmelCase__ : jnp.dtype = jnp.floataa def lowerCamelCase__( self :Optional[Any] ) -> Dict: a__ = [] for i in range(self.num_layers ): a__ = self.in_channels if i == 0 else self.out_channels a__ = FlaxResnetBlockaD( in_channels=__snake_case ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(__snake_case ) a__ = resnets if self.add_downsample: a__ = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self :Optional[Any] ,__snake_case :str ,__snake_case :Dict ,__snake_case :Any=True ) -> List[Any]: a__ = () for resnet in self.resnets: a__ = resnet(__snake_case ,__snake_case ,deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: a__ = self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class snake_case_ (nn.Module ): UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : bool = True UpperCAmelCase__ : bool = False UpperCAmelCase__ : bool = False UpperCAmelCase__ : bool = False UpperCAmelCase__ : jnp.dtype = jnp.floataa def lowerCamelCase__( self :Tuple ) -> List[str]: a__ = [] a__ = [] for i in range(self.num_layers ): a__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels a__ = self.prev_output_channel if i == 0 else self.out_channels a__ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(__snake_case ) a__ = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(__snake_case ) a__ = resnets a__ = attentions if self.add_upsample: a__ = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self :List[str] ,__snake_case :int ,__snake_case :List[Any] ,__snake_case :Union[str, Any] ,__snake_case :Union[str, Any] ,__snake_case :Dict=True ) -> int: for resnet, attn in zip(self.resnets ,self.attentions ): # pop res hidden states a__ = res_hidden_states_tuple[-1] a__ = res_hidden_states_tuple[:-1] a__ = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) a__ = resnet(__snake_case ,__snake_case ,deterministic=__snake_case ) a__ = attn(__snake_case ,__snake_case ,deterministic=__snake_case ) if self.add_upsample: a__ = self.upsamplers_a(__snake_case ) return hidden_states class snake_case_ (nn.Module ): UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : bool = True UpperCAmelCase__ : jnp.dtype = jnp.floataa def lowerCamelCase__( self :Union[str, Any] ) -> Any: a__ = [] for i in range(self.num_layers ): a__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels a__ = self.prev_output_channel if i == 0 else self.out_channels a__ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(__snake_case ) a__ = resnets if self.add_upsample: a__ = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self :Optional[int] ,__snake_case :List[Any] ,__snake_case :int ,__snake_case :Optional[Any] ,__snake_case :Optional[Any]=True ) -> List[str]: for resnet in self.resnets: # pop res hidden states a__ = res_hidden_states_tuple[-1] a__ = res_hidden_states_tuple[:-1] a__ = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) a__ = resnet(__snake_case ,__snake_case ,deterministic=__snake_case ) if self.add_upsample: a__ = self.upsamplers_a(__snake_case ) return hidden_states class snake_case_ (nn.Module ): UpperCAmelCase__ : int UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : bool = False UpperCAmelCase__ : bool = False UpperCAmelCase__ : jnp.dtype = jnp.floataa def lowerCamelCase__( self :Tuple ) -> List[Any]: # there is always at least one resnet a__ = [ FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) ] a__ = [] for _ in range(self.num_layers ): a__ = FlaxTransformeraDModel( in_channels=self.in_channels ,n_heads=self.num_attention_heads ,d_head=self.in_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(__snake_case ) a__ = FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(__snake_case ) a__ = resnets a__ = attentions def __call__( self :Optional[Any] ,__snake_case :Union[str, Any] ,__snake_case :List[str] ,__snake_case :int ,__snake_case :int=True ) -> str: a__ = self.resnets[0](__snake_case ,__snake_case ) for attn, resnet in zip(self.attentions ,self.resnets[1:] ): a__ = attn(__snake_case ,__snake_case ,deterministic=__snake_case ) a__ = resnet(__snake_case ,__snake_case ,deterministic=__snake_case ) return hidden_states
335
0
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=[1, 2, 1] , __SCREAMING_SNAKE_CASE=[2, 2, 4] , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=2.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-5 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=10 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=["stage1", "stage2", "stage3"] , __SCREAMING_SNAKE_CASE=[1, 2, 3] , ): """simple docstring""" UpperCamelCase : List[str] = parent UpperCamelCase : Any = batch_size UpperCamelCase : str = image_size UpperCamelCase : List[Any] = patch_size UpperCamelCase : Union[str, Any] = num_channels UpperCamelCase : Tuple = embed_dim UpperCamelCase : Optional[Any] = depths UpperCamelCase : Optional[int] = num_heads UpperCamelCase : Dict = window_size UpperCamelCase : Union[str, Any] = mlp_ratio UpperCamelCase : Tuple = qkv_bias UpperCamelCase : List[str] = hidden_dropout_prob UpperCamelCase : Optional[Any] = attention_probs_dropout_prob UpperCamelCase : Optional[int] = drop_path_rate UpperCamelCase : Dict = hidden_act UpperCamelCase : Tuple = use_absolute_embeddings UpperCamelCase : Optional[Any] = patch_norm UpperCamelCase : Union[str, Any] = layer_norm_eps UpperCamelCase : List[str] = initializer_range UpperCamelCase : Any = is_training UpperCamelCase : List[Any] = scope UpperCamelCase : int = use_labels UpperCamelCase : Tuple = type_sequence_label_size UpperCamelCase : List[Any] = encoder_stride UpperCamelCase : Optional[Any] = out_features UpperCamelCase : str = out_indices def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : Any = None if self.use_labels: UpperCamelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : Optional[int] = self.get_config() return config, pixel_values, labels def _lowercase ( self ): """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[str] = MaskFormerSwinModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase : List[Any] = model(__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCamelCase : str = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[Any] = MaskFormerSwinBackbone(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase : Optional[Any] = model(__SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(__SCREAMING_SNAKE_CASE ): UpperCamelCase : int = ['''stem'''] UpperCamelCase : Dict = MaskFormerSwinBackbone(config=__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase : List[Any] = config_and_inputs UpperCamelCase : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a, _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : Dict = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __UpperCamelCase : Any = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} __UpperCamelCase : Any = False __UpperCamelCase : Optional[Any] = False __UpperCamelCase : Optional[int] = False __UpperCamelCase : Tuple = False __UpperCamelCase : Tuple = False def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = MaskFormerSwinModelTester(self ) UpperCamelCase : List[str] = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with''' ''' `nn.DataParallel`''' ) ) def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase ( self ): """simple docstring""" return def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__SCREAMING_SNAKE_CASE ) @unittest.skip('''Swin does not use inputs_embeds''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''Swin does not support feedforward chunking''' ) def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" UpperCamelCase , UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Tuple = model_class(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear ) ) def _lowercase ( self ): """simple docstring""" UpperCamelCase , UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Union[str, Any] = model_class(__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : Optional[int] = [*signature.parameters.keys()] UpperCamelCase : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' ) def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCamelCase : Optional[int] = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) UpperCamelCase : List[str] = outputs.hidden_states UpperCamelCase : int = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) # Swin has a different seq_length UpperCamelCase : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _lowercase ( self ): """simple docstring""" UpperCamelCase , UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCamelCase : Optional[int] = True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase : Dict = True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase , UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : List[str] = 3 UpperCamelCase : int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCamelCase : Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCamelCase : Optional[int] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCamelCase : Any = True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase : List[str] = True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) @unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" UpperCamelCase , UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(__SCREAMING_SNAKE_CASE ): UpperCamelCase : List[str] = 0 return t def check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE={} ): with torch.no_grad(): UpperCamelCase : Any = model(**__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = model(**__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).to_tuple() def recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): if isinstance(__SCREAMING_SNAKE_CASE , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(__SCREAMING_SNAKE_CASE ) , set_nan_tensor_to_zero(__SCREAMING_SNAKE_CASE ) , atol=1e-5 ) , msg=( '''Tuple and dict output are not equal. Difference:''' f""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" f""" {torch.isnan(__SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(__SCREAMING_SNAKE_CASE )}. Dict has""" f""" `nan`: {torch.isnan(__SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(__SCREAMING_SNAKE_CASE )}.""" ) , ) recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: UpperCamelCase : Any = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase : List[str] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , {'''output_hidden_states''': True} ) UpperCamelCase : List[str] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , {'''output_hidden_states''': True} ) @require_torch class UpperCAmelCase_ ( unittest.TestCase, _a): '''simple docstring''' __UpperCamelCase : Optional[int] = (MaskFormerSwinBackbone,) if is_torch_available() else () __UpperCamelCase : Optional[Any] = MaskFormerSwinConfig def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = MaskFormerSwinModelTester(self ) def _lowercase ( self ): """simple docstring""" UpperCamelCase , UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : List[str] = inputs_dict['''pixel_values'''].shape[0] for backbone_class in self.all_model_classes: UpperCamelCase : int = backbone_class(__SCREAMING_SNAKE_CASE ) backbone.to(__SCREAMING_SNAKE_CASE ) backbone.eval() UpperCamelCase : str = backbone(**__SCREAMING_SNAKE_CASE ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , __SCREAMING_SNAKE_CASE ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True UpperCamelCase : List[str] = backbone(**__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: UpperCamelCase : Dict = backbone(**__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.attentions )
643
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __UpperCAmelCase : List[Any] = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __UpperCAmelCase : List[str] = "UperNetConfig" class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = 1 , ): """simple docstring""" super().__init__() UpperCamelCase : str = nn.Convad( in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : int = nn.BatchNormad(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = nn.ReLU() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = self.conv(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = self.batch_norm(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = self.activation(__SCREAMING_SNAKE_CASE ) return output class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : List[Any] = [ nn.AdaptiveAvgPoolad(__SCREAMING_SNAKE_CASE ), UperNetConvModule(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = input for layer in self.layers: UpperCamelCase : int = layer(__SCREAMING_SNAKE_CASE ) return hidden_state class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : List[Any] = pool_scales UpperCamelCase : Dict = align_corners UpperCamelCase : Optional[int] = in_channels UpperCamelCase : Union[str, Any] = channels UpperCamelCase : List[str] = [] for i, pool_scale in enumerate(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Union[str, Any] = UperNetPyramidPoolingBlock(pool_scale=__SCREAMING_SNAKE_CASE , in_channels=__SCREAMING_SNAKE_CASE , channels=__SCREAMING_SNAKE_CASE ) self.blocks.append(__SCREAMING_SNAKE_CASE ) self.add_module(str(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = [] for ppm in self.blocks: UpperCamelCase : List[str] = ppm(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = nn.functional.interpolate( __SCREAMING_SNAKE_CASE , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners ) ppm_outs.append(__SCREAMING_SNAKE_CASE ) return ppm_outs class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : int = config UpperCamelCase : List[str] = config.pool_scales # e.g. (1, 2, 3, 6) UpperCamelCase : Optional[int] = in_channels UpperCamelCase : str = config.hidden_size UpperCamelCase : str = False UpperCamelCase : List[str] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module UpperCamelCase : Optional[int] = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) UpperCamelCase : str = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module UpperCamelCase : Union[str, Any] = nn.ModuleList() UpperCamelCase : Union[str, Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer UpperCamelCase : List[Any] = UperNetConvModule(__SCREAMING_SNAKE_CASE , self.channels , kernel_size=1 ) UpperCamelCase : int = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(__SCREAMING_SNAKE_CASE ) self.fpn_convs.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def _lowercase ( self ): """simple docstring""" self.apply(self._init_weights ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = inputs[-1] UpperCamelCase : int = [x] psp_outs.extend(self.psp_modules(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase : Any = torch.cat(__SCREAMING_SNAKE_CASE , dim=1 ) UpperCamelCase : Union[str, Any] = self.bottleneck(__SCREAMING_SNAKE_CASE ) return output def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(__SCREAMING_SNAKE_CASE ) ) # build top-down path UpperCamelCase : int = len(__SCREAMING_SNAKE_CASE ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase : Optional[int] = laterals[i - 1].shape[2:] UpperCamelCase : Optional[Any] = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=__SCREAMING_SNAKE_CASE , mode='''bilinear''' , align_corners=self.align_corners ) # build outputs UpperCamelCase : str = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase : int = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners ) UpperCamelCase : str = torch.cat(__SCREAMING_SNAKE_CASE , dim=1 ) UpperCamelCase : Tuple = self.fpn_bottleneck(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = self.classifier(__SCREAMING_SNAKE_CASE ) return output class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 2 , __SCREAMING_SNAKE_CASE = 3 , __SCREAMING_SNAKE_CASE = 1 ): """simple docstring""" super().__init__() UpperCamelCase : Dict = config UpperCamelCase : Optional[Any] = config.auxiliary_in_channels UpperCamelCase : Union[str, Any] = config.auxiliary_channels UpperCamelCase : Union[str, Any] = config.auxiliary_num_convs UpperCamelCase : Optional[Any] = config.auxiliary_concat_input UpperCamelCase : List[str] = in_index UpperCamelCase : Any = (kernel_size // 2) * dilation UpperCamelCase : Optional[Any] = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE ) ) if self.num_convs == 0: UpperCamelCase : str = nn.Identity() else: UpperCamelCase : Dict = nn.Sequential(*__SCREAMING_SNAKE_CASE ) if self.concat_input: UpperCamelCase : Union[str, Any] = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=kernel_size // 2 ) UpperCamelCase : Optional[Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def _lowercase ( self ): """simple docstring""" self.apply(self._init_weights ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = encoder_hidden_states[self.in_index] UpperCamelCase : str = self.convs(__SCREAMING_SNAKE_CASE ) if self.concat_input: UpperCamelCase : int = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) UpperCamelCase : Union[str, Any] = self.classifier(__SCREAMING_SNAKE_CASE ) return output class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[Any] = UperNetConfig __UpperCamelCase : Optional[int] = "pixel_values" __UpperCamelCase : Dict = True def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def _lowercase ( self ): """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : str = value __UpperCAmelCase : List[Any] = r"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __UpperCAmelCase : Union[str, Any] = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.", _a, ) class UpperCAmelCase_ ( _a): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) UpperCamelCase : int = UperNetHead(__SCREAMING_SNAKE_CASE , in_channels=self.backbone.channels ) UpperCamelCase : int = UperNetFCNHead(__SCREAMING_SNAKE_CASE ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=__SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC ) def _lowercase ( self , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , ): """simple docstring""" UpperCamelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase : Tuple = output_attentions if output_attentions is not None else self.config.output_attentions UpperCamelCase : Tuple = self.backbone.forward_with_filtered_kwargs( __SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = outputs.feature_maps UpperCamelCase : Union[str, Any] = self.decode_head(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = nn.functional.interpolate(__SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = None if self.auxiliary_head is not None: UpperCamelCase : int = self.auxiliary_head(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = nn.functional.interpolate( __SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss UpperCamelCase : Optional[int] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) UpperCamelCase : Tuple = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: UpperCamelCase : Optional[Any] = (logits,) + outputs[1:] else: UpperCamelCase : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=__SCREAMING_SNAKE_CASE , logits=__SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
643
1
"""simple docstring""" def _snake_case ( _snake_case : str ) -> str: '''simple docstring''' _A = 0 # if input_string is "aba" than new_input_string become "a|b|a" _A = '' _A = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(_snake_case ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _A , _A = 0, 0 # length[i] shows the length of palindromic substring with center i _A = [1 for i in range(len(_snake_case ) )] # for each character in new_string find corresponding palindromic string _A = 0 for j in range(len(_snake_case ) ): _A = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(_snake_case ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _A = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _A = j - k + 1 # noqa: E741 _A = j + k - 1 # update max_length and start position if max_length < length[j]: _A = length[j] _A = j # create that string _A = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
7
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Dict ): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. UpperCamelCase_: Optional[int] = [[1, 2, 4], [1, 2, 3, 4]] UpperCamelCase_: List[str] = DisjunctiveConstraint(snake_case_ ) self.assertTrue(isinstance(dc.token_ids , snake_case_ ) ) with self.assertRaises(snake_case_ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(snake_case_ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def lowerCAmelCase__ ( self : Optional[Any] ): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). UpperCamelCase_: Dict = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(snake_case_ ): DisjunctiveConstraint(snake_case_ ) # fails here def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = [[1, 2, 3], [1, 2, 4]] UpperCamelCase_: Dict = DisjunctiveConstraint(snake_case_ ) UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: str = dc.update(1 ) UpperCamelCase_: Union[str, Any] = stepped is True and completed is False and reset is False self.assertTrue(snake_case_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: Optional[int] = dc.update(2 ) UpperCamelCase_: Tuple = stepped is True and completed is False and reset is False self.assertTrue(snake_case_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: Optional[int] = dc.update(3 ) UpperCamelCase_: Union[str, Any] = stepped is True and completed is True and reset is False self.assertTrue(snake_case_ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Optional[int] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCamelCase_: Tuple = DisjunctiveConstraint(snake_case_ ) UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: Dict = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: Union[str, Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: Any = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: int = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: int = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: Tuple = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: List[str] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
548
0
from ....utils import logging _UpperCAmelCase = logging.get_logger(__name__) class UpperCAmelCase ( __A ): '''simple docstring''' def __init__( self , lowercase , lowercase=None , lowercase=2_0_4_8 ): """simple docstring""" A_ : Union[str, Any] = config.__dict__ A_ : Union[str, Any] = modal_hidden_size if num_labels: A_ : Any = num_labels
717
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = DistilBertTokenizer lowerCamelCase_ = DistilBertTokenizerFast lowerCamelCase_ = True @slow def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Union[str, Any] = DistilBertTokenizer.from_pretrained('distilbert-base-uncased' ) A_ : Tuple = tokenizer.encode('sequence builders' , add_special_tokens=lowercase ) A_ : List[Any] = tokenizer.encode('multi-sequence build' , add_special_tokens=lowercase ) A_ : str = tokenizer.build_inputs_with_special_tokens(lowercase ) A_ : Tuple = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
70
0
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py snake_case = """src/transformers""" snake_case = """docs/source/en""" snake_case = """.""" def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" with open(__UpperCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: _lowerCAmelCase : Union[str, Any] = f.readlines() # Find the start prompt. _lowerCAmelCase : List[str] = 0 while not lines[start_index].startswith(__UpperCamelCase ): start_index += 1 start_index += 1 _lowerCAmelCase : Any = start_index while not lines[end_index].startswith(__UpperCamelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | snake_case = """Model|Encoder|Decoder|ForConditionalGeneration""" # Regexes that match TF/Flax/PT model names. snake_case = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") snake_case = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. snake_case = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. snake_case = direct_transformers_import(TRANSFORMERS_PATH) def UpperCamelCase_ ( lowerCAmelCase__ ): """simple docstring""" _lowerCAmelCase : List[Any] = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" , __UpperCamelCase ) return [m.group(0 ) for m in matches] def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" _lowerCAmelCase : int = 2 if text == '''✅''' or text == '''❌''' else len(__UpperCamelCase ) _lowerCAmelCase : int = (width - text_length) // 2 _lowerCAmelCase : Optional[Any] = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def UpperCamelCase_ ( ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _lowerCAmelCase : Dict = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } _lowerCAmelCase : Union[str, Any] = {name: config.replace("Config" , "" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. _lowerCAmelCase : Tuple = collections.defaultdict(__UpperCamelCase ) _lowerCAmelCase : List[str] = collections.defaultdict(__UpperCamelCase ) _lowerCAmelCase : Tuple = collections.defaultdict(__UpperCamelCase ) _lowerCAmelCase : Optional[int] = collections.defaultdict(__UpperCamelCase ) _lowerCAmelCase : Union[str, Any] = collections.defaultdict(__UpperCamelCase ) # Let's lookup through all transformers object (once). for attr_name in dir(__UpperCamelCase ): _lowerCAmelCase : Any = None if attr_name.endswith("Tokenizer" ): _lowerCAmelCase : Union[str, Any] = slow_tokenizers _lowerCAmelCase : int = attr_name[:-9] elif attr_name.endswith("TokenizerFast" ): _lowerCAmelCase : Dict = fast_tokenizers _lowerCAmelCase : Optional[Any] = attr_name[:-13] elif _re_tf_models.match(__UpperCamelCase ) is not None: _lowerCAmelCase : Union[str, Any] = tf_models _lowerCAmelCase : Optional[Any] = _re_tf_models.match(__UpperCamelCase ).groups()[0] elif _re_flax_models.match(__UpperCamelCase ) is not None: _lowerCAmelCase : Any = flax_models _lowerCAmelCase : List[str] = _re_flax_models.match(__UpperCamelCase ).groups()[0] elif _re_pt_models.match(__UpperCamelCase ) is not None: _lowerCAmelCase : Any = pt_models _lowerCAmelCase : Optional[int] = _re_pt_models.match(__UpperCamelCase ).groups()[0] if lookup_dict is not None: while len(__UpperCamelCase ) > 0: if attr_name in model_name_to_prefix.values(): _lowerCAmelCase : List[Any] = True break # Try again after removing the last word in the name _lowerCAmelCase : Optional[Any] = ''''''.join(camel_case_split(__UpperCamelCase )[:-1] ) # Let's build that table! _lowerCAmelCase : Optional[Any] = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) _lowerCAmelCase : Tuple = ['''Model''', '''Tokenizer slow''', '''Tokenizer fast''', '''PyTorch support''', '''TensorFlow support''', '''Flax Support'''] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). _lowerCAmelCase : Optional[int] = [len(__UpperCamelCase ) + 2 for c in columns] _lowerCAmelCase : str = max([len(__UpperCamelCase ) for name in model_names] ) + 2 # Build the table per se _lowerCAmelCase : Optional[Any] = '''|''' + '''|'''.join([_center_text(__UpperCamelCase , __UpperCamelCase ) for c, w in zip(__UpperCamelCase , __UpperCamelCase )] ) + '''|\n''' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths] ) + "|\n" _lowerCAmelCase : List[Any] = {True: '''✅''', False: '''❌'''} for name in model_names: _lowerCAmelCase : Union[str, Any] = model_name_to_prefix[name] _lowerCAmelCase : Any = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(__UpperCamelCase , __UpperCamelCase ) for l, w in zip(__UpperCamelCase , __UpperCamelCase )] ) + "|\n" return table def UpperCamelCase_ ( lowerCAmelCase__=False ): """simple docstring""" _lowerCAmelCase : Tuple = _find_text_in_file( filename=os.path.join(__UpperCamelCase , "index.md" ) , start_prompt="<!--This table is updated automatically from the auto modules" , end_prompt="<!-- End table-->" , ) _lowerCAmelCase : Optional[int] = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(__UpperCamelCase , "index.md" ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( "The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") snake_case = parser.parse_args() check_model_table(args.fix_and_overwrite)
424
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A__ : Any = logging.get_logger(__name__) class lowercase ( __UpperCamelCase ): __a = ["""pixel_values"""] def __init__( self , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = 1 / 255 , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = True , **SCREAMING_SNAKE_CASE__ , ): """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ : Union[str, Any] = size if size is not None else {'''height''': 384, '''width''': 384} lowerCAmelCase__ : Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ : Dict = do_resize lowerCAmelCase__ : List[Any] = size lowerCAmelCase__ : Dict = resample lowerCAmelCase__ : Any = do_rescale lowerCAmelCase__ : str = rescale_factor lowerCAmelCase__ : Union[str, Any] = do_normalize lowerCAmelCase__ : List[str] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCAmelCase__ : List[str] = image_std if image_std is not None else OPENAI_CLIP_STD lowerCAmelCase__ : Union[str, Any] = do_convert_rgb def lowercase_ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): """simple docstring""" lowerCAmelCase__ : List[str] = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) lowerCAmelCase__ : Any = (size['''height'''], size['''width''']) return resize(SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): """simple docstring""" return rescale(SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): """simple docstring""" return normalize(SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE__ , ): """simple docstring""" lowerCAmelCase__ : Tuple = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ : List[str] = resample if resample is not None else self.resample lowerCAmelCase__ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ : Dict = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ : Union[str, Any] = image_std if image_std is not None else self.image_std lowerCAmelCase__ : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCAmelCase__ : Optional[int] = size if size is not None else self.size lowerCAmelCase__ : List[str] = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ : List[Any] = make_list_of_images(SCREAMING_SNAKE_CASE__ ) if not valid_images(SCREAMING_SNAKE_CASE__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCAmelCase__ : Dict = [convert_to_rgb(SCREAMING_SNAKE_CASE__ ) for image in images] # All transformations expect numpy arrays. lowerCAmelCase__ : List[Any] = [to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images] if do_resize: lowerCAmelCase__ : Dict = [self.resize(image=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ ) for image in images] if do_rescale: lowerCAmelCase__ : List[Any] = [self.rescale(image=SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ ) for image in images] if do_normalize: lowerCAmelCase__ : Union[str, Any] = [self.normalize(image=SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ ) for image in images] lowerCAmelCase__ : Optional[int] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for image in images] lowerCAmelCase__ : Union[str, Any] = BatchFeature(data={'''pixel_values''': images} , tensor_type=SCREAMING_SNAKE_CASE__ ) return encoded_outputs
233
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCAmelCase__ ) class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : str =field(default="""automatic-speech-recognition""" ,metadata={"""include_in_asdict_even_if_is_default""": True} ) __UpperCAmelCase : ClassVar[Features] =Features({"""audio""": Audio()} ) __UpperCAmelCase : ClassVar[Features] =Features({"""transcription""": Value("""string""" )} ) __UpperCAmelCase : str ="audio" __UpperCAmelCase : str ="transcription" def snake_case ( self , __a ): if self.audio_column not in features: raise ValueError(f"Column {self.audio_column} is not present in features." ) if not isinstance(features[self.audio_column] , __a ): raise ValueError(f"Column {self.audio_column} is not an Audio type." ) __lowerCAmelCase = copy.deepcopy(self ) __lowerCAmelCase = self.input_schema.copy() __lowerCAmelCase = features[self.audio_column] __lowerCAmelCase = input_schema return task_template @property def snake_case ( self ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
282
"""simple docstring""" import string def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = "" for i in sequence: __lowerCAmelCase = ord(_UpperCamelCase ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = string.ascii_letters __lowerCAmelCase = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(_UpperCamelCase )] if c in letters else c for c in sequence ) def _lowerCamelCase ( ): '''simple docstring''' from timeit import timeit print("Running performance benchmarks..." ) __lowerCAmelCase = "from string import printable ; from __main__ import atbash, atbash_slow" print(f"> atbash_slow(): {timeit('atbash_slow(printable)' , setup=_UpperCamelCase )} seconds" ) print(f"> atbash(): {timeit('atbash(printable)' , setup=_UpperCamelCase )} seconds" ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f'''{example} encrypted in atbash: {atbash(example)}''') benchmark()
282
1
'''simple docstring''' import string import numpy def _UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : int ) -> List[Any]: return b if a == 0 else greatest_common_divisor(b % a , lowerCamelCase_ ) class a_ : __lowerCAmelCase : str = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) __lowerCAmelCase : List[str] = numpy.vectorize(lambda _a : x % 3_6 ) __lowerCAmelCase : Optional[int] = numpy.vectorize(_a ) def __init__( self , snake_case_ ): _lowerCAmelCase : List[Any] = self.modulus(_lowerCamelCase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key _lowerCAmelCase : Union[str, Any] = encrypt_key.shape[0] def __UpperCamelCase ( self , snake_case_ ): return self.key_string.index(_lowerCamelCase ) def __UpperCamelCase ( self , snake_case_ ): return self.key_string[round(_lowerCamelCase )] def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _lowerCAmelCase : Any = det % len(self.key_string ) _lowerCAmelCase : List[str] = len(self.key_string ) if greatest_common_divisor(_lowerCamelCase , len(self.key_string ) ) != 1: _lowerCAmelCase : Union[str, Any] = ( f'determinant modular {req_l} of encryption key({det}) ' f'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(_lowerCamelCase ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Tuple = [char for char in text.upper() if char in self.key_string] _lowerCAmelCase : int = chars[-1] while len(_lowerCamelCase ) % self.break_key != 0: chars.append(_lowerCamelCase ) return "".join(_lowerCamelCase ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Union[str, Any] = self.process_text(text.upper() ) _lowerCAmelCase : str = """""" for i in range(0 , len(_lowerCamelCase ) - self.break_key + 1 , self.break_key ): _lowerCAmelCase : Optional[Any] = text[i : i + self.break_key] _lowerCAmelCase : Optional[Any] = [self.replace_letters(_lowerCamelCase ) for char in batch] _lowerCAmelCase : Dict = numpy.array([vec] ).T _lowerCAmelCase : Any = self.modulus(self.encrypt_key.dot(_lowerCamelCase ) ).T.tolist()[ 0 ] _lowerCAmelCase : Tuple = """""".join( self.replace_digits(_lowerCamelCase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _lowerCAmelCase : List[str] = det % len(self.key_string ) _lowerCAmelCase : List[Any] = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: _lowerCAmelCase : str = i break _lowerCAmelCase : Optional[Any] = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(_lowerCamelCase ) ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = self.make_decrypt_key() _lowerCAmelCase : int = self.process_text(text.upper() ) _lowerCAmelCase : int = """""" for i in range(0 , len(_lowerCamelCase ) - self.break_key + 1 , self.break_key ): _lowerCAmelCase : int = text[i : i + self.break_key] _lowerCAmelCase : str = [self.replace_letters(_lowerCamelCase ) for char in batch] _lowerCAmelCase : int = numpy.array([vec] ).T _lowerCAmelCase : Tuple = self.modulus(decrypt_key.dot(_lowerCamelCase ) ).T.tolist()[0] _lowerCAmelCase : Any = """""".join( self.replace_digits(_lowerCamelCase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def _UpperCAmelCase ( ) -> int: _lowerCAmelCase : Optional[Any] = int(input("""Enter the order of the encryption key: """ ) ) _lowerCAmelCase : List[Any] = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(lowerCamelCase_ ): _lowerCAmelCase : Dict = [int(lowerCamelCase_ ) for x in input().split()] hill_matrix.append(lowerCamelCase_ ) _lowerCAmelCase : int = HillCipher(numpy.array(lowerCamelCase_ ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) _lowerCAmelCase : Tuple = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": _lowerCAmelCase : List[Any] = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(lowerCamelCase_ ) ) elif option == "2": _lowerCAmelCase : str = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(lowerCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
384
'''simple docstring''' from __future__ import annotations from typing import Any class UpperCamelCase_ : """simple docstring""" def __init__( self : int , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : float = 0 ) -> None: __magic_name__ , __magic_name__ = row, column __magic_name__ = [[default_value for c in range(_lowerCamelCase )] for r in range(_lowerCamelCase )] def __str__( self : Optional[Any] ) -> str: __magic_name__ = f'Matrix consist of {self.row} rows and {self.column} columns\n' # Make string identifier __magic_name__ = 0 for row_vector in self.array: for obj in row_vector: __magic_name__ = max(_lowerCamelCase , len(str(_lowerCamelCase ) ) ) __magic_name__ = f'%{max_element_length}s' # Make string and return def single_line(_lowerCamelCase : list[float] ) -> str: nonlocal string_format_identifier __magic_name__ = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(_lowerCamelCase ) for row_vector in self.array ) return s def __repr__( self : Optional[int] ) -> str: return str(self ) def __A ( self : Optional[Any] , _lowerCamelCase : tuple[int, int] ) -> bool: if not (isinstance(_lowerCamelCase , (list, tuple) ) and len(_lowerCamelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Optional[int] , _lowerCamelCase : tuple[int, int] ) -> Any: assert self.validate_indicies(_lowerCamelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self : Tuple , _lowerCamelCase : tuple[int, int] , _lowerCamelCase : float ) -> None: assert self.validate_indicies(_lowerCamelCase ) __magic_name__ = value def __add__( self : Union[str, Any] , _lowerCamelCase : Matrix ) -> Matrix: assert isinstance(_lowerCamelCase , _lowerCamelCase ) assert self.row == another.row and self.column == another.column # Add __magic_name__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __magic_name__ = self[r, c] + another[r, c] return result def __neg__( self : int ) -> Matrix: __magic_name__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __magic_name__ = -self[r, c] return result def __sub__( self : Optional[int] , _lowerCamelCase : Matrix ) -> Matrix: return self + (-another) def __mul__( self : Optional[int] , _lowerCamelCase : int | float | Matrix ) -> Matrix: if isinstance(_lowerCamelCase , (int, float) ): # Scalar multiplication __magic_name__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __magic_name__ = self[r, c] * another return result elif isinstance(_lowerCamelCase , _lowerCamelCase ): # Matrix multiplication assert self.column == another.row __magic_name__ = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __magic_name__ = f'Unsupported type given for another ({type(_lowerCamelCase )})' raise TypeError(_lowerCamelCase ) def __A ( self : Optional[int] ) -> Matrix: __magic_name__ = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __magic_name__ = self[r, c] return result def __A ( self : int , _lowerCamelCase : Matrix , _lowerCamelCase : Matrix ) -> Any: assert isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __magic_name__ = v.transpose() __magic_name__ = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def __snake_case ( ): '''simple docstring''' __magic_name__ = Matrix(3 , 3 , 0 ) for i in range(3 ): __magic_name__ = 1 print(F'a^(-1) is {ainv}' ) # u, v __magic_name__ = Matrix(3 , 1 , 0 ) __magic_name__ , __magic_name__ , __magic_name__ = 1, 2, -3 __magic_name__ = Matrix(3 , 1 , 0 ) __magic_name__ , __magic_name__ , __magic_name__ = 4, -2, 5 print(F'u is {u}' ) print(F'v is {v}' ) print(F'uv^T is {u * v.transpose()}' ) # Sherman Morrison print(F'(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCamelCase_ , lowerCamelCase_ )}' ) def __snake_case ( ): '''simple docstring''' import doctest doctest.testmod() testa()
664
0
"""simple docstring""" from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
712
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
600
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def snake_case__ ( self ) -> Optional[int]: A__ = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) A__ = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" A__ = model(snake_case_ )['''last_hidden_state'''] A__ = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , snake_case_ ) # compare the actual values for a slice. A__ = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
104
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _A = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
258
0
'''simple docstring''' from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING A : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(__UpperCAmelCase ) class lowerCamelCase ( __UpperCAmelCase ): def __init__( self : Optional[Any] , *__snake_case : List[Any] , **__snake_case : int ): '''simple docstring''' super().__init__(*__snake_case , **__snake_case ) requires_backends(self , 'vision' ) self.check_model_type(__snake_case ) def __call__( self : Optional[Any] , __snake_case : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__snake_case : Optional[Any] ): '''simple docstring''' return super().__call__(__snake_case , **__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , **__snake_case : List[Any] ): '''simple docstring''' return {}, {}, {} def SCREAMING_SNAKE_CASE_ ( self : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' _snake_case: int = load_image(__snake_case ) _snake_case: Any = image.size _snake_case: Optional[Any] = self.image_processor(images=__snake_case , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , __snake_case : Tuple ): '''simple docstring''' _snake_case: List[str] = self.model(**__snake_case ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' _snake_case: List[str] = model_outputs.predicted_depth _snake_case: str = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='bicubic' , align_corners=__snake_case ) _snake_case: Optional[Any] = prediction.squeeze().cpu().numpy() _snake_case: Optional[Any] = (output * 2_55 / np.max(__snake_case )).astype('uint8' ) _snake_case: Optional[Any] = Image.fromarray(__snake_case ) _snake_case: Any = {} _snake_case: Dict = predicted_depth _snake_case: Any = depth return output_dict
700
'''simple docstring''' from __future__ import annotations import os from collections.abc import Mapping A : Optional[Any] = tuple[int, int] class lowerCamelCase : def __init__( self : Tuple , __snake_case : set[int] , __snake_case : Mapping[EdgeT, int] ): '''simple docstring''' _snake_case: set[int] = vertices _snake_case: dict[EdgeT, int] = { (min(__snake_case ), max(__snake_case )): weight for edge, weight in edges.items() } def SCREAMING_SNAKE_CASE_ ( self : int , __snake_case : EdgeT , __snake_case : int ): '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) _snake_case: Dict = weight def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' _snake_case: Graph = Graph({min(self.vertices )} , {} ) _snake_case: EdgeT _snake_case: int _snake_case: EdgeT _snake_case: int while len(subgraph.vertices ) < len(self.vertices ): _snake_case: List[str] = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: _snake_case: Optional[Any] = edge _snake_case: Optional[int] = weight subgraph.add_edge(__snake_case , __snake_case ) return subgraph def lowercase_ ( lowercase__ = "p107_network.txt" ) ->int: _snake_case: str = os.path.abspath(os.path.dirname(lowercase__ ) ) _snake_case: str = os.path.join(lowercase__ , lowercase__ ) _snake_case: dict[EdgeT, int] = {} _snake_case: list[str] _snake_case: int _snake_case: int with open(lowercase__ ) as f: _snake_case: Tuple = f.read().strip().split('\n' ) _snake_case: Tuple = [line.split(',' ) for line in data] for edgea in range(1 , len(lowercase__ ) ): for edgea in range(lowercase__ ): if adjaceny_matrix[edgea][edgea] != "-": _snake_case: int = int(adjaceny_matrix[edgea][edgea] ) _snake_case: Graph = Graph(set(range(len(lowercase__ ) ) ) , lowercase__ ) _snake_case: Graph = graph.prims_algorithm() _snake_case: int = sum(graph.edges.values() ) _snake_case: int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F'{solution() = }')
273
