code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm SCREAMING_SNAKE_CASE: Any = logging.get_logger(__name__) @dataclass class lowercase_ (SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ =[ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self : Any , **snake_case__ : List[Any] ): """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: SCREAMING_SNAKE_CASE_ = deprecated_arg[3:] setattr(self , snake_case__ , not kwargs.pop(snake_case__ ) ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) SCREAMING_SNAKE_CASE_ = kwargs.pop('torchscript' , self.torchscript ) SCREAMING_SNAKE_CASE_ = kwargs.pop('torch_xla_tpu_print_metrics' , self.torch_xla_tpu_print_metrics ) SCREAMING_SNAKE_CASE_ = kwargs.pop('fp16_opt_level' , self.fpaa_opt_level ) super().__init__(**snake_case__ ) lowerCAmelCase__ =field(default=SCREAMING_SNAKE_CASE__ , metadata={"help": "Trace the models using torchscript"} ) lowerCAmelCase__ =field(default=SCREAMING_SNAKE_CASE__ , metadata={"help": "Print Xla/PyTorch tpu metrics"} ) lowerCAmelCase__ =field( default="O1" , metadata={ "help": ( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. " "See details at https://nvidia.github.io/apex/amp.html" ) } , ) @cached_property def __a ( self : Union[str, Any] ): """simple docstring""" requires_backends(self , ['torch'] ) logger.info('PyTorch: setting up devices' ) if not self.cuda: SCREAMING_SNAKE_CASE_ = torch.device('cpu' ) SCREAMING_SNAKE_CASE_ = 0 elif is_torch_tpu_available(): SCREAMING_SNAKE_CASE_ = xm.xla_device() SCREAMING_SNAKE_CASE_ = 0 else: SCREAMING_SNAKE_CASE_ = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) SCREAMING_SNAKE_CASE_ = torch.cuda.device_count() return device, n_gpu @property def __a ( self : Optional[Any] ): """simple docstring""" return is_torch_tpu_available() and self.tpu @property def __a ( self : Optional[Any] ): """simple docstring""" requires_backends(self , ['torch'] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def __a ( self : Tuple ): """simple docstring""" requires_backends(self , ['torch'] ) return self._setup_devices[0] @property def __a ( self : str ): """simple docstring""" requires_backends(self , ['torch'] ) return self._setup_devices[1] @property def __a ( self : Tuple ): """simple docstring""" return self.n_gpu > 0
360
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def _a ( lowerCAmelCase )-> float: return np.dot(lowerCAmelCase , lowerCAmelCase ) class lowercase_ : def __init__( self : int , *, snake_case__ : float = np.inf , snake_case__ : str = "linear" , snake_case__ : float = 0.0 , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = regularization SCREAMING_SNAKE_CASE_ = gamma if kernel == "linear": SCREAMING_SNAKE_CASE_ = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('gamma must be float or int' ) if not self.gamma > 0: raise ValueError('gamma must be > 0' ) SCREAMING_SNAKE_CASE_ = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: SCREAMING_SNAKE_CASE_ = f'''Unknown kernel: {kernel}''' raise ValueError(snake_case__ ) def __a ( self : Tuple , snake_case__ : ndarray , snake_case__ : ndarray ): """simple docstring""" return np.dot(snake_case__ , snake_case__ ) def __a ( self : int , snake_case__ : ndarray , snake_case__ : ndarray ): """simple docstring""" return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def __a ( self : int , snake_case__ : list[ndarray] , snake_case__ : ndarray ): """simple docstring""" SCREAMING_SNAKE_CASE_ = observations SCREAMING_SNAKE_CASE_ = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((SCREAMING_SNAKE_CASE_) , ) = np.shape(snake_case__ ) def to_minimize(snake_case__ : ndarray ) -> float: SCREAMING_SNAKE_CASE_ = 0 ((SCREAMING_SNAKE_CASE_) , ) = np.shape(snake_case__ ) for i in range(snake_case__ ): for j in range(snake_case__ ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(snake_case__ ) SCREAMING_SNAKE_CASE_ = LinearConstraint(snake_case__ , 0 , 0 ) SCREAMING_SNAKE_CASE_ = Bounds(0 , self.regularization ) SCREAMING_SNAKE_CASE_ = minimize( snake_case__ , np.ones(snake_case__ ) , bounds=snake_case__ , constraints=[ly_contraint] ).x SCREAMING_SNAKE_CASE_ = l_star # calculating mean offset of separation plane to points SCREAMING_SNAKE_CASE_ = 0 for i in range(snake_case__ ): for j in range(snake_case__ ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) SCREAMING_SNAKE_CASE_ = s / n def __a ( self : Any , snake_case__ : ndarray ): """simple docstring""" SCREAMING_SNAKE_CASE_ = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , snake_case__ ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
360
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Any = { '''Helsinki-NLP/opus-mt-en-de''': '''https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json''', # See all Marian models at https://huggingface.co/models?filter=marian } class lowercase_ ( __a ): _lowerCamelCase = '''marian''' _lowerCamelCase = ['''past_key_values'''] _lowerCamelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowercase_=58_101 , lowercase_=None , lowercase_=1_024 , lowercase_=12 , lowercase_=4_096 , lowercase_=16 , lowercase_=12 , lowercase_=4_096 , lowercase_=16 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_=True , lowercase_="gelu" , lowercase_=1_024 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=58_100 , lowercase_=False , lowercase_=58_100 , lowercase_=0 , lowercase_=0 , lowercase_=True , **lowercase_ , ): _snake_case : Union[str, Any] = vocab_size _snake_case : Optional[int] = decoder_vocab_size or vocab_size _snake_case : str = max_position_embeddings _snake_case : Union[str, Any] = d_model _snake_case : List[str] = encoder_ffn_dim _snake_case : Union[str, Any] = encoder_layers _snake_case : List[str] = encoder_attention_heads _snake_case : Tuple = decoder_ffn_dim _snake_case : Optional[Any] = decoder_layers _snake_case : Dict = decoder_attention_heads _snake_case : int = dropout _snake_case : Any = attention_dropout _snake_case : Any = activation_dropout _snake_case : int = activation_function _snake_case : List[str] = init_std _snake_case : List[str] = encoder_layerdrop _snake_case : Any = decoder_layerdrop _snake_case : List[Any] = use_cache _snake_case : List[Any] = encoder_layers _snake_case : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True _snake_case : str = share_encoder_decoder_embeddings super().__init__( pad_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , decoder_start_token_id=snake_case__ , forced_eos_token_id=snake_case__ , **snake_case__ , ) class lowercase_ ( __a ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def UpperCamelCase ( self ): if self.task in ["default", "seq2seq-lm"]: _snake_case : Dict = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _snake_case : Tuple = {0: "batch"} _snake_case : Union[str, Any] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: _snake_case : str = {0: "batch", 1: "decoder_sequence"} _snake_case : int = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(snake_case__ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. _snake_case : Union[str, Any] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _snake_case ,_snake_case : Tuple = self.num_layers for i in range(snake_case__ ): _snake_case : Any = {0: "batch", 2: "past_sequence + sequence"} _snake_case : Optional[Any] = {0: "batch", 2: "past_sequence + sequence"} else: _snake_case : Any = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def UpperCamelCase ( self ): if self.task in ["default", "seq2seq-lm"]: _snake_case : Optional[int] = super().outputs else: _snake_case : Optional[int] = super(snake_case__ , self ).outputs if self.use_past: _snake_case ,_snake_case : str = self.num_layers for i in range(snake_case__ ): _snake_case : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"} _snake_case : str = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def UpperCamelCase ( self , lowercase_ , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = False , lowercase_ = None , ): _snake_case : Dict = self._generate_dummy_inputs_for_encoder_and_decoder( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Generate decoder inputs _snake_case : Tuple = seq_length if not self.use_past else 1 _snake_case : Any = self._generate_dummy_inputs_for_encoder_and_decoder( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) _snake_case : List[Any] = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} _snake_case : Union[str, Any] = dict(**snake_case__ , **snake_case__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _snake_case ,_snake_case : Any = common_inputs["input_ids"].shape _snake_case : List[str] = common_inputs["decoder_input_ids"].shape[1] _snake_case ,_snake_case : Any = self.num_attention_heads _snake_case : Optional[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _snake_case : Union[str, Any] = decoder_seq_length + 3 _snake_case : Optional[int] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _snake_case : int = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(snake_case__ , snake_case__ )] , dim=1 ) _snake_case : int = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _snake_case ,_snake_case : Optional[Any] = self.num_layers _snake_case : Tuple = min(snake_case__ , snake_case__ ) _snake_case : Optional[Any] = max(snake_case__ , snake_case__ ) - min_num_layers _snake_case : Optional[int] = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(snake_case__ ): common_inputs["past_key_values"].append( ( torch.zeros(snake_case__ ), torch.zeros(snake_case__ ), torch.zeros(snake_case__ ), torch.zeros(snake_case__ ), ) ) # TODO: test this. _snake_case : List[str] = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(snake_case__ , snake_case__ ): common_inputs["past_key_values"].append((torch.zeros(snake_case__ ), torch.zeros(snake_case__ )) ) return common_inputs def UpperCamelCase ( self , lowercase_ , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = False , lowercase_ = None , ): _snake_case : Optional[int] = self._generate_dummy_inputs_for_encoder_and_decoder( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _snake_case ,_snake_case : Any = common_inputs["input_ids"].shape # Not using the same length for past_key_values _snake_case : Any = seqlen + 2 _snake_case ,_snake_case : str = self.num_layers _snake_case ,_snake_case : List[Any] = self.num_attention_heads _snake_case : Dict = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _snake_case : Optional[int] = common_inputs["attention_mask"].dtype _snake_case : List[Any] = torch.cat( [common_inputs["attention_mask"], torch.ones(snake_case__ , snake_case__ , dtype=snake_case__ )] , dim=1 ) _snake_case : List[str] = [ (torch.zeros(snake_case__ ), torch.zeros(snake_case__ )) for _ in range(snake_case__ ) ] return common_inputs def UpperCamelCase ( self , lowercase_ , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = False , lowercase_ = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _snake_case : Optional[Any] = compute_effective_axis_dimension( snake_case__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _snake_case : List[Any] = tokenizer.num_special_tokens_to_add(snake_case__ ) _snake_case : Dict = compute_effective_axis_dimension( snake_case__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case__ ) # Generate dummy inputs according to compute batch and sequence _snake_case : Optional[Any] = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size _snake_case : Union[str, Any] = dict(tokenizer(snake_case__ , return_tensors=snake_case__ ) ) return common_inputs def UpperCamelCase ( self , lowercase_ , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = False , lowercase_ = None , ): if self.task in ["default", "seq2seq-lm"]: _snake_case : int = self._generate_dummy_inputs_for_default_and_seqaseq_lm( snake_case__ , batch_size=snake_case__ , seq_length=snake_case__ , is_pair=snake_case__ , framework=snake_case__ ) else: _snake_case : str = self._generate_dummy_inputs_for_causal_lm( snake_case__ , batch_size=snake_case__ , seq_length=snake_case__ , is_pair=snake_case__ , framework=snake_case__ ) return common_inputs def UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): if self.task in ["default", "seq2seq-lm"]: _snake_case : int = super()._flatten_past_key_values_(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) else: _snake_case : Optional[int] = super(snake_case__ , self )._flatten_past_key_values_( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) @property def UpperCamelCase ( self ): return 1e-4
706
from string import ascii_uppercase __SCREAMING_SNAKE_CASE : Any = {char: i for i, char in enumerate(ascii_uppercase)} __SCREAMING_SNAKE_CASE : str = dict(enumerate(ascii_uppercase)) def snake_case (__lowercase , __lowercase ) -> str: '''simple docstring''' _snake_case : str = len(__lowercase ) _snake_case : List[Any] = 0 while True: if x == i: _snake_case : Tuple = 0 if len(__lowercase ) == len(__lowercase ): break key += key[i] i += 1 return key def snake_case (__lowercase , __lowercase ) -> str: '''simple docstring''' _snake_case : Dict = "" _snake_case : Optional[Any] = 0 for letter in message: if letter == " ": cipher_text += " " else: _snake_case : List[str] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def snake_case (__lowercase , __lowercase ) -> str: '''simple docstring''' _snake_case : Optional[Any] = "" _snake_case : Optional[int] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: _snake_case : Dict = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def snake_case () -> None: '''simple docstring''' _snake_case : Any = "THE GERMAN ATTACK" _snake_case : Optional[Any] = "SECRET" _snake_case : List[Any] = generate_key(__lowercase , __lowercase ) _snake_case : int = cipher_text(__lowercase , __lowercase ) print(F"""Encrypted Text = {s}""" ) print(F"""Original Text = {original_text(__lowercase , __lowercase )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
580
0
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Any = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class _UpperCamelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Any , _lowerCamelCase : Tuple=None , _lowerCamelCase : Union[str, Any]=None , *_lowerCamelCase : str , **_lowerCamelCase : Dict ): '''simple docstring''' super().__init__(*lowercase_ , **lowercase_ ) if config is None: assert isinstance(self.model , lowercase_ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F""" {self.model.__class__}""" ) __lowerCamelCase : Union[str, Any] = self.model.config else: __lowerCamelCase : Optional[int] = config __lowerCamelCase : str = data_args __lowerCamelCase : Optional[Any] = self.config.tgt_vocab_size if isinstance(self.config , lowercase_ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for""" """ padding..""" ) if self.args.label_smoothing == 0: __lowerCamelCase : Optional[int] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss __lowerCamelCase : int = label_smoothed_nll_loss def _snake_case ( self : Optional[Any] , _lowerCamelCase : int ): '''simple docstring''' if self.optimizer is None: __lowerCamelCase : Tuple = ['''bias''', '''LayerNorm.weight'''] __lowerCamelCase : Dict = [ { '''params''': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], '''weight_decay''': self.args.weight_decay, }, { '''params''': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] __lowerCamelCase : Any = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: __lowerCamelCase : List[str] = Adafactor __lowerCamelCase : Optional[int] = {'''scale_parameter''': False, '''relative_step''': False} else: __lowerCamelCase : Tuple = AdamW __lowerCamelCase : Optional[Any] = { '''betas''': (self.args.adam_betaa, self.args.adam_betaa), '''eps''': self.args.adam_epsilon, } __lowerCamelCase : int = self.args.learning_rate if self.sharded_ddp: __lowerCamelCase : Union[str, Any] = OSS( params=lowercase_ , optim=lowercase_ , **lowercase_ , ) else: __lowerCamelCase : Any = optimizer_cls(lowercase_ , **lowercase_ ) if self.lr_scheduler is None: __lowerCamelCase : int = self._get_lr_scheduler(lowercase_ ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def _snake_case ( self : Optional[Any] , _lowerCamelCase : List[Any] ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": __lowerCamelCase : Tuple = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": __lowerCamelCase : Dict = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: __lowerCamelCase : List[Any] = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=lowercase_ ) return scheduler def _snake_case ( self : List[str] ): '''simple docstring''' if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def _snake_case ( self : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : List[str] ): '''simple docstring''' if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token __lowerCamelCase : Optional[int] = model(**lowercase_ , use_cache=lowercase_ )[0] __lowerCamelCase : str = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models __lowerCamelCase : str = model(**lowercase_ , labels=lowercase_ , use_cache=lowercase_ )[:2] else: # compute label smoothed loss __lowerCamelCase : Optional[int] = model(**lowercase_ , use_cache=lowercase_ )[0] __lowerCamelCase : List[str] = torch.nn.functional.log_softmax(lowercase_ , dim=-1 ) __lowerCamelCase : Optional[Any] = self.loss_fn(lowercase_ , lowercase_ , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def _snake_case ( self : str , _lowerCamelCase : List[str] , _lowerCamelCase : List[Any] ): '''simple docstring''' __lowerCamelCase : Optional[int] = inputs.pop("""labels""" ) __lowerCamelCase : List[str] = self._compute_loss(lowercase_ , lowercase_ , lowercase_ ) return loss def _snake_case ( self : Dict , _lowerCamelCase : nn.Module , _lowerCamelCase : Dict[str, Union[torch.Tensor, Any]] , _lowerCamelCase : bool , _lowerCamelCase : Optional[List[str]] = None , ): '''simple docstring''' __lowerCamelCase : Optional[Any] = self._prepare_inputs(lowercase_ ) __lowerCamelCase : Tuple = { '''max_length''': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, '''num_beams''': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: __lowerCamelCase : Optional[int] = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **lowercase_ , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: __lowerCamelCase : Optional[Any] = self._pad_tensors_to_max_len(lowercase_ , gen_kwargs["""max_length"""] ) __lowerCamelCase : Tuple = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data __lowerCamelCase : Tuple = self._compute_loss(lowercase_ , lowercase_ , lowercase_ ) __lowerCamelCase : int = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) __lowerCamelCase : Dict = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: __lowerCamelCase : Any = self._pad_tensors_to_max_len(lowercase_ , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def _snake_case ( self : List[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[int] ): '''simple docstring''' __lowerCamelCase : Optional[int] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" F""" padded to `max_length`={max_length}""" ) __lowerCamelCase : Optional[Any] = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) __lowerCamelCase : List[Any] = tensor return padded_tensor
519
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : Optional[Any] = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Tuple = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Tuple = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Tuple = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys UpperCAmelCase_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
512
0
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class a ( unittest.TestCase ): def UpperCamelCase ( self : List[Any] ) -> Dict: lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = BlipImageProcessor() lowerCamelCase_ = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) lowerCamelCase_ = BlipaProcessor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self : List[Any] , **__SCREAMING_SNAKE_CASE : int ) -> Dict: return AutoProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ).tokenizer def UpperCamelCase ( self : Union[str, Any] , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ).image_processor def UpperCamelCase ( self : str ) -> str: shutil.rmtree(self.tmpdirname ) def UpperCamelCase ( self : Any ) -> Any: lowerCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase_ = [Image.fromarray(np.moveaxis(__SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase ( self : Any ) -> Optional[Any]: lowerCamelCase_ = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCamelCase_ = self.get_image_processor(do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) lowerCamelCase_ = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = image_processor(__SCREAMING_SNAKE_CASE , return_tensors='np' ) lowerCamelCase_ = processor(images=__SCREAMING_SNAKE_CASE , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCamelCase ( self : int ) -> Tuple: lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = 'lower newer' lowerCamelCase_ = processor(text=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = tokenizer(__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase ( self : List[str] ) -> Optional[Any]: lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = 'lower newer' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(__SCREAMING_SNAKE_CASE ): processor() def UpperCamelCase ( self : Dict ) -> int: lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ = processor.batch_decode(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Optional[Any] ) -> str: lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = 'lower newer' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
137
"""simple docstring""" import math def lowerCamelCase__ ( _lowerCamelCase : int ) -> bool: assert isinstance(_lowerCamelCase , _lowerCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False lowerCamelCase_ = range(3 , int(math.sqrt(_lowerCamelCase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def lowerCamelCase__ ( _lowerCamelCase : List[Any] , _lowerCamelCase : str=1 , **_lowerCamelCase : int ) -> str: lowerCamelCase_ = factor * value lowerCamelCase_ = value while not is_prime(_lowerCamelCase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_lowerCamelCase ) return value
137
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _a : Tuple = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _a : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
213
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 1000 ) -> int: _lowerCAmelCase : Optional[int] = 2**power _lowerCAmelCase : str = str(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = list(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = 0 for i in list_num: sum_of_num += int(_lowerCamelCase ) return sum_of_num if __name__ == "__main__": _a : str = int(input('Enter the power of 2: ').strip()) print('2 ^ ', power, ' = ', 2**power) _a : Tuple = solution(power) print('Sum of the digits is: ', result)
213
1
from math import isclose, sqrt def __UpperCAmelCase ( __A , __A , __A ) -> tuple[float, float, float]: '''simple docstring''' UpperCAmelCase__ = point_y / 4 / point_x UpperCAmelCase__ = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) UpperCAmelCase__ = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) UpperCAmelCase__ = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 UpperCAmelCase__ = outgoing_gradient**2 + 4 UpperCAmelCase__ = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) UpperCAmelCase__ = (point_y - outgoing_gradient * point_x) ** 2 - 1_0_0 UpperCAmelCase__ = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) UpperCAmelCase__ = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point UpperCAmelCase__ = x_minus if isclose(__A , __A ) else x_plus UpperCAmelCase__ = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def __UpperCAmelCase ( __A = 1.4 , __A = -9.6 ) -> int: '''simple docstring''' UpperCAmelCase__ = 0 UpperCAmelCase__ = first_x_coord UpperCAmelCase__ = first_y_coord UpperCAmelCase__ = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = next_point(__A , __A , __A ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f"{solution() = }")
717
import csv import tweepy # Twitter API credentials A = "" A = "" A = "" A = "" def __UpperCAmelCase ( __A ) -> None: '''simple docstring''' UpperCAmelCase__ = tweepy.OAuthHandler(__A , __A ) auth.set_access_token(__A , __A ) UpperCAmelCase__ = tweepy.API(__A ) # initialize a list to hold all the tweepy Tweets UpperCAmelCase__ = [] # make initial request for most recent tweets (200 is the maximum allowed count) UpperCAmelCase__ = api.user_timeline(screen_name=__A , count=2_0_0 ) # save most recent tweets alltweets.extend(__A ) # save the id of the oldest tweet less one UpperCAmelCase__ = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(__A ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates UpperCAmelCase__ = api.user_timeline( screen_name=__A , count=2_0_0 , max_id=__A ) # save most recent tweets alltweets.extend(__A ) # update the id of the oldest tweet less one UpperCAmelCase__ = alltweets[-1].id - 1 print(F"""...{len(__A )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv UpperCAmelCase__ = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , "w" ) as f: UpperCAmelCase__ = csv.writer(__A ) writer.writerow(["id", "created_at", "text"] ) writer.writerows(__A ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("FirePing32")
277
0
__A : Tuple = {str(digit): digit**5 for digit in range(1_0)} def __a ( A__ : int ): return sum(DIGITS_FIFTH_POWER[digit] for digit in str(A__ ) ) def __a ( ): return sum( number for number in range(1000 , 1000000 ) if number == digits_fifth_powers_sum(A__ ) ) if __name__ == "__main__": print(solution())
16
from numpy import exp, pi, sqrt def UpperCAmelCase ( a_ , a_ = 0.0 , a_ = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
0
def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = len(lowerCamelCase ) for i in range(lowerCamelCase ): for j in range(i + 1 , lowerCamelCase ): if numbers[j] < numbers[i]: __lowercase , __lowercase = numbers[j], numbers[i] return numbers if __name__ == "__main__": __UpperCamelCase : Optional[int] = input("""Enter numbers separated by a comma:\n""").strip() __UpperCamelCase : int = [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
717
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [] def parse_line(lowerCamelCase ): for line in fp: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(lowerCamelCase ) > 0: __lowercase = """\n""".join(lowerCamelCase ) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets ): selected_warnings.add(lowerCamelCase ) buffer.clear() continue else: __lowercase = line.strip() buffer.append(lowerCamelCase ) if from_gh: for filename in os.listdir(lowerCamelCase ): __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) else: try: with zipfile.ZipFile(lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with z.open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [os.path.join(lowerCamelCase , lowerCamelCase ) for p in os.listdir(lowerCamelCase ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowerCamelCase , lowerCamelCase ) ) return selected_warnings if __name__ == "__main__": def snake_case ( lowerCamelCase ): '''simple docstring''' return values.split(""",""" ) __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) __UpperCamelCase : List[str] = parser.parse_args() __UpperCamelCase : Union[str, Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __UpperCamelCase : Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __UpperCamelCase : Union[str, Any] = extract_warnings(args.output_dir, args.targets) __UpperCamelCase : Any = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
53
0
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class _snake_case (__SCREAMING_SNAKE_CASE): __A : torch.FloatTensor __A : Optional[torch.FloatTensor] =None def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[int]=0.999 , _SCREAMING_SNAKE_CASE : List[Any]="cosine" , ) -> Union[str, Any]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Union[str, Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) UpperCAmelCase_ : List[str] = [] for i in range(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Tuple = i / num_diffusion_timesteps UpperCAmelCase_ : int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class _snake_case (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): @register_to_config def __init__( self ,_snake_case = 10_00 ,_snake_case = "fixed_small_log" ,_snake_case = True ,_snake_case = 1.0 ,_snake_case = "epsilon" ,_snake_case = "squaredcos_cap_v2" ,): if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) UpperCAmelCase_ : Optional[Any] = betas_for_alpha_bar(_snake_case ) UpperCAmelCase_ : Union[str, Any] = 1.0 - self.betas UpperCAmelCase_ : int = torch.cumprod(self.alphas ,dim=0 ) UpperCAmelCase_ : List[str] = torch.tensor(1.0 ) # standard deviation of the initial noise distribution UpperCAmelCase_ : int = 1.0 # setable values UpperCAmelCase_ : Any = None UpperCAmelCase_ : Union[str, Any] = torch.from_numpy(np.arange(0 ,_snake_case )[::-1].copy() ) UpperCAmelCase_ : Optional[Any] = variance_type def UpperCamelCase__ ( self ,_snake_case ,_snake_case = None ): return sample def UpperCamelCase__ ( self ,_snake_case ,_snake_case = None ): UpperCAmelCase_ : Optional[Any] = num_inference_steps UpperCAmelCase_ : Optional[Any] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) UpperCAmelCase_ : Tuple = (np.arange(0 ,_snake_case ) * step_ratio).round()[::-1].copy().astype(np.intaa ) UpperCAmelCase_ : Tuple = torch.from_numpy(_snake_case ).to(_snake_case ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case=None ,_snake_case=None ,_snake_case=None ): if prev_timestep is None: UpperCAmelCase_ : Any = t - 1 UpperCAmelCase_ : Tuple = self.alphas_cumprod[t] UpperCAmelCase_ : List[str] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase_ : Tuple = 1 - alpha_prod_t UpperCAmelCase_ : Optional[Any] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase_ : Any = self.betas[t] else: UpperCAmelCase_ : Optional[int] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase_ : List[str] = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: UpperCAmelCase_ : Dict = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": UpperCAmelCase_ : int = torch.log(torch.clamp(_snake_case ,min=1E-20 ) ) UpperCAmelCase_ : List[str] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler UpperCAmelCase_ : Optional[Any] = variance.log() UpperCAmelCase_ : Union[str, Any] = beta.log() UpperCAmelCase_ : Dict = (predicted_variance + 1) / 2 UpperCAmelCase_ : List[str] = frac * max_log + (1 - frac) * min_log return variance def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case = None ,_snake_case=None ,_snake_case = True ,): UpperCAmelCase_ : int = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": UpperCAmelCase_ , UpperCAmelCase_ : Any = torch.split(_snake_case ,sample.shape[1] ,dim=1 ) else: UpperCAmelCase_ : List[Any] = None # 1. compute alphas, betas if prev_timestep is None: UpperCAmelCase_ : Optional[int] = t - 1 UpperCAmelCase_ : int = self.alphas_cumprod[t] UpperCAmelCase_ : Optional[int] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase_ : Dict = 1 - alpha_prod_t UpperCAmelCase_ : Dict = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase_ : List[str] = self.betas[t] UpperCAmelCase_ : int = self.alphas[t] else: UpperCAmelCase_ : Optional[int] = 1 - alpha_prod_t / alpha_prod_t_prev UpperCAmelCase_ : List[str] = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase_ : Tuple = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase_ : Optional[int] = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase_ : Dict = torch.clamp( _snake_case ,-self.config.clip_sample_range ,self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase_ : int = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t UpperCAmelCase_ : List[str] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase_ : List[str] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCAmelCase_ : Union[str, Any] = 0 if t > 0: UpperCAmelCase_ : Optional[Any] = randn_tensor( model_output.shape ,dtype=model_output.dtype ,generator=_snake_case ,device=model_output.device ) UpperCAmelCase_ : Any = self._get_variance( _snake_case ,predicted_variance=_snake_case ,prev_timestep=_snake_case ,) if self.variance_type == "fixed_small_log": UpperCAmelCase_ : Union[str, Any] = variance elif self.variance_type == "learned_range": UpperCAmelCase_ : List[str] = (0.5 * variance).exp() else: raise ValueError( f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' " for the UnCLIPScheduler." ) UpperCAmelCase_ : List[Any] = variance * variance_noise UpperCAmelCase_ : Tuple = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=_snake_case ,pred_original_sample=_snake_case ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ,): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples UpperCAmelCase_ : int = self.alphas_cumprod.to(device=original_samples.device ,dtype=original_samples.dtype ) UpperCAmelCase_ : str = timesteps.to(original_samples.device ) UpperCAmelCase_ : Dict = alphas_cumprod[timesteps] ** 0.5 UpperCAmelCase_ : str = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase_ : Dict = sqrt_alpha_prod.unsqueeze(-1 ) UpperCAmelCase_ : List[str] = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCAmelCase_ : Optional[int] = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase_ : Union[str, Any] = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) UpperCAmelCase_ : Optional[Any] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
71
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class lowerCamelCase : """simple docstring""" def __init__( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : Tuple=13 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Dict=True , __magic_name__ : Optional[int]=True , __magic_name__ : int=True , __magic_name__ : Optional[int]=True , __magic_name__ : Any=99 , __magic_name__ : Optional[Any]=64 , __magic_name__ : Union[str, Any]=32 , __magic_name__ : Dict=5 , __magic_name__ : str=4 , __magic_name__ : List[Any]=37 , __magic_name__ : List[str]="gelu" , __magic_name__ : int=0.1 , __magic_name__ : Any=0.1 , __magic_name__ : str=512 , __magic_name__ : Dict=16 , __magic_name__ : Optional[int]=2 , __magic_name__ : Union[str, Any]=0.02 , __magic_name__ : List[str]=3 , __magic_name__ : str=4 , __magic_name__ : List[str]=None , ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_input_mask SCREAMING_SNAKE_CASE_ = use_token_type_ids SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = embedding_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = num_choices SCREAMING_SNAKE_CASE_ = scope def __A ( self : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self : List[str] ) -> int: return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) def __A ( self : Any , __magic_name__ : int , __magic_name__ : List[str] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : Dict ) -> Any: SCREAMING_SNAKE_CASE_ = MobileBertModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , token_type_ids=__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __A ( self : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = MobileBertForMaskedLM(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = MobileBertForNextSentencePrediction(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model( __magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __A ( self : Any , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE_ = MobileBertForPreTraining(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model( __magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , next_sentence_label=__magic_name__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __A ( self : Dict , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ = MobileBertForQuestionAnswering(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model( __magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self : str , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : int , __magic_name__ : Dict , __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : List[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = MobileBertForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self : str , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[str] , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = MobileBertForTokenClassification(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self : int , __magic_name__ : Tuple , __magic_name__ : Optional[int] , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.num_choices SCREAMING_SNAKE_CASE_ = MobileBertForMultipleChoice(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE_ = model( __magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self : Any ) -> Any: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCamelCase (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ = ( { '''feature-extraction''': MobileBertModel, '''fill-mask''': MobileBertForMaskedLM, '''question-answering''': MobileBertForQuestionAnswering, '''text-classification''': MobileBertForSequenceClassification, '''token-classification''': MobileBertForTokenClassification, '''zero-shot''': MobileBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = True def __A ( self : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : int=False ) -> Any: SCREAMING_SNAKE_CASE_ = super()._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) if return_labels: if model_class in get_values(__magic_name__ ): SCREAMING_SNAKE_CASE_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ ) return inputs_dict def __A ( self : Any ) -> Any: SCREAMING_SNAKE_CASE_ = MobileBertModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def __A ( self : int ) -> List[str]: self.config_tester.run_common_tests() def __A ( self : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__magic_name__ ) def __A ( self : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__magic_name__ ) def __A ( self : Union[str, Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__magic_name__ ) def __A ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__magic_name__ ) def __A ( self : Tuple ) -> Dict: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__magic_name__ ) def __A ( self : int ) -> Any: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__magic_name__ ) def __A ( self : Any ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__magic_name__ ) def __A ( self : int ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__magic_name__ ) def a__ ( __UpperCamelCase ): return torch.tensor( __UpperCamelCase , dtype=torch.long , device=__UpperCamelCase , ) A : List[str] = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase (unittest.TestCase ): """simple docstring""" @slow def __A ( self : List[str] ) -> Dict: SCREAMING_SNAKE_CASE_ = MobileBertModel.from_pretrained("google/mobilebert-uncased" ).to(__magic_name__ ) SCREAMING_SNAKE_CASE_ = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(__magic_name__ )[0] SCREAMING_SNAKE_CASE_ = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.tensor( [ [ [-2.473_6526e07, 8.269_1656e04, 1.652_1838e05], [-5.754_1704e-01, 3.905_6022e00, 4.401_1507e00], [2.604_7359e00, 1.567_7652e00, -1.732_4188e-01], ] ] , device=__magic_name__ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE SCREAMING_SNAKE_CASE_ = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) SCREAMING_SNAKE_CASE_ = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
140
0
class __snake_case : def __init__( self ) -> List[str]: '''simple docstring''' snake_case__ : str = 0 snake_case__ : int = 0 snake_case__ : int = {} def __a ( self , __UpperCamelCase ) -> List[Any]: '''simple docstring''' if vertex not in self.adjacency: snake_case__ : Optional[int] = {} self.num_vertices += 1 def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: '''simple docstring''' self.add_vertex(__UpperCamelCase ) self.add_vertex(__UpperCamelCase ) if head == tail: return snake_case__ : Optional[Any] = weight snake_case__ : Union[str, Any] = weight def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Optional[int] = self.get_edges() for edge in edges: snake_case__ , snake_case__ , snake_case__ : str = edge edges.remove((tail, head, weight) ) for i in range(len(__UpperCamelCase ) ): snake_case__ : Tuple = list(edges[i] ) edges.sort(key=lambda __UpperCamelCase : e[2] ) for i in range(len(__UpperCamelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: snake_case__ : str = edges[i][2] + 1 for edge in edges: snake_case__ , snake_case__ , snake_case__ : List[Any] = edge snake_case__ : Tuple = weight snake_case__ : str = weight def __str__( self ) -> int: '''simple docstring''' snake_case__ : Tuple = '' for tail in self.adjacency: for head in self.adjacency[tail]: snake_case__ : List[str] = self.adjacency[head][tail] string += F"""{head} -> {tail} == {weight}\n""" return string.rstrip('\n' ) def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : str = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __a ( self ) -> Dict: '''simple docstring''' return self.adjacency.keys() @staticmethod def __a ( __UpperCamelCase=None , __UpperCamelCase=None ) -> List[str]: '''simple docstring''' snake_case__ : int = Graph() if vertices is None: snake_case__ : List[str] = [] if edges is None: snake_case__ : Tuple = [] for vertex in vertices: g.add_vertex(__UpperCamelCase ) for edge in edges: g.add_edge(*__UpperCamelCase ) return g class __snake_case : def __init__( self ) -> Optional[int]: '''simple docstring''' snake_case__ : int = {} snake_case__ : str = {} def __len__( self ) -> Optional[int]: '''simple docstring''' return len(self.parent ) def __a ( self , __UpperCamelCase ) -> Any: '''simple docstring''' if item in self.parent: return self.find(__UpperCamelCase ) snake_case__ : Optional[int] = item snake_case__ : str = 0 return item def __a ( self , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' if item not in self.parent: return self.make_set(__UpperCamelCase ) if item != self.parent[item]: snake_case__ : List[str] = self.find(self.parent[item] ) return self.parent[item] def __a ( self , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: '''simple docstring''' snake_case__ : Any = self.find(__UpperCamelCase ) snake_case__ : List[Any] = self.find(__UpperCamelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: snake_case__ : str = roota return roota if self.rank[roota] < self.rank[roota]: snake_case__ : List[Any] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 snake_case__ : Dict = roota return roota return None @staticmethod def __a ( __UpperCamelCase ) -> List[Any]: '''simple docstring''' snake_case__ : Tuple = graph.num_vertices snake_case__ : str = Graph.UnionFind() snake_case__ : Dict = [] while num_components > 1: snake_case__ : Optional[Any] = {} for vertex in graph.get_vertices(): snake_case__ : List[str] = -1 snake_case__ : str = graph.get_edges() for edge in edges: snake_case__ , snake_case__ , snake_case__ : Optional[int] = edge edges.remove((tail, head, weight) ) for edge in edges: snake_case__ , snake_case__ , snake_case__ : Optional[int] = edge snake_case__ : List[Any] = union_find.find(__UpperCamelCase ) snake_case__ : List[Any] = union_find.find(__UpperCamelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: snake_case__ : Dict = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: snake_case__ : Tuple = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: snake_case__ , snake_case__ , snake_case__ : Dict = cheap_edge[vertex] if union_find.find(__UpperCamelCase ) != union_find.find(__UpperCamelCase ): union_find.union(__UpperCamelCase , __UpperCamelCase ) mst_edges.append(cheap_edge[vertex] ) snake_case__ : Union[str, Any] = num_components - 1 snake_case__ : Tuple = Graph.build(edges=__UpperCamelCase ) return mst
699
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ : Any = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : str = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Optional[int] = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase__ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
699
1
import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class A ( UpperCAmelCase_ ): '''simple docstring''' A__ = '''naver-clova-ix/donut-base-finetuned-docvqa''' A__ = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) A__ = '''document_qa''' A__ = AutoProcessor A__ = VisionEncoderDecoderModel A__ = ['''image''', '''text'''] A__ = ['''text'''] def __init__(self : Tuple , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[Any] ) -> List[Any]: """simple docstring""" if not is_vision_available(): raise ValueError("""Pillow must be installed to use the DocumentQuestionAnsweringTool.""" ) super().__init__(*_lowercase , **_lowercase ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : "Image" , _UpperCAmelCase : str ) -> Tuple: """simple docstring""" lowercase__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" lowercase__ = task_prompt.replace("""{user_input}""" , _lowercase ) lowercase__ = self.pre_processor.tokenizer( _lowercase , add_special_tokens=_lowercase , return_tensors="""pt""" ).input_ids lowercase__ = self.pre_processor(_lowercase , return_tensors="""pt""" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Optional[int] ) -> str: """simple docstring""" return self.model.generate( inputs["""pixel_values"""].to(self.device ) , decoder_input_ids=inputs["""decoder_input_ids"""].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_lowercase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_lowercase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_lowercase , ).sequences def lowerCamelCase__ (self : int , _UpperCAmelCase : Tuple ) -> Any: """simple docstring""" lowercase__ = self.pre_processor.batch_decode(_lowercase )[0] lowercase__ = sequence.replace(self.pre_processor.tokenizer.eos_token , """""" ) lowercase__ = sequence.replace(self.pre_processor.tokenizer.pad_token , """""" ) lowercase__ = re.sub(r"""<.*?>""" , """""" , _lowercase , count=1 ).strip() # remove first task start token lowercase__ = self.pre_processor.tokenajson(_lowercase ) return sequence["answer"]
15
"""simple docstring""" from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
690
0
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __snake_case : '''simple docstring''' _snake_case = 42 _snake_case = None _snake_case = None def A__ ( ): '''simple docstring''' _lowerCamelCase : int = Node(1 ) _lowerCamelCase : str = Node(2 ) _lowerCamelCase : Dict = Node(3 ) _lowerCamelCase : str = Node(4 ) _lowerCamelCase : Any = Node(5 ) return tree def A__ ( __A ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def A__ ( __A ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def A__ ( __A ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def A__ ( __A ): '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def A__ ( __A ): '''simple docstring''' _lowerCamelCase : list[Any] = [] if root is None: return output _lowerCamelCase : List[str] = deque([root] ) while process_queue: _lowerCamelCase : Tuple = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : list[Any] = [] def populate_output(__A , __A ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(__A , __A ) return output def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : list[Any] = [] def populate_output(__A , __A ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(__A , __A ) return output def A__ ( __A ): '''simple docstring''' if root is None: return [] _lowerCamelCase : list[Sequence[Node | None]] = [] _lowerCamelCase : str = 0 _lowerCamelCase : Optional[Any] = height(__A ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__A , __A ) ) _lowerCamelCase : List[Any] = 1 else: output.append(get_nodes_from_right_to_left(__A , __A ) ) _lowerCamelCase : List[Any] = 0 return output def A__ ( ): # Main function for testing. '''simple docstring''' _lowerCamelCase : Dict = make_tree() print(F"""In-order Traversal: {inorder(__A )}""" ) print(F"""Pre-order Traversal: {preorder(__A )}""" ) print(F"""Post-order Traversal: {postorder(__A )}""" , """\n""" ) print(F"""Height of Tree: {height(__A )}""" , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(__A ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(__A ) + 1 ): print(F"""Level {level}:""" , get_nodes_from_left_to_right(__A , level=__A ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(__A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
15
import math def A__ ( __A ): '''simple docstring''' assert isinstance(__A , __A ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False _lowerCamelCase : List[Any] = range(3 , int(math.sqrt(__A ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def A__ ( __A , __A=1 , **__A ): '''simple docstring''' _lowerCamelCase : Dict = factor * value _lowerCamelCase : str = value while not is_prime(__A ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **__A ) return value
15
1
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class __A : '''simple docstring''' def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' return None class __A : '''simple docstring''' def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' return None class __A ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = [ # (model_name, model_kwargs) ("""bert-base-cased""", {}), ("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def __lowerCamelCase ( self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_ , '''tf''' , 1_2 , **lowerCamelCase_ ) @require_torch @slow def __lowerCamelCase ( self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_ , '''pt''' , 1_2 , **lowerCamelCase_ ) @require_torch @slow def __lowerCamelCase ( self ): '''simple docstring''' from transformers import BertModel lowerCamelCase__ = ['''[UNK]''', '''[SEP]''', '''[CLS]''', '''[PAD]''', '''[MASK]''', '''some''', '''other''', '''words'''] with NamedTemporaryFile(mode='''w+t''' ) as vocab_file: vocab_file.write('''\n'''.join(lowerCamelCase_ ) ) vocab_file.flush() lowerCamelCase__ = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowerCamelCase__ = BertModel(BertConfig(vocab_size=len(lowerCamelCase_ ) ) ) model.save_pretrained(lowerCamelCase_ ) self._test_export(lowerCamelCase_ , '''pt''' , 1_2 , lowerCamelCase_ ) @require_tf @slow def __lowerCamelCase ( self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCamelCase__ = self._test_export(lowerCamelCase_ , '''tf''' , 1_2 , **lowerCamelCase_ ) lowerCamelCase__ = quantize(Path(lowerCamelCase_ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''' ) @require_torch @slow def __lowerCamelCase ( self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowerCamelCase__ = self._test_export(lowerCamelCase_ , '''pt''' , 1_2 , **lowerCamelCase_ ) lowerCamelCase__ = quantize(lowerCamelCase_ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''' ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , **__lowerCAmelCase ): '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: lowerCamelCase__ = Path(lowerCamelCase_ ).joinpath('''model.onnx''' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) return path except Exception as e: self.fail(lowerCamelCase_ ) @require_torch @require_tokenizers @slow def __lowerCamelCase ( self ): '''simple docstring''' from transformers import BertModel lowerCamelCase__ = BertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) ) lowerCamelCase__ = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' ) self._test_infer_dynamic_axis(lowerCamelCase_ , lowerCamelCase_ , '''pt''' ) @require_tf @require_tokenizers @slow def __lowerCamelCase ( self ): '''simple docstring''' from transformers import TFBertModel lowerCamelCase__ = TFBertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) ) lowerCamelCase__ = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' ) self._test_infer_dynamic_axis(lowerCamelCase_ , lowerCamelCase_ , '''tf''' ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = FeatureExtractionPipeline(lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase__ = ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''output_0''', '''output_1'''] lowerCamelCase__ = infer_shapes(lowerCamelCase_ , lowerCamelCase_ ) # Assert all variables are present self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , lowerCamelCase_ ) self.assertSequenceEqual(variable_names[3:] , lowerCamelCase_ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: '''batch''', 1: '''sequence'''} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['''output_0'''] , {0: '''batch''', 1: '''sequence'''} ) self.assertDictEqual(shapes['''output_1'''] , {0: '''batch'''} ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = ['''input_ids''', '''attention_mask''', '''token_type_ids'''] lowerCamelCase__ = {'''input_ids''': [1, 2, 3, 4], '''attention_mask''': [0, 0, 0, 0], '''token_type_ids''': [1, 1, 1, 1]} lowerCamelCase__ = ensure_valid_input(FuncContiguousArgs() , lowerCamelCase_ , lowerCamelCase_ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(lowerCamelCase_ ) , 3 ) # Should have exactly the same input names self.assertEqual(set(lowerCamelCase_ ) , set(lowerCamelCase_ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(lowerCamelCase_ , (tokens['''input_ids'''], tokens['''token_type_ids'''], tokens['''attention_mask''']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowerCamelCase__ = ensure_valid_input(FuncNonContiguousArgs() , lowerCamelCase_ , lowerCamelCase_ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(lowerCamelCase_ ) , 1 ) self.assertEqual(len(lowerCamelCase_ ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['''input_ids'''] ) self.assertEqual(ordered_input_names[0] , '''input_ids''' ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = generate_identified_filename(Path('''/home/something/my_fake_model.onnx''' ) , '''-test''' ) self.assertEqual('''/home/something/my_fake_model-test.onnx''' , generated.as_posix() )
481
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : int = logging.get_logger(__name__) lowerCamelCase__ : str = { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """luke""" def __init__( self :List[Any] , lowerCamelCase_ :Optional[int]=5_02_67 , lowerCamelCase_ :List[Any]=50_00_00 , lowerCamelCase_ :str=7_68 , lowerCamelCase_ :Optional[Any]=2_56 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :Any=30_72 , lowerCamelCase_ :Optional[int]="gelu" , lowerCamelCase_ :Dict=0.1 , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :str=5_12 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Optional[int]=1E-12 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :int=None , lowerCamelCase_ :Dict=1 , lowerCamelCase_ :str=0 , lowerCamelCase_ :int=2 , **lowerCamelCase_ :List[str] , ) -> int: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = entity_vocab_size SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : Dict = entity_emb_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : str = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Dict = type_vocab_size SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = use_entity_aware_attention SCREAMING_SNAKE_CASE : str = classifier_dropout
698
0
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class A ( _UpperCAmelCase ): """simple docstring""" def __init__( self : Dict,lowercase_ : Tuple,lowercase_ : Dict=1_3,lowercase_ : Dict=7,lowercase_ : List[Any]=True,lowercase_ : Optional[Any]=True,lowercase_ : Tuple=False,lowercase_ : Dict=True,lowercase_ : int=9_9,lowercase_ : Tuple=3_2,lowercase_ : List[Any]=5,lowercase_ : Any=4,lowercase_ : str=3_7,lowercase_ : Union[str, Any]="gelu",lowercase_ : Tuple=0.1,lowercase_ : List[Any]=0.1,lowercase_ : Tuple=5_1_2,lowercase_ : Any=1_6,lowercase_ : str=2,lowercase_ : Optional[Any]=0.02,lowercase_ : Union[str, Any]=3,lowercase_ : Union[str, Any]=4,lowercase_ : int=None,)-> Dict: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope def snake_case__ ( self : Tuple )-> int: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size],self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) A__ = ids_tensor([self.batch_size],self.num_choices ) A__ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Tuple )-> str: '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size,dim=self.hidden_size,n_layers=self.num_hidden_layers,n_heads=self.num_attention_heads,hidden_dim=self.intermediate_size,hidden_act=self.hidden_act,dropout=self.hidden_dropout_prob,attention_dropout=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,initializer_range=self.initializer_range,) def snake_case__ ( self : Dict,lowercase_ : List[Any],lowercase_ : Dict,lowercase_ : Tuple,lowercase_ : List[str],lowercase_ : Optional[int],lowercase_ : Optional[int] )-> Optional[Any]: '''simple docstring''' A__ = DistilBertModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_,lowercase_ ) A__ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : str,lowercase_ : Tuple,lowercase_ : Optional[Any],lowercase_ : str,lowercase_ : Tuple,lowercase_ : Optional[int],lowercase_ : str )-> Union[str, Any]: '''simple docstring''' A__ = DistilBertForMaskedLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_,attention_mask=lowercase_,labels=lowercase_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : List[Any],lowercase_ : Any,lowercase_ : List[Any],lowercase_ : int,lowercase_ : Any,lowercase_ : List[Any],lowercase_ : str )-> Optional[Any]: '''simple docstring''' A__ = DistilBertForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model( lowercase_,attention_mask=lowercase_,start_positions=lowercase_,end_positions=lowercase_ ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def snake_case__ ( self : Optional[int],lowercase_ : List[str],lowercase_ : Dict,lowercase_ : Any,lowercase_ : Optional[int],lowercase_ : Dict,lowercase_ : Optional[int] )-> Optional[int]: '''simple docstring''' A__ = self.num_labels A__ = DistilBertForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_,attention_mask=lowercase_,labels=lowercase_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def snake_case__ ( self : List[str],lowercase_ : Union[str, Any],lowercase_ : int,lowercase_ : Optional[int],lowercase_ : Tuple,lowercase_ : Tuple,lowercase_ : Optional[Any] )-> Tuple: '''simple docstring''' A__ = self.num_labels A__ = DistilBertForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_,attention_mask=lowercase_,labels=lowercase_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : Any,lowercase_ : List[str],lowercase_ : int,lowercase_ : Optional[int],lowercase_ : Optional[int],lowercase_ : int,lowercase_ : Optional[Any] )-> Optional[int]: '''simple docstring''' A__ = self.num_choices A__ = DistilBertForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = input_ids.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() A__ = input_mask.unsqueeze(1 ).expand(-1,self.num_choices,-1 ).contiguous() A__ = model( lowercase_,attention_mask=lowercase_,labels=lowercase_,) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def snake_case__ ( self : str )-> Dict: '''simple docstring''' A__ = self.prepare_config_and_inputs() ((A__) , (A__) , (A__) , (A__) , (A__) , (A__)) = config_and_inputs A__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase = ( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase = True lowerCamelCase = True lowerCamelCase = True lowerCamelCase = True def snake_case__ ( self : Dict )-> Dict: '''simple docstring''' A__ = DistilBertModelTester(self ) A__ = ConfigTester(self,config_class=lowercase_,dim=3_7 ) def snake_case__ ( self : Optional[Any] )-> int: '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self : Union[str, Any] )-> Dict: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowercase_ ) def snake_case__ ( self : Any )-> int: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase_ ) def snake_case__ ( self : Union[str, Any] )-> Optional[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase_ ) def snake_case__ ( self : Any )-> List[str]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase_ ) def snake_case__ ( self : Any )-> Tuple: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase_ ) def snake_case__ ( self : Union[str, Any] )-> Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase_ ) @slow def snake_case__ ( self : List[Any] )-> int: '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = DistilBertModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @slow @require_torch_gpu def snake_case__ ( self : Tuple )-> List[str]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return A__ = True A__ = model_class(config=lowercase_ ) A__ = self._prepare_for_class(lowercase_,lowercase_ ) A__ = torch.jit.trace( lowercase_,(inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase_,os.path.join(lowercase_,'traced_model.pt' ) ) A__ = torch.jit.load(os.path.join(lowercase_,'traced_model.pt' ),map_location=lowercase_ ) loaded(inputs_dict['input_ids'].to(lowercase_ ),inputs_dict['attention_mask'].to(lowercase_ ) ) @require_torch class A ( unittest.TestCase ): """simple docstring""" @slow def snake_case__ ( self : int )-> str: '''simple docstring''' A__ = DistilBertModel.from_pretrained('distilbert-base-uncased' ) A__ = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) A__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A__ = model(lowercase_,attention_mask=lowercase_ )[0] A__ = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape,lowercase_ ) A__ = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4],lowercase_,atol=1E-4 ) )
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
586
0
def A__ ( __A : int , __A : List[str] , __A : Tuple , __A : Dict , __A : int , __A : Any ) ->Optional[int]: if index == r: for j in range(__A ): print(data[j] , end=''' ''' ) print(''' ''' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __A =arr[i] combination_util(__A , __A , __A , index + 1 , __A , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(__A , __A , __A , __A , __A , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def A__ ( __A : List[str] , __A : Dict , __A : Tuple ) ->Dict: # A temporary array to store all combination one by one __A =[0] * r # Print all combination using temporary array 'data[]' combination_util(__A , __A , __A , 0 , __A , 0 ) if __name__ == "__main__": # Driver code to check the function above _lowerCamelCase : str = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
