code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from ....configuration_utils import PretrainedConfig from ....utils import logging SCREAMING_SNAKE_CASE :Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Any = { 'Visual-Attention-Network/van-base': ( 'https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json' ), } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "van" def __init__( self : int ,A : str=2_24 ,A : int=3 ,A : Optional[Any]=[7, 3, 3, 3] ,A : Tuple=[4, 2, 2, 2] ,A : Union[str, Any]=[64, 1_28, 3_20, 5_12] ,A : Optional[int]=[3, 3, 12, 3] ,A : Optional[int]=[8, 8, 4, 4] ,A : Any="gelu" ,A : Union[str, Any]=0.02 ,A : Union[str, Any]=1E-6 ,A : Dict=1E-2 ,A : str=0.0 ,A : Optional[int]=0.0 ,**A : List[Any] ,): super().__init__(**A ) __A = image_size __A = num_channels __A = patch_sizes __A = strides __A = hidden_sizes __A = depths __A = mlp_ratios __A = hidden_act __A = initializer_range __A = layer_norm_eps __A = layer_scale_init_value __A = drop_path_rate __A = dropout_rate
55
import requests SCREAMING_SNAKE_CASE :List[str] = 'YOUR API KEY' def UpperCAmelCase ( a_ , a_ = giphy_api_key ) -> list: """simple docstring""" __A = "+".join(query.split() ) __A = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' __A = requests.get(a_ ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
55
1
'''simple docstring''' import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" snake_case__ : Optional[Any] = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(UpperCAmelCase , UpperCAmelCase ) def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" snake_case__ , snake_case__ : List[Any] = emb.weight.shape snake_case__ : Union[str, Any] = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) snake_case__ : str = emb.weight.data return lin_layer def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" snake_case__ : int = torch.load(UpperCAmelCase , map_location="""cpu""" ) snake_case__ : str = Namespace(**checkpoint["""cfg"""]["""model"""] ) snake_case__ : Union[str, Any] = checkpoint["""model"""] remove_ignore_keys_(UpperCAmelCase ) snake_case__ : Dict = state_dict["""decoder.embed_tokens.weight"""].shape[0] snake_case__ : str = {key.replace("""decoder""" , """model""" ): val for key, val in state_dict.items()} snake_case__ : Any = XGLMConfig( vocab_size=UpperCAmelCase , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""gelu""" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) snake_case__ : List[str] = XGLMForCausalLM(UpperCAmelCase ) snake_case__ : Optional[int] = model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) print(UpperCAmelCase ) snake_case__ : Any = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
172
'''simple docstring''' def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase ): """simple docstring""" return abs(UpperCAmelCase ) if a == 0 else greatest_common_divisor(b % a , UpperCAmelCase ) def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase ): """simple docstring""" while y: # --> when y=0 then loop will terminate and return x as final GCD. snake_case__ , snake_case__ : Tuple = y, x % y return abs(UpperCAmelCase ) def lowerCAmelCase__ ( ): """simple docstring""" try: snake_case__ : Optional[Any] = input("""Enter two integers separated by comma (,): """ ).split(""",""" ) snake_case__ : Optional[int] = int(nums[0] ) snake_case__ : Optional[int] = int(nums[1] ) print( f"""greatest_common_divisor({num_a}, {num_a}) = """ f"""{greatest_common_divisor(UpperCAmelCase , UpperCAmelCase )}""" ) print(f"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(UpperCAmelCase , UpperCAmelCase )}""" ) except (IndexError, UnboundLocalError, ValueError): print("""Wrong input""" ) if __name__ == "__main__": main()
172
1
'''simple docstring''' from __future__ import annotations import requests def __lowercase ( __lowercase ) -> dict: '''simple docstring''' _A = F'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(__lowercase ).json() def __lowercase ( __lowercase = 10 ) -> list[dict]: '''simple docstring''' _A = "https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty" _A = requests.get(__lowercase ).json()[:max_stories] return [get_hackernews_story(__lowercase ) for story_id in story_ids] def __lowercase ( __lowercase = 10 ) -> str: '''simple docstring''' _A = hackernews_top_stories(__lowercase ) return "\n".join("* [{title}]({url})".format(**__lowercase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
330
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class _UpperCAmelCase : """simple docstring""" def __init__( self : str , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any]=13 , __UpperCAmelCase : Optional[Any]=7 , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Union[str, Any]=False , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : List[Any]=19 , __UpperCAmelCase : str=32 , __UpperCAmelCase : Tuple=5 , __UpperCAmelCase : Tuple=4 , __UpperCAmelCase : Dict=37 , __UpperCAmelCase : Optional[int]="gelu" , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : Union[str, Any]=512 , __UpperCAmelCase : List[str]=16 , __UpperCAmelCase : Dict=2 , __UpperCAmelCase : Tuple=0.02 , __UpperCAmelCase : int=3 , __UpperCAmelCase : Optional[int]=4 , __UpperCAmelCase : Tuple=None , ): '''simple docstring''' _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = scope def lowerCAmelCase ( self : Dict ): '''simple docstring''' _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : int ): '''simple docstring''' _A = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=__UpperCAmelCase , esmfold_config={"trunk": {"num_blocks": 2}, "fp16_esm": False} , ) return config def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int ): '''simple docstring''' _A = EsmForProteinFolding(config=__UpperCAmelCase ).float() model.to(__UpperCAmelCase ) model.eval() _A = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) _A = model(__UpperCAmelCase ) _A = model(__UpperCAmelCase ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) = config_and_inputs _A = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" snake_case = False snake_case = (EsmForProteinFolding,) if is_torch_available() else () snake_case = () snake_case = {} if is_torch_available() else {} snake_case = False def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = EsmFoldModelTester(self ) _A = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) @unittest.skip("Does not support attention outputs" ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip def lowerCAmelCase ( self : str ): '''simple docstring''' pass @unittest.skip("Esm does not support embedding resizing" ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' pass @unittest.skip("Esm does not support embedding resizing" ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip("ESMFold does not support passing input embeds!" ) def lowerCAmelCase ( self : str ): '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning." ) def lowerCAmelCase ( self : int ): '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning." ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning." ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning." ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning." ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' pass @unittest.skip("ESMFold does not output hidden states in the normal way." ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip("ESMfold does not output hidden states in the normal way." ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' pass @unittest.skip("ESMFold only has one output format." ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' pass @unittest.skip("This test doesn't work for ESMFold and doesn't test core functionality" ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip("ESMFold does not support input chunking." ) def lowerCAmelCase ( self : str ): '''simple docstring''' pass @unittest.skip("ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments." ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' pass @unittest.skip("ESMFold doesn't support data parallel." ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase ( self : str ): '''simple docstring''' pass @require_torch class _UpperCAmelCase ( snake_case_ ): """simple docstring""" @slow def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1" ).float() model.eval() _A = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _A = model(__UpperCAmelCase )["positions"] _A = torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , __UpperCAmelCase , atol=1E-4 ) )
330
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging UpperCamelCase = logging.get_logger(__name__) class _A ( UpperCAmelCase_ ): lowercase_ : Optional[Any] = ['''input_features''', '''is_longer'''] def __init__( self : Dict , lowerCamelCase__ : List[Any]=64 , lowerCamelCase__ : Optional[Any]=4_80_00 , lowerCamelCase__ : str=4_80 , lowerCamelCase__ : Tuple=10 , lowerCamelCase__ : List[Any]=10_24 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : Union[str, Any]=False , lowerCamelCase__ : float = 0 , lowerCamelCase__ : float = 1_40_00 , lowerCamelCase__ : int = None , lowerCamelCase__ : str = "fusion" , lowerCamelCase__ : str = "repeatpad" , **lowerCamelCase__ : Union[str, Any] , ): """simple docstring""" super().__init__( feature_size=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , padding_value=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , **lowerCamelCase__ , ) __UpperCamelCase : List[Any] = top_db __UpperCamelCase : Optional[int] = truncation __UpperCamelCase : List[str] = padding __UpperCamelCase : int = fft_window_size __UpperCamelCase : List[Any] = (fft_window_size >> 1) + 1 __UpperCamelCase : Dict = hop_length __UpperCamelCase : Optional[int] = max_length_s __UpperCamelCase : Optional[int] = max_length_s * sampling_rate __UpperCamelCase : List[Any] = sampling_rate __UpperCamelCase : Union[str, Any] = frequency_min __UpperCamelCase : Union[str, Any] = frequency_max __UpperCamelCase : Optional[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCamelCase__ , min_frequency=lowerCamelCase__ , max_frequency=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , norm=lowerCamelCase__ , mel_scale="""htk""" , ) __UpperCamelCase : Dict = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCamelCase__ , min_frequency=lowerCamelCase__ , max_frequency=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , norm="""slaney""" , mel_scale="""slaney""" , ) def a ( self : int ): """simple docstring""" __UpperCamelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) __UpperCamelCase : Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def a ( self : str , lowerCamelCase__ : np.array , lowerCamelCase__ : Optional[np.array] = None ): """simple docstring""" __UpperCamelCase : Tuple = spectrogram( lowerCamelCase__ , window_function(self.fft_window_size , """hann""" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=lowerCamelCase__ , log_mel="""dB""" , ) return log_mel_spectrogram.T def a ( self : Any , lowerCamelCase__ : str , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[Any] ): """simple docstring""" __UpperCamelCase : int = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk __UpperCamelCase : int = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk __UpperCamelCase : Optional[int] = [0] # randomly choose index for each part __UpperCamelCase : List[str] = np.random.choice(ranges[0] ) __UpperCamelCase : Union[str, Any] = np.random.choice(ranges[1] ) __UpperCamelCase : Optional[Any] = np.random.choice(ranges[2] ) __UpperCamelCase : Dict = mel[idx_front : idx_front + chunk_frames, :] __UpperCamelCase : Union[str, Any] = mel[idx_middle : idx_middle + chunk_frames, :] __UpperCamelCase : Union[str, Any] = mel[idx_back : idx_back + chunk_frames, :] __UpperCamelCase : Union[str, Any] = torch.tensor(mel[None, None, :] ) __UpperCamelCase : Dict = torch.nn.functional.interpolate( lowerCamelCase__ , size=[chunk_frames, 64] , mode="""bilinear""" , align_corners=lowerCamelCase__ ) __UpperCamelCase : int = mel_shrink[0][0].numpy() __UpperCamelCase : int = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def a ( self : Optional[int] , lowerCamelCase__ : np.array , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : str ): """simple docstring""" if waveform.shape[0] > max_length: if truncation == "rand_trunc": __UpperCamelCase : Optional[int] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad __UpperCamelCase : Tuple = len(lowerCamelCase__ ) - max_length __UpperCamelCase : Optional[Any] = np.random.randint(0 , overflow + 1 ) __UpperCamelCase : Optional[Any] = waveform[idx : idx + max_length] __UpperCamelCase : Tuple = self._np_extract_fbank_features(lowerCamelCase__ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": __UpperCamelCase : Optional[Any] = self._np_extract_fbank_features(lowerCamelCase__ , self.mel_filters ) __UpperCamelCase : Optional[Any] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed __UpperCamelCase : List[str] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. __UpperCamelCase : Optional[int] = np.stack([mel, mel, mel, mel] , axis=0 ) __UpperCamelCase : Tuple = False else: __UpperCamelCase : Union[str, Any] = self._random_mel_fusion(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[Any] = True else: raise NotImplementedError(f'data_truncating {truncation} not implemented' ) else: __UpperCamelCase : List[str] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": __UpperCamelCase : List[Any] = int(max_length / len(lowerCamelCase__ ) ) __UpperCamelCase : List[Any] = np.stack(np.tile(lowerCamelCase__ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": __UpperCamelCase : List[Any] = int(max_length / len(lowerCamelCase__ ) ) __UpperCamelCase : Optional[Any] = np.stack(np.tile(lowerCamelCase__ , lowerCamelCase__ ) ) __UpperCamelCase : List[Any] = np.pad(lowerCamelCase__ , (0, max_length - waveform.shape[0]) , mode="""constant""" , constant_values=0 ) if truncation == "fusion": __UpperCamelCase : Any = self._np_extract_fbank_features(lowerCamelCase__ , self.mel_filters ) __UpperCamelCase : Optional[int] = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: __UpperCamelCase : List[Any] = self._np_extract_fbank_features(lowerCamelCase__ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any] , lowerCamelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCamelCase__ : str = None , lowerCamelCase__ : Optional[str] = None , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[Union[str, TensorType]] = None , **lowerCamelCase__ : Optional[Any] , ): """simple docstring""" __UpperCamelCase : str = truncation if truncation is not None else self.truncation __UpperCamelCase : Tuple = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' f' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' f' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) __UpperCamelCase : str = isinstance(lowerCamelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) __UpperCamelCase : Optional[int] = is_batched_numpy or ( isinstance(lowerCamelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __UpperCamelCase : str = [np.asarray(lowerCamelCase__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase__ , np.ndarray ): __UpperCamelCase : str = np.asarray(lowerCamelCase__ , dtype=np.floataa ) elif isinstance(lowerCamelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __UpperCamelCase : str = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __UpperCamelCase : Union[str, Any] = [np.asarray(lowerCamelCase__ )] # convert to mel spectrogram, truncate and pad if needed. __UpperCamelCase : Optional[Any] = [ self._get_input_mel(lowerCamelCase__ , max_length if max_length else self.nb_max_samples , lowerCamelCase__ , lowerCamelCase__ ) for waveform in raw_speech ] __UpperCamelCase : int = [] __UpperCamelCase : Union[str, Any] = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase__ ) is_longer.append(lowerCamelCase__ ) if truncation == "fusion" and sum(lowerCamelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer __UpperCamelCase : List[Any] = np.random.randint(0 , len(lowerCamelCase__ ) ) __UpperCamelCase : int = True if isinstance(input_mel[0] , lowerCamelCase__ ): __UpperCamelCase : Optional[Any] = [np.asarray(lowerCamelCase__ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool __UpperCamelCase : Dict = [[longer] for longer in is_longer] __UpperCamelCase : str = {"""input_features""": input_mel, """is_longer""": is_longer} __UpperCamelCase : Dict = BatchFeature(lowerCamelCase__ ) if return_tensors is not None: __UpperCamelCase : Optional[int] = input_features.convert_to_tensors(lowerCamelCase__ ) return input_features
515
import fire from utils import calculate_rouge, save_json def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any]=None , **__lowerCAmelCase : Union[str, Any] ) -> List[str]: __UpperCamelCase : Any = [x.strip() for x in open(__lowerCAmelCase ).readlines()] __UpperCamelCase : Dict = [x.strip() for x in open(__lowerCAmelCase ).readlines()][: len(__lowerCAmelCase )] __UpperCamelCase : Optional[Any] = calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) if save_path is not None: save_json(__lowerCAmelCase , __lowerCAmelCase , indent=__lowerCAmelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
515
1
'''simple docstring''' import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) __SCREAMING_SNAKE_CASE : Optional[Any] = logging.getLogger() __SCREAMING_SNAKE_CASE : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __lowerCAmelCase ( snake_case__ ): """simple docstring""" def _UpperCAmelCase ( self : Any , lowerCAmelCase : List[str] ): os.makedirs(A__ , exist_ok=A__ ) A_ = {"source": "What is love ?", "target": "life"} A_ = {"train": 12, "val": 2, "test": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: A_ = "\n".join([contents[field]] * n_lines[split] ) with open(os.path.join(A__ , F"{split}.{field}" ) , "w" ) as f: f.write(A__ ) def _UpperCAmelCase ( self : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] = "pytorch" ): A_ = self.get_auto_remove_tmp_dir() A_ = os.path.join(A__ , "output" ) A_ = os.path.join(A__ , "data" ) self._create_dummy_data(data_dir=A__ ) A_ = F"\n --data_dir {data_dir} \\n --output_dir {output_dir} \\n --model_name_or_path facebook/rag-sequence-base \\n --model_type rag_sequence \\n --do_train \\n --do_predict \\n --n_val -1 \\n --val_check_interval 1.0 \\n --train_batch_size 2 \\n --eval_batch_size 1 \\n --max_source_length 25 \\n --max_target_length 25 \\n --val_max_target_length 25 \\n --test_max_target_length 25 \\n --label_smoothing 0.1 \\n --dropout 0.1 \\n --attention_dropout 0.1 \\n --weight_decay 0.001 \\n --adam_epsilon 1e-08 \\n --max_grad_norm 0.1 \\n --lr_scheduler polynomial \\n --learning_rate 3e-04 \\n --num_train_epochs 1 \\n --warmup_steps 4 \\n --gradient_accumulation_steps 1 \\n --distributed-port 8787 \\n --use_dummy_dataset 1 \\n --distributed_retriever {distributed_retriever} \\n ".split() if gpus > 0: testargs.append(F"--gpus={gpus}" ) if is_apex_available(): testargs.append("--fp16" ) else: testargs.append("--gpus=0" ) testargs.append("--distributed_backend=ddp_cpu" ) testargs.append("--num_processes=2" ) A_ = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(A__ , env=self.get_env() ) A_ = os.path.join(A__ , "metrics.json" ) with open(A__ ) as f: A_ = json.load(A__ ) return result @require_torch_gpu def _UpperCAmelCase ( self : List[str] ): A_ = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu def _UpperCAmelCase ( self : Optional[Any] ): A_ = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_gpu @require_ray def _UpperCAmelCase ( self : str ): A_ = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu @require_ray def _UpperCAmelCase ( self : str ): A_ = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
452
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """google/bit-50""": """https://huggingface.co/google/bit-50/resolve/main/config.json""", } class UpperCAmelCase__ ( snake_case__ , snake_case__ ): snake_case_ = '''bit''' snake_case_ = ['''preactivation''', '''bottleneck'''] snake_case_ = ['''SAME''', '''VALID'''] def __init__( self , A__=3 , A__=64 , A__=[256, 512, 1024, 2048] , A__=[3, 4, 6, 3] , A__="preactivation" , A__="relu" , A__=None , A__=32 , A__=0.0 , A__=False , A__=32 , A__=1 , A__=None , A__=None , **A__ , ): """simple docstring""" super().__init__(**A__ ) if layer_type not in self.layer_types: raise ValueError(F"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: UpperCAmelCase_: str = global_padding.upper() else: raise ValueError(F"Padding strategy {global_padding} not supported" ) UpperCAmelCase_: List[Any] = num_channels UpperCAmelCase_: List[Any] = embedding_size UpperCAmelCase_: Union[str, Any] = hidden_sizes UpperCAmelCase_: int = depths UpperCAmelCase_: Tuple = layer_type UpperCAmelCase_: str = hidden_act UpperCAmelCase_: str = global_padding UpperCAmelCase_: Dict = num_groups UpperCAmelCase_: Dict = drop_path_rate UpperCAmelCase_: Tuple = embedding_dynamic_padding UpperCAmelCase_: Tuple = output_stride UpperCAmelCase_: Dict = width_factor UpperCAmelCase_: str = ["stem"] + [F"stage{idx}" for idx in range(1 , len(A__ ) + 1 )] UpperCAmelCase_ , UpperCAmelCase_: Tuple = get_aligned_output_features_output_indices( out_features=A__ , out_indices=A__ , stage_names=self.stage_names )
137
0
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def lowerCamelCase__ ( A : Dict , A : Optional[int] , A : int , A : Optional[int] ): '''simple docstring''' if isinstance(A , A ): UpperCAmelCase = np.full((len(A ), sequence_length, 2) , A ) else: UpperCAmelCase = np.full((len(A ), sequence_length) , A ) for i, tensor in enumerate(A ): if padding_side == "right": if isinstance(A , A ): UpperCAmelCase = tensor[:sequence_length] else: UpperCAmelCase = tensor[:sequence_length] else: if isinstance(A , A ): UpperCAmelCase = tensor[:sequence_length] else: UpperCAmelCase = tensor[:sequence_length] return out_tensor.tolist() def lowerCamelCase__ ( A : Tuple ): '''simple docstring''' UpperCAmelCase = ord(A ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True UpperCAmelCase = unicodedata.category(A ) if cat.startswith('''P''' ): return True return False @dataclass class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : PreTrainedTokenizerBase __magic_name__ : Union[bool, str, PaddingStrategy] = True __magic_name__ : Optional[int] = None __magic_name__ : Optional[int] = None __magic_name__ : int = -100 __magic_name__ : str = "pt" def a__( self : Any , lowerCAmelCase : Dict )-> Tuple: """simple docstring""" import torch UpperCAmelCase = '''label''' if '''label''' in features[0].keys() else '''labels''' UpperCAmelCase = [feature[label_name] for feature in features] if label_name in features[0].keys() else None UpperCAmelCase = self.tokenizer.pad( lowerCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch UpperCAmelCase = torch.tensor(batch['''entity_ids'''] ).shape[1] UpperCAmelCase = self.tokenizer.padding_side if padding_side == "right": UpperCAmelCase = [ list(lowerCAmelCase ) + [self.label_pad_token_id] * (sequence_length - len(lowerCAmelCase )) for label in labels ] else: UpperCAmelCase = [ [self.label_pad_token_id] * (sequence_length - len(lowerCAmelCase )) + list(lowerCAmelCase ) for label in labels ] UpperCAmelCase = [feature['''ner_tags'''] for feature in features] UpperCAmelCase = padding_tensor(lowerCAmelCase , -1 , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = [feature['''original_entity_spans'''] for feature in features] UpperCAmelCase = padding_tensor(lowerCAmelCase , (-1, -1) , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = {k: torch.tensor(lowerCAmelCase , dtype=torch.intaa ) for k, v in batch.items()} return batch
50
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Any = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
1
"""simple docstring""" from math import factorial def _UpperCAmelCase ( lowerCamelCase__ = 100 ): """simple docstring""" return sum(int(lowerCamelCase__ ) for x in str(factorial(lowerCamelCase__ ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
644
"""simple docstring""" from itertools import permutations def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False lowerCAmelCase__ = [7, 11, 13, 17] for i, test in enumerate(lowerCamelCase__ ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def _UpperCAmelCase ( lowerCamelCase__ = 10 ): """simple docstring""" return sum( int("""""".join(map(lowerCamelCase__ , lowerCamelCase__ ) ) ) for num in permutations(range(lowerCamelCase__ ) ) if is_substring_divisible(lowerCamelCase__ ) ) if __name__ == "__main__": print(F"{solution() = }")