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class lowercase__( UpperCAmelCase ): """simple docstring""" @staticmethod @abstractmethod def _lowercase ( SCREAMING_SNAKE_CASE_ : ArgumentParser ) -> Optional[int]: raise NotImplementedError() @abstractmethod def _lowercase ( self : List[Any] ) -> List[Any]: raise NotImplementedError()
97
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class lowercase__: """simple docstring""" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str=1_3 , SCREAMING_SNAKE_CASE_ : Optional[Any]=7 , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : Tuple=9_9 , SCREAMING_SNAKE_CASE_ : List[str]=3_2 , SCREAMING_SNAKE_CASE_ : int=2 , SCREAMING_SNAKE_CASE_ : Tuple=4 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_7 , SCREAMING_SNAKE_CASE_ : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : Optional[int]=5_1_2 , SCREAMING_SNAKE_CASE_ : str=1_6 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : List[Any]=0.02 , SCREAMING_SNAKE_CASE_ : List[Any]=False , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]="None" , SCREAMING_SNAKE_CASE_ : Optional[Any]=3 , SCREAMING_SNAKE_CASE_ : List[Any]=4 , SCREAMING_SNAKE_CASE_ : str=None , ) -> str: lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = relative_attention lowercase_ = position_biased_input lowercase_ = pos_att_type lowercase_ = scope def _lowercase ( self : List[Any] ) -> List[Any]: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=SCREAMING_SNAKE_CASE_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[Any] ) -> List[Any]: lowercase_ = TFDebertaVaModel(config=SCREAMING_SNAKE_CASE_ ) lowercase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase_ = [input_ids, input_mask] lowercase_ = model(SCREAMING_SNAKE_CASE_ ) lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]: lowercase_ = TFDebertaVaForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) lowercase_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> List[str]: lowercase_ = self.num_labels lowercase_ = TFDebertaVaForSequenceClassification(config=SCREAMING_SNAKE_CASE_ ) lowercase_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: lowercase_ = self.num_labels lowercase_ = TFDebertaVaForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) lowercase_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> str: lowercase_ = TFDebertaVaForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) lowercase_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self : List[str] ) -> Optional[int]: lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowercase__( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :str = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) a :int = ( { 'feature-extraction': TFDebertaVaModel, 'fill-mask': TFDebertaVaForMaskedLM, 'question-answering': TFDebertaVaForQuestionAnswering, 'text-classification': TFDebertaVaForSequenceClassification, 'token-classification': TFDebertaVaForTokenClassification, 'zero-shot': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) a :int = False a :Any = False def _lowercase ( self : Dict ) -> str: lowercase_ = TFDebertaVaModelTester(self ) lowercase_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=3_7 ) def _lowercase ( self : Tuple ) -> Dict: self.config_tester.run_common_tests() def _lowercase ( self : Union[str, Any] ) -> int: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Dict ) -> List[Any]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[Any] ) -> Optional[int]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Any ) -> str: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Union[str, Any] ) -> Optional[Any]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE_ ) @slow def _lowercase ( self : Tuple ) -> Dict: lowercase_ = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_tf class lowercase__( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='''Model not available yet''' ) def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: pass @slow def _lowercase ( self : List[Any] ) -> Dict: lowercase_ = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' ) lowercase_ = tf.constant([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) lowercase_ = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowercase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0] lowercase_ = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1e-4 )
97
1
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin _lowerCamelCase ="\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class a_ ( unittest.TestCase , lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =load_tool('text-question-answering' ) self.tool.setup() SCREAMING_SNAKE_CASE =load_tool('text-question-answering' ,remote=snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.tool(snake_case ,'What did Hugging Face do in April 2021?' ) self.assertEqual(snake_case ,'launched the BigScience Research Workshop' ) def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =self.remote_tool(snake_case ,'What did Hugging Face do in April 2021?' ) self.assertEqual(snake_case ,'launched the BigScience Research Workshop' ) def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =self.tool(text=snake_case ,question='What did Hugging Face do in April 2021?' ) self.assertEqual(snake_case ,'launched the BigScience Research Workshop' ) def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =self.remote_tool(text=snake_case ,question='What did Hugging Face do in April 2021?' ) self.assertEqual(snake_case ,'launched the BigScience Research Workshop' )
706
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'lxmert' __UpperCAmelCase = {} def __init__( self : int ,snake_case : List[Any]=30522 ,snake_case : str=768 ,snake_case : Union[str, Any]=12 ,snake_case : int=9500 ,snake_case : Any=1600 ,snake_case : Union[str, Any]=400 ,snake_case : int=3072 ,snake_case : Any="gelu" ,snake_case : Any=0.1 ,snake_case : int=0.1 ,snake_case : Optional[int]=512 ,snake_case : int=2 ,snake_case : Dict=0.02 ,snake_case : List[Any]=1e-12 ,snake_case : List[str]=9 ,snake_case : Tuple=5 ,snake_case : Tuple=5 ,snake_case : List[Any]=2048 ,snake_case : Union[str, Any]=4 ,snake_case : Any=6.67 ,snake_case : Dict=True ,snake_case : Union[str, Any]=True ,snake_case : Union[str, Any]=True ,snake_case : Dict=True ,snake_case : str=True ,snake_case : int=True ,snake_case : Any=True ,**snake_case : Dict ,): SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =type_vocab_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =num_qa_labels SCREAMING_SNAKE_CASE =num_object_labels SCREAMING_SNAKE_CASE =num_attr_labels SCREAMING_SNAKE_CASE =l_layers SCREAMING_SNAKE_CASE =x_layers SCREAMING_SNAKE_CASE =r_layers SCREAMING_SNAKE_CASE =visual_feat_dim SCREAMING_SNAKE_CASE =visual_pos_dim SCREAMING_SNAKE_CASE =visual_loss_normalizer SCREAMING_SNAKE_CASE =task_matched SCREAMING_SNAKE_CASE =task_mask_lm SCREAMING_SNAKE_CASE =task_obj_predict SCREAMING_SNAKE_CASE =task_qa SCREAMING_SNAKE_CASE =visual_obj_loss SCREAMING_SNAKE_CASE =visual_attr_loss SCREAMING_SNAKE_CASE =visual_feat_loss SCREAMING_SNAKE_CASE ={'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**snake_case )
252
0
from manim import * class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : str ): __A = Rectangle(height=0.5 ,width=0.5 ) __A = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) __A = [mem.copy() for i in range(6 )] __A = [mem.copy() for i in range(6 )] __A = VGroup(*A ).arrange(A ,buff=0 ) __A = VGroup(*A ).arrange(A ,buff=0 ) __A = VGroup(A ,A ).arrange(A ,buff=0 ) __A = Text("CPU" ,font_size=24 ) __A = Group(A ,A ).arrange(A ,buff=0.5 ,aligned_edge=A ) cpu.move_to([-2.5, -0.5, 0] ) self.add(A ) __A = [mem.copy() for i in range(1 )] __A = VGroup(*A ).arrange(A ,buff=0 ) __A = Text("GPU" ,font_size=24 ) __A = Group(A ,A ).arrange(A ,buff=0.5 ,aligned_edge=A ) gpu.align_to(A ,A ) gpu.set_x(gpu.get_x() - 1 ) self.add(A ) __A = [mem.copy() for i in range(6 )] __A = VGroup(*A ).arrange(A ,buff=0 ) __A = Text("Model" ,font_size=24 ) __A = Group(A ,A ).arrange(A ,buff=0.5 ,aligned_edge=A ) model.move_to([3, -1.0, 0] ) self.play( Create(A ,run_time=1 ) ,Create(A ,run_time=1 ) ,Create(A ,run_time=1 ) ,) __A = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' ,font_size=24 ,) __A = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __A = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(A ,run_time=2.5 ) ,Write(A ) ,Write(A ) ) self.add(A ) __A = [] __A = [] __A = [] for i, rect in enumerate(A ): __A = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(A ,opacity=0.7 ) cpu_target.move_to(A ) cpu_target.generate_target() __A = 0.46 / 4 __A = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=A ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target ,direction=A ,buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=A ,buff=0.0 ) cpu_targs.append(A ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(A ) ) second_animations.append(MoveToTarget(A ,run_time=1.5 ) ) self.play(*A ) self.play(*A ) self.wait()
55
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' def __init__( self , a , a ) -> Optional[Any]: super().__init__() # make sure scheduler can always be converted to DDIM snake_case_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=a , scheduler=a ) @torch.no_grad() def __call__( self , a = 1 , a = None , a = 0.0 , a = 50 , a = None , a = "pil" , a = True , ) -> Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , a ): snake_case_ = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: snake_case_ = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(a , a ) and len(a ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(a )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) snake_case_ = randn_tensor(a , generator=a , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(a ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output snake_case_ = self.unet(a , a ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 snake_case_ = self.scheduler.step( a , a , a , eta=a , use_clipped_model_output=a , generator=a ).prev_sample snake_case_ = (image / 2 + 0.5).clamp(0 , 1 ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case_ = self.numpy_to_pil(a ) if not return_dict: return (image,) return ImagePipelineOutput(images=a )
198
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType A_ = logging.get_logger(__name__) A_ = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class UpperCAmelCase ( UpperCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = 'deberta-v2' def __init__( self , SCREAMING_SNAKE_CASE_=128100 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=24 , SCREAMING_SNAKE_CASE_=24 , SCREAMING_SNAKE_CASE_=6144 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=1E-7 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=-1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_="gelu" , **SCREAMING_SNAKE_CASE_ , ) -> Tuple: '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = initializer_range lowerCamelCase_ = relative_attention lowerCamelCase_ = max_relative_positions lowerCamelCase_ = pad_token_id lowerCamelCase_ = position_biased_input # Backwards compatibility if type(UpperCamelCase__ ) == str: lowerCamelCase_ = [x.strip() for x in pos_att_type.lower().split('|' )] lowerCamelCase_ = pos_att_type lowerCamelCase_ = vocab_size lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = kwargs.get('pooler_hidden_size' , UpperCamelCase__ ) lowerCamelCase_ = pooler_dropout lowerCamelCase_ = pooler_hidden_act class UpperCAmelCase ( UpperCamelCase_ ): '''simple docstring''' @property def UpperCamelCase( self ) -> List[str]: '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase_ = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def UpperCamelCase( self ) -> List[str]: '''simple docstring''' return 12 def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 3 , SCREAMING_SNAKE_CASE_ = 40 , SCREAMING_SNAKE_CASE_ = 40 , SCREAMING_SNAKE_CASE_ = None , ) -> Tuple: '''simple docstring''' lowerCamelCase_ = super().generate_dummy_inputs(preprocessor=UpperCamelCase__ , framework=UpperCamelCase__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
712
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class UpperCAmelCase : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=24 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , ) -> Dict: '''simple docstring''' lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = patch_size lowerCamelCase_ = max_length lowerCamelCase_ = num_mel_bins lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = scope lowerCamelCase_ = frequency_stride lowerCamelCase_ = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowerCamelCase_ = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 lowerCamelCase_ = (self.max_length - self.patch_size) // self.time_stride + 1 lowerCamelCase_ = frequency_out_dimension * time_out_dimension lowerCamelCase_ = num_patches + 2 def UpperCamelCase( self ) -> int: '''simple docstring''' lowerCamelCase_ = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = self.get_config() return config, input_values, labels def UpperCamelCase( self ) -> str: '''simple docstring''' return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' lowerCamelCase_ = ASTModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {'input_values': input_values} return config, inputs_dict @require_torch class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ = ( {'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: '''simple docstring''' if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def UpperCamelCase( self ) -> int: '''simple docstring''' lowerCamelCase_ = ASTModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def UpperCamelCase( self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='AST does not use inputs_embeds' ) def UpperCamelCase( self ) -> Any: '''simple docstring''' pass def UpperCamelCase( self ) -> Tuple: '''simple docstring''' lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['input_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = ASTModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def _UpperCamelCase ( ) -> Tuple: lowerCamelCase_ = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' ,filename='sample_audio.flac' ,repo_type='dataset' ) lowerCamelCase_ ,lowerCamelCase_ = torchaudio.load(__UpperCamelCase ) return audio, sampling_rate @require_torch @require_torchaudio class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase( self ) -> int: '''simple docstring''' return ( ASTFeatureExtractor.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ) if is_torchaudio_available() else None ) @slow def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = self.default_feature_extractor lowerCamelCase_ = ASTForAudioClassification.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ).to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.default_feature_extractor lowerCamelCase_ ,lowerCamelCase_ = prepare_audio() lowerCamelCase_ = audio.squeeze().numpy() lowerCamelCase_ = feature_extractor(SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits lowerCamelCase_ = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
384
0
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : Any ) -> Union[str, Any]: stooge(__lowerCAmelCase , 0 , len(__lowerCAmelCase ) - 1 ) return arr def __lowerCamelCase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int ) -> List[str]: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: snake_case , snake_case = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: snake_case = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(__lowerCAmelCase , __lowerCAmelCase , (h - t) ) # Recursively sort last 2/3 elements stooge(__lowerCAmelCase , i + t , (__lowerCAmelCase) ) # Recursively sort first 2/3 elements stooge(__lowerCAmelCase , __lowerCAmelCase , (h - t) ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = input("Enter numbers separated by a comma:\n").strip() _SCREAMING_SNAKE_CASE = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
369
'''simple docstring''' from __future__ import annotations _SCREAMING_SNAKE_CASE = 1.6021E-19 # units = C def __lowerCamelCase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float , ) -> tuple[str, float]: if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif conductivity < 0: raise ValueError("""Conductivity cannot be negative""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative""" ) elif mobility < 0: raise ValueError("""mobility cannot be negative""" ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
369
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> List[Any]: __UpperCamelCase =AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=A_ ).to(A_ ) __UpperCamelCase =AutoTokenizer.from_pretrained('google/mt5-small' ) __UpperCamelCase =tokenizer('Hello there' , return_tensors='pt' ).input_ids __UpperCamelCase =tokenizer('Hi I am' , return_tensors='pt' ).input_ids __UpperCamelCase =model(input_ids.to(A_ ) , labels=labels.to(A_ ) ).loss __UpperCamelCase =-(labels.shape[-1] * loss.item()) __UpperCamelCase =-84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
682
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , ) -> List[Any]: __UpperCamelCase =size if size is not None else {'height': 18, 'width': 18} __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =num_channels __UpperCamelCase =image_size __UpperCamelCase =min_resolution __UpperCamelCase =max_resolution __UpperCamelCase =do_resize __UpperCamelCase =size __UpperCamelCase =apply_ocr def _a ( self ) -> Tuple: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _a ( self ) -> Optional[Any]: __UpperCamelCase =LayoutLMvaImageProcessingTester(self ) @property def _a ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ) -> List[Any]: __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'apply_ocr' ) ) def _a ( self ) -> Dict: __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def _a ( self ) -> Dict: pass def _a ( self ) -> Optional[Any]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , A_ ) self.assertIsInstance(encoding.boxes , A_ ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> int: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> List[str]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> Any: # with apply_OCR = True __UpperCamelCase =LayoutLMvaImageProcessor() from datasets import load_dataset __UpperCamelCase =load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __UpperCamelCase =Image.open(ds[0]['file'] ).convert('RGB' ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __UpperCamelCase =[['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __UpperCamelCase =[[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , A_ ) self.assertListEqual(encoding.boxes , A_ ) # with apply_OCR = False __UpperCamelCase =LayoutLMvaImageProcessor(apply_ocr=A_ ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
682
1
'''simple docstring''' # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter _SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[Any] = {} _SCREAMING_SNAKE_CASE : int = {} _SCREAMING_SNAKE_CASE : List[str] = {} def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , ): """simple docstring""" __magic_name__ : str = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F"""Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})""" ) __magic_name__ : Tuple = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F"""Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})""" ) __magic_name__ : Dict = format_type def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None ): """simple docstring""" __magic_name__ : List[Any] = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): __magic_name__ : int = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["python"]) _register_formatter(ArrowFormatter, "arrow", aliases=["pa", "pyarrow"]) _register_formatter(NumpyFormatter, "numpy", aliases=["np"]) _register_formatter(PandasFormatter, "pandas", aliases=["pd"]) _register_formatter(CustomFormatter, "custom") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, "torch", aliases=["pt", "pytorch"]) else: _SCREAMING_SNAKE_CASE : Union[str, Any] = ValueError("PyTorch needs to be installed to be able to return PyTorch tensors.") _register_unavailable_formatter(_torch_error, "torch", aliases=["pt", "pytorch"]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, "tensorflow", aliases=["tf"]) else: _SCREAMING_SNAKE_CASE : Optional[int] = ValueError("Tensorflow needs to be installed to be able to return Tensorflow tensors.") _register_unavailable_formatter(_tf_error, "tensorflow", aliases=["tf"]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, "jax", aliases=[]) else: _SCREAMING_SNAKE_CASE : Optional[int] = ValueError("JAX needs to be installed to be able to return JAX arrays.") _register_unavailable_formatter(_jax_error, "jax", aliases=[]) def _UpperCamelCase ( UpperCamelCase__ ): """simple docstring""" if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def _UpperCamelCase ( UpperCamelCase__ , **UpperCamelCase__ ): """simple docstring""" __magic_name__ : Optional[int] = get_format_type_from_alias(lowerCamelCase_ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**lowerCamelCase_ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F"""Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'""" )
436
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class _UpperCamelCase( __lowerCamelCase ): def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' __a : List[Any] = tempfile.mkdtemp() __a : int = 8 # DPR tok __a : Dict = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __a : int = os.path.join(self.tmpdirname , 'dpr_tokenizer' ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) __a : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok __a : str = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] __a : Optional[int] = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __a : List[str] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __a : List[str] = {'unk_token': '<unk>'} __a : Dict = os.path.join(self.tmpdirname , 'bart_tokenizer' ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) __a : List[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , BART_VOCAB_FILES_NAMES['vocab_file'] ) __a : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE__ ) ) def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def __lowerCAmelCase ( self : str ): '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) ) def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) @require_tokenizers def __lowerCAmelCase ( self : Dict ): '''simple docstring''' __a : Tuple = os.path.join(self.tmpdirname , 'rag_tokenizer' ) __a : Optional[Any] = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) __a : Optional[Any] = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(SCREAMING_SNAKE_CASE__ ) rag_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) __a : List[Any] = RagTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , config=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(new_rag_tokenizer.question_encoder , SCREAMING_SNAKE_CASE__ ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , SCREAMING_SNAKE_CASE__ ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' __a : Optional[Any] = RagTokenizer.from_pretrained('facebook/rag-token-nq' ) __a : List[Any] = [ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] __a : Tuple = tokenizer(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @slow def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' __a : Any = RagTokenizer.from_pretrained('facebook/rag-sequence-nq' ) __a : Union[str, Any] = [ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] __a : str = tokenizer(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
47
0
'''simple docstring''' from random import randint, random def _lowerCAmelCase ( __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : bool = False , __snake_case : bool = False , __snake_case : int = 5 , ) -> list: __A : Dict = [[-1] * number_of_cells] # Create a highway without any car __A : Union[str, Any] = 0 __A : str = max(__snake_case , 0 ) while i < number_of_cells: __A : Any = ( randint(0 , __snake_case ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def _lowerCAmelCase ( __snake_case : list , __snake_case : int ) -> int: __A : Any = 0 __A : Tuple = highway_now[car_index + 1 :] for cell in range(len(__snake_case ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(__snake_case , -1 ) def _lowerCAmelCase ( __snake_case : list , __snake_case : float , __snake_case : int ) -> list: __A : Optional[Any] = len(__snake_case ) # Beforce calculations, the highway is empty __A : Optional[int] = [-1] * number_of_cells for car_index in range(__snake_case ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed __A : Optional[int] = min(highway_now[car_index] + 1 , __snake_case ) # Number of empty cell before the next car __A : int = get_distance(__snake_case , __snake_case ) - 1 # We can't have the car causing an accident __A : int = min(next_highway[car_index] , __snake_case ) if random() < probability: # Randomly, a driver will slow down __A : Union[str, Any] = max(next_highway[car_index] - 1 , 0 ) return next_highway def _lowerCAmelCase ( __snake_case : list , __snake_case : int , __snake_case : float , __snake_case : int ) -> list: __A : Dict = len(highway[0] ) for i in range(__snake_case ): __A : int = update(highway[i] , __snake_case , __snake_case ) __A : List[Any] = [-1] * number_of_cells for car_index in range(__snake_case ): __A : Dict = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) __A : Dict = (car_index + speed) % number_of_cells # Commit the change of position __A : Tuple = speed highway.append(__snake_case ) return highway if __name__ == "__main__": import doctest doctest.testmod()
338
'''simple docstring''' def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : Tuple ) -> Union[str, Any]: __A : Tuple = [0 for i in range(r + 1 )] # nc0 = 1 __A : Dict = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. __A : Union[str, Any] = min(__snake_case , __snake_case ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
338
1
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def _A ( lowerCamelCase ): a__ : Tuple = tmp_path / "file.csv" a__ : Optional[int] = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def _A ( lowerCamelCase ): a__ : Any = tmp_path / "malformed_file.csv" a__ : Any = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20,\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def _A ( lowerCamelCase , lowerCamelCase ): a__ : int = tmp_path / "csv_with_image.csv" a__ : int = textwrap.dedent( F"""\\n image\n {image_file}\n """ ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def _A ( lowerCamelCase ): a__ : Dict = tmp_path / "csv_with_label.csv" a__ : int = textwrap.dedent( "\\n label\n good\n bad\n good\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def _A ( lowerCamelCase ): a__ : Dict = tmp_path / "csv_with_int_list.csv" a__ : Any = textwrap.dedent( "\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) def _A ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): a__ : List[Any] = Csv() a__ : Any = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_lowerCAmelCase , match="Error tokenizing data" ): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(_lowerCAmelCase ) in record.message for record in caplog.records ) @require_pil def _A ( lowerCamelCase ): with open(_lowerCAmelCase , encoding="utf-8" ) as f: a__ : Any = f.read().splitlines()[1] a__ : Optional[Any] = Csv(encoding="utf-8" , features=Features({"image": Image()} ) ) a__ : Union[str, Any] = csv._generate_tables([[csv_file_with_image]] ) a__ : List[str] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("image" ).type == Image()() a__ : int = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def _A ( lowerCamelCase ): with open(_lowerCAmelCase , encoding="utf-8" ) as f: a__ : List[Any] = f.read().splitlines()[1:] a__ : int = Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) ) a__ : Tuple = csv._generate_tables([[csv_file_with_label]] ) a__ : int = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )() a__ : Union[str, Any] = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(_lowerCAmelCase ) for label in labels] def _A ( lowerCamelCase ): a__ : Dict = Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda lowerCamelCase : [int(_lowerCAmelCase ) for i in x.split()]} ) a__ : List[Any] = csv._generate_tables([[csv_file_with_int_list]] ) a__ : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("int_list" ).type ) a__ : Optional[Any] = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
112
'''simple docstring''' import functools def A_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : list[int] ): """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(_lowerCAmelCase ) != 3 or not all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(_lowerCAmelCase ) == 0: return 0 if min(_lowerCAmelCase ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(_lowerCAmelCase ) >= 366: raise ValueError("All days elements should be less than 366" ) _lowerCamelCase : Union[str, Any] = set(_lowerCAmelCase ) @functools.cache def dynamic_programming(_lowerCAmelCase : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
44
0
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self :Dict ): debug_launcher(test_script.main ) def lowerCamelCase ( self :Union[str, Any] ): debug_launcher(test_ops.main )
721
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _snake_case : List[str] = Lock() def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(UpperCamelCase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() A = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left A = min(UpperCamelCase , UpperCamelCase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(UpperCamelCase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() A = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right A = max(UpperCamelCase , UpperCamelCase ) # after all swaps are performed, send the values back to main result_pipe[1].send(UpperCamelCase ) def A__ ( UpperCamelCase ): A = [] A = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) A = temp_rs A = temp_rr for i in range(1 , len(UpperCamelCase ) - 1 ): A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) A = temp_rs A = temp_rr process_array_.append( Process( target=UpperCamelCase , args=( len(UpperCamelCase ) - 1, arr[len(UpperCamelCase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(UpperCamelCase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(UpperCamelCase ) ): A = result_pipe[p][0].recv() process_array_[p].join() return arr def A__ ( ): A = list(range(10 , 0 , -1 ) ) print("Initial List" ) print(*UpperCamelCase ) A = odd_even_transposition(UpperCamelCase ) print("Sorted List\n" ) print(*UpperCamelCase ) if __name__ == "__main__": main()
524
0
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase_ : Dict = "platform" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def UpperCamelCase ( _A : List[str] , _A : Union[str, Any] , _A : Union[str, Any]=None , _A : Tuple=None , _A : List[str]=None , _A : Tuple=None , _A : int=None , _A : str=None , )-> List[Any]: """simple docstring""" if attention_mask is None: A__ = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: A__ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: A__ = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A__ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A__ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class UpperCamelCase : def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=13 , UpperCAmelCase__=7 , UpperCAmelCase__=True , UpperCAmelCase__=False , UpperCAmelCase__=99 , UpperCAmelCase__=16 , UpperCAmelCase__=2 , UpperCAmelCase__=4 , UpperCAmelCase__=4 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=32 , UpperCAmelCase__=2 , UpperCAmelCase__=1 , UpperCAmelCase__=0 , UpperCAmelCase__=0.02 , ): A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = eos_token_id A__ = pad_token_id A__ = bos_token_id A__ = initializer_range def __A ( self ): A__ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) A__ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) A__ = shift_tokens_right(__lowerCAmelCase , 1 , 2 ) A__ = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=__lowerCAmelCase , ) A__ = prepare_blenderbot_inputs_dict(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return config, inputs_dict def __A ( self ): A__ , A__ = self.prepare_config_and_inputs() return config, inputs_dict def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): A__ = 20 A__ = model_class_name(__lowerCAmelCase ) A__ = model.encode(inputs_dict["input_ids"] ) A__ , A__ = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) A__ = model.init_cache(decoder_input_ids.shape[0] , __lowerCAmelCase , __lowerCAmelCase ) A__ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) A__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) A__ = model.decode( decoder_input_ids[:, :-1] , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase , decoder_position_ids=__lowerCAmelCase , ) A__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) A__ = model.decode( decoder_input_ids[:, -1:] , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__lowerCAmelCase , ) A__ = model.decode(__lowerCAmelCase , __lowerCAmelCase ) A__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"""Max diff is {diff}""" ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): A__ = 20 A__ = model_class_name(__lowerCAmelCase ) A__ = model.encode(inputs_dict["input_ids"] ) A__ , A__ = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) A__ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) A__ = model.init_cache(decoder_input_ids.shape[0] , __lowerCAmelCase , __lowerCAmelCase ) A__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) A__ = model.decode( decoder_input_ids[:, :-1] , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase , decoder_position_ids=__lowerCAmelCase , ) A__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) A__ = model.decode( decoder_input_ids[:, -1:] , __lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__lowerCAmelCase , decoder_position_ids=__lowerCAmelCase , ) A__ = model.decode(__lowerCAmelCase , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase ) A__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"""Max diff is {diff}""" ) @require_flax class UpperCamelCase ( unittest.TestCase ): lowerCAmelCase : List[str] = 99 def __A ( self ): A__ = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) A__ = input_ids.shape[0] A__ = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def __A ( self ): A__ , A__ , A__ = self._get_config_and_data() A__ = FlaxBlenderbotSmallForConditionalGeneration(__lowerCAmelCase ) A__ = lm_model(input_ids=__lowerCAmelCase ) A__ = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , __lowerCAmelCase ) def __A ( self ): A__ = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) A__ = FlaxBlenderbotSmallForConditionalGeneration(__lowerCAmelCase ) A__ = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) A__ = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) A__ = lm_model(input_ids=__lowerCAmelCase , decoder_input_ids=__lowerCAmelCase ) A__ = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , __lowerCAmelCase ) def __A ( self ): A__ = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) A__ = shift_tokens_right(__lowerCAmelCase , 1 , 2 ) A__ = np.equal(__lowerCAmelCase , 1 ).astype(np.floataa ).sum() A__ = np.equal(__lowerCAmelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(__lowerCAmelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class UpperCamelCase ( _UpperCAmelCase , unittest.TestCase , _UpperCAmelCase ): lowerCAmelCase : List[Any] = True lowerCAmelCase : Optional[Any] = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) lowerCAmelCase : List[Any] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def __A ( self ): A__ = FlaxBlenderbotSmallModelTester(self ) def __A ( self ): A__ , A__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def __A ( self ): A__ , A__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def __A ( self ): A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A__ = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) A__ = model_class(__lowerCAmelCase ) @jax.jit def encode_jitted(UpperCAmelCase__ , UpperCAmelCase__=None , **UpperCAmelCase__ ): return model.encode(input_ids=__lowerCAmelCase , attention_mask=__lowerCAmelCase ) with self.subTest("JIT Enabled" ): A__ = encode_jitted(**__lowerCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): A__ = encode_jitted(**__lowerCAmelCase ).to_tuple() self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) for jitted_output, output in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def __A ( self ): A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A__ = model_class(__lowerCAmelCase ) A__ = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) A__ = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): return model.decode( decoder_input_ids=__lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , encoder_outputs=__lowerCAmelCase , ) with self.subTest("JIT Enabled" ): A__ = decode_jitted(**__lowerCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): A__ = decode_jitted(**__lowerCAmelCase ).to_tuple() self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) for jitted_output, output in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __A ( self ): for model_class_name in self.all_model_classes: A__ = model_class_name.from_pretrained("facebook/blenderbot_small-90M" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids A__ = np.ones((1, 1) ) * model.config.eos_token_id A__ = model(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase )
491
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor a_ = logging.get_logger(__name__) class UpperCAmelCase__ ( snake_case ): """simple docstring""" def __init__( self: Tuple , *__lowerCAmelCase: str , **__lowerCAmelCase: Optional[Any] ) -> None: '''simple docstring''' warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead." , __lowerCAmelCase , ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
221
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json', 'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json', } class __lowercase ( __lowerCamelCase ): snake_case_ = """luke""" def __init__( self : int ,A : List[Any]=50_267 ,A : Optional[int]=500_000 ,A : Any=768 ,A : str=256 ,A : List[str]=12 ,A : int=12 ,A : Tuple=3_072 ,A : Dict="gelu" ,A : Optional[int]=0.1 ,A : int=0.1 ,A : Dict=512 ,A : List[str]=2 ,A : List[Any]=0.0_2 ,A : Optional[Any]=1e-12 ,A : Any=True ,A : Union[str, Any]=None ,A : Any=1 ,A : Optional[Any]=0 ,A : List[Any]=2 ,**A : Optional[int] ,): '''simple docstring''' super().__init__(pad_token_id=A ,bos_token_id=A ,eos_token_id=A ,**A ) UpperCAmelCase__ : List[str] = vocab_size UpperCAmelCase__ : Optional[int] = entity_vocab_size UpperCAmelCase__ : Any = hidden_size UpperCAmelCase__ : List[str] = entity_emb_size UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : Optional[int] = num_attention_heads UpperCAmelCase__ : List[Any] = hidden_act UpperCAmelCase__ : str = intermediate_size UpperCAmelCase__ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase__ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase__ : Optional[int] = max_position_embeddings UpperCAmelCase__ : List[str] = type_vocab_size UpperCAmelCase__ : str = initializer_range UpperCAmelCase__ : List[str] = layer_norm_eps UpperCAmelCase__ : Union[str, Any] = use_entity_aware_attention UpperCAmelCase__ : Any = classifier_dropout
713
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { 'configuration_table_transformer': [ 'TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TableTransformerConfig', 'TableTransformerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TableTransformerForObjectDetection', 'TableTransformerModel', 'TableTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
194
0
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor lowercase : List[str] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self , *__UpperCamelCase , **__UpperCamelCase ) -> None: '''simple docstring''' warnings.warn( "The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ImageGPTImageProcessor instead." , __UpperCamelCase , ) super().__init__(*__UpperCamelCase , **__UpperCamelCase )
327
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCamelCase__ ) class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : str = field(default='text-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) lowercase : ClassVar[Features] = Features({'text': Value('string' )} ) lowercase : ClassVar[Features] = Features({'labels': ClassLabel} ) lowercase : str = "text" lowercase : str = "labels" def __lowerCamelCase ( self , __UpperCamelCase ) -> Optional[int]: '''simple docstring''' if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __UpperCamelCase ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) __UpperCamelCase : Any = copy.deepcopy(self ) __UpperCamelCase : Any = self.label_schema.copy() __UpperCamelCase : List[Any] = features[self.label_column] __UpperCamelCase : Any = label_schema return task_template @property def __lowerCamelCase ( self ) -> Dict[str, str]: '''simple docstring''' return { self.text_column: "text", self.label_column: "labels", }
327
1
"""simple docstring""" from __future__ import annotations def _snake_case ( UpperCamelCase : list[float] ): if len(UpperCamelCase ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) UpperCAmelCase : Optional[Any] = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
718
"""simple docstring""" from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass A: List[Any] = (3, 9, -1_1, 0, 7, 5, 1, -1) A: Union[str, Any] = (4, 6, 2, 0, 8, 1_0, 3, -2) @dataclass class SCREAMING_SNAKE_CASE__ : __lowerCAmelCase : int __lowerCAmelCase : Node | None class SCREAMING_SNAKE_CASE__ : def __init__( self , _SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' UpperCAmelCase : Node | None = None for i in sorted(_SCREAMING_SNAKE_CASE , reverse=_SCREAMING_SNAKE_CASE ): UpperCAmelCase : Union[str, Any] = Node(_SCREAMING_SNAKE_CASE , self.head ) def __iter__( self ) -> Iterator[int]: '''simple docstring''' UpperCAmelCase : Optional[Any] = self.head while node: yield node.data UpperCAmelCase : List[str] = node.next_node def __len__( self ) -> int: '''simple docstring''' return sum(1 for _ in self ) def __str__( self ) -> str: '''simple docstring''' return " -> ".join([str(_SCREAMING_SNAKE_CASE ) for node in self] ) def _snake_case ( UpperCamelCase : SortedLinkedList , UpperCamelCase : SortedLinkedList ): return SortedLinkedList(list(UpperCamelCase ) + list(UpperCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() A: Dict = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
359