184
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def A__ ( __A : Any , __A : Dict , __A : Optional[int]=None ) ->Tuple: # set parameter of one layer assert torch_layer.weight.shape == weight.shape, F'''{torch_layer} layer.weight does not match''' __A =nn.Parameter(__A ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'''{torch_layer} layer.bias does not match''' __A =nn.Parameter(__A ) def A__ ( __A : List[Any] , __A : Tuple , __A : List[Any] ) ->Dict: # set torch weights for 1-to-1 comparison __A =np.asarray(weights[0] ) __A =np.asarray(weights[1] ) __A =np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(__A ).transpose(1 , 2 ).contiguous().view(-1 , __A ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__A ).transpose(1 , 2 ).contiguous().view(-1 , __A ) , ) set_param( torch_layer.output.dense , torch.tensor(__A ).view(-1 , __A ).contiguous().transpose(0 , 1 ) , ) def A__ ( __A : Optional[Any] , __A : Tuple , __A : Optional[Any] ) ->int: # set torch weights for 1-to-1 comparison __A =np.asarray(weights[0] ) __A =np.asarray(weights[1] ) __A =np.asarray(weights[2] ) __A =np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(__A ).transpose(1 , 2 ).contiguous().view(-1 , __A ) , ) set_param( torch_layer.self_attention.key , torch.tensor(__A ).transpose(1 , 2 ).contiguous().view(-1 , __A ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__A ).transpose(1 , 2 ).contiguous().view(-1 , __A ) , ) set_param( torch_layer.output.dense , torch.tensor(__A ).view(-1 , __A ).contiguous().transpose(0 , 1 ) , ) def A__ ( __A : int , __A : List[str] , __A : Optional[Any] ) ->Any: # layernorm 1 __A =weights[0][0][0] __A =np.asarray(layer_norm_a[0] ) __A =np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(__A ) , torch.tensor(__A ) , ) # lsh weights + output __A =weights[0][1] if len(__A ) < 4: set_layer_weights_in_torch_lsh(__A , torch_block.attention , __A ) else: set_layer_weights_in_torch_local(__A , torch_block.attention , __A ) # intermediate weighs __A =weights[2][0][1][2] # Chunked Feed Forward if len(__A ) == 4: __A =intermediate_weights[2] # layernorm 2 __A =np.asarray(intermediate_weights[0][0] ) __A =np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(__A ) , torch.tensor(__A ) , ) # intermediate dense __A =np.asarray(intermediate_weights[1][0] ) __A =np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(__A ).transpose(0 , 1 ).contiguous() , torch.tensor(__A ) , ) # intermediate out __A =np.asarray(intermediate_weights[4][0] ) __A =np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(__A ).transpose(0 , 1 ).contiguous() , torch.tensor(__A ) , ) def A__ ( __A : Tuple , __A : List[Any] , __A : Optional[int] ) ->List[Any]: # reformer model __A =torch_model.reformer # word embeds __A =np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(__A ) , ) if isinstance(weights[3] , __A ): __A =torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): __A =np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'''{position_embeddings[emb_idx]} emb does not match''' __A =nn.Parameter(torch.tensor(__A ) ) __A =weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( __A ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): __A =trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(__A , __A , __A ) # output layer norm __A =np.asarray(weights[7][0] ) __A =np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(__A ) , torch.tensor(__A ) , ) # output embeddings __A =np.asarray(weights[9][0] ) __A =np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(__A ).transpose(0 , 1 ).contiguous() , torch.tensor(__A ) , ) def A__ ( __A : int , __A : Any , __A : Tuple ) ->Union[str, Any]: # Initialise PyTorch model __A =ReformerConfig.from_json_file(__A ) print(F'''Building PyTorch model from configuration: {config}''' ) __A =ReformerModelWithLMHead(__A ) with open(__A , '''rb''' ) as f: __A =pickle.load(__A )['''weights'''] set_model_weights_in_torch(__A , __A , config.hidden_size ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __A ) if __name__ == "__main__": _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowerCamelCase : Tuple = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
184
1
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def UpperCamelCase ( __lowercase : List[str] ): '''simple docstring''' A_ : Any = VideoMAEConfig() set_architecture_configs(__lowercase ,__lowercase ) if "finetuned" not in model_name: A_ : int = False if "finetuned" in model_name: A_ : Any = 'huggingface/label-files' if "kinetics" in model_name: A_ : Dict = 4_00 A_ : Union[str, Any] = 'kinetics400-id2label.json' elif "ssv2" in model_name: A_ : Dict = 1_74 A_ : List[Any] = 'something-something-v2-id2label.json' else: raise ValueError('Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.' ) A_ : Optional[int] = json.load(open(hf_hub_download(__lowercase ,__lowercase ,repo_type='dataset' ) ,'r' ) ) A_ : Union[str, Any] = {int(__lowercase ): v for k, v in idalabel.items()} A_ : Any = idalabel A_ : Dict = {v: k for k, v in idalabel.items()} return config def UpperCamelCase ( __lowercase : Optional[int] ,__lowercase : Union[str, Any] ): '''simple docstring''' if "small" in model_name: A_ : Optional[Any] = 3_84 A_ : Union[str, Any] = 15_36 A_ : List[Any] = 12 A_ : Union[str, Any] = 16 A_ : Optional[int] = 12 A_ : Tuple = 3 A_ : str = 1_92 A_ : Union[str, Any] = 7_68 elif "large" in model_name: A_ : Any = 10_24 A_ : int = 40_96 A_ : int = 24 A_ : Optional[Any] = 16 A_ : int = 12 A_ : Optional[int] = 8 A_ : Union[str, Any] = 5_12 A_ : List[Any] = 20_48 elif "huge" in model_name: A_ : Union[str, Any] = 12_80 A_ : Union[str, Any] = 51_20 A_ : List[Any] = 32 A_ : Tuple = 16 A_ : List[str] = 12 A_ : List[str] = 8 A_ : List[Any] = 6_40 A_ : int = 25_60 elif "base" not in model_name: raise ValueError('Model name should include either "small", "base", "large", or "huge"' ) def UpperCamelCase ( __lowercase : Any ): '''simple docstring''' if "encoder." in name: A_ : int = name.replace('encoder.' ,'' ) if "cls_token" in name: A_ : List[Any] = name.replace('cls_token' ,'videomae.embeddings.cls_token' ) if "decoder_pos_embed" in name: A_ : List[str] = name.replace('decoder_pos_embed' ,'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: A_ : Tuple = name.replace('pos_embed' ,'videomae.embeddings.position_embeddings' ) if "patch_embed.proj" in name: A_ : Optional[Any] = name.replace('patch_embed.proj' ,'videomae.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: A_ : int = name.replace('patch_embed.norm' ,'videomae.embeddings.norm' ) if "decoder.blocks" in name: A_ : Union[str, Any] = name.replace('decoder.blocks' ,'decoder.decoder_layers' ) if "blocks" in name: A_ : Dict = name.replace('blocks' ,'videomae.encoder.layer' ) if "attn.proj" in name: A_ : str = name.replace('attn.proj' ,'attention.output.dense' ) if "attn" in name and "bias" not in name: A_ : Optional[int] = name.replace('attn' ,'attention.self' ) if "attn" in name: A_ : str = name.replace('attn' ,'attention.attention' ) if "norm1" in name: A_ : int = name.replace('norm1' ,'layernorm_before' ) if "norm2" in name: A_ : Tuple = name.replace('norm2' ,'layernorm_after' ) if "mlp.fc1" in name: A_ : int = name.replace('mlp.fc1' ,'intermediate.dense' ) if "mlp.fc2" in name: A_ : Any = name.replace('mlp.fc2' ,'output.dense' ) if "decoder_embed" in name: A_ : Union[str, Any] = name.replace('decoder_embed' ,'decoder.decoder_embed' ) if "decoder_norm" in name: A_ : str = name.replace('decoder_norm' ,'decoder.decoder_norm' ) if "decoder_pred" in name: A_ : str = name.replace('decoder_pred' ,'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: A_ : Dict = name.replace('norm.weight' ,'videomae.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: A_ : int = name.replace('norm.bias' ,'videomae.layernorm.bias' ) if "head" in name and "decoder" not in name: A_ : Dict = name.replace('head' ,'classifier' ) return name def UpperCamelCase ( __lowercase : int ,__lowercase : Any ): '''simple docstring''' for key in orig_state_dict.copy().keys(): A_ : Dict = orig_state_dict.pop(__lowercase ) if key.startswith('encoder.' ): A_ : Optional[int] = key.replace('encoder.' ,'' ) if "qkv" in key: A_ : Any = key.split('.' ) if key.startswith('decoder.blocks' ): A_ : Optional[Any] = config.decoder_hidden_size A_ : Optional[int] = int(key_split[2] ) A_ : List[Any] = 'decoder.decoder_layers.' if "weight" in key: A_ : Optional[Any] = val[:dim, :] A_ : Tuple = val[dim : dim * 2, :] A_ : Union[str, Any] = val[-dim:, :] else: A_ : str = config.hidden_size A_ : Optional[Any] = int(key_split[1] ) A_ : Optional[int] = 'videomae.encoder.layer.' if "weight" in key: A_ : Tuple = val[:dim, :] A_ : Optional[int] = val[dim : dim * 2, :] A_ : Dict = val[-dim:, :] else: A_ : Optional[int] = val return orig_state_dict def UpperCamelCase ( ): '''simple docstring''' A_ : Union[str, Any] = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' ,filename='eating_spaghetti.npy' ,repo_type='dataset' ) A_ : Optional[int] = np.load(__lowercase ) return list(__lowercase ) def UpperCamelCase ( __lowercase : Dict ,__lowercase : Any ,__lowercase : Union[str, Any] ,__lowercase : Any ): '''simple docstring''' A_ : Dict = get_videomae_config(__lowercase ) if "finetuned" in model_name: A_ : List[str] = VideoMAEForVideoClassification(__lowercase ) else: A_ : Tuple = VideoMAEForPreTraining(__lowercase ) # download original checkpoint, hosted on Google Drive A_ : Optional[int] = 'pytorch_model.bin' gdown.cached_download(__lowercase ,__lowercase ,quiet=__lowercase ) A_ : Union[str, Any] = torch.load(__lowercase ,map_location='cpu' ) if "model" in files: A_ : int = files['model'] else: A_ : Union[str, Any] = files['module'] A_ : Tuple = convert_state_dict(__lowercase ,__lowercase ) model.load_state_dict(__lowercase ) model.eval() # verify model on basic input A_ : int = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] ,image_std=[0.5, 0.5, 0.5] ) A_ : Tuple = prepare_video() A_ : Union[str, Any] = image_processor(__lowercase ,return_tensors='pt' ) if "finetuned" not in model_name: A_ : List[Any] = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' ,filename='bool_masked_pos.pt' ) A_ : Optional[Any] = torch.load(__lowercase ) A_ : str = model(**__lowercase ) A_ : Tuple = outputs.logits A_ : Dict = [ 'videomae-small-finetuned-kinetics', 'videomae-small-finetuned-ssv2', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) 'videomae-base-short', 'videomae-base-short-finetuned-kinetics', 'videomae-base', 'videomae-base-finetuned-kinetics', 'videomae-large', 'videomae-large-finetuned-kinetics', 'videomae-huge-finetuned-kinetics', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) 'videomae-base-short-ssv2', 'videomae-base-short-finetuned-ssv2', 'videomae-base-ssv2', 'videomae-base-finetuned-ssv2', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": A_ : Union[str, Any] = torch.Size([1, 4_00] ) A_ : Dict = torch.tensor([-0.92_91, -0.40_61, -0.93_07] ) elif model_name == "videomae-small-finetuned-ssv2": A_ : Optional[int] = torch.Size([1, 1_74] ) A_ : List[str] = torch.tensor([0.26_71, -0.46_89, -0.82_35] ) elif model_name == "videomae-base": A_ : Any = torch.Size([1, 14_08, 15_36] ) A_ : List[str] = torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]] ) elif model_name == "videomae-base-short": A_ : Optional[int] = torch.Size([1, 14_08, 15_36] ) A_ : Union[str, Any] = torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] ) # we verified the loss both for normalized and unnormalized targets for this one A_ : Dict = torch.tensor([0.51_42] ) if config.norm_pix_loss else torch.tensor([0.64_69] ) elif model_name == "videomae-large": A_ : Tuple = torch.Size([1, 14_08, 15_36] ) A_ : Optional[int] = torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]] ) elif model_name == "videomae-large-finetuned-kinetics": A_ : Tuple = torch.Size([1, 4_00] ) A_ : Union[str, Any] = torch.tensor([0.07_71, 0.00_11, -0.36_25] ) elif model_name == "videomae-huge-finetuned-kinetics": A_ : Dict = torch.Size([1, 4_00] ) A_ : List[Any] = torch.tensor([0.24_33, 0.16_32, -0.48_94] ) elif model_name == "videomae-base-short-finetuned-kinetics": A_ : Any = torch.Size([1, 4_00] ) A_ : Optional[Any] = torch.tensor([0.65_88, 0.09_90, -0.24_93] ) elif model_name == "videomae-base-finetuned-kinetics": A_ : Any = torch.Size([1, 4_00] ) A_ : Any = torch.tensor([0.36_69, -0.06_88, -0.24_21] ) elif model_name == "videomae-base-short-ssv2": A_ : str = torch.Size([1, 14_08, 15_36] ) A_ : Tuple = torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]] ) elif model_name == "videomae-base-short-finetuned-ssv2": A_ : Dict = torch.Size([1, 1_74] ) A_ : List[str] = torch.tensor([-0.05_37, -0.15_39, -0.32_66] ) elif model_name == "videomae-base-ssv2": A_ : Dict = torch.Size([1, 14_08, 15_36] ) A_ : Optional[int] = torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]] ) elif model_name == "videomae-base-finetuned-ssv2": A_ : Any = torch.Size([1, 1_74] ) A_ : Tuple = torch.tensor([0.19_61, -0.83_37, -0.63_89] ) else: raise ValueError(f'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] ,__lowercase ,atol=1e-4 ) else: print('Logits:' ,logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] ,__lowercase ,atol=1e-4 ) print('Logits ok!' ) # verify loss, if applicable if model_name == "videomae-base-short": A_ : Tuple = outputs.loss assert torch.allclose(__lowercase ,__lowercase ,atol=1e-4 ) print('Loss ok!' ) if pytorch_dump_folder_path is not None: print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowercase ) model.save_pretrained(__lowercase ) if push_to_hub: print('Pushing to the hub...' ) model.push_to_hub(__lowercase ,organization='nielsr' ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _UpperCAmelCase = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
717
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = DistilBertTokenizer lowerCamelCase_ = DistilBertTokenizerFast lowerCamelCase_ = True @slow def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Union[str, Any] = DistilBertTokenizer.from_pretrained('distilbert-base-uncased' ) A_ : Tuple = tokenizer.encode('sequence builders' , add_special_tokens=lowercase ) A_ : List[Any] = tokenizer.encode('multi-sequence build' , add_special_tokens=lowercase ) A_ : str = tokenizer.build_inputs_with_special_tokens(lowercase ) A_ : Tuple = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
70
0
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a (_lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : int = IFInpaintingPipeline __UpperCAmelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} __UpperCAmelCase : Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCAmelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"latents"} def __snake_case ( self : int ) -> str: return self._get_dummy_components() def __snake_case ( self : Any , lowerCamelCase : Dict , lowerCamelCase : Dict=0 ) -> Dict: if str(lowerCamelCase ).startswith("mps" ): __snake_case : Optional[Any] = torch.manual_seed(lowerCamelCase ) else: __snake_case : Any = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __snake_case : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) __snake_case : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) __snake_case : Union[str, Any] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __snake_case ( self : Tuple ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __snake_case ( self : Union[str, Any] ) -> List[str]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def __snake_case ( self : Optional[int] ) -> str: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __snake_case ( self : Any ) -> Any: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __snake_case ( self : List[Any] ) -> Tuple: self._test_save_load_local() def __snake_case ( self : List[Any] ) -> Tuple: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
81
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features __snake_case :Optional[Any] =logging.get_logger(__name__) __snake_case :int =list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) __snake_case :Optional[int] =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCAmelCase__ : A_ : str = field( default=_lowerCamelCase , metadata={'help': 'Model type selected in the list: ' + ', '.join(_lowerCamelCase )} ) A_ : str = field( default=_lowerCamelCase , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) A_ : int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A_ : int = field( default=1_2_8 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) A_ : int = field( default=6_4 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) A_ : int = field( default=3_0 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) A_ : bool = field( default=_lowerCamelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) A_ : bool = field( default=_lowerCamelCase , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) A_ : float = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) A_ : int = field( default=2_0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) A_ : int = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) A_ : int = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class lowerCAmelCase__ ( _lowerCamelCase ): A_ : str = 'train' A_ : str = 'dev' class lowerCAmelCase__ ( _lowerCamelCase ): A_ : SquadDataTrainingArguments A_ : List[SquadFeatures] A_ : Split A_ : bool def __init__( self : Optional[int] , __UpperCamelCase : SquadDataTrainingArguments , __UpperCamelCase : PreTrainedTokenizer , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Union[str, Split] = Split.train , __UpperCamelCase : Optional[bool] = False , __UpperCamelCase : Optional[str] = None , __UpperCamelCase : Optional[str] = "pt" , ) -> Any: A = args A = is_language_sensitive A = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__UpperCamelCase , __UpperCamelCase ): try: A = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) A = mode # Load data features from cache or dataset file A = 'v2' if args.version_2_with_negative else 'v1' A = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A = cached_features_file + '.lock' with FileLock(__UpperCamelCase ): if os.path.exists(__UpperCamelCase ) and not args.overwrite_cache: A = time.time() A = torch.load(__UpperCamelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. A = self.old_features['features'] A = self.old_features.get('dataset' , __UpperCamelCase ) A = self.old_features.get('examples' , __UpperCamelCase ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ' future run' ) else: if mode == Split.dev: A = self.processor.get_dev_examples(args.data_dir ) else: A = self.processor.get_train_examples(args.data_dir ) A , A = squad_convert_examples_to_features( examples=self.examples , tokenizer=__UpperCamelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__UpperCamelCase , ) A = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples} , __UpperCamelCase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self : Optional[Any] ) -> Tuple: return len(self.features ) def __getitem__( self : Tuple , __UpperCamelCase : List[Any] ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset A = self.features[i] A = torch.tensor(feature.input_ids , dtype=torch.long ) A = torch.tensor(feature.attention_mask , dtype=torch.long ) A = torch.tensor(feature.token_type_ids , dtype=torch.long ) A = torch.tensor(feature.cls_index , dtype=torch.long ) A = torch.tensor(feature.p_mask , dtype=torch.float ) A = torch.tensor(feature.is_impossible , dtype=torch.float ) A = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: A = torch.tensor(feature.start_position , dtype=torch.long ) A = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
106
0
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = IFPipeline _snake_case = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} _snake_case = TEXT_TO_IMAGE_BATCH_PARAMS _snake_case = PipelineTesterMixin.required_optional_params - {'latents'} def _SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[Any]: """simple docstring""" return self._get_dummy_components() def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any]=0) ->Optional[Any]: """simple docstring""" if str(_UpperCamelCase).startswith("""mps"""): _lowerCamelCase : int = torch.manual_seed(_UpperCamelCase) else: _lowerCamelCase : List[Any] = torch.Generator(device=_UpperCamelCase).manual_seed(_UpperCamelCase) _lowerCamelCase : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""") def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _SCREAMING_SNAKE_CASE ( self : int) ->Any: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]: """simple docstring""" self._test_save_load_local() def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->int: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa) _lowerCamelCase : Tuple = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""") _lowerCamelCase : str = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""") del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCamelCase : str = None _lowerCamelCase : str = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCamelCase : Optional[Any] = IFImgaImgPipeline(**pipe_a.components) _lowerCamelCase : Optional[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_imgaimg(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCamelCase : Any = IFInpaintingPipeline(**pipe_a.components) _lowerCamelCase : Dict = IFInpaintingSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str) ->Tuple: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : Optional[int] = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Optional[Any] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCamelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : str = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : Any = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : str , _UpperCamelCase : List[Any]) ->Any: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Dict = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Union[str, Any] = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCamelCase : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : List[str] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Optional[Any] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : List[Any] = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple) ->Optional[int]: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(1)).to(_UpperCamelCase) _lowerCamelCase : int = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Any = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Any = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCamelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Optional[int] = floats_tensor((1, 3, 256, 256) , rng=random.Random(1)).to(_UpperCamelCase) _lowerCamelCase : List[str] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : Optional[Any] = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def A__ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
711
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowerCAmelCase : Tuple =version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A__ ( __A , __A , __A , __A , __A , __A , __A , __A=False , ): '''simple docstring''' output_path.parent.mkdir(parents=__A , exist_ok=__A ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , use_external_data_format=__A , enable_onnx_checker=__A , opset_version=__A , ) else: export( __A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , opset_version=__A , ) @torch.no_grad() def A__ ( __A , __A , __A , __A = False ): '''simple docstring''' _lowerCamelCase : Tuple = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _lowerCamelCase : str = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: _lowerCamelCase : List[str] = """cpu""" _lowerCamelCase : Dict = Path(__A ) # VAE DECODER _lowerCamelCase : Optional[Any] = AutoencoderKL.from_pretrained(model_path + """/vae""" ) _lowerCamelCase : List[str] = vae_decoder.config.latent_channels # forward only through the decoder part _lowerCamelCase : Tuple = vae_decoder.decode onnx_export( __A , model_args=( torch.randn(1 , __A , 25 , 25 ).to(device=__A , dtype=__A ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=__A , ) del vae_decoder if __name__ == "__main__": lowerCAmelCase : Optional[int] =argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") lowerCAmelCase : Optional[Any] =parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
15
0
def SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> int: return x if y == 0 else greatest_common_divisor(snake_case , x % y ) def SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> int: return (x * y) // greatest_common_divisor(snake_case , snake_case ) def SCREAMING_SNAKE_CASE ( snake_case = 20 ) -> int: __lowercase = 1 for i in range(1 , n + 1 ): __lowercase = lcm(snake_case , snake_case ) return g if __name__ == "__main__": print(F"""{solution() = }""")
375
def SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> bool: __lowercase = len(snake_case ) + 1 __lowercase = len(snake_case ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. __lowercase = [[0 for i in range(snake_case )] for j in range(snake_case )] # since string of zero length match pattern of zero length __lowercase = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , snake_case ): __lowercase = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , snake_case ): __lowercase = dp[0][j - 2] if pattern[j - 1] == '*' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , snake_case ): for j in range(1 , snake_case ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": __lowercase = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: __lowercase = 1 elif pattern[j - 2] in (input_string[i - 1], "."): __lowercase = dp[i - 1][j] else: __lowercase = 0 else: __lowercase = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") SCREAMING_SNAKE_CASE_ : Any = '''aab''' SCREAMING_SNAKE_CASE_ : str = '''c*a*b''' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F"""{input_string} matches the given pattern {pattern}""") else: print(F"""{input_string} does not match with the given pattern {pattern}""")
375
1
'''simple docstring''' def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> str: """simple docstring""" return "\n".join( F'''{number} * {i} = {number * i}''' for i in range(1 ,number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
713
'''simple docstring''' import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __lowerCamelCase : str = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) __lowerCamelCase : Tuple = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> List[str]: """simple docstring""" snake_case_ : Tuple = SavedModel() snake_case_ : Dict = [] with open(os.path.join(__magic_name__ ,"utils" ,"tf_ops" ,"onnx.json" ) ) as f: snake_case_ : Dict = json.load(__magic_name__ )["opsets"] for i in range(1 ,opset + 1 ): onnx_ops.extend(onnx_opsets[str(__magic_name__ )] ) with open(__magic_name__ ,"rb" ) as f: saved_model.ParseFromString(f.read() ) snake_case_ : Tuple = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want snake_case_ : str = sorted(__magic_name__ ) snake_case_ : Optional[int] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(__magic_name__ ) if strict and len(__magic_name__ ) > 0: raise Exception(F'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(__magic_name__ ) > 0: print(F'''Found the following incompatible ops for the opset {opset}:''' ) print(*__magic_name__ ,sep="\n" ) else: print(F'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) __lowerCamelCase : Dict = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
656
0
'''simple docstring''' def _lowercase ( __A ,__A ): '''simple docstring''' if not (isinstance(__A ,__A ) and isinstance(__A ,__A )): raise ValueError("""longest_common_substring() takes two strings for inputs""" ) __UpperCamelCase = len(__A ) __UpperCamelCase = len(__A ) __UpperCamelCase = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] __UpperCamelCase = 0 __UpperCamelCase = 0 for i in range(1 ,texta_length + 1 ): for j in range(1 ,texta_length + 1 ): if texta[i - 1] == texta[j - 1]: __UpperCamelCase = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: __UpperCamelCase = i __UpperCamelCase = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
601
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''torch''', '''scipy'''] def __init__( self , *lowercase , **lowercase ) -> int: requires_backends(self , ["""torch""", """scipy"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int: requires_backends(cls , ["""torch""", """scipy"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]: requires_backends(cls , ["""torch""", """scipy"""] )
601
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ =logging.get_logger(__name__) lowercase__ ={ 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : Dict = "switch_transformers" _SCREAMING_SNAKE_CASE : Dict = ["past_key_values"] _SCREAMING_SNAKE_CASE : str = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__(self : Optional[int] , snake_case_ : Union[str, Any]=3_2_1_2_8 , snake_case_ : str=7_6_8 , snake_case_ : List[str]=6_4 , snake_case_ : Any=2_0_4_8 , snake_case_ : Dict=6_4 , snake_case_ : Any=1_2 , snake_case_ : List[str]=3 , snake_case_ : List[str]=1_2 , snake_case_ : Dict=3 , snake_case_ : Union[str, Any]=1_2 , snake_case_ : Optional[int]=8 , snake_case_ : Any=False , snake_case_ : Dict=0.01 , snake_case_ : Any="float32" , snake_case_ : int=False , snake_case_ : Dict=3_2 , snake_case_ : Any=1_2_8 , snake_case_ : List[str]=0.1 , snake_case_ : List[Any]=1E-6 , snake_case_ : Union[str, Any]=0.001 , snake_case_ : Optional[Any]=0.001 , snake_case_ : Union[str, Any]=1.0 , snake_case_ : str="relu" , snake_case_ : Any=True , snake_case_ : int=False , snake_case_ : int=True , snake_case_ : Tuple=0 , snake_case_ : List[str]=1 , **snake_case_ : Dict , ): __a : Optional[Any] = vocab_size __a : str = d_model __a : str = d_kv __a : str = d_ff __a : Optional[Any] = num_sparse_encoder_layers __a : Optional[int] = num_layers __a : Optional[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __a : List[Any] = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: __a : str = self.num_layers // self.num_sparse_encoder_layers else: __a : int = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: __a : Optional[Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: __a : Optional[Any] = self.num_decoder_layers # HACK: this will create 0 sparse layers __a : Dict = num_heads __a : Union[str, Any] = num_experts __a : str = expert_capacity __a : Dict = router_bias __a : int = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) __a : Optional[Any] = router_dtype __a : List[Any] = router_ignore_padding_tokens __a : Union[str, Any] = relative_attention_num_buckets __a : Optional[Any] = relative_attention_max_distance __a : int = dropout_rate __a : Optional[int] = layer_norm_epsilon __a : int = initializer_factor __a : Union[str, Any] = feed_forward_proj __a : Optional[Any] = use_cache __a : Optional[int] = add_router_probs __a : Optional[Any] = router_z_loss_coef __a : Optional[int] = router_aux_loss_coef __a : List[str] = self.feed_forward_proj.split('''-''' ) __a : Union[str, Any] = act_info[-1] __a : Union[str, Any] = act_info[0] == '''gated''' if len(snake_case_ ) > 1 and act_info[0] != "gated" or len(snake_case_ ) > 2: raise ValueError( f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __a : Union[str, Any] = '''gelu_new''' super().__init__( pad_token_id=snake_case_ , eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , **snake_case_ , )
717
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def __UpperCamelCase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict ): __a : List[str] = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' __a : List[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert('''RGB''' ) __a : Union[str, Any] = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73) , (0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11) ), ] ) __a : Optional[Any] = transform(lowerCAmelCase__ ).unsqueeze(0 ).to(lowerCAmelCase__ ) return image def __UpperCamelCase ( lowerCAmelCase__ : int ): if "visual_encoder" in key: __a : Union[str, Any] = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , lowerCAmelCase__ ) if "blocks" in key: __a : Optional[int] = re.sub(R'''blocks''' , '''layers''' , lowerCAmelCase__ ) if "attn" in key: __a : Optional[int] = re.sub(R'''attn''' , '''self_attn''' , lowerCAmelCase__ ) if "norm1" in key: __a : List[Any] = re.sub(R'''norm1''' , '''layer_norm1''' , lowerCAmelCase__ ) if "norm2" in key: __a : List[Any] = re.sub(R'''norm2''' , '''layer_norm2''' , lowerCAmelCase__ ) if "encoder.norm" in key: __a : str = re.sub(R'''encoder.norm''' , '''post_layernorm''' , lowerCAmelCase__ ) if "encoder.patch_embed.proj" in key: __a : str = re.sub(R'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , lowerCAmelCase__ ) if "encoder.pos_embed" in key: __a : Tuple = re.sub(R'''encoder.pos_embed''' , '''embeddings.position_embedding''' , lowerCAmelCase__ ) if "encoder.cls_token" in key: __a : Any = re.sub(R'''encoder.cls_token''' , '''embeddings.class_embedding''' , lowerCAmelCase__ ) if "self_attn" in key: __a : int = re.sub(R'''self_attn.proj''' , '''self_attn.projection''' , lowerCAmelCase__ ) return key @torch.no_grad() def __UpperCamelCase ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[Any]=None ): if config_path is not None: __a : int = BlipConfig.from_pretrained(lowerCAmelCase__ ) else: __a : int = BlipConfig(projection_dim=5_1_2 , text_config={} , vision_config={} ) __a : List[str] = BlipForConditionalGeneration(lowerCAmelCase__ ).eval() __a : List[str] = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' __a : Any = blip_decoder(pretrained=lowerCAmelCase__ , image_size=3_8_4 , vit='''base''' ) __a : Union[str, Any] = pt_model.eval() __a : Tuple = pt_model.state_dict() for key in modified_state_dict.copy(): __a : Tuple = modified_state_dict.pop(lowerCAmelCase__ ) __a : List[Any] = rename_key(lowerCAmelCase__ ) __a : Optional[Any] = value hf_model.load_state_dict(lowerCAmelCase__ ) __a : Union[str, Any] = 3_8_4 __a : Tuple = load_demo_image(image_size=lowerCAmelCase__ , device='''cpu''' ) __a : Optional[Any] = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __a : Union[str, Any] = tokenizer(['''a picture of'''] ).input_ids __a : List[str] = hf_model.generate(lowerCAmelCase__ , lowerCAmelCase__ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 3_8_6_1, 1_9_9_7, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] __a : Optional[Any] = hf_model.generate(lowerCAmelCase__ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowerCAmelCase__ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' __a : Any = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) __a : Tuple = blip_vqa(pretrained=lowerCAmelCase__ , image_size=lowerCAmelCase__ , vit='''base''' ) vqa_model.eval() __a : Optional[Any] = vqa_model.state_dict() for key in modified_state_dict.copy(): __a : List[Any] = modified_state_dict.pop(lowerCAmelCase__ ) __a : Dict = rename_key(lowerCAmelCase__ ) __a : Dict = value __a : List[str] = BlipForQuestionAnswering(lowerCAmelCase__ ) hf_vqa_model.load_state_dict(lowerCAmelCase__ ) __a : Union[str, Any] = ['''How many dogs are in this image?'''] __a : Tuple = tokenizer(lowerCAmelCase__ , return_tensors='''pt''' ).input_ids __a : Union[str, Any] = hf_vqa_model.generate(lowerCAmelCase__ , lowerCAmelCase__ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) __a : Optional[int] = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' __a : Dict = blip_itm(pretrained=lowerCAmelCase__ , image_size=lowerCAmelCase__ , vit='''base''' ) itm_model.eval() __a : Any = itm_model.state_dict() for key in modified_state_dict.copy(): __a : Dict = modified_state_dict.pop(lowerCAmelCase__ ) __a : int = rename_key(lowerCAmelCase__ ) __a : Optional[int] = value __a : Any = BlipForImageTextRetrieval(lowerCAmelCase__ ) __a : List[Any] = ['''A picture of a woman with a dog sitting in a beach'''] __a : Optional[int] = tokenizer( lowerCAmelCase__ , return_tensors='''pt''' , padding='''max_length''' , truncation=lowerCAmelCase__ , max_length=3_5 , ).input_ids hf_itm_model.load_state_dict(lowerCAmelCase__ ) hf_itm_model.eval() __a : int = hf_itm_model(lowerCAmelCase__ , lowerCAmelCase__ , use_itm_head=lowerCAmelCase__ ) __a : Dict = hf_itm_model(lowerCAmelCase__ , lowerCAmelCase__ , use_itm_head=lowerCAmelCase__ ) assert out[0].item() == 0.21_10_68_74_94_27_79_54 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_56_98_84_53_86_50_51_27 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": lowercase__ =argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') lowercase__ =parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
326
0
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowercase: Union[str, Any] = logging.get_logger(__name__) _lowercase: Union[str, Any] = { '''microsoft/conditional-detr-resnet-50''': ( '''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json''' ), } class lowerCamelCase__ ( UpperCAmelCase ): UpperCamelCase__ ="conditional_detr" UpperCamelCase__ =["past_key_values"] UpperCamelCase__ ={ "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Union[str, Any] , lowercase__ : Union[str, Any]=True , lowercase__ : Dict=None , lowercase__ : Dict=3 , lowercase__ : List[str]=3_00 , lowercase__ : Tuple=6 , lowercase__ : List[Any]=20_48 , lowercase__ : str=8 , lowercase__ : Optional[int]=6 , lowercase__ : Any=20_48 , lowercase__ : Tuple=8 , lowercase__ : Optional[int]=0.0 , lowercase__ : Optional[int]=0.0 , lowercase__ : Any=True , lowercase__ : List[str]="relu" , lowercase__ : Union[str, Any]=2_56 , lowercase__ : Optional[int]=0.1 , lowercase__ : Dict=0.0 , lowercase__ : Dict=0.0 , lowercase__ : Tuple=0.0_2 , lowercase__ : Any=1.0 , lowercase__ : Optional[int]=False , lowercase__ : Optional[int]="sine" , lowercase__ : Dict="resnet50" , lowercase__ : List[str]=True , lowercase__ : List[Any]=False , lowercase__ : Dict=2 , lowercase__ : Optional[int]=5 , lowercase__ : Dict=2 , lowercase__ : str=1 , lowercase__ : str=1 , lowercase__ : Optional[int]=2 , lowercase__ : Union[str, Any]=5 , lowercase__ : Dict=2 , lowercase__ : Optional[Any]=0.2_5 , **lowercase__ : List[str] , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) _lowerCAmelCase = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(lowercase__ , lowercase__ ): _lowerCAmelCase = backbone_config.get('model_type' ) _lowerCAmelCase = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase = config_class.from_dict(lowercase__ ) _lowerCAmelCase = use_timm_backbone _lowerCAmelCase = backbone_config _lowerCAmelCase = num_channels _lowerCAmelCase = num_queries _lowerCAmelCase = d_model _lowerCAmelCase = encoder_ffn_dim _lowerCAmelCase = encoder_layers _lowerCAmelCase = encoder_attention_heads _lowerCAmelCase = decoder_ffn_dim _lowerCAmelCase = decoder_layers _lowerCAmelCase = decoder_attention_heads _lowerCAmelCase = dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = activation_function _lowerCAmelCase = init_std _lowerCAmelCase = init_xavier_std _lowerCAmelCase = encoder_layerdrop _lowerCAmelCase = decoder_layerdrop _lowerCAmelCase = encoder_layers _lowerCAmelCase = auxiliary_loss _lowerCAmelCase = position_embedding_type _lowerCAmelCase = backbone _lowerCAmelCase = use_pretrained_backbone _lowerCAmelCase = dilation # Hungarian matcher _lowerCAmelCase = class_cost _lowerCAmelCase = bbox_cost _lowerCAmelCase = giou_cost # Loss coefficients _lowerCAmelCase = mask_loss_coefficient _lowerCAmelCase = dice_loss_coefficient _lowerCAmelCase = cls_loss_coefficient _lowerCAmelCase = bbox_loss_coefficient _lowerCAmelCase = giou_loss_coefficient _lowerCAmelCase = focal_alpha super().__init__(is_encoder_decoder=lowercase__ , **lowercase__ ) @property def SCREAMING_SNAKE_CASE__ ( self : Any ): return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return self.d_model def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _lowerCAmelCase = self.backbone_config.to_dict() _lowerCAmelCase = self.__class__.model_type return output class lowerCamelCase__ ( UpperCAmelCase ): UpperCamelCase__ =version.parse("1.11" ) @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): return 1e-5 @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): return 12
192
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCamelCase__ : def __init__( self : Union[str, Any] , lowercase__ : List[Any] , lowercase__ : Dict=99 , lowercase__ : List[Any]=13 , lowercase__ : Union[str, Any]=7 , lowercase__ : int=9 , lowercase__ : List[str]=True , lowercase__ : str=True , lowercase__ : Any=False , lowercase__ : int=32 , lowercase__ : Any=5 , lowercase__ : int=4 , lowercase__ : int=37 , lowercase__ : List[str]=8 , lowercase__ : Optional[int]=0.1 , lowercase__ : List[Any]=0.0_0_2 , lowercase__ : str=1 , lowercase__ : List[str]=0 , lowercase__ : Optional[int]=0 , lowercase__ : List[str]=None , lowercase__ : Any=None , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = encoder_seq_length _lowerCAmelCase = decoder_seq_length # For common tests _lowerCAmelCase = self.decoder_seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_attention_mask _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = d_ff _lowerCAmelCase = relative_attention_num_buckets _lowerCAmelCase = dropout_rate _lowerCAmelCase = initializer_factor _lowerCAmelCase = eos_token_id _lowerCAmelCase = pad_token_id _lowerCAmelCase = decoder_start_token_id _lowerCAmelCase = None _lowerCAmelCase = decoder_layers def SCREAMING_SNAKE_CASE__ ( self : str ): return TaConfig.from_pretrained('google/umt5-base' ) def SCREAMING_SNAKE_CASE__ ( self : int , lowercase__ : List[str] , lowercase__ : Any , lowercase__ : int , lowercase__ : int=None , lowercase__ : str=None , lowercase__ : int=None , lowercase__ : Optional[int]=None , lowercase__ : List[Any]=None , ): if attention_mask is None: _lowerCAmelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _lowerCAmelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _lowerCAmelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=lowercase__ ) if decoder_head_mask is None: _lowerCAmelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=lowercase__ ) if cross_attn_head_mask is None: _lowerCAmelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=lowercase__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _lowerCAmelCase = input_ids.clamp(self.pad_token_id + 1 ) _lowerCAmelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) _lowerCAmelCase = self.get_config() _lowerCAmelCase = config.num_attention_heads _lowerCAmelCase = self.prepare_inputs_dict(lowercase__ , lowercase__ , lowercase__ ) return config, input_dict def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase , _lowerCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Tuple ): return TaConfig( vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def SCREAMING_SNAKE_CASE__ ( self : Dict , lowercase__ : List[str] , lowercase__ : str , lowercase__ : Any , lowercase__ : Optional[int] , lowercase__ : Tuple , lowercase__ : Dict , ): _lowerCAmelCase = UMTaModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model( input_ids=lowercase__ , decoder_input_ids=lowercase__ , attention_mask=lowercase__ , decoder_attention_mask=lowercase__ , ) _lowerCAmelCase = model(input_ids=lowercase__ , decoder_input_ids=lowercase__ ) _lowerCAmelCase = result.last_hidden_state _lowerCAmelCase = result.past_key_values _lowerCAmelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(lowercase__ ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def SCREAMING_SNAKE_CASE__ ( self : Any , lowercase__ : Tuple , lowercase__ : Tuple , lowercase__ : List[Any] , lowercase__ : Dict , lowercase__ : str , lowercase__ : List[Any] , ): _lowerCAmelCase = UMTaModel(config=lowercase__ ).get_decoder().to(lowercase__ ).eval() # first forward pass _lowerCAmelCase = model(lowercase__ , use_cache=lowercase__ ) _lowerCAmelCase = model(lowercase__ ) _lowerCAmelCase = model(lowercase__ , use_cache=lowercase__ ) self.parent.assertTrue(len(lowercase__ ) == len(lowercase__ ) ) self.parent.assertTrue(len(lowercase__ ) == len(lowercase__ ) + 1 ) _lowerCAmelCase , _lowerCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and _lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCAmelCase = model(lowercase__ )['last_hidden_state'] _lowerCAmelCase = model(lowercase__ , past_key_values=lowercase__ )['last_hidden_state'] # select random slice _lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach() _lowerCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , lowercase__ : Tuple , lowercase__ : Dict , ): _lowerCAmelCase = UMTaModel(config=lowercase__ ).to(lowercase__ ).half().eval() _lowerCAmelCase = model(**lowercase__ )['last_hidden_state'] self.parent.assertFalse(torch.isnan(lowercase__ ).any().item() ) @require_torch class lowerCamelCase__ ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) UpperCamelCase__ =(UMTaForConditionalGeneration,) if is_torch_available() else () UpperCamelCase__ =( { "conversational": UMTaForConditionalGeneration, "feature-extraction": UMTaModel, "summarization": UMTaForConditionalGeneration, "text2text-generation": UMTaForConditionalGeneration, "translation": UMTaForConditionalGeneration, "question-answering": UMTaForQuestionAnswering, } if is_torch_available() else {} ) UpperCamelCase__ =True UpperCamelCase__ =False UpperCamelCase__ =False UpperCamelCase__ =True UpperCamelCase__ =True # The small UMT5 model needs higher percentages for CPU/MP tests UpperCamelCase__ =[0.8, 0.9] def SCREAMING_SNAKE_CASE__ ( self : List[str] ): _lowerCAmelCase = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def SCREAMING_SNAKE_CASE__ ( self : str ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() _lowerCAmelCase = UMTaModel(config_and_inputs[0] ).to(lowercase__ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( lowercase__ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'{tmpdirname}/t5_test.onnx' , export_params=lowercase__ , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : str ): _lowerCAmelCase = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() _lowerCAmelCase = config_and_inputs[0] _lowerCAmelCase = UMTaForConditionalGeneration(lowercase__ ).eval() model.to(lowercase__ ) _lowerCAmelCase = { 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=lowercase__ ), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=lowercase__ ), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=lowercase__ ), } for attn_name, (name, mask) in zip(lowercase__ , head_masking.items() ): _lowerCAmelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _lowerCAmelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=lowercase__ ) _lowerCAmelCase = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=lowercase__ , return_dict_in_generate=lowercase__ , **lowercase__ , ) # We check the state of decoder_attentions and cross_attentions just from the last step _lowerCAmelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def SCREAMING_SNAKE_CASE__ ( self : Any ): pass @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( unittest.TestCase ): @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def SCREAMING_SNAKE_CASE__ ( self : str ): _lowerCAmelCase = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=lowercase__ ).to(lowercase__ ) _lowerCAmelCase = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=lowercase__ , legacy=lowercase__ ) _lowerCAmelCase = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] _lowerCAmelCase = tokenizer(lowercase__ , return_tensors='pt' , padding=lowercase__ ).input_ids # fmt: off _lowerCAmelCase = torch.tensor( [ [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1], ] ) # fmt: on torch.testing.assert_allclose(lowercase__ , lowercase__ ) _lowerCAmelCase = model.generate(input_ids.to(lowercase__ ) ) _lowerCAmelCase = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] _lowerCAmelCase = tokenizer.batch_decode(lowercase__ ) self.assertEqual(lowercase__ , lowercase__ )
192
1
'''simple docstring''' def _snake_case ( A , A , A ) -> float: return round(float(moles / volume ) * nfactor ) def _snake_case ( A , A , A ) -> float: return round(float((moles * 0.0_821 * temperature) / (volume) ) ) def _snake_case ( A , A , A ) -> float: return round(float((moles * 0.0_821 * temperature) / (pressure) ) ) def _snake_case ( A , A , A ) -> float: return round(float((pressure * volume) / (0.0_821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
715
'''simple docstring''' def _snake_case ( A , A ) -> bool: lowerCAmelCase__ = len(A ) + 1 lowerCAmelCase__ = len(A ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. lowerCAmelCase__ = [[0 for i in range(A )] for j in range(A )] # since string of zero length match pattern of zero length lowerCAmelCase__ = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , A ): lowerCAmelCase__ = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , A ): lowerCAmelCase__ = dp[0][j - 2] if pattern[j - 1] == '''*''' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , A ): for j in range(1 , A ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": lowerCAmelCase__ = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: lowerCAmelCase__ = 1 elif pattern[j - 2] in (input_string[i - 1], "."): lowerCAmelCase__ = dp[i - 1][j] else: lowerCAmelCase__ = 0 else: lowerCAmelCase__ = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") __UpperCAmelCase = '''aab''' __UpperCAmelCase = '''c*a*b''' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f"""{input_string} matches the given pattern {pattern}""") else: print(f"""{input_string} does not match with the given pattern {pattern}""")
98
0
'''simple docstring''' import cmath import math def _A ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' A__ = math.radians(UpperCAmelCase ) A__ = math.radians(UpperCAmelCase ) # Convert voltage and current to rectangular form A__ = cmath.rect(UpperCAmelCase ,UpperCAmelCase ) A__ = cmath.rect(UpperCAmelCase ,UpperCAmelCase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
531
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = TransfoXLTokenizer UpperCamelCase = False UpperCamelCase = False def a__ ( self : Optional[Any] ) -> int: """simple docstring""" super().setUp() lowerCamelCase_ = [ '<unk>', '[CLS]', '[SEP]', 'want', 'unwanted', 'wa', 'un', 'running', ',', 'low', 'l', ] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def a__ ( self : Optional[Any] , **A_ : Tuple ) -> Any: """simple docstring""" lowerCamelCase_ = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **A_ ) def a__ ( self : List[str] , A_ : Dict ) -> Any: """simple docstring""" lowerCamelCase_ = '<unk> UNwanted , running' lowerCamelCase_ = '<unk> unwanted, running' return input_text, output_text def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=A_ ) lowerCamelCase_ = tokenizer.tokenize('<unk> UNwanted , running' ) self.assertListEqual(A_ , ['<unk>', 'unwanted', ',', 'running'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [0, 4, 8, 7] ) def a__ ( self : Any ) -> str: """simple docstring""" lowerCamelCase_ = TransfoXLTokenizer(lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) def a__ ( self : int ) -> Dict: """simple docstring""" lowerCamelCase_ = TransfoXLTokenizer(lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ = TransfoXLTokenizer(lower_case=A_ ) lowerCamelCase_ = 'Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?' lowerCamelCase_ = [ 'Hello', '(', 'bracket', ')', 'and', 'side', '@-@', 'scrolled', '[', 'and', ']', 'Henry', '\'s', '$', '5', '@,@', '000', 'with', '3', '@.@', '34', 'm', '.', 'What', '\'s', 'up', '!', '?', ] self.assertListEqual(tokenizer.tokenize(A_ ) , A_ ) self.assertEqual(tokenizer.convert_tokens_to_string(A_ ) , A_ ) def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = len(A_ ) tokenizer.add_tokens(['new1', 'new2'] ) tokenizer.move_added_token('new1' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(A_ ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('new1' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , 'new1' )
70
0
import flax.linen as nn import jax import jax.numpy as jnp class _UpperCamelCase ( nn.Module ): UpperCAmelCase_ = 42 UpperCAmelCase_ = jnp.floataa def UpperCAmelCase_ ( self :Optional[int] ) -> int: UpperCAmelCase__ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self :Dict , lowerCamelCase :Tuple ) -> Any: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = hidden_states.shape UpperCAmelCase__ = jax.image.resize( lowerCamelCase , shape=(batch, height * 2, width * 2, channels) , method="nearest" , ) UpperCAmelCase__ = self.conv(lowerCamelCase ) return hidden_states class _UpperCamelCase ( nn.Module ): UpperCAmelCase_ = 42 UpperCAmelCase_ = jnp.floataa def UpperCAmelCase_ ( self :int ) -> Optional[int]: UpperCAmelCase__ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self :Tuple , lowerCamelCase :str ) -> List[str]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) UpperCAmelCase__ = self.conv(lowerCamelCase ) return hidden_states class _UpperCamelCase ( nn.Module ): UpperCAmelCase_ = 42 UpperCAmelCase_ = None UpperCAmelCase_ = 0.0 UpperCAmelCase_ = None UpperCAmelCase_ = jnp.floataa def UpperCAmelCase_ ( self :Optional[int] ) -> Union[str, Any]: UpperCAmelCase__ = self.in_channels if self.out_channels is None else self.out_channels UpperCAmelCase__ = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) UpperCAmelCase__ = nn.Conv( lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) UpperCAmelCase__ = nn.Dense(lowerCamelCase , dtype=self.dtype ) UpperCAmelCase__ = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) UpperCAmelCase__ = nn.Dropout(self.dropout_prob ) UpperCAmelCase__ = nn.Conv( lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) UpperCAmelCase__ = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut UpperCAmelCase__ = None if use_nin_shortcut: UpperCAmelCase__ = nn.Conv( lowerCamelCase , kernel_size=(1, 1) , strides=(1, 1) , padding="VALID" , dtype=self.dtype , ) def __call__( self :int , lowerCamelCase :List[str] , lowerCamelCase :int , lowerCamelCase :str=True ) -> List[str]: UpperCAmelCase__ = hidden_states UpperCAmelCase__ = self.norma(lowerCamelCase ) UpperCAmelCase__ = nn.swish(lowerCamelCase ) UpperCAmelCase__ = self.conva(lowerCamelCase ) UpperCAmelCase__ = self.time_emb_proj(nn.swish(lowerCamelCase ) ) UpperCAmelCase__ = jnp.expand_dims(jnp.expand_dims(lowerCamelCase , 1 ) , 1 ) UpperCAmelCase__ = hidden_states + temb UpperCAmelCase__ = self.norma(lowerCamelCase ) UpperCAmelCase__ = nn.swish(lowerCamelCase ) UpperCAmelCase__ = self.dropout(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = self.conva(lowerCamelCase ) if self.conv_shortcut is not None: UpperCAmelCase__ = self.conv_shortcut(lowerCamelCase ) return hidden_states + residual
364
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class _UpperCamelCase ( lowerCAmelCase ): # to overwrite at feature extractactor specific tests UpperCAmelCase_ = None UpperCAmelCase_ = None @property def UpperCAmelCase_ ( self :int ) -> int: return self.feat_extract_tester.prepare_feat_extract_dict() def UpperCAmelCase_ ( self :Any ) -> str: UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(lowerCamelCase , "feature_size" ) ) self.assertTrue(hasattr(lowerCamelCase , "sampling_rate" ) ) self.assertTrue(hasattr(lowerCamelCase , "padding_value" ) ) def UpperCAmelCase_ ( self :str ) -> int: UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ = feat_extract.model_input_names[0] UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(lowerCamelCase ) == len(lowerCamelCase ) for x, y in zip(lowerCamelCase , processed_features[input_name] ) ) ) UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCamelCase ) UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} , tensor_type="np" ) UpperCAmelCase__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def UpperCAmelCase_ ( self :Dict ) -> Union[str, Any]: UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCamelCase ) UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ = feat_extract.model_input_names[0] UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) UpperCAmelCase__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def UpperCAmelCase_ ( self :Tuple ) -> Dict: UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCamelCase ) UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ = feat_extract.model_input_names[0] UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} , tensor_type="tf" ) UpperCAmelCase__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def UpperCAmelCase_ ( self :int , lowerCamelCase :int=False ) -> str: def _inputs_have_equal_length(lowerCamelCase :Union[str, Any] ): UpperCAmelCase__ = len(input[0] ) for input_slice in input[1:]: if len(lowerCamelCase ) != length: return False return True def _inputs_are_equal(lowerCamelCase :Dict , lowerCamelCase :Optional[Any] ): if len(lowerCamelCase ) != len(lowerCamelCase ): return False for input_slice_a, input_slice_a in zip(lowerCamelCase , lowerCamelCase ): if not np.allclose(np.asarray(lowerCamelCase ) , np.asarray(lowerCamelCase ) , atol=1e-3 ): return False return True UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCamelCase ) UpperCAmelCase__ = feat_extract.model_input_names[0] UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase__ = self.feat_extract_tester.seq_length_diff UpperCAmelCase__ = self.feat_extract_tester.max_seq_length + pad_diff UpperCAmelCase__ = self.feat_extract_tester.min_seq_length UpperCAmelCase__ = self.feat_extract_tester.batch_size UpperCAmelCase__ = self.feat_extract_tester.feature_size # test padding for List[int] + numpy UpperCAmelCase__ = feat_extract.pad(lowerCamelCase , padding=lowerCamelCase ) UpperCAmelCase__ = input_a[input_name] UpperCAmelCase__ = feat_extract.pad(lowerCamelCase , padding="longest" ) UpperCAmelCase__ = input_a[input_name] UpperCAmelCase__ = feat_extract.pad(lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[-1] ) ) UpperCAmelCase__ = input_a[input_name] UpperCAmelCase__ = feat_extract.pad(lowerCamelCase , padding="longest" , return_tensors="np" ) UpperCAmelCase__ = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(lowerCamelCase ): feat_extract.pad(lowerCamelCase , padding="max_length" )[input_name] UpperCAmelCase__ = feat_extract.pad( lowerCamelCase , padding="max_length" , max_length=lowerCamelCase , return_tensors="np" ) UpperCAmelCase__ = input_a[input_name] self.assertFalse(_inputs_have_equal_length(lowerCamelCase ) ) self.assertTrue(_inputs_have_equal_length(lowerCamelCase ) ) self.assertTrue(_inputs_have_equal_length(lowerCamelCase ) ) self.assertTrue(_inputs_are_equal(lowerCamelCase , lowerCamelCase ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy UpperCAmelCase__ = feat_extract.pad(lowerCamelCase , pad_to_multiple_of=10 ) UpperCAmelCase__ = input_a[input_name] UpperCAmelCase__ = feat_extract.pad(lowerCamelCase , padding="longest" , pad_to_multiple_of=10 ) UpperCAmelCase__ = input_a[input_name] UpperCAmelCase__ = feat_extract.pad( lowerCamelCase , padding="max_length" , pad_to_multiple_of=10 , max_length=lowerCamelCase ) UpperCAmelCase__ = input_a[input_name] UpperCAmelCase__ = feat_extract.pad( lowerCamelCase , padding="max_length" , pad_to_multiple_of=10 , max_length=lowerCamelCase , return_tensors="np" , ) UpperCAmelCase__ = input_a[input_name] self.assertTrue(all(len(lowerCamelCase ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(lowerCamelCase , lowerCamelCase ) ) UpperCAmelCase__ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(lowerCamelCase ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct UpperCAmelCase__ = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def UpperCAmelCase_ ( self :List[str] , lowerCamelCase :int=False ) -> str: def _inputs_have_equal_length(lowerCamelCase :Any ): UpperCAmelCase__ = len(input[0] ) for input_slice in input[1:]: if len(lowerCamelCase ) != length: return False return True def _inputs_are_equal(lowerCamelCase :Optional[int] , lowerCamelCase :str ): if len(lowerCamelCase ) != len(lowerCamelCase ): return False for input_slice_a, input_slice_a in zip(lowerCamelCase , lowerCamelCase ): if not np.allclose(np.asarray(lowerCamelCase ) , np.asarray(lowerCamelCase ) , atol=1e-3 ): return False return True UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCamelCase ) UpperCAmelCase__ = feat_extract.model_input_names[0] UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} ) # truncate to smallest UpperCAmelCase__ = feat_extract.pad( lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[0] ) , truncation=lowerCamelCase ) UpperCAmelCase__ = input_a[input_name] UpperCAmelCase__ = feat_extract.pad(lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[0] ) ) UpperCAmelCase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCamelCase ) ) self.assertFalse(_inputs_have_equal_length(lowerCamelCase ) ) # truncate to smallest with np UpperCAmelCase__ = feat_extract.pad( lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[0] ) , return_tensors="np" , truncation=lowerCamelCase , ) UpperCAmelCase__ = input_a[input_name] UpperCAmelCase__ = feat_extract.pad( lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[0] ) , return_tensors="np" ) UpperCAmelCase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCamelCase ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCamelCase ) ) # truncate to middle UpperCAmelCase__ = feat_extract.pad( lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[1] ) , truncation=lowerCamelCase , return_tensors="np" , ) UpperCAmelCase__ = input_a[input_name] UpperCAmelCase__ = feat_extract.pad( lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[1] ) , truncation=lowerCamelCase ) UpperCAmelCase__ = input_a[input_name] UpperCAmelCase__ = feat_extract.pad( lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[1] ) , return_tensors="np" ) UpperCAmelCase__ = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(lowerCamelCase ) ) self.assertTrue(_inputs_have_equal_length(lowerCamelCase ) ) self.assertTrue(_inputs_are_equal(lowerCamelCase , lowerCamelCase ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCamelCase ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCamelCase ): feat_extract.pad(lowerCamelCase , truncation=lowerCamelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCamelCase ): feat_extract.pad(lowerCamelCase , padding="longest" , truncation=lowerCamelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCamelCase ): feat_extract.pad(lowerCamelCase , padding="longest" , truncation=lowerCamelCase )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(lowerCamelCase ): feat_extract.pad(lowerCamelCase , padding="max_length" , truncation=lowerCamelCase )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy UpperCAmelCase__ = 12 UpperCAmelCase__ = feat_extract.pad( lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=lowerCamelCase , truncation=lowerCamelCase , ) UpperCAmelCase__ = input_a[input_name] UpperCAmelCase__ = feat_extract.pad( lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=lowerCamelCase , ) UpperCAmelCase__ = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of UpperCAmelCase__ = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: UpperCAmelCase__ = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(lowerCamelCase ) ) self.assertFalse(_inputs_have_equal_length(lowerCamelCase ) ) def UpperCAmelCase_ ( self :int ) -> List[str]: self._check_padding(numpify=lowerCamelCase ) def UpperCAmelCase_ ( self :List[Any] ) -> int: self._check_padding(numpify=lowerCamelCase ) def UpperCAmelCase_ ( self :str ) -> str: self._check_truncation(numpify=lowerCamelCase ) def UpperCAmelCase_ ( self :Dict ) -> str: self._check_truncation(numpify=lowerCamelCase ) @require_torch def UpperCAmelCase_ ( self :int ) -> Any: UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase__ = feat_extract.model_input_names[0] UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase__ = feat_extract.pad(lowerCamelCase , padding="longest" , return_tensors="np" )[input_name] UpperCAmelCase__ = feat_extract.pad(lowerCamelCase , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def UpperCAmelCase_ ( self :List[Any] ) -> Optional[Any]: UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase__ = feat_extract.model_input_names[0] UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase__ = feat_extract.pad(lowerCamelCase , padding="longest" , return_tensors="np" )[input_name] UpperCAmelCase__ = feat_extract.pad(lowerCamelCase , padding="longest" , return_tensors="tf" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def UpperCAmelCase_ ( self :List[str] ) -> str: UpperCAmelCase__ = self.feat_extract_dict UpperCAmelCase__ = True UpperCAmelCase__ = self.feature_extraction_class(**lowerCamelCase ) UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase__ = [len(lowerCamelCase ) for x in speech_inputs] UpperCAmelCase__ = feat_extract.model_input_names[0] UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase__ = feat_extract.pad(lowerCamelCase , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , lowerCamelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , lowerCamelCase ) def UpperCAmelCase_ ( self :int ) -> int: UpperCAmelCase__ = self.feat_extract_dict UpperCAmelCase__ = True UpperCAmelCase__ = self.feature_extraction_class(**lowerCamelCase ) UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase__ = [len(lowerCamelCase ) for x in speech_inputs] UpperCAmelCase__ = feat_extract.model_input_names[0] UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase__ = min(lowerCamelCase ) UpperCAmelCase__ = feat_extract.pad( lowerCamelCase , padding="max_length" , max_length=lowerCamelCase , truncation=lowerCamelCase , return_tensors="np" ) self.assertIn("attention_mask" , lowerCamelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