644
1
"""simple docstring""" import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib __lowercase = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } __lowercase = logging.WARNING def lowerCAmelCase (): """simple docstring""" __UpperCamelCase =os.getenv('''DATASETS_VERBOSITY''' , __UpperCamelCase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ F"""has to be one of: { ", ".join(log_levels.keys() ) }""" ) return _default_log_level def lowerCAmelCase (): """simple docstring""" return __name__.split('''.''' )[0] def lowerCAmelCase (): """simple docstring""" return logging.getLogger(_get_library_name() ) def lowerCAmelCase (): """simple docstring""" __UpperCamelCase =_get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def lowerCAmelCase (): """simple docstring""" __UpperCamelCase =_get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def lowerCAmelCase (__UpperCamelCase : Optional[str] = None ): """simple docstring""" if name is None: __UpperCamelCase =_get_library_name() return logging.getLogger(__UpperCamelCase ) def lowerCAmelCase (): """simple docstring""" return _get_library_root_logger().getEffectiveLevel() def lowerCAmelCase (__UpperCamelCase : int ): """simple docstring""" _get_library_root_logger().setLevel(__UpperCamelCase ) def lowerCAmelCase (): """simple docstring""" return set_verbosity(__UpperCamelCase ) def lowerCAmelCase (): """simple docstring""" return set_verbosity(__UpperCamelCase ) def lowerCAmelCase (): """simple docstring""" return set_verbosity(__UpperCamelCase ) def lowerCAmelCase (): """simple docstring""" return set_verbosity(__UpperCamelCase ) def lowerCAmelCase (): """simple docstring""" __UpperCamelCase =False def lowerCAmelCase (): """simple docstring""" __UpperCamelCase =True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class _lowercase : """simple docstring""" def __init__( self : Tuple , *UpperCamelCase__ : Dict , **UpperCamelCase__ : List[Any] ) -> Optional[Any]: # pylint: disable=unused-argument '''simple docstring''' __UpperCamelCase =args[0] if args else None def __iter__( self : List[str] ) -> List[Any]: '''simple docstring''' return iter(self._iterator ) def __getattr__( self : Any , UpperCamelCase__ : List[Any] ) -> Dict: '''simple docstring''' def empty_fn(*UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : List[str] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Optional[int] ) -> int: '''simple docstring''' return self def __exit__( self : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Any , UpperCamelCase__ : str ) -> Any: '''simple docstring''' return __lowercase = True class _lowercase : """simple docstring""" def __call__( self : int , *UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any]=False , **UpperCamelCase__ : Optional[int] ) -> Optional[Any]: '''simple docstring''' if _tqdm_active and not disable: return tqdm_lib.tqdm(*UpperCamelCase__ , **UpperCamelCase__ ) else: return EmptyTqdm(*UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] , *UpperCamelCase__ : Dict , **UpperCamelCase__ : Tuple ) -> int: '''simple docstring''' __UpperCamelCase =None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase_ ( self : int ) -> Any: '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() __lowercase = _tqdm_cls() def lowerCAmelCase (): """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def lowerCAmelCase (): """simple docstring""" global _tqdm_active __UpperCamelCase =True def lowerCAmelCase (): """simple docstring""" global _tqdm_active __UpperCamelCase =False
296
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowercase ( __a , unittest.TestCase ): """simple docstring""" lowercase__ = MgpstrTokenizer lowercase__ = False lowercase__ = {} lowercase__ = False def UpperCAmelCase_ ( self : int ) -> Tuple: '''simple docstring''' super().setUp() # fmt: off __UpperCamelCase =['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on __UpperCamelCase =dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) def UpperCAmelCase_ ( self : str , **UpperCamelCase__ : str ) -> Optional[int]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def UpperCAmelCase_ ( self : List[Any] , UpperCamelCase__ : int ) -> Dict: '''simple docstring''' __UpperCamelCase ='''tester''' __UpperCamelCase ='''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' pass def UpperCAmelCase_ ( self : Tuple ) -> Dict: '''simple docstring''' __UpperCamelCase =self.get_tokenizers(do_lower_case=UpperCamelCase__ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): __UpperCamelCase ='''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) __UpperCamelCase =tokenizer.encode([special_token] , add_special_tokens=UpperCamelCase__ ) self.assertEqual(len(UpperCamelCase__ ) , 1 ) __UpperCamelCase =tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase_ ( self : int ) -> Optional[int]: '''simple docstring''' __UpperCamelCase =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): __UpperCamelCase , __UpperCamelCase =self.get_input_output_texts(UpperCamelCase__ ) __UpperCamelCase =tokenizer.tokenize(UpperCamelCase__ ) __UpperCamelCase =tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) __UpperCamelCase =tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertNotEqual(len(UpperCamelCase__ ) , 0 ) __UpperCamelCase =tokenizer.decode(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , UpperCamelCase__ ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: '''simple docstring''' pass
296
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __UpperCamelCase : List[Any] = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
519
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance __UpperCamelCase : Optional[Any] = 6_378_137.0 __UpperCamelCase : Any = 6_356_752.314_245 __UpperCamelCase : Optional[int] = 6378137 def _UpperCAmelCase ( UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : float ): """simple docstring""" __lowerCamelCase : List[Any] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __lowerCamelCase : Tuple = atan((1 - flattening) * tan(radians(UpperCAmelCase ) ) ) __lowerCamelCase : Dict = atan((1 - flattening) * tan(radians(UpperCAmelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __lowerCamelCase : Any = haversine_distance(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values __lowerCamelCase : Dict = (b_lata + b_lata) / 2 __lowerCamelCase : Union[str, Any] = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __lowerCamelCase : str = (sin(UpperCAmelCase ) ** 2) * (cos(UpperCAmelCase ) ** 2) __lowerCamelCase : List[Any] = cos(sigma / 2 ) ** 2 __lowerCamelCase : Dict = (sigma - sin(UpperCAmelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __lowerCamelCase : Tuple = (cos(UpperCAmelCase ) ** 2) * (sin(UpperCAmelCase ) ** 2) __lowerCamelCase : List[str] = sin(sigma / 2 ) ** 2 __lowerCamelCase : List[str] = (sigma + sin(UpperCAmelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
519
1
'''simple docstring''' import os def snake_case ( ): '''simple docstring''' __lowercase = os.path.dirname(os.path.realpath(lowerCamelCase ) ) __lowercase = os.path.join(lowerCamelCase , """triangle.txt""" ) with open(lowerCamelCase ) as f: __lowercase = f.readlines() __lowercase = [] for line in triangle: __lowercase = [] for number in line.strip().split(""" """ ): numbers_from_line.append(int(lowerCamelCase ) ) a.append(lowerCamelCase ) for i in range(1 , len(lowerCamelCase ) ): for j in range(len(a[i] ) ): __lowercase = a[i - 1][j] if j != len(a[i - 1] ) else 0 __lowercase = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(lowerCamelCase , lowerCamelCase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
721
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" super().tearDown() gc.collect() def _a ( self : List[str] ) -> int: """simple docstring""" __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _a ( self : str ) -> List[Any]: """simple docstring""" __lowercase = """stabilityai/stable-diffusion-2""" __lowercase , __lowercase = FlaxDPMSolverMultistepScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( _lowerCAmelCase , scheduler=_lowerCAmelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = scheduler_params __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
53
0
from __future__ import annotations from functools import lru_cache from math import ceil lowerCamelCase__ : int = 1_0_0 lowerCamelCase__ : Optional[Any] = set(range(3, NUM_PRIMES, 2)) primes.add(2) lowerCamelCase__ : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_00 ) def UpperCamelCase ( lowercase_ ) -> set[int]: '''simple docstring''' if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowercase__ : set[int] = set() lowercase__ : int lowercase__ : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCamelCase ( lowercase_ = 50_00 ) -> int | None: '''simple docstring''' for number_to_partition in range(1 , lowercase_ ): if len(partition(lowercase_ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f'''{solution() = }''')
12
'''simple docstring''' import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class a : """simple docstring""" def __init__( self : Optional[int] , snake_case_ : str , snake_case_ : List[Any]=1_3 , snake_case_ : Any=6_4 , snake_case_ : Optional[int]=2 , snake_case_ : int=3 , snake_case_ : str=True , snake_case_ : Dict=True , snake_case_ : Optional[Any]=3_2 , snake_case_ : Optional[Any]=5 , snake_case_ : List[Any]=4 , snake_case_ : List[Any]=3_7 , snake_case_ : Dict="gelu" , snake_case_ : Union[str, Any]=0.1 , snake_case_ : int=0.1 , snake_case_ : int=1_0 , snake_case_ : int=0.0_2 , snake_case_ : List[Any]=[1, 1_6, 4, 4] , snake_case_ : Any=None , ): '''simple docstring''' snake_case__ : Dict = parent snake_case__ : Optional[int] = batch_size snake_case__ : Union[str, Any] = image_size snake_case__ : str = patch_size snake_case__ : Optional[Any] = num_channels snake_case__ : List[str] = is_training snake_case__ : List[Any] = use_labels snake_case__ : List[str] = hidden_size snake_case__ : List[Any] = num_hidden_layers snake_case__ : str = num_attention_heads snake_case__ : Dict = intermediate_size snake_case__ : Tuple = hidden_act snake_case__ : str = hidden_dropout_prob snake_case__ : List[Any] = attention_probs_dropout_prob snake_case__ : List[str] = type_sequence_label_size snake_case__ : Any = initializer_range snake_case__ : Optional[Any] = scope snake_case__ : Optional[int] = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size snake_case__ : Dict = (self.image_size // 3_2) ** 2 snake_case__ : List[str] = num_patches + 1 def __magic_name__ ( self : List[str] ): '''simple docstring''' snake_case__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : int = None if self.use_labels: snake_case__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : Any = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : str ): '''simple docstring''' snake_case__ : str = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 1_6, 3_2], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=snake_case_ , ) def __magic_name__ ( self : Optional[Any] , snake_case_ : str , snake_case_ : Any , snake_case_ : List[str] ): '''simple docstring''' snake_case__ : Dict = ViTHybridModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : List[str] = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : str , snake_case_ : Any , snake_case_ : Tuple , snake_case_ : Any ): '''simple docstring''' snake_case__ : Optional[int] = self.type_sequence_label_size snake_case__ : int = ViTHybridForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Optional[int] = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self : Union[str, Any] ): '''simple docstring''' snake_case__ : List[Any] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : str = config_and_inputs snake_case__ : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __UpperCAmelCase = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def __magic_name__ ( self : Tuple ): '''simple docstring''' snake_case__ : Tuple = ViTHybridModelTester(self ) snake_case__ : int = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=3_7 ) def __magic_name__ ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def __magic_name__ ( self : List[str] ): '''simple docstring''' pass def __magic_name__ ( self : str ): '''simple docstring''' snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Any = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear ) ) def __magic_name__ ( self : Union[str, Any] ): '''simple docstring''' snake_case__ , snake_case__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Tuple = model_class(snake_case_ ) snake_case__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : str = [*signature.parameters.keys()] snake_case__ : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , snake_case_ ) def __magic_name__ ( self : int ): '''simple docstring''' snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def __magic_name__ ( self : Dict ): '''simple docstring''' snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) def __magic_name__ ( self : List[Any] ): '''simple docstring''' snake_case__ , snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Tuple = _config_zero_init(snake_case_ ) for model_class in self.all_model_classes: snake_case__ : Optional[Any] = model_class(config=snake_case_ ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": snake_case__ : Optional[Any] = [F"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def __magic_name__ ( self : List[Any] ): '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Any = ViTHybridModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def _a ( ): """simple docstring""" snake_case__ : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class a ( unittest.TestCase ): """simple docstring""" @cached_property def __magic_name__ ( self : List[Any] ): '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __magic_name__ ( self : str ): '''simple docstring''' snake_case__ : Tuple = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( snake_case_ ) snake_case__ : Dict = self.default_image_processor snake_case__ : Optional[int] = prepare_img() snake_case__ : Optional[Any] = image_processor(images=snake_case_ , return_tensors='''pt''' ).to(snake_case_ ) # forward pass with torch.no_grad(): snake_case__ : Dict = model(**snake_case_ ) # verify the logits snake_case__ : Any = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , snake_case_ ) snake_case__ : Union[str, Any] = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1e-4 ) ) @slow @require_accelerate def __magic_name__ ( self : Tuple ): '''simple docstring''' snake_case__ : Tuple = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' ) snake_case__ : Optional[int] = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''' ) snake_case__ : int = prepare_img() snake_case__ : int = image_processor(images=snake_case_ , return_tensors='''pt''' ) snake_case__ : int = model(**snake_case_ ) snake_case__ : List[str] = outputs.logits # model predicts one of the 1000 ImageNet classes snake_case__ : Union[str, Any] = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''' )
347
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __a = logging.get_logger(__name__) __a = { 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class lowercase__( UpperCAmelCase ): """simple docstring""" a :Tuple = 'marian' a :int = ['past_key_values'] a :Any = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : List[str]=5_8_1_0_1 , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : List[Any]=1_0_2_4 , SCREAMING_SNAKE_CASE_ : Optional[Any]=1_2 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=4_0_9_6 , SCREAMING_SNAKE_CASE_ : int=1_6 , SCREAMING_SNAKE_CASE_ : List[Any]=1_2 , SCREAMING_SNAKE_CASE_ : Optional[Any]=4_0_9_6 , SCREAMING_SNAKE_CASE_ : List[Any]=1_6 , SCREAMING_SNAKE_CASE_ : Optional[int]=0.0 , SCREAMING_SNAKE_CASE_ : Tuple=0.0 , SCREAMING_SNAKE_CASE_ : Optional[int]=True , SCREAMING_SNAKE_CASE_ : int=True , SCREAMING_SNAKE_CASE_ : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE_ : int=1_0_2_4 , SCREAMING_SNAKE_CASE_ : str=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE_ : Optional[int]=0.02 , SCREAMING_SNAKE_CASE_ : Dict=5_8_1_0_0 , SCREAMING_SNAKE_CASE_ : Tuple=False , SCREAMING_SNAKE_CASE_ : List[Any]=5_8_1_0_0 , SCREAMING_SNAKE_CASE_ : Tuple=0 , SCREAMING_SNAKE_CASE_ : Dict=0 , SCREAMING_SNAKE_CASE_ : Any=True , **SCREAMING_SNAKE_CASE_ : List[Any] , ) -> Any: lowercase_ = vocab_size lowercase_ = decoder_vocab_size or vocab_size lowercase_ = max_position_embeddings lowercase_ = d_model lowercase_ = encoder_ffn_dim lowercase_ = encoder_layers lowercase_ = encoder_attention_heads lowercase_ = decoder_ffn_dim lowercase_ = decoder_layers lowercase_ = decoder_attention_heads lowercase_ = dropout lowercase_ = attention_dropout lowercase_ = activation_dropout lowercase_ = activation_function lowercase_ = init_std lowercase_ = encoder_layerdrop lowercase_ = decoder_layerdrop lowercase_ = use_cache lowercase_ = encoder_layers lowercase_ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase_ = share_encoder_decoder_embeddings super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , forced_eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) class lowercase__( UpperCAmelCase ): """simple docstring""" @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def _lowercase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: lowercase_ = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowercase_ = {0: '''batch'''} lowercase_ = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: lowercase_ = {0: '''batch''', 1: '''decoder_sequence'''} lowercase_ = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_ , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. lowercase_ = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowercase_ , lowercase_ = self.num_layers for i in range(SCREAMING_SNAKE_CASE_ ): lowercase_ = {0: '''batch''', 2: '''past_sequence + sequence'''} lowercase_ = {0: '''batch''', 2: '''past_sequence + sequence'''} else: lowercase_ = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def _lowercase ( self : Any ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: lowercase_ = super().outputs else: lowercase_ = super(SCREAMING_SNAKE_CASE_ , self ).outputs if self.use_past: lowercase_ , lowercase_ = self.num_layers for i in range(SCREAMING_SNAKE_CASE_ ): lowercase_ = {0: '''batch''', 2: '''past_sequence + sequence'''} lowercase_ = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : PreTrainedTokenizer , SCREAMING_SNAKE_CASE_ : int = -1 , SCREAMING_SNAKE_CASE_ : int = -1 , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: lowercase_ = self._generate_dummy_inputs_for_encoder_and_decoder( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Generate decoder inputs lowercase_ = seq_length if not self.use_past else 1 lowercase_ = self._generate_dummy_inputs_for_encoder_and_decoder( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} lowercase_ = dict(**SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase_ , lowercase_ = common_inputs['''input_ids'''].shape lowercase_ = common_inputs['''decoder_input_ids'''].shape[1] lowercase_ , lowercase_ = self.num_attention_heads lowercase_ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase_ = decoder_seq_length + 3 lowercase_ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowercase_ = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] , dim=1 ) lowercase_ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowercase_ , lowercase_ = self.num_layers lowercase_ = min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) - min_num_layers lowercase_ = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(SCREAMING_SNAKE_CASE_ ): common_inputs["past_key_values"].append( ( torch.zeros(SCREAMING_SNAKE_CASE_ ), torch.zeros(SCREAMING_SNAKE_CASE_ ), torch.zeros(SCREAMING_SNAKE_CASE_ ), torch.zeros(SCREAMING_SNAKE_CASE_ ), ) ) # TODO: test this. lowercase_ = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): common_inputs["past_key_values"].append((torch.zeros(SCREAMING_SNAKE_CASE_ ), torch.zeros(SCREAMING_SNAKE_CASE_ )) ) return common_inputs def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : PreTrainedTokenizer , SCREAMING_SNAKE_CASE_ : int = -1 , SCREAMING_SNAKE_CASE_ : int = -1 , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: lowercase_ = self._generate_dummy_inputs_for_encoder_and_decoder( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase_ , lowercase_ = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase_ = seqlen + 2 lowercase_ , lowercase_ = self.num_layers lowercase_ , lowercase_ = self.num_attention_heads lowercase_ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase_ = common_inputs['''attention_mask'''].dtype lowercase_ = torch.cat( [common_inputs['''attention_mask'''], torch.ones(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ )] , dim=1 ) lowercase_ = [ (torch.zeros(SCREAMING_SNAKE_CASE_ ), torch.zeros(SCREAMING_SNAKE_CASE_ )) for _ in range(SCREAMING_SNAKE_CASE_ ) ] return common_inputs def _lowercase ( self : int , SCREAMING_SNAKE_CASE_ : PreTrainedTokenizer , SCREAMING_SNAKE_CASE_ : int = -1 , SCREAMING_SNAKE_CASE_ : int = -1 , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase_ = tokenizer.num_special_tokens_to_add(SCREAMING_SNAKE_CASE_ ) lowercase_ = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=SCREAMING_SNAKE_CASE_ ) # Generate dummy inputs according to compute batch and sequence lowercase_ = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size lowercase_ = dict(tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) ) return common_inputs def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : PreTrainedTokenizer , SCREAMING_SNAKE_CASE_ : int = -1 , SCREAMING_SNAKE_CASE_ : int = -1 , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: lowercase_ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , seq_length=SCREAMING_SNAKE_CASE_ , is_pair=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ ) else: lowercase_ = self._generate_dummy_inputs_for_causal_lm( SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , seq_length=SCREAMING_SNAKE_CASE_ , is_pair=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ ) return common_inputs def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any ) -> str: if self.task in ["default", "seq2seq-lm"]: lowercase_ = super()._flatten_past_key_values_(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: lowercase_ = super(SCREAMING_SNAKE_CASE_ , self )._flatten_past_key_values_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @property def _lowercase ( self : Optional[int] ) -> float: return 1e-4
409
def a ( snake_case__: int ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): raise ValueError('''check_bouncy() accepts only integer arguments''' ) lowercase_ = str(snake_case__ ) lowercase_ = ''''''.join(sorted(snake_case__ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def a ( snake_case__: float = 99 ): '''simple docstring''' if not 0 < percent < 100: raise ValueError('''solution() only accepts values from 0 to 100''' ) lowercase_ = 0 lowercase_ = 1 while True: if check_bouncy(snake_case__ ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f"{solution(9_9)}")
409