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : List[Any] = ['pixel_values'] def __init__( self : List[str] , a : bool = True , a : Dict[str, int] = None , a : int = 0.9 , a : PILImageResampling = PILImageResampling.BICUBIC , a : bool = True , a : Dict[str, int] = None , a : Union[int, float] = 1 / 255 , a : bool = True , a : bool = True , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , **a : int , )-> None: """simple docstring""" super().__init__(**a ) lowercase__ = size if size is not None else {'shortest_edge': 224} lowercase__ = get_size_dict(a , default_to_square=a ) lowercase__ = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowercase__ = get_size_dict(a , param_name='crop_size' ) lowercase__ = do_resize lowercase__ = size lowercase__ = crop_pct lowercase__ = resample lowercase__ = do_center_crop lowercase__ = crop_size lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = do_normalize lowercase__ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase__ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , a : np.ndarray , a : Dict[str, int] , a : Optional[float] = None , a : PILImageResampling = PILImageResampling.BICUBIC , a : Optional[Union[str, ChannelDimension]] = None , **a : Tuple , )-> np.ndarray: """simple docstring""" lowercase__ = get_size_dict(a , default_to_square=a ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f"""size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) if crop_pct is not None: if "shortest_edge" in size: lowercase__ = int(size['shortest_edge'] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: lowercase__ = int(size['height'] / crop_pct ) else: lowercase__ = (int(size['height'] / crop_pct ), int(size['width'] / crop_pct )) else: raise ValueError('Invalid size for resize: {}'.format(a ) ) lowercase__ = get_resize_output_image_size(a , size=a , default_to_square=a ) else: if "shortest_edge" in size: lowercase__ = get_resize_output_image_size(a , size=size['shortest_edge'] , default_to_square=a ) elif "height" in size and "width" in size: lowercase__ = (size['height'], size['width']) else: raise ValueError('Invalid size for resize: {}'.format(a ) ) return resize(a , size=a , resample=a , data_format=a , **a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : np.ndarray , a : Dict[str, int] , a : Optional[Union[str, ChannelDimension]] = None , **a : Tuple , )-> np.ndarray: """simple docstring""" lowercase__ = get_size_dict(a ) if "height" not in size or "width" not in size: raise ValueError(f"""size must contain 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(a , size=(size['height'], size['width']) , data_format=a , **a ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : np.ndarray , a : Union[int, float] , a : Optional[Union[str, ChannelDimension]] = None , **a : List[str] , )-> Optional[Any]: """simple docstring""" return rescale(a , scale=a , data_format=a , **a ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , a : np.ndarray , a : Union[float, List[float]] , a : Union[float, List[float]] , a : Optional[Union[str, ChannelDimension]] = None , **a : str , )-> np.ndarray: """simple docstring""" return normalize(a , mean=a , std=a , data_format=a , **a ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , a : ImageInput , a : bool = None , a : Dict[str, int] = None , a : int = None , a : PILImageResampling = None , a : bool = None , a : Dict[str, int] = None , a : bool = None , a : float = None , a : bool = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[str, TensorType]] = None , a : ChannelDimension = ChannelDimension.FIRST , **a : Any , )-> PIL.Image.Image: """simple docstring""" lowercase__ = do_resize if do_resize is not None else self.do_resize lowercase__ = crop_pct if crop_pct is not None else self.crop_pct lowercase__ = resample if resample is not None else self.resample lowercase__ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ = do_rescale if do_rescale is not None else self.do_rescale lowercase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ = do_normalize if do_normalize is not None else self.do_normalize lowercase__ = image_mean if image_mean is not None else self.image_mean lowercase__ = image_std if image_std is not None else self.image_std lowercase__ = size if size is not None else self.size lowercase__ = get_size_dict(a , default_to_square=a ) lowercase__ = crop_size if crop_size is not None else self.crop_size lowercase__ = get_size_dict(a , param_name='crop_size' ) lowercase__ = make_list_of_images(a ) if not valid_images(a ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_pct is None: raise ValueError('Crop_pct must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowercase__ = [to_numpy_array(a ) for image in images] if do_resize: lowercase__ = [self.resize(image=a , size=a , crop_pct=a , resample=a ) for image in images] if do_center_crop: lowercase__ = [self.center_crop(image=a , size=a ) for image in images] if do_rescale: lowercase__ = [self.rescale(image=a , scale=a ) for image in images] if do_normalize: lowercase__ = [self.normalize(image=a , mean=a , std=a ) for image in images] lowercase__ = [to_channel_dimension_format(a , a ) for image in images] lowercase__ = {'pixel_values': images} return BatchFeature(data=a , tensor_type=a )
235
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = {"""vocab_file""": """spm_char.model"""} lowercase_ = { """vocab_file""": { """microsoft/speecht5_asr""": """https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model""", """microsoft/speecht5_tts""": """https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model""", """microsoft/speecht5_vc""": """https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model""", } } lowercase_ = { """microsoft/speecht5_asr""": 1_024, """microsoft/speecht5_tts""": 1_024, """microsoft/speecht5_vc""": 1_024, } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : str = VOCAB_FILES_NAMES _UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[Any] = ['input_ids', 'attention_mask'] def __init__( self : Optional[int] , a : Any , a : Any="<s>" , a : List[Any]="</s>" , a : List[str]="<unk>" , a : Any="<pad>" , a : Optional[Dict[str, Any]] = None , **a : Optional[Any] , )-> None: """simple docstring""" lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a , eos_token=a , unk_token=a , pad_token=a , sp_model_kwargs=self.sp_model_kwargs , **a , ) lowercase__ = vocab_file lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a ) @property def SCREAMING_SNAKE_CASE_ ( self : Any )-> Tuple: """simple docstring""" return self.sp_model.get_piece_size() def SCREAMING_SNAKE_CASE_ ( self : int )-> Tuple: """simple docstring""" lowercase__ = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] )-> str: """simple docstring""" lowercase__ = self.__dict__.copy() lowercase__ = None return state def __setstate__( self : Dict , a : Union[str, Any] )-> Union[str, Any]: """simple docstring""" lowercase__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , a : str )-> List[str]: """simple docstring""" return self.sp_model.encode(a , out_type=a ) def SCREAMING_SNAKE_CASE_ ( self : int , a : Optional[Any] )-> str: """simple docstring""" return self.sp_model.piece_to_id(a ) def SCREAMING_SNAKE_CASE_ ( self : str , a : List[Any] )-> Dict: """simple docstring""" lowercase__ = self.sp_model.IdToPiece(a ) return token def SCREAMING_SNAKE_CASE_ ( self : str , a : Dict )-> List[str]: """simple docstring""" lowercase__ = [] lowercase__ = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(a ) + token lowercase__ = [] else: current_sub_tokens.append(a ) out_string += self.sp_model.decode(a ) return out_string.strip() def SCREAMING_SNAKE_CASE_ ( self : str , a : List[Any] , a : Optional[Any]=None )-> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE_ ( self : int , a : List[int] , a : Optional[List[int]] = None , a : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) lowercase__ = [1] if token_ids_a is None: return ([0] * len(a )) + suffix_ones return ([0] * len(a )) + ([0] * len(a )) + suffix_ones def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , a : str , a : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a ) elif not os.path.isfile(self.vocab_file ): with open(a , 'wb' ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(a ) return (out_vocab_file,)
235
1
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class snake_case__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Union[str, Any] ): snake_case__ : Any = 'hf-internal-testing/tiny-random-t5' snake_case__ : str = AutoTokenizer.from_pretrained(_lowerCAmelCase ) snake_case__ : str = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ) snake_case__ : Any = tokenizer('This is me' , return_tensors='pt' ) snake_case__ : str = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) snake_case__ : List[str] = model.generate(**_lowerCAmelCase ) snake_case__ : Optional[Any] = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) snake_case__ : Any = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) snake_case__ : int = model_reloaded.generate(**_lowerCAmelCase ) self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase ) ) def UpperCAmelCase__ ( self : List[str] ): snake_case__ : Dict = 'hf-internal-testing/tiny-random-t5' snake_case__ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ) snake_case__ : Union[str, Any] = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_lowerCAmelCase ): model.save_pretrained(_lowerCAmelCase ) snake_case__ : List[Any] = model.reverse_bettertransformer() model.save_pretrained(_lowerCAmelCase )
709
from __future__ import annotations from math import ceil, floor, sqrt def lowercase__( A = 2_0_0_0_0_0_0 ): snake_case__ : list[int] = [0] snake_case__ : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target snake_case__ : int = 0 # the area corresponding to the grid that gives the product closest to target snake_case__ : int = 0 # an estimate of b, using the quadratic formula snake_case__ : float # the largest integer less than b_estimate snake_case__ : int # the largest integer less than b_estimate snake_case__ : int # the triangle number corresponding to b_floor snake_case__ : int # the triangle number corresponding to b_ceil snake_case__ : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): snake_case__ : Dict = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 snake_case__ : List[Any] = floor(A ) snake_case__ : List[str] = ceil(A ) snake_case__ : List[str] = triangle_numbers[b_floor] snake_case__ : Dict = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): snake_case__ : str = triangle_b_first_guess * triangle_a snake_case__ : int = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): snake_case__ : Union[str, Any] = triangle_b_second_guess * triangle_a snake_case__ : List[str] = idx_a * b_ceil return area if __name__ == "__main__": print(F"""{solution() = }""")
303
0
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch _lowerCAmelCase : List[Any] = logging.get_logger(__name__) class lowerCAmelCase : '''simple docstring''' def __init__( self : str , __snake_case : Union[str, Any] = None , __snake_case : Optional[Any] = None , __snake_case : List[str]=None , __snake_case : int=None ) -> Any: '''simple docstring''' if not conversation_id: lowerCamelCase = uuid.uuida() if past_user_inputs is None: lowerCamelCase = [] if generated_responses is None: lowerCamelCase = [] lowerCamelCase = conversation_id lowerCamelCase = past_user_inputs lowerCamelCase = generated_responses lowerCamelCase = text def __eq__( self : List[Any] , __snake_case : str ) -> Any: '''simple docstring''' if not isinstance(__snake_case , __snake_case ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCamelCase__ ( self : Optional[Any] , __snake_case : List[Any] , __snake_case : Optional[Any] = False ) -> List[Any]: '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' F'''with: "{text}".''' ) lowerCamelCase = text else: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' F'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: lowerCamelCase = text def lowerCamelCase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) lowerCamelCase = None def lowerCamelCase__ ( self : Optional[int] , __snake_case : Optional[int] ) -> Tuple: '''simple docstring''' self.generated_responses.append(__snake_case ) def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = F'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): lowerCamelCase = """user""" if is_user else """bot""" output += F'''{name} >> {text} \n''' return output @add_end_docstrings( __UpperCamelCase , R'\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ' , ) class lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' def __init__( self : Tuple , *__snake_case : Any , **__snake_case : Optional[int] ) -> Optional[Any]: '''simple docstring''' super().__init__(*__snake_case , **__snake_case ) if self.tokenizer.pad_token_id is None: lowerCamelCase = self.tokenizer.eos_token def lowerCamelCase__ ( self : List[Any] , __snake_case : Tuple=None , __snake_case : str=None , __snake_case : Optional[int]=None , **__snake_case : Optional[int] ) -> Tuple: '''simple docstring''' lowerCamelCase = {} lowerCamelCase = {} lowerCamelCase = {} if min_length_for_response is not None: lowerCamelCase = min_length_for_response if minimum_tokens is not None: lowerCamelCase = minimum_tokens if "max_length" in generate_kwargs: lowerCamelCase = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: lowerCamelCase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__snake_case ) return preprocess_params, forward_params, postprocess_params def __call__( self : int , __snake_case : Optional[Any] , __snake_case : int=0 , **__snake_case : Optional[int] ) -> Optional[int]: '''simple docstring''' lowerCamelCase = super().__call__(__snake_case , num_workers=__snake_case , **__snake_case ) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) == 1: return outputs[0] return outputs def lowerCamelCase__ ( self : List[Any] , __snake_case : Any , __snake_case : List[Any]=32 ) -> Dict[str, Any]: '''simple docstring''' if not isinstance(__snake_case , __snake_case ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( F'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): lowerCamelCase = self.tokenizer._build_conversation_input_ids(__snake_case ) else: # If the tokenizer cannot handle conversations, we default to only the old version lowerCamelCase = self._legacy_parse_and_tokenize(__snake_case ) if self.framework == "pt": lowerCamelCase = torch.LongTensor([input_ids] ) elif self.framework == "tf": lowerCamelCase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCamelCase__ ( self : Union[str, Any] , __snake_case : str , __snake_case : Union[str, Any]=10 , **__snake_case : Tuple ) -> int: '''simple docstring''' lowerCamelCase = generate_kwargs.get('max_length' , self.model.config.max_length ) lowerCamelCase = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(F'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) lowerCamelCase = max_length - minimum_tokens lowerCamelCase = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: lowerCamelCase = model_inputs["""attention_mask"""][:, -trim:] lowerCamelCase = model_inputs.pop('conversation' ) lowerCamelCase = max_length lowerCamelCase = self.model.generate(**__snake_case , **__snake_case ) if self.model.config.is_encoder_decoder: lowerCamelCase = 1 else: lowerCamelCase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCamelCase__ ( self : Optional[int] , __snake_case : List[str] , __snake_case : List[str]=True ) -> List[str]: '''simple docstring''' lowerCamelCase = model_outputs["""output_ids"""] lowerCamelCase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case , ) lowerCamelCase = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(__snake_case ) return conversation def lowerCamelCase__ ( self : Any , __snake_case : List[str] ) -> Dict: '''simple docstring''' lowerCamelCase = self.tokenizer.eos_token_id lowerCamelCase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) ) if len(__snake_case ) > self.tokenizer.model_max_length: lowerCamelCase = input_ids[-self.tokenizer.model_max_length :] return input_ids
246
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def __snake_case ( __A ) -> Any: def wrapper(*__A ,**__A ): lowercase : Tuple = timeit.default_timer() lowercase : List[Any] = func(*__A ,**__A ) lowercase : str = timeit.default_timer() - starttime return delta lowercase : Optional[int] = func.__name__ return wrapper def __snake_case ( __A ,__A=100 ,__A=None ) -> Optional[int]: lowercase : List[Any] = [] lowercase : Tuple = seq_shapes or {} for i in range(__A ): lowercase : int = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__A ,_ArrayXD ): lowercase : Optional[Any] = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__A ,datasets.Value ): if v.dtype == "string": lowercase : Tuple = """The small grey turtle was surprisingly fast when challenged.""" else: lowercase : Optional[Any] = np.random.randint(10 ,size=1 ).astype(v.dtype ).item() elif isinstance(__A ,datasets.Sequence ): while isinstance(__A ,datasets.Sequence ): lowercase : List[Any] = v.feature lowercase : Optional[int] = seq_shapes[k] lowercase : List[str] = np.random.rand(*__A ).astype(v.dtype ) lowercase : Any = data dummy_data.append((i, example) ) return dummy_data def __snake_case ( __A ,__A ,__A=100 ,__A=None ) -> Optional[Any]: lowercase : Tuple = generate_examples(__A ,num_examples=__A ,seq_shapes=__A ) with ArrowWriter(features=__A ,path=__A ) as writer: for key, record in dummy_data: lowercase : int = features.encode_example(__A ) writer.write(__A ) lowercase , lowercase : List[Any] = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F'''Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.''' ) lowercase : Dict = datasets.Dataset.from_file(filename=__A ,info=datasets.DatasetInfo(features=__A ) ) return dataset
607
0
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCamelCase =re.compile(R"\s+") def snake_case ( a_ : List[Any] ) -> str: """simple docstring""" return {"hash": hashlib.mda(re.sub(a_ , """""" , example["""content"""] ).encode("""utf-8""" ) ).hexdigest()} def snake_case ( a_ : int ) -> List[Any]: """simple docstring""" UpperCamelCase_ : Optional[int] = [len(a_ ) for line in example["""content"""].splitlines()] return {"line_mean": np.mean(a_ ), "line_max": max(a_ )} def snake_case ( a_ : List[str] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : List[Any] = np.mean([c.isalnum() for c in example["""content"""]] ) return {"alpha_frac": alpha_frac} def snake_case ( a_ : List[Any] , a_ : str ) -> Tuple: """simple docstring""" if example["hash"] in uniques: uniques.remove(example["""hash"""] ) return True else: return False def snake_case ( a_ : Optional[int] , a_ : Tuple=5 ) -> int: """simple docstring""" UpperCamelCase_ : Optional[Any] = ["""auto-generated""", """autogenerated""", """automatically generated"""] UpperCamelCase_ : Any = example["""content"""].splitlines() for _, line in zip(range(a_ ) , a_ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def snake_case ( a_ : Union[str, Any] , a_ : Any=5 , a_ : List[str]=0.05 ) -> Any: """simple docstring""" UpperCamelCase_ : List[Any] = ["""unit tests""", """test file""", """configuration file"""] UpperCamelCase_ : Union[str, Any] = example["""content"""].splitlines() UpperCamelCase_ : List[str] = 0 UpperCamelCase_ : Optional[int] = 0 # first test for _, line in zip(range(a_ ) , a_ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test UpperCamelCase_ : str = example["""content"""].count("""\n""" ) UpperCamelCase_ : List[Any] = int(coeff * nlines ) for line in lines: count_config += line.lower().count("""config""" ) count_test += line.lower().count("""test""" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def snake_case ( a_ : Dict ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Tuple = ["""def """, """class """, """for """, """while """] UpperCamelCase_ : Optional[Any] = example["""content"""].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def snake_case ( a_ : List[str] , a_ : Tuple=4 ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Optional[Any] = example["""content"""].splitlines() UpperCamelCase_ : Any = 0 for line in lines: counter += line.lower().count("""=""" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def snake_case ( a_ : Optional[Any] ) -> List[Any]: """simple docstring""" UpperCamelCase_ : Any = tokenizer(example["""content"""] , truncation=a_ )["""input_ids"""] UpperCamelCase_ : Any = len(example["""content"""] ) / len(a_ ) return {"ratio": ratio} def snake_case ( a_ : Optional[int] ) -> Any: """simple docstring""" UpperCamelCase_ : Union[str, Any] = {} results.update(get_hash(a_ ) ) results.update(line_stats(a_ ) ) results.update(alpha_stats(a_ ) ) results.update(char_token_ratio(a_ ) ) results.update(is_autogenerated(a_ ) ) results.update(is_config_or_test(a_ ) ) results.update(has_no_keywords(a_ ) ) results.update(has_few_assignments(a_ ) ) return results def snake_case ( a_ : Optional[Any] , a_ : Union[str, Any] , a_ : int ) -> int: """simple docstring""" if not check_uniques(a_ , a_ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def snake_case ( a_ : Optional[int] ) -> int: """simple docstring""" with open(a_ , """rb""" ) as f_in: with gzip.open(str(a_ ) + """.gz""" , """wb""" , compresslevel=6 ) as f_out: shutil.copyfileobj(a_ , a_ ) os.unlink(a_ ) # Settings UpperCamelCase =HfArgumentParser(PreprocessingArguments) UpperCamelCase =parser.parse_args() if args.num_workers is None: UpperCamelCase =multiprocessing.cpu_count() UpperCamelCase =AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCamelCase =time.time() UpperCamelCase =load_dataset(args.dataset_name, split="train") print(f"Time to load dataset: {time.time()-t_start:.2f}") # Run preprocessing UpperCamelCase =time.time() UpperCamelCase =ds.map(preprocess, num_proc=args.num_workers) print(f"Time to preprocess dataset: {time.time()-t_start:.2f}") # Deduplicate hashes UpperCamelCase =set(ds.unique("hash")) UpperCamelCase =len(uniques) / len(ds) print(f"Fraction of duplicates: {1-frac:.2%}") # Deduplicate data and apply heuristics UpperCamelCase =time.time() UpperCamelCase =ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f"Time to filter dataset: {time.time()-t_start:.2f}") print(f"Size of filtered dataset: {len(ds_filter)}") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCamelCase =time.time() UpperCamelCase , UpperCamelCase =deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"Time to deduplicate dataset: {time.time()-t_start:.2f}") print(f"Size of deduplicate dataset: {len(ds_filter)}") # Save data in batches of samples_per_file UpperCamelCase =Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) UpperCamelCase =output_dir / "data" data_dir.mkdir(exist_ok=True) UpperCamelCase =time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCamelCase =str(data_dir / f"file-{file_number+1:012}.json") UpperCamelCase =min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"Time to save dataset: {time.time()-t_start:.2f}")
543
'''simple docstring''' from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata UpperCamelCase ="" if version.parse(importlib_metadata.version("jiwer")) < version.parse("2.3.0"): class A ( tr.AbstractTransform ): """simple docstring""" def __init__( self , __lowerCAmelCase = " " ): UpperCamelCase_ : str = sentence_delimiter def _UpperCAmelCase ( self , __lowerCAmelCase ): return list(__lowerCAmelCase ) def _UpperCAmelCase ( self , __lowerCAmelCase ): UpperCamelCase_ : List[Any] = [] for sent_idx, sentence in enumerate(__lowerCAmelCase ): chars.extend(self.process_string(__lowerCAmelCase ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(__lowerCAmelCase ) - 1: chars.append(self.sentence_delimiter ) return chars UpperCamelCase =tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: UpperCamelCase =tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) UpperCamelCase ="\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" UpperCamelCase ="\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n" UpperCamelCase ="\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> cer = datasets.load_metric(\"cer\")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): """simple docstring""" def _UpperCAmelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", """https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates""", ] , ) def _UpperCAmelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ): if concatenate_texts: return jiwer.compute_measures( __lowerCAmelCase , __lowerCAmelCase , truth_transform=__lowerCAmelCase , hypothesis_transform=__lowerCAmelCase , )["wer"] UpperCamelCase_ : Optional[Any] = 0 UpperCamelCase_ : str = 0 for prediction, reference in zip(__lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase_ : Optional[int] = jiwer.compute_measures( __lowerCAmelCase , __lowerCAmelCase , truth_transform=__lowerCAmelCase , hypothesis_transform=__lowerCAmelCase , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
543
1
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _UpperCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCamelCase ( self ): A_ : Optional[int] = 1 A_ : Optional[int] = 3 A_ : List[str] = (32, 32) A_ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__UpperCAmelCase ) return image @property def _lowerCamelCase ( self ): torch.manual_seed(0 ) A_ : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def _lowerCamelCase ( self ): torch.manual_seed(0 ) A_ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def _lowerCamelCase ( self ): torch.manual_seed(0 ) A_ : Optional[Any] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(__UpperCAmelCase ) @property def _lowerCamelCase ( self ): def extract(*a__ , **a__ ): class _UpperCAmelCase : def __init__( self ): A_ : Tuple = torch.ones([0] ) def _lowerCamelCase ( self , a__ ): self.pixel_values.to(__UpperCAmelCase ) return self return Out() return extract def _lowerCamelCase ( self ): A_ : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ : Any = self.dummy_cond_unet A_ : Union[str, Any] = PNDMScheduler(skip_prk_steps=__UpperCAmelCase ) A_ : Optional[Any] = self.dummy_vae A_ : Union[str, Any] = self.dummy_text_encoder A_ : str = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) A_ : Optional[Any] = 77 A_ : Any = self.dummy_image.to(__UpperCAmelCase ) A_ : Union[str, Any] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk A_ : List[Any] = AltDiffusionImgaImgPipeline( unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , safety_checker=__UpperCAmelCase , feature_extractor=self.dummy_extractor , ) A_ : Any = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__UpperCAmelCase ) A_ : Tuple = alt_pipe.to(__UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) A_ : Union[str, Any] = """A painting of a squirrel eating a burger""" A_ : List[str] = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) A_ : Optional[Any] = alt_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=__UpperCAmelCase , ) A_ : Union[str, Any] = output.images A_ : Tuple = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) A_ : Optional[Any] = alt_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=__UpperCAmelCase , return_dict=__UpperCAmelCase , )[0] A_ : Dict = image[0, -3:, -3:, -1] A_ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A_ : Any = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _lowerCamelCase ( self ): A_ : Optional[int] = self.dummy_cond_unet A_ : Tuple = PNDMScheduler(skip_prk_steps=__UpperCAmelCase ) A_ : Optional[Any] = self.dummy_vae A_ : int = self.dummy_text_encoder A_ : Optional[int] = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) A_ : Optional[int] = 77 A_ : Dict = self.dummy_image.to(__UpperCAmelCase ) # put models in fp16 A_ : Optional[Any] = unet.half() A_ : List[str] = vae.half() A_ : Union[str, Any] = bert.half() # make sure here that pndm scheduler skips prk A_ : Optional[int] = AltDiffusionImgaImgPipeline( unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , safety_checker=__UpperCAmelCase , feature_extractor=self.dummy_extractor , ) A_ : Tuple = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__UpperCAmelCase ) A_ : Tuple = alt_pipe.to(__UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) A_ : Optional[Any] = """A painting of a squirrel eating a burger""" A_ : Optional[int] = torch.manual_seed(0 ) A_ : Optional[int] = alt_pipe( [prompt] , generator=__UpperCAmelCase , num_inference_steps=2 , output_type="""np""" , image=__UpperCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _lowerCamelCase ( self ): A_ : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) # resize to resolution that is divisible by 8 but not 16 or 32 A_ : Optional[int] = init_image.resize((760, 504) ) A_ : int = """BAAI/AltDiffusion""" A_ : Union[str, Any] = AltDiffusionImgaImgPipeline.from_pretrained( __UpperCAmelCase , safety_checker=__UpperCAmelCase , ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() A_ : int = """A fantasy landscape, trending on artstation""" A_ : Union[str, Any] = torch.manual_seed(0 ) A_ : List[Any] = pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=__UpperCAmelCase , output_type="""np""" , ) A_ : Optional[Any] = output.images[0] A_ : Optional[int] = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) A_ : List[Any] = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ): A_ : str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) A_ : Union[str, Any] = init_image.resize((768, 512) ) A_ : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" ) A_ : Union[str, Any] = """BAAI/AltDiffusion""" A_ : List[Any] = AltDiffusionImgaImgPipeline.from_pretrained( __UpperCAmelCase , safety_checker=__UpperCAmelCase , ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() A_ : List[str] = """A fantasy landscape, trending on artstation""" A_ : Optional[Any] = torch.manual_seed(0 ) A_ : Optional[Any] = pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=__UpperCAmelCase , output_type="""np""" , ) A_ : List[str] = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
569
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def _a ( a :Optional[Any] ) -> List[Any]: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: a = k.replace(a , a ) if k.startswith('''encoder''' ): a = k.replace('''.attn''' , '''.self_attn''' ) a = k.replace('''norm1''' , '''self_attn_layer_norm''' ) a = k.replace('''norm2''' , '''final_layer_norm''' ) elif k.startswith('''decoder''' ): a = k.replace('''norm1''' , '''self_attn_layer_norm''' ) a = k.replace('''norm2''' , '''encoder_attn_layer_norm''' ) a = k.replace('''norm3''' , '''final_layer_norm''' ) return k def _a ( a :Dict ) -> Tuple: a = [ '''model.encoder.layernorm_embedding.weight''', '''model.encoder.layernorm_embedding.bias''', '''model.decoder.layernorm_embedding.weight''', '''model.decoder.layernorm_embedding.bias''', ] for k in keys: a = sd.pop(a ) a = k.replace('''layernorm_embedding''' , '''layer_norm''' ) assert new_k not in sd a = v UpperCAmelCase__ = ["START"] @torch.no_grad() def _a ( a :Dict , a :str , a :int ) -> int: a = torch.load(a , map_location='''cpu''' ) a = model['''model'''] a = BlenderbotConfig.from_json_file(a ) a = BlenderbotForConditionalGeneration(a ) a = m.model.state_dict().keys() a = [] a = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue a = rename_state_dict_key(a ) if new_k not in valid_keys: failures.append([k, new_k] ) else: a = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(a ) m.model.load_state_dict(a , strict=a ) m.half() m.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) UpperCAmelCase__ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
117
0
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Tuple=None ) -> Dict: '''simple docstring''' assert torch_layer.weight.shape == weight.shape, F'{torch_layer} layer.weight does not match' __A : Tuple = nn.Parameter(_SCREAMING_SNAKE_CASE ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'{torch_layer} layer.bias does not match' __A : Any = nn.Parameter(_SCREAMING_SNAKE_CASE ) def _lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any ) -> List[str]: '''simple docstring''' __A : Union[str, Any] = np.asarray(weights[0] ) __A : int = np.asarray(weights[1] ) __A : Any = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(_SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , _SCREAMING_SNAKE_CASE ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , _SCREAMING_SNAKE_CASE ) , ) set_param( torch_layer.output.dense , torch.tensor(_SCREAMING_SNAKE_CASE ).view(-1 , _SCREAMING_SNAKE_CASE ).contiguous().transpose(0 , 1 ) , ) def _lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple ) -> Optional[Any]: '''simple docstring''' __A : str = np.asarray(weights[0] ) __A : Union[str, Any] = np.asarray(weights[1] ) __A : Dict = np.asarray(weights[2] ) __A : Union[str, Any] = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(_SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , _SCREAMING_SNAKE_CASE ) , ) set_param( torch_layer.self_attention.key , torch.tensor(_SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , _SCREAMING_SNAKE_CASE ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , _SCREAMING_SNAKE_CASE ) , ) set_param( torch_layer.output.dense , torch.tensor(_SCREAMING_SNAKE_CASE ).view(-1 , _SCREAMING_SNAKE_CASE ).contiguous().transpose(0 , 1 ) , ) def _lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : int ) -> int: '''simple docstring''' __A : List[str] = weights[0][0][0] __A : int = np.asarray(layer_norm_a[0] ) __A : Optional[Any] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(_SCREAMING_SNAKE_CASE ) , torch.tensor(_SCREAMING_SNAKE_CASE ) , ) # lsh weights + output __A : str = weights[0][1] if len(_SCREAMING_SNAKE_CASE ) < 4: set_layer_weights_in_torch_lsh(_SCREAMING_SNAKE_CASE , torch_block.attention , _SCREAMING_SNAKE_CASE ) else: set_layer_weights_in_torch_local(_SCREAMING_SNAKE_CASE , torch_block.attention , _SCREAMING_SNAKE_CASE ) # intermediate weighs __A : Any = weights[2][0][1][2] # Chunked Feed Forward if len(_SCREAMING_SNAKE_CASE ) == 4: __A : Union[str, Any] = intermediate_weights[2] # layernorm 2 __A : Any = np.asarray(intermediate_weights[0][0] ) __A : Any = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(_SCREAMING_SNAKE_CASE ) , torch.tensor(_SCREAMING_SNAKE_CASE ) , ) # intermediate dense __A : Any = np.asarray(intermediate_weights[1][0] ) __A : Dict = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(_SCREAMING_SNAKE_CASE ).transpose(0 , 1 ).contiguous() , torch.tensor(_SCREAMING_SNAKE_CASE ) , ) # intermediate out __A : Any = np.asarray(intermediate_weights[4][0] ) __A : str = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(_SCREAMING_SNAKE_CASE ).transpose(0 , 1 ).contiguous() , torch.tensor(_SCREAMING_SNAKE_CASE ) , ) def _lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: '''simple docstring''' __A : Dict = torch_model.reformer # word embeds __A : Optional[int] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(_SCREAMING_SNAKE_CASE ) , ) if isinstance(weights[3] , _SCREAMING_SNAKE_CASE ): __A : List[str] = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): __A : List[str] = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'{position_embeddings[emb_idx]} emb does not match' __A : int = nn.Parameter(torch.tensor(_SCREAMING_SNAKE_CASE ) ) __A : Optional[int] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( _SCREAMING_SNAKE_CASE ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): __A : List[str] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # output layer norm __A : List[Any] = np.asarray(weights[7][0] ) __A : Union[str, Any] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(_SCREAMING_SNAKE_CASE ) , torch.tensor(_SCREAMING_SNAKE_CASE ) , ) # output embeddings __A : Dict = np.asarray(weights[9][0] ) __A : List[str] = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(_SCREAMING_SNAKE_CASE ).transpose(0 , 1 ).contiguous() , torch.tensor(_SCREAMING_SNAKE_CASE ) , ) def _lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' __A : Optional[Any] = ReformerConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(F'Building PyTorch model from configuration: {config}' ) __A : Dict = ReformerModelWithLMHead(_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , 'rb' ) as f: __A : Tuple = pickle.load(_SCREAMING_SNAKE_CASE )['weights'] set_model_weights_in_torch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , config.hidden_size ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCamelCase : Optional[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase : int =parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
710
"""simple docstring""" from __future__ import annotations lowerCamelCase : str =[ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def _lowercase ( _SCREAMING_SNAKE_CASE : list[list[int]] , _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : list[list[int]] , ) -> tuple[list[list[int]], list[list[int]]]: '''simple docstring''' __A : Union[str, Any] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_SCREAMING_SNAKE_CASE ) ) ] # the reference grid __A : List[Any] = 1 __A : Optional[Any] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_SCREAMING_SNAKE_CASE ) ) ] # the action grid __A : Union[str, Any] = init[0] __A : List[Any] = init[1] __A : str = 0 __A : Union[str, Any] = g + heuristic[x][y] # cost from starting cell to destination cell __A : int = [[f, g, x, y]] __A : Optional[int] = False # flag that is set when search is complete __A : Dict = False # flag set if we can't find expand while not found and not resign: if len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __A : Optional[int] = cell.pop() __A : Optional[int] = next_cell[2] __A : List[Any] = next_cell[3] __A : Optional[Any] = next_cell[1] if x == goal[0] and y == goal[1]: __A : Union[str, Any] = True else: for i in range(len(_SCREAMING_SNAKE_CASE ) ): # to try out different valid actions __A : str = x + DIRECTIONS[i][0] __A : Any = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_SCREAMING_SNAKE_CASE ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __A : Optional[int] = g + cost __A : Any = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __A : List[str] = 1 __A : List[str] = i __A : str = [] __A : Union[str, Any] = goal[0] __A : Optional[Any] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __A : Tuple = x - DIRECTIONS[action[x][y]][0] __A : List[str] = y - DIRECTIONS[action[x][y]][1] __A : int = xa __A : Union[str, Any] = ya invpath.append([x, y] ) __A : List[str] = [] for i in range(len(_SCREAMING_SNAKE_CASE ) ): path.append(invpath[len(_SCREAMING_SNAKE_CASE ) - 1 - i] ) return path, action if __name__ == "__main__": lowerCamelCase : List[Any] =[ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] lowerCamelCase : List[str] =[0, 0] # all coordinates are given in format [y,x] lowerCamelCase : Union[str, Any] =[len(grid) - 1, len(grid[0]) - 1] lowerCamelCase : int =1 # the cost map which pushes the path closer to the goal lowerCamelCase : Tuple =[[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): lowerCamelCase : List[Any] =abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map lowerCamelCase : Union[str, Any] =99 lowerCamelCase , lowerCamelCase : Union[str, Any] =search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
237
0
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class A ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=30 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=0.02 , ) -> Dict: """simple docstring""" A : int = parent A : List[Any] = batch_size A : Tuple = image_size A : Dict = patch_size A : Union[str, Any] = num_channels A : List[Any] = is_training A : Any = use_labels A : List[Any] = hidden_size A : Any = num_hidden_layers A : Optional[int] = num_attention_heads A : Union[str, Any] = intermediate_size A : Any = hidden_act A : Optional[Any] = hidden_dropout_prob A : Optional[Any] = attention_probs_dropout_prob A : str = type_sequence_label_size A : List[str] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A : Optional[Any] = (image_size // patch_size) ** 2 A : Any = num_patches + 1 def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A : int = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, pixel_values def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" A : Dict = FlaxViTModel(config=SCREAMING_SNAKE_CASE ) A : List[Any] = model(SCREAMING_SNAKE_CASE ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) A : Dict = (self.image_size, self.image_size) A : int = (self.patch_size, self.patch_size) A : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" A : str = self.type_sequence_label_size A : List[Any] = FlaxViTForImageClassification(config=SCREAMING_SNAKE_CASE ) A : List[Any] = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A : Dict = 1 A : int = FlaxViTForImageClassification(SCREAMING_SNAKE_CASE ) A : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A : Union[str, Any] = model(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : Optional[Any] = self.prepare_config_and_inputs() ( A ) : str = config_and_inputs A : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class A ( A_ , unittest.TestCase ): __magic_name__ = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def __lowerCAmelCase ( self ) -> None: """simple docstring""" A : Dict = FlaxViTModelTester(self ) A : Any = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : int = model_class(SCREAMING_SNAKE_CASE ) A : Optional[Any] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A : Optional[int] = [*signature.parameters.keys()] A : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : List[str] = model_class(SCREAMING_SNAKE_CASE ) @jax.jit def model_jitted(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): return model(pixel_values=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) with self.subTest('''JIT Enabled''' ): A : List[str] = model_jitted(**SCREAMING_SNAKE_CASE ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): A : List[Any] = model_jitted(**SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE ) , len(SCREAMING_SNAKE_CASE ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" for model_class_name in self.all_model_classes: A : Tuple = model_class_name.from_pretrained('''google/vit-base-patch16-224''' ) A : List[Any] = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE )
634