364
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.get_logger(__name__) def _a ( lowercase__ : List[str] , lowercase__ : List[str]=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'deit.embeddings.cls_token'), ('dist_token', 'deit.embeddings.distillation_token'), ('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'deit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" SCREAMING_SNAKE_CASE__ : Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith('deit' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('norm.weight', 'deit.layernorm.weight'), ('norm.bias', 'deit.layernorm.bias'), ('head.weight', 'cls_classifier.weight'), ('head.bias', 'cls_classifier.bias'), ('head_dist.weight', 'distillation_classifier.weight'), ('head_dist.bias', 'distillation_classifier.bias'), ] ) return rename_keys def _a ( lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] , lowercase__ : Optional[int]=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE__ : Optional[Any] = '' else: SCREAMING_SNAKE_CASE__ : Optional[Any] = 'deit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ : Any = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ : Optional[int] = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE__ : Union[str, Any] = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE__ : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE__ : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE__ : int = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE__ : List[str] = in_proj_bias[-config.hidden_size :] def _a ( lowercase__ : List[Any] , lowercase__ : str , lowercase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = dct.pop(lowercase__ ) SCREAMING_SNAKE_CASE__ : str = val def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = 'http://images.cocodataset.org/val2017/000000039769.jpg' SCREAMING_SNAKE_CASE__ : Any = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def _a ( lowercase__ : Any , lowercase__ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = DeiTConfig() # all deit models have fine-tuned heads SCREAMING_SNAKE_CASE__ : Optional[Any] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size SCREAMING_SNAKE_CASE__ : List[Any] = 10_00 SCREAMING_SNAKE_CASE__ : str = 'huggingface/label-files' SCREAMING_SNAKE_CASE__ : Optional[int] = 'imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE__ : Dict = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='dataset' ) , 'r' ) ) SCREAMING_SNAKE_CASE__ : Any = {int(lowercase__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ : int = idalabel SCREAMING_SNAKE_CASE__ : Any = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ : Any = int(deit_name[-6:-4] ) SCREAMING_SNAKE_CASE__ : List[Any] = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('tiny' ): SCREAMING_SNAKE_CASE__ : Optional[int] = 1_92 SCREAMING_SNAKE_CASE__ : str = 7_68 SCREAMING_SNAKE_CASE__ : Optional[int] = 12 SCREAMING_SNAKE_CASE__ : Optional[Any] = 3 elif deit_name[9:].startswith('small' ): SCREAMING_SNAKE_CASE__ : List[Any] = 3_84 SCREAMING_SNAKE_CASE__ : Dict = 15_36 SCREAMING_SNAKE_CASE__ : Dict = 12 SCREAMING_SNAKE_CASE__ : List[str] = 6 if deit_name[9:].startswith('base' ): pass elif deit_name[4:].startswith('large' ): SCREAMING_SNAKE_CASE__ : List[str] = 10_24 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 40_96 SCREAMING_SNAKE_CASE__ : List[str] = 24 SCREAMING_SNAKE_CASE__ : str = 16 # load original model from timm SCREAMING_SNAKE_CASE__ : Union[str, Any] = timm.create_model(lowercase__ , pretrained=lowercase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys SCREAMING_SNAKE_CASE__ : Optional[Any] = timm_model.state_dict() SCREAMING_SNAKE_CASE__ : Any = create_rename_keys(lowercase__ , lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ ) # load HuggingFace model SCREAMING_SNAKE_CASE__ : str = DeiTForImageClassificationWithTeacher(lowercase__ ).eval() model.load_state_dict(lowercase__ ) # Check outputs on an image, prepared by DeiTImageProcessor SCREAMING_SNAKE_CASE__ : Tuple = int( (2_56 / 2_24) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 SCREAMING_SNAKE_CASE__ : Optional[Any] = DeiTImageProcessor(size=lowercase__ , crop_size=config.image_size ) SCREAMING_SNAKE_CASE__ : List[Any] = image_processor(images=prepare_img() , return_tensors='pt' ) SCREAMING_SNAKE_CASE__ : Any = encoding['pixel_values'] SCREAMING_SNAKE_CASE__ : Tuple = model(lowercase__ ) SCREAMING_SNAKE_CASE__ : List[str] = timm_model(lowercase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) SCREAMING_SNAKE_CASE__ : Dict = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
85
"""simple docstring""" import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self ) -> Dict: A__ = ["a", "b", "c"] # Defaults to last layer if both are None A__ , A__ = get_aligned_output_features_output_indices(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , ["c"] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , [2] ) # Out indices set to match out features A__ , A__ = get_aligned_output_features_output_indices(["a", "c"] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , ["a", "c"] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , [0, 2] ) # Out features set to match out indices A__ , A__ = get_aligned_output_features_output_indices(SCREAMING_SNAKE_CASE__ , [0, 2] , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , ["a", "c"] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , [0, 2] ) # Out features selected from negative indices A__ , A__ = get_aligned_output_features_output_indices(SCREAMING_SNAKE_CASE__ , [-3, -1] , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , ["a", "c"] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , [-3, -1] ) def snake_case__ ( self ) -> Dict: # Stage names must be set with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(["a", "b"] , (0, 1) , SCREAMING_SNAKE_CASE__ ) # Out features must be a list with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(("a", "b") , (0, 1) , ["a", "b"] ) # Out features must be a subset of stage names with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(["a", "b"] , (0, 1) , ["a"] ) # Out indices must be a list or tuple with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(SCREAMING_SNAKE_CASE__ , 0 , ["a", "b"] ) # Out indices must be a subset of stage names with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(SCREAMING_SNAKE_CASE__ , (0, 1) , ["a"] ) # Out features and out indices must be the same length with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(["a", "b"] , (0,) , ["a", "b", "c"] ) # Out features should match out indices with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(["a", "b"] , (0, 2) , ["a", "b", "c"] ) # Out features and out indices should be in order with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(["b", "a"] , (0, 1) , ["a", "b"] ) # Check passes with valid inputs verify_out_features_out_indices(["a", "b", "d"] , (0, 1, -1) , ["a", "b", "c", "d"] ) def snake_case__ ( self ) -> List[Any]: A__ = BackboneMixin() A__ = ["a", "b", "c"] A__ = ["a", "c"] A__ = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["a", "c"] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly A__ = ["a", "b"] self.assertEqual(backbone.out_features , ["a", "b"] ) self.assertEqual(backbone.out_indices , [0, 1] ) A__ = [-3, -1] self.assertEqual(backbone.out_features , ["a", "c"] ) self.assertEqual(backbone.out_indices , [-3, -1] )
104
0
"""simple docstring""" import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def lowercase__ ( ): with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(snake_case_ ): requests.request('''GET''' , '''https://huggingface.co''' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('''GET''' , '''https://huggingface.co''' , timeout=1.0 ) @pytest.mark.integration def lowercase__ ( ): with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('''GET''' , '''https://huggingface.co''' ) def lowercase__ ( ): with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(snake_case_ ): http_head('''https://huggingface.co''' )
713
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Tuple = logging.get_logger(__name__) _lowercase : Optional[int] = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : int = "realm" def __init__( self : Optional[int] , _lowercase : Tuple=3_05_22 , _lowercase : List[str]=7_68 , _lowercase : Tuple=1_28 , _lowercase : int=12 , _lowercase : Tuple=12 , _lowercase : List[Any]=8 , _lowercase : Tuple=30_72 , _lowercase : Tuple="gelu_new" , _lowercase : str=0.1 , _lowercase : Union[str, Any]=0.1 , _lowercase : Union[str, Any]=5_12 , _lowercase : Optional[int]=2 , _lowercase : Any=0.02 , _lowercase : Union[str, Any]=1E-12 , _lowercase : Dict=2_56 , _lowercase : Optional[int]=10 , _lowercase : List[Any]=1E-3 , _lowercase : Optional[int]=5 , _lowercase : List[str]=3_20 , _lowercase : Optional[int]=13_35_37_18 , _lowercase : List[Any]=50_00 , _lowercase : Dict=1 , _lowercase : int=0 , _lowercase : Any=2 , **_lowercase : Optional[Any] , ): super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) # Common config __UpperCAmelCase = vocab_size __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = hidden_size __UpperCAmelCase = retriever_proj_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = num_candidates __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = initializer_range __UpperCAmelCase = type_vocab_size __UpperCAmelCase = layer_norm_eps # Reader config __UpperCAmelCase = span_hidden_size __UpperCAmelCase = max_span_width __UpperCAmelCase = reader_layer_norm_eps __UpperCAmelCase = reader_beam_size __UpperCAmelCase = reader_seq_len # Retrieval config __UpperCAmelCase = num_block_records __UpperCAmelCase = searcher_beam_size
397
0
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=__lowerCAmelCase) class lowerCAmelCase ( __lowerCAmelCase): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __lowercase : str = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True}) __lowercase : ClassVar[Features] = Features({'''question''': Value('''string'''), '''context''': Value('''string''')}) __lowercase : ClassVar[Features] = Features( { '''answers''': Sequence( { '''text''': Value('''string'''), '''answer_start''': Value('''int32'''), }) }) __lowercase : str = "question" __lowercase : str = "context" __lowercase : str = "answers" @property def lowerCAmelCase ( self ) -> Dict[str, str]: '''simple docstring''' return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
24
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _UpperCAmelCase : Tuple = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
683
0
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { "google/owlvit-base-patch32": "https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json", "google/owlvit-base-patch16": "https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json", "google/owlvit-large-patch14": "https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json", } class __lowercase (_UpperCAmelCase ): _UpperCamelCase = """owlvit_text_model""" def __init__( self , A_=4_9408 , A_=512 , A_=2048 , A_=12 , A_=8 , A_=16 , A_="quick_gelu" , A_=1e-5 , A_=0.0 , A_=0.02 , A_=1.0 , A_=0 , A_=4_9406 , A_=4_9407 , **A_ , ) ->str: '''simple docstring''' super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) __lowerCAmelCase : Tuple = vocab_size __lowerCAmelCase : List[str] = hidden_size __lowerCAmelCase : int = intermediate_size __lowerCAmelCase : Union[str, Any] = num_hidden_layers __lowerCAmelCase : Dict = num_attention_heads __lowerCAmelCase : int = max_position_embeddings __lowerCAmelCase : Union[str, Any] = hidden_act __lowerCAmelCase : Optional[int] = layer_norm_eps __lowerCAmelCase : List[str] = attention_dropout __lowerCAmelCase : Optional[int] = initializer_range __lowerCAmelCase : Dict = initializer_factor @classmethod def UpperCamelCase__ ( cls , A_ , **A_ ) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(A_ ) __lowerCAmelCase, __lowerCAmelCase : List[Any] = cls.get_config_dict(A_ , **A_ ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": __lowerCAmelCase : List[Any] = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(A_ , **A_ ) class __lowercase (_UpperCAmelCase ): _UpperCamelCase = """owlvit_vision_model""" def __init__( self , A_=768 , A_=3072 , A_=12 , A_=12 , A_=3 , A_=768 , A_=32 , A_="quick_gelu" , A_=1e-5 , A_=0.0 , A_=0.02 , A_=1.0 , **A_ , ) ->int: '''simple docstring''' super().__init__(**A_ ) __lowerCAmelCase : int = hidden_size __lowerCAmelCase : List[Any] = intermediate_size __lowerCAmelCase : Union[str, Any] = num_hidden_layers __lowerCAmelCase : Tuple = num_attention_heads __lowerCAmelCase : List[str] = num_channels __lowerCAmelCase : Dict = image_size __lowerCAmelCase : Dict = patch_size __lowerCAmelCase : List[str] = hidden_act __lowerCAmelCase : int = layer_norm_eps __lowerCAmelCase : Optional[int] = attention_dropout __lowerCAmelCase : Dict = initializer_range __lowerCAmelCase : Optional[int] = initializer_factor @classmethod def UpperCamelCase__ ( cls , A_ , **A_ ) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(A_ ) __lowerCAmelCase, __lowerCAmelCase : str = cls.get_config_dict(A_ , **A_ ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": __lowerCAmelCase : Tuple = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(A_ , **A_ ) class __lowercase (_UpperCAmelCase ): _UpperCamelCase = """owlvit""" _UpperCamelCase = True def __init__( self , A_=None , A_=None , A_=512 , A_=2.6_592 , A_=True , **A_ , ) ->Optional[Any]: '''simple docstring''' super().__init__(**A_ ) if text_config is None: __lowerCAmelCase : int = {} logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''' ) if vision_config is None: __lowerCAmelCase : str = {} logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''' ) __lowerCAmelCase : Tuple = OwlViTTextConfig(**A_ ) __lowerCAmelCase : Union[str, Any] = OwlViTVisionConfig(**A_ ) __lowerCAmelCase : Optional[Any] = projection_dim __lowerCAmelCase : List[Any] = logit_scale_init_value __lowerCAmelCase : List[str] = return_dict __lowerCAmelCase : Optional[Any] = 1.0 @classmethod def UpperCamelCase__ ( cls , A_ , **A_ ) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(A_ ) __lowerCAmelCase, __lowerCAmelCase : Optional[Any] = cls.get_config_dict(A_ , **A_ ) if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(A_ , **A_ ) @classmethod def UpperCamelCase__ ( cls , A_ , A_ , **A_ ) ->Any: '''simple docstring''' __lowerCAmelCase : Optional[Any] = {} __lowerCAmelCase : int = text_config __lowerCAmelCase : List[Any] = vision_config return cls.from_dict(A_ , **A_ ) def UpperCamelCase__ ( self ) ->int: '''simple docstring''' __lowerCAmelCase : List[Any] = copy.deepcopy(self.__dict__ ) __lowerCAmelCase : List[Any] = self.text_config.to_dict() __lowerCAmelCase : Optional[Any] = self.vision_config.to_dict() __lowerCAmelCase : List[Any] = self.__class__.model_type return output class __lowercase (_UpperCAmelCase ): @property def UpperCamelCase__ ( self ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ] ) @property def UpperCamelCase__ ( self ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''logits_per_image''', {0: '''batch'''}), ('''logits_per_text''', {0: '''batch'''}), ('''text_embeds''', {0: '''batch'''}), ('''image_embeds''', {0: '''batch'''}), ] ) @property def UpperCamelCase__ ( self ) ->float: '''simple docstring''' return 1e-4 def UpperCamelCase__ ( self , A_ , A_ = -1 , A_ = -1 , A_ = None , ) ->Mapping[str, Any]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = super().generate_dummy_inputs( processor.tokenizer , batch_size=A_ , seq_length=A_ , framework=A_ ) __lowerCAmelCase : Union[str, Any] = super().generate_dummy_inputs( processor.image_processor , batch_size=A_ , framework=A_ ) return {**text_input_dict, **image_input_dict} @property def UpperCamelCase__ ( self ) ->int: '''simple docstring''' return 14
583
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { "configuration_luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig"], "tokenization_luke": ["LukeTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ "LUKE_PRETRAINED_MODEL_ARCHIVE_LIST", "LukeForEntityClassification", "LukeForEntityPairClassification", "LukeForEntitySpanClassification", "LukeForMultipleChoice", "LukeForQuestionAnswering", "LukeForSequenceClassification", "LukeForTokenClassification", "LukeForMaskedLM", "LukeModel", "LukePreTrainedModel", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
583
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''ViTFeatureExtractor'''] lowerCAmelCase_ = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
60
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase : str = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-classification/requirements.txt''') lowercase : Optional[Any] = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowercase : Any = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def lowerCAmelCase__ ( _a : str ): with open(_a , "rb" ) as f: snake_case_ : Tuple = Image.open(_a ) return im.convert("RGB" ) @dataclass class UpperCAmelCase_ : '''simple docstring''' A : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) A : Optional[str] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A folder containing the training data.'} ) A : Optional[str] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A folder containing the validation data.'} ) A : Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) A : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) A : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def _lowerCAmelCase ( self ) -> Tuple: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class UpperCAmelCase_ : '''simple docstring''' A : str = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(SCREAMING_SNAKE_CASE__ )} , ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) A : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) A : str = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Name or path of preprocessor config.'} ) A : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) A : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def lowerCAmelCase__ ( _a : Tuple ): snake_case_ : List[str] = torch.stack([example["pixel_values"] for example in examples] ) snake_case_ : Optional[Any] = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def lowerCAmelCase__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_ , snake_case_ , snake_case_ : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_ , snake_case_ , snake_case_ : List[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , _a , _a ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case_ : Tuple = training_args.get_process_log_level() logger.setLevel(_a ) transformers.utils.logging.set_verbosity(_a ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. snake_case_ : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case_ : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: snake_case_ : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: snake_case_ : Dict = {} if data_args.train_dir is not None: snake_case_ : int = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: snake_case_ : List[str] = os.path.join(data_args.validation_dir , "**" ) snake_case_ : int = load_dataset( "imagefolder" , data_files=_a , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. snake_case_ : Optional[int] = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _a ) and data_args.train_val_split > 0.0: snake_case_ : Union[str, Any] = dataset["train"].train_test_split(data_args.train_val_split ) snake_case_ : str = split["train"] snake_case_ : Optional[int] = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. snake_case_ : Union[str, Any] = dataset["train"].features["labels"].names snake_case_ , snake_case_ : Optional[Any] = {}, {} for i, label in enumerate(_a ): snake_case_ : Optional[int] = str(_a ) snake_case_ : Optional[int] = label # Load the accuracy metric from the datasets package snake_case_ : Union[str, Any] = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_a : Optional[int] ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) snake_case_ : Optional[int] = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_a ) , labelaid=_a , idalabel=_a , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ : Union[str, Any] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) snake_case_ : Dict = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: snake_case_ : Optional[Any] = image_processor.size["shortest_edge"] else: snake_case_ : str = (image_processor.size["height"], image_processor.size["width"]) snake_case_ : Optional[Any] = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) snake_case_ : Union[str, Any] = Compose( [ RandomResizedCrop(_a ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) snake_case_ : List[Any] = Compose( [ Resize(_a ), CenterCrop(_a ), ToTensor(), normalize, ] ) def train_transforms(_a : Optional[int] ): snake_case_ : List[str] = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(_a : List[Any] ): snake_case_ : int = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: snake_case_ : str = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(_a ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: snake_case_ : List[str] = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(_a ) # Initalize our trainer snake_case_ : Optional[Any] = Trainer( model=_a , args=_a , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=_a , tokenizer=_a , data_collator=_a , ) # Training if training_args.do_train: snake_case_ : Tuple = None if training_args.resume_from_checkpoint is not None: snake_case_ : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case_ : str = last_checkpoint snake_case_ : Tuple = trainer.train(resume_from_checkpoint=_a ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: snake_case_ : Union[str, Any] = trainer.evaluate() trainer.log_metrics("eval" , _a ) trainer.save_metrics("eval" , _a ) # Write model card and (optionally) push to hub snake_case_ : Union[str, Any] = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**_a ) else: trainer.create_model_card(**_a ) if __name__ == "__main__": main()
568
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCAmelCase_ ( __A ): '''simple docstring''' _lowercase = 'trocr' _lowercase = ['past_key_values'] _lowercase = { 'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'decoder_layers', } def __init__( self , __UpperCAmelCase=50_265 , __UpperCAmelCase=1_024 , __UpperCAmelCase=12 , __UpperCAmelCase=16 , __UpperCAmelCase=4_096 , __UpperCAmelCase="gelu" , __UpperCAmelCase=512 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.0 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , **__UpperCAmelCase , ): SCREAMING_SNAKE_CASE_ : Optional[int] =vocab_size SCREAMING_SNAKE_CASE_ : str =d_model SCREAMING_SNAKE_CASE_ : Union[str, Any] =decoder_layers SCREAMING_SNAKE_CASE_ : Optional[Any] =decoder_attention_heads SCREAMING_SNAKE_CASE_ : Tuple =decoder_ffn_dim SCREAMING_SNAKE_CASE_ : List[str] =activation_function SCREAMING_SNAKE_CASE_ : Optional[Any] =max_position_embeddings SCREAMING_SNAKE_CASE_ : str =dropout SCREAMING_SNAKE_CASE_ : Dict =attention_dropout SCREAMING_SNAKE_CASE_ : Union[str, Any] =activation_dropout SCREAMING_SNAKE_CASE_ : List[str] =init_std SCREAMING_SNAKE_CASE_ : Optional[int] =decoder_layerdrop SCREAMING_SNAKE_CASE_ : Dict =use_cache SCREAMING_SNAKE_CASE_ : List[Any] =scale_embedding SCREAMING_SNAKE_CASE_ : Tuple =use_learned_position_embeddings SCREAMING_SNAKE_CASE_ : Union[str, Any] =layernorm_embedding super().__init__( pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , **__UpperCAmelCase , )
153
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase_ ( __A , __A , unittest.TestCase ): '''simple docstring''' _lowercase = StableDiffusionDiffEditPipeline _lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} _lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} _lowercase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _lowercase = frozenset([] ) def __lowerCamelCase ( self ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[str] =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__UpperCAmelCase , ) SCREAMING_SNAKE_CASE_ : Optional[Any] =DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__UpperCAmelCase , set_alpha_to_zero=__UpperCAmelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[str] =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[Any] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='gelu' , projection_dim=512 , ) SCREAMING_SNAKE_CASE_ : str =CLIPTextModel(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : int =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE_ : Tuple ={ 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): SCREAMING_SNAKE_CASE_ : Any =floats_tensor((1, 16, 16) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] =floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) if str(__UpperCAmelCase ).startswith('mps' ): SCREAMING_SNAKE_CASE_ : Union[str, Any] =torch.manual_seed(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE_ : Any =torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] ={ 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): SCREAMING_SNAKE_CASE_ : Dict =floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict =image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE_ : List[Any] =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert('RGB' ) if str(__UpperCAmelCase ).startswith('mps' ): SCREAMING_SNAKE_CASE_ : Optional[int] =torch.manual_seed(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE_ : List[Any] =torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] ={ 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): SCREAMING_SNAKE_CASE_ : str =floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE_ : List[Any] =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert('RGB' ) if str(__UpperCAmelCase ).startswith('mps' ): SCREAMING_SNAKE_CASE_ : Dict =torch.manual_seed(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE_ : Tuple =torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] ={ 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): if not hasattr(self.pipeline_class , '_optional_components' ): return SCREAMING_SNAKE_CASE_ : List[str] =self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.pipeline_class(**__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) SCREAMING_SNAKE_CASE_ : Tuple =self.get_dummy_inputs(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] =pipe(**__UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] =self.pipeline_class.from_pretrained(__UpperCAmelCase ) pipe_loaded.to(__UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=__UpperCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(__UpperCAmelCase , __UpperCAmelCase ) is None , F"""`{optional_component}` did not stay set to None after loading.""" , ) SCREAMING_SNAKE_CASE_ : Tuple =self.get_dummy_inputs(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] =pipe_loaded(**__UpperCAmelCase )[0] SCREAMING_SNAKE_CASE_ : str =np.abs(output - output_loaded ).max() self.assertLess(__UpperCAmelCase , 1E-4 ) def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] ='cpu' SCREAMING_SNAKE_CASE_ : List[str] =self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.pipeline_class(**__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] =self.get_dummy_mask_inputs(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : int =pipe.generate_mask(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] =mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) SCREAMING_SNAKE_CASE_ : str =np.array([0] * 9 ) SCREAMING_SNAKE_CASE_ : Optional[Any] =np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(__UpperCAmelCase , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : int ='cpu' SCREAMING_SNAKE_CASE_ : List[str] =self.get_dummy_components() SCREAMING_SNAKE_CASE_ : List[str] =self.pipeline_class(**__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict =self.get_dummy_inversion_inputs(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =pipe.invert(**__UpperCAmelCase ).images SCREAMING_SNAKE_CASE_ : str =image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) SCREAMING_SNAKE_CASE_ : Tuple =np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) SCREAMING_SNAKE_CASE_ : int =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__UpperCAmelCase , 1E-3 ) def __lowerCamelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : int ='cpu' SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Dict ={'beta_start': 0.00_085, 'beta_end': 0.012, 'beta_schedule': 'scaled_linear'} SCREAMING_SNAKE_CASE_ : str =DPMSolverMultistepScheduler(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =DPMSolverMultistepInverseScheduler(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] =self.pipeline_class(**__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] =self.get_dummy_inversion_inputs(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] =pipe.invert(**__UpperCAmelCase ).images SCREAMING_SNAKE_CASE_ : Optional[Any] =image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) SCREAMING_SNAKE_CASE_ : Optional[Any] =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__UpperCAmelCase , 1E-3 ) @require_torch_gpu @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCamelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def __lowerCamelCase ( cls ): SCREAMING_SNAKE_CASE_ : Tuple =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) SCREAMING_SNAKE_CASE_ : Any =raw_image.convert('RGB' ).resize((768, 768) ) SCREAMING_SNAKE_CASE_ : Optional[int] =raw_image def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] =torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Dict =StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=__UpperCAmelCase , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE_ : Dict =DDIMScheduler.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE_ : Optional[Any] =DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] ='a bowl of fruit' SCREAMING_SNAKE_CASE_ : Optional[int] ='a bowl of pears' SCREAMING_SNAKE_CASE_ : int =pipe.generate_mask( image=self.raw_image , source_prompt=__UpperCAmelCase , target_prompt=__UpperCAmelCase , generator=__UpperCAmelCase , ) SCREAMING_SNAKE_CASE_ : Optional[int] =pipe.invert( prompt=__UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=__UpperCAmelCase ).latents SCREAMING_SNAKE_CASE_ : List[Any] =pipe( prompt=__UpperCAmelCase , mask_image=__UpperCAmelCase , image_latents=__UpperCAmelCase , generator=__UpperCAmelCase , negative_prompt=__UpperCAmelCase , inpaint_strength=0.7 , output_type='numpy' , ).images[0] SCREAMING_SNAKE_CASE_ : Optional[Any] =( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : List[str] =torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Optional[int] =StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=__UpperCAmelCase , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE_ : Any =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE_ : Any =DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : str ='a bowl of fruit' SCREAMING_SNAKE_CASE_ : str ='a bowl of pears' SCREAMING_SNAKE_CASE_ : int =pipe.generate_mask( image=self.raw_image , source_prompt=__UpperCAmelCase , target_prompt=__UpperCAmelCase , generator=__UpperCAmelCase , ) SCREAMING_SNAKE_CASE_ : Optional[Any] =pipe.invert( prompt=__UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=__UpperCAmelCase , num_inference_steps=25 , ).latents SCREAMING_SNAKE_CASE_ : Union[str, Any] =pipe( prompt=__UpperCAmelCase , mask_image=__UpperCAmelCase , image_latents=__UpperCAmelCase , generator=__UpperCAmelCase , negative_prompt=__UpperCAmelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type='numpy' , ).images[0] SCREAMING_SNAKE_CASE_ : List[str] =( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
153
1
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
152
'''simple docstring''' import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): __a: Optional[Any] = True from torch.cuda.amp import autocast __a: Optional[Any] = logging.getLogger(__name__) @dataclass class UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) SCREAMING_SNAKE_CASE = field( default=a__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) SCREAMING_SNAKE_CASE = field( default=a__ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) SCREAMING_SNAKE_CASE = field( default=a__ , metadata={"help": "Whether to log verbose messages or not."} , ) SCREAMING_SNAKE_CASE = field( default=2.0 , metadata={"help": "Maximum temperature for gumbel softmax."} ) SCREAMING_SNAKE_CASE = field( default=0.5 , metadata={"help": "Minimum temperature for gumbel softmax."} ) SCREAMING_SNAKE_CASE = field( default=0.999995 , metadata={"help": "Decay of gumbel temperature during training."} ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) lowercase__ : int = logging.WARNING if model_args.verbose_logging: lowercase__ : str = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): lowercase__ : List[Any] = logging.INFO logger.setLevel(UpperCAmelCase ) @dataclass class UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE = field( default=a__ , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) SCREAMING_SNAKE_CASE = field( default=a__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) SCREAMING_SNAKE_CASE = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) SCREAMING_SNAKE_CASE = field( default="validation" , metadata={ "help": ( "The name of the validation data set split to use (via the datasets library). Defaults to 'validation'" ) } , ) SCREAMING_SNAKE_CASE = field( default="file" , metadata={"help": "Column in the dataset that contains speech file path. Defaults to 'file'"} , ) SCREAMING_SNAKE_CASE = field( default=a__ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) SCREAMING_SNAKE_CASE = field( default=1 , metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" } , ) SCREAMING_SNAKE_CASE = field( default=a__ , metadata={"help": "The number of processes to use for the preprocessing."} , ) SCREAMING_SNAKE_CASE = field( default=20.0 , metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"} ) @dataclass class UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = "longest" SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None def __call__( self , __lowerCAmelCase ) -> Dict[str, torch.Tensor]: # reformat list to dict and set to pytorch format lowercase__ : List[str] = self.feature_extractor.pad( __lowerCAmelCase , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) lowercase__ : List[str] = self.model._get_feat_extract_output_lengths(batch['''input_values'''].shape[-1] ) lowercase__ : Optional[Any] = batch['''input_values'''].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula lowercase__ : str = self.model._get_feat_extract_output_lengths(batch['''attention_mask'''].sum(-1 ) ).to( torch.long ) lowercase__ : int = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch['''input_values'''].device ) # these two operations makes sure that all values # before the output lengths indices are attended to lowercase__ : Any = 1 lowercase__ : Dict = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices lowercase__ : List[Any] = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=__lowerCAmelCase , min_masks=2 , ) return batch class UpperCAmelCase ( a__ ): '''simple docstring''' def __init__( self , *__lowerCAmelCase , __lowerCAmelCase=1 , __lowerCAmelCase=0 , __lowerCAmelCase=1.0 , **__lowerCAmelCase ) -> int: super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) lowercase__ : Union[str, Any] = 0 lowercase__ : List[str] = max_gumbel_temp lowercase__ : Union[str, Any] = min_gumbel_temp lowercase__ : List[Any] = gumbel_temp_decay def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> torch.Tensor: model.train() lowercase__ : List[Any] = self._prepare_inputs(__lowerCAmelCase ) if self.use_amp: with autocast(): lowercase__ : List[Any] = self.compute_loss(__lowerCAmelCase , __lowerCAmelCase ) else: lowercase__ : Optional[Any] = self.compute_loss(__lowerCAmelCase , __lowerCAmelCase ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": lowercase__ : str = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": lowercase__ : Union[str, Any] = loss.sum() / (inputs['''mask_time_indices''']).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: lowercase__ : str = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__lowerCAmelCase ).backward() elif self.use_apex: with amp.scale_loss(__lowerCAmelCase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__lowerCAmelCase ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def __UpperCamelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowercase__ , lowercase__ , lowercase__ : Dict = parser.parse_args_into_dataclasses() configure_logger(UpperCAmelCase , UpperCAmelCase ) # Downloading and loading a dataset from the hub. lowercase__ : Union[str, Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" lowercase__ : Dict = DatasetDict() lowercase__ : Optional[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""{data_args.train_split_name}[:{data_args.validation_split_percentage}%]""" , cache_dir=model_args.cache_dir , ) lowercase__ : Optional[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""{data_args.train_split_name}[{data_args.validation_split_percentage}%:]""" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" lowercase__ : Any = DatasetDict() lowercase__ : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split='''validation''' , cache_dir=model_args.cache_dir , ) lowercase__ : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""{data_args.train_split_name}""" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported lowercase__ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=UpperCAmelCase ) def prepare_dataset(UpperCAmelCase ): # check that all files have the correct sampling rate lowercase__ , lowercase__ : int = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays lowercase__ : int = datasets.map( UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['''train'''].column_names ) # filter audio files that are too long lowercase__ : List[Any] = vectorized_datasets.filter( lambda UpperCAmelCase : len(data['''speech'''] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(UpperCAmelCase ): return feature_extractor(batch['''speech'''] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` lowercase__ : Tuple = vectorized_datasets.map( UpperCAmelCase , batched=UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['''train'''].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 lowercase__ : Union[str, Any] = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( '''PreTraining is only supported for ``config.do_stable_layer_norm=True`` and''' ''' ``config.feat_extract_norm=\'layer\'''' ) lowercase__ : int = WavaVecaForPreTraining(UpperCAmelCase ) lowercase__ : List[Any] = DataCollatorForWavaVecaPretraining(model=UpperCAmelCase , feature_extractor=UpperCAmelCase ) lowercase__ : Any = WavaVecaPreTrainer( model=UpperCAmelCase , data_collator=UpperCAmelCase , args=UpperCAmelCase , train_dataset=vectorized_datasets['''train'''] , eval_dataset=vectorized_datasets['''validation'''] , tokenizer=UpperCAmelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
152
1
from itertools import permutations def lowerCamelCase__ (_UpperCAmelCase): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False SCREAMING_SNAKE_CASE = [7, 11, 13, 17] for i, test in enumerate(SCREAMING_SNAKE_CASE_): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowerCamelCase__ (_UpperCAmelCase = 10): return sum( int(''.join(map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_))) for num in permutations(range(SCREAMING_SNAKE_CASE_)) if is_substring_divisible(SCREAMING_SNAKE_CASE_)) if __name__ == "__main__": print(f"""{solution() = }""")
703
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path a_ : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) a_ : list[int] = [ord(letter) for letter in string.ascii_lowercase] a_ : set[int] = {ord(char) for char in VALID_CHARS} a_ : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = "" SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 for keychar, cipherchar in zip(cycle(_UpperCAmelCase) , _UpperCAmelCase): SCREAMING_SNAKE_CASE = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(_UpperCAmelCase) return decoded def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = [] for key in product(_UpperCAmelCase , repeat=3): SCREAMING_SNAKE_CASE = try_key(_UpperCAmelCase , _UpperCAmelCase) if encoded is not None: possibles.append(_UpperCAmelCase) return possibles def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): return [possible for possible in possibles if common_word in possible.lower()] def lowerCamelCase__ (_UpperCAmelCase = "p059_cipher.txt"): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = Path(_UpperCAmelCase).parent.joinpath(_UpperCAmelCase).read_text(encoding='utf-8') SCREAMING_SNAKE_CASE = [int(_UpperCAmelCase) for number in data.strip().split(',')] SCREAMING_SNAKE_CASE = filter_valid_chars(_UpperCAmelCase) for common_word in COMMON_WORDS: SCREAMING_SNAKE_CASE = filter_common_word(_UpperCAmelCase , _UpperCAmelCase) if len(_UpperCAmelCase) == 1: break SCREAMING_SNAKE_CASE = possibles[0] return sum(ord(_UpperCAmelCase) for char in decoded_text) if __name__ == "__main__": print(f"""{solution() = }""")
444
0
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowercase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE: int = LxmertTokenizer SCREAMING_SNAKE_CASE: Any = LxmertTokenizerFast SCREAMING_SNAKE_CASE: Union[str, Any] = True SCREAMING_SNAKE_CASE: Dict = True def _a ( self ): super().setUp() lowerCAmelCase_: int = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCAmelCase_: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _a ( self , lowerCamelCase__ ): lowerCAmelCase_: Dict = "UNwant\u00E9d,running" lowerCAmelCase_: Optional[int] = "unwanted, running" return input_text, output_text def _a ( self ): lowerCAmelCase_: Union[str, Any] = self.tokenizer_class(self.vocab_file ) lowerCAmelCase_: List[Any] = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(lowerCamelCase__ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [7, 4, 5, 10, 8, 9] ) def _a ( self ): if not self.test_rust_tokenizer: return lowerCAmelCase_: str = self.get_tokenizer() lowerCAmelCase_: Optional[Any] = self.get_rust_tokenizer() lowerCAmelCase_: Any = "I was born in 92000, and this is falsé." lowerCAmelCase_: Optional[int] = tokenizer.tokenize(lowerCamelCase__ ) lowerCAmelCase_: List[str] = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase_: Tuple = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) lowerCAmelCase_: Optional[Any] = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase_: Union[str, Any] = self.get_rust_tokenizer() lowerCAmelCase_: Tuple = tokenizer.encode(lowerCamelCase__ ) lowerCAmelCase_: Dict = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
613
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a : List[str] = { """configuration_efficientformer""": [ """EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientFormerConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = ["""EfficientFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ """EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientFormerForImageClassification""", """EfficientFormerForImageClassificationWithTeacher""", """EfficientFormerModel""", """EfficientFormerPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFEfficientFormerForImageClassification""", """TFEfficientFormerForImageClassificationWithTeacher""", """TFEfficientFormerModel""", """TFEfficientFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys a : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
613
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : str = logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class a ( __lowercase ): SCREAMING_SNAKE_CASE__ : Optional[int] = '''xlm-roberta''' def __init__( self , _lowerCAmelCase=30522 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1e-12 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=2 , _lowerCAmelCase="absolute" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ): """simple docstring""" super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[int] = vocab_size __SCREAMING_SNAKE_CASE: Optional[int] = hidden_size __SCREAMING_SNAKE_CASE: Union[str, Any] = num_hidden_layers __SCREAMING_SNAKE_CASE: Union[str, Any] = num_attention_heads __SCREAMING_SNAKE_CASE: Dict = hidden_act __SCREAMING_SNAKE_CASE: str = intermediate_size __SCREAMING_SNAKE_CASE: Tuple = hidden_dropout_prob __SCREAMING_SNAKE_CASE: Optional[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE: List[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE: Optional[Any] = type_vocab_size __SCREAMING_SNAKE_CASE: Dict = initializer_range __SCREAMING_SNAKE_CASE: Union[str, Any] = layer_norm_eps __SCREAMING_SNAKE_CASE: Optional[Any] = position_embedding_type __SCREAMING_SNAKE_CASE: List[Any] = use_cache __SCREAMING_SNAKE_CASE: Union[str, Any] = classifier_dropout class a ( __lowercase ): @property def snake_case_ ( self ): """simple docstring""" if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE: Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __SCREAMING_SNAKE_CASE: int = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
146
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a ( __lowercase ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ : int = MgpstrTokenizer SCREAMING_SNAKE_CASE__ : Dict = False SCREAMING_SNAKE_CASE__ : Tuple = {} SCREAMING_SNAKE_CASE__ : Union[str, Any] = False def snake_case_ ( self ): """simple docstring""" super().setUp() # fmt: off __SCREAMING_SNAKE_CASE: Any = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on __SCREAMING_SNAKE_CASE: Tuple = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) __SCREAMING_SNAKE_CASE: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + '''\n''' ) def snake_case_ ( self , **_lowerCAmelCase ): """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def snake_case_ ( self , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = '''tester''' __SCREAMING_SNAKE_CASE: Tuple = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def snake_case_ ( self ): """simple docstring""" pass def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): __SCREAMING_SNAKE_CASE: Any = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) __SCREAMING_SNAKE_CASE: int = tokenizer.encode([special_token] , add_special_tokens=_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) __SCREAMING_SNAKE_CASE: Tuple = tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Optional[int] = self.get_input_output_texts(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Tuple = tokenizer.tokenize(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: int = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[Any] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[Any] = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertNotEqual(len(_lowerCAmelCase ) , 0 ) __SCREAMING_SNAKE_CASE: List[str] = tokenizer.decode(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , _lowerCAmelCase ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def snake_case_ ( self ): """simple docstring""" pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def snake_case_ ( self ): """simple docstring""" pass
146
1
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE : def __init__( self : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=32 , __SCREAMING_SNAKE_CASE : Any=3 , __SCREAMING_SNAKE_CASE : Optional[Any]=10 , __SCREAMING_SNAKE_CASE : Any=[8, 16, 32, 64] , __SCREAMING_SNAKE_CASE : str=[1, 1, 2, 1] , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : List[str]="relu" , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=["stage2", "stage3", "stage4"] , __SCREAMING_SNAKE_CASE : Union[str, Any]=[2, 3, 4] , __SCREAMING_SNAKE_CASE : str=1 , ) -> int: a_ : List[str] = parent a_ : Dict = batch_size a_ : Dict = image_size a_ : Tuple = num_channels a_ : Any = embeddings_size a_ : Optional[int] = hidden_sizes a_ : int = depths a_ : str = is_training a_ : Union[str, Any] = use_labels a_ : Optional[Any] = hidden_act a_ : Union[str, Any] = num_labels a_ : int = scope a_ : List[Any] = len(__SCREAMING_SNAKE_CASE ) a_ : Tuple = out_features a_ : Tuple = out_indices a_ : List[str] = num_groups def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: a_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ : List[Any] = None if self.use_labels: a_ : List[str] = ids_tensor([self.batch_size] , self.num_labels ) a_ : str = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int ) -> List[str]: a_ : Optional[Any] = BitModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a_ : Optional[int] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : int ) -> List[Any]: a_ : Dict = self.num_labels a_ : int = BitForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a_ : int = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ) -> int: a_ : int = BitBackbone(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a_ : Dict = model(__SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None a_ : Tuple = None a_ : Dict = BitBackbone(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() a_ : int = model(__SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: a_ : Union[str, Any] = self.prepare_config_and_inputs() a_ , a_ , a_ : List[str] = config_and_inputs a_ : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () snake_case__ = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def SCREAMING_SNAKE_CASE ( self : str ) -> str: a_ : Dict = BitModelTester(self ) a_ : int = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: return @unittest.skip(reason='''Bit does not output attentions''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self : int ) -> str: pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: pass def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: a_ , a_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : Union[str, Any] = model_class(__SCREAMING_SNAKE_CASE ) a_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ : Tuple = [*signature.parameters.keys()] a_ : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: a_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: a_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: a_ , a_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : int = model_class(config=__SCREAMING_SNAKE_CASE ) for name, module in model.named_modules(): if isinstance(__SCREAMING_SNAKE_CASE , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: def check_hidden_states_output(__SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any ): a_ : Optional[int] = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): a_ : Optional[Any] = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) a_ : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a_ : List[Any] = self.model_tester.num_stages self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) a_ , a_ : int = self.model_tester.prepare_config_and_inputs_for_common() a_ : Tuple = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: a_ : Optional[int] = layer_type a_ : Optional[int] = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ : Optional[int] = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: pass def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: a_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : Tuple = BitModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( ): a_ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self : int ) -> Any: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: a_ : List[str] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__SCREAMING_SNAKE_CASE ) a_ : Any = self.default_image_processor a_ : List[str] = prepare_img() a_ : Dict = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): a_ : Any = model(**__SCREAMING_SNAKE_CASE ) # verify the logits a_ : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) a_ : List[Any] = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @require_torch class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = (BitBackbone,) if is_torch_available() else () snake_case__ = BitConfig snake_case__ = False def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: a_ : Any = BitModelTester(self )
466
'''simple docstring''' from __future__ import annotations from typing import TypedDict class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = 42 snake_case__ = 42 def _UpperCAmelCase ( __A : str ): if not isinstance(__A , __A ): raise TypeError('''The parameter s type must be str.''' ) return [s[i:] + s[:i] for i in range(len(__A ) )] def _UpperCAmelCase ( __A : str ): if not isinstance(__A , __A ): raise TypeError('''The parameter s type must be str.''' ) if not s: raise ValueError('''The parameter s must not be empty.''' ) a_ : str = all_rotations(__A ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation a_ : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__A ), } return response def _UpperCAmelCase ( __A : str , __A : int ): if not isinstance(__A , __A ): raise TypeError('''The parameter bwt_string type must be str.''' ) if not bwt_string: raise ValueError('''The parameter bwt_string must not be empty.''' ) try: a_ : Union[str, Any] = int(__A ) except ValueError: raise TypeError( '''The parameter idx_original_string type must be int or passive''' ''' of cast to int.''' ) if idx_original_string < 0: raise ValueError('''The parameter idx_original_string must not be lower than 0.''' ) if idx_original_string >= len(__A ): raise ValueError( '''The parameter idx_original_string must be lower than''' ''' len(bwt_string).''' ) a_ : Union[str, Any] = [''''''] * len(__A ) for _ in range(len(__A ) ): for i in range(len(__A ) ): a_ : int = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": __lowerCAmelCase = 'Provide a string that I will generate its BWT transform: ' __lowerCAmelCase = input(entry_msg).strip() __lowerCAmelCase = bwt_transform(s) print( F"""Burrows Wheeler transform for string '{s}' results """ F"""in '{result['bwt_string']}'""" ) __lowerCAmelCase = reverse_bwt(result['bwt_string'], result['idx_original_string']) print( F"""Reversing Burrows Wheeler transform for entry '{result['bwt_string']}' """ F"""we get original string '{original_string}'""" )
466
1
'''simple docstring''' import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py UpperCAmelCase : Optional[Any] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase : Optional[Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) UpperCAmelCase : List[str] = transformers.models.auto.configuration_auto.CONFIG_MAPPING UpperCAmelCase : Optional[int] = { # used to compute the property `self.chunk_length` 'EncodecConfig': ['overlap'], # used as `self.bert_model = BertModel(config, ...)` 'DPRConfig': True, # not used in modeling files, but it's an important information 'FSMTConfig': ['langs'], # used internally in the configuration class file 'GPTNeoConfig': ['attention_types'], # used internally in the configuration class file 'EsmConfig': ['is_folding_model'], # used during training (despite we don't have training script for these models yet) 'Mask2FormerConfig': ['ignore_value'], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) 'OneFormerConfig': ['ignore_value', 'norm'], # used during preprocessing and collation, see `collating_graphormer.py` 'GraphormerConfig': ['spatial_pos_max'], # used internally in the configuration class file 'T5Config': ['feed_forward_proj'], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally 'MT5Config': ['feed_forward_proj', 'tokenizer_class'], 'UMT5Config': ['feed_forward_proj', 'tokenizer_class'], # used internally in the configuration class file 'LongT5Config': ['feed_forward_proj'], # used internally in the configuration class file 'SwitchTransformersConfig': ['feed_forward_proj'], # having default values other than `1e-5` - we can't fix them without breaking 'BioGptConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'GLPNConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'SegformerConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'CvtConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'PerceiverConfig': ['layer_norm_eps'], # used internally to calculate the feature size 'InformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'TimeSeriesTransformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'AutoformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate `mlp_dim` 'SamVisionConfig': ['mlp_ratio'], # For (head) training, but so far not implemented 'ClapAudioConfig': ['num_classes'], # Not used, but providing useful information to users 'SpeechT5HifiGanConfig': ['sampling_rate'], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { 'CLIPSegConfig': True, 'DeformableDetrConfig': True, 'DetaConfig': True, 'DinatConfig': True, 'DonutSwinConfig': True, 'EfficientFormerConfig': True, 'FSMTConfig': True, 'JukeboxConfig': True, 'LayoutLMv2Config': True, 'MaskFormerSwinConfig': True, 'MT5Config': True, 'NatConfig': True, 'OneFormerConfig': True, 'PerceiverConfig': True, 'RagConfig': True, 'SpeechT5Config': True, 'SwinConfig': True, 'Swin2SRConfig': True, 'Swinv2Config': True, 'SwitchTransformersConfig': True, 'TableTransformerConfig': True, 'TapasConfig': True, 'TransfoXLConfig': True, 'UniSpeechConfig': True, 'UniSpeechSatConfig': True, 'WavLMConfig': True, 'WhisperConfig': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) 'JukeboxPriorConfig': True, # TODO: @Younes (for `is_decoder`) 'Pix2StructTextConfig': True, } ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'''config.{attribute}''' in modeling_source or f'''getattr(config, "{attribute}"''' in modeling_source or f'''getattr(self.config, "{attribute}"''' in modeling_source ): _snake_case : int = True # Deal with multi-line cases elif ( re.search( Rf'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' , lowerCAmelCase_ , ) is not None ): _snake_case : str = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: _snake_case : List[str] = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files _snake_case : Optional[Any] = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] _snake_case : str = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed _snake_case : List[Any] = True if not attribute_used: _snake_case : List[Any] = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: _snake_case : Dict = True elif attribute in ["tie_word_embeddings"] and default_value is False: _snake_case : Union[str, Any] = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: _snake_case : Tuple = True elif attribute.endswith('''_token_id''' ): _snake_case : Any = True # configuration class specific cases if not case_allowed: _snake_case : Union[str, Any] = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) _snake_case : Union[str, Any] = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Any = dict(inspect.signature(config_class.__init__ ).parameters ) _snake_case : Dict = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] _snake_case : Optional[int] = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass _snake_case : List[str] = {} if len(config_class.attribute_map ) > 0: _snake_case : Optional[Any] = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files _snake_case : Union[str, Any] = inspect.getsourcefile(lowerCAmelCase_ ) _snake_case : Union[str, Any] = os.path.dirname(lowerCAmelCase_ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. _snake_case : str = [os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) for fn in os.listdir(lowerCAmelCase_ ) if fn.startswith('''modeling_''' )] # Get the source code strings _snake_case : Optional[Any] = [] for path in modeling_paths: if os.path.isfile(lowerCAmelCase_ ): with open(lowerCAmelCase_ ) as fp: modeling_sources.append(fp.read() ) _snake_case : Dict = [] for config_param, default_value in zip(lowerCAmelCase_ , lowerCAmelCase_ ): # `attributes` here is all the variant names for `config_param` _snake_case : Any = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): unused_attributes.append(attributes[0] ) return sorted(lowerCAmelCase_ ) def _a ( ): """simple docstring""" _snake_case : Optional[int] = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) _snake_case : Tuple = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda lowerCAmelCase_ : inspect.isclass(lowerCAmelCase_ ) and issubclass(lowerCAmelCase_ , lowerCAmelCase_ ) and inspect.getmodule(lowerCAmelCase_ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: _snake_case : Dict = check_config_attributes_being_used(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: _snake_case : str = unused_attributes if len(lowerCAmelCase_ ) > 0: _snake_case : Optional[Any] = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += f'''{name}: {attributes}\n''' raise ValueError(lowerCAmelCase_ ) if __name__ == "__main__": check_config_attributes()