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : int = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : Dict = '''transfo-xl''' A__ : List[str] = ['''mems'''] A__ : Optional[int] = { '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Optional[int] , _snake_case : str=26_7735 , _snake_case : Tuple=[2_0000, 4_0000, 20_0000] , _snake_case : str=1024 , _snake_case : str=1024 , _snake_case : List[str]=16 , _snake_case : Dict=64 , _snake_case : Any=4096 , _snake_case : Optional[int]=4 , _snake_case : List[str]=False , _snake_case : int=18 , _snake_case : Dict=1600 , _snake_case : List[str]=1000 , _snake_case : int=True , _snake_case : Tuple=True , _snake_case : str=0 , _snake_case : Dict=-1 , _snake_case : Optional[Any]=True , _snake_case : Any=0.1 , _snake_case : str=0.0 , _snake_case : List[Any]=True , _snake_case : List[str]="normal" , _snake_case : int=0.01 , _snake_case : Tuple=0.01 , _snake_case : Optional[Any]=0.02 , _snake_case : int=1E-5 , _snake_case : Dict=0 , **_snake_case : Optional[Any] , ): __lowercase : List[Any] = vocab_size __lowercase : List[str] = [] self.cutoffs.extend(_snake_case ) if proj_share_all_but_first: __lowercase : Optional[int] = [False] + [True] * len(self.cutoffs ) else: __lowercase : Union[str, Any] = [False] + [False] * len(self.cutoffs ) __lowercase : List[str] = d_model __lowercase : Union[str, Any] = d_embed __lowercase : Optional[int] = d_head __lowercase : Any = d_inner __lowercase : int = div_val __lowercase : Optional[int] = pre_lnorm __lowercase : Any = n_layer __lowercase : Union[str, Any] = n_head __lowercase : Any = mem_len __lowercase : List[str] = same_length __lowercase : Union[str, Any] = attn_type __lowercase : List[str] = clamp_len __lowercase : Any = sample_softmax __lowercase : int = adaptive __lowercase : str = dropout __lowercase : Union[str, Any] = dropatt __lowercase : Optional[Any] = untie_r __lowercase : str = init __lowercase : str = init_range __lowercase : List[str] = proj_init_std __lowercase : Any = init_std __lowercase : Dict = layer_norm_epsilon super().__init__(eos_token_id=_snake_case , **_snake_case ) @property def snake_case_ ( self : Union[str, Any] ): # Message copied from Transformer-XL documentation logger.info(F'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def snake_case_ ( self : Optional[Any] , _snake_case : Any ): # Message copied from Transformer-XL documentation raise NotImplementedError( F'The model {self.model_type} is one of the few models that has no sequence length limit.' )
509
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : Optional[Any] = '''data2vec-vision''' def __init__( self : str , _snake_case : str=768 , _snake_case : Tuple=12 , _snake_case : Any=12 , _snake_case : Optional[int]=3072 , _snake_case : Tuple="gelu" , _snake_case : Dict=0.0 , _snake_case : Any=0.0 , _snake_case : Tuple=0.02 , _snake_case : List[Any]=1E-1_2 , _snake_case : int=224 , _snake_case : List[str]=16 , _snake_case : List[str]=3 , _snake_case : Optional[int]=False , _snake_case : str=False , _snake_case : Tuple=False , _snake_case : Tuple=False , _snake_case : Any=0.1 , _snake_case : Any=0.1 , _snake_case : List[Any]=True , _snake_case : List[Any]=[3, 5, 7, 11] , _snake_case : List[Any]=[1, 2, 3, 6] , _snake_case : Tuple=True , _snake_case : str=0.4 , _snake_case : Any=256 , _snake_case : Any=1 , _snake_case : str=False , _snake_case : str=255 , **_snake_case : Dict , ): super().__init__(**_snake_case ) __lowercase : int = hidden_size __lowercase : Optional[int] = num_hidden_layers __lowercase : str = num_attention_heads __lowercase : List[Any] = intermediate_size __lowercase : Union[str, Any] = hidden_act __lowercase : Optional[int] = hidden_dropout_prob __lowercase : Tuple = attention_probs_dropout_prob __lowercase : Dict = initializer_range __lowercase : List[str] = layer_norm_eps __lowercase : str = image_size __lowercase : List[str] = patch_size __lowercase : Dict = num_channels __lowercase : Optional[Any] = use_mask_token __lowercase : Optional[int] = use_absolute_position_embeddings __lowercase : Tuple = use_relative_position_bias __lowercase : Dict = use_shared_relative_position_bias __lowercase : List[Any] = layer_scale_init_value __lowercase : Union[str, Any] = drop_path_rate __lowercase : Tuple = use_mean_pooling # decode head attributes (semantic segmentation) __lowercase : List[str] = out_indices __lowercase : Tuple = pool_scales # auxiliary head attributes (semantic segmentation) __lowercase : Dict = use_auxiliary_head __lowercase : str = auxiliary_loss_weight __lowercase : Union[str, Any] = auxiliary_channels __lowercase : Dict = auxiliary_num_convs __lowercase : Dict = auxiliary_concat_input __lowercase : Dict = semantic_loss_ignore_index class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : int = version.parse('''1.11''' ) @property def snake_case_ ( self : str ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def snake_case_ ( self : Tuple ): return 1E-4
509
1
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class A (unittest.TestCase ): '''simple docstring''' def a_ ( self : Dict ) -> Dict: """simple docstring""" A__ = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 1_28, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 1_42, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } A__ = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 1_28, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 1_42, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(__lowerCAmelCase ) , __lowerCAmelCase ) def a_ ( self : Dict ) -> List[str]: """simple docstring""" A__ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(__lowerCAmelCase ) , x.transpose() ) ) A__ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(__lowerCAmelCase , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def a_ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" A__ = np.random.randn(3 , 4 ) A__ = torch.tensor(__lowerCAmelCase ) self.assertTrue(np.allclose(transpose(__lowerCAmelCase ) , transpose(__lowerCAmelCase ).numpy() ) ) A__ = np.random.randn(3 , 4 , 5 ) A__ = torch.tensor(__lowerCAmelCase ) self.assertTrue(np.allclose(transpose(__lowerCAmelCase , axes=(1, 2, 0) ) , transpose(__lowerCAmelCase , axes=(1, 2, 0) ).numpy() ) ) @require_tf def a_ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" A__ = np.random.randn(3 , 4 ) A__ = tf.constant(__lowerCAmelCase ) self.assertTrue(np.allclose(transpose(__lowerCAmelCase ) , transpose(__lowerCAmelCase ).numpy() ) ) A__ = np.random.randn(3 , 4 , 5 ) A__ = tf.constant(__lowerCAmelCase ) self.assertTrue(np.allclose(transpose(__lowerCAmelCase , axes=(1, 2, 0) ) , transpose(__lowerCAmelCase , axes=(1, 2, 0) ).numpy() ) ) @require_flax def a_ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" A__ = np.random.randn(3 , 4 ) A__ = jnp.array(__lowerCAmelCase ) self.assertTrue(np.allclose(transpose(__lowerCAmelCase ) , np.asarray(transpose(__lowerCAmelCase ) ) ) ) A__ = np.random.randn(3 , 4 , 5 ) A__ = jnp.array(__lowerCAmelCase ) self.assertTrue(np.allclose(transpose(__lowerCAmelCase , axes=(1, 2, 0) ) , np.asarray(transpose(__lowerCAmelCase , axes=(1, 2, 0) ) ) ) ) def a_ ( self : Any ) -> List[str]: """simple docstring""" A__ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (4, 3) ) , np.reshape(__lowerCAmelCase , (4, 3) ) ) ) A__ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (12, 5) ) , np.reshape(__lowerCAmelCase , (12, 5) ) ) ) @require_torch def a_ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" A__ = np.random.randn(3 , 4 ) A__ = torch.tensor(__lowerCAmelCase ) self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (4, 3) ) , reshape(__lowerCAmelCase , (4, 3) ).numpy() ) ) A__ = np.random.randn(3 , 4 , 5 ) A__ = torch.tensor(__lowerCAmelCase ) self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (12, 5) ) , reshape(__lowerCAmelCase , (12, 5) ).numpy() ) ) @require_tf def a_ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" A__ = np.random.randn(3 , 4 ) A__ = tf.constant(__lowerCAmelCase ) self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (4, 3) ) , reshape(__lowerCAmelCase , (4, 3) ).numpy() ) ) A__ = np.random.randn(3 , 4 , 5 ) A__ = tf.constant(__lowerCAmelCase ) self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (12, 5) ) , reshape(__lowerCAmelCase , (12, 5) ).numpy() ) ) @require_flax def a_ ( self : List[str] ) -> Tuple: """simple docstring""" A__ = np.random.randn(3 , 4 ) A__ = jnp.array(__lowerCAmelCase ) self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (4, 3) ) , np.asarray(reshape(__lowerCAmelCase , (4, 3) ) ) ) ) A__ = np.random.randn(3 , 4 , 5 ) A__ = jnp.array(__lowerCAmelCase ) self.assertTrue(np.allclose(reshape(__lowerCAmelCase , (12, 5) ) , np.asarray(reshape(__lowerCAmelCase , (12, 5) ) ) ) ) def a_ ( self : Any ) -> str: """simple docstring""" A__ = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(__lowerCAmelCase ) , np.squeeze(__lowerCAmelCase ) ) ) A__ = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(__lowerCAmelCase , axis=2 ) , np.squeeze(__lowerCAmelCase , axis=2 ) ) ) @require_torch def a_ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" A__ = np.random.randn(1 , 3 , 4 ) A__ = torch.tensor(__lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(__lowerCAmelCase ) , squeeze(__lowerCAmelCase ).numpy() ) ) A__ = np.random.randn(1 , 4 , 1 , 5 ) A__ = torch.tensor(__lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(__lowerCAmelCase , axis=2 ) , squeeze(__lowerCAmelCase , axis=2 ).numpy() ) ) @require_tf def a_ ( self : Dict ) -> Optional[int]: """simple docstring""" A__ = np.random.randn(1 , 3 , 4 ) A__ = tf.constant(__lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(__lowerCAmelCase ) , squeeze(__lowerCAmelCase ).numpy() ) ) A__ = np.random.randn(1 , 4 , 1 , 5 ) A__ = tf.constant(__lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(__lowerCAmelCase , axis=2 ) , squeeze(__lowerCAmelCase , axis=2 ).numpy() ) ) @require_flax def a_ ( self : Union[str, Any] ) -> str: """simple docstring""" A__ = np.random.randn(1 , 3 , 4 ) A__ = jnp.array(__lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(__lowerCAmelCase ) , np.asarray(squeeze(__lowerCAmelCase ) ) ) ) A__ = np.random.randn(1 , 4 , 1 , 5 ) A__ = jnp.array(__lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(__lowerCAmelCase , axis=2 ) , np.asarray(squeeze(__lowerCAmelCase , axis=2 ) ) ) ) def a_ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" A__ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(__lowerCAmelCase , axis=1 ) , np.expand_dims(__lowerCAmelCase , axis=1 ) ) ) @require_torch def a_ ( self : int ) -> Dict: """simple docstring""" A__ = np.random.randn(3 , 4 ) A__ = torch.tensor(__lowerCAmelCase ) self.assertTrue(np.allclose(expand_dims(__lowerCAmelCase , axis=1 ) , expand_dims(__lowerCAmelCase , axis=1 ).numpy() ) ) @require_tf def a_ ( self : Tuple ) -> int: """simple docstring""" A__ = np.random.randn(3 , 4 ) A__ = tf.constant(__lowerCAmelCase ) self.assertTrue(np.allclose(expand_dims(__lowerCAmelCase , axis=1 ) , expand_dims(__lowerCAmelCase , axis=1 ).numpy() ) ) @require_flax def a_ ( self : Union[str, Any] ) -> str: """simple docstring""" A__ = np.random.randn(3 , 4 ) A__ = jnp.array(__lowerCAmelCase ) self.assertTrue(np.allclose(expand_dims(__lowerCAmelCase , axis=1 ) , np.asarray(expand_dims(__lowerCAmelCase , axis=1 ) ) ) )
702
def __lowerCamelCase ( __a :int ) -> list[int]: """simple docstring""" if num <= 0: raise ValueError("""Input must be a positive integer""" ) A__ = [True] * (num + 1) A__ = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , __a ): A__ = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() A : Any = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
247
0
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class __magic_name__ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=99 , lowerCamelCase=32 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=16 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=4 , ): '''simple docstring''' __A : Any = parent __A : Union[str, Any] = batch_size __A : Tuple = seq_length __A : int = is_training __A : str = use_attention_mask __A : Tuple = use_token_type_ids __A : Dict = use_labels __A : List[Any] = vocab_size __A : Tuple = hidden_size __A : str = num_hidden_layers __A : Any = num_attention_heads __A : List[Any] = intermediate_size __A : Optional[Any] = hidden_act __A : int = hidden_dropout_prob __A : Union[str, Any] = attention_probs_dropout_prob __A : Dict = max_position_embeddings __A : Tuple = type_vocab_size __A : List[Any] = type_sequence_label_size __A : Dict = initializer_range __A : Tuple = num_choices def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A : Optional[Any] = None if self.use_attention_mask: __A : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __A : Union[str, Any] = None if self.use_token_type_ids: __A : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __A : Optional[int] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self ): '''simple docstring''' __A : Optional[int] = self.prepare_config_and_inputs() __A ,__A ,__A ,__A : List[Any] = config_and_inputs __A : Dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class __magic_name__ ( lowerCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = True lowerCamelCase__ = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self ): '''simple docstring''' __A : int = FlaxRoFormerModelTester(self ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __A : Any = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=lowerCamelCase ) __A : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase ) @require_flax class __magic_name__ ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase__ ( self ): '''simple docstring''' __A : List[Any] = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) __A : Union[str, Any] = jnp.array([[0, 1, 2, 3, 4, 5]] ) __A : Any = model(lowerCamelCase )[0] __A : Optional[int] = 5_0000 __A : Optional[int] = (1, 6, vocab_size) self.assertEqual(output.shape , lowerCamelCase ) __A : Any = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , lowerCamelCase , atol=1E-4 ) )