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowercase__ : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=32 * 8 , SCREAMING_SNAKE_CASE=32 * 8 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=64 , ) -> Optional[int]: _lowerCamelCase : List[str] = parent _lowerCamelCase : List[Any] = batch_size _lowerCamelCase : Tuple = is_training _lowerCamelCase : Tuple = use_auxiliary_loss _lowerCamelCase : Any = num_queries _lowerCamelCase : List[str] = num_channels _lowerCamelCase : List[str] = min_size _lowerCamelCase : Tuple = max_size _lowerCamelCase : str = num_labels _lowerCamelCase : Any = hidden_dim _lowerCamelCase : Dict = hidden_dim def UpperCamelCase_ ( self) -> List[str]: _lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to( SCREAMING_SNAKE_CASE) _lowerCamelCase : List[Any] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=SCREAMING_SNAKE_CASE) _lowerCamelCase : Union[str, Any] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=SCREAMING_SNAKE_CASE) > 0.5 ).float() _lowerCamelCase : Dict = (torch.rand((self.batch_size, self.num_labels) , device=SCREAMING_SNAKE_CASE) > 0.5).long() _lowerCamelCase : Optional[int] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCamelCase_ ( self) -> str: _lowerCamelCase : List[str] = MaskaFormerConfig( hidden_size=self.hidden_dim , ) _lowerCamelCase : Any = self.num_queries _lowerCamelCase : int = self.num_labels _lowerCamelCase : int = [1, 1, 1, 1] _lowerCamelCase : Any = self.num_channels _lowerCamelCase : Optional[Any] = 64 _lowerCamelCase : str = 128 _lowerCamelCase : Optional[Any] = self.hidden_dim _lowerCamelCase : Any = self.hidden_dim _lowerCamelCase : List[Any] = self.hidden_dim return config def UpperCamelCase_ ( self) -> Any: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] = self.prepare_config_and_inputs() _lowerCamelCase : str = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> Optional[int]: _lowerCamelCase : str = output.encoder_hidden_states _lowerCamelCase : int = output.pixel_decoder_hidden_states _lowerCamelCase : Optional[int] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(SCREAMING_SNAKE_CASE) , len(config.backbone_config.depths)) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE) , len(config.backbone_config.depths)) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE) , config.decoder_layers) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False) -> List[str]: with torch.no_grad(): _lowerCamelCase : Optional[int] = MaskaFormerModel(config=SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _lowerCamelCase : Optional[int] = model(pixel_values=SCREAMING_SNAKE_CASE , pixel_mask=SCREAMING_SNAKE_CASE) _lowerCamelCase : List[str] = model(SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(output.encoder_last_hidden_state is not None) if output_hidden_states: self.check_output_hidden_state(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> str: _lowerCamelCase : str = MaskaFormerForUniversalSegmentation(config=SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() def comm_check_on_output(SCREAMING_SNAKE_CASE): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(result.encoder_last_hidden_state is not None) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1)) with torch.no_grad(): _lowerCamelCase : List[Any] = model(pixel_values=SCREAMING_SNAKE_CASE , pixel_mask=SCREAMING_SNAKE_CASE) _lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE) comm_check_on_output(SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[Any] = model( pixel_values=SCREAMING_SNAKE_CASE , pixel_mask=SCREAMING_SNAKE_CASE , mask_labels=SCREAMING_SNAKE_CASE , class_labels=SCREAMING_SNAKE_CASE) comm_check_on_output(SCREAMING_SNAKE_CASE) self.parent.assertTrue(result.loss is not None) self.parent.assertEqual(result.loss.shape , torch.Size([1])) @require_torch class lowercase__ ( A_ ,A_ ,unittest.TestCase ): __UpperCAmelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () __UpperCAmelCase = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def UpperCamelCase_ ( self) -> Dict: _lowerCamelCase : Optional[int] = MaskaFormerModelTester(self) _lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> List[str]: self.config_tester.run_common_tests() def UpperCamelCase_ ( self) -> int: _lowerCamelCase , _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> Tuple: _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*SCREAMING_SNAKE_CASE) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""") def UpperCamelCase_ ( self) -> Optional[int]: pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""") def UpperCamelCase_ ( self) -> Tuple: pass @unittest.skip(reason="""Mask2Former is not a generative model""") def UpperCamelCase_ ( self) -> List[Any]: pass @unittest.skip(reason="""Mask2Former does not use token embeddings""") def UpperCamelCase_ ( self) -> Any: pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""") def UpperCamelCase_ ( self) -> Dict: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""") def UpperCamelCase_ ( self) -> Optional[int]: pass def UpperCamelCase_ ( self) -> Optional[Any]: _lowerCamelCase , _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Dict = model_class(SCREAMING_SNAKE_CASE) _lowerCamelCase : Any = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : str = [*signature.parameters.keys()] _lowerCamelCase : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE) @slow def UpperCamelCase_ ( self) -> Optional[int]: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _lowerCamelCase : Optional[int] = MaskaFormerModel.from_pretrained(SCREAMING_SNAKE_CASE) self.assertIsNotNone(SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> Optional[Any]: _lowerCamelCase : Dict = (self.model_tester.min_size,) * 2 _lowerCamelCase : str = { """pixel_values""": torch.randn((2, 3, *size) , device=SCREAMING_SNAKE_CASE), """mask_labels""": torch.randn((2, 10, *size) , device=SCREAMING_SNAKE_CASE), """class_labels""": torch.zeros(2 , 10 , device=SCREAMING_SNAKE_CASE).long(), } _lowerCamelCase : List[str] = self.model_tester.get_config() _lowerCamelCase : Tuple = MaskaFormerForUniversalSegmentation(SCREAMING_SNAKE_CASE).to(SCREAMING_SNAKE_CASE) _lowerCamelCase : Union[str, Any] = model(**SCREAMING_SNAKE_CASE) self.assertTrue(outputs.loss is not None) def UpperCamelCase_ ( self) -> Tuple: _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> Optional[int]: _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : str = model_class(SCREAMING_SNAKE_CASE).to(SCREAMING_SNAKE_CASE) _lowerCamelCase : Union[str, Any] = model(**SCREAMING_SNAKE_CASE , output_attentions=SCREAMING_SNAKE_CASE) self.assertTrue(outputs.attentions is not None) def UpperCamelCase_ ( self) -> Optional[Any]: if not self.model_tester.is_training: return _lowerCamelCase : Any = self.all_model_classes[1] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() _lowerCamelCase : List[Any] = model_class(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.train() _lowerCamelCase : int = model(SCREAMING_SNAKE_CASE , mask_labels=SCREAMING_SNAKE_CASE , class_labels=SCREAMING_SNAKE_CASE).loss loss.backward() def UpperCamelCase_ ( self) -> Optional[Any]: _lowerCamelCase : Any = self.all_model_classes[1] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() _lowerCamelCase : int = True _lowerCamelCase : Optional[Any] = True _lowerCamelCase : str = model_class(SCREAMING_SNAKE_CASE).to(SCREAMING_SNAKE_CASE) model.train() _lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE , mask_labels=SCREAMING_SNAKE_CASE , class_labels=SCREAMING_SNAKE_CASE) _lowerCamelCase : Tuple = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _lowerCamelCase : int = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _lowerCamelCase : str = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _lowerCamelCase : Optional[int] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=SCREAMING_SNAKE_CASE) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(pixel_decoder_hidden_states.grad) self.assertIsNotNone(transformer_decoder_hidden_states.grad) self.assertIsNotNone(attentions.grad) UpperCAmelCase = 1e-4 def _snake_case ( ): """simple docstring""" _lowerCamelCase : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class lowercase__ ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self) -> int: return "facebook/mask2former-swin-small-coco-instance" @cached_property def UpperCamelCase_ ( self) -> Union[str, Any]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints) if is_vision_available() else None def UpperCamelCase_ ( self) -> Optional[Any]: _lowerCamelCase : Tuple = MaskaFormerModel.from_pretrained(self.model_checkpoints).to(SCREAMING_SNAKE_CASE) _lowerCamelCase : str = self.default_image_processor _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Union[str, Any] = image_processor(SCREAMING_SNAKE_CASE , return_tensors="""pt""").to(SCREAMING_SNAKE_CASE) _lowerCamelCase : Union[str, Any] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(SCREAMING_SNAKE_CASE , (1, 3, 384, 384)) with torch.no_grad(): _lowerCamelCase : Dict = model(**SCREAMING_SNAKE_CASE) _lowerCamelCase : List[Any] = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]]).to(SCREAMING_SNAKE_CASE) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , SCREAMING_SNAKE_CASE , atol=SCREAMING_SNAKE_CASE)) _lowerCamelCase : Any = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]]).to(SCREAMING_SNAKE_CASE) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , SCREAMING_SNAKE_CASE , atol=SCREAMING_SNAKE_CASE)) _lowerCamelCase : Dict = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]]).to(SCREAMING_SNAKE_CASE) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=SCREAMING_SNAKE_CASE)) def UpperCamelCase_ ( self) -> Any: _lowerCamelCase : Optional[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(SCREAMING_SNAKE_CASE).eval() _lowerCamelCase : Optional[Any] = self.default_image_processor _lowerCamelCase : Any = prepare_img() _lowerCamelCase : Dict = image_processor(SCREAMING_SNAKE_CASE , return_tensors="""pt""").to(SCREAMING_SNAKE_CASE) _lowerCamelCase : Union[str, Any] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(SCREAMING_SNAKE_CASE , (1, 3, 384, 384)) with torch.no_grad(): _lowerCamelCase : List[str] = model(**SCREAMING_SNAKE_CASE) # masks_queries_logits _lowerCamelCase : str = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4)) _lowerCamelCase : Any = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] _lowerCamelCase : List[Any] = torch.tensor(SCREAMING_SNAKE_CASE).to(SCREAMING_SNAKE_CASE) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE , atol=SCREAMING_SNAKE_CASE)) # class_queries_logits _lowerCamelCase : List[str] = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1)) _lowerCamelCase : Optional[Any] = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ]).to(SCREAMING_SNAKE_CASE) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=SCREAMING_SNAKE_CASE)) def UpperCamelCase_ ( self) -> int: _lowerCamelCase : Tuple = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(SCREAMING_SNAKE_CASE).eval() _lowerCamelCase : str = self.default_image_processor _lowerCamelCase : Tuple = image_processor( [np.zeros((3, 800, 1333)), np.zeros((3, 800, 1333))] , segmentation_maps=[np.zeros((384, 384)).astype(np.floataa), np.zeros((384, 384)).astype(np.floataa)] , return_tensors="""pt""" , ) _lowerCamelCase : Optional[Any] = inputs["""pixel_values"""].to(SCREAMING_SNAKE_CASE) _lowerCamelCase : Any = [el.to(SCREAMING_SNAKE_CASE) for el in inputs["""mask_labels"""]] _lowerCamelCase : Union[str, Any] = [el.to(SCREAMING_SNAKE_CASE) for el in inputs["""class_labels"""]] with torch.no_grad(): _lowerCamelCase : Any = model(**SCREAMING_SNAKE_CASE) self.assertTrue(outputs.loss is not None)
88
0
__a = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __a = [{'type': 'code', 'content': INSTALL_CONTENT}] __a = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
300
def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' if digit_amount > 0: return round(number - int(_lowercase ) , _lowercase ) return number - int(_lowercase ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
300
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]=7 , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : Optional[int]=30 , lowerCAmelCase : Optional[int]=400 , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : str=None , lowerCAmelCase : Dict=True , lowerCAmelCase : str=1 / 255 , lowerCAmelCase : List[Any]=True , lowerCAmelCase : Dict=[0.5, 0.5, 0.5] , lowerCAmelCase : Any=[0.5, 0.5, 0.5] , lowerCAmelCase : int=True , ) -> Dict: """simple docstring""" _snake_case : int = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} _snake_case : int = parent _snake_case : Union[str, Any] = batch_size _snake_case : int = num_channels _snake_case : Dict = min_resolution _snake_case : Tuple = max_resolution _snake_case : List[Any] = do_resize _snake_case : Union[str, Any] = size _snake_case : Dict = do_rescale _snake_case : Optional[Any] = rescale_factor _snake_case : str = do_normalize _snake_case : int = image_mean _snake_case : Union[str, Any] = image_std _snake_case : Any = do_pad def UpperCamelCase_ ( self : Dict) -> int: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : int=False) -> Union[str, Any]: """simple docstring""" if not batched: _snake_case : str = image_inputs[0] if isinstance(lowerCAmelCase , Image.Image): _snake_case , _snake_case : Optional[int] = image.size else: _snake_case , _snake_case : int = image.shape[1], image.shape[2] if w < h: _snake_case : Tuple = int(self.size["""shortest_edge"""] * h / w) _snake_case : int = self.size["""shortest_edge"""] elif w > h: _snake_case : Optional[int] = self.size["""shortest_edge"""] _snake_case : Dict = int(self.size["""shortest_edge"""] * w / h) else: _snake_case : Optional[Any] = self.size["""shortest_edge"""] _snake_case : List[str] = self.size["""shortest_edge"""] else: _snake_case : Optional[int] = [] for image in image_inputs: _snake_case , _snake_case : List[str] = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) _snake_case : List[str] = max(lowerCAmelCase , key=lambda lowerCAmelCase: item[0])[0] _snake_case : Union[str, Any] = max(lowerCAmelCase , key=lambda lowerCAmelCase: item[1])[1] return expected_height, expected_width @require_torch @require_vision class snake_case ( __snake_case ,unittest.TestCase ): '''simple docstring''' snake_case_ : Any = DetrImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : str) -> Tuple: """simple docstring""" _snake_case : int = DetrImageProcessingTester(self) @property def UpperCamelCase_ ( self : Any) -> Union[str, Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Optional[Any]) -> List[str]: """simple docstring""" _snake_case : Dict = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCAmelCase , """image_mean""")) self.assertTrue(hasattr(lowerCAmelCase , """image_std""")) self.assertTrue(hasattr(lowerCAmelCase , """do_normalize""")) self.assertTrue(hasattr(lowerCAmelCase , """do_rescale""")) self.assertTrue(hasattr(lowerCAmelCase , """rescale_factor""")) self.assertTrue(hasattr(lowerCAmelCase , """do_resize""")) self.assertTrue(hasattr(lowerCAmelCase , """size""")) self.assertTrue(hasattr(lowerCAmelCase , """do_pad""")) def UpperCamelCase_ ( self : Optional[Any]) -> Any: """simple docstring""" _snake_case : Dict = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333}) self.assertEqual(image_processor.do_pad , lowerCAmelCase) _snake_case : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCAmelCase) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84}) self.assertEqual(image_processor.do_pad , lowerCAmelCase) def UpperCamelCase_ ( self : List[str]) -> Union[str, Any]: """simple docstring""" pass def UpperCamelCase_ ( self : List[str]) -> str: """simple docstring""" _snake_case : List[str] = self.image_processing_class(**self.image_processor_dict) # create random PIL images _snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image) # Test not batched input _snake_case : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values _snake_case , _snake_case : Union[str, Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Optional[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase , batched=lowerCAmelCase) _snake_case : Optional[Any] = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : str) -> List[Any]: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray) # Test not batched input _snake_case : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values _snake_case , _snake_case : Tuple = self.image_processor_tester.get_expected_values(lowerCAmelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case : List[Any] = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values _snake_case , _snake_case : Optional[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase , batched=lowerCAmelCase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Union[str, Any]) -> Dict: """simple docstring""" _snake_case : Tuple = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor) # Test not batched input _snake_case : str = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values _snake_case , _snake_case : int = self.image_processor_tester.get_expected_values(lowerCAmelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case : List[Any] = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values _snake_case , _snake_case : Optional[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase , batched=lowerCAmelCase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCamelCase_ ( self : Dict) -> Optional[int]: """simple docstring""" _snake_case : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""") as f: _snake_case : Any = json.loads(f.read()) _snake_case : Tuple = {"""image_id""": 3_9769, """annotations""": target} # encode them _snake_case : Dict = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""") _snake_case : List[str] = image_processing(images=lowerCAmelCase , annotations=lowerCAmelCase , return_tensors="""pt""") # verify pixel values _snake_case : Optional[int] = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding["""pixel_values"""].shape , lowerCAmelCase) _snake_case : List[str] = torch.tensor([0.2_796, 0.3_138, 0.3_481]) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowerCAmelCase , atol=1E-4)) # verify area _snake_case : Dict = torch.tensor([5_887.9_600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowerCAmelCase)) # verify boxes _snake_case : Optional[Any] = torch.Size([6, 4]) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowerCAmelCase) _snake_case : List[Any] = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowerCAmelCase , atol=1E-3)) # verify image_id _snake_case : Optional[Any] = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowerCAmelCase)) # verify is_crowd _snake_case : str = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowerCAmelCase)) # verify class_labels _snake_case : Optional[Any] = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowerCAmelCase)) # verify orig_size _snake_case : int = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowerCAmelCase)) # verify size _snake_case : int = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowerCAmelCase)) @slow def UpperCamelCase_ ( self : Optional[int]) -> str: """simple docstring""" _snake_case : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""") as f: _snake_case : Optional[int] = json.loads(f.read()) _snake_case : Dict = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} _snake_case : str = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""") # encode them _snake_case : int = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""") _snake_case : List[Any] = image_processing(images=lowerCAmelCase , annotations=lowerCAmelCase , masks_path=lowerCAmelCase , return_tensors="""pt""") # verify pixel values _snake_case : Dict = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding["""pixel_values"""].shape , lowerCAmelCase) _snake_case : Optional[int] = torch.tensor([0.2_796, 0.3_138, 0.3_481]) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowerCAmelCase , atol=1E-4)) # verify area _snake_case : int = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5_879.6_562, 7_634.1_147]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowerCAmelCase)) # verify boxes _snake_case : List[str] = torch.Size([6, 4]) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowerCAmelCase) _snake_case : Union[str, Any] = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowerCAmelCase , atol=1E-3)) # verify image_id _snake_case : int = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowerCAmelCase)) # verify is_crowd _snake_case : Any = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowerCAmelCase)) # verify class_labels _snake_case : List[str] = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowerCAmelCase)) # verify masks _snake_case : Optional[int] = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowerCAmelCase) # verify orig_size _snake_case : Any = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowerCAmelCase)) # verify size _snake_case : List[str] = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowerCAmelCase))
477
'''simple docstring''' class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase ) -> Any: _snake_case = name _snake_case = val def __str__(self ) -> List[str]: return f"""{self.__class__.__name__}({self.name}, {self.val})""" def __lt__(self , UpperCAmelCase ) -> Any: return self.val < other.val class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase ) -> Dict: _snake_case = {} _snake_case = {} _snake_case = self.build_heap(UpperCAmelCase ) def __getitem__(self , UpperCAmelCase ) -> Union[str, Any]: return self.get_value(UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> Dict: return (idx - 1) // 2 def lowercase (self , UpperCAmelCase ) -> Optional[Any]: return idx * 2 + 1 def lowercase (self , UpperCAmelCase ) -> Optional[int]: return idx * 2 + 2 def lowercase (self , UpperCAmelCase ) -> Union[str, Any]: return self.heap_dict[key] def lowercase (self , UpperCAmelCase ) -> str: _snake_case = len(UpperCAmelCase ) - 1 _snake_case = self.get_parent_idx(UpperCAmelCase ) for idx, i in enumerate(UpperCAmelCase ): _snake_case = idx _snake_case = i.val for i in range(UpperCAmelCase , -1 , -1 ): self.sift_down(UpperCAmelCase , UpperCAmelCase ) return array def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> int: while True: _snake_case = self.get_left_child_idx(UpperCAmelCase ) # noqa: E741 _snake_case = self.get_right_child_idx(UpperCAmelCase ) _snake_case = idx if l < len(UpperCAmelCase ) and array[l] < array[idx]: _snake_case = l if r < len(UpperCAmelCase ) and array[r] < array[smallest]: _snake_case = r if smallest != idx: _snake_case, _snake_case = array[smallest], array[idx] ( ( _snake_case ), ( _snake_case ), ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) _snake_case = smallest else: break def lowercase (self , UpperCAmelCase ) -> str: _snake_case = self.get_parent_idx(UpperCAmelCase ) while p >= 0 and self.heap[p] > self.heap[idx]: _snake_case, _snake_case = self.heap[idx], self.heap[p] _snake_case, _snake_case = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) _snake_case = p _snake_case = self.get_parent_idx(UpperCAmelCase ) def lowercase (self ) -> Optional[int]: return self.heap[0] def lowercase (self ) -> List[Any]: _snake_case, _snake_case = self.heap[-1], self.heap[0] _snake_case, _snake_case = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) _snake_case = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def lowercase (self , UpperCAmelCase ) -> List[str]: self.heap.append(UpperCAmelCase ) _snake_case = len(self.heap ) - 1 _snake_case = node.val self.sift_up(len(self.heap ) - 1 ) def lowercase (self ) -> int: return len(self.heap ) == 0 def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" _snake_case = new_value _snake_case = new_value self.sift_up(self.idx_of_element[node] ) __lowerCAmelCase = Node('R', -1) __lowerCAmelCase = Node('B', 6) __lowerCAmelCase = Node('A', 3) __lowerCAmelCase = Node('X', 1) __lowerCAmelCase = Node('E', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array __lowerCAmelCase = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('Min Heap - before decrease key') for i in my_min_heap.heap: print(i) print('Min Heap - After decrease key of node [B -> -17]') my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
585
0
'''simple docstring''' UpperCAmelCase__ :List[Any] = 256 # Modulus to hash a string UpperCAmelCase__ :str = 1_000_003 def __lowercase (_lowercase, _lowercase ) -> bool: """simple docstring""" __lowerCamelCase : str = len(_lowercase ) __lowerCamelCase : List[str] = len(_lowercase ) if p_len > t_len: return False __lowerCamelCase : Optional[Any] = 0 __lowerCamelCase : Tuple = 0 __lowerCamelCase : Dict = 1 # Calculating the hash of pattern and substring of text for i in range(_lowercase ): __lowerCamelCase : Optional[int] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __lowerCamelCase : Dict = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __lowerCamelCase : Dict = (modulus_power * alphabet_size) % modulus for i in range(0, t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __lowerCamelCase : Dict = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __lowercase () -> None: """simple docstring""" __lowerCamelCase : List[Any] = """abc1abc12""" __lowerCamelCase : Optional[Any] = """alskfjaldsabc1abc1abc12k23adsfabcabc""" __lowerCamelCase : List[Any] = """alskfjaldsk23adsfabcabc""" assert rabin_karp(_lowercase, _lowercase ) and not rabin_karp(_lowercase, _lowercase ) # Test 2) __lowerCamelCase : Optional[int] = """ABABX""" __lowerCamelCase : Dict = """ABABZABABYABABX""" assert rabin_karp(_lowercase, _lowercase ) # Test 3) __lowerCamelCase : Any = """AAAB""" __lowerCamelCase : int = """ABAAAAAB""" assert rabin_karp(_lowercase, _lowercase ) # Test 4) __lowerCamelCase : Any = """abcdabcy""" __lowerCamelCase : Dict = """abcxabcdabxabcdabcdabcy""" assert rabin_karp(_lowercase, _lowercase ) # Test 5) __lowerCamelCase : str = """Lü""" __lowerCamelCase : str = """Lüsai""" assert rabin_karp(_lowercase, _lowercase ) __lowerCamelCase : Tuple = """Lue""" assert not rabin_karp(_lowercase, _lowercase ) print("""Success.""" ) if __name__ == "__main__": test_rabin_karp()
483
'''simple docstring''' import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def __lowercase (_lowercase, _lowercase, _lowercase ) -> Optional[Any]: """simple docstring""" # Initialise PyTorch model __lowerCamelCase : str = RemBertConfig.from_json_file(_lowercase ) print("""Building PyTorch model from configuration: {}""".format(str(_lowercase ) ) ) __lowerCamelCase : List[Any] = RemBertModel(_lowercase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(_lowercase, _lowercase, _lowercase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(_lowercase ) ) torch.save(model.state_dict(), _lowercase ) if __name__ == "__main__": UpperCAmelCase__ :Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--rembert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained RemBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase__ :List[Any] = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
483
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A_ : Dict = logging.get_logger(__name__) A_ : Optional[Any] = { "facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json", } class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = '''convnextv2''' def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-1_2 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=2_2_4 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): super().__init__(**__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = num_channels snake_case__ : str = patch_size snake_case__ : List[Any] = num_stages snake_case__ : Optional[Any] = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes snake_case__ : Dict = [3, 3, 9, 3] if depths is None else depths snake_case__ : List[str] = hidden_act snake_case__ : str = initializer_range snake_case__ : Tuple = layer_norm_eps snake_case__ : int = drop_path_rate snake_case__ : Dict = image_size snake_case__ : Optional[int] = ["""stem"""] + [f"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )] snake_case__ , snake_case__ : Optional[int] = get_aligned_output_features_output_indices( out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
38
'''simple docstring''' from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
638
0
'''simple docstring''' import math def __lowercase ( __SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowercase ( __SCREAMING_SNAKE_CASE = 0.1 ) -> int: """simple docstring""" __a = 3 __a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__SCREAMING_SNAKE_CASE ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
201
'''simple docstring''' from ...processing_utils import ProcessorMixin class lowerCAmelCase_ ( snake_case__ ): """simple docstring""" a_ :Dict =["""image_processor""", """feature_extractor"""] a_ :str ="""TvltImageProcessor""" a_ :str ="""TvltFeatureExtractor""" def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' super().__init__(image_processor=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ ) __a = image_processor __a = feature_extractor def __call__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : List[str]=False , *SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : Optional[int] , ): '''simple docstring''' if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) __a = None if images is not None: __a = self.image_processor(SCREAMING_SNAKE_CASE__ , mask_pixel=SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if images_mixed is not None: __a = self.image_processor(SCREAMING_SNAKE_CASE__ , is_mixed=SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if audio is not None: __a = self.feature_extractor( SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , sampling_rate=SCREAMING_SNAKE_CASE__ , mask_audio=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __a = {} if audio is not None: output_dict.update(SCREAMING_SNAKE_CASE__ ) if images is not None: output_dict.update(SCREAMING_SNAKE_CASE__ ) if images_mixed_dict is not None: output_dict.update(SCREAMING_SNAKE_CASE__ ) return output_dict @property def __a ( self : List[str] ): '''simple docstring''' __a = self.image_processor.model_input_names __a = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
201
1
class _lowerCamelCase : # Public class to implement a graph def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> None: SCREAMING_SNAKE_CASE__: Dict= row SCREAMING_SNAKE_CASE__: int= col SCREAMING_SNAKE_CASE__: List[Any]= graph def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> bool: return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> None: # Checking all 8 elements surrounding nth element SCREAMING_SNAKE_CASE__: int= [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order SCREAMING_SNAKE_CASE__: int= [-1, 0, 1, -1, 1, -1, 0, 1] SCREAMING_SNAKE_CASE__: int= True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , lowerCAmelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , lowerCAmelCase ) def UpperCamelCase_ ( self ) -> int: # And finally, count all islands. SCREAMING_SNAKE_CASE__: Union[str, Any]= [[False for j in range(self.COL )] for i in range(self.ROW )] SCREAMING_SNAKE_CASE__: Tuple= 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) count += 1 return count
64
import inspect import unittest class _lowerCamelCase ( unittest.TestCase ): def UpperCamelCase_ ( self ) -> Any: try: import diffusers # noqa: F401 except ImportError: assert False def UpperCamelCase_ ( self ) -> List[str]: import diffusers from diffusers.dependency_versions_table import deps SCREAMING_SNAKE_CASE__: Tuple= inspect.getmembers(lowerCAmelCase , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": SCREAMING_SNAKE_CASE__: Optional[int]= '''k-diffusion''' elif backend == "invisible_watermark": SCREAMING_SNAKE_CASE__: int= '''invisible-watermark''' assert backend in deps, f'{backend} is not in the deps table!'
64
1
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class lowerCamelCase ( _A , unittest.TestCase ): snake_case_ = FlaxAutoencoderKL @property def _lowerCamelCase ( self ): lowerCAmelCase : Optional[Any] = 4 lowerCAmelCase : int = 3 lowerCAmelCase : Union[str, Any] = (32, 32) lowerCAmelCase : Any = jax.random.PRNGKey(0 ) lowerCAmelCase : Any = jax.random.uniform(a_ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def _lowerCamelCase ( self ): lowerCAmelCase : List[Any] = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } lowerCAmelCase : int = self.dummy_input return init_dict, inputs_dict
551
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCamelCase : def __init__( self , a_ , a_=2 , a_=True , a_=False , a_=10 , a_=3 , a_=32 * 8 , a_=32 * 8 , a_=4 , a_=64 , ): lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Optional[Any] = batch_size lowerCAmelCase : str = is_training lowerCAmelCase : Any = use_auxiliary_loss lowerCAmelCase : Dict = num_queries lowerCAmelCase : Dict = num_channels lowerCAmelCase : str = min_size lowerCAmelCase : Any = max_size lowerCAmelCase : int = num_labels lowerCAmelCase : Tuple = hidden_dim lowerCAmelCase : Optional[Any] = hidden_dim def _lowerCamelCase ( self ): lowerCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( a_ ) lowerCAmelCase : Optional[int] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=a_ ) lowerCAmelCase : str = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=a_ ) > 0.5 ).float() lowerCAmelCase : Union[str, Any] = (torch.rand((self.batch_size, self.num_labels) , device=a_ ) > 0.5).long() lowerCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _lowerCamelCase ( self ): lowerCAmelCase : Optional[Any] = MaskaFormerConfig( hidden_size=self.hidden_dim , ) lowerCAmelCase : Optional[Any] = self.num_queries lowerCAmelCase : Optional[Any] = self.num_labels lowerCAmelCase : str = [1, 1, 1, 1] lowerCAmelCase : Tuple = self.num_channels lowerCAmelCase : str = 64 lowerCAmelCase : Any = 128 lowerCAmelCase : List[str] = self.hidden_dim lowerCAmelCase : Optional[Any] = self.hidden_dim lowerCAmelCase : int = self.hidden_dim return config def _lowerCamelCase ( self ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = self.prepare_config_and_inputs() lowerCAmelCase : Optional[int] = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def _lowerCamelCase ( self , a_ , a_ ): lowerCAmelCase : str = output.encoder_hidden_states lowerCAmelCase : List[str] = output.pixel_decoder_hidden_states lowerCAmelCase : Any = output.transformer_decoder_hidden_states self.parent.assertTrue(len(a_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(a_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(a_ ) , config.decoder_layers ) def _lowerCamelCase ( self , a_ , a_ , a_ , a_=False ): with torch.no_grad(): lowerCAmelCase : Tuple = MaskaFormerModel(config=a_ ) model.to(a_ ) model.eval() lowerCAmelCase : Tuple = model(pixel_values=a_ , pixel_mask=a_ ) lowerCAmelCase : str = model(a_ , output_hidden_states=a_ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(a_ , a_ ) def _lowerCamelCase ( self , a_ , a_ , a_ , a_ , a_ ): lowerCAmelCase : Union[str, Any] = MaskaFormerForUniversalSegmentation(config=a_ ) model.to(a_ ) model.eval() def comm_check_on_output(a_ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowerCAmelCase : List[str] = model(pixel_values=a_ , pixel_mask=a_ ) lowerCAmelCase : Union[str, Any] = model(a_ ) comm_check_on_output(a_ ) lowerCAmelCase : str = model( pixel_values=a_ , pixel_mask=a_ , mask_labels=a_ , class_labels=a_ ) comm_check_on_output(a_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCamelCase ( _A , _A , unittest.TestCase ): snake_case_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () snake_case_ = {"feature-extraction": MaskaFormerModel} if is_torch_available() else {} snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def _lowerCamelCase ( self ): lowerCAmelCase : List[Any] = MaskaFormerModelTester(self ) lowerCAmelCase : Tuple = ConfigTester(self , config_class=a_ , has_text_modality=a_ ) def _lowerCamelCase ( self ): self.config_tester.run_common_tests() def _lowerCamelCase ( self ): lowerCAmelCase , lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(a_ , **a_ , output_hidden_states=a_ ) def _lowerCamelCase ( self ): lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*a_ ) @unittest.skip(reason="Mask2Former does not use inputs_embeds" ) def _lowerCamelCase ( self ): pass @unittest.skip(reason="Mask2Former does not have a get_input_embeddings method" ) def _lowerCamelCase ( self ): pass @unittest.skip(reason="Mask2Former is not a generative model" ) def _lowerCamelCase ( self ): pass @unittest.skip(reason="Mask2Former does not use token embeddings" ) def _lowerCamelCase ( self ): pass @require_torch_multi_gpu @unittest.skip( reason="Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def _lowerCamelCase ( self ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): lowerCAmelCase , lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(a_ ) lowerCAmelCase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : List[str] = [*signature.parameters.keys()] lowerCAmelCase : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , a_ ) @slow def _lowerCamelCase ( self ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: lowerCAmelCase : int = MaskaFormerModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def _lowerCamelCase ( self ): lowerCAmelCase : List[Any] = (self.model_tester.min_size,) * 2 lowerCAmelCase : Union[str, Any] = { "pixel_values": torch.randn((2, 3, *size) , device=a_ ), "mask_labels": torch.randn((2, 10, *size) , device=a_ ), "class_labels": torch.zeros(2 , 10 , device=a_ ).long(), } lowerCAmelCase : Optional[Any] = self.model_tester.get_config() lowerCAmelCase : List[Any] = MaskaFormerForUniversalSegmentation(a_ ).to(a_ ) lowerCAmelCase : Dict = model(**a_ ) self.assertTrue(outputs.loss is not None ) def _lowerCamelCase ( self ): lowerCAmelCase , lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(a_ , **a_ , output_hidden_states=a_ ) def _lowerCamelCase ( self ): lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Optional[int] = model_class(a_ ).to(a_ ) lowerCAmelCase : Union[str, Any] = model(**a_ , output_attentions=a_ ) self.assertTrue(outputs.attentions is not None ) def _lowerCamelCase ( self ): if not self.model_tester.is_training: return lowerCAmelCase : List[Any] = self.all_model_classes[1] lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() lowerCAmelCase : List[Any] = model_class(a_ ) model.to(a_ ) model.train() lowerCAmelCase : Union[str, Any] = model(a_ , mask_labels=a_ , class_labels=a_ ).loss loss.backward() def _lowerCamelCase ( self ): lowerCAmelCase : Optional[int] = self.all_model_classes[1] lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() lowerCAmelCase : Tuple = True lowerCAmelCase : int = True lowerCAmelCase : int = model_class(a_ ).to(a_ ) model.train() lowerCAmelCase : Any = model(a_ , mask_labels=a_ , class_labels=a_ ) lowerCAmelCase : List[Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowerCAmelCase : Optional[int] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() lowerCAmelCase : List[Any] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowerCAmelCase : Tuple = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=a_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowerCAmelCase = 1e-4 def __A ( ): lowerCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class lowerCamelCase ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def _lowerCamelCase ( self ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _lowerCamelCase ( self ): lowerCAmelCase : int = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(a_ ) lowerCAmelCase : Optional[int] = self.default_image_processor lowerCAmelCase : Dict = prepare_img() lowerCAmelCase : Any = image_processor(a_ , return_tensors="pt" ).to(a_ ) lowerCAmelCase : str = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(a_ , (1, 3, 384, 384) ) with torch.no_grad(): lowerCAmelCase : Dict = model(**a_ ) lowerCAmelCase : Union[str, Any] = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(a_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , a_ , atol=a_ ) ) lowerCAmelCase : Optional[Any] = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(a_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , a_ , atol=a_ ) ) lowerCAmelCase : Optional[int] = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(a_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , a_ , atol=a_ ) ) def _lowerCamelCase ( self ): lowerCAmelCase : Any = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(a_ ).eval() lowerCAmelCase : Union[str, Any] = self.default_image_processor lowerCAmelCase : Dict = prepare_img() lowerCAmelCase : Tuple = image_processor(a_ , return_tensors="pt" ).to(a_ ) lowerCAmelCase : Any = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(a_ , (1, 3, 384, 384) ) with torch.no_grad(): lowerCAmelCase : List[str] = model(**a_ ) # masks_queries_logits lowerCAmelCase : Optional[Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) lowerCAmelCase : Tuple = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] lowerCAmelCase : Tuple = torch.tensor(a_ ).to(a_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , a_ , atol=a_ ) ) # class_queries_logits lowerCAmelCase : str = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) lowerCAmelCase : List[str] = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(a_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , a_ , atol=a_ ) ) def _lowerCamelCase ( self ): lowerCAmelCase : Tuple = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(a_ ).eval() lowerCAmelCase : Optional[Any] = self.default_image_processor lowerCAmelCase : Optional[int] = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="pt" , ) lowerCAmelCase : Optional[int] = inputs["pixel_values"].to(a_ ) lowerCAmelCase : int = [el.to(a_ ) for el in inputs["mask_labels"]] lowerCAmelCase : Union[str, Any] = [el.to(a_ ) for el in inputs["class_labels"]] with torch.no_grad(): lowerCAmelCase : Optional[Any] = model(**a_ ) self.assertTrue(outputs.loss is not None )
551
1
from __future__ import annotations import collections import pprint from pathlib import Path def lowerCamelCase__ ( _lowercase ): '''simple docstring''' return "".join(sorted(_lowercase ) ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' return word_by_signature[signature(_lowercase )] __a = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') __a = sorted({word.strip().lower() for word in data.splitlines()}) __a = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": __a = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
30
'''simple docstring''' from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging a : Tuple = logging.get_logger(__name__) a : str = { "snap-research/efficientformer-l1-300": ( "https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json" ), } class UpperCamelCase__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = "efficientformer" def __init__( self , snake_case = [3, 2, 6, 4] , snake_case = [4_8, 9_6, 2_2_4, 4_4_8] , snake_case = [True, True, True, True] , snake_case = 4_4_8 , snake_case = 3_2 , snake_case = 4 , snake_case = 7 , snake_case = 5 , snake_case = 8 , snake_case = 4 , snake_case = 0.0 , snake_case = 1_6 , snake_case = 3 , snake_case = 3 , snake_case = 3 , snake_case = 2 , snake_case = 1 , snake_case = 0.0 , snake_case = 1 , snake_case = True , snake_case = True , snake_case = 1e-5 , snake_case = "gelu" , snake_case = 0.02 , snake_case = 1e-12 , snake_case = 2_2_4 , snake_case = 1e-05 , **snake_case , ): '''simple docstring''' super().__init__(**snake_case ) UpperCAmelCase : Any = hidden_act UpperCAmelCase : Optional[Any] = hidden_dropout_prob UpperCAmelCase : List[Any] = hidden_sizes UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : int = num_attention_heads UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : int = patch_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : Any = depths UpperCAmelCase : Dict = mlp_expansion_ratio UpperCAmelCase : List[str] = downsamples UpperCAmelCase : List[Any] = dim UpperCAmelCase : Any = key_dim UpperCAmelCase : List[str] = attention_ratio UpperCAmelCase : Union[str, Any] = resolution UpperCAmelCase : List[str] = pool_size UpperCAmelCase : Dict = downsample_patch_size UpperCAmelCase : Optional[int] = downsample_stride UpperCAmelCase : Any = downsample_pad UpperCAmelCase : int = drop_path_rate UpperCAmelCase : Optional[Any] = num_metaad_blocks UpperCAmelCase : List[str] = distillation UpperCAmelCase : int = use_layer_scale UpperCAmelCase : List[str] = layer_scale_init_value UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : Any = batch_norm_eps
679
0
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __magic_name__ ( lowercase_ ,unittest.TestCase ): """simple docstring""" _UpperCamelCase = VideoToVideoSDPipeline _UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"video"} ) - {"image", "width", "height"} _UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"video"} ) - {"image"} _UpperCamelCase = PipelineTesterMixin.required_optional_params - {"latents"} _UpperCamelCase = False # No `output_type`. _UpperCamelCase = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def _UpperCAmelCase ( self ): torch.manual_seed(0 ) _lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') , up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') , cross_attention_dim=32 , attention_head_dim=4 , ) _lowerCamelCase = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=a__ , set_alpha_to_one=a__ , ) torch.manual_seed(0 ) _lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) _lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) _lowerCamelCase = CLIPTextModel(a__ ) _lowerCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _lowerCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def _UpperCAmelCase ( self , a__ , a__=0 ): # 3 frames _lowerCamelCase = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(a__ ) ).to(a__ ) if str(a__ ).startswith('''mps''' ): _lowerCamelCase = torch.manual_seed(a__ ) else: _lowerCamelCase = torch.Generator(device=a__ ).manual_seed(a__ ) _lowerCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''video''': video, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def _UpperCAmelCase ( self ): _lowerCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _lowerCamelCase = self.get_dummy_components() _lowerCamelCase = VideoToVideoSDPipeline(**a__ ) _lowerCamelCase = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) _lowerCamelCase = self.get_dummy_inputs(a__ ) _lowerCamelCase = '''np''' _lowerCamelCase = sd_pipe(**a__ ).frames _lowerCamelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) _lowerCamelCase = np.array([1_06, 1_17, 1_13, 1_74, 1_37, 1_12, 1_48, 1_51, 1_31] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _UpperCAmelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=a__ , expected_max_diff=5E-3 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def _UpperCAmelCase ( self ): pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def _UpperCAmelCase ( self ): pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def _UpperCAmelCase ( self ): pass def _UpperCAmelCase ( self ): return super().test_progress_bar() @slow @skip_mps class __magic_name__ ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ): _lowerCamelCase = VideoToVideoSDPipeline.from_pretrained('''cerspense/zeroscope_v2_XL''' , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames _lowerCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) _lowerCamelCase = torch.randn((1, 10, 3, 10_24, 5_76) , generator=a__ ) _lowerCamelCase = video.to('''cuda''' ) _lowerCamelCase = '''Spiderman is surfing''' _lowerCamelCase = pipe(a__ , video=a__ , generator=a__ , num_inference_steps=3 , output_type='''pt''' ).frames _lowerCamelCase = np.array([-1.0458984, -1.1279297, -0.9663086, -0.91503906, -0.75097656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
297
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _UpperCAmelCase = logging.getLogger() _UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __magic_name__ ( lowercase_ ): """simple docstring""" def _UpperCAmelCase ( self , a__ ): os.makedirs(a__ , exist_ok=a__ ) _lowerCamelCase = {'''source''': '''What is love ?''', '''target''': '''life'''} _lowerCamelCase = {'''train''': 12, '''val''': 2, '''test''': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: _lowerCamelCase = '''\n'''.join([contents[field]] * n_lines[split] ) with open(os.path.join(a__ , f'''{split}.{field}''' ) , '''w''' ) as f: f.write(a__ ) def _UpperCAmelCase ( self , a__ , a__ = "pytorch" ): _lowerCamelCase = self.get_auto_remove_tmp_dir() _lowerCamelCase = os.path.join(a__ , '''output''' ) _lowerCamelCase = os.path.join(a__ , '''data''' ) self._create_dummy_data(data_dir=a__ ) _lowerCamelCase = f''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(f'''--gpus={gpus}''' ) if is_apex_available(): testargs.append('''--fp16''' ) else: testargs.append('''--gpus=0''' ) testargs.append('''--distributed_backend=ddp_cpu''' ) testargs.append('''--num_processes=2''' ) _lowerCamelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(a__ , env=self.get_env() ) _lowerCamelCase = os.path.join(a__ , '''metrics.json''' ) with open(a__ ) as f: _lowerCamelCase = json.load(a__ ) return result @require_torch_gpu def _UpperCAmelCase ( self ): _lowerCamelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_multi_gpu def _UpperCAmelCase ( self ): _lowerCamelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_gpu @require_ray def _UpperCAmelCase ( self ): _lowerCamelCase = self._run_finetune(gpus=1 , distributed_retriever='''ray''' ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_multi_gpu @require_ray def _UpperCAmelCase ( self ): _lowerCamelCase = self._run_finetune(gpus=1 , distributed_retriever='''ray''' ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 )