706
'''simple docstring''' from __future__ import annotations def _a ( lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ): """simple docstring""" if start is None: _snake_case : Optional[Any] = 0 if end is None: _snake_case : Any = len(lowerCAmelCase_ ) - 1 if start >= end: return _snake_case : Optional[Any] = (start + end) // 2 slowsort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) slowsort(lowerCAmelCase_ , mid + 1 , lowerCAmelCase_ ) if sequence[end] < sequence[mid]: _snake_case , _snake_case : int = sequence[mid], sequence[end] slowsort(lowerCAmelCase_ , lowerCAmelCase_ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
47
0
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device __lowerCamelCase = False class UpperCAmelCase ( unittest.TestCase ): pass @nightly @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self : List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE ( self : int ): UpperCAmelCase__ :Any = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCAmelCase__ :str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCAmelCase__ :str = torch.manual_seed(0 ) UpperCAmelCase__ :int = pipe.dual_guided( prompt='''first prompt''' , image=__lowerCamelCase , text_to_image_strength=0.75 , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCamelCase ) UpperCAmelCase__ :Any = VersatileDiffusionPipeline.from_pretrained(__lowerCamelCase , torch_dtype=torch.floataa ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCAmelCase__ :Tuple = generator.manual_seed(0 ) UpperCAmelCase__ :Any = pipe.dual_guided( prompt='''first prompt''' , image=__lowerCamelCase , text_to_image_strength=0.75 , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): UpperCAmelCase__ :Optional[int] = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCAmelCase__ :Optional[int] = '''cyberpunk 2077''' UpperCAmelCase__ :Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCAmelCase__ :Any = torch.manual_seed(0 ) UpperCAmelCase__ :Optional[int] = pipe.dual_guided( prompt=__lowerCamelCase , image=__lowerCamelCase , text_to_image_strength=0.75 , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='''numpy''' , ).images UpperCAmelCase__ :Tuple = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) UpperCAmelCase__ :Optional[Any] = np.array([0.14_48, 0.16_19, 0.17_41, 0.10_86, 0.11_47, 0.11_28, 0.11_99, 0.11_65, 0.10_01] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCAmelCase__ :Tuple = '''A painting of a squirrel eating a burger ''' UpperCAmelCase__ :List[str] = torch.manual_seed(0 ) UpperCAmelCase__ :Union[str, Any] = pipe.text_to_image( prompt=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='''numpy''' ).images UpperCAmelCase__ :Tuple = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) UpperCAmelCase__ :Any = np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCAmelCase__ :Optional[int] = pipe.image_variation(__lowerCamelCase , generator=__lowerCamelCase , output_type='''numpy''' ).images UpperCAmelCase__ :List[Any] = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) UpperCAmelCase__ :str = np.array([0.30_76, 0.31_23, 0.32_84, 0.37_82, 0.37_70, 0.38_94, 0.42_97, 0.43_31, 0.44_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
467
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def a__ ( UpperCamelCase_ : str, UpperCamelCase_ : str ): UpperCAmelCase__ :Any = list(UpperCamelCase_ ) UpperCAmelCase__ :Optional[int] = list(UpperCamelCase_ ) UpperCAmelCase__ :str = 0 for i in range(len(UpperCamelCase_ ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase__ :Union[str, Any] = '''_''' if count > 1: return False else: return "".join(UpperCamelCase_ ) def a__ ( UpperCamelCase_ : list[str] ): UpperCAmelCase__ :int = [] while True: UpperCAmelCase__ :Dict = ['''$'''] * len(UpperCamelCase_ ) UpperCAmelCase__ :List[str] = [] for i in range(len(UpperCamelCase_ ) ): for j in range(i + 1, len(UpperCamelCase_ ) ): UpperCAmelCase__ :Optional[Any] = compare_string(binary[i], binary[j] ) if k is False: UpperCAmelCase__ :Any = '''*''' UpperCAmelCase__ :List[Any] = '''*''' temp.append('''X''' ) for i in range(len(UpperCamelCase_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(UpperCamelCase_ ) == 0: return pi UpperCAmelCase__ :Tuple = list(set(UpperCamelCase_ ) ) def a__ ( UpperCamelCase_ : int, UpperCamelCase_ : Sequence[float] ): UpperCAmelCase__ :int = [] for minterm in minterms: UpperCAmelCase__ :int = '''''' for _ in range(UpperCamelCase_ ): UpperCAmelCase__ :Optional[int] = str(minterm % 2 ) + string minterm //= 2 temp.append(UpperCamelCase_ ) return temp def a__ ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : int ): UpperCAmelCase__ :Dict = list(UpperCamelCase_ ) UpperCAmelCase__ :str = list(UpperCamelCase_ ) UpperCAmelCase__ :str = 0 for i in range(len(UpperCamelCase_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def a__ ( UpperCamelCase_ : list[list[int]], UpperCamelCase_ : list[str] ): UpperCAmelCase__ :Optional[Any] = [] UpperCAmelCase__ :List[Any] = [0] * len(UpperCamelCase_ ) for i in range(len(chart[0] ) ): UpperCAmelCase__ :Optional[Any] = 0 UpperCAmelCase__ :Union[str, Any] = -1 for j in range(len(UpperCamelCase_ ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase__ :Any = j if count == 1: UpperCAmelCase__ :Any = 1 for i in range(len(UpperCamelCase_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(UpperCamelCase_ ) ): UpperCAmelCase__ :int = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase__ :Optional[int] = 0 UpperCAmelCase__ :Dict = -1 UpperCAmelCase__ :Optional[Any] = 0 for i in range(len(UpperCamelCase_ ) ): UpperCAmelCase__ :str = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase__ :Any = count_n UpperCAmelCase__ :List[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(UpperCamelCase_ ) ): UpperCAmelCase__ :Optional[int] = 0 def a__ ( UpperCamelCase_ : list[str], UpperCamelCase_ : list[str] ): UpperCAmelCase__ :List[str] = [[0 for x in range(len(UpperCamelCase_ ) )] for x in range(len(UpperCamelCase_ ) )] for i in range(len(UpperCamelCase_ ) ): UpperCAmelCase__ :Tuple = prime_implicants[i].count('''_''' ) for j in range(len(UpperCamelCase_ ) ): if is_for_table(prime_implicants[i], binary[j], UpperCamelCase_ ): UpperCAmelCase__ :List[str] = 1 return chart def a__ ( ): UpperCAmelCase__ :int = int(input('''Enter the no. of variables\n''' ) ) UpperCAmelCase__ :Tuple = [ float(UpperCamelCase_ ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] UpperCAmelCase__ :Union[str, Any] = decimal_to_binary(UpperCamelCase_, UpperCamelCase_ ) UpperCAmelCase__ :Optional[Any] = check(UpperCamelCase_ ) print('''Prime Implicants are:''' ) print(UpperCamelCase_ ) UpperCAmelCase__ :Optional[int] = prime_implicant_chart(UpperCamelCase_, UpperCamelCase_ ) UpperCAmelCase__ :Dict = selection(UpperCamelCase_, UpperCamelCase_ ) print('''Essential Prime Implicants are:''' ) print(UpperCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
467
1
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py __lowerCamelCase : List[Any] = "src/diffusers" # Matches is_xxx_available() __lowerCamelCase : List[Any] = re.compile(r"is\_([a-z_]*)_available\(\)") # Matches from xxx import bla __lowerCamelCase : List[Any] = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") __lowerCamelCase : List[str] = "\n{0} = None\n" __lowerCamelCase : Dict = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n" __lowerCamelCase : Union[str, Any] = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" def lowerCamelCase_(lowerCamelCase_ ) -> Optional[int]: UpperCAmelCase = _re_backend.findall(lowerCamelCase_ ) if len(lowerCamelCase_ ) == 0: return None return "_and_".join(lowerCamelCase_ ) def lowerCamelCase_() -> Any: with open(os.path.join(lowerCamelCase_ , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase = f.readlines() # Get to the point we do the actual imports for type checking UpperCAmelCase = 0 UpperCAmelCase = {} # Go through the end of the file while line_index < len(lowerCamelCase_ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCAmelCase = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 UpperCAmelCase = [] # Until we unindent, add backend objects to the list while line_index < len(lowerCamelCase_ ) and len(lines[line_index] ) > 1: UpperCAmelCase = lines[line_index] UpperCAmelCase = _re_single_line_import.search(lowerCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(lowerCamelCase_ ) > 0: UpperCAmelCase = objects else: line_index += 1 return backend_specific_objects def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ ) -> Any: if name.isupper(): return DUMMY_CONSTANT.format(lowerCamelCase_ ) elif name.islower(): return DUMMY_FUNCTION.format(lowerCamelCase_ , lowerCamelCase_ ) else: return DUMMY_CLASS.format(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_(lowerCamelCase_=None ) -> List[str]: if backend_specific_objects is None: UpperCAmelCase = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCAmelCase = {} for backend, objects in backend_specific_objects.items(): UpperCAmelCase = "[" + ", ".join(F'"{b}"' for b in backend.split("_and_" ) ) + "]" UpperCAmelCase = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(lowerCamelCase_ , lowerCamelCase_ ) for o in objects] ) UpperCAmelCase = dummy_file return dummy_files def lowerCamelCase_(lowerCamelCase_=False ) -> Optional[Any]: UpperCAmelCase = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCAmelCase = {"torch": "pt"} # Locate actual dummy modules and read their content. UpperCAmelCase = os.path.join(lowerCamelCase_ , "utils" ) UpperCAmelCase = { backend: os.path.join(lowerCamelCase_ , F'dummy_{short_names.get(lowerCamelCase_ , lowerCamelCase_ )}_objects.py' ) for backend in dummy_files.keys() } UpperCAmelCase = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(lowerCamelCase_ ): with open(lowerCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase = f.read() else: UpperCAmelCase = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'Updating diffusers.utils.dummy_{short_names.get(lowerCamelCase_ , lowerCamelCase_ )}_objects.py as the main ' "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " F'diffusers.utils.dummy_{short_names.get(lowerCamelCase_ , lowerCamelCase_ )}_objects.py. Run `make fix-copies` ' "to fix this." ) if __name__ == "__main__": __lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __lowerCamelCase : Dict = parser.parse_args() check_dummies(args.fix_and_overwrite)
716
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __magic_name__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase = "hf-internal-testing/tiny-random-t5" UpperCAmelCase = AutoTokenizer.from_pretrained(UpperCamelCase__ ) UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase__ ) UpperCAmelCase = tokenizer("This is me" , return_tensors="pt" ) UpperCAmelCase = model.to_bettertransformer() self.assertTrue(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) UpperCAmelCase = model.generate(**UpperCamelCase__ ) UpperCAmelCase = model.reverse_bettertransformer() self.assertFalse(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase__ ) UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase__ ) self.assertFalse( any("BetterTransformer" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) UpperCAmelCase = model_reloaded.generate(**UpperCamelCase__ ) self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ ) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase = "hf-internal-testing/tiny-random-t5" UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase__ ) UpperCAmelCase = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(UpperCamelCase__ ): model.save_pretrained(UpperCamelCase__ ) UpperCAmelCase = model.reverse_bettertransformer() model.save_pretrained(UpperCamelCase__ )
457
0
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class lowerCAmelCase ( lowerCAmelCase_ ): A_ : int = 0 A_ : bool = False A_ : float = 3.0 class lowerCAmelCase ( unittest.TestCase ): def _A ( self : List[str] ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"a": 2} ) self.assertDictEqual(MockClass(a=2 , b=snake_case_ ).to_kwargs() , {"a": 2, "b": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"a": 2, "c": 2.25} ) @require_cuda def _A ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() lowerCAmelCase__ : Dict = Accelerator(mixed_precision="fp16" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) lowerCAmelCase__ : Tuple = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , snake_case_ ) @require_multi_gpu def _A ( self : str ): '''simple docstring''' lowerCAmelCase__ : List[str] = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(snake_case_ , env=os.environ.copy() ) if __name__ == "__main__": snake_case = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) snake_case = Accelerator(kwargs_handlers=[ddp_scaler]) snake_case = torch.nn.Linear(1_00, 2_00) snake_case = accelerator.prepare(model) # Check the values changed in kwargs snake_case = '''''' snake_case = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
378
'''simple docstring''' import math import sys def UpperCAmelCase_ ( __lowercase : str ) -> str: '''simple docstring''' _UpperCAmelCase = "" try: with open(__lowercase , "rb" ) as binary_file: _UpperCAmelCase = binary_file.read() for dat in data: _UpperCAmelCase = f'{dat:08b}' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def UpperCAmelCase_ ( __lowercase : str ) -> str: '''simple docstring''' _UpperCAmelCase = {"0": "0", "1": "1"} _UpperCAmelCase , _UpperCAmelCase = "", "" _UpperCAmelCase = len(__lowercase ) for i in range(len(__lowercase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue _UpperCAmelCase = lexicon[curr_string] result += last_match_id _UpperCAmelCase = last_match_id + "0" if math.loga(__lowercase ).is_integer(): _UpperCAmelCase = {} for curr_key in list(__lowercase ): _UpperCAmelCase = lexicon.pop(__lowercase ) _UpperCAmelCase = new_lex _UpperCAmelCase = last_match_id + "1" index += 1 _UpperCAmelCase = "" return result def UpperCAmelCase_ ( __lowercase : str , __lowercase : str ) -> None: '''simple docstring''' _UpperCAmelCase = 8 try: with open(__lowercase , "wb" ) as opened_file: _UpperCAmelCase = [ to_write[i : i + byte_length] for i in range(0 , len(__lowercase ) , __lowercase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(__lowercase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def UpperCAmelCase_ ( __lowercase : str ) -> str: '''simple docstring''' _UpperCAmelCase = 0 for letter in data_bits: if letter == "1": break counter += 1 _UpperCAmelCase = data_bits[counter:] _UpperCAmelCase = data_bits[counter + 1 :] return data_bits def UpperCAmelCase_ ( __lowercase : str , __lowercase : str ) -> None: '''simple docstring''' _UpperCAmelCase = read_file_binary(__lowercase ) _UpperCAmelCase = remove_prefix(__lowercase ) _UpperCAmelCase = decompress_data(__lowercase ) write_file_binary(__lowercase , __lowercase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
236
0
from __future__ import annotations def lowercase_ ( A__ ) -> str: """simple docstring""" for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(UpperCAmelCase__ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(UpperCAmelCase__ ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
714
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowercase_ ( A__ , A__ , A__ , A__ , A__ , A__ = None , ) -> List[Any]: """simple docstring""" snake_case = {} if train_file is not None: snake_case = [train_file] if eval_file is not None: snake_case = [eval_file] if test_file is not None: snake_case = [test_file] snake_case = datasets.load_dataset("csv" , data_files=A__ ) snake_case = list(ds[list(files.keys() )[0]].features.keys() ) snake_case = features_name.pop(A__ ) snake_case = list(set(ds[list(files.keys() )[0]][label_name] ) ) snake_case = {label: i for i, label in enumerate(A__ )} snake_case = tokenizer.model_input_names snake_case = {} if len(A__ ) == 1: for k in files.keys(): snake_case = ds[k].map( lambda A__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=A__ , max_length=A__ , padding="max_length" ) , batched=A__ , ) elif len(A__ ) == 2: for k in files.keys(): snake_case = ds[k].map( lambda A__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=A__ , max_length=A__ , padding="max_length" , ) , batched=A__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: snake_case = {k: v for k, v in ex.items() if k in input_names} snake_case = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: snake_case = {k: v for k, v in ex.items() if k in input_names} snake_case = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: snake_case = {k: v for k, v in ex.items() if k in input_names} snake_case = labelaid[ex[label_name]] yield (d, label) snake_case = ( tf.data.Dataset.from_generator( A__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: snake_case = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) snake_case = ( tf.data.Dataset.from_generator( A__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: snake_case = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) snake_case = ( tf.data.Dataset.from_generator( A__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: snake_case = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid _A = logging.getLogger(__name__) @dataclass class lowerCamelCase : UpperCAmelCase__ : int = field(metadata={"help": "Which column contains the label"} ) UpperCAmelCase__ : str = field(default=A_ , metadata={"help": "The path of the training file"} ) UpperCAmelCase__ : Optional[str] = field(default=A_ , metadata={"help": "The path of the development file"} ) UpperCAmelCase__ : Optional[str] = field(default=A_ , metadata={"help": "The path of the test file"} ) UpperCAmelCase__ : int = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCAmelCase__ : bool = field( default=A_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class lowerCamelCase : UpperCAmelCase__ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase__ : Optional[str] = field( default=A_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase__ : Optional[str] = field( default=A_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase__ : bool = field(default=A_ , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. UpperCAmelCase__ : Optional[str] = field( default=A_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def lowercase_ ( ) -> Dict: """simple docstring""" snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) snake_case , snake_case , snake_case = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( F'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ' F'16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case , snake_case , snake_case , snake_case = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=A__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) snake_case = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(A__ ) , labelaid=A__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): snake_case = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=A__ , cache_dir=model_args.cache_dir , ) def compute_metrics(A__ ) -> Dict: snake_case = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer snake_case = TFTrainer( model=A__ , args=A__ , train_dataset=A__ , eval_dataset=A__ , compute_metrics=A__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) snake_case = trainer.evaluate() snake_case = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(A__ , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) results.update(A__ ) return results if __name__ == "__main__": main()
294
0
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCamelCase__( UpperCamelCase__ : Any )->Union[str, Any]: A__ = FileLock(str(tmpdir / '''foo.lock''' ) ) A__ = FileLock(str(tmpdir / '''foo.lock''' ) ) A__ = 0.01 with locka.acquire(): with pytest.raises(UpperCamelCase__ ): A__ = time.time() locka.acquire(UpperCamelCase__ ) assert time.time() - _start > timeout def UpperCamelCase__( UpperCamelCase__ : Union[str, Any] )->int: A__ = '''a''' * 10_00 + '''.lock''' A__ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(UpperCamelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 A__ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCamelCase__ ): locka.acquire(0 )
190
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __lowercase ( unittest.TestCase ): def __a ( self : Any ) -> Tuple: '''simple docstring''' lowercase = [[1, 2, 4], [1, 2, 3, 4]] lowercase = DisjunctiveConstraint(__lowerCamelCase ) self.assertTrue(isinstance(dc.token_ids , __lowerCamelCase ) ) with self.assertRaises(__lowerCamelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__lowerCamelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __a ( self : List[str] ) -> Dict: '''simple docstring''' lowercase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__lowerCamelCase ): DisjunctiveConstraint(__lowerCamelCase ) # fails here def __a ( self : Optional[Any] ) -> Any: '''simple docstring''' lowercase = [[1, 2, 3], [1, 2, 4]] lowercase = DisjunctiveConstraint(__lowerCamelCase ) lowercase ,lowercase ,lowercase = dc.update(1 ) lowercase = stepped is True and completed is False and reset is False self.assertTrue(__lowerCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase ,lowercase ,lowercase = dc.update(2 ) lowercase = stepped is True and completed is False and reset is False self.assertTrue(__lowerCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase ,lowercase ,lowercase = dc.update(3 ) lowercase = stepped is True and completed is True and reset is False self.assertTrue(__lowerCamelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __a ( self : Optional[int] ) -> Dict: '''simple docstring''' lowercase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowercase = DisjunctiveConstraint(__lowerCamelCase ) lowercase ,lowercase ,lowercase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase ,lowercase ,lowercase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase ,lowercase ,lowercase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowercase ,lowercase ,lowercase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowercase ,lowercase ,lowercase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowercase ,lowercase ,lowercase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase ,lowercase ,lowercase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
604
0
"""simple docstring""" import math def lowercase_ ( ): """simple docstring""" A_ : Dict = input('''Enter message: ''' ) A_ : Optional[int] = int(input(f"""Enter key [2-{len(_UpperCAmelCase ) - 1}]: """ ) ) A_ : str = input('''Encryption/Decryption [e/d]: ''' ) if mode.lower().startswith('''e''' ): A_ : Optional[int] = encrypt_message(_UpperCAmelCase , _UpperCAmelCase ) elif mode.lower().startswith('''d''' ): A_ : Any = decrypt_message(_UpperCAmelCase , _UpperCAmelCase ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(f"""Output:\n{text + '|'}""" ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Tuple = [''''''] * key for col in range(_UpperCAmelCase ): A_ : str = col while pointer < len(_UpperCAmelCase ): cipher_text[col] += message[pointer] pointer += key return "".join(_UpperCAmelCase ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Optional[Any] = math.ceil(len(_UpperCAmelCase ) / key ) A_ : Tuple = key A_ : Union[str, Any] = (num_cols * num_rows) - len(_UpperCAmelCase ) A_ : int = [''''''] * num_cols A_ : int = 0 A_ : List[Any] = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): A_ : Dict = 0 row += 1 return "".join(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
361
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _lowerCamelCase : List[str] = logging.get_logger(__name__) _lowerCamelCase : str = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class lowercase ( __UpperCAmelCase): __lowerCAmelCase : int = """umt5""" __lowerCAmelCase : List[str] = ["""past_key_values"""] def __init__( self : Any , _lowerCamelCase : Union[str, Any]=25_01_12 , _lowerCamelCase : Any=5_12 , _lowerCamelCase : Optional[int]=64 , _lowerCamelCase : str=10_24 , _lowerCamelCase : List[str]=8 , _lowerCamelCase : Union[str, Any]=None , _lowerCamelCase : Any=6 , _lowerCamelCase : List[Any]=32 , _lowerCamelCase : Optional[Any]=1_28 , _lowerCamelCase : int=0.1 , _lowerCamelCase : Union[str, Any]=1E-6 , _lowerCamelCase : Tuple=1.0 , _lowerCamelCase : Optional[int]="gated-gelu" , _lowerCamelCase : List[str]=True , _lowerCamelCase : str=True , _lowerCamelCase : Tuple="T5Tokenizer" , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Optional[int]=0 , _lowerCamelCase : Tuple=1 , _lowerCamelCase : Tuple=0 , **_lowerCamelCase : List[str] , ): """simple docstring""" super().__init__( is_encoder_decoder=_lowerCamelCase , tokenizer_class=_lowerCamelCase , tie_word_embeddings=_lowerCamelCase , pad_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , **_lowerCamelCase , ) A_ : str = vocab_size A_ : List[Any] = d_model A_ : Optional[int] = d_kv A_ : int = d_ff A_ : Union[str, Any] = num_layers A_ : Optional[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A_ : Dict = num_heads A_ : Optional[int] = relative_attention_num_buckets A_ : Union[str, Any] = relative_attention_max_distance A_ : Any = dropout_rate A_ : Optional[int] = layer_norm_epsilon A_ : Tuple = initializer_factor A_ : Optional[int] = feed_forward_proj A_ : Dict = use_cache A_ : Any = self.feed_forward_proj.split('''-''' ) A_ : Tuple = act_info[-1] A_ : Any = act_info[0] == '''gated''' if len(_lowerCamelCase ) > 1 and act_info[0] != "gated" or len(_lowerCamelCase ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) if feed_forward_proj == "gated-gelu": A_ : Dict = '''gelu_new''' @property def a_ ( self : Tuple ): """simple docstring""" return self.d_model @property def a_ ( self : Optional[int] ): """simple docstring""" return self.num_heads @property def a_ ( self : int ): """simple docstring""" return self.num_layers class lowercase ( __UpperCAmelCase): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def a_ ( self : Any ): """simple docstring""" A_ : str = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: A_ : Optional[Any] = '''past_encoder_sequence + sequence''' A_ : Optional[Any] = {0: '''batch'''} A_ : List[Any] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: A_ : Optional[int] = {0: '''batch''', 1: '''decoder_sequence'''} A_ : List[str] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_lowerCamelCase , direction='''inputs''' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def a_ ( self : Union[str, Any] ): """simple docstring""" return 13 @property def a_ ( self : Any ): """simple docstring""" return 5E-4
361
1
'''simple docstring''' import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def A ( self : Optional[Any] , a_ : str ): """simple docstring""" with open(a_ , encoding="utf-8" ) as input_file: __snake_case = re.compile(r"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) __snake_case = input_file.read() __snake_case = regexp.search(a_ ) return match def A ( self : Any , a_ : str ): """simple docstring""" with open(a_ , encoding="utf-8" ) as input_file: __snake_case = re.compile(r"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) __snake_case = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` __snake_case = regexp.finditer(a_ ) __snake_case = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def A ( self : Optional[int] ): """simple docstring""" __snake_case = Path("./datasets" ) __snake_case = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(a_ ) ): raise AssertionError(f'''open(...) must use utf-8 encoding in {dataset}''' ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case = Path("./datasets" ) __snake_case = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(a_ ) ): raise AssertionError(f'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
69
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def lowerCAmelCase__ ( lowerCamelCase_ : str ,lowerCamelCase_ : List[str]=False): '''simple docstring''' lowerCAmelCase__ : int = [] for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""module.blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""")) rename_keys.append((f"""module.blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""")) rename_keys.append( (f"""module.blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""")) rename_keys.append((f"""module.blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""")) rename_keys.append((f"""module.blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""")) rename_keys.append((f"""module.blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""")) rename_keys.append((f"""module.blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""")) rename_keys.append((f"""module.blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""")) rename_keys.append((f"""module.blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""")) rename_keys.append((f"""module.blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""")) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ]) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ]) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase__ : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''') else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ]) return rename_keys def lowerCAmelCase__ ( lowerCamelCase_ : Dict ,lowerCamelCase_ : List[Any] ,lowerCamelCase_ : List[Any]=False): '''simple docstring''' for i in range(config.num_hidden_layers): if base_model: lowerCAmelCase__ : List[str] = '''''' else: lowerCAmelCase__ : Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ : List[str] = state_dict.pop(f"""module.blocks.{i}.attn.qkv.weight""") lowerCAmelCase__ : List[Any] = state_dict.pop(f"""module.blocks.{i}.attn.qkv.bias""") # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase__ : Any = in_proj_bias[: config.hidden_size] lowerCAmelCase__ : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ : Dict = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ : Dict = in_proj_bias[-config.hidden_size :] def lowerCAmelCase__ ( lowerCamelCase_ : Optional[int]): '''simple docstring''' lowerCAmelCase__ : Optional[int] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(lowerCamelCase_ ,lowerCamelCase_) def lowerCAmelCase__ ( lowerCamelCase_ : Union[str, Any]): '''simple docstring''' lowerCAmelCase__ : Any = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(lowerCamelCase_ ,lowerCamelCase_) def lowerCAmelCase__ ( lowerCamelCase_ : Dict ,lowerCamelCase_ : int ,lowerCamelCase_ : str): '''simple docstring''' lowerCAmelCase__ : str = dct.pop(lowerCamelCase_) lowerCAmelCase__ : Union[str, Any] = val def lowerCAmelCase__ ( lowerCamelCase_ : Optional[Any] ,lowerCamelCase_ : List[Any]): '''simple docstring''' lowerCAmelCase__ : Optional[int] = ViTMSNConfig() lowerCAmelCase__ : int = 1000 lowerCAmelCase__ : List[Any] = '''datasets/huggingface/label-files''' lowerCAmelCase__ : Dict = '''imagenet-1k-id2label.json''' lowerCAmelCase__ : Any = json.load(open(hf_hub_download(lowerCamelCase_ ,lowerCamelCase_) ,'''r''')) lowerCAmelCase__ : Any = {int(lowerCamelCase_): v for k, v in idalabel.items()} lowerCAmelCase__ : List[Any] = idalabel lowerCAmelCase__ : Optional[int] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCAmelCase__ : str = 384 lowerCAmelCase__ : Any = 1536 lowerCAmelCase__ : List[str] = 6 elif "l16" in checkpoint_url: lowerCAmelCase__ : Dict = 1024 lowerCAmelCase__ : int = 4096 lowerCAmelCase__ : Dict = 24 lowerCAmelCase__ : List[str] = 16 lowerCAmelCase__ : List[str] = 0.1 elif "b4" in checkpoint_url: lowerCAmelCase__ : List[Any] = 4 elif "l7" in checkpoint_url: lowerCAmelCase__ : Any = 7 lowerCAmelCase__ : Optional[int] = 1024 lowerCAmelCase__ : Optional[int] = 4096 lowerCAmelCase__ : Dict = 24 lowerCAmelCase__ : Optional[Any] = 16 lowerCAmelCase__ : Optional[Any] = 0.1 lowerCAmelCase__ : List[str] = ViTMSNModel(lowerCamelCase_) lowerCAmelCase__ : int = torch.hub.load_state_dict_from_url(lowerCamelCase_ ,map_location='''cpu''')['''target_encoder'''] lowerCAmelCase__ : List[str] = ViTImageProcessor(size=config.image_size) remove_projection_head(lowerCamelCase_) lowerCAmelCase__ : Optional[int] = create_rename_keys(lowerCamelCase_ ,base_model=lowerCamelCase_) for src, dest in rename_keys: rename_key(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) read_in_q_k_v(lowerCamelCase_ ,lowerCamelCase_ ,base_model=lowerCamelCase_) model.load_state_dict(lowerCamelCase_) model.eval() lowerCAmelCase__ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase__ : Union[str, Any] = Image.open(requests.get(lowerCamelCase_ ,stream=lowerCamelCase_).raw) lowerCAmelCase__ : Tuple = ViTImageProcessor( size=config.image_size ,image_mean=lowerCamelCase_ ,image_std=lowerCamelCase_) lowerCAmelCase__ : int = image_processor(images=lowerCamelCase_ ,return_tensors='''pt''') # forward pass torch.manual_seed(2) lowerCAmelCase__ : Optional[int] = model(**lowerCamelCase_) lowerCAmelCase__ : Union[str, Any] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCAmelCase__ : int = torch.tensor([[-1.0915, -1.4876, -1.1809]]) elif "b16" in checkpoint_url: lowerCAmelCase__ : List[str] = torch.tensor([[14.2889, -18.9045, 11.7281]]) elif "l16" in checkpoint_url: lowerCAmelCase__ : Union[str, Any] = torch.tensor([[41.5028, -22.8681, 45.6475]]) elif "b4" in checkpoint_url: lowerCAmelCase__ : Dict = torch.tensor([[-4.3868, 5.2932, -0.4137]]) else: lowerCAmelCase__ : Optional[int] = torch.tensor([[-0.1792, -0.6465, 2.4263]]) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] ,lowerCamelCase_ ,atol=1E-4) print(f"""Saving model to {pytorch_dump_folder_path}""") model.save_pretrained(lowerCamelCase_) print(f"""Saving image processor to {pytorch_dump_folder_path}""") image_processor.save_pretrained(lowerCamelCase_) if __name__ == "__main__": __snake_case : List[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __snake_case : List[str] =parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
647
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : Any = { """configuration_informer""": [ """INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = [ """INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """InformerForPrediction""", """InformerModel""", """InformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
151
def UpperCamelCase_ ( __a = 3 , __a = 7 , __a = 1_000_000 ) -> int: a__ : List[Any] = 0 a__ : int = 1 for current_denominator in range(1 , limit + 1 ): a__ : Optional[Any] = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: a__ : int = current_numerator a__ : Dict = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=100_0000))
151
1
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase_ ( __snake_case ,__snake_case ,unittest.TestCase ): __lowerCamelCase : int = IFInpaintingPipeline __lowerCamelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} __lowerCamelCase : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __lowerCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"latents"} def _snake_case ( self ) -> Any: return self._get_dummy_components() def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase=0 ) -> Optional[int]: if str(snake_case_ ).startswith("mps" ): _lowerCAmelCase = torch.manual_seed(snake_case_ ) else: _lowerCAmelCase = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) _lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) _lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) _lowerCAmelCase = { "prompt": "A painting of a squirrel eating a burger", "image": image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _snake_case ( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _snake_case ( self ) -> List[str]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def _snake_case ( self ) -> str: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def _snake_case ( self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _snake_case ( self ) -> List[str]: self._test_save_load_local() def _snake_case ( self ) -> str: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
18
import numpy as np def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> np.array: """simple docstring""" return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
27
0
import math def _lowercase ( _UpperCAmelCase , _UpperCAmelCase = 0 , _UpperCAmelCase = 0 ) -> list: lowerCamelCase =end or len(_UpperCAmelCase ) for i in range(_UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase =i lowerCamelCase =array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: lowerCamelCase =array[temp_index - 1] temp_index -= 1 lowerCamelCase =temp_index_value return array def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Max Heap lowerCamelCase =index lowerCamelCase =2 * index + 1 # Left Node lowerCamelCase =2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: lowerCamelCase =left_index if right_index < heap_size and array[largest] < array[right_index]: lowerCamelCase =right_index if largest != index: lowerCamelCase , lowerCamelCase =array[largest], array[index] heapify(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def _lowercase ( _UpperCAmelCase ) -> list: lowerCamelCase =len(_UpperCAmelCase ) for i in range(n // 2 , -1 , -1 ): heapify(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for i in range(n - 1 , 0 , -1 ): lowerCamelCase , lowerCamelCase =array[0], array[i] heapify(_UpperCAmelCase , 0 , _UpperCAmelCase ) return array def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> int: lowerCamelCase =low lowerCamelCase =high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i lowerCamelCase , lowerCamelCase =array[j], array[i] i += 1 def _lowercase ( _UpperCAmelCase ) -> list: if len(_UpperCAmelCase ) == 0: return array lowerCamelCase =2 * math.ceil(math.loga(len(_UpperCAmelCase ) ) ) lowerCamelCase =16 return intro_sort(_UpperCAmelCase , 0 , len(_UpperCAmelCase ) , _UpperCAmelCase , _UpperCAmelCase ) def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(_UpperCAmelCase ) max_depth -= 1 lowerCamelCase =median_of_a(_UpperCAmelCase , _UpperCAmelCase , start + ((end - start) // 2) + 1 , end - 1 ) lowerCamelCase =partition(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) intro_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase =p return insertion_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ : List[Any] =input('''Enter numbers separated by a comma : ''').strip() UpperCAmelCase__ : List[Any] =[float(item) for item in user_input.split(''',''')] print(sort(unsorted))
269
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint UpperCAmelCase__ : Optional[int] ={ '''169M''': 12, '''430M''': 24, '''1B5''': 24, '''3B''': 32, '''7B''': 32, '''14B''': 40, } UpperCAmelCase__ : str ={ '''169M''': 7_68, '''430M''': 10_24, '''1B5''': 20_48, '''3B''': 25_60, '''7B''': 40_96, '''14B''': 51_20, } def _lowercase ( _UpperCAmelCase ) -> Tuple: lowerCamelCase =list(state_dict.keys() ) for name in state_dict_keys: lowerCamelCase =state_dict.pop(_UpperCAmelCase ) # emb -> embedding if name.startswith("""emb.""" ): lowerCamelCase =name.replace("""emb.""" , """embeddings.""" ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("""blocks.0.ln0""" ): lowerCamelCase =name.replace("""blocks.0.ln0""" , """blocks.0.pre_ln""" ) # att -> attention lowerCamelCase =re.sub(r"""blocks\.(\d+)\.att""" , r"""blocks.\1.attention""" , _UpperCAmelCase ) # ffn -> feed_forward lowerCamelCase =re.sub(r"""blocks\.(\d+)\.ffn""" , r"""blocks.\1.feed_forward""" , _UpperCAmelCase ) # time_mix_k -> time_mix_key and reshape if name.endswith(""".time_mix_k""" ): lowerCamelCase =name.replace(""".time_mix_k""" , """.time_mix_key""" ) # time_mix_v -> time_mix_value and reshape if name.endswith(""".time_mix_v""" ): lowerCamelCase =name.replace(""".time_mix_v""" , """.time_mix_value""" ) # time_mix_r -> time_mix_key and reshape if name.endswith(""".time_mix_r""" ): lowerCamelCase =name.replace(""".time_mix_r""" , """.time_mix_receptance""" ) if name != "head.weight": lowerCamelCase ="""rwkv.""" + name lowerCamelCase =weight return state_dict def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=None ) -> Tuple: # 1. If possible, build the tokenizer. if tokenizer_file is None: print("""No `--tokenizer_file` provided, we will use the default tokenizer.""" ) lowerCamelCase =5_02_77 lowerCamelCase =AutoTokenizer.from_pretrained("""EleutherAI/gpt-neox-20b""" ) else: lowerCamelCase =PreTrainedTokenizerFast(tokenizer_file=_UpperCAmelCase ) lowerCamelCase =len(_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) # 2. Build the config lowerCamelCase =list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: lowerCamelCase =candidate break if size is None: raise ValueError("""Could not infer the size, please provide it with the `--size` argument.""" ) if size not in possible_sizes: raise ValueError(F"""`size` should be one of {possible_sizes}, got {size}.""" ) lowerCamelCase =RwkvConfig( vocab_size=_UpperCAmelCase , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(_UpperCAmelCase ) # 3. Download model file then convert state_dict lowerCamelCase =hf_hub_download(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase =torch.load(_UpperCAmelCase , map_location="""cpu""" ) lowerCamelCase =convert_state_dict(_UpperCAmelCase ) # 4. Split in shards and save lowerCamelCase , lowerCamelCase =shard_checkpoint(_UpperCAmelCase ) for shard_file, shard in shards.items(): torch.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) if index is not None: lowerCamelCase =os.path.join(_UpperCAmelCase , _UpperCAmelCase ) # Save the index as well with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: lowerCamelCase =json.dumps(_UpperCAmelCase , indent=2 , sort_keys=_UpperCAmelCase ) + """\n""" f.write(_UpperCAmelCase ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( """Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model.""" ) lowerCamelCase =list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: lowerCamelCase =torch.load(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("""Please provide a `model_name` to push the model to the Hub.""" ) lowerCamelCase =AutoModelForCausalLM.from_pretrained(_UpperCAmelCase ) model.push_to_hub(_UpperCAmelCase , max_shard_size="""2GB""" ) tokenizer.push_to_hub(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.''' ) parser.add_argument( '''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.''' ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.''' ) parser.add_argument( '''--tokenizer_file''', default=None, type=str, help='''Path to the tokenizer file to use (if not provided, only the model is converted).''', ) parser.add_argument( '''--size''', default=None, type=str, help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Push to the Hub the converted model.''', ) parser.add_argument( '''--model_name''', default=None, type=str, help='''Name of the pushed model on the Hub, including the username / organization.''', ) UpperCAmelCase__ : List[Any] =parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
269
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = "microsoft/speecht5_tts" SCREAMING_SNAKE_CASE = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) SCREAMING_SNAKE_CASE = "text_reader" SCREAMING_SNAKE_CASE = SpeechTaProcessor SCREAMING_SNAKE_CASE = SpeechTaForTextToSpeech SCREAMING_SNAKE_CASE = SpeechTaHifiGan SCREAMING_SNAKE_CASE = ["text"] SCREAMING_SNAKE_CASE = ["audio"] def _lowerCAmelCase( self ) -> Dict: if self.post_processor is None: lowercase__ : Optional[Any] = '''microsoft/speecht5_hifigan''' super().setup() def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=None ) -> Tuple: lowercase__ : Optional[Any] = self.pre_processor(text=__lowerCAmelCase , return_tensors='''pt''' , truncation=__lowerCAmelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) lowercase__ : List[Any] = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) lowercase__ : Dict = torch.tensor(embeddings_dataset[7305]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def _lowerCAmelCase( self , __lowerCAmelCase ) -> int: with torch.no_grad(): return self.model.generate_speech(**__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> List[Any]: with torch.no_grad(): return self.post_processor(__lowerCAmelCase ).cpu().detach()
152
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Optional[int] = 0 lowercase__ : int = len(UpperCAmelCase ) for i in range(n - 1 ): for j in range(i + 1 , UpperCAmelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def __UpperCamelCase ( UpperCAmelCase ): if len(UpperCAmelCase ) <= 1: return arr, 0 lowercase__ : List[str] = len(UpperCAmelCase ) // 2 lowercase__ : Optional[Any] = arr[0:mid] lowercase__ : Any = arr[mid:] lowercase__ , lowercase__ : Any = count_inversions_recursive(UpperCAmelCase ) lowercase__ , lowercase__ : List[str] = count_inversions_recursive(UpperCAmelCase ) lowercase__ , lowercase__ : Optional[Any] = _count_cross_inversions(UpperCAmelCase , UpperCAmelCase ) lowercase__ : Optional[Any] = inversion_p + inversions_q + cross_inversions return c, num_inversions def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : Union[str, Any] = [] lowercase__ : List[Any] = 0 while i < len(UpperCAmelCase ) and j < len(UpperCAmelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(UpperCAmelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(UpperCAmelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def __UpperCamelCase ( ): lowercase__ : str = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) lowercase__ : Dict = count_inversions_bf(UpperCAmelCase ) lowercase__ , lowercase__ : Union[str, Any] = count_inversions_recursive(UpperCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , UpperCAmelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() lowercase__ : Optional[int] = count_inversions_bf(UpperCAmelCase ) lowercase__ , lowercase__ : int = count_inversions_recursive(UpperCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , UpperCAmelCase ) # an empty list should also have zero inversions lowercase__ : Optional[Any] = [] lowercase__ : Any = count_inversions_bf(UpperCAmelCase ) lowercase__ , lowercase__ : List[Any] = count_inversions_recursive(UpperCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , UpperCAmelCase ) if __name__ == "__main__": main()
152
1
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml lowerCAmelCase__ : Optional[Any] = NewType('''DataClass''', Any) lowerCAmelCase__ : Dict = NewType('''DataClassType''', Any) def UpperCamelCase__ ( A__ ) -> Tuple: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def UpperCamelCase__ ( A__ ) -> Any: snake_case__ : str = {str(__lowerCAmelCase ): choice for choice in choices} return lambda A__ : str_to_choice.get(__lowerCAmelCase , __lowerCAmelCase ) def UpperCamelCase__ ( *, A__ = None , A__ = None , A__ = dataclasses.MISSING , A__ = dataclasses.MISSING , A__ = None , **A__ , ) -> Optional[Any]: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls snake_case__ : Any = {} if aliases is not None: snake_case__ : Any = aliases if help is not None: snake_case__ : List[str] = help return dataclasses.field(metadata=__lowerCAmelCase , default=__lowerCAmelCase , default_factory=__lowerCAmelCase , **__lowerCAmelCase ) class __snake_case ( _lowerCamelCase ): __lowerCamelCase = 42 def __init__( self , __UpperCamelCase , **__UpperCamelCase ) -> Optional[int]: '''simple docstring''' if "formatter_class" not in kwargs: snake_case__ : str = ArgumentDefaultsHelpFormatter super().__init__(**_lowerCAmelCase ) if dataclasses.is_dataclass(_lowerCAmelCase ): snake_case__ : List[Any] = [dataclass_types] snake_case__ : Dict = list(_lowerCAmelCase ) for dtype in self.dataclass_types: self._add_dataclass_arguments(_lowerCAmelCase ) @staticmethod def __a ( __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Optional[Any] = F"""--{field.name}""" snake_case__ : List[str] = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , _lowerCAmelCase ): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default' ) snake_case__ : Dict = kwargs.pop('aliases' , [] ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): snake_case__ : Dict = [aliases] snake_case__ : Optional[int] = getattr(field.type , '__origin__' , field.type ) if origin_type is Union or (hasattr(_lowerCAmelCase , 'UnionType' ) and isinstance(_lowerCAmelCase , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(_lowerCAmelCase ) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' F""" Problem encountered in field \'{field.name}\'.""" ) if type(_lowerCAmelCase ) not in field.type.__args__: # filter `str` in Union snake_case__ : Dict = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] snake_case__ : str = getattr(field.type , '__origin__' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) snake_case__ : Any = ( field.type.__args__[0] if isinstance(_lowerCAmelCase , field.type.__args__[1] ) else field.type.__args__[1] ) snake_case__ : Tuple = getattr(field.type , '__origin__' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) snake_case__ : int = {} if origin_type is Literal or (isinstance(field.type , _lowerCAmelCase ) and issubclass(field.type , _lowerCAmelCase )): if origin_type is Literal: snake_case__ : str = field.type.__args__ else: snake_case__ : Tuple = [x.value for x in field.type] snake_case__ : List[str] = make_choice_type_function(kwargs['choices'] ) if field.default is not dataclasses.MISSING: snake_case__ : Union[str, Any] = field.default else: snake_case__ : List[str] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument snake_case__ : Union[str, Any] = copy(_lowerCAmelCase ) # Hack because type=bool in argparse does not behave as we want. snake_case__ : Union[str, Any] = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. snake_case__ : Union[str, Any] = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way snake_case__ : int = default # This tells argparse we accept 0 or 1 value after --field_name snake_case__ : int = '?' # This is the value that will get picked if we do --field_name (without value) snake_case__ : int = True elif isclass(_lowerCAmelCase ) and issubclass(_lowerCAmelCase , _lowerCAmelCase ): snake_case__ : List[str] = field.type.__args__[0] snake_case__ : Union[str, Any] = '+' if field.default_factory is not dataclasses.MISSING: snake_case__ : List[str] = field.default_factory() elif field.default is dataclasses.MISSING: snake_case__ : Union[str, Any] = True else: snake_case__ : Optional[int] = field.type if field.default is not dataclasses.MISSING: snake_case__ : int = field.default elif field.default_factory is not dataclasses.MISSING: snake_case__ : Dict = field.default_factory() else: snake_case__ : int = True parser.add_argument(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): snake_case__ : Optional[int] = False parser.add_argument(F"""--no_{field.name}""" , action='store_false' , dest=field.name , **_lowerCAmelCase ) def __a ( self , __UpperCamelCase ) -> List[Any]: '''simple docstring''' if hasattr(_lowerCAmelCase , '_argument_group_name' ): snake_case__ : List[Any] = self.add_argument_group(dtype._argument_group_name ) else: snake_case__ : List[str] = self try: snake_case__ : Dict = get_type_hints(_lowerCAmelCase ) except NameError: raise RuntimeError( F"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_lowerCAmelCase ): snake_case__ : Optional[Any] = '.'.join(map(_lowerCAmelCase , sys.version_info[:3] ) ) raise RuntimeError( F"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.' ) from ex raise for field in dataclasses.fields(_lowerCAmelCase ): if not field.init: continue snake_case__ : int = type_hints[field.name] self._parse_dataclass_field(_lowerCAmelCase , _lowerCAmelCase ) def __a ( self , __UpperCamelCase=None , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=None , ) -> List[str]: '''simple docstring''' if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): snake_case__ : Tuple = [] if args_filename: args_files.append(Path(_lowerCAmelCase ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('.args' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values snake_case__ : Union[str, Any] = ArgumentParser() args_file_parser.add_argument(_lowerCAmelCase , type=_lowerCAmelCase , action='append' ) # Use only remaining args for further parsing (remove the args_file_flag) snake_case__ , snake_case__ : List[str] = args_file_parser.parse_known_args(args=_lowerCAmelCase ) snake_case__ : str = vars(_lowerCAmelCase ).get(args_file_flag.lstrip('-' ) , _lowerCAmelCase ) if cmd_args_file_paths: args_files.extend([Path(_lowerCAmelCase ) for p in cmd_args_file_paths] ) snake_case__ : Any = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last snake_case__ : int = file_args + args if args is not None else file_args + sys.argv[1:] snake_case__ , snake_case__ : str = self.parse_known_args(args=_lowerCAmelCase ) snake_case__ : List[Any] = [] for dtype in self.dataclass_types: snake_case__ : str = {f.name for f in dataclasses.fields(_lowerCAmelCase ) if f.init} snake_case__ : str = {k: v for k, v in vars(_lowerCAmelCase ).items() if k in keys} for k in keys: delattr(_lowerCAmelCase , _lowerCAmelCase ) snake_case__ : List[Any] = dtype(**_lowerCAmelCase ) outputs.append(_lowerCAmelCase ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(_lowerCAmelCase ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def __a ( self , __UpperCamelCase , __UpperCamelCase = False ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Optional[int] = set(args.keys() ) snake_case__ : Optional[int] = [] for dtype in self.dataclass_types: snake_case__ : Any = {f.name for f in dataclasses.fields(_lowerCAmelCase ) if f.init} snake_case__ : List[Any] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) snake_case__ : List[Any] = dtype(**_lowerCAmelCase ) outputs.append(_lowerCAmelCase ) if not allow_extra_keys and unused_keys: raise ValueError(F"""Some keys are not used by the HfArgumentParser: {sorted(_lowerCAmelCase )}""" ) return tuple(_lowerCAmelCase ) def __a ( self , __UpperCamelCase , __UpperCamelCase = False ) -> Any: '''simple docstring''' with open(Path(_lowerCAmelCase ) , encoding='utf-8' ) as open_json_file: snake_case__ : Optional[int] = json.loads(open_json_file.read() ) snake_case__ : Dict = self.parse_dict(_lowerCAmelCase , allow_extra_keys=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def __a ( self , __UpperCamelCase , __UpperCamelCase = False ) -> Dict: '''simple docstring''' snake_case__ : Optional[int] = self.parse_dict(yaml.safe_load(Path(_lowerCAmelCase ).read_text() ) , allow_extra_keys=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
709
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowerCAmelCase__ : Any = logging.get_logger(__name__) lowerCAmelCase__ : List[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ : Any = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase__ : Any = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase__ : Tuple = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase__ : Dict = { '''facebook/dpr-ctx_encoder-single-nq-base''': 5_12, '''facebook/dpr-ctx_encoder-multiset-base''': 5_12, } lowerCAmelCase__ : Union[str, Any] = { '''facebook/dpr-question_encoder-single-nq-base''': 5_12, '''facebook/dpr-question_encoder-multiset-base''': 5_12, } lowerCAmelCase__ : Optional[Any] = { '''facebook/dpr-reader-single-nq-base''': 5_12, '''facebook/dpr-reader-multiset-base''': 5_12, } lowerCAmelCase__ : Tuple = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCAmelCase__ : Any = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCAmelCase__ : List[str] = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class __snake_case ( _lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION __lowerCamelCase = DPRContextEncoderTokenizer class __snake_case ( _lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __lowerCamelCase = DPRQuestionEncoderTokenizer lowerCAmelCase__ : Tuple = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) lowerCAmelCase__ : List[Any] = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) lowerCAmelCase__ : int = r''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(_lowerCamelCase ) class __snake_case : def __call__( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) elif titles is None or texts is None: snake_case__ : Optional[Any] = titles if texts is None else texts return super().__call__( __UpperCamelCase , __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) snake_case__ : int = titles if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [titles] snake_case__ : Optional[int] = texts if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [texts] snake_case__ : List[Any] = len(__UpperCamelCase ) snake_case__ : str = questions if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [questions] * n_passages assert len(__UpperCamelCase ) == len( __UpperCamelCase ), F"""There should be as many titles than texts but got {len(__UpperCamelCase )} titles and {len(__UpperCamelCase )} texts.""" snake_case__ : Optional[int] = super().__call__(__UpperCamelCase , __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase )['input_ids'] snake_case__ : Optional[Any] = super().__call__(__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase )['input_ids'] snake_case__ : Union[str, Any] = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__UpperCamelCase , __UpperCamelCase ) ] } if return_attention_mask is not False: snake_case__ : List[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) snake_case__ : Union[str, Any] = attention_mask return self.pad(__UpperCamelCase , padding=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 16 , __UpperCamelCase = 64 , __UpperCamelCase = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' snake_case__ : Optional[Any] = reader_input['input_ids'] snake_case__ , snake_case__ , snake_case__ : Any = reader_output[:3] snake_case__ : List[str] = len(__UpperCamelCase ) snake_case__ : Tuple = sorted(range(__UpperCamelCase ) , reverse=__UpperCamelCase , key=relevance_logits.__getitem__ ) snake_case__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: snake_case__ : Tuple = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence snake_case__ : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: snake_case__ : Union[str, Any] = sequence_ids.index(self.pad_token_id ) else: snake_case__ : str = len(__UpperCamelCase ) snake_case__ : Dict = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__UpperCamelCase , top_spans=__UpperCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__UpperCamelCase , start_index=__UpperCamelCase , end_index=__UpperCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__UpperCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> List[DPRSpanPrediction]: '''simple docstring''' snake_case__ : Any = [] for start_index, start_score in enumerate(__UpperCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) snake_case__ : str = sorted(__UpperCamelCase , key=lambda __UpperCamelCase : x[1] , reverse=__UpperCamelCase ) snake_case__ : Any = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"""Wrong span indices: [{start_index}:{end_index}]""" snake_case__ : str = end_index - start_index + 1 assert length <= max_answer_length, F"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__UpperCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_lowerCamelCase ) class __snake_case ( _lowerCamelCase ,_lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = READER_PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = READER_PRETRAINED_INIT_CONFIGURATION __lowerCamelCase = ["""input_ids""", """attention_mask"""] __lowerCamelCase = DPRReaderTokenizer
699
0