111
'''simple docstring''' # Function to print upper half of diamond (pyramid) def _lowercase (SCREAMING_SNAKE_CASE ): '''simple docstring''' for i in range(0 , SCREAMING_SNAKE_CASE ): for _ in range(0 , n - i - 1 ): # printing spaces print(" " , end="" ) for _ in range(0 , i + 1 ): # printing stars print("* " , end="" ) print() def _lowercase (SCREAMING_SNAKE_CASE ): '''simple docstring''' for i in range(SCREAMING_SNAKE_CASE , 0 , -1 ): for _ in range(SCREAMING_SNAKE_CASE , 0 , -1 ): # printing stars print("* " , end="" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(" " , end="" ) def _lowercase (SCREAMING_SNAKE_CASE ): '''simple docstring''' if n <= 0: print(" ... .... nothing printing :(" ) return floyd(SCREAMING_SNAKE_CASE ) # upper half reverse_floyd(SCREAMING_SNAKE_CASE ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") _UpperCamelCase = 1 while K: _UpperCamelCase = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) _UpperCamelCase = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
111
1
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging __a : Any = { '''cola''': 2, '''mnli''': 3, '''mrpc''': 2, '''sst-2''': 2, '''sts-b''': 1, '''qqp''': 2, '''qnli''': 2, '''rte''': 2, '''wnli''': 2, } logging.set_verbosity_info() def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=None ) -> Union[str, Any]: # Initialise PyTorch model lowercase__ : str = XLNetConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) lowercase__ : Dict = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) lowercase__ : Optional[Any] = finetuning_task lowercase__ : int = GLUE_TASKS_NUM_LABELS[finetuning_task] lowercase__ : str = XLNetForSequenceClassification(SCREAMING_SNAKE_CASE_ ) elif "squad" in finetuning_task: lowercase__ : Union[str, Any] = finetuning_task lowercase__ : Union[str, Any] = XLNetForQuestionAnswering(SCREAMING_SNAKE_CASE_ ) else: lowercase__ : int = XLNetLMHeadModel(SCREAMING_SNAKE_CASE_ ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) # Save pytorch-model lowercase__ : Dict = os.path.join(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) lowercase__ : List[str] = os.path.join(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) print(F"""Save PyTorch model to {os.path.abspath(SCREAMING_SNAKE_CASE_ )}""" ) torch.save(model.state_dict() ,SCREAMING_SNAKE_CASE_ ) print(F"""Save configuration file to {os.path.abspath(SCREAMING_SNAKE_CASE_ )}""" ) with open(SCREAMING_SNAKE_CASE_ ,"w" ,encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __a : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--xlnet_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained XLNet model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--finetuning_task''', default=None, type=str, help='''Name of a task on which the XLNet TensorFlow model was fine-tuned''', ) __a : int = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
298
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
298
1
"""simple docstring""" import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE_ = { '''User-Agent''': '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''' } def lowercase__ ( lowerCAmelCase : str = "dhaka" , lowerCAmelCase : int = 5 ) -> int: """simple docstring""" UpperCAmelCase = min(lowerCAmelCase , 50 ) # Prevent abuse! UpperCAmelCase = { 'q': query, 'tbm': 'isch', 'hl': 'en', 'ijn': '0', } UpperCAmelCase = requests.get('https://www.google.com/search' , params=lowerCAmelCase , headers=lowerCAmelCase ) UpperCAmelCase = BeautifulSoup(html.text , 'html.parser' ) UpperCAmelCase = ''.join( re.findall(r'AF_initDataCallback\(([^<]+)\);' , str(soup.select('script' ) ) ) ) UpperCAmelCase = json.dumps(lowerCAmelCase ) UpperCAmelCase = json.loads(lowerCAmelCase ) UpperCAmelCase = re.findall( r'\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",' , lowerCAmelCase , ) if not matched_google_image_data: return 0 UpperCAmelCase = re.sub( r'\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]' , '' , str(lowerCAmelCase ) , ) UpperCAmelCase = re.findall( r'(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]' , lowerCAmelCase , ) for index, fixed_full_res_image in enumerate(lowerCAmelCase ): if index >= max_images: return index UpperCAmelCase = bytes(lowerCAmelCase , 'ascii' ).decode( 'unicode-escape' ) UpperCAmelCase = bytes(lowerCAmelCase , 'ascii' ).decode( 'unicode-escape' ) UpperCAmelCase = urllib.request.build_opener() UpperCAmelCase = [ ( 'User-Agent', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582', ) ] urllib.request.install_opener(lowerCAmelCase ) UpperCAmelCase = F"query_{query.replace(' ' , '_' )}" if not os.path.exists(lowerCAmelCase ): os.makedirs(lowerCAmelCase ) urllib.request.urlretrieve( # noqa: S310 lowerCAmelCase , F"{path_name}/original_size_img_{index}.jpg" ) return index if __name__ == "__main__": try: SCREAMING_SNAKE_CASE_ = download_images_from_google_query(sys.argv[1]) print(F'{image_count} images were downloaded to disk.') except IndexError: print('''Please provide a search term.''') raise
373
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): __SCREAMING_SNAKE_CASE : List[Any] = ["image_processor", "tokenizer"] __SCREAMING_SNAKE_CASE : Dict = "AutoImageProcessor" __SCREAMING_SNAKE_CASE : Optional[int] = "AutoTokenizer" def __init__( self , lowercase_ , lowercase_ ) -> List[str]: super().__init__(lowercase_ , lowercase_ ) UpperCAmelCase = self.image_processor def __call__( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ ) -> Any: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: UpperCAmelCase = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if images is not None: UpperCAmelCase = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase_ ) , tensor_type=lowercase_ ) def a_ ( self , *lowercase_ , **lowercase_ ) -> Optional[Any]: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def a_ ( self , *lowercase_ , **lowercase_ ) -> Optional[int]: return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def a_ ( self ) -> Optional[int]: return ["input_ids", "attention_mask", "pixel_values"]
373
1
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCAmelCase : int = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' lowerCAmelCase : Optional[Any] = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' lowerCAmelCase : List[Any] = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): def UpperCAmelCase_ ( self ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def UpperCAmelCase_ ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase = 1 , UpperCamelCase = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=UpperCamelCase , hypotheses=UpperCamelCase , min_len=UpperCamelCase , max_len=UpperCamelCase ) }
39
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def __lowerCAmelCase ( lowerCamelCase : List[str] ): '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class UpperCAmelCase__ ( UpperCamelCase__ ): @staticmethod def UpperCAmelCase_ ( UpperCamelCase ) -> Tuple: __lowerCAmelCase = parser.add_parser("download" ) download_parser.add_argument( "--cache-dir" , type=UpperCamelCase , default=UpperCamelCase , help="Path to location to store the models" ) download_parser.add_argument( "--force" , action="store_true" , help="Force the model to be download even if already in cache-dir" ) download_parser.add_argument( "--trust-remote-code" , action="store_true" , help="Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine" , ) download_parser.add_argument("model" , type=UpperCamelCase , help="Name of the model to download" ) download_parser.set_defaults(func=UpperCamelCase ) def __init__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> List[str]: __lowerCAmelCase = model __lowerCAmelCase = cache __lowerCAmelCase = force __lowerCAmelCase = trust_remote_code def UpperCAmelCase_ ( self ) -> Any: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
39
1
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1 / sqrt(2 ) ): """simple docstring""" SCREAMING_SNAKE_CASE : str = tau * frequency / samplerate SCREAMING_SNAKE_CASE : List[Any] = sin(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = cos(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE : Optional[int] = (1 - _cos) / 2 SCREAMING_SNAKE_CASE : Union[str, Any] = 1 - _cos SCREAMING_SNAKE_CASE : Optional[int] = 1 + alpha SCREAMING_SNAKE_CASE : List[Any] = -2 * _cos SCREAMING_SNAKE_CASE : Tuple = 1 - alpha SCREAMING_SNAKE_CASE : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1 / sqrt(2 ) ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = tau * frequency / samplerate SCREAMING_SNAKE_CASE : Dict = sin(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = cos(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE : Any = (1 + _cos) / 2 SCREAMING_SNAKE_CASE : Tuple = -1 - _cos SCREAMING_SNAKE_CASE : Optional[int] = 1 + alpha SCREAMING_SNAKE_CASE : Any = -2 * _cos SCREAMING_SNAKE_CASE : int = 1 - alpha SCREAMING_SNAKE_CASE : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1 / sqrt(2 ) ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = tau * frequency / samplerate SCREAMING_SNAKE_CASE : Union[str, Any] = sin(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = cos(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE : Dict = _sin / 2 SCREAMING_SNAKE_CASE : Any = 0 SCREAMING_SNAKE_CASE : Optional[int] = -ba SCREAMING_SNAKE_CASE : List[Any] = 1 + alpha SCREAMING_SNAKE_CASE : Union[str, Any] = -2 * _cos SCREAMING_SNAKE_CASE : Any = 1 - alpha SCREAMING_SNAKE_CASE : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1 / sqrt(2 ) ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = tau * frequency / samplerate SCREAMING_SNAKE_CASE : Dict = sin(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = cos(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE : int = 1 - alpha SCREAMING_SNAKE_CASE : Any = -2 * _cos SCREAMING_SNAKE_CASE : Optional[int] = 1 + alpha SCREAMING_SNAKE_CASE : List[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1 / sqrt(2 ) , ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = tau * frequency / samplerate SCREAMING_SNAKE_CASE : str = sin(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = cos(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE : str = 10 ** (gain_db / 40) SCREAMING_SNAKE_CASE : str = 1 + alpha * big_a SCREAMING_SNAKE_CASE : Optional[Any] = -2 * _cos SCREAMING_SNAKE_CASE : Any = 1 - alpha * big_a SCREAMING_SNAKE_CASE : Optional[int] = 1 + alpha / big_a SCREAMING_SNAKE_CASE : Tuple = -2 * _cos SCREAMING_SNAKE_CASE : Optional[int] = 1 - alpha / big_a SCREAMING_SNAKE_CASE : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1 / sqrt(2 ) , ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = tau * frequency / samplerate SCREAMING_SNAKE_CASE : Optional[int] = sin(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = cos(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE : List[str] = 10 ** (gain_db / 40) SCREAMING_SNAKE_CASE : List[Any] = (big_a + 1) - (big_a - 1) * _cos SCREAMING_SNAKE_CASE : str = (big_a + 1) + (big_a - 1) * _cos SCREAMING_SNAKE_CASE : Optional[int] = (big_a - 1) - (big_a + 1) * _cos SCREAMING_SNAKE_CASE : str = (big_a - 1) + (big_a + 1) * _cos SCREAMING_SNAKE_CASE : List[Any] = 2 * sqrt(lowerCamelCase_ ) * alpha SCREAMING_SNAKE_CASE : Optional[Any] = big_a * (pmc + aaa) SCREAMING_SNAKE_CASE : List[Any] = 2 * big_a * mpc SCREAMING_SNAKE_CASE : Tuple = big_a * (pmc - aaa) SCREAMING_SNAKE_CASE : Optional[Any] = ppmc + aaa SCREAMING_SNAKE_CASE : Optional[Any] = -2 * pmpc SCREAMING_SNAKE_CASE : Optional[int] = ppmc - aaa SCREAMING_SNAKE_CASE : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1 / sqrt(2 ) , ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = tau * frequency / samplerate SCREAMING_SNAKE_CASE : Dict = sin(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = cos(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE : List[str] = 10 ** (gain_db / 40) SCREAMING_SNAKE_CASE : Union[str, Any] = (big_a + 1) - (big_a - 1) * _cos SCREAMING_SNAKE_CASE : Tuple = (big_a + 1) + (big_a - 1) * _cos SCREAMING_SNAKE_CASE : List[str] = (big_a - 1) - (big_a + 1) * _cos SCREAMING_SNAKE_CASE : int = (big_a - 1) + (big_a + 1) * _cos SCREAMING_SNAKE_CASE : str = 2 * sqrt(lowerCamelCase_ ) * alpha SCREAMING_SNAKE_CASE : List[str] = big_a * (ppmc + aaa) SCREAMING_SNAKE_CASE : Dict = -2 * big_a * pmpc SCREAMING_SNAKE_CASE : str = big_a * (ppmc - aaa) SCREAMING_SNAKE_CASE : List[str] = pmc + aaa SCREAMING_SNAKE_CASE : Tuple = 2 * mpc SCREAMING_SNAKE_CASE : int = pmc - aaa SCREAMING_SNAKE_CASE : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