297
1
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Dict: A__ : int =old_name if "patch_embed" in old_name: A__ : Optional[int] =old_name.split('''.''' ) if layer == "0": A__ : Any =old_name.replace('''0''', '''convolution1''' ) elif layer == "1": A__ : List[str] =old_name.replace('''1''', '''batchnorm_before''' ) elif layer == "3": A__ : Any =old_name.replace('''3''', '''convolution2''' ) else: A__ : Optional[Any] =old_name.replace('''4''', '''batchnorm_after''' ) if "network" in old_name and re.search(R'''\d\.\d''', lowerCamelCase_ ): A__ : Optional[int] =R'\b\d{2}\b' if bool(re.search(lowerCamelCase_, lowerCamelCase_ ) ): A__ : Union[str, Any] =re.search(R'''\d\.\d\d.''', lowerCamelCase_ ).group() else: A__ : List[Any] =re.search(R'''\d\.\d.''', lowerCamelCase_ ).group() if int(match[0] ) < 6: A__ : int =old_name.replace(lowerCamelCase_, '''''' ) A__ : Dict =trimmed_name.replace('''network''', match[0] + '''.meta4D_layers.blocks.''' + match[2:-1] ) A__ : List[Any] ='intermediate_stages.' + trimmed_name else: A__ : Any =old_name.replace(lowerCamelCase_, '''''' ) if int(match[2] ) < num_meta4D_last_stage: A__ : str =trimmed_name.replace('''network''', '''meta4D_layers.blocks.''' + match[2] ) else: A__ : Dict =str(int(match[2] ) - num_meta4D_last_stage ) A__ : Optional[Any] =trimmed_name.replace('''network''', '''meta3D_layers.blocks.''' + layer_index ) if "norm1" in old_name: A__ : Optional[Any] =trimmed_name.replace('''norm1''', '''layernorm1''' ) elif "norm2" in old_name: A__ : Optional[Any] =trimmed_name.replace('''norm2''', '''layernorm2''' ) elif "fc1" in old_name: A__ : Optional[Any] =trimmed_name.replace('''fc1''', '''linear_in''' ) elif "fc2" in old_name: A__ : Any =trimmed_name.replace('''fc2''', '''linear_out''' ) A__ : List[Any] ='last_stage.' + trimmed_name elif "network" in old_name and re.search(R'''.\d.''', lowerCamelCase_ ): A__ : str =old_name.replace('''network''', '''intermediate_stages''' ) if "fc" in new_name: A__ : Optional[Any] =new_name.replace('''fc''', '''convolution''' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): A__ : List[Any] =new_name.replace('''norm1''', '''batchnorm_before''' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): A__ : Tuple =new_name.replace('''norm2''', '''batchnorm_after''' ) if "proj" in new_name: A__ : Union[str, Any] =new_name.replace('''proj''', '''projection''' ) if "dist_head" in new_name: A__ : Tuple =new_name.replace('''dist_head''', '''distillation_classifier''' ) elif "head" in new_name: A__ : Tuple =new_name.replace('''head''', '''classifier''' ) elif "patch_embed" in new_name: A__ : Any ='efficientformer.' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": A__ : Optional[int] =new_name.replace('''norm''', '''layernorm''' ) A__ : Union[str, Any] ='efficientformer.' + new_name else: A__ : Union[str, Any] ='efficientformer.encoder.' + new_name return new_name def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Dict: for key in checkpoint.copy().keys(): A__ : Optional[Any] =checkpoint.pop(lowerCamelCase_ ) A__ : Union[str, Any] =val return checkpoint def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: A__ : Dict ='http://images.cocodataset.org/val2017/000000039769.jpg' A__ : Union[str, Any] =Image.open(requests.get(lowerCamelCase_, stream=lowerCamelCase_ ).raw ) return image def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_ ) -> int: A__ : Dict =torch.load(lowerCamelCase_, map_location='''cpu''' )['model'] A__ : Any =EfficientFormerConfig.from_json_file(lowerCamelCase_ ) A__ : List[Any] =EfficientFormerForImageClassificationWithTeacher(lowerCamelCase_ ) A__ : Optional[int] ='_'.join(checkpoint_path.split('''/''' )[-1].split('''.''' )[0].split('''_''' )[:-1] ) A__ : Dict =config.depths[-1] - config.num_metaad_blocks + 1 A__ : Tuple =convert_torch_checkpoint(lowerCamelCase_, lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) model.eval() A__ : Optional[int] ={ 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } # prepare image A__ : List[str] =prepare_img() A__ : List[Any] =2_5_6 A__ : Any =2_2_4 A__ : Any =EfficientFormerImageProcessor( size={'''shortest_edge''': image_size}, crop_size={'''height''': crop_size, '''width''': crop_size}, resample=pillow_resamplings['''bicubic'''], ) A__ : Union[str, Any] =processor(images=lowerCamelCase_, return_tensors='''pt''' ).pixel_values # original processing pipeline A__ : List[str] =Compose( [ Resize(lowerCamelCase_, interpolation=pillow_resamplings['''bicubic'''] ), CenterCrop(lowerCamelCase_ ), ToTensor(), Normalize(lowerCamelCase_, lowerCamelCase_ ), ] ) A__ : Any =image_transforms(lowerCamelCase_ ).unsqueeze(0 ) assert torch.allclose(lowerCamelCase_, lowerCamelCase_ ) A__ : Dict =model(lowerCamelCase_ ) A__ : str =outputs.logits A__ : Any =(1, 1_0_0_0) if "l1" in model_name: A__ : str =torch.Tensor( [-0.1_3_1_2, 0.4_3_5_3, -1.0_4_9_9, -0.5_1_2_4, 0.4_1_8_3, -0.6_7_9_3, -1.3_7_7_7, -0.0_8_9_3, -0.7_3_5_8, -2.4_3_2_8] ) assert torch.allclose(logits[0, :1_0], lowerCamelCase_, atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: A__ : Optional[Any] =torch.Tensor( [-1.3_1_5_0, -1.5_4_5_6, -1.2_5_5_6, -0.8_4_9_6, -0.7_1_2_7, -0.7_8_9_7, -0.9_7_2_8, -0.3_0_5_2, 0.3_7_5_1, -0.3_1_2_7] ) assert torch.allclose(logits[0, :1_0], lowerCamelCase_, atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: A__ : Optional[Any] =torch.Tensor( [-1.0_2_8_3, -1.4_1_3_1, -0.5_6_4_4, -1.3_1_1_5, -0.5_7_8_5, -1.2_0_4_9, -0.7_5_2_8, 0.1_9_9_2, -0.3_8_2_2, -0.0_8_7_8] ) assert logits.shape == expected_shape else: raise ValueError( f'Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7' ) # Save Checkpoints Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) print(f'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) processor.save_pretrained(lowerCamelCase_ ) print(f'Processor successfuly saved at {pytorch_dump_path}' ) if push_to_hub: print('''Pushing model to the hub...''' ) model.push_to_hub( repo_id=f'Bearnardd/{pytorch_dump_path}', commit_message='''Add model''', use_temp_dir=lowerCamelCase_, ) processor.push_to_hub( repo_id=f'Bearnardd/{pytorch_dump_path}', commit_message='''Add image processor''', use_temp_dir=lowerCamelCase_, ) if __name__ == "__main__": __lowerCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) __lowerCamelCase : List[str] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
416
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: UpperCamelCase__ : Dict = None UpperCamelCase__ : Tuple = logging.get_logger(__name__) UpperCamelCase__ : Union[str, Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase__ : Dict = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } UpperCamelCase__ : Dict = { '''moussaKam/mbarthez''': 10_24, '''moussaKam/barthez''': 10_24, '''moussaKam/barthez-orangesum-title''': 10_24, } UpperCamelCase__ : Any = '''▁''' class lowerCAmelCase_ ( lowerCamelCase_ ): __a : List[str] = VOCAB_FILES_NAMES __a : int = PRETRAINED_VOCAB_FILES_MAP __a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : List[Any] = ["input_ids", "attention_mask"] __a : Dict = BarthezTokenizer def __init__( self ,snake_case__=None ,snake_case__=None ,snake_case__="<s>" ,snake_case__="</s>" ,snake_case__="</s>" ,snake_case__="<s>" ,snake_case__="<unk>" ,snake_case__="<pad>" ,snake_case__="<mask>" ,**snake_case__ ,): # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ : str = AddedToken(snake_case__ ,lstrip=snake_case__ ,rstrip=snake_case__ ) if isinstance(snake_case__ ,snake_case__ ) else mask_token super().__init__( snake_case__ ,tokenizer_file=snake_case__ ,bos_token=snake_case__ ,eos_token=snake_case__ ,unk_token=snake_case__ ,sep_token=snake_case__ ,cls_token=snake_case__ ,pad_token=snake_case__ ,mask_token=snake_case__ ,**snake_case__ ,) SCREAMING_SNAKE_CASE_ : List[Any] = vocab_file SCREAMING_SNAKE_CASE_ : int = False if not self.vocab_file else True def snake_case ( self ,snake_case__ ,snake_case__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_ : List[str] = [self.cls_token_id] SCREAMING_SNAKE_CASE_ : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Dict = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case ( self ,snake_case__ ,snake_case__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(snake_case__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join( snake_case__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file ,snake_case__ ) return (out_vocab_file,)
105
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "sail/poolformer_s12": "https://huggingface.co/sail/poolformer_s12/resolve/main/config.json", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class UpperCamelCase_ ( A ): '''simple docstring''' a :Union[str, Any] = 'poolformer' def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=16 , _UpperCAmelCase=16 , _UpperCAmelCase=3 , _UpperCAmelCase=4.0 , _UpperCAmelCase=[2, 2, 6, 2] , _UpperCAmelCase=[64, 128, 320, 512] , _UpperCAmelCase=[7, 3, 3, 3] , _UpperCAmelCase=[4, 2, 2, 2] , _UpperCAmelCase=[2, 1, 1, 1] , _UpperCAmelCase=4 , _UpperCAmelCase=0.0 , _UpperCAmelCase="gelu" , _UpperCAmelCase=True , _UpperCAmelCase=1E-5 , _UpperCAmelCase=0.02 , **_UpperCAmelCase , ): lowerCAmelCase_ = num_channels lowerCAmelCase_ = patch_size lowerCAmelCase_ = stride lowerCAmelCase_ = padding lowerCAmelCase_ = pool_size lowerCAmelCase_ = hidden_sizes lowerCAmelCase_ = mlp_ratio lowerCAmelCase_ = depths lowerCAmelCase_ = patch_sizes lowerCAmelCase_ = strides lowerCAmelCase_ = num_encoder_blocks lowerCAmelCase_ = drop_path_rate lowerCAmelCase_ = hidden_act lowerCAmelCase_ = use_layer_scale lowerCAmelCase_ = layer_scale_init_value lowerCAmelCase_ = initializer_range super().__init__(**_UpperCAmelCase) class UpperCamelCase_ ( A ): '''simple docstring''' a :Optional[Any] = version.parse('1.11' ) @property def lowercase__ ( self): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def lowercase__ ( self): return 2E-3
413
import torch def lowerCamelCase_ ( ): """simple docstring""" if torch.cuda.is_available(): lowerCAmelCase_ = torch.cuda.device_count() else: lowerCAmelCase_ = 0 print(F'Successfully ran on {num_gpus} GPUs' ) if __name__ == "__main__": main()
413
1
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' while second != 0: _lowerCamelCase : int = first & second first ^= second _lowerCamelCase : str = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Tuple = int(input('''Enter the first number: ''').strip()) _lowerCAmelCase : Union[str, Any] = int(input('''Enter the second number: ''').strip()) print(f'''{add(first, second) = }''')
46
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def lowerCamelCase_( _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : Any = np.max(_outputs , axis=-1 , keepdims=_lowerCamelCase ) _lowerCamelCase : Dict = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCamelCase ) class A_ ( _a ): lowerCAmelCase__ = 'sigmoid' lowerCAmelCase__ = 'softmax' lowerCAmelCase__ = 'none' @add_end_docstrings( _a , r'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ' , ) class A_ ( _a ): lowerCAmelCase__ = False lowerCAmelCase__ = ClassificationFunction.NONE def __init__( self: str ,**__lowerCAmelCase: str ): '''simple docstring''' super().__init__(**__lowerCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def _lowercase ( self: Dict ,__lowerCAmelCase: List[Any]=None ,__lowerCAmelCase: Optional[Any]=None ,__lowerCAmelCase: List[Any]="" ,**__lowerCAmelCase: List[str] ): '''simple docstring''' _lowerCamelCase : Optional[int] = tokenizer_kwargs _lowerCamelCase : Optional[int] = {} if hasattr(self.model.config ,"return_all_scores" ) and return_all_scores is None: _lowerCamelCase : Tuple = self.model.config.return_all_scores if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) or top_k is None: _lowerCamelCase : List[str] = top_k _lowerCamelCase : Union[str, Any] = False elif return_all_scores is not None: warnings.warn( "`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" " `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." ,__lowerCAmelCase ,) if return_all_scores: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : Union[str, Any] = 1 if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Optional[int] = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: _lowerCamelCase : Dict = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self: int ,*__lowerCAmelCase: List[Any] ,**__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Dict = super().__call__(*__lowerCAmelCase ,**__lowerCAmelCase ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. _lowerCamelCase : Optional[Any] = "top_k" not in kwargs if isinstance(args[0] ,__lowerCAmelCase ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = self.framework if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): return self.tokenizer(**__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) == 1 and isinstance(inputs[0] ,__lowerCAmelCase ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] ,text_pair=inputs[0][1] ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( "The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" " dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." ) return self.tokenizer(__lowerCAmelCase ,return_tensors=__lowerCAmelCase ,**__lowerCAmelCase ) def _lowercase ( self: int ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return self.model(**__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: int=None ,__lowerCAmelCase: str=1 ,__lowerCAmelCase: Dict=True ): '''simple docstring''' if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: _lowerCamelCase : Dict = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: _lowerCamelCase : List[Any] = ClassificationFunction.SOFTMAX elif hasattr(self.model.config ,"function_to_apply" ) and function_to_apply is None: _lowerCamelCase : Optional[int] = self.model.config.function_to_apply else: _lowerCamelCase : str = ClassificationFunction.NONE _lowerCamelCase : List[Any] = model_outputs["logits"][0] _lowerCamelCase : Optional[int] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: _lowerCamelCase : str = sigmoid(__lowerCAmelCase ) elif function_to_apply == ClassificationFunction.SOFTMAX: _lowerCamelCase : Optional[int] = softmax(__lowerCAmelCase ) elif function_to_apply == ClassificationFunction.NONE: _lowerCamelCase : str = outputs else: raise ValueError(F"""Unrecognized `function_to_apply` argument: {function_to_apply}""" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} _lowerCamelCase : Optional[int] = [ {"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(__lowerCAmelCase ) ] if not _legacy: dict_scores.sort(key=lambda __lowerCAmelCase : x["score"] ,reverse=__lowerCAmelCase ) if top_k is not None: _lowerCamelCase : Any = dict_scores[:top_k] return dict_scores
46
1
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class _lowerCAmelCase ( __A ): """simple docstring""" @staticmethod def UpperCAmelCase_ ( _lowerCamelCase ) -> Optional[int]: A_ : Optional[int] = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=_lowerCamelCase , default=_lowerCamelCase , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=_lowerCamelCase , help="""Name of the model to download""" ) download_parser.set_defaults(func=_lowerCamelCase ) def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: A_ : Optional[int] = model A_ : List[str] = cache A_ : List[Any] = force A_ : List[str] = trust_remote_code def UpperCAmelCase_ ( self ) -> Any: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
385
'''simple docstring''' import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = r'\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n' class _lowerCAmelCase ( __A ): """simple docstring""" @add_start_docstrings(_lowerCamelCase ) def __call__( self , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) -> bool: raise NotImplementedError("""StoppingCriteria needs to be subclassed""" ) class _lowerCAmelCase ( __A ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = None ) -> List[Any]: A_ : Optional[Any] = max_length A_ : List[str] = max_position_embeddings @add_start_docstrings(_lowerCamelCase ) def __call__( self , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) -> bool: A_ : Dict = input_ids.shape[-1] A_ : Optional[int] = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( """This is a friendly reminder - the current text generation call will exceed the model's predefined """ F"maximum length ({self.max_position_embeddings}). Depending on the model, you may observe " """exceptions, performance degradation, or nothing at all.""" ) return is_done class _lowerCAmelCase ( __A ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: warnings.warn( """The class `MaxNewTokensCriteria` is deprecated. """ F"Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` " """with `max_length = start_length + max_new_tokens` instead.""" , _lowerCamelCase , ) A_ : Dict = start_length A_ : List[Any] = max_new_tokens A_ : Optional[int] = start_length + max_new_tokens @add_start_docstrings(_lowerCamelCase ) def __call__( self , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) -> bool: return input_ids.shape[-1] >= self.max_length class _lowerCAmelCase ( __A ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = None ) -> List[Any]: A_ : List[Any] = max_time A_ : Dict = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(_lowerCamelCase ) def __call__( self , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) -> bool: return time.time() - self.initial_timestamp > self.max_time class _lowerCAmelCase ( __A ): """simple docstring""" @add_start_docstrings(_lowerCamelCase ) def __call__( self , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) -> bool: return any(criteria(_lowerCamelCase , _lowerCamelCase ) for criteria in self ) @property def UpperCAmelCase_ ( self ) -> Optional[int]: for stopping_criterium in self: if isinstance(_lowerCamelCase , _lowerCamelCase ): return stopping_criterium.max_length elif isinstance(_lowerCamelCase , _lowerCamelCase ): return stopping_criterium.max_length return None def UpperCAmelCase ( a_ , a_ ) -> StoppingCriteriaList: """simple docstring""" A_ : Optional[Any] = stopping_criteria.max_length A_ : Dict = deepcopy(a_ ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("""You set different `max_length` for stopping criteria and `max_length` parameter""" , a_ ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=a_ ) ) return new_stopping_criteria
385
1
"""simple docstring""" A = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9, "britishthermalunit_it": 1_055.05_585, "footpound": 1.355818, } def __A ( a_ :str , a_ :str , a_ :float) -> float: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __a : Dict = ( F"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" F"""Valid values are: {", ".join(a_)}""" ) raise ValueError(a_) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
52
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = {} class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''llama''' __lowerCAmelCase = ['''past_key_values'''] def __init__( self , _UpperCAmelCase=32000 , _UpperCAmelCase=4096 , _UpperCAmelCase=11008 , _UpperCAmelCase=32 , _UpperCAmelCase=32 , _UpperCAmelCase=None , _UpperCAmelCase="silu" , _UpperCAmelCase=2048 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-6 , _UpperCAmelCase=True , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=None , **_UpperCAmelCase , ): __a : Dict = vocab_size __a : Union[str, Any] = max_position_embeddings __a : str = hidden_size __a : List[str] = intermediate_size __a : Any = num_hidden_layers __a : int = num_attention_heads # for backward compatibility if num_key_value_heads is None: __a : Union[str, Any] = num_attention_heads __a : Optional[int] = num_key_value_heads __a : Dict = hidden_act __a : Union[str, Any] = initializer_range __a : int = rms_norm_eps __a : Optional[int] = pretraining_tp __a : Optional[Any] = use_cache __a : Optional[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase , ) def _lowerCamelCase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"""got {self.rope_scaling}""" ) __a : Tuple = self.rope_scaling.get('''type''' , _UpperCAmelCase ) __a : Optional[int] = self.rope_scaling.get('''factor''' , _UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
52
1
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def __UpperCamelCase ( lowerCAmelCase__ : Union[str, Any]=3_2 , lowerCAmelCase__ : Dict=1_0 , lowerCAmelCase__ : int=1_0_0 , lowerCAmelCase__ : Optional[int]=1_0_2_6 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Dict="data/tokenized_stories_train_wikitext103.jbl" , lowerCAmelCase__ : Optional[int]="igf_context_pairs.jbl" , ): set_seed(3 ) # generate train_data and objective_set __a , __a : List[str] = generate_datasets( lowerCAmelCase__ , lowerCAmelCase__ , number=lowerCAmelCase__ , min_len=1_0_2_6 , trim=lowerCAmelCase__ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? __a : Dict = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # load pretrained model __a : Optional[int] = load_gpta('''gpt2''' ).to(lowerCAmelCase__ ) print('''computing perplexity on objective set''' ) __a : List[str] = compute_perplexity(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).item() print('''perplexity on objective set:''' , lowerCAmelCase__ ) # collect igf pairs and save to file demo.jbl collect_objective_set(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def __UpperCamelCase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any]=1_5 , lowerCAmelCase__ : Any=1_2_8 , lowerCAmelCase__ : Dict=1_0_0 , lowerCAmelCase__ : Any="igf_model.pt" , ): set_seed(4_2 ) # Load pre-trained model __a : Dict = GPTaLMHeadModel.from_pretrained('''gpt2''' ) # Initialize secondary learner to use embedding weights of model __a : int = SecondaryLearner(lowerCAmelCase__ ) # Train secondary learner __a : int = train_secondary_learner( lowerCAmelCase__ , lowerCAmelCase__ , max_epochs=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , eval_freq=1_0_0 , igf_model_path=lowerCAmelCase__ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def __UpperCamelCase ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any]=3_2 , lowerCAmelCase__ : Union[str, Any]=1_0_0_0 , lowerCAmelCase__ : List[Any]=1_6 , lowerCAmelCase__ : Any=1.0 , lowerCAmelCase__ : List[str]=recopy_gpta , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Union[str, Any]=1_0 , lowerCAmelCase__ : Any="gpt2_finetuned.pt" , ): __a : Optional[int] = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) __a : int = RandomSampler(lowerCAmelCase__ ) __a : Union[str, Any] = DataLoader(lowerCAmelCase__ , sampler=lowerCAmelCase__ ) __a : Optional[int] = max_steps // (len(lowerCAmelCase__ )) + 1 __a : Optional[int] = 0 __a : Optional[int] = torch.zeros((1, context_len) , dtype=torch.long , device=lowerCAmelCase__ ) __a , __a , __a : Optional[Any] = recopy_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) model.train() if secondary_learner is not None: secondary_learner.to(lowerCAmelCase__ ) secondary_learner.eval() __a : Union[str, Any] = [] __a : int = 0 __a : Optional[Any] = [] __a : int = [] # Compute the performance of the transformer model at the beginning __a : int = compute_perplexity(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) test_perps.append(lowerCAmelCase__ ) print('''Test perplexity, step''' , lowerCAmelCase__ , ''':''' , lowerCAmelCase__ ) for epoch in range(int(lowerCAmelCase__ ) ): for step, example in enumerate(lowerCAmelCase__ ): torch.cuda.empty_cache() __a : int = random.randint(0 , example.size(2 ) - context_len - 1 ) __a : Union[str, Any] = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() __a : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) __a : int = True if secondary_learner is not None: __a : Dict = secondary_learner.forward( torch.tensor(lowerCAmelCase__ , dtype=torch.long , device=lowerCAmelCase__ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(lowerCAmelCase__ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 1_0: __a : List[str] = -1 if predicted_q < threshold: __a : int = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) __a : Tuple = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() __a : Tuple = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: __a : int = compute_perplexity(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) test_perps.append(lowerCAmelCase__ ) print('''Test perplexity, step''' , lowerCAmelCase__ , ''':''' , lowerCAmelCase__ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 6_0: break if max_steps > 0 and global_step > 6_0: break # save finetuned transformer model torch.save(model.state_dict() , lowerCAmelCase__ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def __UpperCamelCase ( ): __a : str = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' ) # Required parameters parser.add_argument( '''--data_dir''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''The input data dir. Should contain data files for WikiText.''' , ) parser.add_argument( '''--model_name_or_path''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--data_file''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help=( '''A jbl file containing tokenized data which can be split as objective dataset, ''' '''train_dataset and test_dataset.''' ) , ) parser.add_argument( '''--igf_data_file''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , ) parser.add_argument( '''--output_dir''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''The output directory where the final fine-tuned model is stored.''' , ) parser.add_argument( '''--tokenizer_name''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument('''--seed''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''A seed for reproducible training.''' ) parser.add_argument( '''--context_len''' , default=3_2 , type=lowerCAmelCase__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--size_objective_set''' , default=1_0_0 , type=lowerCAmelCase__ , help='''number of articles that are long enough to be used as our objective set''' , ) parser.add_argument( '''--eval_freq''' , default=1_0_0 , type=lowerCAmelCase__ , help='''secondary model evaluation is triggered at eval_freq''' ) parser.add_argument('''--max_steps''' , default=1_0_0_0 , type=lowerCAmelCase__ , help='''To calculate training epochs''' ) parser.add_argument( '''--secondary_learner_batch_size''' , default=1_2_8 , type=lowerCAmelCase__ , help='''batch size of training data for secondary learner''' , ) parser.add_argument( '''--batch_size''' , default=1_6 , type=lowerCAmelCase__ , help='''batch size of training data of language model(gpt2) ''' ) parser.add_argument( '''--eval_interval''' , default=1_0 , type=lowerCAmelCase__ , help=( '''decay the selectivity of our secondary learner filter from''' '''1 standard deviation above average to 1 below average after 10 batches''' ) , ) parser.add_argument( '''--number''' , default=1_0_0 , type=lowerCAmelCase__ , help='''The number of examples split to be used as objective_set/test_data''' ) parser.add_argument( '''--min_len''' , default=1_0_2_6 , type=lowerCAmelCase__ , help='''The minimum length of the article to be used as objective set''' ) parser.add_argument( '''--secondary_learner_max_epochs''' , default=1_5 , type=lowerCAmelCase__ , help='''number of epochs to train secondary learner''' ) parser.add_argument('''--trim''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help='''truncate the example if it exceeds context length''' ) parser.add_argument( '''--threshold''' , default=1.0 , type=lowerCAmelCase__ , help=( '''The threshold value used by secondary learner to filter the train_data and allow only''' ''' informative data as input to the model''' ) , ) parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=lowerCAmelCase__ , help='''finetuned_model_name''' ) parser.add_argument( '''--recopy_model''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=3_2 , max_steps=1_0 , size_objective_set=1_0_0 , min_len=1_0_2_6 , trim=lowerCAmelCase__ , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , ) # Load train data for secondary learner __a : Any = joblib.load('''data/IGF_values.jbl''' ) # Train secondary learner __a : List[Any] = training_secondary_learner( lowerCAmelCase__ , secondary_learner_max_epochs=1_5 , secondary_learner_batch_size=1_2_8 , eval_freq=1_0_0 , igf_model_path='''igf_model.pt''' , ) # load pretrained gpt2 model __a : Optional[int] = GPTaLMHeadModel.from_pretrained('''gpt2''' ) set_seed(4_2 ) # Generate train and test data to train and evaluate gpt2 model __a , __a : str = generate_datasets( context_len=3_2 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=1_0_0 , min_len=1_0_2_6 , trim=lowerCAmelCase__ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , context_len=3_2 , max_steps=1_0_0_0 , batch_size=1_6 , threshold=1.0 , recopy_model=lowerCAmelCase__ , secondary_learner=lowerCAmelCase__ , eval_interval=1_0 , finetuned_model_name='''gpt2_finetuned.pt''' , ) if __name__ == "__main__": main()
706
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed lowercase__ ='true' def __UpperCamelCase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any]=8_2 , lowerCAmelCase__ : List[str]=1_6 ): set_seed(4_2 ) __a : Dict = RegressionModel() __a : str = deepcopy(lowerCAmelCase__ ) __a : List[Any] = RegressionDataset(length=lowerCAmelCase__ ) __a : Tuple = DataLoader(lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) model.to(accelerator.device ) __a , __a : Any = accelerator.prepare(lowerCAmelCase__ , lowerCAmelCase__ ) return model, ddp_model, dataloader def __UpperCamelCase ( lowerCAmelCase__ : Accelerator , lowerCAmelCase__ : int=False ): __a : Union[str, Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) __a : Any = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(lowerCAmelCase__ : Optional[int] ): __a : Union[str, Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs with accelerator.main_process_first(): __a : Any = dataset.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) __a : Optional[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase__ : Dict ): if use_longest: return tokenizer.pad(lowerCAmelCase__ , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(lowerCAmelCase__ , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return DataLoader(lowerCAmelCase__ , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1_6 ) def __UpperCamelCase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str ): __a : Any = Accelerator(dispatch_batches=lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) __a : List[str] = get_dataloader(lowerCAmelCase__ , not dispatch_batches ) __a : Optional[int] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=lowerCAmelCase__ ) __a , __a : Tuple = accelerator.prepare(lowerCAmelCase__ , lowerCAmelCase__ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __UpperCamelCase ( lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict ): __a : List[Any] = [] for batch in dataloader: __a , __a : Optional[int] = batch.values() with torch.no_grad(): __a : Dict = model(lowerCAmelCase__ ) __a , __a : str = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) __a , __a : str = [], [] for logit, targ in logits_and_targets: logits.append(lowerCAmelCase__ ) targs.append(lowerCAmelCase__ ) __a , __a : Tuple = torch.cat(lowerCAmelCase__ ), torch.cat(lowerCAmelCase__ ) return logits, targs def __UpperCamelCase ( lowerCAmelCase__ : Accelerator , lowerCAmelCase__ : List[Any]=8_2 , lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : Any=1_6 ): __a , __a , __a : List[Any] = get_basic_setup(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __a , __a : str = generate_predictions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) assert ( len(lowerCAmelCase__ ) == num_samples ), f"Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCAmelCase__ )}" def __UpperCamelCase ( lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False ): __a : List[Any] = evaluate.load('''glue''' , '''mrpc''' ) __a , __a : Optional[int] = get_mrpc_setup(lowerCAmelCase__ , lowerCAmelCase__ ) # First do baseline __a , __a , __a : Any = setup['''no'''] model.to(lowerCAmelCase__ ) model.eval() for batch in dataloader: batch.to(lowerCAmelCase__ ) with torch.inference_mode(): __a : Union[str, Any] = model(**lowerCAmelCase__ ) __a : Tuple = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=lowerCAmelCase__ , references=batch['''labels'''] ) __a : List[Any] = metric.compute() # Then do distributed __a , __a , __a : Any = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): __a : Optional[int] = model(**lowerCAmelCase__ ) __a : Optional[Any] = outputs.logits.argmax(dim=-1 ) __a : Union[str, Any] = batch['''labels'''] __a , __a : Dict = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=lowerCAmelCase__ , references=lowerCAmelCase__ ) __a : Optional[Any] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f"Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n" def __UpperCamelCase ( ): __a : Optional[Any] = Accelerator(split_batches=lowerCAmelCase__ , dispatch_batches=lowerCAmelCase__ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`" ) test_mrpc(lowerCAmelCase__ , lowerCAmelCase__ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: __a : List[Any] = Accelerator(split_batches=lowerCAmelCase__ , dispatch_batches=lowerCAmelCase__ ) if accelerator.is_local_main_process: print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99" ) test_torch_metrics(lowerCAmelCase__ , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) __a : Dict = Accelerator() test_torch_metrics(lowerCAmelCase__ , 5_1_2 ) accelerator.state._reset_state() def __UpperCamelCase ( lowerCAmelCase__ : int ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
326
0
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version __UpperCamelCase : List[str] = logging.getLogger(__name__) require_version("""pytorch_lightning>=1.0.4""") __UpperCamelCase : List[str] = { """base""": AutoModel, """sequence-classification""": AutoModelForSequenceClassification, """question-answering""": AutoModelForQuestionAnswering, """pretraining""": AutoModelForPreTraining, """token-classification""": AutoModelForTokenClassification, """language-modeling""": AutoModelWithLMHead, """summarization""": AutoModelForSeqaSeqLM, """translation""": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization __UpperCamelCase : Dict = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } __UpperCamelCase : str = sorted(arg_to_scheduler.keys()) __UpperCamelCase : Dict = """{""" + """, """.join(arg_to_scheduler_choices) + """}""" class __SCREAMING_SNAKE_CASE( pl.LightningModule ): def __init__( self: str , UpperCamelCase: argparse.Namespace , UpperCamelCase: str=None , UpperCamelCase: str="base" , UpperCamelCase: Tuple=None , UpperCamelCase: str=None , UpperCamelCase: str=None , **UpperCamelCase: Optional[Any] , ) -> Any: super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(UpperCamelCase ) snake_case__ = 0 snake_case__ = Path(self.hparams.output_dir ) snake_case__ = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: snake_case__ = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=UpperCamelCase , **UpperCamelCase , ) else: snake_case__ = config snake_case__ = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , UpperCamelCase , UpperCamelCase ): assert hasattr(self.config , UpperCamelCase ), F'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , UpperCamelCase , getattr(self.hparams , UpperCamelCase ) ) if tokenizer is None: snake_case__ = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=UpperCamelCase , ) else: snake_case__ = tokenizer snake_case__ = MODEL_MODES[mode] if model is None: snake_case__ = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=UpperCamelCase , ) else: snake_case__ = model def lowerCAmelCase_ ( self: Tuple , *UpperCamelCase: Tuple , **UpperCamelCase: int ) -> List[Any]: snake_case__ = self.model_type.from_pretrained(*UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] ) -> Dict: snake_case__ = arg_to_scheduler[self.hparams.lr_scheduler] snake_case__ = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) snake_case__ = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def lowerCAmelCase_ ( self: Union[str, Any] ) -> Tuple: snake_case__ = self.model snake_case__ = ['bias', 'LayerNorm.weight'] snake_case__ = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: snake_case__ = Adafactor( UpperCamelCase , lr=self.hparams.learning_rate , scale_parameter=UpperCamelCase , relative_step=UpperCamelCase ) else: snake_case__ = AdamW( UpperCamelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) snake_case__ = optimizer snake_case__ = self.get_lr_scheduler() return [optimizer], [scheduler] def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[str] ) -> Tuple: return self.validation_step(UpperCamelCase , UpperCamelCase ) def lowerCAmelCase_ ( self: Dict , UpperCamelCase: Dict ) -> Any: return self.validation_end(UpperCamelCase ) def lowerCAmelCase_ ( self: Any ) -> int: snake_case__ = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores snake_case__ = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def lowerCAmelCase_ ( self: Optional[int] , UpperCamelCase: Any ) -> List[str]: if stage == "test": snake_case__ = len(self.test_dataloader().dataset ) else: snake_case__ = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=UpperCamelCase ) snake_case__ = len(self.train_dataloader().dataset ) def lowerCAmelCase_ ( self: Any , UpperCamelCase: str , UpperCamelCase: int , UpperCamelCase: bool = False ) -> Any: raise NotImplementedError('You must implement this for your task' ) def lowerCAmelCase_ ( self: Any ) -> str: return self.train_loader def lowerCAmelCase_ ( self: str ) -> Optional[Any]: return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[int] ) -> Optional[int]: return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: Optional[Any] ) -> Optional[int]: return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( UpperCamelCase , list(filter(UpperCamelCase , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def lowerCAmelCase_ ( self: Any , UpperCamelCase: Dict[str, Any] ) -> None: snake_case__ = self.output_dir.joinpath('best_tfmr' ) snake_case__ = self.step_count self.model.save_pretrained(UpperCamelCase ) self.tokenizer.save_pretrained(UpperCamelCase ) @staticmethod def lowerCAmelCase_ ( UpperCamelCase: Tuple , UpperCamelCase: Optional[int] ) -> Any: parser.add_argument( '--model_name_or_path' , default=UpperCamelCase , type=UpperCamelCase , required=UpperCamelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=UpperCamelCase , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=UpperCamelCase , type=UpperCamelCase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(UpperCamelCase ).parent / 'test_run' / 'cache' ) , type=UpperCamelCase , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=UpperCamelCase , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=UpperCamelCase , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=UpperCamelCase , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=UpperCamelCase , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5e-5 , type=UpperCamelCase , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=UpperCamelCase , metavar=UpperCamelCase , type=UpperCamelCase , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=UpperCamelCase , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=UpperCamelCase , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=UpperCamelCase , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=UpperCamelCase , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=UpperCamelCase ) parser.add_argument('--train_batch_size' , default=32 , type=UpperCamelCase ) parser.add_argument('--eval_batch_size' , default=32 , type=UpperCamelCase ) parser.add_argument('--adafactor' , action='store_true' ) class __SCREAMING_SNAKE_CASE( pl.Callback ): def lowerCAmelCase_ ( self: str , UpperCamelCase: List[str] , UpperCamelCase: str ) -> Union[str, Any]: if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class __SCREAMING_SNAKE_CASE( pl.Callback ): def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: Any , UpperCamelCase: Any ) -> Dict: # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(UpperCamelCase ) class __SCREAMING_SNAKE_CASE( pl.Callback ): def lowerCAmelCase_ ( self: str , UpperCamelCase: Optional[Any] , UpperCamelCase: Any ) -> Union[str, Any]: snake_case__ = trainer.lr_schedulers[0]['scheduler'] snake_case__ = {F'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(UpperCamelCase ) def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: pl.Trainer , UpperCamelCase: pl.LightningModule ) -> Union[str, Any]: rank_zero_info('***** Validation results *****' ) snake_case__ = trainer.callback_metrics # Log results for key in sorted(UpperCamelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(UpperCamelCase , str(metrics[key] ) ) ) def lowerCAmelCase_ ( self: int , UpperCamelCase: pl.Trainer , UpperCamelCase: pl.LightningModule ) -> str: rank_zero_info('***** Test results *****' ) snake_case__ = trainer.callback_metrics # Log and save results to file snake_case__ = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(UpperCamelCase , 'w' ) as writer: for key in sorted(UpperCamelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(UpperCamelCase , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(UpperCamelCase , str(metrics[key] ) ) ) def a_ ( _A , _A ) -> None: """simple docstring""" # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '--output_dir' , default=str(Path(_A ).parent / 'test_run' / 'model_checkpoints' ) , type=_A , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=_A , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=_A ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=_A , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=_A , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=_A , default=42 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(_A ).parent / 'test_run' / 'dummy-train-data' ) , type=_A , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def a_ ( _A , _A , _A=None , _A=True , _A=[] , _A=None , _A=None , **_A , ) -> Union[str, Any]: """simple docstring""" pl.seed_everything(args.seed ) # init model snake_case__ = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=_A ) # add custom checkpoints if checkpoint_callback is None: snake_case__ = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(_A ) if logging_callback is None: snake_case__ = LoggingCallback() snake_case__ = {} if args.fpaa: snake_case__ = 16 if args.gpus > 1: snake_case__ = 'auto' snake_case__ = 'ddp' snake_case__ = args.accumulate_grad_batches snake_case__ = None snake_case__ = 'auto' snake_case__ = pl.Trainer.from_argparse_args( _A , weights_summary=_A , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_A , val_check_interval=1 , num_sanity_val_steps=2 , **_A , ) if args.do_train: trainer.fit(_A ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
328
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = "openai/whisper-base" _UpperCAmelCase = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) _UpperCAmelCase = "transcriber" _UpperCAmelCase = WhisperProcessor _UpperCAmelCase = WhisperForConditionalGeneration _UpperCAmelCase = ["audio"] _UpperCAmelCase = ["text"] def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: Union[str, Any] ) -> Dict: return self.pre_processor(UpperCamelCase , return_tensors='pt' ).input_features def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: Optional[int] ) -> Optional[int]: return self.model.generate(inputs=UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: List[str] ) -> str: return self.pre_processor.batch_decode(UpperCamelCase , skip_special_tokens=UpperCamelCase )[0]
328
1