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class __lowercase ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : int = 1.0 , __lowerCamelCase : Any = None , ) -> Tuple: """simple docstring""" super().__init__() UpperCAmelCase = initial_learning_rate UpperCAmelCase = warmup_steps UpperCAmelCase = power UpperCAmelCase = decay_schedule_fn UpperCAmelCase = name def __call__( self : str , __lowerCamelCase : Any ) -> str: """simple docstring""" with tf.name_scope(self.name or """WarmUp""" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. UpperCAmelCase = tf.cast(_snake_case , tf.floataa ) UpperCAmelCase = tf.cast(self.warmup_steps , tf.floataa ) UpperCAmelCase = global_step_float / warmup_steps_float UpperCAmelCase = self.initial_learning_rate * tf.math.pow(_snake_case , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=_snake_case , ) def _lowercase ( self : List[str] ) -> Tuple: """simple docstring""" return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0.0 , lowerCAmelCase_ = 0.9 , lowerCAmelCase_ = 0.999 , lowerCAmelCase_ = 1e-8 , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = 0.0 , lowerCAmelCase_ = 1.0 , lowerCAmelCase_ = None , ) ->Optional[int]: UpperCAmelCase = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_SCREAMING_SNAKE_CASE , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_SCREAMING_SNAKE_CASE , ) if num_warmup_steps: UpperCAmelCase = WarmUp( initial_learning_rate=_SCREAMING_SNAKE_CASE , decay_schedule_fn=_SCREAMING_SNAKE_CASE , warmup_steps=_SCREAMING_SNAKE_CASE , ) if weight_decay_rate > 0.0: UpperCAmelCase = AdamWeightDecay( learning_rate=_SCREAMING_SNAKE_CASE , weight_decay_rate=_SCREAMING_SNAKE_CASE , beta_a=_SCREAMING_SNAKE_CASE , beta_a=_SCREAMING_SNAKE_CASE , epsilon=_SCREAMING_SNAKE_CASE , clipnorm=_SCREAMING_SNAKE_CASE , global_clipnorm=_SCREAMING_SNAKE_CASE , exclude_from_weight_decay=["""LayerNorm""", """layer_norm""", """bias"""] , include_in_weight_decay=_SCREAMING_SNAKE_CASE , ) else: UpperCAmelCase = tf.keras.optimizers.Adam( learning_rate=_SCREAMING_SNAKE_CASE , beta_a=_SCREAMING_SNAKE_CASE , beta_a=_SCREAMING_SNAKE_CASE , epsilon=_SCREAMING_SNAKE_CASE , clipnorm=_SCREAMING_SNAKE_CASE , global_clipnorm=_SCREAMING_SNAKE_CASE , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class __lowercase ( __SCREAMING_SNAKE_CASE ): def __init__( self : List[str] , __lowerCamelCase : Optional[int] = 0.001 , __lowerCamelCase : Any = 0.9 , __lowerCamelCase : int = 0.999 , __lowerCamelCase : List[str] = 1e-7 , __lowerCamelCase : Union[str, Any] = False , __lowerCamelCase : Union[str, Any] = 0.0 , __lowerCamelCase : str = None , __lowerCamelCase : Any = None , __lowerCamelCase : str = "AdamWeightDecay" , **__lowerCamelCase : Tuple , ) -> Any: """simple docstring""" super().__init__(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , **_snake_case ) UpperCAmelCase = weight_decay_rate UpperCAmelCase = include_in_weight_decay UpperCAmelCase = exclude_from_weight_decay @classmethod def _lowercase ( cls : List[str] , __lowerCamelCase : Optional[Any] ) -> int: """simple docstring""" UpperCAmelCase = {"WarmUp": WarmUp} return super(_snake_case , cls ).from_config(_snake_case , custom_objects=_snake_case ) def _lowercase ( self : Dict , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" super(_snake_case , self )._prepare_local(_snake_case , _snake_case , _snake_case ) UpperCAmelCase = tf.constant( self.weight_decay_rate , name="""adam_weight_decay_rate""" ) def _lowercase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ) -> Dict: """simple docstring""" UpperCAmelCase = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["""weight_decay_rate"""] , use_locking=self._use_locking , ) return tf.no_op() def _lowercase ( self : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int=None , **__lowerCamelCase : Tuple ) -> int: """simple docstring""" UpperCAmelCase = list(zip(*_snake_case ) ) return super(_snake_case , self ).apply_gradients(zip(_snake_case , _snake_case ) , name=_snake_case , **_snake_case ) def _lowercase ( self : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : Tuple ) -> Union[str, Any]: """simple docstring""" if apply_state is None: return self._decayed_lr_t[var_dtype], {} UpperCAmelCase = apply_state or {} UpperCAmelCase = apply_state.get((var_device, var_dtype) ) if coefficients is None: UpperCAmelCase = self._fallback_apply_state(_snake_case , _snake_case ) UpperCAmelCase = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def _lowercase ( self : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any]=None ) -> Tuple: """simple docstring""" UpperCAmelCase = self._get_lr(var.device , var.dtype.base_dtype , _snake_case ) UpperCAmelCase = self._decay_weights_op(_snake_case , _snake_case , _snake_case ) with tf.control_dependencies([decay] ): return super(_snake_case , self )._resource_apply_dense(_snake_case , _snake_case , **_snake_case ) def _lowercase ( self : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any]=None ) -> Dict: """simple docstring""" UpperCAmelCase = self._get_lr(var.device , var.dtype.base_dtype , _snake_case ) UpperCAmelCase = self._decay_weights_op(_snake_case , _snake_case , _snake_case ) with tf.control_dependencies([decay] ): return super(_snake_case , self )._resource_apply_sparse(_snake_case , _snake_case , _snake_case , **_snake_case ) def _lowercase ( self : List[str] ) -> Any: """simple docstring""" UpperCAmelCase = super().get_config() config.update({"""weight_decay_rate""": self.weight_decay_rate} ) return config def _lowercase ( self : str , __lowerCamelCase : Any ) -> Dict: """simple docstring""" if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(_snake_case , _snake_case ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(_snake_case , _snake_case ) is not None: return False return True class __lowercase ( __SCREAMING_SNAKE_CASE ): def __init__( self : Optional[int] ) -> Any: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = None @property def _lowercase ( self : Optional[int] ) -> List[str]: """simple docstring""" if self._accum_steps is None: UpperCAmelCase = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=_snake_case , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def _lowercase ( self : Tuple ) -> List[Any]: """simple docstring""" if not self._gradients: raise ValueError("""The accumulator should be called first to initialize the gradients""" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : List[Any] , __lowerCamelCase : Tuple ) -> List[Any]: """simple docstring""" if not self._gradients: UpperCAmelCase = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(_snake_case ) , trainable=_snake_case , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(_snake_case ) != len(self._gradients ): raise ValueError(F"""Expected {len(self._gradients )} gradients, but got {len(_snake_case )}""" ) for accum_gradient, gradient in zip(self._gradients , _snake_case ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(_snake_case ) self._accum_steps.assign_add(1 ) def _lowercase ( self : int ) -> Optional[int]: """simple docstring""" if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(_snake_case ) )
377
'''simple docstring''' import json import sys def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : int ) -> Tuple: """simple docstring""" with open(_SCREAMING_SNAKE_CASE , encoding="utf-8" ) as f: UpperCAmelCase_ : Dict = json.load(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = ["<details>", "<summary>Show updated benchmarks!</summary>", " "] for benchmark_name in sorted(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Optional[Any] = results[benchmark_name] UpperCAmelCase_ : Any = benchmark_name.split("/" )[-1] output_md.append(F'''### Benchmark: {benchmark_file_name}''' ) UpperCAmelCase_ : Any = "| metric |" UpperCAmelCase_ : Any = "|--------|" UpperCAmelCase_ : Union[str, Any] = "| new / old (diff) |" for metric_name in sorted(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Tuple = benchmark_res[metric_name] UpperCAmelCase_ : Union[str, Any] = metric_vals["new"] UpperCAmelCase_ : Optional[Any] = metric_vals.get("old" , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = metric_vals.get("diff" , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = F''' {new_val:f}''' if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else "None" if old_val is not None: val_str += F''' / {old_val:f}''' if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else "None" if dif_val is not None: val_str += F''' ({dif_val:f})''' if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("</details>" ) with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.writelines("\n".join(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": _lowerCamelCase = sys.argv[1] _lowerCamelCase = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
71
0
"""simple docstring""" def lowerCAmelCase_ ( lowercase_ : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE : List[str] = [0] * len(lowercase_ ) for i in range(1 , len(lowercase_ ) ): # use last results for better performance - dynamic programming __SCREAMING_SNAKE_CASE : Optional[Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: __SCREAMING_SNAKE_CASE : int = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 __SCREAMING_SNAKE_CASE : int = j return prefix_result def lowerCAmelCase_ ( lowercase_ : str ): '''simple docstring''' return max(prefix_function(lowercase_ ) ) if __name__ == "__main__": import doctest doctest.testmod()
718
"""simple docstring""" from math import isqrt def lowerCAmelCase_ ( lowercase_ : int ): '''simple docstring''' return all(number % divisor != 0 for divisor in range(2 , isqrt(lowercase_ ) + 1 ) ) def lowerCAmelCase_ ( lowercase_ : int = 10**6 ): '''simple docstring''' __SCREAMING_SNAKE_CASE : List[Any] = 0 __SCREAMING_SNAKE_CASE : Optional[int] = 1 __SCREAMING_SNAKE_CASE : int = 7 while prime_candidate < max_prime: primes_count += is_prime(lowercase_ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f'{solution() = }')
401
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A = logging.get_logger(__name__) A = {"""vocab_file""": """spiece.model"""} A = { """vocab_file""": { """bert_for_seq_generation""": ( """https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model""" ), } } A = {"""bert_for_seq_generation""": 512} class a__ ( __magic_name__ ): lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = [] lowercase_ = ["input_ids", "attention_mask"] def __init__( self : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[str]="<s>" , UpperCamelCase_ : Optional[Any]="</s>" , UpperCamelCase_ : Optional[int]="<unk>" , UpperCamelCase_ : int="<pad>" , UpperCamelCase_ : List[Any]="<::::>" , UpperCamelCase_ : Optional[Dict[str, Any]] = None , **UpperCamelCase_ : List[Any] , ): """simple docstring""" __UpperCAmelCase : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) __UpperCAmelCase : Dict = vocab_file __UpperCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(UpperCamelCase_) @property def a_ ( self : List[str]): """simple docstring""" return self.sp_model.get_piece_size() def a_ ( self : Union[str, Any]): """simple docstring""" __UpperCAmelCase : int = {self.convert_ids_to_tokens(UpperCamelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : int): """simple docstring""" __UpperCAmelCase : Optional[int] = self.__dict__.copy() __UpperCAmelCase : List[Any] = None return state def __setstate__( self : Optional[Any] , UpperCamelCase_ : Optional[int]): """simple docstring""" __UpperCAmelCase : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs"): __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def a_ ( self : Any , UpperCamelCase_ : str): """simple docstring""" return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_) def a_ ( self : Optional[Any] , UpperCamelCase_ : Optional[int]): """simple docstring""" return self.sp_model.piece_to_id(UpperCamelCase_) def a_ ( self : Tuple , UpperCamelCase_ : int): """simple docstring""" __UpperCAmelCase : int = self.sp_model.IdToPiece(UpperCamelCase_) return token def a_ ( self : Dict , UpperCamelCase_ : Optional[Any]): """simple docstring""" __UpperCAmelCase : int = [] __UpperCAmelCase : Tuple = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCamelCase_) + token __UpperCAmelCase : List[Any] = [] else: current_sub_tokens.append(UpperCamelCase_) out_string += self.sp_model.decode(UpperCamelCase_) return out_string.strip() def a_ ( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None): """simple docstring""" if not os.path.isdir(UpperCamelCase_): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return __UpperCAmelCase : Tuple = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCamelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCamelCase_) elif not os.path.isfile(self.vocab_file): with open(UpperCamelCase_ , "wb") as fi: __UpperCAmelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_) return (out_vocab_file,)
77
"""simple docstring""" def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :str ) -> int: assert column_title.isupper() a_ : int = 0 a_ : Tuple = len(_SCREAMING_SNAKE_CASE ) - 1 a_ : Union[str, Any] = 0 while index >= 0: a_ : List[Any] = (ord(column_title[index] ) - 64) * pow(26 , _SCREAMING_SNAKE_CASE ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
473
0
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowerCamelCase : Union[str, Any] = """ Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] """ class __snake_case( unittest.TestCase , __A ): def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_tool('''text-question-answering''' ) self.tool.setup() _SCREAMING_SNAKE_CASE = load_tool('''text-question-answering''' , remote=A_ ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.tool(A_ , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(A_ , '''launched the BigScience Research Workshop''' ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.remote_tool(A_ , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(A_ , '''launched the BigScience Research Workshop''' ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.tool(text=A_ , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(A_ , '''launched the BigScience Research Workshop''' ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.remote_tool(text=A_ , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(A_ , '''launched the BigScience Research Workshop''' )
168
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase : Tuple = {"""configuration_deit""": ["""DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DeiTConfig""", """DeiTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[Any] = ["""DeiTFeatureExtractor"""] lowerCamelCase : int = ["""DeiTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Any = [ """DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DeiTForImageClassification""", """DeiTForImageClassificationWithTeacher""", """DeiTForMaskedImageModeling""", """DeiTModel""", """DeiTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Any = [ """TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDeiTForImageClassification""", """TFDeiTForImageClassificationWithTeacher""", """TFDeiTForMaskedImageModeling""", """TFDeiTModel""", """TFDeiTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
168
1
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCAmelCase_ = { 'text_branch': 'text_model', 'audio_branch': 'audio_model.audio_encoder', 'attn': 'attention.self', 'self.proj': 'output.dense', 'attention.self_mask': 'attn_mask', 'mlp.fc1': 'intermediate.dense', 'mlp.fc2': 'output.dense', 'norm1': 'layernorm_before', 'norm2': 'layernorm_after', 'bn0': 'batch_norm', } lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc') def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase=False ) -> Any: lowercase__ , lowercase__ : Any = create_model( '''HTSAT-tiny''' , '''roberta''' , __lowerCamelCase , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=__lowerCamelCase , fusion_type='''aff_2d''' if enable_fusion else None , ) return model, model_cfg def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]: lowercase__ : Dict = {} lowercase__ : str = r'''.*sequential.(\d+).*''' lowercase__ : Union[str, Any] = r'''.*_projection.(\d+).*''' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowercase__ : Optional[Any] = key.replace(__lowerCamelCase , __lowerCamelCase ) if re.match(__lowerCamelCase , __lowerCamelCase ): # replace sequential layers with list lowercase__ : List[str] = re.match(__lowerCamelCase , __lowerCamelCase ).group(1 ) lowercase__ : str = key.replace(f"""sequential.{sequential_layer}.""" , f"""layers.{int(__lowerCamelCase )//3}.linear.""" ) elif re.match(__lowerCamelCase , __lowerCamelCase ): lowercase__ : int = int(re.match(__lowerCamelCase , __lowerCamelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... lowercase__ : List[Any] = 1 if projecton_layer == 0 else 2 lowercase__ : Optional[int] = key.replace(f"""_projection.{projecton_layer}.""" , f"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value lowercase__ : Any = value lowercase__ : List[str] = mixed_qkv.size(0 ) // 3 lowercase__ : Tuple = mixed_qkv[:qkv_dim] lowercase__ : Tuple = mixed_qkv[qkv_dim : qkv_dim * 2] lowercase__ : Any = mixed_qkv[qkv_dim * 2 :] lowercase__ : List[str] = query_layer lowercase__ : Dict = key_layer lowercase__ : Tuple = value_layer else: lowercase__ : Optional[int] = value return model_state_dict def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> Optional[int]: lowercase__ , lowercase__ : Tuple = init_clap(__lowerCamelCase , enable_fusion=__lowerCamelCase ) clap_model.eval() lowercase__ : Any = clap_model.state_dict() lowercase__ : Any = rename_state_dict(__lowerCamelCase ) lowercase__ : List[str] = ClapConfig() lowercase__ : Optional[int] = enable_fusion lowercase__ : str = ClapModel(__lowerCamelCase ) # ignore the spectrogram embedding layer model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) transformers_config.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not') lowerCAmelCase_ = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
560
"""simple docstring""" # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers lowerCAmelCase_ = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
560
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _a = { "configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ "FALCON_PRETRAINED_MODEL_ARCHIVE_LIST", "FalconForCausalLM", "FalconModel", "FalconPreTrainedModel", "FalconForSequenceClassification", "FalconForTokenClassification", "FalconForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
29
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = 42 class __A ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' @register_to_config def __init__( self , __lowerCAmelCase = 1_6 , __lowerCAmelCase = 8_8 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = 1 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 3_2 , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = "geglu" , __lowerCAmelCase = True , __lowerCAmelCase = True , ): '''simple docstring''' super().__init__() lowerCamelCase__ = num_attention_heads lowerCamelCase__ = attention_head_dim lowerCamelCase__ = num_attention_heads * attention_head_dim lowerCamelCase__ = in_channels lowerCamelCase__ = torch.nn.GroupNorm(num_groups=__lowerCAmelCase , num_channels=__lowerCAmelCase , eps=1E-6 , affine=__lowerCAmelCase ) lowerCamelCase__ = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) # 3. Define transformers blocks lowerCamelCase__ = nn.ModuleList( [ BasicTransformerBlock( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , dropout=__lowerCAmelCase , cross_attention_dim=__lowerCAmelCase , activation_fn=__lowerCAmelCase , attention_bias=__lowerCAmelCase , double_self_attention=__lowerCAmelCase , norm_elementwise_affine=__lowerCAmelCase , ) for d in range(__lowerCAmelCase ) ] ) lowerCamelCase__ = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=1 , __lowerCAmelCase=None , __lowerCAmelCase = True , ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = hidden_states.shape lowerCamelCase__ = batch_frames // num_frames lowerCamelCase__ = hidden_states lowerCamelCase__ = hidden_states[None, :].reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) lowerCamelCase__ = self.norm(__lowerCAmelCase ) lowerCamelCase__ = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , __lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = self.proj_in(__lowerCAmelCase ) # 2. Blocks for block in self.transformer_blocks: lowerCamelCase__ = block( __lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , timestep=__lowerCAmelCase , cross_attention_kwargs=__lowerCAmelCase , class_labels=__lowerCAmelCase , ) # 3. Output lowerCamelCase__ = self.proj_out(__lowerCAmelCase ) lowerCamelCase__ = ( hidden_states[None, None, :] .reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) lowerCamelCase__ = hidden_states.reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=__lowerCAmelCase )
29
1
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def __UpperCAmelCase ( lowerCamelCase_ : dict ) -> tuple: """simple docstring""" return (data["data"], data["target"]) def __UpperCAmelCase ( lowerCamelCase_ : np.ndarray , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : np.ndarray ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(lowerCamelCase_ , lowerCamelCase_ ) # Predict target for test data SCREAMING_SNAKE_CASE_ : Dict = xgb.predict(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = predictions.reshape(len(lowerCamelCase_ ) , 1 ) return predictions def __UpperCAmelCase ( ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = fetch_california_housing() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = data_handling(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = train_test_split( lowerCamelCase_ , lowerCamelCase_ , test_size=0.2_5 , random_state=1 ) SCREAMING_SNAKE_CASE_ : Optional[int] = xgboost(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Error printing print(F'Mean Absolute Error : {mean_absolute_error(lowerCamelCase_ , lowerCamelCase_ )}' ) print(F'Mean Square Error : {mean_squared_error(lowerCamelCase_ , lowerCamelCase_ )}' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
105
from math import pow, sqrt def _A( *UpperCamelCase__ : float ) -> bool: '''simple docstring''' __lowercase = len(UpperCamelCase__ ) > 0 and all(value > 0.0 for value in values ) return result def _A( UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float | ValueError: '''simple docstring''' return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(UpperCamelCase__ , UpperCamelCase__ ) else ValueError('''Input Error: Molar mass values must greater than 0.''' ) ) def _A( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float | ValueError: '''simple docstring''' return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def _A( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float | ValueError: '''simple docstring''' return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def _A( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float | ValueError: '''simple docstring''' return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def _A( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float | ValueError: '''simple docstring''' return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) )
332
0
'''simple docstring''' def A__ ( A_ ) -> Dict: return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def A__ ( A_ ) -> list[tuple[int, int]]: _lowercase = 0 _lowercase = len(A_ ) # No of vertices in graph _lowercase = [0] * n _lowercase = [False] * n def dfs(A_ , A_ , A_ , A_ ): _lowercase = True _lowercase = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(A_ , A_ , A_ , id_ ) _lowercase = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge _lowercase = min(low[at] , low[to] ) _lowercase = [] for i in range(A_ ): if not visited[i]: dfs(A_ , -1 , A_ , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
706
'''simple docstring''' import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , __A : Union[str, Any] ): """simple docstring""" _lowercase = parent def snake_case ( self : Optional[Any] ): """simple docstring""" return {} def A__ ( ) -> str: _lowercase = "<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR=\"FFFFFF\">\n <HR>\n <a href=\"http://google.com\">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style=\"color:#0000FF\">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>" _lowercase = "\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n " return [html_string_a, html_string_a] @require_bsa class UpperCamelCase__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ = MarkupLMFeatureExtractor if is_bsa_available() else None def snake_case ( self : Union[str, Any] ): """simple docstring""" _lowercase = MarkupLMFeatureExtractionTester(self ) @property def snake_case ( self : List[str] ): """simple docstring""" return self.feature_extract_tester.prepare_feat_extract_dict() def snake_case ( self : Dict ): """simple docstring""" # Initialize feature_extractor _lowercase = self.feature_extraction_class() # Test not batched input _lowercase = get_html_strings()[0] _lowercase = feature_extractor(__A ) # fmt: off _lowercase = [["sample document", "Goog", "This is one header", "This is a another Header", "Travel from", "SFO to JFK", "on May 2, 2015 at 2:00 pm. For details go to confirm.com", "Traveler", "name", "is", "John Doe"]] _lowercase = [["/html/head/title", "/html/body/a", "/html/body/h1", "/html/body/h2", "/html/body/p", "/html/body/p/p/b[1]", "/html/body/p/p/b[2]/i", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/b", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/p"]] # fmt: on self.assertEqual(encoding.nodes , __A ) self.assertEqual(encoding.xpaths , __A ) # Test batched _lowercase = get_html_strings() _lowercase = feature_extractor(__A ) # fmt: off _lowercase = expected_nodes + [["My First Heading", "My first paragraph."]] _lowercase = expected_xpaths + [["/html/body/h1", "/html/body/p"]] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , __A ) self.assertEqual(encoding.xpaths , __A )
602
0
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _lowerCAmelCase : Optional[int] = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] _lowerCAmelCase : Dict = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] _lowerCAmelCase : List[Any] = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) _lowerCAmelCase : Dict = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) _lowerCAmelCase : List[str] = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' for tf_name, hf_name in patterns: _lowerCamelCase : Tuple = k.replace(_lowerCAmelCase , _lowerCAmelCase ) return k def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> BigBirdPegasusForConditionalGeneration: '''simple docstring''' _lowerCamelCase : List[str] = BigBirdPegasusConfig(**_lowerCAmelCase ) _lowerCamelCase : Optional[int] = BigBirdPegasusForConditionalGeneration(_lowerCAmelCase ) _lowerCamelCase : int = torch_model.state_dict() _lowerCamelCase : Any = {} # separating decoder weights _lowerCamelCase : Any = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} _lowerCamelCase : Any = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ): _lowerCamelCase : Any = [k.endswith(_lowerCAmelCase ) for ending in KEYS_TO_IGNORE] if any(_lowerCAmelCase ): continue _lowerCamelCase : Tuple = DECODER_PATTERNS _lowerCamelCase : List[str] = rename_state_dict_key(_lowerCAmelCase , _lowerCAmelCase ) if new_k not in state_dict: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _lowerCamelCase : int = v.T _lowerCamelCase : int = torch.from_numpy(_lowerCAmelCase ) assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ): _lowerCamelCase : List[Any] = [k.endswith(_lowerCAmelCase ) for ending in KEYS_TO_IGNORE] if any(_lowerCAmelCase ): continue _lowerCamelCase : Optional[Any] = REMAINING_PATTERNS _lowerCamelCase : int = rename_state_dict_key(_lowerCAmelCase , _lowerCAmelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _lowerCamelCase : str = v.T _lowerCamelCase : List[str] = torch.from_numpy(_lowerCAmelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" _lowerCamelCase : List[Any] = mapping["model.embed_positions.weight"] _lowerCamelCase : Union[str, Any] = mapping.pop("model.embed_positions.weight" ) _lowerCamelCase : Optional[Any] = torch_model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) _lowerCamelCase : Tuple = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : str = tf.train.list_variables(_lowerCAmelCase ) _lowerCamelCase : Dict = {} _lowerCamelCase : Union[str, Any] = ["global_step"] for name, shape in tqdm(_lowerCAmelCase , desc="converting tf checkpoint to dict" ): _lowerCamelCase : List[str] = any(pat in name for pat in ignore_name ) if skip_key: continue _lowerCamelCase : Tuple = tf.train.load_variable(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Optional[Any] = array return tf_weights def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : Dict = get_tf_weights_as_numpy(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = convert_bigbird_pegasus(_lowerCAmelCase , _lowerCAmelCase ) torch_model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _lowerCAmelCase : List[Any] = parser.parse_args() _lowerCAmelCase : List[str] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
46
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) class A__ ( __snake_case ): def __init__( self , *A_ , **A_ ): '''simple docstring''' warnings.warn( "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use BeitImageProcessor instead." , A_ , ) super().__init__(*A_ , **A_ )
629
0
from timeit import timeit def UpperCamelCase ( snake_case__ : int ): '''simple docstring''' if number < 0: raise ValueError("""the value of input must not be negative""" ) __snake_case :List[str] = 0 while number: number &= number - 1 result += 1 return result def UpperCamelCase ( snake_case__ : int ): '''simple docstring''' if number < 0: raise ValueError("""the value of input must not be negative""" ) __snake_case :Any = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def UpperCamelCase ( ): '''simple docstring''' def do_benchmark(snake_case__ : int ) -> None: __snake_case :Union[str, Any] = """import __main__ as z""" print(f'''Benchmark when {number = }:''' ) print(f'''{get_set_bits_count_using_modulo_operator(snake_case__ ) = }''' ) __snake_case :str = timeit("""z.get_set_bits_count_using_modulo_operator(25)""" ,setup=snake_case__ ) print(f'''timeit() runs in {timing} seconds''' ) print(f'''{get_set_bits_count_using_brian_kernighans_algorithm(snake_case__ ) = }''' ) __snake_case :Tuple = timeit( """z.get_set_bits_count_using_brian_kernighans_algorithm(25)""" ,setup=snake_case__ ,) print(f'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(snake_case__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
291
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class snake_case__ ( unittest.TestCase): '''simple docstring''' def __init__( self , a__ , a__=7 , a__=3 , a__=18 , a__=30 , a__=4_00 , a__=True , a__=32 , a__=True , ) -> List[Any]: '''simple docstring''' __snake_case :List[Any] = parent __snake_case :Dict = batch_size __snake_case :Optional[Any] = num_channels __snake_case :Dict = image_size __snake_case :Dict = min_resolution __snake_case :Dict = max_resolution __snake_case :List[Any] = do_resize __snake_case :Dict = size_divisor __snake_case :Union[str, Any] = do_rescale def __lowercase ( self ) -> Tuple: '''simple docstring''' return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class snake_case__ ( lowercase_ , unittest.TestCase): '''simple docstring''' lowerCamelCase : Tuple = GLPNImageProcessor if is_vision_available() else None def __lowercase ( self ) -> Tuple: '''simple docstring''' __snake_case :Dict = GLPNImageProcessingTester(self ) @property def __lowercase ( self ) -> Optional[int]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __lowercase ( self ) -> List[str]: '''simple docstring''' __snake_case :Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__ , """do_resize""" ) ) self.assertTrue(hasattr(a__ , """size_divisor""" ) ) self.assertTrue(hasattr(a__ , """resample""" ) ) self.assertTrue(hasattr(a__ , """do_rescale""" ) ) def __lowercase ( self ) -> str: '''simple docstring''' pass def __lowercase ( self ) -> Dict: '''simple docstring''' __snake_case :int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __snake_case :Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __lowercase ( self ) -> Tuple: '''simple docstring''' __snake_case :int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case :List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , numpify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __snake_case :int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __lowercase ( self ) -> Any: '''simple docstring''' __snake_case :Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case :Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __snake_case :List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
291
1
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent __lowercase : Union[str, Any] = {'''UserAgent''': UserAgent().random} def lowercase ( __A : Optional[Any] ) -> dict: '''simple docstring''' snake_case : str = script.contents[0] snake_case : List[str] = json.loads(data[data.find("""{\"config\"""" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _A : '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Tuple = F"""https://www.instagram.com/{username}/""" snake_case : List[Any] = self.get_json() def snake_case_ ( self ): '''simple docstring''' snake_case : Optional[int] = requests.get(self.url ,headers=SCREAMING_SNAKE_CASE_ ).text snake_case : int = BeautifulSoup(SCREAMING_SNAKE_CASE_ ,"""html.parser""" ).find_all("""script""" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): '''simple docstring''' return F"""{self.__class__.__name__}('{self.username}')""" def __str__( self ): '''simple docstring''' return F"""{self.fullname} ({self.username}) is {self.biography}""" @property def snake_case_ ( self ): '''simple docstring''' return self.user_data["username"] @property def snake_case_ ( self ): '''simple docstring''' return self.user_data["full_name"] @property def snake_case_ ( self ): '''simple docstring''' return self.user_data["biography"] @property def snake_case_ ( self ): '''simple docstring''' return self.user_data["business_email"] @property def snake_case_ ( self ): '''simple docstring''' return self.user_data["external_url"] @property def snake_case_ ( self ): '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def snake_case_ ( self ): '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def snake_case_ ( self ): '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def snake_case_ ( self ): '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def snake_case_ ( self ): '''simple docstring''' return self.user_data["is_verified"] @property def snake_case_ ( self ): '''simple docstring''' return self.user_data["is_private"] def lowercase ( __A : str = "github" ) -> None: '''simple docstring''' import os if os.environ.get("""CI""" ): return # test failing on GitHub Actions snake_case : List[str] = InstagramUser(__A ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __A ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 12_0000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("""https://instagram.""" ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() __lowercase : int = InstagramUser('''github''') print(instagram_user) print(f'''{instagram_user.number_of_posts = }''') print(f'''{instagram_user.number_of_followers = }''') print(f'''{instagram_user.number_of_followings = }''') print(f'''{instagram_user.email = }''') print(f'''{instagram_user.website = }''') print(f'''{instagram_user.profile_picture_url = }''') print(f'''{instagram_user.is_verified = }''') print(f'''{instagram_user.is_private = }''')
36
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """microsoft/swinv2-tiny-patch4-window8-256""": ( """https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json""" ), } class UpperCAmelCase_ ( _lowercase): snake_case__ = '''swinv2''' snake_case__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : str , __UpperCamelCase : List[str]=224 , __UpperCamelCase : Any=4 , __UpperCamelCase : int=3 , __UpperCamelCase : Tuple=96 , __UpperCamelCase : Union[str, Any]=[2, 2, 6, 2] , __UpperCamelCase : List[Any]=[3, 6, 12, 24] , __UpperCamelCase : Optional[int]=7 , __UpperCamelCase : List[str]=4.0 , __UpperCamelCase : int=True , __UpperCamelCase : Optional[int]=0.0 , __UpperCamelCase : Union[str, Any]=0.0 , __UpperCamelCase : int=0.1 , __UpperCamelCase : Dict="gelu" , __UpperCamelCase : int=False , __UpperCamelCase : Tuple=0.0_2 , __UpperCamelCase : Any=1E-5 , __UpperCamelCase : Optional[Any]=32 , **__UpperCamelCase : Any , ) -> List[Any]: super().__init__(**__UpperCamelCase ) _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = embed_dim _UpperCamelCase = depths _UpperCamelCase = len(__UpperCamelCase ) _UpperCamelCase = num_heads _UpperCamelCase = window_size _UpperCamelCase = mlp_ratio _UpperCamelCase = qkv_bias _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = drop_path_rate _UpperCamelCase = hidden_act _UpperCamelCase = use_absolute_embeddings _UpperCamelCase = layer_norm_eps _UpperCamelCase = initializer_range _UpperCamelCase = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCamelCase = int(embed_dim * 2 ** (len(__UpperCamelCase ) - 1) ) _UpperCamelCase = (0, 0, 0, 0)
420
0
def _lowerCAmelCase ( UpperCamelCase__: List[str] , UpperCamelCase__: Any ) -> str: """simple docstring""" return "\n".join( f'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
713
from sklearn.metrics import recall_score import datasets _lowercase : Any = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" _lowercase : int = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" _lowercase : Dict = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): """simple docstring""" def _UpperCAmelCase ( self ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def _UpperCAmelCase ( self , a__ , a__ , a__=None , a__=1 , a__="binary" , a__=None , a__="warn" , ) -> Any: A = recall_score( a__ , a__ , labels=a__ , pos_label=a__ , average=a__ , sample_weight=a__ , zero_division=a__ , ) return {"recall": float(a__ ) if score.size == 1 else score}
546
0
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 UpperCAmelCase = { # 1536-bit 5: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 2048-bit 14: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AACAA68FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 3072-bit 15: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 4096-bit 16: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199''' + '''FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 6144-bit 17: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08''' + '''8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B''' + '''302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9''' + '''A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6''' + '''49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8''' + '''FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C''' + '''180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718''' + '''3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D''' + '''04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D''' + '''B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226''' + '''1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC''' + '''E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26''' + '''99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB''' + '''04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2''' + '''233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127''' + '''D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406''' + '''AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918''' + '''DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151''' + '''2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03''' + '''F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F''' + '''BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B''' + '''B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632''' + '''387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E''' + '''6DCC4024FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 8192-bit 18: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD''' + '''F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831''' + '''179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B''' + '''DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF''' + '''5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6''' + '''D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3''' + '''23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328''' + '''06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C''' + '''DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE''' + '''12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4''' + '''38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300''' + '''741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568''' + '''3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9''' + '''22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B''' + '''4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A''' + '''062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36''' + '''4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1''' + '''B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92''' + '''4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47''' + '''9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71''' + '''60C980DD98EDD3DFFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, } class __magic_name__ : def __init__( self : str , snake_case__ : Optional[Any] = 1_4 ): '''simple docstring''' if group not in primes: raise ValueError('''Unsupported Group''' ) lowercase :Dict = primes[group]['''prime'''] lowercase :Optional[int] = primes[group]['''generator'''] lowercase :str = int(hexlify(urandom(3_2 ) ) , base=1_6 ) def __snake_case ( self : List[Any] ): '''simple docstring''' return hex(self.__private_key )[2:] def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase :List[Any] = pow(self.generator , self.__private_key , self.prime ) return hex(_lowerCamelCase )[2:] def __snake_case ( self : str , snake_case__ : Tuple ): '''simple docstring''' return ( 2 <= key <= self.prime - 2 and pow(_lowerCamelCase , (self.prime - 1) // 2 , self.prime ) == 1 ) def __snake_case ( self : List[str] , snake_case__ : int ): '''simple docstring''' lowercase :Optional[Any] = int(_lowerCamelCase , base=1_6 ) if not self.is_valid_public_key(_lowerCamelCase ): raise ValueError('''Invalid public key''' ) lowercase :int = pow(_lowerCamelCase , self.__private_key , self.prime ) return shaaaa(str(_lowerCamelCase ).encode() ).hexdigest() @staticmethod def __snake_case ( snake_case__ : List[str] , snake_case__ : Optional[Any] ): '''simple docstring''' return ( 2 <= remote_public_key_str <= prime - 2 and pow(_lowerCamelCase , (prime - 1) // 2 , _lowerCamelCase ) == 1 ) @staticmethod def __snake_case ( snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : int = 1_4 ): '''simple docstring''' lowercase :Dict = int(_lowerCamelCase , base=1_6 ) lowercase :Union[str, Any] = int(_lowerCamelCase , base=1_6 ) lowercase :List[Any] = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(_lowerCamelCase , _lowerCamelCase ): raise ValueError('''Invalid public key''' ) lowercase :List[str] = pow(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return shaaaa(str(_lowerCamelCase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
677
'''simple docstring''' import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL _lowerCAmelCase = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def _lowerCAmelCase ( lowercase : Optional[int] , lowercase : tuple , lowercase : Path , lowercase : Tuple , lowercase : Optional[Any] , lowercase : Optional[Any] , lowercase : Tuple , lowercase : int=False , ) ->Tuple: """simple docstring""" output_path.parent.mkdir(parents=lowercase , exist_ok=lowercase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( lowercase , lowercase , f=output_path.as_posix() , input_names=lowercase , output_names=lowercase , dynamic_axes=lowercase , do_constant_folding=lowercase , use_external_data_format=lowercase , enable_onnx_checker=lowercase , opset_version=lowercase , ) else: export( lowercase , lowercase , f=output_path.as_posix() , input_names=lowercase , output_names=lowercase , dynamic_axes=lowercase , do_constant_folding=lowercase , opset_version=lowercase , ) @torch.no_grad() def _lowerCAmelCase ( lowercase : str , lowercase : str , lowercase : int , lowercase : bool = False ) ->Union[str, Any]: """simple docstring""" lowercase__ = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowercase__ = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: lowercase__ = '''cpu''' lowercase__ = Path(lowercase ) # VAE DECODER lowercase__ = AutoencoderKL.from_pretrained(model_path + '''/vae''' ) lowercase__ = vae_decoder.config.latent_channels # forward only through the decoder part lowercase__ = vae_decoder.decode onnx_export( lowercase , model_args=( torch.randn(1 , lowercase , 2_5 , 2_5 ).to(device=lowercase , dtype=lowercase ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=lowercase , ) del vae_decoder if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=1_4, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") _lowerCAmelCase = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
161
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=99 ,__UpperCamelCase=[1, 1, 2] ,__UpperCamelCase=1 ,__UpperCamelCase=32 ,__UpperCamelCase=4 ,__UpperCamelCase=8 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu_new" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.0 ,__UpperCamelCase=512 ,__UpperCamelCase=3 ,__UpperCamelCase=0.02 ,__UpperCamelCase=3 ,__UpperCamelCase=4 ,__UpperCamelCase=None ,__UpperCamelCase=False ,) -> List[Any]: '''simple docstring''' lowercase_ : int = parent lowercase_ : Dict = batch_size lowercase_ : Dict = seq_length lowercase_ : int = is_training lowercase_ : Dict = use_input_mask lowercase_ : List[str] = use_token_type_ids lowercase_ : List[Any] = use_labels lowercase_ : List[str] = vocab_size lowercase_ : Optional[int] = block_sizes lowercase_ : List[Any] = num_decoder_layers lowercase_ : int = d_model lowercase_ : Optional[Any] = n_head lowercase_ : Optional[int] = d_head lowercase_ : List[Any] = d_inner lowercase_ : Union[str, Any] = hidden_act lowercase_ : Any = hidden_dropout lowercase_ : Any = attention_dropout lowercase_ : int = activation_dropout lowercase_ : List[str] = max_position_embeddings lowercase_ : Union[str, Any] = type_vocab_size lowercase_ : List[Any] = 2 lowercase_ : Dict = num_labels lowercase_ : Dict = num_choices lowercase_ : int = scope lowercase_ : Optional[Any] = initializer_std # Used in the tests to check the size of the first attention layer lowercase_ : Optional[int] = n_head # Used in the tests to check the size of the first hidden state lowercase_ : str = self.d_model # Used in the tests to check the number of output hidden states/attentions lowercase_ : str = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: lowercase_ : Any = self.num_hidden_layers + 2 def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : Any = None if self.use_input_mask: lowercase_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : Optional[int] = None if self.use_token_type_ids: lowercase_ : int = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowercase_ : List[str] = None lowercase_ : List[Any] = None lowercase_ : List[str] = None if self.use_labels: lowercase_ : Tuple = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase_ : Dict = ids_tensor([self.batch_size] ,self.num_choices ) lowercase_ : Union[str, Any] = FunnelConfig( vocab_size=self.vocab_size ,block_sizes=self.block_sizes ,num_decoder_layers=self.num_decoder_layers ,d_model=self.d_model ,n_head=self.n_head ,d_head=self.d_head ,d_inner=self.d_inner ,hidden_act=self.hidden_act ,hidden_dropout=self.hidden_dropout ,attention_dropout=self.attention_dropout ,activation_dropout=self.activation_dropout ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_std=self.initializer_std ,) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) -> Optional[int]: '''simple docstring''' lowercase_ : int = TFFunnelModel(config=__UpperCamelCase ) lowercase_ : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase_ : Optional[Any] = model(__UpperCamelCase ) lowercase_ : int = [input_ids, input_mask] lowercase_ : Any = model(__UpperCamelCase ) lowercase_ : List[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) lowercase_ : Dict = False lowercase_ : int = TFFunnelModel(config=__UpperCamelCase ) lowercase_ : Optional[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) lowercase_ : int = False lowercase_ : List[str] = TFFunnelModel(config=__UpperCamelCase ) lowercase_ : str = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) -> Tuple: '''simple docstring''' lowercase_ : Dict = TFFunnelBaseModel(config=__UpperCamelCase ) lowercase_ : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase_ : Dict = model(__UpperCamelCase ) lowercase_ : Optional[Any] = [input_ids, input_mask] lowercase_ : Optional[Any] = model(__UpperCamelCase ) lowercase_ : Dict = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 2, self.d_model) ) lowercase_ : Optional[int] = False lowercase_ : Optional[int] = TFFunnelBaseModel(config=__UpperCamelCase ) lowercase_ : str = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 3, self.d_model) ) lowercase_ : int = False lowercase_ : Optional[int] = TFFunnelBaseModel(config=__UpperCamelCase ) lowercase_ : Optional[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 2, self.d_model) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) -> Optional[int]: '''simple docstring''' lowercase_ : Any = TFFunnelForPreTraining(config=__UpperCamelCase ) lowercase_ : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase_ : str = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) -> Dict: '''simple docstring''' lowercase_ : Tuple = TFFunnelForMaskedLM(config=__UpperCamelCase ) lowercase_ : Dict = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase_ : List[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) -> List[Any]: '''simple docstring''' lowercase_ : Any = self.num_labels lowercase_ : List[str] = TFFunnelForSequenceClassification(config=__UpperCamelCase ) lowercase_ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase_ : Union[str, Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) -> Tuple: '''simple docstring''' lowercase_ : int = self.num_choices lowercase_ : List[str] = TFFunnelForMultipleChoice(config=__UpperCamelCase ) lowercase_ : Union[str, Any] = tf.tile(tf.expand_dims(__UpperCamelCase ,1 ) ,(1, self.num_choices, 1) ) lowercase_ : str = tf.tile(tf.expand_dims(__UpperCamelCase ,1 ) ,(1, self.num_choices, 1) ) lowercase_ : Optional[Any] = tf.tile(tf.expand_dims(__UpperCamelCase ,1 ) ,(1, self.num_choices, 1) ) lowercase_ : int = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowercase_ : List[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) -> List[str]: '''simple docstring''' lowercase_ : Dict = self.num_labels lowercase_ : int = TFFunnelForTokenClassification(config=__UpperCamelCase ) lowercase_ : Any = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase_ : List[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) -> Optional[Any]: '''simple docstring''' lowercase_ : Tuple = TFFunnelForQuestionAnswering(config=__UpperCamelCase ) lowercase_ : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase_ : List[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : Optional[int] = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Optional[int] = config_and_inputs lowercase_ : Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): lowercase = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) lowercase = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) lowercase = False lowercase = False def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : str = TFFunnelModelTester(self ) lowercase_ : Dict = ConfigTester(self ,config_class=__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCamelCase ) @require_tf class UpperCamelCase ( lowercase_ , unittest.TestCase ): lowercase = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) lowercase = False lowercase = False def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[int] = TFFunnelModelTester(self ,base=__UpperCamelCase ) lowercase_ : Dict = ConfigTester(self ,config_class=__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCamelCase )
477
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def lowercase__( ): lowercase_ : List[Any] = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) lowercase_ : int = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(__SCREAMING_SNAKE_CASE ) # Let's go lowercase_ : str = parser.parse_args() if not hasattr(__SCREAMING_SNAKE_CASE , 'func' ): parser.print_help() exit(1 ) # Run lowercase_ : Optional[Any] = args.func(__SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
477
1
def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int ): UpperCamelCase_ : Optional[int] = [[] for _ in range(_SCREAMING_SNAKE_CASE )] UpperCamelCase_ : List[Any] = key - 1 if key <= 0: raise ValueError("""Height of grid can\'t be 0 or negative""" ) if key == 1 or len(_SCREAMING_SNAKE_CASE ) <= key: return input_string for position, character in enumerate(_SCREAMING_SNAKE_CASE ): UpperCamelCase_ : Any = position % (lowest * 2) # puts it in bounds UpperCamelCase_ : int = min(_SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : Any = ["""""".join(_SCREAMING_SNAKE_CASE ) for row in temp_grid] UpperCamelCase_ : Dict = """""".join(_SCREAMING_SNAKE_CASE ) return output_string def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int ): UpperCamelCase_ : str = [] UpperCamelCase_ : List[str] = key - 1 if key <= 0: raise ValueError("""Height of grid can\'t be 0 or negative""" ) if key == 1: return input_string UpperCamelCase_ : Optional[int] = [[] for _ in range(_SCREAMING_SNAKE_CASE )] # generates template for position in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCamelCase_ : Optional[int] = position % (lowest * 2) # puts it in bounds UpperCamelCase_ : Union[str, Any] = min(_SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("""*""" ) UpperCamelCase_ : int = 0 for row in temp_grid: # fills in the characters UpperCamelCase_ : int = input_string[counter : counter + len(_SCREAMING_SNAKE_CASE )] grid.append(list(_SCREAMING_SNAKE_CASE ) ) counter += len(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : int = """""" # reads as zigzag for position in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCamelCase_ : Union[str, Any] = position % (lowest * 2) # puts it in bounds UpperCamelCase_ : str = min(_SCREAMING_SNAKE_CASE , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : str ): UpperCamelCase_ : Optional[Any] = {} for key_guess in range(1 , len(_SCREAMING_SNAKE_CASE ) ): # tries every key UpperCamelCase_ : Optional[Any] = decrypt(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return results if __name__ == "__main__": import doctest doctest.testmod()
635
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a : List[str] = 16 a : str = 32 def __magic_name__ ( UpperCamelCase : Accelerator , UpperCamelCase : int = 16 ) -> Dict: a__ = AutoTokenizer.from_pretrained('bert-base-cased' ) a__ = load_dataset('glue' , 'mrpc' ) def tokenize_function(UpperCamelCase : Optional[int] ): # max_length=None => use the model max length (it's actually the default) a__ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase , max_length=UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): a__ = datasets.map( UpperCamelCase , batched=UpperCamelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a__ = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(UpperCamelCase : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. a__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": a__ = 16 elif accelerator.mixed_precision != "no": a__ = 8 else: a__ = None return tokenizer.pad( UpperCamelCase , padding='longest' , max_length=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_tensors='pt' , ) # Instantiate dataloaders. a__ = DataLoader( tokenized_datasets['train'] , shuffle=UpperCamelCase , collate_fn=UpperCamelCase , batch_size=UpperCamelCase ) a__ = DataLoader( tokenized_datasets['validation'] , shuffle=UpperCamelCase , collate_fn=UpperCamelCase , batch_size=UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders a : Union[str, Any] = mocked_dataloaders # noqa: F811 def __magic_name__ ( UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] ) -> Optional[Any]: # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , UpperCamelCase ) == "1": a__ = 2 # New Code # a__ = int(args.gradient_accumulation_steps ) a__ = int(args.local_sgd_steps ) # Initialize accelerator a__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=UpperCamelCase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a__ = config['lr'] a__ = int(config['num_epochs'] ) a__ = int(config['seed'] ) a__ = int(config['batch_size'] ) a__ = evaluate.load('glue' , 'mrpc' ) set_seed(UpperCamelCase ) a__ , a__ = get_dataloaders(UpperCamelCase , UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a__ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). a__ = model.to(accelerator.device ) # Instantiate optimizer a__ = AdamW(params=model.parameters() , lr=UpperCamelCase ) # Instantiate scheduler a__ = get_linear_schedule_with_warmup( optimizer=UpperCamelCase , num_warmup_steps=100 , num_training_steps=(len(UpperCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a__ , a__ , a__ , a__ , a__ = accelerator.prepare( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # Now we train the model for epoch in range(UpperCamelCase ): model.train() with LocalSGD( accelerator=UpperCamelCase , model=UpperCamelCase , local_sgd_steps=UpperCamelCase , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(UpperCamelCase ): a__ = model(**UpperCamelCase ) a__ = output.loss accelerator.backward(UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): a__ = model(**UpperCamelCase ) a__ = outputs.logits.argmax(dim=-1 ) a__ , a__ = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=UpperCamelCase , references=UpperCamelCase , ) a__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , UpperCamelCase ) def __magic_name__ ( ) -> Any: a__ = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=UpperCamelCase , default=UpperCamelCase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=UpperCamelCase , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument( '--local_sgd_steps' , type=UpperCamelCase , default=8 , help='Number of local SGD steps or None to disable local SGD' ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) a__ = parser.parse_args() a__ = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": main()
273
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class _a ( metaclass=lowercase_ ): '''simple docstring''' UpperCamelCase__ = ["""torch""", """transformers""", """onnx"""] def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_) -> str: '''simple docstring''' requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def __lowercase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_) -> List[Any]: '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def __lowercase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_) -> Tuple: '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"]) class _a ( metaclass=lowercase_ ): '''simple docstring''' UpperCamelCase__ = ["""torch""", """transformers""", """onnx"""] def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def __lowercase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def __lowercase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_) -> int: '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"]) class _a ( metaclass=lowercase_ ): '''simple docstring''' UpperCamelCase__ = ["""torch""", """transformers""", """onnx"""] def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_) -> int: '''simple docstring''' requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def __lowercase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_) -> Any: '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def __lowercase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_) -> int: '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"]) class _a ( metaclass=lowercase_ ): '''simple docstring''' UpperCamelCase__ = ["""torch""", """transformers""", """onnx"""] def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_) -> Tuple: '''simple docstring''' requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def __lowercase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_) -> str: '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def __lowercase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"]) class _a ( metaclass=lowercase_ ): '''simple docstring''' UpperCamelCase__ = ["""torch""", """transformers""", """onnx"""] def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def __lowercase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def __lowercase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"]) class _a ( metaclass=lowercase_ ): '''simple docstring''' UpperCamelCase__ = ["""torch""", """transformers""", """onnx"""] def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_) -> str: '''simple docstring''' requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def __lowercase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def __lowercase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_) -> str: '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"])
708
"""simple docstring""" import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _a ( lowercase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase__ = ConsistencyModelPipeline UpperCamelCase__ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS UpperCamelCase__ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt UpperCamelCase__ = frozenset( [ """num_inference_steps""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) @property def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' lowercase__: List[str] = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet" , ) return unet @property def __lowercase ( self) -> Tuple: '''simple docstring''' lowercase__: Any = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet_class_cond" , ) return unet def __lowercase ( self , UpperCAmelCase_=False) -> str: '''simple docstring''' if class_cond: lowercase__: List[str] = self.dummy_cond_unet else: lowercase__: List[Any] = self.dummy_uncond_unet # Default to CM multistep sampler lowercase__: List[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) lowercase__: Any = { "unet": unet, "scheduler": scheduler, } return components def __lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_=0) -> Union[str, Any]: '''simple docstring''' if str(UpperCAmelCase_).startswith("mps"): lowercase__: List[str] = torch.manual_seed(UpperCAmelCase_) else: lowercase__: Optional[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(UpperCAmelCase_) lowercase__: Optional[Any] = { "batch_size": 1, "num_inference_steps": None, "timesteps": [22, 0], "generator": generator, "output_type": "np", } return inputs def __lowercase ( self) -> Tuple: '''simple docstring''' lowercase__: Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase__: List[Any] = self.get_dummy_components() lowercase__: List[str] = ConsistencyModelPipeline(**UpperCAmelCase_) lowercase__: List[str] = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowercase__: Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase_) lowercase__: Optional[int] = pipe(**UpperCAmelCase_).images assert image.shape == (1, 32, 32, 3) lowercase__: List[str] = image[0, -3:, -3:, -1] lowercase__: Union[str, Any] = np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def __lowercase ( self) -> Any: '''simple docstring''' lowercase__: Dict = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase__: Optional[Any] = self.get_dummy_components(class_cond=UpperCAmelCase_) lowercase__: List[str] = ConsistencyModelPipeline(**UpperCAmelCase_) lowercase__: Union[str, Any] = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowercase__: Optional[int] = self.get_dummy_inputs(UpperCAmelCase_) lowercase__: Optional[int] = 0 lowercase__: Union[str, Any] = pipe(**UpperCAmelCase_).images assert image.shape == (1, 32, 32, 3) lowercase__: Optional[int] = image[0, -3:, -3:, -1] lowercase__: Optional[int] = np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def __lowercase ( self) -> str: '''simple docstring''' lowercase__: Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase__: str = self.get_dummy_components() lowercase__: Optional[int] = ConsistencyModelPipeline(**UpperCAmelCase_) lowercase__: List[str] = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowercase__: str = self.get_dummy_inputs(UpperCAmelCase_) lowercase__: Any = 1 lowercase__: str = None lowercase__: Dict = pipe(**UpperCAmelCase_).images assert image.shape == (1, 32, 32, 3) lowercase__: List[Any] = image[0, -3:, -3:, -1] lowercase__: int = np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def __lowercase ( self) -> str: '''simple docstring''' lowercase__: List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase__: List[str] = self.get_dummy_components(class_cond=UpperCAmelCase_) lowercase__: Any = ConsistencyModelPipeline(**UpperCAmelCase_) lowercase__: int = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowercase__: Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase_) lowercase__: Optional[int] = 1 lowercase__: Tuple = None lowercase__: int = 0 lowercase__: str = pipe(**UpperCAmelCase_).images assert image.shape == (1, 32, 32, 3) lowercase__: Tuple = image[0, -3:, -3:, -1] lowercase__: Union[str, Any] = np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 @slow @require_torch_gpu class _a ( unittest.TestCase ): '''simple docstring''' def __lowercase ( self) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self , UpperCAmelCase_=0 , UpperCAmelCase_=False , UpperCAmelCase_="cpu" , UpperCAmelCase_=torch.floataa , UpperCAmelCase_=(1, 3, 64, 64)) -> List[Any]: '''simple docstring''' lowercase__: Any = torch.manual_seed(UpperCAmelCase_) lowercase__: Union[str, Any] = { "num_inference_steps": None, "timesteps": [22, 0], "class_labels": 0, "generator": generator, "output_type": "np", } if get_fixed_latents: lowercase__: Dict = self.get_fixed_latents(seed=UpperCAmelCase_ , device=UpperCAmelCase_ , dtype=UpperCAmelCase_ , shape=UpperCAmelCase_) lowercase__: Tuple = latents return inputs def __lowercase ( self , UpperCAmelCase_=0 , UpperCAmelCase_="cpu" , UpperCAmelCase_=torch.floataa , UpperCAmelCase_=(1, 3, 64, 64)) -> Tuple: '''simple docstring''' if type(UpperCAmelCase_) == str: lowercase__: Optional[int] = torch.device(UpperCAmelCase_) lowercase__: Any = torch.Generator(device=UpperCAmelCase_).manual_seed(UpperCAmelCase_) lowercase__: Optional[int] = randn_tensor(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=UpperCAmelCase_ , dtype=UpperCAmelCase_) return latents def __lowercase ( self) -> int: '''simple docstring''' lowercase__: int = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2") lowercase__: int = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) lowercase__: List[Any] = ConsistencyModelPipeline(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_) pipe.to(torch_device=UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowercase__: Any = self.get_inputs() lowercase__: Any = pipe(**UpperCAmelCase_).images assert image.shape == (1, 64, 64, 3) lowercase__: List[Any] = image[0, -3:, -3:, -1] lowercase__: Tuple = np.array([0.08_88, 0.08_81, 0.06_66, 0.04_79, 0.02_92, 0.01_95, 0.02_01, 0.01_63, 0.02_54]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2 def __lowercase ( self) -> Optional[Any]: '''simple docstring''' lowercase__: Tuple = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2") lowercase__: Dict = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) lowercase__: str = ConsistencyModelPipeline(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_) pipe.to(torch_device=UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowercase__: List[str] = self.get_inputs() lowercase__: Optional[int] = 1 lowercase__: int = None lowercase__: List[Any] = pipe(**UpperCAmelCase_).images assert image.shape == (1, 64, 64, 3) lowercase__: int = image[0, -3:, -3:, -1] lowercase__: List[Any] = np.array([0.03_40, 0.01_52, 0.00_63, 0.02_67, 0.02_21, 0.01_07, 0.04_16, 0.01_86, 0.02_17]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2 @require_torch_a def __lowercase ( self) -> Optional[int]: '''simple docstring''' lowercase__: Dict = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2") lowercase__: List[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) lowercase__: Dict = ConsistencyModelPipeline(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_) pipe.to(torch_device=UpperCAmelCase_ , torch_dtype=torch.floataa) pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowercase__: List[str] = self.get_inputs(get_fixed_latents=UpperCAmelCase_ , device=UpperCAmelCase_) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=UpperCAmelCase_ , enable_math=UpperCAmelCase_ , enable_mem_efficient=UpperCAmelCase_): lowercase__: Union[str, Any] = pipe(**UpperCAmelCase_).images assert image.shape == (1, 64, 64, 3) lowercase__: Union[str, Any] = image[0, -3:, -3:, -1] lowercase__: Any = np.array([0.18_75, 0.14_28, 0.12_89, 0.21_51, 0.20_92, 0.14_77, 0.18_77, 0.16_41, 0.13_53]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 @require_torch_a def __lowercase ( self) -> Any: '''simple docstring''' lowercase__: int = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2") lowercase__: Dict = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) lowercase__: List[Any] = ConsistencyModelPipeline(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_) pipe.to(torch_device=UpperCAmelCase_ , torch_dtype=torch.floataa) pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowercase__: List[Any] = self.get_inputs(get_fixed_latents=UpperCAmelCase_ , device=UpperCAmelCase_) lowercase__: Optional[Any] = 1 lowercase__: Dict = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=UpperCAmelCase_ , enable_math=UpperCAmelCase_ , enable_mem_efficient=UpperCAmelCase_): lowercase__: str = pipe(**UpperCAmelCase_).images assert image.shape == (1, 64, 64, 3) lowercase__: Any = image[0, -3:, -3:, -1] lowercase__: Any = np.array([0.16_63, 0.19_48, 0.22_75, 0.16_80, 0.12_04, 0.12_45, 0.18_58, 0.13_38, 0.20_95]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3
120
0
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration __snake_case :Tuple =HfArgumentParser(InitializationArguments) __snake_case :Optional[int] =parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization __snake_case :int =AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks __snake_case :Optional[int] ={ 'vocab_size': len(tokenizer), 'scale_attn_by_inverse_layer_idx': True, 'reorder_and_upcast_attn': True, } # Load model config (GPT-2 large in this case) __snake_case :Optional[Any] =AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config __snake_case :List[Any] =AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
106
'''simple docstring''' import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase ( self : Union[str, Any] )-> Optional[Any]: snake_case = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) snake_case = AutoTokenizer.from_pretrained("""google/mt5-small""" ) snake_case = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids snake_case = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids snake_case = shift_tokens_right(__snake_case , model.config.pad_token_id , model.config.decoder_start_token_id ) snake_case = model(__snake_case , decoder_input_ids=__snake_case ).logits snake_case = optax.softmax_cross_entropy(__snake_case , onehot(__snake_case , logits.shape[-1] ) ).mean() snake_case = -(labels.shape[-1] * loss.item()) snake_case = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
369
0
from math import sqrt def snake_case_ ( _SCREAMING_SNAKE_CASE ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(lowerCAmelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case_ ( _SCREAMING_SNAKE_CASE = 1_0_0_0_1 ): __lowercase = 0 __lowercase = 1 while count != nth and number < 3: number += 1 if is_prime(lowerCAmelCase_ ): count += 1 while count != nth: number += 2 if is_prime(lowerCAmelCase_ ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
707
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) snake_case__ : Optional[Any] = logging.getLogger() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = "\n".join(_SCREAMING_SNAKE_CASE ) Path(_SCREAMING_SNAKE_CASE ).open("w" ).writelines(_SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = """patrickvonplaten/t5-tiny-random""" snake_case__ : int = """sshleifer/bart-tiny-random""" snake_case__ : Union[str, Any] = """sshleifer/tiny-mbart""" snake_case__ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _A ( _lowercase ): '''simple docstring''' def _snake_case ( self : str , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."] _dump_articles(lowerCamelCase , lowerCamelCase ) __lowercase = str(Path(self.get_auto_remove_tmp_dir() ) / "scores.json" ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): run_generate() assert Path(lowerCamelCase ).exists() # os.remove(Path(output_file_name)) def _snake_case ( self : Dict ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = { "en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"], "de": [ "Maschinelles Lernen ist großartig, oder?", "Ich esse gerne Bananen", "Morgen ist wieder ein toller Tag!", ], } __lowercase = Path(self.get_auto_remove_tmp_dir() ) __lowercase = str(tmp_dir / "scores.json" ) __lowercase = str(tmp_dir / "val.target" ) _dump_articles(lowerCamelCase , text["en"] ) _dump_articles(lowerCamelCase , text["de"] ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {str(lowerCamelCase )} {str(lowerCamelCase )} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"] ) with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): with CaptureStdout() as cs: run_search() __lowercase = [" num_beams | length_penalty", model, "Best score args"] __lowercase = ["Info"] if "translation" in task: expected_strings.append("bleu" ) else: expected_strings.extend(lowerCamelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowerCamelCase ).exists() os.remove(Path(lowerCamelCase ) )
655
0
'''simple docstring''' def UpperCamelCase_ ( A__ : int , A__ : int ): '''simple docstring''' return int((input_a, input_a).count(1 ) != 0 ) def UpperCamelCase_ ( ): '''simple docstring''' assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
275
'''simple docstring''' def UpperCamelCase__ ( _lowercase : List[Any] ) -> Dict: return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def UpperCamelCase__ ( _lowercase : dict[int, list[int]] ) -> list[tuple[int, int]]: __UpperCAmelCase: Any = 0 __UpperCAmelCase: List[Any] = len(_lowercase ) # No of vertices in graph __UpperCAmelCase: Optional[Any] = [0] * n __UpperCAmelCase: Dict = [False] * n def dfs(_lowercase : Any , _lowercase : List[Any] , _lowercase : int , _lowercase : Optional[int] ): __UpperCAmelCase: List[str] = True __UpperCAmelCase: int = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(_lowercase , _lowercase , _lowercase , id_ ) __UpperCAmelCase: Any = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge __UpperCAmelCase: List[str] = min(low[at] , low[to] ) __UpperCAmelCase: list[tuple[int, int]] = [] for i in range(_lowercase ): if not visited[i]: dfs(_lowercase , -1 , _lowercase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
523
0
def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase = 0 ): A : List[str] = length or len(_lowerCamelCase ) A : str = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: A , A : Optional[Any] = list_data[i + 1], list_data[i] A : List[Any] = True return list_data if not swapped else bubble_sort(_lowerCamelCase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
17
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Dict , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] ) -> Optional[int]: self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for a, b in zip(__lowerCamelCase , __lowerCamelCase ): self.assertAlmostEqual(__lowerCamelCase , __lowerCamelCase , delta=__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[Any]: A : List[Any] = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(__lowerCamelCase ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[str]: A : Union[str, Any] = None ops.enable_eager_execution_internal() A : Tuple = tf.config.list_physical_devices("CPU" ) if len(__lowerCamelCase ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) A : Dict = tf.config.list_logical_devices(device_type="CPU" ) A : List[str] = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): A : Optional[int] = GradientAccumulator() A : Tuple = tf.Variable([4.0, 3.0] ) A , A : List[Any] = create_optimizer(5e-5 , 10 , 5 ) A : List[str] = tf.Variable([0.0, 0.0] , trainable=__lowerCamelCase ) def accumulate_on_replica(__lowerCamelCase : Tuple ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(__lowerCamelCase : Any , __lowerCamelCase : Optional[int] ): with strategy.scope(): A : int = strategy.experimental_local_results(__lowerCamelCase ) local_variables[0].assign(__lowerCamelCase ) local_variables[1].assign(__lowerCamelCase ) strategy.run(__lowerCamelCase , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(__lowerCamelCase ) def _check_local_values(__lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] ): A : Optional[int] = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , __lowerCamelCase , tol=1e-2 ) self.assertListAlmostEqual(values[1].value() , __lowerCamelCase , tol=1e-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
17
1
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @property def _UpperCamelCase ( self ) -> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _UpperCamelCase ( self ) -> List[str]: snake_case_ = ort.SessionOptions() snake_case_ = False return options def _UpperCamelCase ( self ) -> int: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy' ) # using the PNDM scheduler by default snake_case_ = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) snake_case_ = 'A red cat sitting on a park bench' snake_case_ = np.random.RandomState(0 ) snake_case_ = pipe( prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , mask_image=_SCREAMING_SNAKE_CASE , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_SCREAMING_SNAKE_CASE , output_type='np' , ) snake_case_ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1E-2
198
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a_ ( lowerCamelCase ): lowercase = ["""image_processor""", """tokenizer"""] lowercase = """ViltImageProcessor""" lowercase = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , _SCREAMING_SNAKE_CASE , ) UpperCamelCase = kwargs.pop("""feature_extractor""" ) UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self.image_processor def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> BatchEncoding: """simple docstring""" UpperCamelCase = self.tokenizer( text=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , return_overflowing_tokens=_SCREAMING_SNAKE_CASE , return_special_tokens_mask=_SCREAMING_SNAKE_CASE , return_offsets_mapping=_SCREAMING_SNAKE_CASE , return_length=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # add pixel_values + pixel_mask UpperCamelCase = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) encoding.update(_SCREAMING_SNAKE_CASE ) return encoding def A__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def A__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def A__ ( self ) -> Dict: """simple docstring""" UpperCamelCase = self.tokenizer.model_input_names UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A__ ( self ) -> List[Any]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _SCREAMING_SNAKE_CASE , ) return self.image_processor_class @property def A__ ( self ) -> Union[str, Any]: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , _SCREAMING_SNAKE_CASE , ) return self.image_processor
301
0
UpperCAmelCase__ = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
718
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: UpperCAmelCase__ = None UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } UpperCAmelCase__ = { "facebook/mbart-large-en-ro": 1024, "facebook/mbart-large-cc25": 1024, } # fmt: off UpperCAmelCase__ = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class a ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase_ : int = VOCAB_FILES_NAMES UpperCamelCase_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : int = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Optional[int] = ['input_ids', 'attention_mask'] UpperCamelCase_ : Optional[int] = MBartTokenizer UpperCamelCase_ : List[int] = [] UpperCamelCase_ : List[int] = [] def __init__( self : Tuple , lowerCamelCase__ : str=None , lowerCamelCase__ : Dict=None , lowerCamelCase__ : Optional[Any]="<s>" , lowerCamelCase__ : int="</s>" , lowerCamelCase__ : int="</s>" , lowerCamelCase__ : List[Any]="<s>" , lowerCamelCase__ : Union[str, Any]="<unk>" , lowerCamelCase__ : Union[str, Any]="<pad>" , lowerCamelCase__ : List[Any]="<mask>" , lowerCamelCase__ : Optional[Any]=None , lowerCamelCase__ : Any=None , lowerCamelCase__ : Dict=None , **lowerCamelCase__ : List[str] , ) -> Tuple: """simple docstring""" __lowercase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token super().__init__( vocab_file=lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , src_lang=lowerCamelCase__ , tgt_lang=lowerCamelCase__ , additional_special_tokens=lowerCamelCase__ , **lowerCamelCase__ , ) __lowercase = vocab_file __lowercase = False if not self.vocab_file else True __lowercase = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __lowercase = { lang_code: self.convert_tokens_to_ids(lowerCamelCase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __lowercase = src_lang if src_lang is not None else '''en_XX''' __lowercase = self.convert_tokens_to_ids(self._src_lang ) __lowercase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCAmelCase_ ( self : Any ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def UpperCAmelCase_ ( self : Optional[Any] , lowerCamelCase__ : str ) -> None: """simple docstring""" __lowercase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCAmelCase_ ( self : Any , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCAmelCase_ ( self : Optional[int] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase_ ( self : List[str] , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] , lowerCamelCase__ : Optional[str] , **lowerCamelCase__ : List[str] ) -> Optional[int]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __lowercase = src_lang __lowercase = self(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ ) __lowercase = self.convert_tokens_to_ids(lowerCamelCase__ ) __lowercase = tgt_lang_id return inputs def UpperCAmelCase_ ( self : List[str] , lowerCamelCase__ : List[str] , lowerCamelCase__ : str = "en_XX" , lowerCamelCase__ : Optional[List[str]] = None , lowerCamelCase__ : str = "ro_RO" , **lowerCamelCase__ : Union[str, Any] , ) -> BatchEncoding: """simple docstring""" __lowercase = src_lang __lowercase = tgt_lang return super().prepare_seqaseq_batch(lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase_ ( self : int ) -> Dict: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCAmelCase_ ( self : Optional[int] , lowerCamelCase__ : Optional[Any] ) -> None: """simple docstring""" __lowercase = self.convert_tokens_to_ids(lowerCamelCase__ ) __lowercase = [] __lowercase = [self.eos_token_id, self.cur_lang_code] __lowercase = self.convert_ids_to_tokens(self.prefix_tokens ) __lowercase = self.convert_ids_to_tokens(self.suffix_tokens ) __lowercase = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCAmelCase_ ( self : Tuple , lowerCamelCase__ : str ) -> None: """simple docstring""" __lowercase = self.convert_tokens_to_ids(lowerCamelCase__ ) __lowercase = [] __lowercase = [self.eos_token_id, self.cur_lang_code] __lowercase = self.convert_ids_to_tokens(self.prefix_tokens ) __lowercase = self.convert_ids_to_tokens(self.suffix_tokens ) __lowercase = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCAmelCase_ ( self : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowerCamelCase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return __lowercase = os.path.join( lowerCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ): copyfile(self.vocab_file , lowerCamelCase__ ) return (out_vocab_file,)
362
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass lowercase_ = (3, 9, -11, 0, 7, 5, 1, -1) lowercase_ = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class __A : '''simple docstring''' __lowerCamelCase : int __lowerCamelCase : Node | None class __A : '''simple docstring''' def __init__(self , A ) -> None: """simple docstring""" _a = None for i in sorted(A , reverse=A ): _a = Node(A , self.head ) def __iter__(self ) -> Iterator[int]: """simple docstring""" _a = self.head while node: yield node.data _a = node.next_node def __len__(self ) -> int: """simple docstring""" return sum(1 for _ in self ) def __str__(self ) -> str: """simple docstring""" return " -> ".join([str(A ) for node in self] ) def lowerCAmelCase (__A , __A): """simple docstring""" return SortedLinkedList(list(__A) + list(__A)) if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
11
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig _lowerCamelCase = logging.get_logger(__name__) # General docstring _lowerCamelCase = 'PoolFormerConfig' # Base docstring _lowerCamelCase = 'sail/poolformer_s12' _lowerCamelCase = [1, 512, 7, 7] # Image classification docstring _lowerCamelCase = 'sail/poolformer_s12' _lowerCamelCase = 'tabby, tabby cat' _lowerCamelCase = [ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: float = 0.0 , UpperCamelCase__: bool = False ): if drop_prob == 0.0 or not training: return input SCREAMING_SNAKE_CASE__ = 1 - drop_prob SCREAMING_SNAKE_CASE__ = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets SCREAMING_SNAKE_CASE__ = keep_prob + torch.rand(UpperCamelCase__ , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize SCREAMING_SNAKE_CASE__ = input.div(UpperCamelCase__ ) * random_tensor return output class UpperCamelCase_ ( nn.Module ): def __init__( self :Optional[Any] , __A :Optional[float] = None ) -> None: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = drop_prob def _snake_case ( self :Any , __A :torch.Tensor ) -> torch.Tensor: """simple docstring""" return drop_path(__A , self.drop_prob , self.training ) def _snake_case ( self :Dict ) -> str: """simple docstring""" return "p={}".format(self.drop_prob ) class UpperCamelCase_ ( nn.Module ): def __init__( self :Dict , __A :Optional[Any] , __A :Dict , __A :List[str] , __A :Optional[Any] , __A :Tuple , __A :Optional[Any]=None ) -> Union[str, Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = patch_size if isinstance(__A , collections.abc.Iterable ) else (patch_size, patch_size) SCREAMING_SNAKE_CASE__ = stride if isinstance(__A , collections.abc.Iterable ) else (stride, stride) SCREAMING_SNAKE_CASE__ = padding if isinstance(__A , collections.abc.Iterable ) else (padding, padding) SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , kernel_size=__A , stride=__A , padding=__A ) SCREAMING_SNAKE_CASE__ = norm_layer(__A ) if norm_layer else nn.Identity() def _snake_case ( self :Dict , __A :Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.projection(__A ) SCREAMING_SNAKE_CASE__ = self.norm(__A ) return embeddings class UpperCamelCase_ ( nn.GroupNorm ): def __init__( self :Dict , __A :Tuple , **__A :Union[str, Any] ) -> Dict: """simple docstring""" super().__init__(1 , __A , **__A ) class UpperCamelCase_ ( nn.Module ): def __init__( self :List[str] , __A :Optional[int] ) -> Any: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.AvgPoolad(__A , stride=1 , padding=pool_size // 2 , count_include_pad=__A ) def _snake_case ( self :Any , __A :Optional[Any] ) -> Optional[Any]: """simple docstring""" return self.pool(__A ) - hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self :Optional[Any] , __A :Tuple , __A :Dict , __A :int , __A :Any ) -> str: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) SCREAMING_SNAKE_CASE__ = PoolFormerDropPath(__A ) if isinstance(config.hidden_act , __A ): SCREAMING_SNAKE_CASE__ = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE__ = config.hidden_act def _snake_case ( self :Union[str, Any] , __A :Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.conva(__A ) SCREAMING_SNAKE_CASE__ = self.act_fn(__A ) SCREAMING_SNAKE_CASE__ = self.drop(__A ) SCREAMING_SNAKE_CASE__ = self.conva(__A ) SCREAMING_SNAKE_CASE__ = self.drop(__A ) return hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self :Any , __A :str , __A :List[str] , __A :Tuple , __A :Dict , __A :Union[str, Any] , __A :int ) -> Optional[int]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = PoolFormerPooling(__A ) SCREAMING_SNAKE_CASE__ = PoolFormerOutput(__A , __A , __A , __A ) SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(__A ) SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(__A ) # Useful for training neural nets SCREAMING_SNAKE_CASE__ = PoolFormerDropPath(__A ) if drop_path > 0.0 else nn.Identity() SCREAMING_SNAKE_CASE__ = config.use_layer_scale if config.use_layer_scale: SCREAMING_SNAKE_CASE__ = nn.Parameter( config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A ) SCREAMING_SNAKE_CASE__ = nn.Parameter( config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A ) def _snake_case ( self :Optional[Any] , __A :Optional[int] ) -> str: """simple docstring""" if self.use_layer_scale: SCREAMING_SNAKE_CASE__ = self.pooling(self.before_norm(__A ) ) SCREAMING_SNAKE_CASE__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection SCREAMING_SNAKE_CASE__ = hidden_states + self.drop_path(__A ) SCREAMING_SNAKE_CASE__ = () SCREAMING_SNAKE_CASE__ = self.output(self.after_norm(__A ) ) SCREAMING_SNAKE_CASE__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection SCREAMING_SNAKE_CASE__ = hidden_states + self.drop_path(__A ) SCREAMING_SNAKE_CASE__ = (output,) + outputs return outputs else: SCREAMING_SNAKE_CASE__ = self.drop_path(self.pooling(self.before_norm(__A ) ) ) # First residual connection SCREAMING_SNAKE_CASE__ = pooling_output + hidden_states SCREAMING_SNAKE_CASE__ = () # Second residual connection inside the PoolFormerOutput block SCREAMING_SNAKE_CASE__ = self.drop_path(self.output(self.after_norm(__A ) ) ) SCREAMING_SNAKE_CASE__ = hidden_states + layer_output SCREAMING_SNAKE_CASE__ = (output,) + outputs return outputs class UpperCamelCase_ ( nn.Module ): def __init__( self :Union[str, Any] , __A :List[Any] ) -> Union[str, Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = config # stochastic depth decay rule SCREAMING_SNAKE_CASE__ = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings SCREAMING_SNAKE_CASE__ = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) SCREAMING_SNAKE_CASE__ = nn.ModuleList(__A ) # Transformer blocks SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers SCREAMING_SNAKE_CASE__ = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( __A , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(__A ) ) SCREAMING_SNAKE_CASE__ = nn.ModuleList(__A ) def _snake_case ( self :str , __A :Tuple , __A :Dict=False , __A :Tuple=True ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = () if output_hidden_states else None SCREAMING_SNAKE_CASE__ = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = layers # Get patch embeddings from hidden_states SCREAMING_SNAKE_CASE__ = embedding_layer(__A ) # Send the embeddings through the blocks for _, blk in enumerate(__A ): SCREAMING_SNAKE_CASE__ = blk(__A ) SCREAMING_SNAKE_CASE__ = layer_outputs[0] if output_hidden_states: SCREAMING_SNAKE_CASE__ = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__A , hidden_states=__A ) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = PoolFormerConfig lowerCamelCase_ = "poolformer" lowerCamelCase_ = "pixel_values" lowerCamelCase_ = True def _snake_case ( self :Optional[Any] , __A :Tuple ) -> Dict: """simple docstring""" if isinstance(__A , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__A , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _snake_case ( self :str , __A :Optional[Any] , __A :Union[str, Any]=False ) -> Any: """simple docstring""" if isinstance(__A , __A ): SCREAMING_SNAKE_CASE__ = value _lowerCamelCase = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' _lowerCamelCase = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , UpperCamelCase__ , ) class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :Union[str, Any] , __A :Any ) -> int: """simple docstring""" super().__init__(__A ) SCREAMING_SNAKE_CASE__ = config SCREAMING_SNAKE_CASE__ = PoolFormerEncoder(__A ) # Initialize weights and apply final processing self.post_init() def _snake_case ( self :Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(__A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__A , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _snake_case ( self :Dict , __A :Optional[torch.FloatTensor] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: """simple docstring""" SCREAMING_SNAKE_CASE__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) SCREAMING_SNAKE_CASE__ = self.encoder( __A , output_hidden_states=__A , return_dict=__A , ) SCREAMING_SNAKE_CASE__ = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=__A , hidden_states=encoder_outputs.hidden_states , ) class UpperCamelCase_ ( nn.Module ): def __init__( self :int , __A :Optional[int] ) -> Tuple: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(config.hidden_size , config.hidden_size ) def _snake_case ( self :List[Any] , __A :Dict ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.dense(__A ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , UpperCamelCase__ , ) class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :str , __A :Union[str, Any] ) -> int: """simple docstring""" super().__init__(__A ) SCREAMING_SNAKE_CASE__ = config.num_labels SCREAMING_SNAKE_CASE__ = PoolFormerModel(__A ) # Final norm SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head SCREAMING_SNAKE_CASE__ = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _snake_case ( self :int , __A :Optional[torch.FloatTensor] = None , __A :Optional[torch.LongTensor] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: """simple docstring""" SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE__ = self.poolformer( __A , output_hidden_states=__A , return_dict=__A , ) SCREAMING_SNAKE_CASE__ = outputs[0] SCREAMING_SNAKE_CASE__ = self.classifier(self.norm(__A ).mean([-2, -1] ) ) SCREAMING_SNAKE_CASE__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE__ = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE__ = """single_label_classification""" else: SCREAMING_SNAKE_CASE__ = """multi_label_classification""" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE__ = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE__ = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE__ = loss_fct(__A , __A ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE__ = CrossEntropyLoss() SCREAMING_SNAKE_CASE__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE__ = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE__ = loss_fct(__A , __A ) if not return_dict: SCREAMING_SNAKE_CASE__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__A , logits=__A , hidden_states=outputs.hidden_states )
6
0
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class snake_case : def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=2 , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) SCREAMING_SNAKE_CASE_ = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_ = num_patches + 2 def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values, labels def _lowercase (self ): """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = TFDeiTModel(config=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = TFDeiTForMaskedImageModeling(config=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = TFDeiTForMaskedImageModeling(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.type_sequence_label_size SCREAMING_SNAKE_CASE_ = TFDeiTForImageClassification(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = TFDeiTForImageClassification(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class snake_case ( __lowercase , __lowercase , unittest.TestCase ): UpperCAmelCase__ = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) UpperCAmelCase__ = ( { '''feature-extraction''': TFDeiTModel, '''image-classification''': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = TFDeiTModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def _lowercase (self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''DeiT does not use inputs_embeds''' ) def _lowercase (self ): """simple docstring""" pass def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) SCREAMING_SNAKE_CASE_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , tf.keras.layers.Dense ) ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_SCREAMING_SNAKE_CASE ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ): """simple docstring""" SCREAMING_SNAKE_CASE_ = super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def _lowercase (self ): """simple docstring""" for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = TFDeiTModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( ): SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class snake_case ( unittest.TestCase ): @cached_property def _lowercase (self ): """simple docstring""" return ( DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) if is_vision_available() else None ) @slow def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = TFDeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''tf''' ) # forward pass SCREAMING_SNAKE_CASE_ = model(**_SCREAMING_SNAKE_CASE ) # verify the logits SCREAMING_SNAKE_CASE_ = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
713
"""simple docstring""" import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed lowerCAmelCase__ = logging.getLogger(__name__) def _lowerCamelCase ( __a=2, __a=3, __a=16, __a = 10, __a = 2 ): def get_dataset(__a ): SCREAMING_SNAKE_CASE_ = torch.randn(batch_size * n_batches, 1 ) return TensorDataset(__a, a * x + b + 0.1 * torch.randn(batch_size * n_batches, 1 ) ) SCREAMING_SNAKE_CASE_ = get_dataset(__a ) SCREAMING_SNAKE_CASE_ = get_dataset(__a ) SCREAMING_SNAKE_CASE_ = DataLoader(__a, shuffle=__a, batch_size=__a, num_workers=4 ) SCREAMING_SNAKE_CASE_ = DataLoader(__a, shuffle=__a, batch_size=__a, num_workers=4 ) return (train_dataloader, valid_dataloader) def _lowerCamelCase ( __a, __a, __a, __a, __a, __a=None ): SCREAMING_SNAKE_CASE_ = [] for epoch in range(__a ): # Train quickly model.train() for batch in dataloader: SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = batch SCREAMING_SNAKE_CASE_ = model(__a ) SCREAMING_SNAKE_CASE_ = torch.nn.functional.mse_loss(__a, __a ) accelerator.backward(__a ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class snake_case ( nn.Module ): def __init__(self ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.randn(1 ) ) SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.randn(1 ) ) def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" return x * self.a + self.b class snake_case ( unittest.TestCase ): def _lowercase (self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) SCREAMING_SNAKE_CASE_ = DummyModel() SCREAMING_SNAKE_CASE_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = dummy_dataloaders() SCREAMING_SNAKE_CASE_ = ProjectConfiguration(total_limit=1 , project_dir=SCREAMING_SNAKE_CASE_ , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline SCREAMING_SNAKE_CASE_ = Accelerator(project_config=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def _lowercase (self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) SCREAMING_SNAKE_CASE_ = DummyModel() SCREAMING_SNAKE_CASE_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = dummy_dataloaders() # Train baseline SCREAMING_SNAKE_CASE_ = Accelerator() SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial SCREAMING_SNAKE_CASE_ = os.path.join(SCREAMING_SNAKE_CASE_ , '''initial''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) ((SCREAMING_SNAKE_CASE_) ,(SCREAMING_SNAKE_CASE_)) = model.a.item(), model.b.item() SCREAMING_SNAKE_CASE_ = optimizer.state_dict() SCREAMING_SNAKE_CASE_ = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((SCREAMING_SNAKE_CASE_) ,(SCREAMING_SNAKE_CASE_)) = model.a.item(), model.b.item() SCREAMING_SNAKE_CASE_ = optimizer.state_dict() # Train partially set_seed(42 ) SCREAMING_SNAKE_CASE_ = DummyModel() SCREAMING_SNAKE_CASE_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = dummy_dataloaders() SCREAMING_SNAKE_CASE_ = Accelerator() SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(SCREAMING_SNAKE_CASE_ ) ((SCREAMING_SNAKE_CASE_) ,(SCREAMING_SNAKE_CASE_)) = model.a.item(), model.b.item() SCREAMING_SNAKE_CASE_ = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything SCREAMING_SNAKE_CASE_ = os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoint''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) # Load everything back in and make sure all states work accelerator.load_state(SCREAMING_SNAKE_CASE_ ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((SCREAMING_SNAKE_CASE_) ,(SCREAMING_SNAKE_CASE_)) = model.a.item(), model.b.item() SCREAMING_SNAKE_CASE_ = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) SCREAMING_SNAKE_CASE_ = DummyModel() SCREAMING_SNAKE_CASE_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = dummy_dataloaders() SCREAMING_SNAKE_CASE_ = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline SCREAMING_SNAKE_CASE_ = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() ((SCREAMING_SNAKE_CASE_) ,(SCREAMING_SNAKE_CASE_)) = model.a.item(), model.b.item() SCREAMING_SNAKE_CASE_ = optimizer.state_dict() SCREAMING_SNAKE_CASE_ = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((SCREAMING_SNAKE_CASE_) ,(SCREAMING_SNAKE_CASE_)) = model.a.item(), model.b.item() SCREAMING_SNAKE_CASE_ = optimizer.state_dict() # Train partially set_seed(42 ) SCREAMING_SNAKE_CASE_ = DummyModel() SCREAMING_SNAKE_CASE_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = dummy_dataloaders() SCREAMING_SNAKE_CASE_ = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ((SCREAMING_SNAKE_CASE_) ,(SCREAMING_SNAKE_CASE_)) = model.a.item(), model.b.item() SCREAMING_SNAKE_CASE_ = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_1''' ) ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((SCREAMING_SNAKE_CASE_) ,(SCREAMING_SNAKE_CASE_)) = model.a.item(), model.b.item() SCREAMING_SNAKE_CASE_ = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = torch.tensor([1, 2, 3] ) SCREAMING_SNAKE_CASE_ = torch.tensor([2, 3, 4] ) SCREAMING_SNAKE_CASE_ = DummyModel() SCREAMING_SNAKE_CASE_ = torch.optim.Adam(net.parameters() ) SCREAMING_SNAKE_CASE_ = Accelerator() with self.assertRaises(SCREAMING_SNAKE_CASE_ ) as ve: accelerator.register_for_checkpointing(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def _lowercase (self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) SCREAMING_SNAKE_CASE_ = DummyModel() SCREAMING_SNAKE_CASE_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE_ = torch.optim.lr_scheduler.StepLR(SCREAMING_SNAKE_CASE_ , step_size=1 , gamma=0.99 ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = dummy_dataloaders() SCREAMING_SNAKE_CASE_ = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline SCREAMING_SNAKE_CASE_ = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() SCREAMING_SNAKE_CASE_ = scheduler.state_dict() train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) def _lowercase (self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) SCREAMING_SNAKE_CASE_ = DummyModel() SCREAMING_SNAKE_CASE_ = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ , total_limit=2 ) # Train baseline SCREAMING_SNAKE_CASE_ = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_10''' ) ) ) @require_cuda def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ['''torchrun''', f'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) if __name__ == "__main__": lowerCAmelCase__ = '/tmp/accelerate/state_checkpointing' lowerCAmelCase__ = DummyModel() lowerCAmelCase__ = torch.optim.Adam(params=model.parameters(), lr=1e-3) lowerCAmelCase__ = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) lowerCAmelCase__, lowerCAmelCase__ = dummy_dataloaders() lowerCAmelCase__ = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline lowerCAmelCase__ = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) lowerCAmelCase__, lowerCAmelCase__ = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: lowerCAmelCase__ = group['params'][0].device break assert param_device.type == accelerator.device.type lowerCAmelCase__ = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: lowerCAmelCase__ = group['params'][0].device break assert ( param_device.type == torch.device('cpu').type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: lowerCAmelCase__ = group['params'][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
628
0
import fire from utils import calculate_rouge, save_json def SCREAMING_SNAKE_CASE_ ( _snake_case :Dict , _snake_case :Tuple , _snake_case :List[str]=None , **_snake_case :Tuple ) -> List[str]: _A = [x.strip() for x in open(_snake_case ).readlines()] _A = [x.strip() for x in open(_snake_case ).readlines()][: len(_snake_case )] _A = calculate_rouge(_snake_case , _snake_case , **_snake_case ) if save_path is not None: save_json(_snake_case , _snake_case , indent=_snake_case ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
2
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="""%(message)s""") def _A ( SCREAMING_SNAKE_CASE ): return input_array.reshape((input_array.size, 1) ) def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): UpperCAmelCase__: int = np.nan for i in range(SCREAMING_SNAKE_CASE ): UpperCAmelCase__: Tuple = features[:, labels == i] UpperCAmelCase__: int = data.mean(1 ) # Centralize the data of class i UpperCAmelCase__: Optional[Any] = data - column_reshape(SCREAMING_SNAKE_CASE ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(SCREAMING_SNAKE_CASE ,centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCAmelCase__: Dict = np.dot(SCREAMING_SNAKE_CASE ,centered_data.T ) return covariance_sum / features.shape[1] def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): UpperCAmelCase__: int = features.mean(1 ) UpperCAmelCase__: Optional[Any] = np.nan for i in range(SCREAMING_SNAKE_CASE ): UpperCAmelCase__: List[Any] = features[:, labels == i] UpperCAmelCase__: Optional[Any] = data.shape[1] UpperCAmelCase__: List[Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(SCREAMING_SNAKE_CASE ) - column_reshape(SCREAMING_SNAKE_CASE ) ,(column_reshape(SCREAMING_SNAKE_CASE ) - column_reshape(SCREAMING_SNAKE_CASE )).T ,) else: # If covariance_sum is np.nan (i.e. first loop) UpperCAmelCase__: Tuple = device_data * np.dot( column_reshape(SCREAMING_SNAKE_CASE ) - column_reshape(SCREAMING_SNAKE_CASE ) ,(column_reshape(SCREAMING_SNAKE_CASE ) - column_reshape(SCREAMING_SNAKE_CASE )).T ,) return covariance_sum / features.shape[1] def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): # Check if the features have been loaded if features.any(): UpperCAmelCase__: Tuple = features.mean(1 ) # Center the dataset UpperCAmelCase__: List[Any] = features - np.reshape(SCREAMING_SNAKE_CASE ,(data_mean.size, 1) ) UpperCAmelCase__: Optional[int] = np.dot(SCREAMING_SNAKE_CASE ,centered_data.T ) / features.shape[1] UpperCAmelCase__ , UpperCAmelCase__: Dict = np.linalg.eigh(SCREAMING_SNAKE_CASE ) # Take all the columns in the reverse order (-1), and then takes only the first UpperCAmelCase__: Optional[Any] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space UpperCAmelCase__: Tuple = np.dot(filtered_eigenvectors.T ,SCREAMING_SNAKE_CASE ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR ,format="%(message)s" ,force=SCREAMING_SNAKE_CASE ) logging.error("Dataset empty" ) raise AssertionError def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): assert classes > dimensions # Check if features have been already loaded if features.any: UpperCAmelCase__ , UpperCAmelCase__: List[str] = eigh( covariance_between_classes(SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ) ,covariance_within_classes(SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ) ,) UpperCAmelCase__: int = eigenvectors[:, ::-1][:, :dimensions] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__: Optional[Any] = np.linalg.svd(SCREAMING_SNAKE_CASE ) UpperCAmelCase__: Optional[Any] = svd_matrix[:, 0:dimensions] UpperCAmelCase__: Optional[int] = np.dot(filtered_svd_matrix.T ,SCREAMING_SNAKE_CASE ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR ,format="%(message)s" ,force=SCREAMING_SNAKE_CASE ) logging.error("Dataset empty" ) raise AssertionError def _A ( ): # Create dummy dataset with 2 classes and 3 features UpperCAmelCase__: List[str] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) UpperCAmelCase__: Optional[int] = np.array([0, 0, 0, 1, 1] ) UpperCAmelCase__: List[Any] = 2 UpperCAmelCase__: Union[str, Any] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(SCREAMING_SNAKE_CASE ) as error_info: UpperCAmelCase__: List[Any] = linear_discriminant_analysis( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE ,np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def _A ( ): UpperCAmelCase__: Optional[Any] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) UpperCAmelCase__: Optional[int] = 2 UpperCAmelCase__: Union[str, Any] = np.array([[6.92_82_03_23, 8.66_02_54_04, 10.39_23_04_85], [3.0, 3.0, 3.0]] ) with pytest.raises(SCREAMING_SNAKE_CASE ) as error_info: UpperCAmelCase__: Any = principal_component_analysis(SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ) if not np.allclose(SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
113
0
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging a_ : Optional[Any] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): __magic_name__ = r'''\w+[.]\d+''' __magic_name__ = re.findall(snake_case_ , snake_case_ ) for pat in pats: __magic_name__ = key.replace(snake_case_ , '''_'''.join(pat.split('''.''' ) ) ) return key def _SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : str , snake_case_ : int ): __magic_name__ = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): __magic_name__ = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: __magic_name__ = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: __magic_name__ = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer __magic_name__ = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: __magic_name__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer __magic_name__ = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": __magic_name__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight __magic_name__ = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias __magic_name__ = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : List[str] , snake_case_ : List[Any]=42 ): # Step 1: Convert pytorch tensor to numpy __magic_name__ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params __magic_name__ = flax_model.init_weights(PRNGKey(snake_case_ ) ) __magic_name__ = flatten_dict(snake_case_ ) __magic_name__ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __magic_name__ = rename_key(snake_case_ ) __magic_name__ = tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters __magic_name__ , __magic_name__ = rename_key_and_reshape_tensor(snake_case_ , snake_case_ , snake_case_ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' f'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # also add unexpected weight so that warning is thrown __magic_name__ = jnp.asarray(snake_case_ ) return unflatten_dict(snake_case_ )
709
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a_ : Union[str, Any] = { 'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = [ 'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongT5EncoderModel', 'LongT5ForConditionalGeneration', 'LongT5Model', 'LongT5PreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = [ 'FlaxLongT5ForConditionalGeneration', 'FlaxLongT5Model', 'FlaxLongT5PreTrainedModel', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys a_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
678
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case ( __snake_case ,__snake_case ,unittest.TestCase ): """simple docstring""" __lowerCAmelCase = CycleDiffusionPipeline __lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """negative_prompt""", """height""", """width""", """negative_prompt_embeds""", } __lowerCAmelCase = PipelineTesterMixin.required_optional_params - {"""latents"""} __lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""source_prompt"""} ) __lowerCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS __lowerCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def snake_case__ ( self ): torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) __lowercase = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , num_train_timesteps=1000 , clip_sample=lowerCAmelCase_ , set_alpha_to_one=lowerCAmelCase_ , ) torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __lowercase = CLIPTextModel(lowerCAmelCase_ ) __lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __lowercase = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_=0 ): __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) __lowercase = image / 2 + 0.5 if str(lowerCAmelCase_ ).startswith("mps" ): __lowercase = torch.manual_seed(lowerCAmelCase_ ) else: __lowercase = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) __lowercase = { "prompt": "An astronaut riding an elephant", "source_prompt": "An astronaut riding a horse", "image": image, "generator": generator, "num_inference_steps": 2, "eta": 0.1, "strength": 0.8, "guidance_scale": 3, "source_guidance_scale": 1, "output_type": "numpy", } return inputs def snake_case__ ( self ): __lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = CycleDiffusionPipeline(**lowerCAmelCase_ ) __lowercase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowercase = self.get_dummy_inputs(lowerCAmelCase_ ) __lowercase = pipe(**lowerCAmelCase_ ) __lowercase = output.images __lowercase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __lowercase = np.array([0.44_59, 0.49_43, 0.45_44, 0.66_43, 0.54_74, 0.43_27, 0.57_01, 0.59_59, 0.51_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def snake_case__ ( self ): __lowercase = self.get_dummy_components() for name, module in components.items(): if hasattr(lowerCAmelCase_ , "half" ): __lowercase = module.half() __lowercase = CycleDiffusionPipeline(**lowerCAmelCase_ ) __lowercase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowercase = self.get_dummy_inputs(lowerCAmelCase_ ) __lowercase = pipe(**lowerCAmelCase_ ) __lowercase = output.images __lowercase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __lowercase = np.array([0.35_06, 0.45_43, 0.4_46, 0.45_75, 0.51_95, 0.41_55, 0.52_73, 0.5_18, 0.41_16] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def snake_case__ ( self ): return super().test_save_load_local() @unittest.skip("non-deterministic pipeline" ) def snake_case__ ( self ): return super().test_inference_batch_single_identical() @skip_mps def snake_case__ ( self ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def snake_case__ ( self ): return super().test_save_load_optional_components() @skip_mps def snake_case__ ( self ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class snake_case ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self ): __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy" ) __lowercase = init_image.resize((512, 512) ) __lowercase = "CompVis/stable-diffusion-v1-4" __lowercase = DDIMScheduler.from_pretrained(lowerCAmelCase_ , subfolder="scheduler" ) __lowercase = CycleDiffusionPipeline.from_pretrained( lowerCAmelCase_ , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , torch_dtype=torch.floataa , revision="fp16" ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() __lowercase = "A black colored car" __lowercase = "A blue colored car" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=lowerCAmelCase_ , source_prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowerCAmelCase_ , output_type="np" , ) __lowercase = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def snake_case__ ( self ): __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy" ) __lowercase = init_image.resize((512, 512) ) __lowercase = "CompVis/stable-diffusion-v1-4" __lowercase = DDIMScheduler.from_pretrained(lowerCAmelCase_ , subfolder="scheduler" ) __lowercase = CycleDiffusionPipeline.from_pretrained(lowerCAmelCase_ , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() __lowercase = "A black colored car" __lowercase = "A blue colored car" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=lowerCAmelCase_ , source_prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowerCAmelCase_ , output_type="np" , ) __lowercase = output.images assert np.abs(image - expected_image ).max() < 2E-2
321
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'BridgeTower/bridgetower-base': 'https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json', 'BridgeTower/bridgetower-base-itm-mlm': ( 'https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json' ), } class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = """bridgetower_vision_model""" def __init__( self , lowerCAmelCase_=768 , lowerCAmelCase_=12 , lowerCAmelCase_=3 , lowerCAmelCase_=16 , lowerCAmelCase_=288 , lowerCAmelCase_=1 , lowerCAmelCase_=1E-0_5 , lowerCAmelCase_=False , lowerCAmelCase_=True , lowerCAmelCase_=False , **lowerCAmelCase_ , ): super().__init__(**lowerCAmelCase_ ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_channels __lowercase = patch_size __lowercase = image_size __lowercase = initializer_factor __lowercase = layer_norm_eps __lowercase = stop_gradient __lowercase = share_layernorm __lowercase = remove_last_layer @classmethod def snake_case__ ( cls , lowerCAmelCase_ , **lowerCAmelCase_ ): __lowercase , __lowercase = cls.get_config_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) if config_dict.get("model_type" ) == "bridgetower": __lowercase = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = """bridgetower_text_model""" def __init__( self , lowerCAmelCase_=5_0265 , lowerCAmelCase_=768 , lowerCAmelCase_=12 , lowerCAmelCase_=12 , lowerCAmelCase_=1 , lowerCAmelCase_=3072 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=514 , lowerCAmelCase_=1 , lowerCAmelCase_=1E-0_5 , lowerCAmelCase_=1 , lowerCAmelCase_=0 , lowerCAmelCase_=2 , lowerCAmelCase_="absolute" , lowerCAmelCase_=True , **lowerCAmelCase_ , ): super().__init__(**lowerCAmelCase_ ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = initializer_factor __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = use_cache __lowercase = pad_token_id __lowercase = bos_token_id __lowercase = eos_token_id @classmethod def snake_case__ ( cls , lowerCAmelCase_ , **lowerCAmelCase_ ): __lowercase , __lowercase = cls.get_config_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) if config_dict.get("model_type" ) == "bridgetower": __lowercase = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = """bridgetower""" def __init__( self , lowerCAmelCase_=True , lowerCAmelCase_="gelu" , lowerCAmelCase_=768 , lowerCAmelCase_=1 , lowerCAmelCase_=1E-0_5 , lowerCAmelCase_=False , lowerCAmelCase_="add" , lowerCAmelCase_=12 , lowerCAmelCase_=6 , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ): # TODO: remove this once the Hub files are updated. __lowercase = kwargs.pop("text_config_dict" , lowerCAmelCase_ ) __lowercase = kwargs.pop("vision_config_dict" , lowerCAmelCase_ ) super().__init__(**lowerCAmelCase_ ) __lowercase = share_cross_modal_transformer_layers __lowercase = hidden_act __lowercase = hidden_size __lowercase = initializer_factor __lowercase = layer_norm_eps __lowercase = share_link_tower_layers __lowercase = link_tower_type __lowercase = num_attention_heads __lowercase = num_hidden_layers __lowercase = tie_word_embeddings __lowercase = init_layernorm_from_vision_encoder if text_config is None: __lowercase = {} logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values." ) if vision_config is None: __lowercase = {} logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values." ) __lowercase = BridgeTowerTextConfig(**lowerCAmelCase_ ) __lowercase = BridgeTowerVisionConfig(**lowerCAmelCase_ ) @classmethod def snake_case__ ( cls , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCAmelCase_ ) def snake_case__ ( self ): __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.text_config.to_dict() __lowercase = self.vision_config.to_dict() __lowercase = self.__class__.model_type return output
321
1
import os import re import shutil import sys import tempfile import unittest import black UpperCamelCase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. UpperCamelCase_ = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n' class snake_case_ ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> str: UpperCAmelCase__ =tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir, "schedulers/" ) ) UpperCAmelCase__ =self.diffusers_dir shutil.copy( os.path.join(A_, "src/diffusers/schedulers/scheduling_ddpm.py" ), os.path.join(self.diffusers_dir, "schedulers/scheduling_ddpm.py" ), ) def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase__ ="src/diffusers" shutil.rmtree(self.diffusers_dir ) def __UpperCAmelCase ( self, A_, A_, A_, A_=None ) -> List[str]: UpperCAmelCase__ =comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: UpperCAmelCase__ =comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result UpperCAmelCase__ =black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=119 ) UpperCAmelCase__ =black.format_str(A_, mode=A_ ) UpperCAmelCase__ =os.path.join(self.diffusers_dir, "new_code.py" ) with open(A_, "w", newline="\n" ) as f: f.write(A_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(A_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name, overwrite=A_ ) with open(A_, "r" ) as f: self.assertTrue(f.read(), A_ ) def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase__ =check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(A_, A_ ) def __UpperCAmelCase ( self ) -> int: # Base copy consistency self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput", "DDPMSchedulerOutput", REFERENCE_CODE + "\n", ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput", "DDPMSchedulerOutput", A_, ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test", "TestSchedulerOutput", re.sub("DDPM", "Test", A_ ), ) # Copy consistency with a really long name UpperCAmelCase__ ="TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""", f"""{long_class_name}SchedulerOutput""", re.sub("Bert", A_, A_ ), ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test", "TestSchedulerOutput", A_, overwrite_result=re.sub("DDPM", "Test", A_ ), )
708
import argparse import importlib from pathlib import Path # Test all the extensions added in the setup UpperCamelCase_ = [ 'kernels/rwkv/wkv_cuda.cu', 'kernels/rwkv/wkv_op.cpp', 'kernels/deformable_detr/ms_deform_attn.h', 'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh', 'models/graphormer/algos_graphormer.pyx', ] def _UpperCAmelCase ( A ): '''simple docstring''' for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument('--check_lib', action='store_true', help='Whether to check the build or the actual package.') UpperCamelCase_ = parser.parse_args() if args.check_lib: UpperCamelCase_ = importlib.import_module('transformers') UpperCamelCase_ = Path(transformers_module.__file__).parent else: UpperCamelCase_ = Path.cwd() / 'build/lib/transformers' if not test_custom_files_are_present(transformers_path): raise ValueError('The built release does not contain the custom files. Fix this before going further!')