'''simple docstring''' import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class UpperCAmelCase_ ( __A ): """simple docstring""" def __init__( self : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int=13 , UpperCAmelCase : str=7 , UpperCAmelCase : Any=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Any=False , UpperCAmelCase : List[Any]=True , UpperCAmelCase : List[str]=99 , UpperCAmelCase : Optional[Any]=32 , UpperCAmelCase : List[str]=5 , UpperCAmelCase : List[Any]=4 , UpperCAmelCase : List[Any]=64 , UpperCAmelCase : List[Any]="gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : int=512 , UpperCAmelCase : Tuple=16 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : int=0.0_2 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Any=4 , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : int=2 , UpperCAmelCase : Dict=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : str=1 , ) -> List[str]: '''simple docstring''' lowercase : Union[str, Any] =parent lowercase : int =batch_size lowercase : str =seq_length lowercase : Tuple =is_training lowercase : List[str] =use_input_mask lowercase : Optional[int] =use_token_type_ids lowercase : Any =use_labels lowercase : List[Any] =vocab_size lowercase : str =hidden_size lowercase : str =num_hidden_layers lowercase : List[str] =num_attention_heads lowercase : int =intermediate_size lowercase : Optional[int] =hidden_act lowercase : Optional[Any] =hidden_dropout_prob lowercase : Optional[Any] =attention_probs_dropout_prob lowercase : Union[str, Any] =max_position_embeddings lowercase : Optional[int] =type_vocab_size lowercase : Dict =type_sequence_label_size lowercase : Optional[int] =initializer_range lowercase : List[Any] =num_labels lowercase : Any =num_choices lowercase : str =scope lowercase : Any =q_groups lowercase : Any =k_groups lowercase : Union[str, Any] =v_groups lowercase : int =post_attention_groups lowercase : str =intermediate_groups lowercase : Union[str, Any] =output_groups def A__ ( self : Any ) -> Tuple: '''simple docstring''' lowercase : Dict =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Tuple =None if self.use_input_mask: lowercase : List[str] =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : List[Any] =None lowercase : List[str] =None lowercase : Tuple =None if self.use_labels: lowercase : str =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : int =ids_tensor([self.batch_size] , self.num_choices ) lowercase : str =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : str ) -> Tuple: '''simple docstring''' return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def A__ ( self : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =SqueezeBertModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : List[str] =model(UpperCAmelCase , UpperCAmelCase ) lowercase : Any =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : str , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Any ) -> Optional[int]: '''simple docstring''' lowercase : List[str] =SqueezeBertForMaskedLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : Any =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int ) -> Any: '''simple docstring''' lowercase : Any =SqueezeBertForQuestionAnswering(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : List[str] =model( UpperCAmelCase , attention_mask=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : List[str] =self.num_labels lowercase : Dict =SqueezeBertForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : Union[str, Any] =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : Any , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase : str =self.num_labels lowercase : Dict =SqueezeBertForTokenClassification(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : Optional[Any] =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict ) -> Any: '''simple docstring''' lowercase : Optional[Any] =self.num_choices lowercase : Union[str, Any] =SqueezeBertForMultipleChoice(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : List[str] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : List[Any] =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : List[str] =model( UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : Dict =self.prepare_config_and_inputs() (lowercase) : List[Any] =config_and_inputs lowercase : Dict ={'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) UpperCamelCase_ = ( { '''feature-extraction''': SqueezeBertModel, '''fill-mask''': SqueezeBertForMaskedLM, '''question-answering''': SqueezeBertForQuestionAnswering, '''text-classification''': SqueezeBertForSequenceClassification, '''token-classification''': SqueezeBertForTokenClassification, '''zero-shot''': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = True UpperCamelCase_ = False def A__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' lowercase : Union[str, Any] =SqueezeBertModelTester(self ) lowercase : Dict =ConfigTester(self , config_class=UpperCAmelCase , dim=37 ) def A__ ( self : Any ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*UpperCAmelCase ) def A__ ( self : Any ) -> Any: '''simple docstring''' lowercase : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*UpperCAmelCase ) def A__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' lowercase : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' lowercase : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : Tuple ) -> List[Any]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*UpperCAmelCase ) @slow def A__ ( self : Optional[int] ) -> Dict: '''simple docstring''' for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Optional[int] =SqueezeBertModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' lowercase : int =SqueezeBertForSequenceClassification.from_pretrained('''squeezebert/squeezebert-mnli''' ) lowercase : str =torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] ) lowercase : Any =model(UpperCAmelCase )[0] lowercase : Tuple =torch.Size((1, 3) ) self.assertEqual(output.shape , UpperCAmelCase ) lowercase : int =torch.tensor([[0.6_4_0_1, -0.0_3_4_9, -0.6_0_4_1]] ) self.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-4 ) )
702
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } SCREAMING_SNAKE_CASE = {'allegro/herbert-base-cased': 514} SCREAMING_SNAKE_CASE = {} class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = HerbertTokenizer def __init__( self : Dict , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=None , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : List[Any]="<unk>" , UpperCAmelCase : str="<pad>" , UpperCAmelCase : Optional[Any]="<mask>" , UpperCAmelCase : List[str]="</s>" , **UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , sep_token=UpperCAmelCase , **UpperCAmelCase , ) def A__ ( self : int , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : List[Any] =[self.cls_token_id] lowercase : Any =[self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Optional[Any] =[self.sep_token_id] lowercase : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowercase : List[Any] =self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
8
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class snake_case__ ( __A ): def __init__( self , UpperCamelCase_ ) -> str: """simple docstring""" a_ : int = data def __iter__( self ) -> List[Any]: """simple docstring""" for element in self.data: yield element def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : Tuple=True ): """simple docstring""" a_ : Dict = Accelerator(even_batches=SCREAMING_SNAKE_CASE_ ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : Accelerator , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : bool = False ): """simple docstring""" if iterable: a_ : Union[str, Any] = DummyIterableDataset(torch.as_tensor(range(SCREAMING_SNAKE_CASE_ ) ) ) else: a_ : Any = TensorDataset(torch.as_tensor(range(SCREAMING_SNAKE_CASE_ ) ) ) a_ : List[str] = DataLoader(SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) a_ : str = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) return dl def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : Accelerator , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : List[int] , ): """simple docstring""" a_ : int = create_dataloader(accelerator=SCREAMING_SNAKE_CASE_ , dataset_size=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) a_ : Optional[int] = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def _lowerCamelCase ( ): """simple docstring""" a_ : List[Any] = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( SCREAMING_SNAKE_CASE_ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( SCREAMING_SNAKE_CASE_ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def _lowerCamelCase ( ): """simple docstring""" a_ : int = create_accelerator(even_batches=SCREAMING_SNAKE_CASE_ ) verify_dataloader_batch_sizes( SCREAMING_SNAKE_CASE_ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( SCREAMING_SNAKE_CASE_ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def _lowerCamelCase ( ): """simple docstring""" a_ : Optional[Any] = create_accelerator(even_batches=SCREAMING_SNAKE_CASE_ ) a_ : Tuple = torch.nn.Linear(1 , 1 ) a_ : Optional[int] = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) a_ : int = create_dataloader(SCREAMING_SNAKE_CASE_ , dataset_size=3 , batch_size=1 ) a_ : str = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(SCREAMING_SNAKE_CASE_ ): a_ : str = ddp_model(batch[0].float() ) a_ : Any = output.sum() loss.backward() batch_idxs.append(SCREAMING_SNAKE_CASE_ ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" with warnings.catch_warnings(record=SCREAMING_SNAKE_CASE_ ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , SCREAMING_SNAKE_CASE_ ) assert "only supported for multi-GPU" in str(w[-1].message ) def _lowerCamelCase ( ): """simple docstring""" a_ : Dict = True a_ : List[Any] = False a_ : Union[str, Any] = create_accelerator(even_batches=SCREAMING_SNAKE_CASE_ ) a_ : Any = torch.nn.Linear(1 , 1 ) a_ : Optional[int] = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) a_ : Union[str, Any] = create_dataloader(SCREAMING_SNAKE_CASE_ , dataset_size=3 , batch_size=1 ) a_ : int = create_dataloader(SCREAMING_SNAKE_CASE_ , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=SCREAMING_SNAKE_CASE_ ): a_ : str = train_dl.batch_sampler.even_batches a_ : Union[str, Any] = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def _lowerCamelCase ( ): """simple docstring""" a_ : Union[str, Any] = True a_ : List[str] = False a_ : Any = create_accelerator(even_batches=SCREAMING_SNAKE_CASE_ ) a_ : Tuple = torch.nn.Linear(1 , 1 ) a_ : str = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) create_dataloader(SCREAMING_SNAKE_CASE_ , dataset_size=3 , batch_size=1 , iterable=SCREAMING_SNAKE_CASE_ ) a_ : List[Any] = create_dataloader(SCREAMING_SNAKE_CASE_ , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("""ignore""" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=SCREAMING_SNAKE_CASE_ ): a_ : Optional[int] = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def _lowerCamelCase ( ): """simple docstring""" a_ : Tuple = create_accelerator() a_ : Tuple = torch.nn.Linear(1 , 1 ) a_ : List[Any] = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) create_dataloader(SCREAMING_SNAKE_CASE_ , dataset_size=3 , batch_size=1 , iterable=SCREAMING_SNAKE_CASE_ ) with warnings.catch_warnings(record=SCREAMING_SNAKE_CASE_ ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=SCREAMING_SNAKE_CASE_ ): pass assert issubclass(w[-1].category , SCREAMING_SNAKE_CASE_ ) assert "only supported for map-style datasets" in str(w[-1].message ) def _lowerCamelCase ( ): """simple docstring""" a_ : str = create_accelerator() accelerator.print("""Test that even_batches variable ensures uniform batches across processes""" ) test_default_ensures_even_batch_sizes() accelerator.print("""Run tests with even_batches disabled""" ) test_can_disable_even_batches() accelerator.print("""Test joining uneven inputs""" ) test_can_join_uneven_inputs() accelerator.print("""Test overriding even_batches when joining uneven inputs""" ) test_join_can_override_even_batches() accelerator.print("""Test overriding even_batches for mixed dataloader types""" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("""Test overriding even_batches raises a warning for iterable dataloaders""" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("""Test join with non DDP distributed raises warning""" ) a_ : Optional[Any] = accelerator.state.distributed_type a_ : Tuple = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(SCREAMING_SNAKE_CASE_ ) a_ : Optional[Any] = original_state if __name__ == "__main__": main()
419
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Union[str, Any] = { "google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json", } class snake_case__ ( __A ): UpperCAmelCase : Tuple = """switch_transformers""" UpperCAmelCase : Optional[int] = ["""past_key_values"""] UpperCAmelCase : List[Any] = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self , UpperCamelCase_=32128 , UpperCamelCase_=768 , UpperCamelCase_=64 , UpperCamelCase_=2048 , UpperCamelCase_=64 , UpperCamelCase_=12 , UpperCamelCase_=3 , UpperCamelCase_=12 , UpperCamelCase_=3 , UpperCamelCase_=12 , UpperCamelCase_=8 , UpperCamelCase_=False , UpperCamelCase_=0.01 , UpperCamelCase_="float32" , UpperCamelCase_=False , UpperCamelCase_=32 , UpperCamelCase_=128 , UpperCamelCase_=0.1 , UpperCamelCase_=1e-6 , UpperCamelCase_=0.001 , UpperCamelCase_=0.001 , UpperCamelCase_=1.0 , UpperCamelCase_="relu" , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=True , UpperCamelCase_=0 , UpperCamelCase_=1 , **UpperCamelCase_ , ) -> str: """simple docstring""" a_ : str = vocab_size a_ : Dict = d_model a_ : int = d_kv a_ : Optional[int] = d_ff a_ : str = num_sparse_encoder_layers a_ : List[str] = num_layers a_ : int = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry a_ : Union[str, Any] = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: a_ : str = self.num_layers // self.num_sparse_encoder_layers else: a_ : Union[str, Any] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: a_ : Union[str, Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: a_ : str = self.num_decoder_layers # HACK: this will create 0 sparse layers a_ : List[str] = num_heads a_ : Any = num_experts a_ : List[Any] = expert_capacity a_ : Any = router_bias a_ : str = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) a_ : Optional[int] = router_dtype a_ : List[Any] = router_ignore_padding_tokens a_ : Union[str, Any] = relative_attention_num_buckets a_ : List[str] = relative_attention_max_distance a_ : List[Any] = dropout_rate a_ : Any = layer_norm_epsilon a_ : Tuple = initializer_factor a_ : Optional[int] = feed_forward_proj a_ : Dict = use_cache a_ : str = add_router_probs a_ : Dict = router_z_loss_coef a_ : Any = router_aux_loss_coef a_ : Union[str, Any] = self.feed_forward_proj.split("""-""" ) a_ : str = act_info[-1] a_ : Optional[Any] = act_info[0] == """gated""" if len(UpperCamelCase_ ) > 1 and act_info[0] != "gated" or len(UpperCamelCase_ ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": a_ : Optional[Any] = """gelu_new""" super().__init__( pad_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , is_encoder_decoder=UpperCamelCase_ , **UpperCamelCase_ , )
419
1
from math import sqrt def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : int ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' must been an int and positive" UpperCamelCase_ : Union[str, Any] = True # 0 and 1 are none primes. if number <= 1: UpperCamelCase_ : Tuple = False for divisor in range(2 , int(round(sqrt(_SCREAMING_SNAKE_CASE ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: UpperCamelCase_ : Union[str, Any] = False break # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'status' must been from type bool" return status def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Tuple ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N UpperCamelCase_ : Dict = list(range(2 , n + 1 ) ) UpperCamelCase_ : Union[str, Any] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_SCREAMING_SNAKE_CASE ) ): for j in range(i + 1 , len(_SCREAMING_SNAKE_CASE ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): UpperCamelCase_ : Optional[int] = 0 # filters actual prime numbers. UpperCamelCase_ : Union[str, Any] = [x for x in begin_list if x != 0] # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type list" return ans def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : int ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n > 2), "'N' must been an int and > 2" UpperCamelCase_ : List[Any] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_SCREAMING_SNAKE_CASE ): ans.append(_SCREAMING_SNAKE_CASE ) # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type list" return ans def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Union[str, Any] ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and number >= 0, "'number' must been an int and >= 0" UpperCamelCase_ : Union[str, Any] = [] # this list will be returns of the function. # potential prime number factors. UpperCamelCase_ : Optional[int] = 2 UpperCamelCase_ : Dict = number if number == 0 or number == 1: ans.append(_SCREAMING_SNAKE_CASE ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_SCREAMING_SNAKE_CASE ): while quotient != 1: if is_prime(_SCREAMING_SNAKE_CASE ) and (quotient % factor == 0): ans.append(_SCREAMING_SNAKE_CASE ) quotient /= factor else: factor += 1 else: ans.append(_SCREAMING_SNAKE_CASE ) # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type list" return ans def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : int ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' bust been an int and >= 0" UpperCamelCase_ : Tuple = 0 # prime factorization of 'number' UpperCamelCase_ : int = prime_factorization(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : Any = max(_SCREAMING_SNAKE_CASE ) # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type int" return ans def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Optional[Any] ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' bust been an int and >= 0" UpperCamelCase_ : Any = 0 # prime factorization of 'number' UpperCamelCase_ : Dict = prime_factorization(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : Union[str, Any] = min(_SCREAMING_SNAKE_CASE ) # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type int" return ans def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : str ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'number' must been an int" assert isinstance(number % 2 == 0 , _SCREAMING_SNAKE_CASE ), "compare bust been from type bool" return number % 2 == 0 def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : int ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'number' must been an int" assert isinstance(number % 2 != 0 , _SCREAMING_SNAKE_CASE ), "compare bust been from type bool" return number % 2 != 0 def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Optional[int] ): assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (number > 2) and is_even(_SCREAMING_SNAKE_CASE ) ), "'number' must been an int, even and > 2" UpperCamelCase_ : Tuple = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' UpperCamelCase_ : int = get_prime_numbers(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : str = len(_SCREAMING_SNAKE_CASE ) # run variable for while-loops. UpperCamelCase_ : Optional[int] = 0 UpperCamelCase_ : Union[str, Any] = None # exit variable. for break up the loops UpperCamelCase_ : Any = True while i < len_pn and loop: UpperCamelCase_ : Optional[Any] = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: UpperCamelCase_ : Union[str, Any] = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (len(_SCREAMING_SNAKE_CASE ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[int] ): assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." UpperCamelCase_ : List[Any] = 0 while numbera != 0: UpperCamelCase_ : List[str] = numbera % numbera UpperCamelCase_ : Optional[Any] = numbera UpperCamelCase_ : Optional[Any] = rest # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Any ): assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." UpperCamelCase_ : int = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' UpperCamelCase_ : Optional[Any] = prime_factorization(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : Optional[Any] = prime_factorization(_SCREAMING_SNAKE_CASE ) elif numbera == 1 or numbera == 1: UpperCamelCase_ : int = [] UpperCamelCase_ : Dict = [] UpperCamelCase_ : List[Any] = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ : int = 0 UpperCamelCase_ : int = 0 UpperCamelCase_ : Union[str, Any] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: UpperCamelCase_ : List[str] = prime_fac_a.count(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : List[Any] = prime_fac_a.count(_SCREAMING_SNAKE_CASE ) for _ in range(max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ): ans *= n else: UpperCamelCase_ : Tuple = prime_fac_a.count(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ): ans *= n done.append(_SCREAMING_SNAKE_CASE ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: UpperCamelCase_ : List[Any] = prime_fac_a.count(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ): ans *= n done.append(_SCREAMING_SNAKE_CASE ) # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : List[Any] ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n >= 0), "'number' must been a positive int" UpperCamelCase_ : str = 0 UpperCamelCase_ : Tuple = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_SCREAMING_SNAKE_CASE ): ans += 1 # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and is_prime( _SCREAMING_SNAKE_CASE ), "'ans' must been a prime number and from type int" return ans def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[Any] ): assert ( is_prime(_SCREAMING_SNAKE_CASE ) and is_prime(_SCREAMING_SNAKE_CASE ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" UpperCamelCase_ : Optional[int] = p_number_a + 1 # jump to the next number UpperCamelCase_ : List[Any] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_SCREAMING_SNAKE_CASE ): number += 1 while number < p_number_a: ans.append(_SCREAMING_SNAKE_CASE ) number += 1 # fetch the next prime number. while not is_prime(_SCREAMING_SNAKE_CASE ): number += 1 # precondition assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ans[0] != p_number_a and ans[len(_SCREAMING_SNAKE_CASE ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : List[str] ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n >= 1), "'n' must been int and >= 1" UpperCamelCase_ : Any = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_SCREAMING_SNAKE_CASE ) # precondition assert ans[0] == 1 and ans[len(_SCREAMING_SNAKE_CASE ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Dict ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( number > 1 ), "'number' must been an int and >= 1" UpperCamelCase_ : Dict = get_divisors(_SCREAMING_SNAKE_CASE ) # precondition assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (divisors[0] == 1) and (divisors[len(_SCREAMING_SNAKE_CASE ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Dict ): assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. UpperCamelCase_ : List[Any] = gcd(abs(_SCREAMING_SNAKE_CASE ) , abs(_SCREAMING_SNAKE_CASE ) ) # precondition assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : int ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n >= 0), "'n' must been a int and >= 0" UpperCamelCase_ : Dict = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Tuple ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n >= 0), "'n' must been an int and >= 0" UpperCamelCase_ : Tuple = 0 UpperCamelCase_ : Optional[int] = 1 UpperCamelCase_ : List[str] = 1 # this will be return for _ in range(n - 1 ): UpperCamelCase_ : List[Any] = ans ans += fiba UpperCamelCase_ : Any = tmp return ans
138
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class UpperCamelCase ( unittest.TestCase ): a__ :List[str] = StableDiffusionLDMaDPipeline a__ :str = TEXT_TO_IMAGE_PARAMS a__ :Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS a__ :Any = TEXT_TO_IMAGE_IMAGE_PARAMS def A_ (self ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCamelCase_ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) UpperCamelCase_ : Dict = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCamelCase , set_alpha_to_one=__UpperCamelCase , ) torch.manual_seed(0 ) UpperCamelCase_ : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase_ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) UpperCamelCase_ : Tuple = CLIPTextModel(__UpperCamelCase ) UpperCamelCase_ : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCamelCase_ : Optional[Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def A_ (self , __UpperCamelCase , __UpperCamelCase=0 ) -> Optional[Any]: if str(__UpperCamelCase ).startswith("""mps""" ): UpperCamelCase_ : Any = torch.manual_seed(__UpperCamelCase ) else: UpperCamelCase_ : str = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) UpperCamelCase_ : List[str] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def A_ (self ) -> str: UpperCamelCase_ : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ : List[str] = self.get_dummy_components() UpperCamelCase_ : List[Any] = StableDiffusionLDMaDPipeline(**__UpperCamelCase ) UpperCamelCase_ : Optional[int] = ldmad_pipe.to(__UpperCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ : List[str] = self.get_dummy_inputs(__UpperCamelCase ) UpperCamelCase_ : Optional[int] = ldmad_pipe(**__UpperCamelCase ) UpperCamelCase_,UpperCamelCase_ : Tuple = output.rgb, output.depth UpperCamelCase_ : Optional[Any] = rgb[0, -3:, -3:, -1] UpperCamelCase_ : Union[str, Any] = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) UpperCamelCase_ : str = np.array( [0.37_338_176, 0.70_247, 0.74_203_193, 0.51_643_604, 0.58_256_793, 0.60_932_136, 0.4_181_095, 0.48_355_877, 0.46_535_262] ) UpperCamelCase_ : Optional[Any] = np.array([103.46_727, 85.812_004, 87.849_236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2 def A_ (self ) -> List[Any]: UpperCamelCase_ : Tuple = self.get_dummy_components() UpperCamelCase_ : int = StableDiffusionLDMaDPipeline(**__UpperCamelCase ) UpperCamelCase_ : Tuple = ldmad_pipe.to(__UpperCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ : Optional[int] = self.get_dummy_inputs(__UpperCamelCase ) UpperCamelCase_ : List[str] = 3 * [inputs["""prompt"""]] # forward UpperCamelCase_ : List[Any] = ldmad_pipe(**__UpperCamelCase ) UpperCamelCase_,UpperCamelCase_ : int = output.rgb, output.depth UpperCamelCase_ : Dict = rgb_slice_a[0, -3:, -3:, -1] UpperCamelCase_ : Optional[Any] = depth_slice_a[0, -3:, -1] UpperCamelCase_ : Any = self.get_dummy_inputs(__UpperCamelCase ) UpperCamelCase_ : Optional[int] = 3 * [inputs.pop("""prompt""" )] UpperCamelCase_ : Optional[int] = ldmad_pipe.tokenizer( __UpperCamelCase , padding="""max_length""" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=__UpperCamelCase , return_tensors="""pt""" , ) UpperCamelCase_ : List[Any] = text_inputs["""input_ids"""].to(__UpperCamelCase ) UpperCamelCase_ : Optional[Any] = ldmad_pipe.text_encoder(__UpperCamelCase )[0] UpperCamelCase_ : Optional[int] = prompt_embeds # forward UpperCamelCase_ : Any = ldmad_pipe(**__UpperCamelCase ) UpperCamelCase_,UpperCamelCase_ : Optional[int] = output.rgb, output.depth UpperCamelCase_ : Union[str, Any] = rgb_slice_a[0, -3:, -3:, -1] UpperCamelCase_ : Union[str, Any] = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4 def A_ (self ) -> str: UpperCamelCase_ : Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ : int = self.get_dummy_components() UpperCamelCase_ : List[str] = PNDMScheduler(skip_prk_steps=__UpperCamelCase ) UpperCamelCase_ : int = StableDiffusionLDMaDPipeline(**__UpperCamelCase ) UpperCamelCase_ : Optional[int] = ldmad_pipe.to(__UpperCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ : Optional[Any] = self.get_dummy_inputs(__UpperCamelCase ) UpperCamelCase_ : str = """french fries""" UpperCamelCase_ : Dict = ldmad_pipe(**__UpperCamelCase , negative_prompt=__UpperCamelCase ) UpperCamelCase_,UpperCamelCase_ : List[str] = output.rgb, output.depth UpperCamelCase_ : Dict = rgb[0, -3:, -3:, -1] UpperCamelCase_ : List[Any] = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) UpperCamelCase_ : int = np.array( [0.37_044, 0.71_811_503, 0.7_223_251, 0.48_603_675, 0.5_638_391, 0.6_364_948, 0.42_833_704, 0.4_901_315, 0.47_926_217] ) UpperCamelCase_ : Tuple = np.array([107.84_738, 84.62_802, 89.962_135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def A_ (self ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ (self , __UpperCamelCase , __UpperCamelCase="cpu" , __UpperCamelCase=torch.floataa , __UpperCamelCase=0 ) -> List[str]: UpperCamelCase_ : List[Any] = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) UpperCamelCase_ : List[str] = np.random.RandomState(__UpperCamelCase ).standard_normal((1, 4, 64, 64) ) UpperCamelCase_ : Dict = torch.from_numpy(__UpperCamelCase ).to(device=__UpperCamelCase , dtype=__UpperCamelCase ) UpperCamelCase_ : Any = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def A_ (self ) -> Optional[Any]: UpperCamelCase_ : Tuple = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ) UpperCamelCase_ : Dict = ldmad_pipe.to(__UpperCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ : Optional[int] = self.get_inputs(__UpperCamelCase ) UpperCamelCase_ : str = ldmad_pipe(**__UpperCamelCase ) UpperCamelCase_,UpperCamelCase_ : Optional[int] = output.rgb, output.depth UpperCamelCase_ : Tuple = rgb[0, -3:, -3:, -1].flatten() UpperCamelCase_ : int = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) UpperCamelCase_ : str = np.array( [0.53_805_465, 0.56_707_305, 0.5_486_515, 0.57_012_236, 0.5_814_511, 0.56_253_487, 0.54_843_014, 0.55_092_263, 0.6_459_706] ) UpperCamelCase_ : List[str] = np.array( [0.9_263_781, 0.6_678_672, 0.5_486_515, 0.92_202_145, 0.67_831_135, 0.56_253_487, 0.9_241_694, 0.7_551_478, 0.6_459_706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3 @nightly @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def A_ (self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ (self , __UpperCamelCase , __UpperCamelCase="cpu" , __UpperCamelCase=torch.floataa , __UpperCamelCase=0 ) -> Any: UpperCamelCase_ : Union[str, Any] = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) UpperCamelCase_ : Optional[Any] = np.random.RandomState(__UpperCamelCase ).standard_normal((1, 4, 64, 64) ) UpperCamelCase_ : Any = torch.from_numpy(__UpperCamelCase ).to(device=__UpperCamelCase , dtype=__UpperCamelCase ) UpperCamelCase_ : Dict = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def A_ (self ) -> Optional[int]: UpperCamelCase_ : Union[str, Any] = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ).to(__UpperCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ : Union[str, Any] = self.get_inputs(__UpperCamelCase ) UpperCamelCase_ : List[str] = ldmad_pipe(**__UpperCamelCase ) UpperCamelCase_,UpperCamelCase_ : Tuple = output.rgb, output.depth UpperCamelCase_ : Any = 0.495_586 UpperCamelCase_ : Dict = 0.33_795_515 UpperCamelCase_ : Optional[int] = 112.48_518 UpperCamelCase_ : Union[str, Any] = 98.489_746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3 def A_ (self ) -> str: UpperCamelCase_ : Optional[Any] = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d-4c""" ).to(__UpperCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ : Optional[int] = self.get_inputs(__UpperCamelCase ) UpperCamelCase_ : Tuple = ldmad_pipe(**__UpperCamelCase ) UpperCamelCase_,UpperCamelCase_ : Optional[int] = output.rgb, output.depth UpperCamelCase_ : int = 0.4_194_127 UpperCamelCase_ : Optional[Any] = 0.35_375_586 UpperCamelCase_ : Optional[Any] = 0.5_638_502 UpperCamelCase_ : List[Any] = 0.34_686_103 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3
138
1
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ,__UpperCamelCase : List[str] ): """simple docstring""" A_ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] A_ = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } A_ = f'''{src_lang}-{tgt_lang}''' A_ = f''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(__UpperCamelCase ,exist_ok=__UpperCamelCase ) A_ = os.path.join(__UpperCamelCase ,"README.md" ) print(f'''Generating {path}''' ) with open(__UpperCamelCase ,"w" ,encoding="utf-8" ) as f: f.write(__UpperCamelCase ) # make sure we are under the root of the project __a :Optional[Any] = Path(__file__).resolve().parent.parent.parent __a :Optional[Any] = repo_dir / 'model_cards' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __a , __a , __a :int = model_name.split('-') __a :str = model_cards_dir / 'facebook' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
86
def _lowercase ( SCREAMING_SNAKE_CASE_ : int = 10 , SCREAMING_SNAKE_CASE_ : int = 22 ): """simple docstring""" UpperCamelCase = range(1 , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = range(1 , SCREAMING_SNAKE_CASE_ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F'''{solution(10, 22) = }''')
386
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __lowercase : def __init__( self , A_ , A_=13 , A_=10 , A_=3 , A_=2 , A_=2 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_="divided_space_time" , A_=None , ) ->Tuple: '''simple docstring''' __lowerCAmelCase : List[Any] = parent __lowerCAmelCase : str = batch_size __lowerCAmelCase : Any = image_size __lowerCAmelCase : str = num_channels __lowerCAmelCase : List[str] = patch_size __lowerCAmelCase : Any = num_frames __lowerCAmelCase : int = is_training __lowerCAmelCase : List[str] = use_labels __lowerCAmelCase : Union[str, Any] = hidden_size __lowerCAmelCase : Tuple = num_hidden_layers __lowerCAmelCase : Dict = num_attention_heads __lowerCAmelCase : str = intermediate_size __lowerCAmelCase : str = hidden_act __lowerCAmelCase : Optional[int] = hidden_dropout_prob __lowerCAmelCase : Any = attention_probs_dropout_prob __lowerCAmelCase : Tuple = attention_type __lowerCAmelCase : List[str] = initializer_range __lowerCAmelCase : Optional[Any] = scope __lowerCAmelCase : int = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __lowerCAmelCase : str = (image_size // patch_size) ** 2 __lowerCAmelCase : List[str] = (num_frames) * self.num_patches_per_frame + 1 def UpperCamelCase__ ( self ) ->int: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase : Dict = None if self.use_labels: __lowerCAmelCase : str = ids_tensor([self.batch_size] , self.num_labels ) __lowerCAmelCase : List[Any] = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Any = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __lowerCAmelCase : Union[str, Any] = self.num_labels return config def UpperCamelCase__ ( self , A_ , A_ , A_ ) ->Dict: '''simple docstring''' __lowerCAmelCase : str = TimesformerModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __lowerCAmelCase : Optional[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , A_ , A_ , A_ ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = TimesformerForVideoClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __lowerCAmelCase : Dict = model(__UpperCamelCase ) # verify the logits shape __lowerCAmelCase : Union[str, Any] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __UpperCamelCase ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase : Optional[int] = config_and_inputs __lowerCAmelCase : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowercase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _UpperCamelCase = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () _UpperCamelCase = ( {'feature-extraction': TimesformerModel, 'video-classification': TimesformerForVideoClassification} if is_torch_available() else {} ) _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Dict = TimesformerModelTester(self ) __lowerCAmelCase : Optional[Any] = ConfigTester( self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def UpperCamelCase__ ( self , A_ , A_ , A_=False ) ->Any: '''simple docstring''' __lowerCAmelCase : str = copy.deepcopy(__UpperCamelCase ) if return_labels: if model_class in get_values(__UpperCamelCase ): __lowerCAmelCase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCamelCase ) return inputs_dict def UpperCamelCase__ ( self ) ->int: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''TimeSformer does not use inputs_embeds''' ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' pass def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' __lowerCAmelCase, __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : List[str] = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCAmelCase : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' __lowerCAmelCase, __lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : str = model_class(__UpperCamelCase ) __lowerCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase : str = [*signature.parameters.keys()] __lowerCAmelCase : Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' __lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__UpperCamelCase ) @slow def UpperCamelCase__ ( self ) ->int: '''simple docstring''' for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Dict = TimesformerModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' if not self.has_attentions: pass else: __lowerCAmelCase, __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase : str = True for model_class in self.all_model_classes: __lowerCAmelCase : Dict = self.model_tester.seq_length __lowerCAmelCase : Union[str, Any] = self.model_tester.num_frames __lowerCAmelCase : Dict = True __lowerCAmelCase : Optional[int] = False __lowerCAmelCase : Optional[int] = True __lowerCAmelCase : Tuple = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): __lowerCAmelCase : Optional[Any] = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) __lowerCAmelCase : Any = outputs.attentions self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase : Union[str, Any] = True __lowerCAmelCase : Optional[int] = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): __lowerCAmelCase : str = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) __lowerCAmelCase : Optional[Any] = outputs.attentions self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __lowerCAmelCase : List[str] = len(__UpperCamelCase ) # Check attention is always last and order is fine __lowerCAmelCase : Any = True __lowerCAmelCase : List[str] = True __lowerCAmelCase : Optional[Any] = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): __lowerCAmelCase : int = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(out_len + 1 , len(__UpperCamelCase ) ) __lowerCAmelCase : Dict = outputs.attentions self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' def check_hidden_states_output(A_ , A_ , A_ ): __lowerCAmelCase : str = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): __lowerCAmelCase : Any = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) __lowerCAmelCase : Union[str, Any] = outputs.hidden_states __lowerCAmelCase : Union[str, Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) __lowerCAmelCase : List[Any] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __lowerCAmelCase, __lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : Optional[int] = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase : List[str] = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def _lowercase ( ): __lowerCAmelCase : List[Any] = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) __lowerCAmelCase : List[Any] = np.load(_A ) return list(_A ) @require_torch @require_vision class __lowercase (unittest.TestCase ): @cached_property def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : List[Any] = TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''' ).to( __UpperCamelCase ) __lowerCAmelCase : Union[str, Any] = self.default_image_processor __lowerCAmelCase : Union[str, Any] = prepare_video() __lowerCAmelCase : Optional[int] = image_processor(video[:8] , return_tensors='''pt''' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): __lowerCAmelCase : List[Any] = model(**__UpperCamelCase ) # verify the logits __lowerCAmelCase : Optional[int] = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) __lowerCAmelCase : Dict = torch.tensor([-0.3_016, -0.7_713, -0.4_205] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1e-4 ) )
719
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __lowercase (nn.Module ): _UpperCamelCase = 42 _UpperCamelCase = 42 _UpperCamelCase = 0.0 _UpperCamelCase = 1 _UpperCamelCase = 1 _UpperCamelCase = True _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = jnp.floataa def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = [] __lowerCAmelCase : int = [] for i in range(self.num_layers ): __lowerCAmelCase : str = self.in_channels if i == 0 else self.out_channels __lowerCAmelCase : Any = FlaxResnetBlockaD( in_channels=A_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(A_ ) __lowerCAmelCase : Any = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(A_ ) __lowerCAmelCase : int = resnets __lowerCAmelCase : Any = attentions if self.add_downsample: __lowerCAmelCase : Dict = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , A_ , A_ , A_ , A_=True ) ->int: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = () for resnet, attn in zip(self.resnets , self.attentions ): __lowerCAmelCase : Optional[int] = resnet(A_ , A_ , deterministic=A_ ) __lowerCAmelCase : Union[str, Any] = attn(A_ , A_ , deterministic=A_ ) output_states += (hidden_states,) if self.add_downsample: __lowerCAmelCase : Any = self.downsamplers_a(A_ ) output_states += (hidden_states,) return hidden_states, output_states class __lowercase (nn.Module ): _UpperCamelCase = 42 _UpperCamelCase = 42 _UpperCamelCase = 0.0 _UpperCamelCase = 1 _UpperCamelCase = True _UpperCamelCase = jnp.floataa def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' __lowerCAmelCase : Optional[Any] = [] for i in range(self.num_layers ): __lowerCAmelCase : str = self.in_channels if i == 0 else self.out_channels __lowerCAmelCase : Any = FlaxResnetBlockaD( in_channels=A_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(A_ ) __lowerCAmelCase : List[str] = resnets if self.add_downsample: __lowerCAmelCase : List[str] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , A_ , A_ , A_=True ) ->str: '''simple docstring''' __lowerCAmelCase : List[str] = () for resnet in self.resnets: __lowerCAmelCase : Optional[int] = resnet(A_ , A_ , deterministic=A_ ) output_states += (hidden_states,) if self.add_downsample: __lowerCAmelCase : Dict = self.downsamplers_a(A_ ) output_states += (hidden_states,) return hidden_states, output_states class __lowercase (nn.Module ): _UpperCamelCase = 42 _UpperCamelCase = 42 _UpperCamelCase = 42 _UpperCamelCase = 0.0 _UpperCamelCase = 1 _UpperCamelCase = 1 _UpperCamelCase = True _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = jnp.floataa def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Any = [] __lowerCAmelCase : List[Any] = [] for i in range(self.num_layers ): __lowerCAmelCase : Dict = self.in_channels if (i == self.num_layers - 1) else self.out_channels __lowerCAmelCase : List[str] = self.prev_output_channel if i == 0 else self.out_channels __lowerCAmelCase : int = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(A_ ) __lowerCAmelCase : Tuple = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(A_ ) __lowerCAmelCase : int = resnets __lowerCAmelCase : List[str] = attentions if self.add_upsample: __lowerCAmelCase : int = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , A_ , A_ , A_ , A_ , A_=True ) ->List[str]: '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states __lowerCAmelCase : Optional[Any] = res_hidden_states_tuple[-1] __lowerCAmelCase : Optional[int] = res_hidden_states_tuple[:-1] __lowerCAmelCase : Dict = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __lowerCAmelCase : Optional[Any] = resnet(A_ , A_ , deterministic=A_ ) __lowerCAmelCase : Optional[int] = attn(A_ , A_ , deterministic=A_ ) if self.add_upsample: __lowerCAmelCase : Tuple = self.upsamplers_a(A_ ) return hidden_states class __lowercase (nn.Module ): _UpperCamelCase = 42 _UpperCamelCase = 42 _UpperCamelCase = 42 _UpperCamelCase = 0.0 _UpperCamelCase = 1 _UpperCamelCase = True _UpperCamelCase = jnp.floataa def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Optional[int] = [] for i in range(self.num_layers ): __lowerCAmelCase : Tuple = self.in_channels if (i == self.num_layers - 1) else self.out_channels __lowerCAmelCase : List[str] = self.prev_output_channel if i == 0 else self.out_channels __lowerCAmelCase : Tuple = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(A_ ) __lowerCAmelCase : Optional[Any] = resnets if self.add_upsample: __lowerCAmelCase : List[str] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , A_ , A_ , A_ , A_=True ) ->Optional[Any]: '''simple docstring''' for resnet in self.resnets: # pop res hidden states __lowerCAmelCase : List[Any] = res_hidden_states_tuple[-1] __lowerCAmelCase : Union[str, Any] = res_hidden_states_tuple[:-1] __lowerCAmelCase : str = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __lowerCAmelCase : Union[str, Any] = resnet(A_ , A_ , deterministic=A_ ) if self.add_upsample: __lowerCAmelCase : Dict = self.upsamplers_a(A_ ) return hidden_states class __lowercase (nn.Module ): _UpperCamelCase = 42 _UpperCamelCase = 0.0 _UpperCamelCase = 1 _UpperCamelCase = 1 _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = jnp.floataa def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' __lowerCAmelCase : Optional[int] = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] __lowerCAmelCase : Tuple = [] for _ in range(self.num_layers ): __lowerCAmelCase : List[str] = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(A_ ) __lowerCAmelCase : List[Any] = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(A_ ) __lowerCAmelCase : List[Any] = resnets __lowerCAmelCase : Any = attentions def __call__( self , A_ , A_ , A_ , A_=True ) ->int: '''simple docstring''' __lowerCAmelCase : str = self.resnets[0](A_ , A_ ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): __lowerCAmelCase : str = attn(A_ , A_ , deterministic=A_ ) __lowerCAmelCase : Tuple = resnet(A_ , A_ , deterministic=A_ ) return hidden_states