510
0
from decimal import Decimal, getcontext from math import ceil, factorial def UpperCamelCase__ ( UpperCAmelCase_ ) -> List[Any]: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) _lowercase : Tuple = precision _lowercase : int = ceil(precision / 14 ) _lowercase : Dict = 426880 * Decimal(10005 ).sqrt() _lowercase : Any = 1 _lowercase : str = 13591409 _lowercase : Any = Decimal(lowercase__ ) for k in range(1 , lowercase__ ): _lowercase : List[str] = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase__ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": UpperCamelCase__ = 50 print(F"""The first {n} digits of pi is: {pi(n)}""")
322
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowercase : Tuple =logging.getLogger(__name__) __lowercase : Optional[int] =tf.data.AUTOTUNE def a__ ( ): '''simple docstring''' UpperCAmelCase_ =argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config" , type=lowercase__ , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , ) parser.add_argument( "--tokenizer" , type=lowercase__ , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , ) parser.add_argument( "--per_replica_batch_size" , type=lowercase__ , default=8 , help="Batch size per TPU core." , ) parser.add_argument( "--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , ) parser.add_argument( "--tpu_name" , type=lowercase__ , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , ) parser.add_argument( "--tpu_zone" , type=lowercase__ , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , ) parser.add_argument( "--gcp_project" , type=lowercase__ , help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , ) parser.add_argument( "--train_dataset" , type=lowercase__ , help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--shuffle_buffer_size" , type=lowercase__ , default=2**1_8 , help="Size of the shuffle buffer (in samples)" , ) parser.add_argument( "--eval_dataset" , type=lowercase__ , help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--num_epochs" , type=lowercase__ , default=1 , help="Number of epochs to train for." , ) parser.add_argument( "--learning_rate" , type=lowercase__ , default=1E-4 , help="Learning rate to use for training." , ) parser.add_argument( "--weight_decay_rate" , type=lowercase__ , default=1E-3 , help="Weight decay rate to use for training." , ) parser.add_argument( "--max_length" , type=lowercase__ , default=5_1_2 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , ) parser.add_argument( "--mlm_probability" , type=lowercase__ , default=0.15 , help="Fraction of tokens to mask during training." , ) parser.add_argument("--output_dir" , type=lowercase__ , required=lowercase__ , help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id" , type=lowercase__ , help="Model ID to upload to on the Hugging Face Hub." ) UpperCAmelCase_ =parser.parse_args() return args def a__ ( lowercase__ ): '''simple docstring''' try: if args.tpu_name: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(lowercase__ ) tf.tpu.experimental.initialize_tpu_system(lowercase__ ) return tpu def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =0 for file in file_list: UpperCAmelCase_ =file.split("/" )[-1] UpperCAmelCase_ =re.search(R"-\d+-(\d+)\.tfrecord" , lowercase__ ).group(1 ) UpperCAmelCase_ =int(lowercase__ ) num_samples += sample_count return num_samples def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =tf.data.Dataset.from_tensor_slices(lowercase__ ) if shuffle: UpperCAmelCase_ =dataset.shuffle(len(lowercase__ ) ) UpperCAmelCase_ =tf.data.TFRecordDataset(lowercase__ , num_parallel_reads=lowercase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here UpperCAmelCase_ =dataset.apply(tf.data.experimental.assert_cardinality(lowercase__ ) ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) if shuffle: assert shuffle_buffer_size is not None UpperCAmelCase_ =dataset.shuffle(args.shuffle_buffer_size ) UpperCAmelCase_ =dataset.batch(lowercase__ , drop_remainder=lowercase__ ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) UpperCAmelCase_ =dataset.prefetch(lowercase__ ) return dataset def a__ ( lowercase__ ): '''simple docstring''' if not args.no_tpu: UpperCAmelCase_ =initialize_tpu(lowercase__ ) UpperCAmelCase_ =tf.distribute.TPUStrategy(lowercase__ ) else: UpperCAmelCase_ =tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) UpperCAmelCase_ =AutoTokenizer.from_pretrained(args.tokenizer ) UpperCAmelCase_ =AutoConfig.from_pretrained(args.pretrained_model_config ) UpperCAmelCase_ =tokenizer.vocab_size UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) ) if not training_records: raise ValueError(F'No .tfrecord files found in {args.train_dataset}.' ) UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) ) if not eval_records: raise ValueError(F'No .tfrecord files found in {args.eval_dataset}.' ) UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) UpperCAmelCase_ =steps_per_epoch * args.num_epochs with strategy.scope(): UpperCAmelCase_ =TFAutoModelForMaskedLM.from_config(lowercase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built UpperCAmelCase_ , UpperCAmelCase_ =create_optimizer( num_train_steps=lowercase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowercase__ , metrics=["accuracy"] ) def decode_fn(lowercase__ ): UpperCAmelCase_ ={ "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowercase__ , lowercase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. UpperCAmelCase_ =DataCollatorForLanguageModeling( tokenizer=lowercase__ , mlm_probability=args.mlm_probability , mlm=lowercase__ , return_tensors="tf" ) def mask_with_collator(lowercase__ ): # TF really needs an isin() function UpperCAmelCase_ =( ~tf.cast(batch["attention_mask"] , tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) UpperCAmelCase_ , UpperCAmelCase_ =data_collator.tf_mask_tokens( batch["input_ids"] , vocab_size=len(lowercase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowercase__ , ) return batch UpperCAmelCase_ =args.per_replica_batch_size * strategy.num_replicas_in_sync UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , ) UpperCAmelCase_ =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowercase__ ) ) model.fit( lowercase__ , validation_data=lowercase__ , epochs=args.num_epochs , callbacks=lowercase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowercase : Union[str, Any] =parse_args() main(args)
54
0
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() snake_case__ : List[Any] = logging.get_logger(__name__) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: _UpperCAmelCase =os.path.abspath(_lowerCamelCase ) logger.info(F"Converting TensorFlow checkpoint from {tf_path}" ) # Load weights from TF model _UpperCAmelCase =tf.train.list_variables(_lowerCamelCase ) _UpperCAmelCase =[] _UpperCAmelCase =[] _UpperCAmelCase =[] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") _UpperCAmelCase =full_name.split("/" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(F"Skipping non-model layer {full_name}" ) continue if "optimizer" in full_name: logger.info(F"Skipping optimization layer {full_name}" ) continue if name[0] == "model": # ignore initial 'model' _UpperCAmelCase =name[1:] # figure out how many levels deep the name is _UpperCAmelCase =0 for _name in name: if _name.startswith("layer_with_weights" ): depth += 1 else: break layer_depth.append(_lowerCamelCase ) # read data _UpperCAmelCase =tf.train.load_variable(_lowerCamelCase , _lowerCamelCase ) names.append("/".join(_lowerCamelCase ) ) arrays.append(_lowerCamelCase ) logger.info(F"Read a total of {len(_lowerCamelCase ):,} layers" ) # Sanity check if len(set(_lowerCamelCase ) ) != 1: raise ValueError(F"Found layer names with different depths (layer depth {list(set(_lowerCamelCase ) )})" ) _UpperCAmelCase =list(set(_lowerCamelCase ) )[0] if layer_depth != 1: raise ValueError( "The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP" " heads." ) # convert layers logger.info("Converting weights..." ) for full_name, array in zip(_lowerCamelCase , _lowerCamelCase ): _UpperCAmelCase =full_name.split("/" ) _UpperCAmelCase =model _UpperCAmelCase =[] for i, m_name in enumerate(_lowerCamelCase ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("layer_with_weights" ): _UpperCAmelCase =int(m_name.split("-" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["embeddings", "LayerNorm"] ) _UpperCAmelCase =getattr(_lowerCamelCase , "embeddings" ) _UpperCAmelCase =getattr(_lowerCamelCase , "LayerNorm" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["encoder", "layer", str(layer_num - 4 )] ) _UpperCAmelCase =getattr(_lowerCamelCase , "encoder" ) _UpperCAmelCase =getattr(_lowerCamelCase , "layer" ) _UpperCAmelCase =pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["pooler", "dense"] ) _UpperCAmelCase =getattr(_lowerCamelCase , "pooler" ) _UpperCAmelCase =getattr(_lowerCamelCase , "dense" ) elif m_name == "embeddings": trace.append("embeddings" ) _UpperCAmelCase =getattr(_lowerCamelCase , "embeddings" ) if layer_num == 0: trace.append("word_embeddings" ) _UpperCAmelCase =getattr(_lowerCamelCase , "word_embeddings" ) elif layer_num == 1: trace.append("position_embeddings" ) _UpperCAmelCase =getattr(_lowerCamelCase , "position_embeddings" ) elif layer_num == 2: trace.append("token_type_embeddings" ) _UpperCAmelCase =getattr(_lowerCamelCase , "token_type_embeddings" ) else: raise ValueError(F"Unknown embedding layer with name {full_name}" ) trace.append("weight" ) _UpperCAmelCase =getattr(_lowerCamelCase , "weight" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["attention", "self"] ) _UpperCAmelCase =getattr(_lowerCamelCase , "attention" ) _UpperCAmelCase =getattr(_lowerCamelCase , "self" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["attention", "output", "LayerNorm"] ) _UpperCAmelCase =getattr(_lowerCamelCase , "attention" ) _UpperCAmelCase =getattr(_lowerCamelCase , "output" ) _UpperCAmelCase =getattr(_lowerCamelCase , "LayerNorm" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["attention", "output", "dense"] ) _UpperCAmelCase =getattr(_lowerCamelCase , "attention" ) _UpperCAmelCase =getattr(_lowerCamelCase , "output" ) _UpperCAmelCase =getattr(_lowerCamelCase , "dense" ) elif m_name == "_output_dense": # output dense trace.extend(["output", "dense"] ) _UpperCAmelCase =getattr(_lowerCamelCase , "output" ) _UpperCAmelCase =getattr(_lowerCamelCase , "dense" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["output", "LayerNorm"] ) _UpperCAmelCase =getattr(_lowerCamelCase , "output" ) _UpperCAmelCase =getattr(_lowerCamelCase , "LayerNorm" ) elif m_name == "_key_dense": # attention key trace.append("key" ) _UpperCAmelCase =getattr(_lowerCamelCase , "key" ) elif m_name == "_query_dense": # attention query trace.append("query" ) _UpperCAmelCase =getattr(_lowerCamelCase , "query" ) elif m_name == "_value_dense": # attention value trace.append("value" ) _UpperCAmelCase =getattr(_lowerCamelCase , "value" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["intermediate", "dense"] ) _UpperCAmelCase =getattr(_lowerCamelCase , "intermediate" ) _UpperCAmelCase =getattr(_lowerCamelCase , "dense" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("output" ) _UpperCAmelCase =getattr(_lowerCamelCase , "output" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("bias" ) _UpperCAmelCase =getattr(_lowerCamelCase , "bias" ) elif m_name in ["kernel", "gamma"]: trace.append("weight" ) _UpperCAmelCase =getattr(_lowerCamelCase , "weight" ) else: logger.warning(F"Ignored {m_name}" ) # for certain layers reshape is necessary _UpperCAmelCase =".".join(_lowerCamelCase ) if re.match(r"(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)" , _lowerCamelCase ) or re.match( r"(\S+)\.attention\.output\.dense\.weight" , _lowerCamelCase ): _UpperCAmelCase =array.reshape(pointer.data.shape ) if "kernel" in full_name: _UpperCAmelCase =array.transpose() if pointer.shape == array.shape: _UpperCAmelCase =torch.from_numpy(_lowerCamelCase ) else: raise ValueError( F"Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:" F" {array.shape}" ) logger.info(F"Successfully set variable {full_name} to PyTorch layer {trace}" ) return model def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Tuple: # Instantiate model logger.info(F"Loading model based on config from {config_path}..." ) _UpperCAmelCase =BertConfig.from_json_file(_lowerCamelCase ) _UpperCAmelCase =BertModel(_lowerCamelCase ) # Load weights from checkpoint logger.info(F"Loading weights from checkpoint {tf_checkpoint_path}..." ) load_tfa_weights_in_bert(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model logger.info(F"Saving PyTorch model to {pytorch_dump_path}..." ) torch.save(model.state_dict() , _lowerCamelCase ) if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow 2.x checkpoint path.' ) parser.add_argument( '--bert_config_file', type=str, required=True, help='The config json file corresponding to the BERT model. This specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', type=str, required=True, help='Path to the output PyTorch model (must include filename).', ) snake_case__ : List[str] = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
592
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _a ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase ="ylacombe/bark-small" _UpperCAmelCase =tempfile.mkdtemp() _UpperCAmelCase ="en_speaker_1" _UpperCAmelCase ="This is a test string" _UpperCAmelCase ="speaker_embeddings_path.json" _UpperCAmelCase ="speaker_embeddings" def SCREAMING_SNAKE_CASE ( self , **_snake_case ): return AutoTokenizer.from_pretrained(self.checkpoint , **_snake_case ) def SCREAMING_SNAKE_CASE ( self ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.get_tokenizer() _UpperCAmelCase =BarkProcessor(tokenizer=_snake_case ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase =BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _UpperCAmelCase =self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) _UpperCAmelCase =BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _UpperCAmelCase =35 _UpperCAmelCase =2 _UpperCAmelCase =8 _UpperCAmelCase ={ "semantic_prompt": np.ones(_snake_case ), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ), "fine_prompt": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _UpperCAmelCase =processor(text=self.input_string , voice_preset=_snake_case ) _UpperCAmelCase =inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_snake_case , np.array([] ) ).tolist() ) # test loading voice preset from npz file _UpperCAmelCase =os.path.join(self.tmpdirname , "file.npz" ) np.savez(_snake_case , **_snake_case ) _UpperCAmelCase =processor(text=self.input_string , voice_preset=_snake_case ) _UpperCAmelCase =inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_snake_case , np.array([] ) ).tolist() ) # test loading voice preset from the hub _UpperCAmelCase =processor(text=self.input_string , voice_preset=self.voice_preset ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =self.get_tokenizer() _UpperCAmelCase =BarkProcessor(tokenizer=_snake_case ) _UpperCAmelCase =processor(text=self.input_string ) _UpperCAmelCase =tokenizer( self.input_string , padding="max_length" , max_length=256 , add_special_tokens=_snake_case , return_attention_mask=_snake_case , return_token_type_ids=_snake_case , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
592
1
"""simple docstring""" def lowercase_ ( _snake_case ): if not grid or not grid[0]: raise TypeError("""The grid does not contain the appropriate information""" ) for cell_n in range(1 ,len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] SCREAMING_SNAKE_CASE__ : Dict = grid[0] for row_n in range(1 ,len(_snake_case ) ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = grid[row_n] SCREAMING_SNAKE_CASE__ : Optional[Any] = fill_row(_snake_case ,_snake_case ) SCREAMING_SNAKE_CASE__ : Optional[Any] = grid[row_n] return grid[-1][-1] def lowercase_ ( _snake_case ,_snake_case ): current_row[0] += row_above[0] for cell_n in range(1 ,len(_snake_case ) ): current_row[cell_n] += min(current_row[cell_n - 1] ,row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
223
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : Any = logging.get_logger(__name__) UpperCAmelCase__ : List[str] = { 'facebook/data2vec-vision-base-ft': ( 'https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json' ), } class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Union[str, Any] = '''data2vec-vision''' def __init__(self , SCREAMING_SNAKE_CASE__=7_68 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=30_72 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=2_24 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=[3, 5, 7, 11] , SCREAMING_SNAKE_CASE__=[1, 2, 3, 6] , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.4 , SCREAMING_SNAKE_CASE__=2_56 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=2_55 , **SCREAMING_SNAKE_CASE__ , ) -> Union[str, Any]: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = hidden_size SCREAMING_SNAKE_CASE__ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE__ : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE__ : str = intermediate_size SCREAMING_SNAKE_CASE__ : Any = hidden_act SCREAMING_SNAKE_CASE__ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE__ : int = layer_norm_eps SCREAMING_SNAKE_CASE__ : Optional[int] = image_size SCREAMING_SNAKE_CASE__ : List[Any] = patch_size SCREAMING_SNAKE_CASE__ : Optional[int] = num_channels SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_mask_token SCREAMING_SNAKE_CASE__ : Dict = use_absolute_position_embeddings SCREAMING_SNAKE_CASE__ : List[Any] = use_relative_position_bias SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_shared_relative_position_bias SCREAMING_SNAKE_CASE__ : Dict = layer_scale_init_value SCREAMING_SNAKE_CASE__ : int = drop_path_rate SCREAMING_SNAKE_CASE__ : List[Any] = use_mean_pooling # decode head attributes (semantic segmentation) SCREAMING_SNAKE_CASE__ : int = out_indices SCREAMING_SNAKE_CASE__ : str = pool_scales # auxiliary head attributes (semantic segmentation) SCREAMING_SNAKE_CASE__ : Any = use_auxiliary_head SCREAMING_SNAKE_CASE__ : str = auxiliary_loss_weight SCREAMING_SNAKE_CASE__ : str = auxiliary_channels SCREAMING_SNAKE_CASE__ : Optional[Any] = auxiliary_num_convs SCREAMING_SNAKE_CASE__ : Dict = auxiliary_concat_input SCREAMING_SNAKE_CASE__ : Union[str, Any] = semantic_loss_ignore_index class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : List[Any] = version.parse('''1.11''' ) @property def __magic_name__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __magic_name__ (self ) -> float: """simple docstring""" return 1E-4
223
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a_ : Union[str, Any] = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys a_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
719
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __lowercase: '''simple docstring''' __a : Optional[Any] = LEDConfig __a : Dict = {} __a : int = 'gelu' def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=False , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a=0.1 , __a=0.1 , __a=20 , __a=2 , __a=1 , __a=0 , __a=4 , ): __lowerCamelCase : str = parent __lowerCamelCase : Optional[int] = batch_size __lowerCamelCase : List[str] = seq_length __lowerCamelCase : Optional[Any] = is_training __lowerCamelCase : Dict = use_labels __lowerCamelCase : Any = vocab_size __lowerCamelCase : int = hidden_size __lowerCamelCase : Any = num_hidden_layers __lowerCamelCase : Union[str, Any] = num_attention_heads __lowerCamelCase : List[str] = intermediate_size __lowerCamelCase : str = hidden_dropout_prob __lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob __lowerCamelCase : Any = max_position_embeddings __lowerCamelCase : str = eos_token_id __lowerCamelCase : str = pad_token_id __lowerCamelCase : str = bos_token_id __lowerCamelCase : int = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after __lowerCamelCase : Dict = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests __lowerCamelCase : int = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def snake_case_ ( self ): __lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowerCamelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowerCamelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowerCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase : Dict = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) __lowerCamelCase : int = prepare_led_inputs_dict(__a , __a , __a ) __lowerCamelCase : Union[str, Any] = tf.concat( [tf.zeros_like(__a )[:, :-1], tf.ones_like(__a )[:, -1:]] , axis=-1 , ) __lowerCamelCase : Union[str, Any] = global_attention_mask return config, inputs_dict def snake_case_ ( self , __a , __a ): __lowerCamelCase : Optional[int] = TFLEDModel(config=__a ).get_decoder() __lowerCamelCase : List[str] = inputs_dict['input_ids'] __lowerCamelCase : Dict = input_ids[:1, :] __lowerCamelCase : Any = inputs_dict['attention_mask'][:1, :] __lowerCamelCase : Tuple = 1 # first forward pass __lowerCamelCase : List[str] = model(__a , attention_mask=__a , use_cache=__a ) __lowerCamelCase , __lowerCamelCase : int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCamelCase : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCamelCase : List[str] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowerCamelCase : Any = tf.concat([input_ids, next_tokens] , axis=-1 ) __lowerCamelCase : Any = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowerCamelCase : Dict = model(__a , attention_mask=__a )[0] __lowerCamelCase : Optional[int] = model(__a , attention_mask=__a , past_key_values=__a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowerCamelCase : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowerCamelCase : int = output_from_no_past[:, -3:, random_slice_idx] __lowerCamelCase : Union[str, Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a , __a , rtol=1E-3 ) def UpperCAmelCase ( A__: Any , A__: Union[str, Any] , A__: Dict , A__: int=None , A__: str=None , A__: Tuple=None , A__: List[Any]=None , ) -> Optional[Any]: if attention_mask is None: __lowerCamelCase : Optional[int] = tf.cast(tf.math.not_equal(A__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __lowerCamelCase : Dict = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __lowerCamelCase : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowerCamelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __lowercase( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' __a : Union[str, Any] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () __a : Any = (TFLEDForConditionalGeneration,) if is_tf_available() else () __a : str = ( { 'conversational': TFLEDForConditionalGeneration, 'feature-extraction': TFLEDModel, 'summarization': TFLEDForConditionalGeneration, 'text2text-generation': TFLEDForConditionalGeneration, 'translation': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) __a : Union[str, Any] = True __a : str = False __a : Dict = False __a : List[Any] = False def snake_case_ ( self ): __lowerCamelCase : int = TFLEDModelTester(self ) __lowerCamelCase : List[str] = ConfigTester(self , config_class=__a ) def snake_case_ ( self ): self.config_tester.run_common_tests() def snake_case_ ( self ): __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a ) def snake_case_ ( self ): __lowerCamelCase , __lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Optional[Any] = tf.zeros_like(inputs_dict['attention_mask'] ) __lowerCamelCase : Any = 2 __lowerCamelCase : Dict = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) __lowerCamelCase : List[Any] = True __lowerCamelCase : Tuple = self.model_tester.seq_length __lowerCamelCase : Dict = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__a ): __lowerCamelCase : List[Any] = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__a ): __lowerCamelCase : List[str] = [t.numpy() for t in outputs.encoder_attentions] __lowerCamelCase : Optional[Any] = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: __lowerCamelCase : int = True __lowerCamelCase : int = False __lowerCamelCase : Tuple = False __lowerCamelCase : List[Any] = model_class(__a ) __lowerCamelCase : Optional[Any] = model(self._prepare_for_class(__a , __a ) ) __lowerCamelCase : Tuple = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: __lowerCamelCase : Any = model_class(__a ) __lowerCamelCase : List[str] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowerCamelCase : Tuple = True __lowerCamelCase : Dict = model_class(__a ) __lowerCamelCase : List[Any] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine __lowerCamelCase : List[Any] = True __lowerCamelCase : int = True __lowerCamelCase : List[str] = model_class(__a ) __lowerCamelCase : Dict = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def snake_case_ ( self ): pass def snake_case_ ( self ): # TODO: Head-masking not yet implement pass def UpperCAmelCase ( A__: Union[str, Any] ) -> List[Any]: return tf.constant(A__ , dtype=tf.intaa ) a_ : Tuple = 1e-4 @slow @require_tf class __lowercase( unittest.TestCase ): '''simple docstring''' def snake_case_ ( self ): __lowerCamelCase : Tuple = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here __lowerCamelCase : Union[str, Any] = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) __lowerCamelCase : Dict = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) __lowerCamelCase : Optional[int] = prepare_led_inputs_dict(model.config , __a , __a ) __lowerCamelCase : str = model(**__a )[0] __lowerCamelCase : Optional[int] = (1, 1024, 768) self.assertEqual(output.shape , __a ) # change to expected output here __lowerCamelCase : int = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-3 ) def snake_case_ ( self ): __lowerCamelCase : List[str] = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here __lowerCamelCase : Union[str, Any] = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) __lowerCamelCase : Dict = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) __lowerCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a ) __lowerCamelCase : Dict = model(**__a )[0] __lowerCamelCase : List[Any] = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , __a ) # change to expected output here __lowerCamelCase : Optional[Any] = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-3 , rtol=1E-3 )
263
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=lowerCAmelCase__ ) class _a ( lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : str = field(default="""audio-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) lowerCamelCase_ : ClassVar[Features] = Features({"""audio""": Audio()} ) lowerCamelCase_ : ClassVar[Features] = Features({"""labels""": ClassLabel} ) lowerCamelCase_ : str = "audio" lowerCamelCase_ : str = "labels" def __UpperCAmelCase( self , __UpperCAmelCase ): if self.label_column not in features: raise ValueError(F"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , __UpperCAmelCase ): raise ValueError(F"Column {self.label_column} is not a ClassLabel." ) __A : int = copy.deepcopy(self ) __A : Optional[int] = self.label_schema.copy() __A : Tuple = features[self.label_column] __A : Optional[int] = label_schema return task_template @property def __UpperCAmelCase( self ): return { self.audio_column: "audio", self.label_column: "labels", }
520
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase = { 'configuration_ctrl': ['CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CTRLConfig'], 'tokenization_ctrl': ['CTRLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ 'CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'CTRLForSequenceClassification', 'CTRLLMHeadModel', 'CTRLModel', 'CTRLPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ 'TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFCTRLForSequenceClassification', 'TFCTRLLMHeadModel', 'TFCTRLModel', 'TFCTRLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
520
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ : Dict = { """configuration_biogpt""": ["""BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BioGptConfig"""], """tokenization_biogpt""": ["""BioGptTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Dict = [ """BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BioGptForCausalLM""", """BioGptForTokenClassification""", """BioGptForSequenceClassification""", """BioGptModel""", """BioGptPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCAmelCase_ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
709
'''simple docstring''' def __A ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase=False ) -> Optional[int]: '''simple docstring''' if isinstance(UpperCAmelCase ,UpperCAmelCase ) and isinstance(UpperCAmelCase ,UpperCAmelCase ): _UpperCamelCase : Any = len(set_a.intersection(UpperCAmelCase ) ) if alternative_union: _UpperCamelCase : List[str] = len(UpperCAmelCase ) + len(UpperCAmelCase ) else: _UpperCamelCase : List[str] = len(set_a.union(UpperCAmelCase ) ) return intersection / union if isinstance(UpperCAmelCase ,(list, tuple) ) and isinstance(UpperCAmelCase ,(list, tuple) ): _UpperCamelCase : List[Any] = [element for element in set_a if element in set_b] if alternative_union: _UpperCamelCase : str = len(UpperCAmelCase ) + len(UpperCAmelCase ) return len(UpperCAmelCase ) / union else: _UpperCamelCase : int = set_a + [element for element in set_b if element not in set_a] return len(UpperCAmelCase ) / len(UpperCAmelCase ) return len(UpperCAmelCase ) / len(UpperCAmelCase ) return None if __name__ == "__main__": lowerCAmelCase_ : List[str] = {"""a""", """b""", """c""", """d""", """e"""} lowerCAmelCase_ : Dict = {"""c""", """d""", """e""", """f""", """h""", """i"""} print(jaccard_similarity(set_a, set_b))
204
0
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _lowerCAmelCase = [ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] _lowerCAmelCase = [ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] _lowerCAmelCase = ( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) _lowerCAmelCase = ( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) _lowerCAmelCase = [ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def _snake_case ( __snake_case , __snake_case ): for tf_name, hf_name in patterns: _UpperCamelCase = k.replace(__snake_case , __snake_case ) return k def _snake_case ( __snake_case , __snake_case ): _UpperCamelCase = BigBirdPegasusConfig(**__snake_case ) _UpperCamelCase = BigBirdPegasusForConditionalGeneration(__snake_case ) _UpperCamelCase = torch_model.state_dict() _UpperCamelCase = {} # separating decoder weights _UpperCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} _UpperCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() , '''tf -> hf conversion''' ): _UpperCamelCase = [k.endswith(__snake_case ) for ending in KEYS_TO_IGNORE] if any(__snake_case ): continue _UpperCamelCase = DECODER_PATTERNS _UpperCamelCase = rename_state_dict_key(__snake_case , __snake_case ) if new_k not in state_dict: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): _UpperCamelCase = v.T _UpperCamelCase = torch.from_numpy(__snake_case ) assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() , '''tf -> hf conversion''' ): _UpperCamelCase = [k.endswith(__snake_case ) for ending in KEYS_TO_IGNORE] if any(__snake_case ): continue _UpperCamelCase = REMAINING_PATTERNS _UpperCamelCase = rename_state_dict_key(__snake_case , __snake_case ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): _UpperCamelCase = v.T _UpperCamelCase = torch.from_numpy(__snake_case ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" _UpperCamelCase = mapping['''model.embed_positions.weight'''] _UpperCamelCase = mapping.pop('''model.embed_positions.weight''' ) _UpperCamelCase , _UpperCamelCase = torch_model.load_state_dict(__snake_case , strict=__snake_case ) _UpperCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def _snake_case ( __snake_case ): _UpperCamelCase = tf.train.list_variables(__snake_case ) _UpperCamelCase = {} _UpperCamelCase = ['''global_step'''] for name, shape in tqdm(__snake_case , desc='''converting tf checkpoint to dict''' ): _UpperCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue _UpperCamelCase = tf.train.load_variable(__snake_case , __snake_case ) _UpperCamelCase = array return tf_weights def _snake_case ( __snake_case , __snake_case , __snake_case ): _UpperCamelCase = get_tf_weights_as_numpy(__snake_case ) _UpperCamelCase = convert_bigbird_pegasus(__snake_case , __snake_case ) torch_model.save_pretrained(__snake_case ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.") _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
10
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case ( __snake_case , __snake_case ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__snake_case , __snake_case ) ) ) def _snake_case ( __snake_case , __snake_case ): if dataset.ndim != value_array.ndim: _UpperCamelCase = ( '''Wrong input data\'s dimensions... ''' f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(__snake_case ) try: if dataset.shape[1] != value_array.shape[1]: _UpperCamelCase = ( '''Wrong input data\'s shape... ''' f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(__snake_case ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: _UpperCamelCase = ( '''Input data have different datatype... ''' f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(__snake_case ) _UpperCamelCase = [] for value in value_array: _UpperCamelCase = euclidean(__snake_case , dataset[0] ) _UpperCamelCase = dataset[0].tolist() for dataset_value in dataset[1:]: _UpperCamelCase = euclidean(__snake_case , __snake_case ) if dist > temp_dist: _UpperCamelCase = temp_dist _UpperCamelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case ( __snake_case , __snake_case ): return np.dot(__snake_case , __snake_case ) / (norm(__snake_case ) * norm(__snake_case )) if __name__ == "__main__": import doctest doctest.testmod()
10
1
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : Tuple = DebertaTokenizer _UpperCamelCase : str = True _UpperCamelCase : Tuple = DebertaTokenizerFast def lowercase ( self: Optional[int] ) -> Dict: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase_ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "[UNK]", ] UpperCamelCase_ = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase_ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCamelCase_ = {"unk_token": "[UNK]"} UpperCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_SCREAMING_SNAKE_CASE ) ) def lowercase ( self: Optional[int] , **_SCREAMING_SNAKE_CASE: Dict ) -> Union[str, Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Any ) -> List[str]: """simple docstring""" UpperCamelCase_ = "lower newer" UpperCamelCase_ = "lower newer" return input_text, output_text def lowercase ( self: List[str] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.get_tokenizer() UpperCamelCase_ = "lower newer" UpperCamelCase_ = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] UpperCamelCase_ = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tokens + [tokenizer.unk_token] UpperCamelCase_ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def lowercase ( self: Union[str, Any] ) -> str: """simple docstring""" UpperCamelCase_ = self.get_tokenizer() UpperCamelCase_ = tokenizer("Hello" , "World" ) UpperCamelCase_ = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["token_type_ids"] , _SCREAMING_SNAKE_CASE ) @slow def lowercase ( self: int ) -> Dict: """simple docstring""" UpperCamelCase_ = self.tokenizer_class.from_pretrained("microsoft/deberta-base" ) UpperCamelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tokenizer.encode( "sequence builders" , add_special_tokens=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def lowercase ( self: List[str] ) -> List[Any]: """simple docstring""" UpperCamelCase_ = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: UpperCamelCase_ = tokenizer_class.from_pretrained("microsoft/deberta-base" ) UpperCamelCase_ = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] UpperCamelCase_ = tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = [tokenizer.decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) for seq in encoding["input_ids"]] # fmt: off UpperCamelCase_ = { "input_ids": [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], "token_type_ids": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on UpperCamelCase_ = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] self.assertDictEqual(encoding.data , _SCREAMING_SNAKE_CASE ) for expected, decoded in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
371
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_=() , UpperCamelCase_=None , UpperCamelCase_="no" , UpperCamelCase_="29500" ) -> Optional[Any]: UpperCamelCase_ = False UpperCamelCase_ = False if any(key.startswith("KAGGLE" ) for key in os.environ.keys() ): UpperCamelCase_ = True elif "IPython" in sys.modules: UpperCamelCase_ = "google.colab" in str(sys.modules["IPython"].get_ipython() ) try: UpperCamelCase_ = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME" , UpperCamelCase_ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside " "your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if num_processes is None: UpperCamelCase_ = 8 UpperCamelCase_ = PrepareForLaunch(UpperCamelCase_ , distributed_type="TPU" ) print(F'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(UpperCamelCase_ , args=UpperCamelCase_ , nprocs=UpperCamelCase_ , start_method="fork" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on one CPU." ) function(*UpperCamelCase_ ) else: if num_processes is None: raise ValueError( "You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call." ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized " "inside your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if torch.cuda.is_initialized(): raise ValueError( "To launch a multi-GPU training from your notebook, you need to avoid running any instruction " "using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA " "function." ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=UpperCamelCase_ , master_addr="127.0.01" , master_port=UpperCamelCase_ , mixed_precision=UpperCamelCase_ ): UpperCamelCase_ = PrepareForLaunch(UpperCamelCase_ , distributed_type="MULTI_GPU" ) print(F'''Launching training on {num_processes} GPUs.''' ) try: start_processes(UpperCamelCase_ , args=UpperCamelCase_ , nprocs=UpperCamelCase_ , start_method="fork" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( "CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. " "This likely stems from an outside import causing issues once the `notebook_launcher()` is called. " "Please review your imports and test them when running the `notebook_launcher()` to identify " "which one is problematic." ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): UpperCamelCase_ = "1" print("Launching training on MPS." ) elif torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on CPU." ) function(*UpperCamelCase_ ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_=() , UpperCamelCase_=2 ) -> Optional[Any]: from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=UpperCamelCase_ , master_addr="127.0.01" , master_port="29500" , accelerate_mixed_precision="no" , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu="yes" , ): UpperCamelCase_ = PrepareForLaunch(UpperCamelCase_ , debug=UpperCamelCase_ ) start_processes(UpperCamelCase_ , args=UpperCamelCase_ , nprocs=UpperCamelCase_ , start_method="fork" )
371
1
"""simple docstring""" import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : str = ['''input_ids''', '''attention_mask'''] def __init__( self ,SCREAMING_SNAKE_CASE__="</s>" ,SCREAMING_SNAKE_CASE__="<unk>" ,SCREAMING_SNAKE_CASE__="<pad>" ,SCREAMING_SNAKE_CASE__=1_25 ,SCREAMING_SNAKE_CASE__=None ,**SCREAMING_SNAKE_CASE__ ,) -> None: """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: __SCREAMING_SNAKE_CASE :List[str] = [f'''<extra_id_{i}>''' for i in range(SCREAMING_SNAKE_CASE__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __SCREAMING_SNAKE_CASE :Any = len(set(filter(lambda SCREAMING_SNAKE_CASE__ : bool('''extra_id''' in str(SCREAMING_SNAKE_CASE__ ) ) ,SCREAMING_SNAKE_CASE__ ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the''' ''' extra_ids tokens''' ) __SCREAMING_SNAKE_CASE :int = AddedToken(SCREAMING_SNAKE_CASE__ ,lstrip=SCREAMING_SNAKE_CASE__ ,rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) else pad_token __SCREAMING_SNAKE_CASE :str = AddedToken(SCREAMING_SNAKE_CASE__ ,lstrip=SCREAMING_SNAKE_CASE__ ,rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) else eos_token __SCREAMING_SNAKE_CASE :int = AddedToken(SCREAMING_SNAKE_CASE__ ,lstrip=SCREAMING_SNAKE_CASE__ ,rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) else unk_token super().__init__( eos_token=SCREAMING_SNAKE_CASE__ ,unk_token=SCREAMING_SNAKE_CASE__ ,pad_token=SCREAMING_SNAKE_CASE__ ,extra_ids=SCREAMING_SNAKE_CASE__ ,additional_special_tokens=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) __SCREAMING_SNAKE_CASE :Optional[int] = extra_ids __SCREAMING_SNAKE_CASE :Optional[Any] = 2**8 # utf is 8 bits # define special tokens dict __SCREAMING_SNAKE_CASE :Dict[int, str] = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } __SCREAMING_SNAKE_CASE :Union[str, Any] = len(self.special_tokens_encoder ) __SCREAMING_SNAKE_CASE :Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) for i, token in enumerate(SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :Optional[Any] = self.vocab_size + i - n __SCREAMING_SNAKE_CASE :Dict[str, int] = {v: k for k, v in self.special_tokens_encoder.items()} @property def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ ,token_ids_a=SCREAMING_SNAKE_CASE__ ,already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] return ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> List[int]: """simple docstring""" if len(SCREAMING_SNAKE_CASE__ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ) -> List[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ) -> List[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = self._add_eos_if_not_present(SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return token_ids_a else: __SCREAMING_SNAKE_CASE :Union[str, Any] = self._add_eos_if_not_present(SCREAMING_SNAKE_CASE__ ) return token_ids_a + token_ids_a def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :int = [chr(SCREAMING_SNAKE_CASE__ ) for i in text.encode('''utf-8''' )] return tokens def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" if token in self.special_tokens_encoder: __SCREAMING_SNAKE_CASE :str = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: __SCREAMING_SNAKE_CASE :str = self.added_tokens_encoder[token] elif len(SCREAMING_SNAKE_CASE__ ) != 1: __SCREAMING_SNAKE_CASE :Dict = self.unk_token_id else: __SCREAMING_SNAKE_CASE :Optional[int] = ord(SCREAMING_SNAKE_CASE__ ) + self._num_special_tokens return token_id def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" if index in self.special_tokens_decoder: __SCREAMING_SNAKE_CASE :int = self.special_tokens_decoder[index] else: __SCREAMING_SNAKE_CASE :str = chr(index - self._num_special_tokens ) return token def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = b'''''' for token in tokens: if token in self.special_tokens_decoder: __SCREAMING_SNAKE_CASE :Optional[Any] = self.special_tokens_decoder[token].encode('''utf-8''' ) elif token in self.added_tokens_decoder: __SCREAMING_SNAKE_CASE :Optional[Any] = self.special_tokens_decoder[token].encode('''utf-8''' ) elif token in self.special_tokens_encoder: __SCREAMING_SNAKE_CASE :Any = token.encode('''utf-8''' ) elif token in self.added_tokens_encoder: __SCREAMING_SNAKE_CASE :Optional[Any] = token.encode('''utf-8''' ) else: __SCREAMING_SNAKE_CASE :Tuple = bytes([ord(SCREAMING_SNAKE_CASE__ )] ) bstring += tok_string __SCREAMING_SNAKE_CASE :Union[str, Any] = bstring.decode('''utf-8''' ,errors='''ignore''' ) return string def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ) -> Tuple[str]: """simple docstring""" return ()
498
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['''vqvae'''] def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,) -> Dict: """simple docstring""" super().__init__() self.register_modules(unet=SCREAMING_SNAKE_CASE__ ,scheduler=SCREAMING_SNAKE_CASE__ ,mel=SCREAMING_SNAKE_CASE__ ,vqvae=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> int: """simple docstring""" return 50 if isinstance(self.scheduler ,SCREAMING_SNAKE_CASE__ ) else 10_00 @torch.no_grad() def __call__( self ,SCREAMING_SNAKE_CASE__ = 1 ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = 0 ,SCREAMING_SNAKE_CASE__ = 0 ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = 0 ,SCREAMING_SNAKE_CASE__ = 0 ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = 0 ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__=True ,) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: """simple docstring""" __SCREAMING_SNAKE_CASE :Dict = steps or self.get_default_steps() self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: __SCREAMING_SNAKE_CASE :Any = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: __SCREAMING_SNAKE_CASE :int = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) ,generator=SCREAMING_SNAKE_CASE__ ,device=self.device ,) __SCREAMING_SNAKE_CASE :int = noise __SCREAMING_SNAKE_CASE :str = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Dict = self.mel.audio_slice_to_image(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Any = np.frombuffer(input_image.tobytes() ,dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) __SCREAMING_SNAKE_CASE :Dict = (input_image / 2_55) * 2 - 1 __SCREAMING_SNAKE_CASE :Optional[int] = torch.tensor(input_image[np.newaxis, :, :] ,dtype=torch.float ).to(self.device ) if self.vqvae is not None: __SCREAMING_SNAKE_CASE :Optional[Any] = self.vqvae.encode(torch.unsqueeze(SCREAMING_SNAKE_CASE__ ,0 ) ).latent_dist.sample( generator=SCREAMING_SNAKE_CASE__ )[0] __SCREAMING_SNAKE_CASE :Dict = self.vqvae.config.scaling_factor * input_images if start_step > 0: __SCREAMING_SNAKE_CASE :Optional[int] = self.scheduler.add_noise(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,self.scheduler.timesteps[start_step - 1] ) __SCREAMING_SNAKE_CASE :List[Any] = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) __SCREAMING_SNAKE_CASE :List[Any] = int(mask_start_secs * pixels_per_second ) __SCREAMING_SNAKE_CASE :List[str] = int(mask_end_secs * pixels_per_second ) __SCREAMING_SNAKE_CASE :List[Any] = self.scheduler.add_noise(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet ,SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :Dict = self.unet(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )['''sample'''] else: __SCREAMING_SNAKE_CASE :Dict = self.unet(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )['''sample'''] if isinstance(self.scheduler ,SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :Union[str, Any] = self.scheduler.step( model_output=SCREAMING_SNAKE_CASE__ ,timestep=SCREAMING_SNAKE_CASE__ ,sample=SCREAMING_SNAKE_CASE__ ,eta=SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ,)['''prev_sample'''] else: __SCREAMING_SNAKE_CASE :Optional[Any] = self.scheduler.step( model_output=SCREAMING_SNAKE_CASE__ ,timestep=SCREAMING_SNAKE_CASE__ ,sample=SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ,)['''prev_sample'''] if mask is not None: if mask_start > 0: __SCREAMING_SNAKE_CASE :Any = mask[:, step, :, :mask_start] if mask_end > 0: __SCREAMING_SNAKE_CASE :int = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance __SCREAMING_SNAKE_CASE :Any = 1 / self.vqvae.config.scaling_factor * images __SCREAMING_SNAKE_CASE :Any = self.vqvae.decode(SCREAMING_SNAKE_CASE__ )['''sample'''] __SCREAMING_SNAKE_CASE :Dict = (images / 2 + 0.5).clamp(0 ,1 ) __SCREAMING_SNAKE_CASE :Union[str, Any] = images.cpu().permute(0 ,2 ,3 ,1 ).numpy() __SCREAMING_SNAKE_CASE :Dict = (images * 2_55).round().astype('''uint8''' ) __SCREAMING_SNAKE_CASE :str = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(SCREAMING_SNAKE_CASE__ ,mode='''RGB''' ).convert('''L''' ) for _ in images) ) __SCREAMING_SNAKE_CASE :Union[str, Any] = [self.mel.image_to_audio(SCREAMING_SNAKE_CASE__ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(SCREAMING_SNAKE_CASE__ )[:, np.newaxis, :] ) ,**ImagePipelineOutput(SCREAMING_SNAKE_CASE__ ) ) @torch.no_grad() def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = 50 ) -> np.ndarray: """simple docstring""" assert isinstance(self.scheduler ,SCREAMING_SNAKE_CASE__ ) self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = np.array( [np.frombuffer(image.tobytes() ,dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) __SCREAMING_SNAKE_CASE :List[Any] = (sample / 2_55) * 2 - 1 __SCREAMING_SNAKE_CASE :Optional[int] = torch.Tensor(SCREAMING_SNAKE_CASE__ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps ,(0,) ) ): __SCREAMING_SNAKE_CASE :Optional[Any] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps __SCREAMING_SNAKE_CASE :Union[str, Any] = self.scheduler.alphas_cumprod[t] __SCREAMING_SNAKE_CASE :Dict = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) __SCREAMING_SNAKE_CASE :int = 1 - alpha_prod_t __SCREAMING_SNAKE_CASE :str = self.unet(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )['''sample'''] __SCREAMING_SNAKE_CASE :Any = (1 - alpha_prod_t_prev) ** 0.5 * model_output __SCREAMING_SNAKE_CASE :Optional[int] = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) __SCREAMING_SNAKE_CASE :str = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> torch.Tensor: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = acos(torch.dot(torch.flatten(SCREAMING_SNAKE_CASE__ ) ,torch.flatten(SCREAMING_SNAKE_CASE__ ) ) / torch.norm(SCREAMING_SNAKE_CASE__ ) / torch.norm(SCREAMING_SNAKE_CASE__ ) ) return sin((1 - alpha) * theta ) * xa / sin(SCREAMING_SNAKE_CASE__ ) + sin(alpha * theta ) * xa / sin(SCREAMING_SNAKE_CASE__ )
498
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def snake_case_ (__A : Dict , __A : List[str]=False ) -> int: __lowerCAmelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowerCAmelCase : str = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def snake_case_ (__A : Any , __A : Optional[int] , __A : Optional[int]=False ) -> Dict: for i in range(config.num_hidden_layers ): if base_model: __lowerCAmelCase : Dict = """""" else: __lowerCAmelCase : str = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase : Tuple = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) __lowerCAmelCase : Tuple = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase : Tuple = in_proj_weight[ : config.hidden_size, : ] __lowerCAmelCase : Union[str, Any] = in_proj_bias[: config.hidden_size] __lowerCAmelCase : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase : Optional[int] = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase : List[str] = in_proj_bias[-config.hidden_size :] def snake_case_ (__A : Any ) -> int: __lowerCAmelCase : Optional[Any] = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__A , __A ) def snake_case_ (__A : Dict , __A : List[Any] , __A : Union[str, Any] ) -> int: __lowerCAmelCase : List[str] = dct.pop(__A ) __lowerCAmelCase : Optional[Any] = val def snake_case_ () -> str: __lowerCAmelCase : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase : Any = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def snake_case_ (__A : Dict , __A : Union[str, Any] , __A : List[Any]=True ) -> Any: __lowerCAmelCase : Any = ViTConfig() # patch_size if model_name[-1] == "8": __lowerCAmelCase : Tuple = 8 # set labels if required if not base_model: __lowerCAmelCase : Optional[Any] = 1_0_0_0 __lowerCAmelCase : Dict = """huggingface/label-files""" __lowerCAmelCase : Optional[Any] = """imagenet-1k-id2label.json""" __lowerCAmelCase : str = json.load(open(hf_hub_download(__A , __A , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase : List[str] = {int(__A ): v for k, v in idalabel.items()} __lowerCAmelCase : Union[str, Any] = idalabel __lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: __lowerCAmelCase : Dict = 3_8_4 __lowerCAmelCase : int = 1_5_3_6 __lowerCAmelCase : List[Any] = 1_2 __lowerCAmelCase : List[str] = 6 # load original model from torch hub __lowerCAmelCase : List[Any] = torch.hub.load("""facebookresearch/dino:main""" , __A ) original_model.eval() # load state_dict of original model, remove and rename some keys __lowerCAmelCase : Optional[Any] = original_model.state_dict() if base_model: remove_classification_head_(__A ) __lowerCAmelCase : int = create_rename_keys(__A , base_model=__A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) read_in_q_k_v(__A , __A , __A ) # load HuggingFace model if base_model: __lowerCAmelCase : Tuple = ViTModel(__A , add_pooling_layer=__A ).eval() else: __lowerCAmelCase : Dict = ViTForImageClassification(__A ).eval() model.load_state_dict(__A ) # Check outputs on an image, prepared by ViTImageProcessor __lowerCAmelCase : Union[str, Any] = ViTImageProcessor() __lowerCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) __lowerCAmelCase : int = encoding["""pixel_values"""] __lowerCAmelCase : Optional[int] = model(__A ) if base_model: __lowerCAmelCase : Optional[int] = original_model(__A ) assert torch.allclose(__A , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: __lowerCAmelCase : Tuple = original_model(__A ) assert logits.shape == outputs.logits.shape assert torch.allclose(__A , outputs.logits , atol=1e-3 ) Path(__A ).mkdir(exist_ok=__A ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__A ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""dino_vitb16""", type=str, help="""Name of the model trained with DINO you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether to only convert the base model (no projection head weights).""", ) parser.set_defaults(base_model=True) __UpperCAmelCase = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
218
from __future__ import annotations def snake_case_ (__A : list[int] , __A : int ) -> list[int]: __lowerCAmelCase : List[Any] = 0 __lowerCAmelCase : Optional[Any] = len(__A ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __lowerCAmelCase : int = i + 1 else: __lowerCAmelCase : List[str] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'{two_pointer([2, 7, 11, 15], 9) = }')
218
1
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL A : Optional[int] = logging.get_logger(__name__) def UpperCamelCase ( __magic_name__ : np.ndarray , __magic_name__ : Union[int, Iterable[int]] , __magic_name__ : bool , __magic_name__ : int ) -> Tuple[int, int]: """simple docstring""" def constraint_to_multiple_of(__magic_name__ : Any , __magic_name__ : Any , __magic_name__ : Dict=0 , __magic_name__ : Dict=None ): lowercase__ = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowercase__ = math.floor(val / multiple ) * multiple if x < min_val: lowercase__ = math.ceil(val / multiple ) * multiple return x lowercase__ = (output_size, output_size) if isinstance(__magic_name__ , __magic_name__ ) else output_size lowercase__ , lowercase__ = get_image_size(__magic_name__ ) lowercase__ , lowercase__ = output_size # determine new height and width lowercase__ = output_height / input_height lowercase__ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowercase__ = scale_width else: # fit height lowercase__ = scale_height lowercase__ = constraint_to_multiple_of(scale_height * input_height , multiple=__magic_name__ ) lowercase__ = constraint_to_multiple_of(scale_width * input_width , multiple=__magic_name__ ) return (new_height, new_width) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = ['''pixel_values'''] def __init__(self : Any , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 1 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Tuple , ) -> None: """simple docstring""" super().__init__(**_UpperCAmelCase ) lowercase__ = size if size is not None else {"""height""": 384, """width""": 384} lowercase__ = get_size_dict(_UpperCAmelCase ) lowercase__ = do_resize lowercase__ = size lowercase__ = keep_aspect_ratio lowercase__ = ensure_multiple_of lowercase__ = resample lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = do_normalize lowercase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 1 , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> np.ndarray: """simple docstring""" lowercase__ = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) lowercase__ = get_resize_output_image_size( _UpperCAmelCase , output_size=(size["""height"""], size["""width"""]) , keep_aspect_ratio=_UpperCAmelCase , multiple=_UpperCAmelCase , ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : str , ) -> int: """simple docstring""" return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ) -> np.ndarray: """simple docstring""" return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : int = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : int = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : Optional[Any] , ) -> PIL.Image.Image: """simple docstring""" lowercase__ = do_resize if do_resize is not None else self.do_resize lowercase__ = size if size is not None else self.size lowercase__ = get_size_dict(_UpperCAmelCase ) lowercase__ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowercase__ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowercase__ = resample if resample is not None else self.resample lowercase__ = do_rescale if do_rescale is not None else self.do_rescale lowercase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ = do_normalize if do_normalize is not None else self.do_normalize lowercase__ = image_mean if image_mean is not None else self.image_mean lowercase__ = image_std if image_std is not None else self.image_std lowercase__ = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowercase__ = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: lowercase__ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: lowercase__ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: lowercase__ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] lowercase__ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] lowercase__ = {"""pixel_values""": images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Tuple] = None ) -> Dict: """simple docstring""" lowercase__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(_UpperCAmelCase ): lowercase__ = target_sizes.numpy() lowercase__ = [] for idx in range(len(_UpperCAmelCase ) ): lowercase__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=_UpperCAmelCase ) lowercase__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_UpperCAmelCase ) else: lowercase__ = logits.argmax(dim=1 ) lowercase__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
15
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets A : Dict = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' A : List[str] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' A : Any = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> Union[str, Any]: """simple docstring""" if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int = CHRF.CHAR_ORDER , _UpperCAmelCase : int = CHRF.WORD_ORDER , _UpperCAmelCase : int = CHRF.BETA , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , ) -> int: """simple docstring""" lowercase__ = len(references[0] ) if any(len(_UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) lowercase__ = [[refs[i] for refs in references] for i in range(_UpperCAmelCase )] lowercase__ = CHRF(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__ = sb_chrf.corpus_score(_UpperCAmelCase , _UpperCAmelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
15