583
0
'''simple docstring''' import argparse import json import subprocess def a__ ( lowercase : Union[str, Any], lowercase : Dict ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = ( F"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"""" ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) _UpperCamelCase = subprocess.run(lowercase, shell=lowercase, stdout=subprocess.PIPE ) _UpperCamelCase = output.stdout.decode('''utf-8''' ) _UpperCamelCase = json.loads(lowercase ) _UpperCamelCase = status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(lowercase ) # save the result so we can report them on Slack with open('''offline_runners.txt''', '''w''' ) as fp: fp.write(json.dumps(lowercase ) ) if len(lowercase ) > 0: _UpperCamelCase = '''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(F"""The following runners are offline:\n{failed}""" ) if __name__ == "__main__": def a__ ( lowercase : Optional[int] ) -> Union[str, Any]: """simple docstring""" return values.split(''',''' ) lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) lowercase__ : Union[str, Any] = parser.parse_args() get_runner_status(args.target_runners, args.token)
98
'''simple docstring''' def a__ ( lowercase : str ) -> int: """simple docstring""" assert column_title.isupper() _UpperCamelCase = 0 _UpperCamelCase = len(lowercase ) - 1 _UpperCamelCase = 0 while index >= 0: _UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26, lowercase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
98
1
"""simple docstring""" import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib SCREAMING_SNAKE_CASE__ = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } SCREAMING_SNAKE_CASE__ = logging.WARNING def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = os.getenv("""DATASETS_VERBOSITY""" , SCREAMING_SNAKE_CASE ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'Unknown option DATASETS_VERBOSITY={env_level_str}, ' F'has to be one of: { ", ".join(log_levels.keys() ) }' ) return _default_log_level def UpperCAmelCase__ ( ): '''simple docstring''' return __name__.split(""".""" )[0] def UpperCAmelCase__ ( ): '''simple docstring''' return logging.getLogger(_get_library_name() ) def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Optional[str] = None ): '''simple docstring''' if name is None: lowerCAmelCase = _get_library_name() return logging.getLogger(SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( ): '''simple docstring''' return _get_library_root_logger().getEffectiveLevel() def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _get_library_root_logger().setLevel(SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( ): '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( ): '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( ): '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( ): '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = False def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class lowercase : def __init__( self , *lowercase , **lowercase ) -> List[str]: # pylint: disable=unused-argument lowerCAmelCase = args[0] if args else None def __iter__( self ) -> List[str]: return iter(self._iterator ) def __getattr__( self , lowercase ) -> Union[str, Any]: def empty_fn(*lowercase , **lowercase ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ) -> Dict: return self def __exit__( self , lowercase , lowercase , lowercase ) -> int: return SCREAMING_SNAKE_CASE__ = True class lowercase : def __call__( self , *lowercase , lowercase=False , **lowercase ) -> Union[str, Any]: if _tqdm_active and not disable: return tqdm_lib.tqdm(*lowercase , **lowercase ) else: return EmptyTqdm(*lowercase , **lowercase ) def _snake_case ( self , *lowercase , **lowercase ) -> int: lowerCAmelCase = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*lowercase , **lowercase ) def _snake_case ( self ) -> Optional[Any]: if _tqdm_active: return tqdm_lib.tqdm.get_lock() SCREAMING_SNAKE_CASE__ = _tqdm_cls() def UpperCAmelCase__ ( ): '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def UpperCAmelCase__ ( ): '''simple docstring''' global _tqdm_active lowerCAmelCase = True def UpperCAmelCase__ ( ): '''simple docstring''' global _tqdm_active lowerCAmelCase = False
393
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowercase ( unittest.TestCase ): def _snake_case ( self ) -> int: lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = BlipImageProcessor() lowerCAmelCase = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) lowerCAmelCase = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) lowerCAmelCase = InstructBlipProcessor(lowercase , lowercase , lowercase ) processor.save_pretrained(self.tmpdirname ) def _snake_case ( self , **lowercase ) -> Dict: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase ).tokenizer def _snake_case ( self , **lowercase ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase ).image_processor def _snake_case ( self , **lowercase ) -> Any: return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase ).qformer_tokenizer def _snake_case ( self ) -> str: shutil.rmtree(self.tmpdirname ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase = [Image.fromarray(np.moveaxis(lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self ) -> Any: lowerCAmelCase = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCAmelCase = self.get_image_processor(do_normalize=lowercase , padding_value=1.0 ) lowerCAmelCase = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase ) self.assertIsInstance(processor.qformer_tokenizer , lowercase ) def _snake_case ( self ) -> Tuple: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_qformer_tokenizer() lowerCAmelCase = InstructBlipProcessor( tokenizer=lowercase , image_processor=lowercase , qformer_tokenizer=lowercase ) lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = image_processor(lowercase , return_tensors="""np""" ) lowerCAmelCase = processor(images=lowercase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self ) -> Any: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_qformer_tokenizer() lowerCAmelCase = InstructBlipProcessor( tokenizer=lowercase , image_processor=lowercase , qformer_tokenizer=lowercase ) lowerCAmelCase = """lower newer""" lowerCAmelCase = processor(text=lowercase ) lowerCAmelCase = tokenizer(lowercase , return_token_type_ids=lowercase ) lowerCAmelCase = qformer_tokenizer(lowercase , return_token_type_ids=lowercase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def _snake_case ( self ) -> Any: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_qformer_tokenizer() lowerCAmelCase = InstructBlipProcessor( tokenizer=lowercase , image_processor=lowercase , qformer_tokenizer=lowercase ) lowerCAmelCase = """lower newer""" lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=lowercase , images=lowercase ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(lowercase ): processor() def _snake_case ( self ) -> str: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_qformer_tokenizer() lowerCAmelCase = InstructBlipProcessor( tokenizer=lowercase , image_processor=lowercase , qformer_tokenizer=lowercase ) lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase = processor.batch_decode(lowercase ) lowerCAmelCase = tokenizer.batch_decode(lowercase ) self.assertListEqual(lowercase , lowercase ) def _snake_case ( self ) -> int: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_qformer_tokenizer() lowerCAmelCase = InstructBlipProcessor( tokenizer=lowercase , image_processor=lowercase , qformer_tokenizer=lowercase ) lowerCAmelCase = """lower newer""" lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=lowercase , images=lowercase ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
393
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __a = { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json', } class __a( _a ): """simple docstring""" lowerCAmelCase = '''albert''' def __init__( self ,_SCREAMING_SNAKE_CASE=30_000 ,_SCREAMING_SNAKE_CASE=128 ,_SCREAMING_SNAKE_CASE=4_096 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=1 ,_SCREAMING_SNAKE_CASE=64 ,_SCREAMING_SNAKE_CASE=16_384 ,_SCREAMING_SNAKE_CASE=1 ,_SCREAMING_SNAKE_CASE="gelu_new" ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE=512 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=0.02 ,_SCREAMING_SNAKE_CASE=1e-12 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE="absolute" ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=3 ,**_SCREAMING_SNAKE_CASE ,) -> Any: super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE ,bos_token_id=_SCREAMING_SNAKE_CASE ,eos_token_id=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : Optional[int] = embedding_size UpperCAmelCase_ : List[str] = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_hidden_groups UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : Dict = inner_group_num UpperCAmelCase_ : Dict = hidden_act UpperCAmelCase_ : int = intermediate_size UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = max_position_embeddings UpperCAmelCase_ : Optional[int] = type_vocab_size UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps UpperCAmelCase_ : Optional[int] = classifier_dropout_prob UpperCAmelCase_ : Any = position_embedding_type class __a( _a ): """simple docstring""" @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCAmelCase_ : str = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase_ : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
30
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home _lowerCAmelCase = HUGGINGFACE_HUB_CACHE _lowerCAmelCase = """config.json""" _lowerCAmelCase = """diffusion_pytorch_model.bin""" _lowerCAmelCase = """diffusion_flax_model.msgpack""" _lowerCAmelCase = """model.onnx""" _lowerCAmelCase = """diffusion_pytorch_model.safetensors""" _lowerCAmelCase = """weights.pb""" _lowerCAmelCase = """https://huggingface.co""" _lowerCAmelCase = default_cache_path _lowerCAmelCase = """diffusers_modules""" _lowerCAmelCase = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) _lowerCAmelCase = ["""fp16""", """non-ema"""] _lowerCAmelCase = """.self_attn"""
569
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class a_ ( unittest.TestCase ): UpperCamelCase__ : Optional[Any] =ViTImageProcessor if is_vision_available() else None @property def __a ( self :str) -> int: return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :str) -> Tuple: UpperCAmelCase_ = (3, 32, 128) UpperCAmelCase_ = tempfile.mkdtemp() # fmt: off UpperCAmelCase_ = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on UpperCAmelCase_ = dict(zip(_lowercase , range(len(_lowercase)))) UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: fp.write(json.dumps(_lowercase) + '''\n''') UpperCAmelCase_ = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } UpperCAmelCase_ = os.path.join(self.tmpdirname , _lowercase) with open(self.image_processor_file , '''w''' , encoding='''utf-8''') as fp: json.dump(_lowercase , _lowercase) def __a ( self :int , **_lowercase :Optional[int]) -> Union[str, Any]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_lowercase) def __a ( self :Union[str, Any] , **_lowercase :Dict) -> Tuple: return ViTImageProcessor.from_pretrained(self.tmpdirname , **_lowercase) def __a ( self :Optional[Any]) -> Any: shutil.rmtree(self.tmpdirname) def __a ( self :Optional[Any]) -> Tuple: UpperCAmelCase_ = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta) UpperCAmelCase_ = Image.fromarray(np.moveaxis(_lowercase , 0 , -1)) return image_input def __a ( self :Union[str, Any]) -> Optional[int]: UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase) processor.save_pretrained(self.tmpdirname) UpperCAmelCase_ = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_lowercase) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _lowercase) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor.image_processor , _lowercase) def __a ( self :str) -> int: UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase) processor.save_pretrained(self.tmpdirname) UpperCAmelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''') UpperCAmelCase_ = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0) UpperCAmelCase_ = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowercase , padding_value=1.0) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _lowercase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _lowercase) def __a ( self :List[Any]) -> str: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase) UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = image_processor(_lowercase , return_tensors='''np''') UpperCAmelCase_ = processor(images=_lowercase , return_tensors='''np''') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2) def __a ( self :List[Any]) -> Tuple: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase) UpperCAmelCase_ = '''test''' UpperCAmelCase_ = processor(text=_lowercase) UpperCAmelCase_ = tokenizer(_lowercase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __a ( self :List[Any]) -> str: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase) UpperCAmelCase_ = '''test''' UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual(list(inputs.keys()) , ['''pixel_values''', '''labels''']) # test if it raises when no input is passed with pytest.raises(_lowercase): processor() def __a ( self :Optional[Any]) -> Optional[int]: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase) UpperCAmelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ = processor.char_decode(_lowercase) UpperCAmelCase_ = tokenizer.batch_decode(_lowercase) UpperCAmelCase_ = [seq.replace(''' ''' , '''''') for seq in decoded_tok] self.assertListEqual(_lowercase , _lowercase) def __a ( self :Optional[int]) -> Optional[int]: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase) UpperCAmelCase_ = None UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names) def __a ( self :Optional[int]) -> str: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase) UpperCAmelCase_ = torch.randn(1 , 27 , 38) UpperCAmelCase_ = torch.randn(1 , 27 , 50257) UpperCAmelCase_ = torch.randn(1 , 27 , 30522) UpperCAmelCase_ = processor.batch_decode([char_input, bpe_input, wp_input]) self.assertListEqual(list(results.keys()) , ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''])
707
def A ( __UpperCAmelCase , __UpperCAmelCase ) -> list[int]: '''simple docstring''' UpperCAmelCase_ = int(__UpperCAmelCase ) # Initialize Result UpperCAmelCase_ = [] # Traverse through all denomination for denomination in reversed(__UpperCAmelCase ): # Find denominations while int(__UpperCAmelCase ) >= int(__UpperCAmelCase ): total_value -= int(__UpperCAmelCase ) answer.append(__UpperCAmelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCamelCase_ = [] UpperCamelCase_ = "0" if ( input("Do you want to enter your denominations ? (yY/n): ").strip().lower() == "y" ): UpperCamelCase_ = int(input("Enter the number of denominations you want to add: ").strip()) for i in range(0, n): denominations.append(int(input(f"Denomination {i}: ").strip())) UpperCamelCase_ = input("Enter the change you want to make in Indian Currency: ").strip() else: # All denominations of Indian Currency if user does not enter UpperCamelCase_ = [1, 2, 5, 10, 20, 50, 100, 500, 2_000] UpperCamelCase_ = input("Enter the change you want to make: ").strip() if int(value) == 0 or int(value) < 0: print("The total value cannot be zero or negative.") else: print(f"Following is minimal change for {value}: ") UpperCamelCase_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=" ")
561
0
'''simple docstring''' from math import factorial def a__ ( UpperCamelCase_ : int, UpperCamelCase_ : int, UpperCamelCase_ : float ): if successes > trials: raise ValueError('''successes must be lower or equal to trials''' ) if trials < 0 or successes < 0: raise ValueError('''the function is defined for non-negative integers''' ) if not isinstance(UpperCamelCase_, UpperCamelCase_ ) or not isinstance(UpperCamelCase_, UpperCamelCase_ ): raise ValueError('''the function is defined for non-negative integers''' ) if not 0 < prob < 1: raise ValueError('''prob has to be in range of 1 - 0''' ) UpperCAmelCase__ :Tuple = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! UpperCAmelCase__ :Optional[int] = float(factorial(UpperCamelCase_ ) ) coefficient /= factorial(UpperCamelCase_ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
467
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=_snake_case ): UpperCAmelCase = ["speech"] def __init__( self : List[Any] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : List[str] ): requires_backends(self , ['''speech'''] ) class UpperCAmelCase ( metaclass=_snake_case ): UpperCAmelCase = ["speech"] def __init__( self : int , *__lowerCamelCase : List[Any] , **__lowerCamelCase : List[str] ): requires_backends(self , ['''speech'''] )
467
1
'''simple docstring''' from math import sqrt def __UpperCamelCase ( a : int ) ->int: snake_case = 0 for i in range(1 , int(sqrt(a ) + 1 ) ): if n % i == 0 and i != sqrt(a ): total += i + n // i elif i == sqrt(a ): total += i return total - n def __UpperCamelCase ( a : int = 1_0000 ) ->int: snake_case = sum( i for i in range(1 , a ) if sum_of_divisors(sum_of_divisors(a ) ) == i and sum_of_divisors(a ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
44
'''simple docstring''' from ..utils import DummyObject, requires_backends class _lowercase ( metaclass=__a ): _UpperCAmelCase = ['''transformers''', '''torch''', '''note_seq'''] def __init__( self , *A__ , **A__ ) -> Union[str, Any]: requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def UpperCamelCase ( cls , *A__ , **A__ ) -> Optional[Any]: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def UpperCamelCase ( cls , *A__ , **A__ ) -> Any: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
44
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) snake_case__ = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
395
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image snake_case__ = ['''text''', '''image''', '''audio'''] def lowerCamelCase__ ( a : List[str] ) -> Tuple: """simple docstring""" a__ :Any = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3_000 ) ) elif isinstance(a , a ): inputs.append(create_inputs(a ) ) else: raise ValueError(F'''Invalid type requested: {input_type}''' ) return inputs def lowerCamelCase__ ( a : List ) -> str: """simple docstring""" a__ :Any = [] for output in outputs: if isinstance(a , (str, AgentText) ): output_types.append("text" ) elif isinstance(a , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(a , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(F'''Invalid output: {output}''' ) return output_types @is_tool_test class lowerCAmelCase_ : def _snake_case ( self : str ) ->Tuple: """simple docstring""" self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) a__ :Any = self.tool.inputs for _input in inputs: if isinstance(_input , __A ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) a__ :Optional[int] = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _snake_case ( self : List[Any] ) ->Any: """simple docstring""" a__ :Union[str, Any] = create_inputs(self.tool.inputs ) a__ :Dict = self.tool(*__A ) # There is a single output if len(self.tool.outputs ) == 1: a__ :Optional[Any] = [outputs] self.assertListEqual(output_types(__A ) , self.tool.outputs ) def _snake_case ( self : Tuple ) ->Dict: """simple docstring""" self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def _snake_case ( self : str ) ->List[Any]: """simple docstring""" a__ :Any = create_inputs(self.tool.inputs ) a__ :Union[str, Any] = self.tool(*__A ) if not isinstance(__A , __A ): a__ :List[str] = [outputs] self.assertEqual(len(__A ) , len(self.tool.outputs ) ) for output, output_type in zip(__A , self.tool.outputs ): a__ :Any = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(__A , __A ) ) def _snake_case ( self : Dict ) ->List[str]: """simple docstring""" a__ :Tuple = create_inputs(self.tool.inputs ) a__ :Tuple = [] for _input, input_type in zip(__A , self.tool.inputs ): if isinstance(__A , __A ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error a__ :int = self.tool(*__A ) if not isinstance(__A , __A ): a__ :Any = [outputs] self.assertEqual(len(__A ) , len(self.tool.outputs ) )
395
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { """configuration_albert""": ["""ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AlbertConfig""", """AlbertOnnxConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""AlbertTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""AlbertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """AlbertForMaskedLM""", """AlbertForMultipleChoice""", """AlbertForPreTraining""", """AlbertForQuestionAnswering""", """AlbertForSequenceClassification""", """AlbertForTokenClassification""", """AlbertModel""", """AlbertPreTrainedModel""", """load_tf_weights_in_albert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFAlbertForMaskedLM""", """TFAlbertForMultipleChoice""", """TFAlbertForPreTraining""", """TFAlbertForQuestionAnswering""", """TFAlbertForSequenceClassification""", """TFAlbertForTokenClassification""", """TFAlbertMainLayer""", """TFAlbertModel""", """TFAlbertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """FlaxAlbertForMaskedLM""", """FlaxAlbertForMultipleChoice""", """FlaxAlbertForPreTraining""", """FlaxAlbertForQuestionAnswering""", """FlaxAlbertForSequenceClassification""", """FlaxAlbertForTokenClassification""", """FlaxAlbertModel""", """FlaxAlbertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
703
import math import sys import cva import numpy as np def a__ ( snake_case , snake_case ): """simple docstring""" # For applying gaussian function for each element in matrix. __SCREAMING_SNAKE_CASE : Dict = math.sqrt(snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def a__ ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def a__ ( snake_case , snake_case ): """simple docstring""" # Creates a gaussian kernel of given dimension. __SCREAMING_SNAKE_CASE : Optional[int] = np.zeros((kernel_size, kernel_size) ) for i in range(0 , snake_case ): for j in range(0 , snake_case ): __SCREAMING_SNAKE_CASE : Dict = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(snake_case , snake_case ) def a__ ( snake_case , snake_case , snake_case , snake_case , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = np.zeros(img.shape ) __SCREAMING_SNAKE_CASE : int = get_gauss_kernel(snake_case , snake_case ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __SCREAMING_SNAKE_CASE : Tuple = get_slice(snake_case , snake_case , snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = img_s - img_s[kernel_size // 2, kernel_size // 2] __SCREAMING_SNAKE_CASE : Dict = vec_gaussian(snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Any = np.multiply(snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Tuple = np.multiply(snake_case , snake_case ) __SCREAMING_SNAKE_CASE : int = np.sum(snake_case ) / np.sum(snake_case ) __SCREAMING_SNAKE_CASE : Dict = val return imga def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = args[1] if args[1:] else '''../image_data/lena.jpg''' __SCREAMING_SNAKE_CASE : Dict = float(args[2] ) if args[2:] else 1.0 __SCREAMING_SNAKE_CASE : List[Any] = float(args[3] ) if args[3:] else 1.0 if args[4:]: __SCREAMING_SNAKE_CASE : List[Any] = int(args[4] ) __SCREAMING_SNAKE_CASE : Tuple = kernel_size + abs(kernel_size % 2 - 1 ) else: __SCREAMING_SNAKE_CASE : Optional[int] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": lowercase_ , lowercase_ , lowercase_ , lowercase_ = parse_args(sys.argv) lowercase_ = cva.imread(filename, 0) cva.imshow("""input image""", img) lowercase_ = img / 255 lowercase_ = out.astype("""float32""") lowercase_ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) lowercase_ = out * 255 lowercase_ = np.uinta(out) cva.imshow("""output image""", out) cva.waitKey(0) cva.destroyAllWindows()
131
0
import argparse from collections import defaultdict def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : str, lowerCAmelCase_ : int, lowerCAmelCase_ : List[str] ): __lowerCAmelCase = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(lowerCAmelCase_, 'r' ) as f: __lowerCAmelCase = f.readlines() __lowerCAmelCase = F"""class {class_name}(""" __lowerCAmelCase = F"""{4 * " "}def {test_name}(""" __lowerCAmelCase = F"""{8 * " "}{correct_line.split()[0]}""" __lowerCAmelCase = F"""{16 * " "}{correct_line.split()[0]}""" __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = [] for line in lines: if line.startswith(lowerCAmelCase_ ): __lowerCAmelCase = True elif in_class and line.startswith(lowerCAmelCase_ ): __lowerCAmelCase = True elif in_class and in_func and (line.startswith(lowerCAmelCase_ ) or line.startswith(lowerCAmelCase_ )): __lowerCAmelCase = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: __lowerCAmelCase = True if in_class and in_func and in_line: if ")" not in line: continue else: __lowerCAmelCase = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * " "}{correct_line}""" ) __lowerCAmelCase = __lowerCAmelCase = __lowerCAmelCase = __lowerCAmelCase = False else: new_lines.append(lowerCAmelCase_ ) with open(lowerCAmelCase_, 'w' ) as f: for line in new_lines: f.write(lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Any=None ): if fail is not None: with open(lowerCAmelCase_, 'r' ) as f: __lowerCAmelCase = {l.strip() for l in f.readlines()} else: __lowerCAmelCase = None with open(lowerCAmelCase_, 'r' ) as f: __lowerCAmelCase = f.readlines() __lowerCAmelCase = defaultdict(lowerCAmelCase_ ) for line in correct_lines: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = line.split(';' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) _snake_case : str = parser.parse_args() main(args.correct_filename, args.fail_filename)
53
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case : List[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = ["""pixel_values"""] def __init__( self : Optional[int] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **lowerCAmelCase_ : Any , ) -> None: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = size if size is not None else {'shortest_edge': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = do_center_crop __lowerCAmelCase = crop_size __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[int] , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __lowerCAmelCase = int((2_5_6 / 2_2_4) * size['shortest_edge'] ) __lowerCAmelCase = get_resize_output_image_size(lowerCAmelCase_ , size=lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( lowerCAmelCase_ , size=(size_dict['height'], size_dict['width']) , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : str , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : str , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(lowerCAmelCase_ , size=(size['height'], size['width']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[int, float] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray: return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[str] , ) -> np.ndarray: return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase_ : str , ) -> BatchFeature: __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase = image_std if image_std is not None else self.image_std __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: __lowerCAmelCase = [self.resize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_center_crop: __lowerCAmelCase = [self.center_crop(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_rescale: __lowerCAmelCase = [self.rescale(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_normalize: __lowerCAmelCase = [self.normalize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
53
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = "▁" _lowerCAmelCase = {"vocab_file": "spiece.model"} _lowerCAmelCase = { "vocab_file": { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model" ) } } _lowerCAmelCase = { "google/reformer-crime-and-punishment": 524288, } class _SCREAMING_SNAKE_CASE ( __a ): __SCREAMING_SNAKE_CASE :int = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE :Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE :int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE :str = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , a__ : Dict , a__ : Optional[int]="</s>" , a__ : List[Any]="<unk>" , a__ : str=[] , a__ : Optional[Dict[str, Any]] = None , **a__ : List[Any] , ): __magic_name__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=a__ , unk_token=a__ , additional_special_tokens=a__ , sp_model_kwargs=self.sp_model_kwargs , **a__ , ) __magic_name__ = vocab_file __magic_name__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a__ ) @property def snake_case__ ( self : List[Any] ): return self.sp_model.get_piece_size() def snake_case__ ( self : List[str] ): __magic_name__ = {self.convert_ids_to_tokens(a__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): __magic_name__ = self.__dict__.copy() __magic_name__ = None return state def __setstate__( self : Tuple , a__ : str ): __magic_name__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __magic_name__ = {} __magic_name__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case__ ( self : List[str] , a__ : str ): return self.sp_model.encode(a__ , out_type=a__ ) def snake_case__ ( self : Optional[Any] , a__ : Tuple ): return self.sp_model.piece_to_id(a__ ) def snake_case__ ( self : int , a__ : Optional[int] ): if index < self.sp_model.get_piece_size(): __magic_name__ = self.sp_model.IdToPiece(a__ ) return token def snake_case__ ( self : Tuple , a__ : Union[str, Any] ): __magic_name__ = [] __magic_name__ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(a__ ) + token __magic_name__ = [] else: current_sub_tokens.append(a__ ) out_string += self.sp_model.decode(a__ ) return out_string.strip() def snake_case__ ( self : Any , a__ : str , a__ : Optional[str] = None ): if not os.path.isdir(a__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __magic_name__ = os.path.join( a__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a__ ) elif not os.path.isfile(self.vocab_file ): with open(a__ , '''wb''' ) as fi: __magic_name__ = self.sp_model.serialized_model_proto() fi.write(a__ ) return (out_vocab_file,)
708
'''simple docstring''' from __future__ import annotations def UpperCamelCase ( a ) -> bool: '''simple docstring''' return len(set(a ) ) == len(a ) if __name__ == "__main__": import doctest doctest.testmod()
245
0
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor A_ = random.Random() def _UpperCamelCase ( A , A=1.0 , A=None , A=None ): if rng is None: UpperCamelCase_ =global_rng UpperCamelCase_ =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self: List[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: int=7 , UpperCamelCase_: str=400 , UpperCamelCase_: Optional[Any]=2000 , UpperCamelCase_: Dict=24 , UpperCamelCase_: Tuple=24 , UpperCamelCase_: Optional[int]=0.0 , UpperCamelCase_: List[str]=1_6000 , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: List[Any]=True , ): UpperCamelCase_ =parent UpperCamelCase_ =batch_size UpperCamelCase_ =min_seq_length UpperCamelCase_ =max_seq_length UpperCamelCase_ =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase_ =feature_size UpperCamelCase_ =num_mel_bins UpperCamelCase_ =padding_value UpperCamelCase_ =sampling_rate UpperCamelCase_ =return_attention_mask UpperCamelCase_ =do_normalize def UpperCamelCase__ ( self: List[Any] ): return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCamelCase__ ( self: int , UpperCamelCase_: Optional[Any]=False , UpperCamelCase_: int=False ): def _flatten(UpperCamelCase_: Optional[Any] ): return list(itertools.chain(*__lowercase ) ) if equal_length: UpperCamelCase_ =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCamelCase_ =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCamelCase_ =[np.asarray(__lowercase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Dict = SpeechaTextFeatureExtractor if is_speech_available() else None def UpperCamelCase__ ( self: int ): UpperCamelCase_ =SpeechaTextFeatureExtractionTester(self ) def UpperCamelCase__ ( self: List[Any] , UpperCamelCase_: List[Any] ): self.assertTrue(np.all(np.mean(__lowercase , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__lowercase , axis=0 ) - 1 ) < 1e-3 ) ) def UpperCamelCase__ ( self: str ): # Tests that all call wrap to encode_plus and batch_encode_plus UpperCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase_ =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase_ =[np.asarray(__lowercase ) for speech_input in speech_inputs] # Test feature size UpperCamelCase_ =feature_extractor(__lowercase , padding=__lowercase , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input UpperCamelCase_ =feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features UpperCamelCase_ =feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(__lowercase , __lowercase , atol=1e-3 ) ) # Test batched UpperCamelCase_ =feature_extractor(__lowercase , return_tensors="np" ).input_features UpperCamelCase_ =feature_extractor(__lowercase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__lowercase , __lowercase ): self.assertTrue(np.allclose(__lowercase , __lowercase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase_ =[floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase_ =np.asarray(__lowercase ) UpperCamelCase_ =feature_extractor(__lowercase , return_tensors="np" ).input_features UpperCamelCase_ =feature_extractor(__lowercase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__lowercase , __lowercase ): self.assertTrue(np.allclose(__lowercase , __lowercase , atol=1e-3 ) ) def UpperCamelCase__ ( self: str ): UpperCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_ =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase_ =['''longest''', '''max_length''', '''do_not_pad'''] UpperCamelCase_ =[None, 16, None] for max_length, padding in zip(__lowercase , __lowercase ): UpperCamelCase_ =feature_extractor( __lowercase , padding=__lowercase , max_length=__lowercase , return_attention_mask=__lowercase ) UpperCamelCase_ =inputs.input_features UpperCamelCase_ =inputs.attention_mask UpperCamelCase_ =[np.sum(__lowercase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def UpperCamelCase__ ( self: int ): UpperCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_ =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase_ =['''longest''', '''max_length''', '''do_not_pad'''] UpperCamelCase_ =[None, 16, None] for max_length, padding in zip(__lowercase , __lowercase ): UpperCamelCase_ =feature_extractor( __lowercase , max_length=__lowercase , padding=__lowercase , return_tensors="np" , return_attention_mask=__lowercase ) UpperCamelCase_ =inputs.input_features UpperCamelCase_ =inputs.attention_mask UpperCamelCase_ =[np.sum(__lowercase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def UpperCamelCase__ ( self: List[Any] ): UpperCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_ =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase_ =feature_extractor( __lowercase , padding="max_length" , max_length=4 , truncation=__lowercase , return_tensors="np" , return_attention_mask=__lowercase , ) UpperCamelCase_ =inputs.input_features UpperCamelCase_ =inputs.attention_mask UpperCamelCase_ =np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def UpperCamelCase__ ( self: Dict ): UpperCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_ =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase_ =feature_extractor( __lowercase , padding="longest" , max_length=4 , truncation=__lowercase , return_tensors="np" , return_attention_mask=__lowercase , ) UpperCamelCase_ =inputs.input_features UpperCamelCase_ =inputs.attention_mask UpperCamelCase_ =np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) UpperCamelCase_ =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase_ =feature_extractor( __lowercase , padding="longest" , max_length=16 , truncation=__lowercase , return_tensors="np" , return_attention_mask=__lowercase , ) UpperCamelCase_ =inputs.input_features UpperCamelCase_ =inputs.attention_mask UpperCamelCase_ =np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def UpperCamelCase__ ( self: Any ): import torch UpperCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_ =np.random.rand(100 , 32 ).astype(np.floataa ) UpperCamelCase_ =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase_ =feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) UpperCamelCase_ =feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def UpperCamelCase__ ( self: str , UpperCamelCase_: Optional[int] ): from datasets import load_dataset UpperCamelCase_ =load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech UpperCamelCase_ =ds.sort("id" ).select(range(__lowercase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def UpperCamelCase__ ( self: Optional[int] ): # fmt: off UpperCamelCase_ =np.array([ -1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241, -1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128, -1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625, ] ) # fmt: on UpperCamelCase_ =self._load_datasamples(1 ) UpperCamelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_ =feature_extractor(__lowercase , return_tensors="pt" ).input_features self.assertEquals(input_features.shape , (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , __lowercase , atol=1e-4 ) )
391
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() __lowercase = logging.get_logger(__name__) def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' print('''Loading config file...''' ) def flatten_yaml_as_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="" , SCREAMING_SNAKE_CASE="." ): __UpperCamelCase :Dict = [] for k, v in d.items(): __UpperCamelCase :List[Any] = parent_key + sep + k if parent_key else k if isinstance(SCREAMING_SNAKE_CASE , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , sep=SCREAMING_SNAKE_CASE ).items() ) else: items.append((new_key, v) ) return dict(SCREAMING_SNAKE_CASE ) __UpperCamelCase :str = argparse.Namespace() with open(SCREAMING_SNAKE_CASE , '''r''' ) as yaml_file: try: __UpperCamelCase :Dict = yaml.load(SCREAMING_SNAKE_CASE , Loader=yaml.FullLoader ) __UpperCamelCase :int = flatten_yaml_as_dict(SCREAMING_SNAKE_CASE ) for k, v in flat_cfg.items(): setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(SCREAMING_SNAKE_CASE , str(SCREAMING_SNAKE_CASE ) ) ) return config def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :str = MobileViTVaConfig() __UpperCamelCase :str = False # dataset if task_name.startswith('''imagenet1k_''' ): __UpperCamelCase :str = 1_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: __UpperCamelCase :List[Any] = 384 else: __UpperCamelCase :Dict = 256 __UpperCamelCase :List[Any] = '''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): __UpperCamelCase :str = 21_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: __UpperCamelCase :Optional[Any] = 384 else: __UpperCamelCase :Optional[Any] = 256 __UpperCamelCase :Optional[Any] = '''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): __UpperCamelCase :List[Any] = 151 __UpperCamelCase :List[Any] = 512 __UpperCamelCase :List[str] = '''ade20k-id2label.json''' __UpperCamelCase :str = True elif task_name.startswith('''voc_''' ): __UpperCamelCase :Union[str, Any] = 21 __UpperCamelCase :Optional[Any] = 512 __UpperCamelCase :int = '''pascal-voc-id2label.json''' __UpperCamelCase :Optional[Any] = True # orig_config __UpperCamelCase :Optional[Any] = load_orig_config_file(SCREAMING_SNAKE_CASE ) assert getattr(SCREAMING_SNAKE_CASE , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" __UpperCamelCase :Tuple = getattr(SCREAMING_SNAKE_CASE , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(SCREAMING_SNAKE_CASE , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" __UpperCamelCase :Union[str, Any] = getattr(SCREAMING_SNAKE_CASE , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: __UpperCamelCase :Any = getattr(SCREAMING_SNAKE_CASE , '''model.segmentation.output_stride''' , 16 ) if "_deeplabv3" in task_name: __UpperCamelCase :Tuple = getattr(SCREAMING_SNAKE_CASE , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] ) __UpperCamelCase :List[str] = getattr(SCREAMING_SNAKE_CASE , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 ) __UpperCamelCase :List[str] = getattr(SCREAMING_SNAKE_CASE , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label __UpperCamelCase :Tuple = '''huggingface/label-files''' __UpperCamelCase :List[str] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) __UpperCamelCase :Optional[int] = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __UpperCamelCase :Tuple = idalabel __UpperCamelCase :Optional[Any] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Tuple = dct.pop(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Optional[Any] = val def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): '''simple docstring''' if base_model: __UpperCamelCase :Dict = '''''' else: __UpperCamelCase :Optional[Any] = '''mobilevitv2.''' __UpperCamelCase :int = [] for k in state_dict.keys(): if k[:8] == "encoder.": __UpperCamelCase :Optional[int] = k[8:] else: __UpperCamelCase :Optional[int] = k if ".block." in k: __UpperCamelCase :Optional[int] = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: __UpperCamelCase :int = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: __UpperCamelCase :Tuple = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: __UpperCamelCase :Any = k_new.replace('''conv_1.''' , f"""{model_prefix}conv_stem.""" ) for i in [1, 2]: if f"""layer_{i}.""" in k: __UpperCamelCase :Union[str, Any] = k_new.replace(f"""layer_{i}.""" , f"""{model_prefix}encoder.layer.{i-1}.layer.""" ) if ".exp_1x1." in k: __UpperCamelCase :Any = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: __UpperCamelCase :int = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if f"""layer_{i}.0.""" in k: __UpperCamelCase :Dict = k_new.replace(f"""layer_{i}.0.""" , f"""{model_prefix}encoder.layer.{i-1}.downsampling_layer.""" ) if f"""layer_{i}.1.local_rep.0.""" in k: __UpperCamelCase :Any = k_new.replace(f"""layer_{i}.1.local_rep.0.""" , f"""{model_prefix}encoder.layer.{i-1}.conv_kxk.""" ) if f"""layer_{i}.1.local_rep.1.""" in k: __UpperCamelCase :Any = k_new.replace(f"""layer_{i}.1.local_rep.1.""" , f"""{model_prefix}encoder.layer.{i-1}.conv_1x1.""" ) for i in [3, 4, 5]: if i == 3: __UpperCamelCase :List[Any] = [0, 1] elif i == 4: __UpperCamelCase :int = [0, 1, 2, 3] elif i == 5: __UpperCamelCase :Any = [0, 1, 2] for j in j_in: if f"""layer_{i}.1.global_rep.{j}.""" in k: __UpperCamelCase :int = k_new.replace( f"""layer_{i}.1.global_rep.{j}.""" , f"""{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.""" ) if f"""layer_{i}.1.global_rep.{j+1}.""" in k: __UpperCamelCase :List[Any] = k_new.replace( f"""layer_{i}.1.global_rep.{j+1}.""" , f"""{model_prefix}encoder.layer.{i-1}.layernorm.""" ) if f"""layer_{i}.1.conv_proj.""" in k: __UpperCamelCase :List[Any] = k_new.replace(f"""layer_{i}.1.conv_proj.""" , f"""{model_prefix}encoder.layer.{i-1}.conv_projection.""" ) if "pre_norm_attn.0." in k: __UpperCamelCase :Optional[Any] = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: __UpperCamelCase :Tuple = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: __UpperCamelCase :Any = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: __UpperCamelCase :Dict = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: __UpperCamelCase :Union[str, Any] = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: __UpperCamelCase :Union[str, Any] = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: __UpperCamelCase :str = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: __UpperCamelCase :Union[str, Any] = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: __UpperCamelCase :Optional[int] = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[int] = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(SCREAMING_SNAKE_CASE ) for k in keys_to_ignore: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" __UpperCamelCase :int = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Union[str, Any] = get_mobilevitva_config(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # load original state_dict __UpperCamelCase :int = torch.load(SCREAMING_SNAKE_CASE , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): __UpperCamelCase :Any = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE ).eval() __UpperCamelCase :str = False else: __UpperCamelCase :Optional[int] = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE ).eval() __UpperCamelCase :List[str] = False # remove and rename some keys of load the original model __UpperCamelCase :Union[str, Any] = checkpoint remove_unused_keys(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Dict = create_rename_keys(SCREAMING_SNAKE_CASE , base_model=SCREAMING_SNAKE_CASE ) for rename_key_src, rename_key_dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # load modified state_dict model.load_state_dict(SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by MobileViTImageProcessor __UpperCamelCase :Tuple = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) __UpperCamelCase :Dict = image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCamelCase :int = model(**SCREAMING_SNAKE_CASE ) # verify classification model if task_name.startswith('''imagenet''' ): __UpperCamelCase :str = outputs.logits __UpperCamelCase :Optional[int] = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant __UpperCamelCase :Optional[Any] = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] ) assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(f"""Saving model {task_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''imagenet1k_256''', type=str, help=( '''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ''' ''' Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 ''' ), choices=[ '''imagenet1k_256''', '''imagenet1k_384''', '''imagenet21k_to_1k_256''', '''imagenet21k_to_1k_384''', '''ade20k_deeplabv3''', '''voc_deeplabv3''', ], ) parser.add_argument( '''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) __lowercase = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