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): lowerCAmelCase : List[str] = StableDiffusionInpaintPipeline lowerCAmelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS lowerCAmelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCAmelCase : Dict = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase : str = frozenset([] ) def __A ( self ): torch.manual_seed(0 ) A__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase_ , ) A__ = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) torch.manual_seed(0 ) A__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) A__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="gelu" , projection_dim=512 , ) A__ = CLIPTextModel(UpperCamelCase_ ) A__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) A__ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __A ( self , UpperCAmelCase__ , UpperCAmelCase__=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched A__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) A__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert("RGB" ).resize((64, 64) ) A__ = Image.fromarray(np.uinta(image + 4 ) ).convert("RGB" ).resize((64, 64) ) if str(UpperCamelCase_ ).startswith("mps" ): A__ = torch.manual_seed(UpperCamelCase_ ) else: A__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) A__ = { "prompt": "A painting of a squirrel eating a burger", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __A ( self ): A__ = "cpu" # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = StableDiffusionInpaintPipeline(**UpperCamelCase_ ) A__ = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) A__ = self.get_dummy_inputs(UpperCamelCase_ ) A__ = sd_pipe(**UpperCamelCase_ ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A__ = np.array([0.4_727, 0.5_735, 0.3_941, 0.5_446, 0.5_926, 0.4_394, 0.5_062, 0.4_654, 0.4_476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def __A ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): A__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) A__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) A__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench.npy" ) A__ = "stabilityai/stable-diffusion-2-inpainting" A__ = StableDiffusionInpaintPipeline.from_pretrained(UpperCamelCase_ , safety_checker=UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() A__ = "Face of a yellow cat, high resolution, sitting on a park bench" A__ = torch.manual_seed(0 ) A__ = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type="np" , ) A__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9e-3 def __A ( self ): A__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) A__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) A__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench_fp16.npy" ) A__ = "stabilityai/stable-diffusion-2-inpainting" A__ = StableDiffusionInpaintPipeline.from_pretrained( UpperCamelCase_ , torch_dtype=torch.floataa , safety_checker=UpperCamelCase_ , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() A__ = "Face of a yellow cat, high resolution, sitting on a park bench" A__ = torch.manual_seed(0 ) A__ = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type="np" , ) A__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def __A ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) A__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) A__ = "stabilityai/stable-diffusion-2-inpainting" A__ = PNDMScheduler.from_pretrained(UpperCamelCase_ , subfolder="scheduler" ) A__ = StableDiffusionInpaintPipeline.from_pretrained( UpperCamelCase_ , safety_checker=UpperCamelCase_ , scheduler=UpperCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A__ = "Face of a yellow cat, high resolution, sitting on a park bench" A__ = torch.manual_seed(0 ) A__ = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=2 , output_type="np" , ) A__ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
714
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase_ : Optional[int] = 16 UpperCAmelCase_ : List[Any] = 32 def UpperCamelCase ( _A : Accelerator , _A : int = 16 )-> Dict: """simple docstring""" A__ = AutoTokenizer.from_pretrained("bert-base-cased" ) A__ = load_dataset("glue" , "mrpc" ) def tokenize_function(_A : Tuple ): # max_length=None => use the model max length (it's actually the default) A__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_A , max_length=_A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ = datasets.map( _A , batched=_A , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_A : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ = 16 elif accelerator.mixed_precision != "no": A__ = 8 else: A__ = None return tokenizer.pad( _A , padding="longest" , max_length=_A , pad_to_multiple_of=_A , return_tensors="pt" , ) # Instantiate dataloaders. A__ = DataLoader( tokenized_datasets["train"] , shuffle=_A , collate_fn=_A , batch_size=_A , drop_last=_A ) A__ = DataLoader( tokenized_datasets["validation"] , shuffle=_A , collate_fn=_A , batch_size=_A , drop_last=(accelerator.mixed_precision == "fp8") , ) return train_dataloader, eval_dataloader def UpperCamelCase ( _A : str , _A : List[str] )-> Union[str, Any]: """simple docstring""" A__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ = config["lr"] A__ = int(config["num_epochs"] ) A__ = int(config["seed"] ) A__ = int(config["batch_size"] ) A__ = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation A__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ = batch_size // MAX_GPU_BATCH_SIZE A__ = MAX_GPU_BATCH_SIZE set_seed(_A ) A__ , A__ = get_dataloaders(_A , _A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ = model.to(accelerator.device ) # Instantiate optimizer A__ = AdamW(params=model.parameters() , lr=_A ) # Instantiate scheduler A__ = get_linear_schedule_with_warmup( optimizer=_A , num_warmup_steps=100 , num_training_steps=(len(_A ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ = accelerator.prepare( _A , _A , _A , _A , _A ) # Now we train the model for epoch in range(_A ): model.train() for step, batch in enumerate(_A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ = model(**_A ) A__ = outputs.loss A__ = loss / gradient_accumulation_steps accelerator.backward(_A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**_A ) A__ = outputs.logits.argmax(dim=-1 ) A__ , A__ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_A , references=_A , ) A__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , _A ) def UpperCamelCase ( )-> Any: """simple docstring""" A__ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_A , default=_A , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) A__ = parser.parse_args() A__ = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_A , _A ) if __name__ == "__main__": main()
232
0
'''simple docstring''' def _a( UpperCamelCase__ : Any, UpperCamelCase__ : List[str] ): '''simple docstring''' if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) SCREAMING_SNAKE_CASE__ : Tuple =sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(UpperCamelCase__ ) ) return round(UpperCamelCase__, ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
296
"""simple docstring""" import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser( description=( 'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2']) parser.add_argument('--model_name', default='roberta-large', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') lowerCAmelCase__ = parser.parse_args() if args.model_type == "roberta": lowerCAmelCase__ = RobertaForMaskedLM.from_pretrained(args.model_name) lowerCAmelCase__ = 'roberta' elif args.model_type == "gpt2": lowerCAmelCase__ = GPTaLMHeadModel.from_pretrained(args.model_name) lowerCAmelCase__ = 'transformer' lowerCAmelCase__ = model.state_dict() lowerCAmelCase__ = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: lowerCAmelCase__ = state_dict[F'{prefix}.{param_name}'] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: lowerCAmelCase__ = F'{prefix}.embeddings.{w}.weight' lowerCAmelCase__ = state_dict[param_name] for w in ["weight", "bias"]: lowerCAmelCase__ = F'{prefix}.embeddings.LayerNorm.{w}' lowerCAmelCase__ = state_dict[param_name] # Transformer Blocks # lowerCAmelCase__ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: lowerCAmelCase__ = state_dict[ F'{prefix}.h.{teacher_idx}.{layer}.{w}' ] lowerCAmelCase__ = state_dict[F'{prefix}.h.{teacher_idx}.attn.bias'] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: lowerCAmelCase__ = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: lowerCAmelCase__ = state_dict[F'{layer}'] if args.vocab_transform: for w in ["weight", "bias"]: lowerCAmelCase__ = state_dict[F'lm_head.dense.{w}'] lowerCAmelCase__ = state_dict[F'lm_head.layer_norm.{w}'] elif args.model_type == "gpt2": for w in ["weight", "bias"]: lowerCAmelCase__ = state_dict[F'{prefix}.ln_f.{w}'] lowerCAmelCase__ = state_dict['lm_head.weight'] print(F'N layers selected for distillation: {std_idx}') print(F'Number of params transferred for distillation: {len(compressed_sd.keys())}') print(F'Save transferred checkpoint to {args.dump_checkpoint}.') torch.save(compressed_sd, args.dump_checkpoint)
621
0
'''simple docstring''' import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class a__( lowerCamelCase__ ): lowercase__ = ["""image_processor""", """tokenizer"""] lowercase__ = """BlipImageProcessor""" lowercase__ = """AutoTokenizer""" def __init__( self : List[Any] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Optional[Any] ): super().__init__(__snake_case , __snake_case ) # add QFormer tokenizer a : List[str] = qformer_tokenizer def __call__( self : List[Any] , __snake_case : ImageInput = None , __snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __snake_case : bool = True , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Union[bool, str, TruncationStrategy] = None , __snake_case : Optional[int] = None , __snake_case : int = 0 , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : Dict , ): if images is None and text is None: raise ValueError('You have to specify at least images or text.' ) a : List[str] = BatchFeature() if text is not None: a : Optional[int] = self.tokenizer( text=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_token_type_ids=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) encoding.update(__snake_case ) a : List[str] = self.qformer_tokenizer( text=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_token_type_ids=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) a : Dict = qformer_text_encoding.pop('input_ids' ) a : Any = qformer_text_encoding.pop('attention_mask' ) if images is not None: a : Any = self.image_processor(__snake_case , return_tensors=__snake_case ) encoding.update(__snake_case ) return encoding def lowercase_ ( self : Any , *__snake_case : List[Any] , **__snake_case : str ): return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def lowercase_ ( self : List[Any] , *__snake_case : Union[str, Any] , **__snake_case : Tuple ): return self.tokenizer.decode(*__snake_case , **__snake_case ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowercase_ ( self : int ): a : Optional[Any] = self.tokenizer.model_input_names a : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def lowercase_ ( self : Any , __snake_case : List[str] , **__snake_case : Optional[Any] ): if os.path.isfile(__snake_case ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(__snake_case , exist_ok=__snake_case ) a : Dict = os.path.join(__snake_case , 'qformer_tokenizer' ) self.qformer_tokenizer.save_pretrained(__snake_case ) return super().save_pretrained(__snake_case , **__snake_case ) @classmethod def lowercase_ ( cls : Optional[int] , __snake_case : Union[str, Any] , **__snake_case : List[str] ): a : Tuple = AutoTokenizer.from_pretrained(__snake_case , subfolder='qformer_tokenizer' ) a : Union[str, Any] = cls._get_arguments_from_pretrained(__snake_case , **__snake_case ) args.append(__snake_case ) return cls(*__snake_case )
195
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class a__: @staticmethod def lowercase_ ( *__snake_case : int , **__snake_case : str ): pass @is_pipeline_test @require_vision @require_timm @require_torch class a__( unittest.TestCase ): lowercase__ = MODEL_FOR_OBJECT_DETECTION_MAPPING def lowercase_ ( self : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Tuple ): a : Tuple = ObjectDetectionPipeline(model=__snake_case , image_processor=__snake_case ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def lowercase_ ( self : Optional[Any] , __snake_case : str , __snake_case : Optional[Any] ): a : Any = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png' , threshold=0.0 ) self.assertGreater(len(__snake_case ) , 0 ) for detected_object in outputs: self.assertEqual( __snake_case , { 'score': ANY(__snake_case ), 'label': ANY(__snake_case ), 'box': {'xmin': ANY(__snake_case ), 'ymin': ANY(__snake_case ), 'xmax': ANY(__snake_case ), 'ymax': ANY(__snake_case )}, } , ) import datasets a : Any = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) a : Tuple = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] a : List[Any] = object_detector(__snake_case , threshold=0.0 ) self.assertEqual(len(__snake_case ) , len(__snake_case ) ) for outputs in batch_outputs: self.assertGreater(len(__snake_case ) , 0 ) for detected_object in outputs: self.assertEqual( __snake_case , { 'score': ANY(__snake_case ), 'label': ANY(__snake_case ), 'box': {'xmin': ANY(__snake_case ), 'ymin': ANY(__snake_case ), 'xmax': ANY(__snake_case ), 'ymax': ANY(__snake_case )}, } , ) @require_tf @unittest.skip('Object detection not implemented in TF' ) def lowercase_ ( self : List[str] ): pass @require_torch def lowercase_ ( self : Tuple ): a : Union[str, Any] = 'hf-internal-testing/tiny-detr-mobilenetsv3' a : str = AutoModelForObjectDetection.from_pretrained(__snake_case ) a : str = AutoFeatureExtractor.from_pretrained(__snake_case ) a : Any = ObjectDetectionPipeline(model=__snake_case , feature_extractor=__snake_case ) a : str = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=0.0 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, ] , ) a : Dict = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] , threshold=0.0 , ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, ], [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, ], ] , ) @require_torch @slow def lowercase_ ( self : Optional[int] ): a : Union[str, Any] = 'facebook/detr-resnet-50' a : str = AutoModelForObjectDetection.from_pretrained(__snake_case ) a : List[Any] = AutoFeatureExtractor.from_pretrained(__snake_case ) a : str = ObjectDetectionPipeline(model=__snake_case , feature_extractor=__snake_case ) a : List[Any] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ] , ) a : List[str] = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ], [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ], ] , ) @require_torch @slow def lowercase_ ( self : Any ): a : Any = 'facebook/detr-resnet-50' a : int = pipeline('object-detection' , model=__snake_case ) a : Dict = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ] , ) a : int = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ], [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ], ] , ) @require_torch @slow def lowercase_ ( self : Optional[int] ): a : Optional[Any] = 0.9985 a : Optional[int] = 'facebook/detr-resnet-50' a : List[Any] = pipeline('object-detection' , model=__snake_case ) a : Any = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=__snake_case ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ] , ) @require_torch @require_pytesseract @slow def lowercase_ ( self : Dict ): a : Optional[int] = 'Narsil/layoutlmv3-finetuned-funsd' a : Optional[int] = 0.9993 a : List[Any] = pipeline('object-detection' , model=__snake_case , threshold=__snake_case ) a : Union[str, Any] = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ {'score': 0.9993, 'label': 'I-ANSWER', 'box': {'xmin': 2_94, 'ymin': 2_54, 'xmax': 3_43, 'ymax': 2_64}}, {'score': 0.9993, 'label': 'I-ANSWER', 'box': {'xmin': 2_94, 'ymin': 2_54, 'xmax': 3_43, 'ymax': 2_64}}, ] , )
195
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> str: assert x is not None assert y is not None __lowerCamelCase : List[str] = len(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) # declaring the array for storing the dp values __lowerCamelCase : List[Any] = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): __lowerCamelCase : Tuple = 1 if x[i - 1] == y[j - 1] else 0 __lowerCamelCase : List[Any] = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) __lowerCamelCase : Any = '' __lowerCamelCase , __lowerCamelCase : Optional[int] = m, n while i > 0 and j > 0: __lowerCamelCase : List[Any] = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: __lowerCamelCase : Tuple = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": A__ : Any = """AGGTAB""" A__ : Tuple = """GXTXAYB""" A__ : str = 4 A__ : Any = """GTAB""" A__ , A__ : Union[str, Any] = longest_common_subsequence(a, b) print("""len =""", ln, """, sub-sequence =""", subseq) import doctest doctest.testmod()
13
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """google/pegasus-large""": """https://huggingface.co/google/pegasus-large/resolve/main/config.json""", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'pegasus' __lowerCamelCase = ['past_key_values'] __lowerCamelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , lowercase=50265 , lowercase=1024 , lowercase=12 , lowercase=4096 , lowercase=16 , lowercase=12 , lowercase=4096 , lowercase=16 , lowercase=0.0 , lowercase=0.0 , lowercase=True , lowercase=True , lowercase="gelu" , lowercase=1024 , lowercase=0.1 , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=0 , lowercase=False , lowercase=0 , lowercase=1 , lowercase=1 , **lowercase , ) -> Optional[Any]: '''simple docstring''' A__ = vocab_size A__ = max_position_embeddings A__ = d_model A__ = encoder_ffn_dim A__ = encoder_layers A__ = encoder_attention_heads A__ = decoder_ffn_dim A__ = decoder_layers A__ = decoder_attention_heads A__ = dropout A__ = attention_dropout A__ = activation_dropout A__ = activation_function A__ = init_std A__ = encoder_layerdrop A__ = decoder_layerdrop A__ = use_cache A__ = encoder_layers A__ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , decoder_start_token_id=lowercase , forced_eos_token_id=lowercase , **lowercase , ) @property def UpperCamelCase ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def UpperCamelCase ( self ) -> int: '''simple docstring''' return self.d_model
514
0
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Union[str, Any] , __A : int , __A : Optional[int]=1_3 , __A : Dict=3_0 , __A : str=2 , __A : List[str]=3 , __A : Union[str, Any]=True , __A : List[Any]=True , __A : List[Any]=3_2 , __A : str=2 , __A : Any=4 , __A : Dict=3_7 , __A : Optional[int]="gelu" , __A : List[str]=0.1 , __A : List[str]=0.1 , __A : str=1_0 , __A : Any=0.0_2 , __A : str=3 , __A : Any=None , ): snake_case__ : Optional[int] = parent snake_case__ : str = batch_size snake_case__ : Optional[Any] = image_size snake_case__ : Tuple = patch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : List[Any] = is_training snake_case__ : Optional[int] = use_labels snake_case__ : Union[str, Any] = hidden_size snake_case__ : Any = num_hidden_layers snake_case__ : str = num_attention_heads snake_case__ : int = intermediate_size snake_case__ : Any = hidden_act snake_case__ : str = hidden_dropout_prob snake_case__ : str = attention_probs_dropout_prob snake_case__ : Optional[Any] = type_sequence_label_size snake_case__ : Optional[Any] = initializer_range snake_case__ : str = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case__ : Any = (image_size // patch_size) ** 2 snake_case__ : Optional[Any] = num_patches + 1 def _lowercase ( self : Optional[Any] ): snake_case__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Tuple = None if self.use_labels: snake_case__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : Tuple = self.get_config() return config, pixel_values, labels def _lowercase ( self : Dict ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__A , initializer_range=self.initializer_range , ) def _lowercase ( self : Optional[Any] , __A : Union[str, Any] , __A : Any , __A : Optional[int] ): snake_case__ : List[Any] = TFViTModel(config=__A ) snake_case__ : Union[str, Any] = model(__A , training=__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. snake_case__ : Optional[Any] = self.image_size // 2 snake_case__ : Dict = pixel_values[:, :, :image_size, :image_size] snake_case__ : Any = model(__A , interpolate_pos_encoding=__A , training=__A ) snake_case__ : Any = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def _lowercase ( self : Optional[int] , __A : int , __A : List[Any] , __A : List[Any] ): snake_case__ : Any = self.type_sequence_label_size snake_case__ : Optional[Any] = TFViTForImageClassification(__A ) snake_case__ : List[str] = model(__A , labels=__A , training=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. snake_case__ : Tuple = self.image_size // 2 snake_case__ : str = pixel_values[:, :, :image_size, :image_size] snake_case__ : int = model(__A , interpolate_pos_encoding=__A , training=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case__ : Union[str, Any] = 1 snake_case__ : Union[str, Any] = TFViTForImageClassification(__A ) snake_case__ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ : str = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Optional[int] = self.prepare_config_and_inputs() snake_case__, snake_case__, snake_case__ : Any = config_and_inputs snake_case__ : int = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () a_ = ( {"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification} if is_tf_available() else {} ) a_ = False a_ = False a_ = False def _lowercase ( self : Union[str, Any] ): snake_case__ : Any = TFViTModelTester(self ) snake_case__ : Dict = ConfigTester(self , config_class=__A , has_text_modality=__A , hidden_size=3_7 ) def _lowercase ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def _lowercase ( self : Optional[int] ): pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def _lowercase ( self : Optional[int] ): pass def _lowercase ( self : List[str] ): snake_case__, snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Any = model_class(__A ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) snake_case__ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A , tf.keras.layers.Layer ) ) def _lowercase ( self : Dict ): snake_case__, snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Optional[Any] = model_class(__A ) snake_case__ : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Dict = [*signature.parameters.keys()] snake_case__ : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , __A ) def _lowercase ( self : Dict ): snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def _lowercase ( self : Any ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @slow def _lowercase ( self : str ): snake_case__ : List[str] = TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(__A ) def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Union[str, Any] ): return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def _lowercase ( self : int ): snake_case__ : Tuple = TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) snake_case__ : List[str] = self.default_image_processor snake_case__ : Optional[int] = prepare_img() snake_case__ : int = image_processor(images=__A , return_tensors="tf" ) # forward pass snake_case__ : Dict = model(**__A ) # verify the logits snake_case__ : str = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __A ) snake_case__ : int = tf.constant([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3] , __A , atol=1e-4 )
25
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase : Tuple = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Union[str, Any] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
25
1
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def UpperCAmelCase ( UpperCAmelCase__ : str): lowerCamelCase , lowerCamelCase : Tuple = analyze_text(UpperCAmelCase__) lowerCamelCase : Dict = list(' ' + ascii_lowercase) # what is our total sum of probabilities. lowerCamelCase : int = sum(single_char_strings.values()) # one length string lowerCamelCase : Dict = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCamelCase : int = single_char_strings[ch] lowerCamelCase : List[str] = my_str / all_sum my_fir_sum += prob * math.loga(UpperCAmelCase__) # entropy formula. # print entropy print(F'''{round(-1 * my_fir_sum):.1f}''') # two len string lowerCamelCase : Tuple = sum(two_char_strings.values()) lowerCamelCase : Optional[Any] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCamelCase : Any = cha + cha if sequence in two_char_strings: lowerCamelCase : Any = two_char_strings[sequence] lowerCamelCase : Tuple = int(UpperCAmelCase__) / all_sum my_sec_sum += prob * math.loga(UpperCAmelCase__) # print second entropy print(F'''{round(-1 * my_sec_sum):.1f}''') # print the difference between them print(F'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum)):.1f}''') def UpperCAmelCase ( UpperCAmelCase__ : str): lowerCamelCase : Union[str, Any] = Counter() # type: ignore lowerCamelCase : Union[str, Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(UpperCAmelCase__) - 1): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def UpperCAmelCase ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
320
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case ( a__ , unittest.TestCase): _lowerCAmelCase = KandinskyVaaPipeline _lowerCAmelCase = [ '''image_embeds''', '''negative_image_embeds''', ] _lowerCAmelCase = ['''image_embeds''', '''negative_image_embeds'''] _lowerCAmelCase = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _lowerCAmelCase = False @property def UpperCAmelCase_ ( self ): """simple docstring""" return 32 @property def UpperCAmelCase_ ( self ): """simple docstring""" return 32 @property def UpperCAmelCase_ ( self ): """simple docstring""" return self.time_input_dim @property def UpperCAmelCase_ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def UpperCAmelCase_ ( self ): """simple docstring""" return 100 @property def UpperCAmelCase_ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase : List[Any] = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCamelCase : Tuple = UNetaDConditionModel(**A ) return model @property def UpperCAmelCase_ ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCAmelCase_ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase : int = VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[str] = self.dummy_unet lowerCamelCase : int = self.dummy_movq lowerCamelCase : Any = DDIMScheduler( num_train_timesteps=1000, beta_schedule='linear', beta_start=0.0_0085, beta_end=0.012, clip_sample=A, set_alpha_to_one=A, steps_offset=1, prediction_type='epsilon', thresholding=A, ) lowerCamelCase : Optional[int] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def UpperCAmelCase_ ( self, A, A=0 ): """simple docstring""" lowerCamelCase : Tuple = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(A ) ).to(A ) lowerCamelCase : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( A ) if str(A ).startswith('mps' ): lowerCamelCase : str = torch.manual_seed(A ) else: lowerCamelCase : int = torch.Generator(device=A ).manual_seed(A ) lowerCamelCase : Dict = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[str] = 'cpu' lowerCamelCase : List[Any] = self.get_dummy_components() lowerCamelCase : List[str] = self.pipeline_class(**A ) lowerCamelCase : Optional[Any] = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) lowerCamelCase : Tuple = pipe(**self.get_dummy_inputs(A ) ) lowerCamelCase : str = output.images lowerCamelCase : List[str] = pipe( **self.get_dummy_inputs(A ), return_dict=A, )[0] lowerCamelCase : Any = image[0, -3:, -3:, -1] lowerCamelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase : int = np.array( [0.623_7976, 1.0, 0.3644_1332, 1.0, 0.7063_9634, 0.2987_7186, 0.8565_2125, 0.521_6843, 0.5445_4046] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class __snake_case ( unittest.TestCase): def UpperCAmelCase_ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy' ) lowerCamelCase : List[str] = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior', torch_dtype=torch.floataa ) pipe_prior.to(A ) lowerCamelCase : Optional[int] = KandinskyVaaPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder', torch_dtype=torch.floataa ) lowerCamelCase : Tuple = pipeline.to(A ) pipeline.set_progress_bar_config(disable=A ) lowerCamelCase : Dict = 'red cat, 4k photo' lowerCamelCase : Optional[int] = torch.Generator(device='cuda' ).manual_seed(0 ) lowerCamelCase , lowerCamelCase : Union[str, Any] = pipe_prior( A, generator=A, num_inference_steps=5, negative_prompt='', ).to_tuple() lowerCamelCase : Tuple = torch.Generator(device='cuda' ).manual_seed(0 ) lowerCamelCase : List[str] = pipeline( image_embeds=A, negative_image_embeds=A, generator=A, num_inference_steps=100, output_type='np', ) lowerCamelCase : Dict = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(A, A )
320
1
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( UpperCAmelCase_ , unittest.TestCase ): _UpperCamelCase : str = RobertaTokenizer _UpperCamelCase : Optional[Any] = RobertaTokenizerFast _UpperCamelCase : Union[str, Any] = True _UpperCamelCase : List[Any] = {"cls_token": "<s>"} def __A ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase : List[str] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _lowerCAmelCase : List[str] = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) _lowerCAmelCase : Any = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowerCAmelCase : Optional[int] = {"""unk_token""": """<unk>"""} _lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowercase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_lowercase ) ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowercase ) def __A ( self , **a__ ): kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **_lowercase ) def __A ( self , a__ ): _lowerCAmelCase : List[str] = """lower newer""" _lowerCAmelCase : int = """lower newer""" return input_text, output_text def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCAmelCase : str = """lower newer""" _lowerCAmelCase : Tuple = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _lowerCAmelCase : Dict = tokenizer.tokenize(_lowercase ) # , add_prefix_space=True) self.assertListEqual(_lowercase , _lowercase ) _lowerCAmelCase : List[str] = tokens + [tokenizer.unk_token] _lowerCAmelCase : int = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def __A ( self ): _lowerCAmelCase : str = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=_lowercase ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=_lowercase ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def __A ( self ): _lowerCAmelCase : str = self.tokenizer_class.from_pretrained("""roberta-base""" ) _lowerCAmelCase : str = tokenizer.encode("""sequence builders""" , add_special_tokens=_lowercase ) _lowerCAmelCase : List[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_lowercase ) _lowerCAmelCase : str = tokenizer.encode( """sequence builders""" , add_special_tokens=_lowercase , add_prefix_space=_lowercase ) _lowerCAmelCase : Optional[Any] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=_lowercase , add_prefix_space=_lowercase ) _lowerCAmelCase : Tuple = tokenizer.build_inputs_with_special_tokens(_lowercase ) _lowerCAmelCase : List[Any] = tokenizer.build_inputs_with_special_tokens(_lowercase , _lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __A ( self ): _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : List[Any] = """Encode this sequence.""" _lowerCAmelCase : Dict = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments _lowerCAmelCase : int = tokenizer.encode(_lowercase , add_special_tokens=_lowercase , add_prefix_space=_lowercase ) _lowerCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_lowercase , _lowercase ) _lowerCAmelCase : List[str] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase , add_prefix_space=_lowercase ) _lowerCAmelCase : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_lowercase , _lowercase ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) _lowerCAmelCase : List[str] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) _lowerCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_lowercase , _lowercase ) # Testing spaces after special tokens _lowerCAmelCase : Tuple = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase )} ) # mask token has a left space _lowerCAmelCase : int = tokenizer.convert_tokens_to_ids(_lowercase ) _lowerCAmelCase : Union[str, Any] = """Encode <mask> sequence""" _lowerCAmelCase : List[str] = """Encode <mask>sequence""" _lowerCAmelCase : int = tokenizer.encode(_lowercase ) _lowerCAmelCase : int = encoded.index(_lowercase ) _lowerCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_lowercase , _lowercase ) _lowerCAmelCase : Any = tokenizer.encode(_lowercase ) _lowerCAmelCase : Optional[int] = encoded.index(_lowercase ) _lowerCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_lowercase , _lowercase ) def __A ( self ): pass def __A ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) _lowerCAmelCase : Dict = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase ) _lowerCAmelCase : str = """A, <mask> AllenNLP sentence.""" _lowerCAmelCase : Optional[Any] = tokenizer_r.encode_plus(_lowercase , add_special_tokens=_lowercase , return_token_type_ids=_lowercase ) _lowerCAmelCase : Optional[int] = tokenizer_p.encode_plus(_lowercase , add_special_tokens=_lowercase , return_token_type_ids=_lowercase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) _lowerCAmelCase : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) _lowerCAmelCase : Optional[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( _lowercase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( _lowercase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def __A ( self ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _lowerCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase ) _lowerCAmelCase : List[Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _lowerCAmelCase : List[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , _lowercase ) self.assertEqual(post_processor_state["""add_prefix_space"""] , _lowercase ) self.assertEqual(post_processor_state["""trim_offsets"""] , _lowercase ) def __A ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase : int = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` _lowerCAmelCase : Dict = F"{text_of_1_token} {text_of_1_token}" _lowerCAmelCase : int = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase ) _lowerCAmelCase : str = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowercase ) + 1, len(_lowercase ) + 1 + len(_lowercase )) , ) _lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase ) _lowerCAmelCase : Tuple = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowercase ) + 1, len(_lowercase ) + 1 + len(_lowercase )) , ) _lowerCAmelCase : int = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase ) _lowerCAmelCase : Dict = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowercase ), len(_lowercase ) + 1 + len(_lowercase )) , ) _lowerCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase ) _lowerCAmelCase : Optional[Any] = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowercase ), len(_lowercase ) + 1 + len(_lowercase )) , ) _lowerCAmelCase : List[Any] = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _lowerCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase ) _lowerCAmelCase : Dict = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_lowercase ) + 1, 1 + len(_lowercase ) + 1 + len(_lowercase )) , ) _lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase ) _lowerCAmelCase : Any = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_lowercase ), 1 + len(_lowercase ) + 1 + len(_lowercase )) , ) _lowerCAmelCase : int = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase ) _lowerCAmelCase : List[str] = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_lowercase ), 1 + len(_lowercase ) + 1 + len(_lowercase )) , )
703
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _a : int = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Dict ,_lowerCamelCase : Dict=8 ) -> Any: _lowerCAmelCase : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCAmelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Any=512 ,_lowerCamelCase : Dict=512 ) -> List[Any]: _lowerCAmelCase : Any = pil_image.resize((w, h) ,resample=Image.BICUBIC ,reducing_gap=1 ) _lowerCAmelCase : Dict = np.array(pil_image.convert("""RGB""" ) ) _lowerCAmelCase : List[str] = arr.astype(np.floataa ) / 1_27.5 - 1 _lowerCAmelCase : int = np.transpose(_lowerCamelCase ,[2, 0, 1] ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) return image class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ , a__ , ): super().__init__() self.register_modules( unet=a__ , scheduler=a__ , movq=a__ , ) _lowerCAmelCase : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __A ( self , a__ , a__ , a__ ): # get the original timestep using init_timestep _lowerCAmelCase : Optional[Any] = min(int(num_inference_steps * strength ) , a__ ) _lowerCAmelCase : List[Any] = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase : Dict = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__=None ): if not isinstance(a__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a__ )}" ) _lowerCAmelCase : Union[str, Any] = image.to(device=a__ , dtype=a__ ) _lowerCAmelCase : int = batch_size * num_images_per_prompt if image.shape[1] == 4: _lowerCAmelCase : int = image else: if isinstance(a__ , a__ ) and len(a__ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(a__ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(a__ , a__ ): _lowerCAmelCase : Optional[int] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a__ ) ] _lowerCAmelCase : Optional[int] = torch.cat(a__ , dim=0 ) else: _lowerCAmelCase : List[Any] = self.movq.encode(a__ ).latent_dist.sample(a__ ) _lowerCAmelCase : Dict = self.movq.config.scaling_factor * init_latents _lowerCAmelCase : str = torch.cat([init_latents] , dim=0 ) _lowerCAmelCase : Dict = init_latents.shape _lowerCAmelCase : str = randn_tensor(a__ , generator=a__ , device=a__ , dtype=a__ ) # get latents _lowerCAmelCase : Optional[Any] = self.scheduler.add_noise(a__ , a__ , a__ ) _lowerCAmelCase : int = init_latents return latents def __A ( self , a__=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _lowerCAmelCase : str = torch.device(F"cuda:{gpu_id}" ) _lowerCAmelCase : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a__ , a__ ) def __A ( self , a__=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) _lowerCAmelCase : Optional[int] = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=a__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCAmelCase : List[str] = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCAmelCase , _lowerCAmelCase : str = cpu_offload_with_hook(a__ , a__ , prev_module_hook=a__ ) # We'll offload the last model manually. _lowerCAmelCase : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __A ( self ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(a__ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a__ ) def __call__( self , a__ , a__ , a__ , a__ = 512 , a__ = 512 , a__ = 100 , a__ = 4.0 , a__ = 0.3 , a__ = 1 , a__ = None , a__ = "pil" , a__ = True , ): _lowerCAmelCase : Dict = self._execution_device _lowerCAmelCase : Optional[Any] = guidance_scale > 1.0 if isinstance(a__ , a__ ): _lowerCAmelCase : Dict = torch.cat(a__ , dim=0 ) _lowerCAmelCase : Dict = image_embeds.shape[0] if isinstance(a__ , a__ ): _lowerCAmelCase : List[Any] = torch.cat(a__ , dim=0 ) if do_classifier_free_guidance: _lowerCAmelCase : int = image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Any = negative_image_embeds.repeat_interleave(a__ , dim=0 ) _lowerCAmelCase : Optional[int] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a__ ) if not isinstance(a__ , a__ ): _lowerCAmelCase : Any = [image] if not all(isinstance(a__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"Input is in incorrect format: {[type(a__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) _lowerCAmelCase : Tuple = torch.cat([prepare_image(a__ , a__ , a__ ) for i in image] , dim=0 ) _lowerCAmelCase : Union[str, Any] = image.to(dtype=image_embeds.dtype , device=a__ ) _lowerCAmelCase : Union[str, Any] = self.movq.encode(a__ )["""latents"""] _lowerCAmelCase : Tuple = latents.repeat_interleave(a__ , dim=0 ) self.scheduler.set_timesteps(a__ , device=a__ ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.get_timesteps(a__ , a__ , a__ ) _lowerCAmelCase : Union[str, Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _lowerCAmelCase , _lowerCAmelCase : Dict = downscale_height_and_width(a__ , a__ , self.movq_scale_factor ) _lowerCAmelCase : List[str] = self.prepare_latents( a__ , a__ , a__ , a__ , image_embeds.dtype , a__ , a__ ) for i, t in enumerate(self.progress_bar(a__ ) ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase : int = {"""image_embeds""": image_embeds} _lowerCAmelCase : List[str] = self.unet( sample=a__ , timestep=a__ , encoder_hidden_states=a__ , added_cond_kwargs=a__ , return_dict=a__ , )[0] if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = noise_pred.chunk(2 ) _lowerCAmelCase , _lowerCAmelCase : Tuple = variance_pred.chunk(2 ) _lowerCAmelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCAmelCase : List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCAmelCase , _lowerCAmelCase : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : List[str] = self.scheduler.step( a__ , a__ , a__ , generator=a__ , )[0] # post-processing _lowerCAmelCase : int = self.movq.decode(a__ , force_not_quantize=a__ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: _lowerCAmelCase : List[Any] = image * 0.5 + 0.5 _lowerCAmelCase : Any = image.clamp(0 , 1 ) _lowerCAmelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowerCAmelCase : List[str] = self.numpy_to_pil(a__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a__ )
663
0
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers UpperCamelCase__ = float('nan') class A : def __init__(self : str , __UpperCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = sys.stdout UpperCAmelCase__ = open(__UpperCAmelCase , "a" ) def __getattr__(self : str , __UpperCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" return getattr(self.stdout , __UpperCAmelCase ) def lowercase_ (self : List[Any] , __UpperCAmelCase : int ) -> Dict: """simple docstring""" self.stdout.write(__UpperCAmelCase ) # strip tqdm codes self.file.write(re.sub(r"^.*\r" , "" , __UpperCAmelCase , 0 , re.M ) ) def lowerCAmelCase_ ( __A=80, __A=False ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ = [] # deal with critical env vars UpperCAmelCase__ = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: UpperCAmelCase__ = os.environ.get(__A, __A ) if val is not None: cmd.append(f"""{key}={val}""" ) # python executable (not always needed if the script is executable) UpperCAmelCase__ = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(__A ) # now the normal args cmd += list(map(shlex.quote, sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes UpperCAmelCase__ = [] UpperCAmelCase__ = "" while len(__A ) > 0: current_line += f"""{cmd.pop(0 )} """ if len(__A ) == 0 or len(__A ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(__A ) UpperCAmelCase__ = "" return "\\\n".join(__A ) def lowerCAmelCase_ ( __A, __A ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ = re.sub(r"[\\\n]+", " ", args.base_cmd ) # remove --output_dir if any and set our own UpperCAmelCase__ = re.sub("--output_dir\s+[^\s]+", "", args.base_cmd ) args.base_cmd += f""" --output_dir {output_dir}""" # ensure we have --overwrite_output_dir UpperCAmelCase__ = re.sub("--overwrite_output_dir\s+", "", args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def lowerCAmelCase_ ( __A, __A, __A, __A, __A, __A, __A ) -> List[Any]: '''simple docstring''' if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0, 100 ) for k in metric_keys}, **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.22222222] )}, ) UpperCAmelCase__ = subprocess.run(__A, capture_output=__A, text=__A ) if verbose: print("STDOUT", result.stdout ) print("STDERR", result.stderr ) # save the streams UpperCAmelCase__ = variation.replace(" ", "-" ) with open(Path(__A ) / f"""log.{prefix}.stdout.txt""", "w" ) as f: f.write(result.stdout ) with open(Path(__A ) / f"""log.{prefix}.stderr.txt""", "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(f"""{output_dir}/all_results.json""", "r", encoding="utf-8" ) as f: UpperCAmelCase__ = json.load(__A ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def lowerCAmelCase_ ( __A, __A, __A, __A, __A, __A, __A, __A, __A, __A, ) -> int: '''simple docstring''' UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = f"""{id}: {variation:<{longest_variation_len}}""" UpperCAmelCase__ = f"""{preamble}: """ UpperCAmelCase__ = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(__A ), desc=__A, leave=__A ): UpperCAmelCase__ = process_run_single( __A, __A, __A, __A, __A, __A, __A ) UpperCAmelCase__ = single_run_metrics[target_metric_key] if not math.isnan(__A ): metrics.append(__A ) results.append(__A ) outcome += "✓" else: outcome += "✘" UpperCAmelCase__ = f"""\33[2K\r{outcome}""" if len(__A ) > 0: UpperCAmelCase__ = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} UpperCAmelCase__ = round(mean_metrics[target_metric_key], 2 ) UpperCAmelCase__ = f"""{outcome} {mean_target}""" if len(__A ) > 1: results_str += f""" {tuple(round(__A, 2 ) for x in results )}""" print(__A ) UpperCAmelCase__ = variation return mean_metrics else: print(__A ) return {variation_key: variation, target_metric_key: nan} def lowerCAmelCase_ ( ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ = torch.cuda.get_device_properties(torch.device("cuda" ) ) return f""" Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB """ def lowerCAmelCase_ ( __A, __A, __A, __A, __A ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = pd.DataFrame(__A ) UpperCAmelCase__ = "variation" UpperCAmelCase__ = "diff_%" UpperCAmelCase__ = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan UpperCAmelCase__ = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(__A ): # as a fallback, use the minimal value as the sentinel UpperCAmelCase__ = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(__A ): UpperCAmelCase__ = df.apply( lambda __A : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0, axis="columns", ) # re-order columns UpperCAmelCase__ = [variation_key, target_metric_key, diff_key, *report_metric_keys] UpperCAmelCase__ = df.reindex(__A, axis="columns" ) # reorder cols # capitalize UpperCAmelCase__ = df.rename(str.capitalize, axis="columns" ) # make the cols as narrow as possible UpperCAmelCase__ = df.rename(lambda __A : c.replace("_", "<br>" ), axis="columns" ) UpperCAmelCase__ = df.rename(lambda __A : c.replace("_", "\n" ), axis="columns" ) UpperCAmelCase__ = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=__A, floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=__A, floatfmt=".2f" )] print("\n\n".join(__A ) ) def lowerCAmelCase_ ( ) -> int: '''simple docstring''' UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument( "--base-cmd", default=__A, type=__A, required=__A, help="Base cmd", ) parser.add_argument( "--variations", default=__A, type=__A, nargs="+", required=__A, help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'", ) parser.add_argument( "--base-variation", default=__A, type=__A, help="Baseline variation to compare to. if None the minimal target value will be used to compare against", ) parser.add_argument( "--target-metric-key", default=__A, type=__A, required=__A, help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second", ) parser.add_argument( "--report-metric-keys", default="", type=__A, help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples", ) parser.add_argument( "--repeat-times", default=1, type=__A, help="How many times to re-run each variation - an average will be reported", ) parser.add_argument( "--output_dir", default="output_benchmark", type=__A, help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked", ) parser.add_argument( "--verbose", default=__A, action="store_true", help="Whether to show the outputs of each run or just the benchmark progress", ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = args.output_dir Path(__A ).mkdir(exist_ok=__A ) UpperCAmelCase__ = get_base_command(__A, __A ) # split each dimension into its --foo variations UpperCAmelCase__ = [list(map(str.strip, re.split(r"\|", __A ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty UpperCAmelCase__ = list(map(str.strip, map(" ".join, itertools.product(*__A ) ) ) ) UpperCAmelCase__ = max(len(__A ) for x in variations ) # split wanted keys UpperCAmelCase__ = args.report_metric_keys.split() # capture prints into a log file for convenience UpperCAmelCase__ = f"""benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt""" print(f"""\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt""" ) print(f"""and this script's output is also piped into {report_fn}""" ) UpperCAmelCase__ = Tee(__A ) print(f"""\n*** Running {len(__A )} benchmarks:""" ) print(f"""Base command: {" ".join(__A )}""" ) UpperCAmelCase__ = "variation" UpperCAmelCase__ = [] for id, variation in enumerate(tqdm(__A, desc="Total completion: ", leave=__A ) ): UpperCAmelCase__ = base_cmd + variation.split() results.append( process_run( id + 1, __A, __A, __A, __A, args.target_metric_key, __A, args.repeat_times, __A, args.verbose, ) ) process_results(__A, args.target_metric_key, __A, args.base_variation, __A ) if __name__ == "__main__": main()
486
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/config.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/config.json' # See all FNet models at https://huggingface.co/models?filter=fnet } class A ( UpperCAmelCase_ ): __UpperCAmelCase : Optional[Any] = 'fnet' def __init__(self : List[str] , __UpperCAmelCase : Optional[Any]=3_2_0_0_0 , __UpperCAmelCase : List[Any]=7_6_8 , __UpperCAmelCase : Optional[Any]=1_2 , __UpperCAmelCase : Optional[int]=3_0_7_2 , __UpperCAmelCase : Tuple="gelu_new" , __UpperCAmelCase : str=0.1 , __UpperCAmelCase : str=5_1_2 , __UpperCAmelCase : Any=4 , __UpperCAmelCase : Optional[int]=0.02 , __UpperCAmelCase : Optional[int]=1E-12 , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : int=5_1_2 , __UpperCAmelCase : int=3 , __UpperCAmelCase : Any=1 , __UpperCAmelCase : Union[str, Any]=2 , **__UpperCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = initializer_range UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = use_tpu_fourier_optimizations UpperCAmelCase__ = tpu_short_seq_length
486
1
from ...configuration_utils import PretrainedConfig class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Dict = 'bert-generation' def __init__( self , lowerCAmelCase=5_0358 , lowerCAmelCase=1024 , lowerCAmelCase=24 , lowerCAmelCase=16 , lowerCAmelCase=4096 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=512 , lowerCAmelCase=0.02 , lowerCAmelCase=1e-1_2 , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase=1 , lowerCAmelCase="absolute" , lowerCAmelCase=True , **lowerCAmelCase , ): super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache
23
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: # Initialise PyTorch model UpperCAmelCase_ = MobileBertConfig.from_json_file(__SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase_ = MobileBertForPreTraining(__SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint UpperCAmelCase_ = load_tf_weights_in_mobilebert(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
23
1
"""simple docstring""" from math import sqrt def lowercase ( lowerCAmelCase__ : int ) -> Any: assert isinstance(snake_case__ , snake_case__ ) and ( number >= 0 ), "'number' must been an int and positive" __a = True # 0 and 1 are none primes. if number <= 1: __a = False for divisor in range(2 , int(round(sqrt(snake_case__ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __a = False break # precondition assert isinstance(snake_case__ , snake_case__ ), "'status' must been from type bool" return status def lowercase ( lowerCAmelCase__ : List[str] ) -> List[str]: assert isinstance(snake_case__ , snake_case__ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __a = list(range(2 , n + 1 ) ) __a = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(snake_case__ ) ): for j in range(i + 1 , len(snake_case__ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __a = 0 # filters actual prime numbers. __a = [x for x in begin_list if x != 0] # precondition assert isinstance(snake_case__ , snake_case__ ), "'ans' must been from type list" return ans def lowercase ( lowerCAmelCase__ : int ) -> Any: assert isinstance(snake_case__ , snake_case__ ) and (n > 2), "'N' must been an int and > 2" __a = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(snake_case__ ): ans.append(snake_case__ ) # precondition assert isinstance(snake_case__ , snake_case__ ), "'ans' must been from type list" return ans def lowercase ( lowerCAmelCase__ : str ) -> Any: assert isinstance(snake_case__ , snake_case__ ) and number >= 0, "'number' must been an int and >= 0" __a = [] # this list will be returns of the function. # potential prime number factors. __a = 2 __a = number if number == 0 or number == 1: ans.append(snake_case__ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(snake_case__ ): while quotient != 1: if is_prime(snake_case__ ) and (quotient % factor == 0): ans.append(snake_case__ ) quotient /= factor else: factor += 1 else: ans.append(snake_case__ ) # precondition assert isinstance(snake_case__ , snake_case__ ), "'ans' must been from type list" return ans def lowercase ( lowerCAmelCase__ : str ) -> str: assert isinstance(snake_case__ , snake_case__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __a = 0 # prime factorization of 'number' __a = prime_factorization(snake_case__ ) __a = max(snake_case__ ) # precondition assert isinstance(snake_case__ , snake_case__ ), "'ans' must been from type int" return ans def lowercase ( lowerCAmelCase__ : Tuple ) -> List[str]: assert isinstance(snake_case__ , snake_case__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __a = 0 # prime factorization of 'number' __a = prime_factorization(snake_case__ ) __a = min(snake_case__ ) # precondition assert isinstance(snake_case__ , snake_case__ ), "'ans' must been from type int" return ans def lowercase ( lowerCAmelCase__ : Any ) -> List[str]: assert isinstance(snake_case__ , snake_case__ ), "'number' must been an int" assert isinstance(number % 2 == 0 , snake_case__ ), "compare bust been from type bool" return number % 2 == 0 def lowercase ( lowerCAmelCase__ : List[str] ) -> List[str]: assert isinstance(snake_case__ , snake_case__ ), "'number' must been an int" assert isinstance(number % 2 != 0 , snake_case__ ), "compare bust been from type bool" return number % 2 != 0 def lowercase ( lowerCAmelCase__ : int ) -> Tuple: assert ( isinstance(snake_case__ , snake_case__ ) and (number > 2) and is_even(snake_case__ ) ), "'number' must been an int, even and > 2" __a = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __a = get_prime_numbers(snake_case__ ) __a = len(snake_case__ ) # run variable for while-loops. __a = 0 __a = None # exit variable. for break up the loops __a = True while i < len_pn and loop: __a = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __a = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(snake_case__ , snake_case__ ) and (len(snake_case__ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any] ) -> List[Any]: assert ( isinstance(snake_case__ , snake_case__ ) and isinstance(snake_case__ , snake_case__ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __a = 0 while numbera != 0: __a = numbera % numbera __a = numbera __a = rest # precondition assert isinstance(snake_case__ , snake_case__ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str] ) -> Union[str, Any]: assert ( isinstance(snake_case__ , snake_case__ ) and isinstance(snake_case__ , snake_case__ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __a = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __a = prime_factorization(snake_case__ ) __a = prime_factorization(snake_case__ ) elif numbera == 1 or numbera == 1: __a = [] __a = [] __a = max(snake_case__ , snake_case__ ) __a = 0 __a = 0 __a = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __a = prime_fac_a.count(snake_case__ ) __a = prime_fac_a.count(snake_case__ ) for _ in range(max(snake_case__ , snake_case__ ) ): ans *= n else: __a = prime_fac_a.count(snake_case__ ) for _ in range(snake_case__ ): ans *= n done.append(snake_case__ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __a = prime_fac_a.count(snake_case__ ) for _ in range(snake_case__ ): ans *= n done.append(snake_case__ ) # precondition assert isinstance(snake_case__ , snake_case__ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowercase ( lowerCAmelCase__ : int ) -> Tuple: assert isinstance(snake_case__ , snake_case__ ) and (n >= 0), "'number' must been a positive int" __a = 0 __a = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(snake_case__ ): ans += 1 # precondition assert isinstance(snake_case__ , snake_case__ ) and is_prime( snake_case__ ), "'ans' must been a prime number and from type int" return ans def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : Any ) -> Dict: assert ( is_prime(snake_case__ ) and is_prime(snake_case__ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __a = p_number_a + 1 # jump to the next number __a = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(snake_case__ ): number += 1 while number < p_number_a: ans.append(snake_case__ ) number += 1 # fetch the next prime number. while not is_prime(snake_case__ ): number += 1 # precondition assert ( isinstance(snake_case__ , snake_case__ ) and ans[0] != p_number_a and ans[len(snake_case__ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowercase ( lowerCAmelCase__ : int ) -> Any: assert isinstance(snake_case__ , snake_case__ ) and (n >= 1), "'n' must been int and >= 1" __a = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(snake_case__ ) # precondition assert ans[0] == 1 and ans[len(snake_case__ ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowercase ( lowerCAmelCase__ : Tuple ) -> int: assert isinstance(snake_case__ , snake_case__ ) and ( number > 1 ), "'number' must been an int and >= 1" __a = get_divisors(snake_case__ ) # precondition assert ( isinstance(snake_case__ , snake_case__ ) and (divisors[0] == 1) and (divisors[len(snake_case__ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] ) -> str: assert ( isinstance(snake_case__ , snake_case__ ) and isinstance(snake_case__ , snake_case__ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __a = gcd(abs(snake_case__ ) , abs(snake_case__ ) ) # precondition assert ( isinstance(snake_case__ , snake_case__ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowercase ( lowerCAmelCase__ : Any ) -> Union[str, Any]: assert isinstance(snake_case__ , snake_case__ ) and (n >= 0), "'n' must been a int and >= 0" __a = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def lowercase ( lowerCAmelCase__ : List[str] ) -> Tuple: assert isinstance(snake_case__ , snake_case__ ) and (n >= 0), "'n' must been an int and >= 0" __a = 0 __a = 1 __a = 1 # this will be return for _ in range(n - 1 ): __a = ans ans += fiba __a = tmp return ans
695
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { '''configuration_xlm_roberta_xl''': [ '''XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaXLConfig''', '''XLMRobertaXLOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaXLForCausalLM''', '''XLMRobertaXLForMaskedLM''', '''XLMRobertaXLForMultipleChoice''', '''XLMRobertaXLForQuestionAnswering''', '''XLMRobertaXLForSequenceClassification''', '''XLMRobertaXLForTokenClassification''', '''XLMRobertaXLModel''', '''XLMRobertaXLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
91
0
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __lowerCAmelCase ( A , A , A ): @register_to_config def __init__( self : Optional[int] , A : int , A : int , A : int , A : float , A : int , A : int , A : int , A : int , A : str , A : bool = False , ) -> List[str]: """simple docstring""" super().__init__() _UpperCAmelCase = nn.Embedding(A , A) _UpperCAmelCase = nn.Embedding(A , A) _UpperCAmelCase = False _UpperCAmelCase = nn.Dropout(p=A) _UpperCAmelCase = TaConfig( vocab_size=A , d_model=A , num_heads=A , d_kv=A , d_ff=A , dropout_rate=A , feed_forward_proj=A , is_decoder=A , is_encoder_decoder=A , ) _UpperCAmelCase = nn.ModuleList() for lyr_num in range(A): _UpperCAmelCase = TaBlock(A) self.encoders.append(A) _UpperCAmelCase = TaLayerNorm(A) _UpperCAmelCase = nn.Dropout(p=A) def _lowerCamelCase ( self : Dict , A : List[Any] , A : List[str]) -> Any: """simple docstring""" _UpperCAmelCase = self.token_embedder(A) _UpperCAmelCase = encoder_input_tokens.shape[1] _UpperCAmelCase = torch.arange(A , device=encoder_input_tokens.device) x += self.position_encoding(A) _UpperCAmelCase = self.dropout_pre(A) # inverted the attention mask _UpperCAmelCase = encoder_input_tokens.size() _UpperCAmelCase = self.get_extended_attention_mask(A , A) for lyr in self.encoders: _UpperCAmelCase = lyr(A , A)[0] _UpperCAmelCase = self.layer_norm(A) return self.dropout_post(A), encoder_inputs_mask
639
import unittest from knapsack import knapsack as k class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any]) -> Any: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = [0] _UpperCAmelCase = [0] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) _UpperCAmelCase = [60] _UpperCAmelCase = [10] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 0) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" _UpperCAmelCase = 3 _UpperCAmelCase = [1, 2, 3] _UpperCAmelCase = [3, 2, 1] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 5) def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = 50 _UpperCAmelCase = [60, 1_00, 1_20] _UpperCAmelCase = [10, 20, 30] _UpperCAmelCase = len(A) self.assertEqual(k.knapsack(A , A , A , A) , 2_20) if __name__ == "__main__": unittest.main()
639
1