167
0
'''simple docstring''' from __future__ import annotations class lowerCAmelCase__ : def __init__( self , a ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = TypeError( """Matrices must be formed from a list of zero or more lists containing at """ """least one and the same number of values, each of which must be of type """ """int or float.""" ) if len(a ) != 0: _UpperCamelCase = len(rows[0] ) if cols == 0: raise error for row in rows: if len(a ) != cols: raise error for value in row: if not isinstance(a , (int, float) ): raise error _UpperCamelCase = rows else: _UpperCamelCase = [] def A_ ( self ) -> list[list[int]]: '''simple docstring''' return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def A_ ( self ) -> int: '''simple docstring''' return len(self.rows ) @property def A_ ( self ) -> int: '''simple docstring''' return len(self.rows[0] ) @property def A_ ( self ) -> tuple[int, int]: '''simple docstring''' return (self.num_rows, self.num_columns) @property def A_ ( self ) -> bool: '''simple docstring''' return self.order[0] == self.order[1] def A_ ( self ) -> Matrix: '''simple docstring''' _UpperCamelCase = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(a ) def A_ ( self ) -> int: '''simple docstring''' if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def A_ ( self ) -> bool: '''simple docstring''' return bool(self.determinant() ) def A_ ( self , a , a ) -> int: '''simple docstring''' _UpperCamelCase = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(a ).determinant() def A_ ( self , a , a ) -> int: '''simple docstring''' if (row + column) % 2 == 0: return self.get_minor(a , a ) return -1 * self.get_minor(a , a ) def A_ ( self ) -> Matrix: '''simple docstring''' return Matrix( [ [self.get_minor(a , a ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def A_ ( self ) -> Matrix: '''simple docstring''' return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def A_ ( self ) -> Matrix: '''simple docstring''' _UpperCamelCase = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(a ) def A_ ( self ) -> Matrix: '''simple docstring''' _UpperCamelCase = self.determinant() if not determinant: raise TypeError("""Only matrices with a non-zero determinant have an inverse""" ) return self.adjugate() * (1 / determinant) def __repr__( self ) -> str: '''simple docstring''' return str(self.rows ) def __str__( self ) -> str: '''simple docstring''' if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ """[""" + """. """.join([str(a ) for value in row] ) + """.]""" for row in self.rows ] ) + "]" ) def A_ ( self , a , a = None ) -> None: '''simple docstring''' _UpperCamelCase = TypeError("""Row must be a list containing all ints and/or floats""" ) if not isinstance(a , a ): raise type_error for value in row: if not isinstance(a , (int, float) ): raise type_error if len(a ) != self.num_columns: raise ValueError( """Row must be equal in length to the other rows in the matrix""" ) if position is None: self.rows.append(a ) else: _UpperCamelCase = self.rows[0:position] + [row] + self.rows[position:] def A_ ( self , a , a = None ) -> None: '''simple docstring''' _UpperCamelCase = TypeError( """Column must be a list containing all ints and/or floats""" ) if not isinstance(a , a ): raise type_error for value in column: if not isinstance(a , (int, float) ): raise type_error if len(a ) != self.num_rows: raise ValueError( """Column must be equal in length to the other columns in the matrix""" ) if position is None: _UpperCamelCase = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: _UpperCamelCase = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self , a ) -> bool: '''simple docstring''' if not isinstance(a , a ): return NotImplemented return self.rows == other.rows def __ne__( self , a ) -> bool: '''simple docstring''' return not self == other def __neg__( self ) -> Matrix: '''simple docstring''' return self * -1 def __add__( self , a ) -> Matrix: '''simple docstring''' if self.order != other.order: raise ValueError("""Addition requires matrices of the same order""" ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self , a ) -> Matrix: '''simple docstring''' if self.order != other.order: raise ValueError("""Subtraction requires matrices of the same order""" ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self , a ) -> Matrix: '''simple docstring''' if isinstance(a , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(a , a ): if self.num_columns != other.num_rows: raise ValueError( """The number of columns in the first matrix must """ """be equal to the number of rows in the second""" ) return Matrix( [ [Matrix.dot_product(a , a ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( """A Matrix can only be multiplied by an int, float, or another matrix""" ) def __pow__( self , a ) -> Matrix: '''simple docstring''' if not isinstance(a , a ): raise TypeError("""A Matrix can only be raised to the power of an int""" ) if not self.is_square: raise ValueError("""Only square matrices can be raised to a power""" ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( """Only invertable matrices can be raised to a negative power""" ) _UpperCamelCase = self for _ in range(other - 1 ): result *= self return result @classmethod def A_ ( cls , a , a ) -> int: '''simple docstring''' return sum(row[i] * column[i] for i in range(len(a ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
721
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): UpperCamelCase_ : List[Any] = StableDiffusionInpaintPipeline UpperCamelCase_ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS UpperCamelCase_ : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase_ : Tuple = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase_ : int = frozenset([] ) def A_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a , ) _UpperCamelCase = PNDMScheduler(skip_prk_steps=a ) torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) _UpperCamelCase = CLIPTextModel(a ) _UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _UpperCamelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def A_ ( self , a , a=0 ) -> List[Any]: '''simple docstring''' _UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a ) _UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCamelCase = Image.fromarray(np.uinta(a ) ).convert("""RGB""" ).resize((64, 64) ) _UpperCamelCase = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(a ).startswith("""mps""" ): _UpperCamelCase = torch.manual_seed(a ) else: _UpperCamelCase = torch.Generator(device=a ).manual_seed(a ) _UpperCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def A_ ( self ) -> Dict: '''simple docstring''' _UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = StableDiffusionInpaintPipeline(**a ) _UpperCamelCase = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) _UpperCamelCase = self.get_dummy_inputs(a ) _UpperCamelCase = sd_pipe(**a ).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A_ ( self ) -> Tuple: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def A_ ( self ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self ) -> Dict: '''simple docstring''' _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) _UpperCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) _UpperCamelCase = """stabilityai/stable-diffusion-2-inpainting""" _UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained(a , safety_checker=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing() _UpperCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( prompt=a , image=a , mask_image=a , generator=a , output_type="""np""" , ) _UpperCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9e-3 def A_ ( self ) -> str: '''simple docstring''' _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) _UpperCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) _UpperCamelCase = """stabilityai/stable-diffusion-2-inpainting""" _UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( a , torch_dtype=torch.floataa , safety_checker=a , ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing() _UpperCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( prompt=a , image=a , mask_image=a , generator=a , output_type="""np""" , ) _UpperCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5e-1 def A_ ( self ) -> Dict: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) _UpperCamelCase = """stabilityai/stable-diffusion-2-inpainting""" _UpperCamelCase = PNDMScheduler.from_pretrained(a , subfolder="""scheduler""" ) _UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( a , safety_checker=a , scheduler=a , torch_dtype=torch.floataa , ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _UpperCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( prompt=a , image=a , mask_image=a , generator=a , num_inference_steps=2 , output_type="""np""" , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
202
0
from __future__ import annotations import numpy as np def lowercase__ ( _UpperCamelCase) -> tuple[np.ndarray, np.ndarray]: """simple docstring""" UpperCamelCase , UpperCamelCase = np.shape(__snake_case) if rows != columns: UpperCamelCase = ( '\'table\' has to be of square shaped array but got a ' F'{rows}x{columns} array:\n{table}' ) raise ValueError(__snake_case) UpperCamelCase = np.zeros((rows, columns)) UpperCamelCase = np.zeros((rows, columns)) for i in range(__snake_case): for j in range(__snake_case): UpperCamelCase = sum(lower[i][k] * upper[k][j] for k in range(__snake_case)) if upper[j][j] == 0: raise ArithmeticError('No LU decomposition exists') UpperCamelCase = (table[i][j] - total) / upper[j][j] UpperCamelCase = 1 for j in range(__snake_case , __snake_case): UpperCamelCase = sum(lower[i][k] * upper[k][j] for k in range(__snake_case)) UpperCamelCase = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
280
from itertools import permutations def lowerCAmelCase__(__snake_case ) -> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False lowerCamelCase__ = [7, 11, 13, 17] for i, test in enumerate(__snake_case ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowerCAmelCase__(__snake_case = 10 ) -> int: '''simple docstring''' return sum( int(''''''.join(map(__snake_case ,__snake_case ) ) ) for num in permutations(range(__snake_case ) ) if is_substring_divisible(__snake_case ) ) if __name__ == "__main__": print(f"""{solution() = }""")
481
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = "data2vec-vision" def __init__( self: Dict , UpperCamelCase: int=7_68 , UpperCamelCase: Any=12 , UpperCamelCase: Dict=12 , UpperCamelCase: Tuple=30_72 , UpperCamelCase: Any="gelu" , UpperCamelCase: List[str]=0.0 , UpperCamelCase: List[str]=0.0 , UpperCamelCase: Dict=0.02 , UpperCamelCase: List[Any]=1e-12 , UpperCamelCase: Optional[int]=2_24 , UpperCamelCase: int=16 , UpperCamelCase: List[str]=3 , UpperCamelCase: Dict=False , UpperCamelCase: Union[str, Any]=False , UpperCamelCase: Tuple=False , UpperCamelCase: List[str]=False , UpperCamelCase: Any=0.1 , UpperCamelCase: List[str]=0.1 , UpperCamelCase: Optional[Any]=True , UpperCamelCase: List[str]=[3, 5, 7, 11] , UpperCamelCase: Tuple=[1, 2, 3, 6] , UpperCamelCase: Any=True , UpperCamelCase: List[Any]=0.4 , UpperCamelCase: Optional[int]=2_56 , UpperCamelCase: Optional[int]=1 , UpperCamelCase: str=False , UpperCamelCase: List[Any]=2_55 , **UpperCamelCase: Optional[Any] , ) -> Optional[Any]: super().__init__(**UpperCamelCase ) snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = initializer_range snake_case__ = layer_norm_eps snake_case__ = image_size snake_case__ = patch_size snake_case__ = num_channels snake_case__ = use_mask_token snake_case__ = use_absolute_position_embeddings snake_case__ = use_relative_position_bias snake_case__ = use_shared_relative_position_bias snake_case__ = layer_scale_init_value snake_case__ = drop_path_rate snake_case__ = use_mean_pooling # decode head attributes (semantic segmentation) snake_case__ = out_indices snake_case__ = pool_scales # auxiliary head attributes (semantic segmentation) snake_case__ = use_auxiliary_head snake_case__ = auxiliary_loss_weight snake_case__ = auxiliary_channels snake_case__ = auxiliary_num_convs snake_case__ = auxiliary_concat_input snake_case__ = semantic_loss_ignore_index class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = version.parse("1.11" ) @property def lowerCAmelCase_ ( self: Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCAmelCase_ ( self: Dict ) -> float: return 1e-4
372
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __UpperCamelCase : Optional[Any] = logging.getLogger() @unittest.skip("Temporarily disable the doc tests." ) @require_torch @require_tf @slow class __SCREAMING_SNAKE_CASE( unittest.TestCase ): def lowerCAmelCase_ ( self: Dict , UpperCamelCase: Path , UpperCamelCase: Union[str, None] = None , UpperCamelCase: Union[List[str], None] = None , UpperCamelCase: Union[str, List[str], None] = None , UpperCamelCase: bool = True , ) -> int: snake_case__ = [file for file in os.listdir(UpperCamelCase ) if os.path.isfile(os.path.join(UpperCamelCase , UpperCamelCase ) )] if identifier is not None: snake_case__ = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(UpperCamelCase , UpperCamelCase ): for n_ in n_identifier: snake_case__ = [file for file in files if n_ not in file] else: snake_case__ = [file for file in files if n_identifier not in file] snake_case__ = ignore_files or [] ignore_files.append('__init__.py' ) snake_case__ = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , UpperCamelCase ) if only_modules: snake_case__ = file.split('.' )[0] try: snake_case__ = getattr(UpperCamelCase , UpperCamelCase ) snake_case__ = doctest.DocTestSuite(UpperCamelCase ) snake_case__ = unittest.TextTestRunner().run(UpperCamelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'''{module_identifier} is not a module.''' ) else: snake_case__ = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowerCAmelCase_ ( self: Tuple ) -> int: snake_case__ = Path('src/transformers' ) snake_case__ = 'modeling' snake_case__ = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(UpperCamelCase , identifier=UpperCamelCase , ignore_files=UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[int] ) -> str: snake_case__ = Path('src/transformers' ) snake_case__ = 'tokenization' self.analyze_directory(UpperCamelCase , identifier=UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[Any] ) -> int: snake_case__ = Path('src/transformers' ) snake_case__ = 'configuration' self.analyze_directory(UpperCamelCase , identifier=UpperCamelCase ) def lowerCAmelCase_ ( self: Dict ) -> List[Any]: snake_case__ = Path('src/transformers' ) snake_case__ = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(UpperCamelCase , n_identifier=UpperCamelCase ) def lowerCAmelCase_ ( self: Tuple ) -> Union[str, Any]: snake_case__ = Path('docs/source' ) snake_case__ = ['favicon.ico'] self.analyze_directory(UpperCamelCase , ignore_files=UpperCamelCase , only_modules=UpperCamelCase )
372
1
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class UpperCAmelCase ( __A ): '''simple docstring''' def __init__( self , lowercase , lowercase=None , lowercase=None , lowercase=0 ): """simple docstring""" A_ : Tuple = 1.0 if scale is None else scale A_ : int = 0.0 if loc is None else loc super().__init__(lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowercase )] ) @property def lowerCAmelCase_ ( self ): """simple docstring""" return self.base_dist.mean * self.scale + self.loc @property def lowerCAmelCase_ ( self ): """simple docstring""" return self.base_dist.variance * self.scale**2 @property def lowerCAmelCase_ ( self ): """simple docstring""" return self.variance.sqrt() class UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : Optional[Any] = args_dim A_ : str = nn.ModuleList([nn.Linear(lowercase , lowercase ) for dim in args_dim.values()] ) A_ : Any = domain_map def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Any = [proj(lowercase ) for proj in self.proj] return self.domain_map(*lowercase ) class UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , lowercase ): """simple docstring""" super().__init__() A_ : Optional[int] = function def lowerCAmelCase_ ( self , lowercase , *lowercase ): """simple docstring""" return self.function(lowercase , *lowercase ) class UpperCAmelCase : '''simple docstring''' lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 def __init__( self , lowercase = 1 ): """simple docstring""" A_ : Optional[Any] = dim A_ : int = {k: dim * self.args_dim[k] for k in self.args_dim} def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" if self.dim == 1: return self.distribution_class(*lowercase ) else: return Independent(self.distribution_class(*lowercase ) , 1 ) def lowerCAmelCase_ ( self , lowercase , lowercase = None , lowercase = None , ): """simple docstring""" A_ : Tuple = self._base_distribution(lowercase ) if loc is None and scale is None: return distr else: return AffineTransformed(lowercase , loc=lowercase , scale=lowercase , event_dim=self.event_dim ) @property def lowerCAmelCase_ ( self ): """simple docstring""" return () if self.dim == 1 else (self.dim,) @property def lowerCAmelCase_ ( self ): """simple docstring""" return len(self.event_shape ) @property def lowerCAmelCase_ ( self ): """simple docstring""" return 0.0 def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" return ParameterProjection( in_features=lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def lowerCAmelCase_ ( self , *lowercase ): """simple docstring""" raise NotImplementedError() @staticmethod def lowerCAmelCase_ ( lowercase ): """simple docstring""" return (x + torch.sqrt(torch.square(lowercase ) + 4.0 )) / 2.0 class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = {"df": 1, "loc": 1, "scale": 1} lowerCamelCase_ = StudentT @classmethod def lowerCAmelCase_ ( cls , lowercase , lowercase , lowercase ): """simple docstring""" A_ : List[str] = cls.squareplus(lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) A_ : str = 2.0 + cls.squareplus(lowercase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = {"loc": 1, "scale": 1} lowerCamelCase_ = Normal @classmethod def lowerCAmelCase_ ( cls , lowercase , lowercase ): """simple docstring""" A_ : List[str] = cls.squareplus(lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = {"total_count": 1, "logits": 1} lowerCamelCase_ = NegativeBinomial @classmethod def lowerCAmelCase_ ( cls , lowercase , lowercase ): """simple docstring""" A_ : List[str] = cls.squareplus(lowercase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ , A_ : List[str] = distr_args if self.dim == 1: return self.distribution_class(total_count=lowercase , logits=lowercase ) else: return Independent(self.distribution_class(total_count=lowercase , logits=lowercase ) , 1 ) def lowerCAmelCase_ ( self , lowercase , lowercase = None , lowercase = None ): """simple docstring""" A_ , A_ : Optional[int] = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
558
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) _UpperCAmelCase = pytest.mark.integration @pytest.mark.parametrize('path' ,['paws', 'csv'] ) def UpperCamelCase ( __lowercase : Optional[Any] ,__lowercase : Tuple ): '''simple docstring''' inspect_dataset(__lowercase ,__lowercase ) A_ : Optional[Any] = path + '.py' assert script_name in os.listdir(__lowercase ) assert "__pycache__" not in os.listdir(__lowercase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' ,['accuracy'] ) def UpperCamelCase ( __lowercase : Any ,__lowercase : Union[str, Any] ): '''simple docstring''' inspect_metric(__lowercase ,__lowercase ) A_ : Optional[Any] = path + '.py' assert script_name in os.listdir(__lowercase ) assert "__pycache__" not in os.listdir(__lowercase ) @pytest.mark.parametrize( 'path, config_name, expected_splits' ,[ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] ,) def UpperCamelCase ( __lowercase : List[str] ,__lowercase : Dict ,__lowercase : Dict ): '''simple docstring''' A_ : List[Any] = get_dataset_config_info(__lowercase ,config_name=__lowercase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' ,[ ('paws', None, ValueError), ] ,) def UpperCamelCase ( __lowercase : Dict ,__lowercase : List[Any] ,__lowercase : int ): '''simple docstring''' with pytest.raises(__lowercase ): get_dataset_config_info(__lowercase ,config_name=__lowercase ) @pytest.mark.parametrize( 'path, expected' ,[ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] ,) def UpperCamelCase ( __lowercase : str ,__lowercase : str ): '''simple docstring''' A_ : Any = get_dataset_config_names(__lowercase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' ,[ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] ,) def UpperCamelCase ( __lowercase : Tuple ,__lowercase : str ,__lowercase : Optional[Any] ): '''simple docstring''' A_ : Optional[int] = get_dataset_infos(__lowercase ) assert list(infos.keys() ) == expected_configs A_ : Any = expected_configs[0] assert expected_config in infos A_ : Tuple = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' ,[ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] ,) def UpperCamelCase ( __lowercase : Any ,__lowercase : Optional[Any] ,__lowercase : Dict ): '''simple docstring''' A_ : Optional[Any] = get_dataset_infos(__lowercase ) assert expected_config in infos A_ : str = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' ,[ ('paws', None, ValueError), ] ,) def UpperCamelCase ( __lowercase : Tuple ,__lowercase : Tuple ,__lowercase : str ): '''simple docstring''' with pytest.raises(__lowercase ): get_dataset_split_names(__lowercase ,config_name=__lowercase )
558
1
import sys A : Any = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def lowercase_ ( _A : Union[str, Any] = N ): """simple docstring""" lowerCamelCase__ : str = -sys.maxsize - 1 for i in range(len(_A ) - 12 ): lowerCamelCase__ : Optional[int] = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: lowerCamelCase__ : Tuple = product return largest_product if __name__ == "__main__": print(f'{solution() = }')
704
from __future__ import annotations def lowercase_ ( _A : str , _A : list[str] | None = None , _A : dict[str, float] | None = None , _A : bool = False , ): """simple docstring""" lowerCamelCase__ : Tuple = cipher_alphabet or [chr(_A ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) lowerCamelCase__ : Dict = { "a": 0.08_497, "b": 0.01_492, "c": 0.02_202, "d": 0.04_253, "e": 0.11_162, "f": 0.02_228, "g": 0.02_015, "h": 0.06_094, "i": 0.07_546, "j": 0.00_153, "k": 0.01_292, "l": 0.04_025, "m": 0.02_406, "n": 0.06_749, "o": 0.07_507, "p": 0.01_929, "q": 0.00_095, "r": 0.07_587, "s": 0.06_327, "t": 0.09_356, "u": 0.02_758, "v": 0.00_978, "w": 0.02_560, "x": 0.00_150, "y": 0.01_994, "z": 0.00_077, } else: # Custom frequencies dictionary lowerCamelCase__ : Optional[int] = frequencies_dict if not case_sensitive: lowerCamelCase__ : str = ciphertext.lower() # Chi squared statistic values lowerCamelCase__ : dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(_A ) ): lowerCamelCase__ : Optional[Any] = "" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet lowerCamelCase__ : Dict = (alphabet_letters.index(letter.lower() ) - shift) % len( _A ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter lowerCamelCase__ : str = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: lowerCamelCase__ : List[str] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message lowerCamelCase__ : List[str] = decrypted_with_shift.lower().count(_A ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCamelCase__ : List[Any] = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCamelCase__ : str = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message lowerCamelCase__ : Any = decrypted_with_shift.count(_A ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCamelCase__ : str = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCamelCase__ : int = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary lowerCamelCase__ : Optional[int] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(_A : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] lowerCamelCase__ : int = min( _A , key=_A , ) # Get all the data from the most likely cipher (key, decoded message) ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : int = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
5
0
def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Dict = 0 for i in range(1 , 1001 ): total += i**i return str(_lowercase )[-10:] if __name__ == "__main__": print(solution())
30
'''simple docstring''' import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser( description=( """Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""roberta""", choices=["""roberta""", """gpt2"""]) parser.add_argument("""--model_name""", default="""roberta-large""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_roberta_048131723.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") _UpperCAmelCase : int = parser.parse_args() if args.model_type == "roberta": _UpperCAmelCase : Union[str, Any] = RobertaForMaskedLM.from_pretrained(args.model_name) _UpperCAmelCase : int = """roberta""" elif args.model_type == "gpt2": _UpperCAmelCase : Optional[int] = GPTaLMHeadModel.from_pretrained(args.model_name) _UpperCAmelCase : Optional[int] = """transformer""" _UpperCAmelCase : Tuple = model.state_dict() _UpperCAmelCase : int = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: _UpperCAmelCase : Optional[Any] = state_dict[f"""{prefix}.{param_name}"""] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: _UpperCAmelCase : Tuple = f"""{prefix}.embeddings.{w}.weight""" _UpperCAmelCase : Optional[Any] = state_dict[param_name] for w in ["weight", "bias"]: _UpperCAmelCase : Union[str, Any] = f"""{prefix}.embeddings.LayerNorm.{w}""" _UpperCAmelCase : str = state_dict[param_name] # Transformer Blocks # _UpperCAmelCase : Dict = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: _UpperCAmelCase : str = state_dict[ f"""{prefix}.h.{teacher_idx}.{layer}.{w}""" ] _UpperCAmelCase : Any = state_dict[f"""{prefix}.h.{teacher_idx}.attn.bias"""] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: _UpperCAmelCase : Optional[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}""" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: _UpperCAmelCase : Dict = state_dict[f"""{layer}"""] if args.vocab_transform: for w in ["weight", "bias"]: _UpperCAmelCase : int = state_dict[f"""lm_head.dense.{w}"""] _UpperCAmelCase : int = state_dict[f"""lm_head.layer_norm.{w}"""] elif args.model_type == "gpt2": for w in ["weight", "bias"]: _UpperCAmelCase : List[str] = state_dict[f"""{prefix}.ln_f.{w}"""] _UpperCAmelCase : Any = state_dict["""lm_head.weight"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
683
0
import math def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : int = [True] * n __snake_case : Optional[int] = False __snake_case : Dict = False __snake_case : List[Any] = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): __snake_case : Optional[Any] = i * 2 while index < n: __snake_case : Union[str, Any] = False __snake_case : Tuple = index + i __snake_case : str = [2] for i in range(3 , SCREAMING_SNAKE_CASE_ , 2 ): if is_prime[i]: primes.append(SCREAMING_SNAKE_CASE_ ) return primes def lowerCAmelCase_ ( __lowerCamelCase = 9_9_9_9_6_6_6_6_3_3_3_3 ): __snake_case : Dict = math.floor(math.sqrt(SCREAMING_SNAKE_CASE_ ) ) + 1_0_0 __snake_case : Any = prime_sieve(SCREAMING_SNAKE_CASE_ ) __snake_case : int = 0 __snake_case : List[Any] = 0 __snake_case : Tuple = primes[prime_index] while (last_prime**2) <= limit: __snake_case : str = primes[prime_index + 1] __snake_case : Union[str, Any] = last_prime**2 __snake_case : Any = next_prime**2 # Get numbers divisible by lps(current) __snake_case : Union[str, Any] = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) __snake_case : str = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps __snake_case : str = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair __snake_case : int = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
703
def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) __snake_case : Dict = str(bin(__lowerCamelCase ) ) binary_number += "0" * shift_amount return binary_number def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) __snake_case : List[str] = str(bin(__lowerCamelCase ) )[2:] if shift_amount >= len(__lowerCamelCase ): return "0b0" __snake_case : Union[str, Any] = binary_number[: len(__lowerCamelCase ) - shift_amount] return "0b" + shifted_binary_number def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): if number >= 0: # Get binary representation of positive number __snake_case : Optional[int] = "0" + str(bin(__lowerCamelCase ) ).strip("-" )[2:] else: # Get binary (2's complement) representation of negative number __snake_case : Tuple = len(bin(__lowerCamelCase )[3:] ) # Find 2's complement of number __snake_case : Any = bin(abs(__lowerCamelCase ) - (1 << binary_number_length) )[3:] __snake_case : Optional[Any] = ( "1" + "0" * (binary_number_length - len(__lowerCamelCase )) + binary_number ) if shift_amount >= len(__lowerCamelCase ): return "0b" + binary_number[0] * len(__lowerCamelCase ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__lowerCamelCase ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
203
0
def A__( __lowerCAmelCase ): return "".join(chr(ord(__lowerCAmelCase ) - 32 ) if 'a' <= char <= 'z' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
304
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _lowerCamelCase ( lowercase : Any ) -> List[str]: return getitem, k def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Any: return setitem, k, v def _lowerCamelCase ( lowercase : int ) -> Union[str, Any]: return delitem, k def _lowerCamelCase ( lowercase : Tuple , lowercase : Dict , *lowercase : Union[str, Any] ) -> int: try: return fun(lowercase , *lowercase ), None except Exception as e: return None, e lowerCAmelCase_ : Optional[Any] = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) lowerCAmelCase_ : Optional[int] = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] lowerCAmelCase_ : int = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] lowerCAmelCase_ : List[Any] = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def _lowerCamelCase ( lowercase : Optional[int] ) -> Optional[int]: _a = HashMap(initial_block_size=4 ) _a = {} for _, (fun, *args) in enumerate(lowercase ): _a , _a = _run_operation(lowercase , lowercase , *lowercase ) _a , _a = _run_operation(lowercase , lowercase , *lowercase ) assert my_res == py_res assert str(lowercase ) == str(lowercase ) assert set(lowercase ) == set(lowercase ) assert len(lowercase ) == len(lowercase ) assert set(my.items() ) == set(py.items() ) def _lowerCamelCase ( ) -> str: def is_public(lowercase : str ) -> bool: return not name.startswith("_" ) _a = {name for name in dir({} ) if is_public(lowercase )} _a = {name for name in dir(HashMap() ) if is_public(lowercase )} assert dict_public_names > hash_public_names
692
0
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __magic_name__ = [ '''cross_validation.py''', '''gradient_accumulation.py''', '''local_sgd.py''', '''multi_process_metrics.py''', '''memory.py''', '''automatic_gradient_accumulation.py''', '''fsdp_with_peak_mem_tracking.py''', '''deepspeed_with_config_support.py''', '''megatron_lm_gpt_pretraining.py''', ] class a__ ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self :str , lowercase__ :str , lowercase__ :bool , lowercase__ :str = None , lowercase__ :list = None ): lowercase = None lowercase = os.path.abspath(os.path.join('examples' , 'by_feature' ) ) lowercase = os.path.abspath('examples' ) for item in os.listdir(lowercase__ ): if item not in EXCLUDE_EXAMPLES: lowercase = os.path.join(lowercase__ , lowercase__ ) if os.path.isfile(lowercase__ ) and ".py" in item_path: with self.subTest( tested_script=lowercase__ , feature_script=lowercase__ , tested_section='main()' if parser_only else 'training_function()' , ): lowercase = compare_against_test( os.path.join(lowercase__ , lowercase__ ) , lowercase__ , lowercase__ , lowercase__ ) lowercase = '\n'.join(lowercase__ ) if special_strings is not None: for string in special_strings: lowercase = diff.replace(lowercase__ , '' ) self.assertEqual(lowercase__ , '' ) def __UpperCAmelCase ( self :str ): self.one_complete_example('complete_nlp_example.py' , lowercase__ ) self.one_complete_example('complete_nlp_example.py' , lowercase__ ) def __UpperCAmelCase ( self :List[str] ): lowercase = os.path.abspath(os.path.join('examples' , 'cv_example.py' ) ) lowercase = [ ' ' * 16 + '{\n\n', ' ' * 20 + '"accuracy": eval_metric["accuracy"],\n\n', ' ' * 20 + '"f1": eval_metric["f1"],\n\n', ' ' * 20 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n', ' ' * 20 + '"epoch": epoch,\n\n', ' ' * 16 + '},\n\n', ' ' * 16 + 'step=epoch,\n', ' ' * 12, ' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n', ] self.one_complete_example('complete_cv_example.py' , lowercase__ , lowercase__ , lowercase__ ) self.one_complete_example('complete_cv_example.py' , lowercase__ , lowercase__ , lowercase__ ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class a__ ( _snake_case ): """simple docstring""" A__ : str = False @classmethod def __UpperCAmelCase ( cls :str ): super().setUpClass() lowercase = tempfile.mkdtemp() lowercase = os.path.join(cls._tmpdir , 'default_config.yml' ) write_basic_config(save_location=cls.configPath ) lowercase = ['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def __UpperCAmelCase ( cls :str ): super().tearDownClass() shutil.rmtree(cls._tmpdir ) def __UpperCAmelCase ( self :Dict ): lowercase = F""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'epoch_0' ) ) ) def __UpperCAmelCase ( self :int ): lowercase = F""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() lowercase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'step_2' ) ) ) def __UpperCAmelCase ( self :Any ): lowercase = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )} """.split() lowercase = run_command(self._launch_args + testargs , return_stdout=lowercase__ ) self.assertNotIn('epoch 0:' , lowercase__ ) self.assertIn('epoch 1:' , lowercase__ ) def __UpperCAmelCase ( self :Tuple ): lowercase = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )} """.split() lowercase = run_command(self._launch_args + testargs , return_stdout=lowercase__ ) if torch.cuda.is_available(): lowercase = torch.cuda.device_count() else: lowercase = 1 if num_processes > 1: self.assertNotIn('epoch 0:' , lowercase__ ) self.assertIn('epoch 1:' , lowercase__ ) else: self.assertIn('epoch 0:' , lowercase__ ) self.assertIn('epoch 1:' , lowercase__ ) @slow def __UpperCAmelCase ( self :Tuple ): lowercase = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split() with mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '0'} ): lowercase = run_command(self._launch_args + testargs , return_stdout=lowercase__ ) lowercase = re.findall('({.+})' , lowercase__ ) lowercase = [r for r in results if 'accuracy' in r][-1] lowercase = ast.literal_eval(lowercase__ ) self.assertGreaterEqual(results['accuracy'] , 0.75 ) def __UpperCAmelCase ( self :int ): lowercase = ['examples/by_feature/multi_process_metrics.py'] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def __UpperCAmelCase ( self :Tuple ): with tempfile.TemporaryDirectory() as tmpdir: lowercase = F""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(lowercase__ , 'tracking' ) ) ) def __UpperCAmelCase ( self :Tuple ): lowercase = ['examples/by_feature/gradient_accumulation.py'] run_command(self._launch_args + testargs ) def __UpperCAmelCase ( self :Optional[Any] ): lowercase = ['examples/by_feature/local_sgd.py'] run_command(self._launch_args + testargs )
701
from collections import deque from math import floor from random import random from time import time class a__ : """simple docstring""" def __init__( self :Dict ): lowercase = {} def __UpperCAmelCase ( self :Dict , lowercase__ :str , lowercase__ :Optional[Any] , lowercase__ :int=1 ): if self.graph.get(lowercase__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: lowercase = [[w, v]] if not self.graph.get(lowercase__ ): lowercase = [] def __UpperCAmelCase ( self :List[str] ): return list(self.graph ) def __UpperCAmelCase ( self :Optional[Any] , lowercase__ :Any , lowercase__ :Dict ): if self.graph.get(lowercase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowercase__ ) def __UpperCAmelCase ( self :str , lowercase__ :Optional[Any]=-2 , lowercase__ :Any=-1 ): if s == d: return [] lowercase = [] lowercase = [] if s == -2: lowercase = list(self.graph )[0] stack.append(lowercase__ ) visited.append(lowercase__ ) lowercase = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowercase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowercase = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowercase__ ) != 0: lowercase = stack[len(lowercase__ ) - 1] else: lowercase = ss # check if se have reached the starting point if len(lowercase__ ) == 0: return visited def __UpperCAmelCase ( self :Optional[int] , lowercase__ :List[Any]=-1 ): if c == -1: lowercase = floor(random() * 1_0000 ) + 10 for i in range(lowercase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowercase = floor(random() * c ) + 1 if n != i: self.add_pair(lowercase__ , lowercase__ , 1 ) def __UpperCAmelCase ( self :int , lowercase__ :List[str]=-2 ): lowercase = deque() lowercase = [] if s == -2: lowercase = list(self.graph )[0] d.append(lowercase__ ) visited.append(lowercase__ ) while d: lowercase = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __UpperCAmelCase ( self :int , lowercase__ :int ): lowercase = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def __UpperCAmelCase ( self :List[Any] , lowercase__ :Optional[int] ): return len(self.graph[u] ) def __UpperCAmelCase ( self :str , lowercase__ :Optional[Any]=-2 ): lowercase = [] lowercase = [] if s == -2: lowercase = list(self.graph )[0] stack.append(lowercase__ ) visited.append(lowercase__ ) lowercase = s lowercase = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowercase__ ) != 0: lowercase = stack[len(lowercase__ ) - 1] else: lowercase = ss # check if se have reached the starting point if len(lowercase__ ) == 0: return sorted_nodes def __UpperCAmelCase ( self :int ): lowercase = [] lowercase = [] lowercase = list(self.graph )[0] stack.append(lowercase__ ) visited.append(lowercase__ ) lowercase = -2 lowercase = [] lowercase = s lowercase = False lowercase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase = len(lowercase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase = True if len(lowercase__ ) != 0: lowercase = stack[len(lowercase__ ) - 1] else: lowercase = False indirect_parents.append(lowercase__ ) lowercase = s lowercase = ss # check if se have reached the starting point if len(lowercase__ ) == 0: return list(lowercase__ ) def __UpperCAmelCase ( self :List[str] ): lowercase = [] lowercase = [] lowercase = list(self.graph )[0] stack.append(lowercase__ ) visited.append(lowercase__ ) lowercase = -2 lowercase = [] lowercase = s lowercase = False lowercase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase = len(lowercase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase = True if len(lowercase__ ) != 0: lowercase = stack[len(lowercase__ ) - 1] else: lowercase = False indirect_parents.append(lowercase__ ) lowercase = s lowercase = ss # check if se have reached the starting point if len(lowercase__ ) == 0: return False def __UpperCAmelCase ( self :int , lowercase__ :Tuple=-2 , lowercase__ :Any=-1 ): lowercase = time() self.dfs(lowercase__ , lowercase__ ) lowercase = time() return end - begin def __UpperCAmelCase ( self :str , lowercase__ :List[Any]=-2 ): lowercase = time() self.bfs(lowercase__ ) lowercase = time() return end - begin class a__ : """simple docstring""" def __init__( self :Optional[int] ): lowercase = {} def __UpperCAmelCase ( self :Union[str, Any] , lowercase__ :Tuple , lowercase__ :Tuple , lowercase__ :str=1 ): # check if the u exists if self.graph.get(lowercase__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist lowercase = [[w, v]] # add the other way if self.graph.get(lowercase__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist lowercase = [[w, u]] def __UpperCAmelCase ( self :Tuple , lowercase__ :Any , lowercase__ :List[Any] ): if self.graph.get(lowercase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowercase__ ) # the other way round if self.graph.get(lowercase__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowercase__ ) def __UpperCAmelCase ( self :List[str] , lowercase__ :Union[str, Any]=-2 , lowercase__ :List[str]=-1 ): if s == d: return [] lowercase = [] lowercase = [] if s == -2: lowercase = list(self.graph )[0] stack.append(lowercase__ ) visited.append(lowercase__ ) lowercase = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowercase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowercase = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowercase__ ) != 0: lowercase = stack[len(lowercase__ ) - 1] else: lowercase = ss # check if se have reached the starting point if len(lowercase__ ) == 0: return visited def __UpperCAmelCase ( self :Optional[Any] , lowercase__ :Union[str, Any]=-1 ): if c == -1: lowercase = floor(random() * 1_0000 ) + 10 for i in range(lowercase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowercase = floor(random() * c ) + 1 if n != i: self.add_pair(lowercase__ , lowercase__ , 1 ) def __UpperCAmelCase ( self :Optional[Any] , lowercase__ :str=-2 ): lowercase = deque() lowercase = [] if s == -2: lowercase = list(self.graph )[0] d.append(lowercase__ ) visited.append(lowercase__ ) while d: lowercase = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __UpperCAmelCase ( self :List[str] , lowercase__ :Optional[int] ): return len(self.graph[u] ) def __UpperCAmelCase ( self :List[Any] ): lowercase = [] lowercase = [] lowercase = list(self.graph )[0] stack.append(lowercase__ ) visited.append(lowercase__ ) lowercase = -2 lowercase = [] lowercase = s lowercase = False lowercase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase = len(lowercase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase = True if len(lowercase__ ) != 0: lowercase = stack[len(lowercase__ ) - 1] else: lowercase = False indirect_parents.append(lowercase__ ) lowercase = s lowercase = ss # check if se have reached the starting point if len(lowercase__ ) == 0: return list(lowercase__ ) def __UpperCAmelCase ( self :Any ): lowercase = [] lowercase = [] lowercase = list(self.graph )[0] stack.append(lowercase__ ) visited.append(lowercase__ ) lowercase = -2 lowercase = [] lowercase = s lowercase = False lowercase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase = len(lowercase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase = True if len(lowercase__ ) != 0: lowercase = stack[len(lowercase__ ) - 1] else: lowercase = False indirect_parents.append(lowercase__ ) lowercase = s lowercase = ss # check if se have reached the starting point if len(lowercase__ ) == 0: return False def __UpperCAmelCase ( self :str ): return list(self.graph ) def __UpperCAmelCase ( self :List[str] , lowercase__ :Tuple=-2 , lowercase__ :Union[str, Any]=-1 ): lowercase = time() self.dfs(lowercase__ , lowercase__ ) lowercase = time() return end - begin def __UpperCAmelCase ( self :Any , lowercase__ :Any=-2 ): lowercase = time() self.bfs(lowercase__ ) lowercase = time() return end - begin
314
0