379
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """naver-clova-ix/donut-base""": """https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json""", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''donut-swin''' SCREAMING_SNAKE_CASE__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : str , lowerCamelCase_ : Union[str, Any]=2_24 , lowerCamelCase_ : Union[str, Any]=4 , lowerCamelCase_ : Optional[Any]=3 , lowerCamelCase_ : Dict=96 , lowerCamelCase_ : int=[2, 2, 6, 2] , lowerCamelCase_ : Optional[Any]=[3, 6, 12, 24] , lowerCamelCase_ : List[str]=7 , lowerCamelCase_ : List[str]=4.0 , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : List[str]=0.0 , lowerCamelCase_ : Dict=0.0 , lowerCamelCase_ : Dict=0.1 , lowerCamelCase_ : Union[str, Any]="gelu" , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : Optional[int]=0.02 , lowerCamelCase_ : Any=1e-5 , **lowerCamelCase_ : Union[str, Any] , ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : Dict = patch_size SCREAMING_SNAKE_CASE : str = num_channels SCREAMING_SNAKE_CASE : Union[str, Any] = embed_dim SCREAMING_SNAKE_CASE : Optional[int] = depths SCREAMING_SNAKE_CASE : Union[str, Any] = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = num_heads SCREAMING_SNAKE_CASE : Optional[int] = window_size SCREAMING_SNAKE_CASE : Optional[Any] = mlp_ratio SCREAMING_SNAKE_CASE : Dict = qkv_bias SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Dict = drop_path_rate SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = use_absolute_embeddings SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE : str = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) )
379
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging A : List[Any] = logging.get_logger(__name__) A : Tuple = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : int ="""pix2struct_text_model""" __UpperCAmelCase : int =["""past_key_values"""] __UpperCAmelCase : int ={ """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , __a=5_02_44 , __a=7_68 , __a=64 , __a=20_48 , __a=12 , __a=12 , __a=32 , __a=1_28 , __a=0.1 , __a=1e-6 , __a=1.0 , __a="gelu_new" , __a=0 , __a=False , __a=0 , __a=1 , __a=False , __a=True , **__a , ): __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = d_kv __lowerCAmelCase = d_ff __lowerCAmelCase = num_layers __lowerCAmelCase = num_heads __lowerCAmelCase = relative_attention_num_buckets __lowerCAmelCase = relative_attention_max_distance __lowerCAmelCase = dropout_rate __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_factor __lowerCAmelCase = use_cache __lowerCAmelCase = eos_token_id __lowerCAmelCase = decoder_start_token_id # for backwards compatibility __lowerCAmelCase = dense_act_fn super().__init__( pad_token_id=__a , eos_token_id=__a , decoder_start_token_id=__a , tie_word_embeddings=__a , is_decoder=__a , **__a , ) @classmethod def snake_case ( cls , __a , **__a ): cls._set_token_in_kwargs(__a ) __lowerCAmelCase , __lowerCAmelCase = cls.get_config_dict(__a , **__a ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("model_type" ) == "pix2struct": __lowerCAmelCase = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__a , **__a ) class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Any ="""pix2struct_vision_model""" def __init__( self , __a=7_68 , __a=7_68 , __a=20_48 , __a=64 , __a=12 , __a=12 , __a="gelu_new" , __a=1e-6 , __a=0.0 , __a=0.0 , __a=1e-1_0 , __a=1.0 , __a=40_96 , __a=32 , __a=1_28 , **__a , ): super().__init__(**__a ) __lowerCAmelCase = hidden_size __lowerCAmelCase = patch_embed_hidden_size __lowerCAmelCase = d_ff __lowerCAmelCase = dropout_rate __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = initializer_range __lowerCAmelCase = initializer_factor __lowerCAmelCase = attention_dropout __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = dense_act_fn __lowerCAmelCase = seq_len __lowerCAmelCase = relative_attention_num_buckets __lowerCAmelCase = relative_attention_max_distance __lowerCAmelCase = d_kv @classmethod def snake_case ( cls , __a , **__a ): cls._set_token_in_kwargs(__a ) __lowerCAmelCase , __lowerCAmelCase = cls.get_config_dict(__a , **__a ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("model_type" ) == "pix2struct": __lowerCAmelCase = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__a , **__a ) class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[int] ="""pix2struct""" __UpperCAmelCase : Optional[int] =True def __init__( self , __a=None , __a=None , __a=1.0 , __a=0.0_2 , __a=False , __a=False , __a=True , **__a , ): super().__init__(tie_word_embeddings=__a , is_encoder_decoder=__a , **__a ) if text_config is None: __lowerCAmelCase = {} logger.info("text_config is None. Initializing the Pix2StructTextConfig with default values." ) if vision_config is None: __lowerCAmelCase = {} logger.info("vision_config is None. Initializing the Pix2StructVisionConfig with default values." ) __lowerCAmelCase = PixaStructTextConfig(**__a ) __lowerCAmelCase = PixaStructVisionConfig(**__a ) __lowerCAmelCase = self.text_config.decoder_start_token_id __lowerCAmelCase = self.text_config.pad_token_id __lowerCAmelCase = self.text_config.eos_token_id __lowerCAmelCase = initializer_factor __lowerCAmelCase = initializer_range __lowerCAmelCase = self.initializer_range __lowerCAmelCase = self.initializer_range __lowerCAmelCase = is_vqa @classmethod def snake_case ( cls , __a , __a , **__a ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__a ) def snake_case ( self ): __lowerCAmelCase = copy.deepcopy(self.__dict__ ) __lowerCAmelCase = self.text_config.to_dict() __lowerCAmelCase = self.vision_config.to_dict() __lowerCAmelCase = self.__class__.model_type return output
282
"""simple docstring""" from itertools import product def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = sides_number __lowerCAmelCase = max_face_number * dice_number __lowerCAmelCase = [0] * (max_total + 1) __lowerCAmelCase = 1 __lowerCAmelCase = range(_UpperCamelCase , max_face_number + 1 ) for dice_numbers in product(_UpperCamelCase , repeat=_UpperCamelCase ): __lowerCAmelCase = sum(_UpperCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = total_frequency_distribution( sides_number=4 , dice_number=9 ) __lowerCAmelCase = total_frequency_distribution( sides_number=6 , dice_number=6 ) __lowerCAmelCase = 0 __lowerCAmelCase = 9 __lowerCAmelCase = 4 * 9 __lowerCAmelCase = 6 for peter_total in range(_UpperCamelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) __lowerCAmelCase = (4**9) * (6**6) __lowerCAmelCase = peter_wins_count / total_games_number __lowerCAmelCase = round(_UpperCamelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f'''{solution() = }''')
282
1
from __future__ import annotations def __lowerCAmelCase ( __magic_name__ , __magic_name__ ): # Checks if the entire collection has been sorted if len(__magic_name__ ) <= 1 or n <= 1: return insert_next(__magic_name__ , n - 1 ) rec_insertion_sort(__magic_name__ , n - 1 ) def __lowerCAmelCase ( __magic_name__ , __magic_name__ ): # Checks order between adjacent elements if index >= len(__magic_name__ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order _lowercase , _lowercase: Tuple = ( collection[index], collection[index - 1], ) insert_next(__magic_name__ , index + 1 ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[Any] = input('Enter integers separated by spaces: ') _SCREAMING_SNAKE_CASE : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
226
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _SCREAMING_SNAKE_CASE : Optional[Any] = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def __lowerCAmelCase ( ): _lowercase: List[Any] = _ask_options( "In which compute environment are you running?" , ["This machine", "AWS (Amazon SageMaker)"] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _lowercase: Any = get_sagemaker_input() else: _lowercase: Tuple = get_cluster_input() return config def __lowerCAmelCase ( __magic_name__=None ): if subparsers is not None: _lowercase: List[Any] = subparsers.add_parser("config" , description=__magic_name__ ) else: _lowercase: List[Any] = argparse.ArgumentParser("Accelerate config command" , description=__magic_name__ ) parser.add_argument( "--config_file" , default=__magic_name__ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=__magic_name__ ) return parser def __lowerCAmelCase ( __magic_name__ ): _lowercase: Union[str, Any] = get_user_input() if args.config_file is not None: _lowercase: Dict = args.config_file else: if not os.path.isdir(__magic_name__ ): os.makedirs(__magic_name__ ) _lowercase: Tuple = default_yaml_config_file if config_file.endswith(".json" ): config.to_json_file(__magic_name__ ) else: config.to_yaml_file(__magic_name__ ) print(f"accelerate configuration saved at {config_file}" ) def __lowerCAmelCase ( ): _lowercase: int = config_command_parser() _lowercase: List[Any] = parser.parse_args() config_command(__magic_name__ ) if __name__ == "__main__": main()
226
1
'''simple docstring''' from __future__ import annotations import math import random from typing import Any class a : """simple docstring""" def __init__( self : Optional[int] ) -> None: __UpperCAmelCase : list[Any] = [] __UpperCAmelCase : int = 0 __UpperCAmelCase : int = 0 def lowerCamelCase__ ( self : List[str] ) -> bool: return self.head == self.tail def lowerCamelCase__ ( self : str , snake_case : Any ) -> None: self.data.append(snake_case ) __UpperCAmelCase : Any = self.tail + 1 def lowerCamelCase__ ( self : Optional[Any] ) -> Any: __UpperCAmelCase : int = self.data[self.head] __UpperCAmelCase : int = self.head + 1 return ret def lowerCamelCase__ ( self : Optional[int] ) -> int: return self.tail - self.head def lowerCamelCase__ ( self : str ) -> None: print(self.data ) print('''**************''' ) print(self.data[self.head : self.tail] ) class a : """simple docstring""" def __init__( self : Optional[Any] , snake_case : Any ) -> None: __UpperCAmelCase : int = data __UpperCAmelCase : MyNode | None = None __UpperCAmelCase : MyNode | None = None __UpperCAmelCase : int = 1 def lowerCamelCase__ ( self : str ) -> Any: return self.data def lowerCamelCase__ ( self : Any ) -> MyNode | None: return self.left def lowerCamelCase__ ( self : str ) -> MyNode | None: return self.right def lowerCamelCase__ ( self : Optional[Any] ) -> int: return self.height def lowerCamelCase__ ( self : Tuple , snake_case : Any ) -> None: __UpperCAmelCase : List[str] = data def lowerCamelCase__ ( self : str , snake_case : MyNode | None ) -> None: __UpperCAmelCase : int = node def lowerCamelCase__ ( self : Union[str, Any] , snake_case : MyNode | None ) -> None: __UpperCAmelCase : str = node def lowerCamelCase__ ( self : Tuple , snake_case : int ) -> None: __UpperCAmelCase : str = height def _a ( _lowercase : MyNode | None ): '''simple docstring''' if node is None: return 0 return node.get_height() def _a ( _lowercase : int , _lowercase : int ): '''simple docstring''' if a > b: return a return b def _a ( _lowercase : MyNode ): '''simple docstring''' print('''left rotation node:''' , node.get_data() ) __UpperCAmelCase : Any = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(_lowercase ) __UpperCAmelCase : List[Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_lowercase ) __UpperCAmelCase : Optional[Any] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_lowercase ) return ret def _a ( _lowercase : MyNode ): '''simple docstring''' print('''right rotation node:''' , node.get_data() ) __UpperCAmelCase : List[Any] = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(_lowercase ) __UpperCAmelCase : Any = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_lowercase ) __UpperCAmelCase : int = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_lowercase ) return ret def _a ( _lowercase : MyNode ): '''simple docstring''' __UpperCAmelCase : List[str] = node.get_left() assert left_child is not None node.set_left(left_rotation(_lowercase ) ) return right_rotation(_lowercase ) def _a ( _lowercase : MyNode ): '''simple docstring''' __UpperCAmelCase : Dict = node.get_right() assert right_child is not None node.set_right(right_rotation(_lowercase ) ) return left_rotation(_lowercase ) def _a ( _lowercase : MyNode | None , _lowercase : Any ): '''simple docstring''' if node is None: return MyNode(_lowercase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , _lowercase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected __UpperCAmelCase : List[str] = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child __UpperCAmelCase : Dict = right_rotation(_lowercase ) else: __UpperCAmelCase : List[str] = lr_rotation(_lowercase ) else: node.set_right(insert_node(node.get_right() , _lowercase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: __UpperCAmelCase : List[str] = node.get_right() assert right_child is not None if data < right_child.get_data(): __UpperCAmelCase : List[Any] = rl_rotation(_lowercase ) else: __UpperCAmelCase : Union[str, Any] = left_rotation(_lowercase ) __UpperCAmelCase : List[Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_lowercase ) return node def _a ( _lowercase : MyNode ): '''simple docstring''' while True: __UpperCAmelCase : List[Any] = root.get_right() if right_child is None: break __UpperCAmelCase : List[Any] = right_child return root.get_data() def _a ( _lowercase : MyNode ): '''simple docstring''' while True: __UpperCAmelCase : List[str] = root.get_left() if left_child is None: break __UpperCAmelCase : str = left_child return root.get_data() def _a ( _lowercase : MyNode , _lowercase : Any ): '''simple docstring''' __UpperCAmelCase : Optional[int] = root.get_left() __UpperCAmelCase : Any = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: __UpperCAmelCase : List[str] = get_left_most(_lowercase ) root.set_data(_lowercase ) root.set_right(del_node(_lowercase , _lowercase ) ) elif left_child is not None: __UpperCAmelCase : Any = left_child elif right_child is not None: __UpperCAmelCase : Optional[int] = right_child else: return None elif root.get_data() > data: if left_child is None: print('''No such data''' ) return root else: root.set_left(del_node(_lowercase , _lowercase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(_lowercase , _lowercase ) ) if get_height(_lowercase ) - get_height(_lowercase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): __UpperCAmelCase : int = left_rotation(_lowercase ) else: __UpperCAmelCase : Union[str, Any] = rl_rotation(_lowercase ) elif get_height(_lowercase ) - get_height(_lowercase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): __UpperCAmelCase : Tuple = right_rotation(_lowercase ) else: __UpperCAmelCase : List[Any] = lr_rotation(_lowercase ) __UpperCAmelCase : int = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(_lowercase ) return root class a : """simple docstring""" def __init__( self : Tuple ) -> None: __UpperCAmelCase : MyNode | None = None def lowerCamelCase__ ( self : Optional[Any] ) -> int: return get_height(self.root ) def lowerCamelCase__ ( self : Any , snake_case : Any ) -> None: print('''insert:''' + str(snake_case ) ) __UpperCAmelCase : Optional[int] = insert_node(self.root , snake_case ) def lowerCamelCase__ ( self : Any , snake_case : Any ) -> None: print('''delete:''' + str(snake_case ) ) if self.root is None: print('''Tree is empty!''' ) return __UpperCAmelCase : List[str] = del_node(self.root , snake_case ) def __str__( self : str , ) -> str: # a level traversale, gives a more intuitive look on the tree __UpperCAmelCase : List[Any] = '''''' __UpperCAmelCase : Tuple = MyQueue() q.push(self.root ) __UpperCAmelCase : Any = self.get_height() if layer == 0: return output __UpperCAmelCase : Optional[Any] = 0 while not q.is_empty(): __UpperCAmelCase : Any = q.pop() __UpperCAmelCase : str = ''' ''' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(snake_case ) q.push(snake_case ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space __UpperCAmelCase : Optional[int] = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , snake_case ) - 1: __UpperCAmelCase : str = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def _a ( ): '''simple docstring''' import doctest doctest.testmod() if __name__ == "__main__": _test() __UpperCAmelCase :List[Any] = AVLtree() __UpperCAmelCase :int = list(range(1_0)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
266
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar __UpperCAmelCase :Optional[int] = TypeVar("KEY") __UpperCAmelCase :Tuple = TypeVar("VAL") @dataclass(frozen=_a , slots=_a ) class a ( Generic[KEY, VAL] ): """simple docstring""" SCREAMING_SNAKE_CASE : KEY SCREAMING_SNAKE_CASE : VAL class a ( _Item ): """simple docstring""" def __init__( self : Optional[int] ) -> None: super().__init__(snake_case , snake_case ) def __bool__( self : Dict ) -> bool: return False __UpperCAmelCase :Optional[Any] = _DeletedItem() class a ( MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : str , snake_case : int = 8 , snake_case : float = 0.75 ) -> None: __UpperCAmelCase : Dict = initial_block_size __UpperCAmelCase : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __UpperCAmelCase : str = capacity_factor __UpperCAmelCase : Optional[int] = 0 def lowerCamelCase__ ( self : Optional[Any] , snake_case : KEY ) -> int: return hash(snake_case ) % len(self._buckets ) def lowerCamelCase__ ( self : Union[str, Any] , snake_case : int ) -> int: return (ind + 1) % len(self._buckets ) def lowerCamelCase__ ( self : List[str] , snake_case : int , snake_case : KEY , snake_case : VAL ) -> bool: __UpperCAmelCase : int = self._buckets[ind] if not stored: __UpperCAmelCase : List[str] = _Item(snake_case , snake_case ) self._len += 1 return True elif stored.key == key: __UpperCAmelCase : int = _Item(snake_case , snake_case ) return True else: return False def lowerCamelCase__ ( self : str ) -> bool: __UpperCAmelCase : Union[str, Any] = len(self._buckets ) * self._capacity_factor return len(self ) >= int(snake_case ) def lowerCamelCase__ ( self : List[str] ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False __UpperCAmelCase : List[str] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def lowerCamelCase__ ( self : Optional[int] , snake_case : int ) -> None: __UpperCAmelCase : Union[str, Any] = self._buckets __UpperCAmelCase : Union[str, Any] = [None] * new_size __UpperCAmelCase : List[str] = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def lowerCamelCase__ ( self : Optional[int] ) -> None: self._resize(len(self._buckets ) * 2 ) def lowerCamelCase__ ( self : List[str] ) -> None: self._resize(len(self._buckets ) // 2 ) def lowerCamelCase__ ( self : Union[str, Any] , snake_case : KEY ) -> Iterator[int]: __UpperCAmelCase : Tuple = self._get_bucket_index(snake_case ) for _ in range(len(self._buckets ) ): yield ind __UpperCAmelCase : Dict = self._get_next_ind(snake_case ) def lowerCamelCase__ ( self : str , snake_case : KEY , snake_case : VAL ) -> None: for ind in self._iterate_buckets(snake_case ): if self._try_set(snake_case , snake_case , snake_case ): break def __setitem__( self : List[str] , snake_case : KEY , snake_case : VAL ) -> None: if self._is_full(): self._size_up() self._add_item(snake_case , snake_case ) def __delitem__( self : Any , snake_case : KEY ) -> None: for ind in self._iterate_buckets(snake_case ): __UpperCAmelCase : List[Any] = self._buckets[ind] if item is None: raise KeyError(snake_case ) if item is _deleted: continue if item.key == key: __UpperCAmelCase : Optional[Any] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : List[str] , snake_case : KEY ) -> VAL: for ind in self._iterate_buckets(snake_case ): __UpperCAmelCase : Optional[int] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(snake_case ) def __len__( self : List[Any] ) -> int: return self._len def __iter__( self : str ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ) -> str: __UpperCAmelCase : str = ''' ,'''.join( f'{item.key}: {item.val}' for item in self._buckets if item ) return f'HashMap({val_string})'
266
1
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowercase_ (unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=13 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=True , lowercase_=99 , lowercase_=32 , lowercase_=5 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=16 , lowercase_=2 , lowercase_=0.02 , lowercase_=4 , ) -> Dict: a__ =parent a__ =batch_size a__ =seq_length a__ =is_training a__ =use_attention_mask a__ =use_token_type_ids a__ =use_labels a__ =vocab_size a__ =hidden_size a__ =num_hidden_layers a__ =num_attention_heads a__ =intermediate_size a__ =hidden_act a__ =hidden_dropout_prob a__ =attention_probs_dropout_prob a__ =max_position_embeddings a__ =type_vocab_size a__ =type_sequence_label_size a__ =initializer_range a__ =num_choices def __UpperCamelCase ( self) -> Optional[Any]: a__ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a__ =None if self.use_attention_mask: a__ =random_attention_mask([self.batch_size, self.seq_length]) a__ =None if self.use_token_type_ids: a__ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a__ =RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCamelCase ( self) -> Tuple: a__ =self.prepare_config_and_inputs() a__ , a__ , a__ , a__ =config_and_inputs a__ ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def __UpperCamelCase ( self) -> List[str]: a__ =self.prepare_config_and_inputs() a__ , a__ , a__ , a__ =config_and_inputs a__ =True a__ =floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) a__ =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowercase_ (lowercase__ , unittest.TestCase ): snake_case =True snake_case =( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCamelCase ( self) -> List[str]: a__ =FlaxRobertaModelTester(self) @slow def __UpperCamelCase ( self) -> List[Any]: for model_class_name in self.all_model_classes: a__ =model_class_name.from_pretrained('roberta-base' , from_pt=lowercase_) a__ =model(np.ones((1, 1))) self.assertIsNotNone(lowercase_)
20
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Tuple = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class snake_case ( lowercase_ ): """simple docstring""" _a = """roberta""" def __init__( self, _lowercase=50265, _lowercase=768, _lowercase=12, _lowercase=12, _lowercase=3072, _lowercase="gelu", _lowercase=0.1, _lowercase=0.1, _lowercase=512, _lowercase=2, _lowercase=0.02, _lowercase=1E-12, _lowercase=1, _lowercase=0, _lowercase=2, _lowercase="absolute", _lowercase=True, _lowercase=None, **_lowercase, ) -> Dict: super().__init__(pad_token_id=_lowercase, bos_token_id=_lowercase, eos_token_id=_lowercase, **_lowercase ) SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = position_embedding_type SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = classifier_dropout class snake_case ( lowercase_ ): """simple docstring""" @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
294
0
"""simple docstring""" class a__ : def __init__( self ): lowercase : List[Any] = "" lowercase : Dict = "" lowercase : Optional[int] = [] def __magic_name__ ( self , _a , _a ): if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: lowercase : Any = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: lowercase : Dict = self.__min_dist_top_down_dp(_a , n - 1 ) lowercase : Dict = self.__min_dist_top_down_dp(m - 1 , _a ) lowercase : Any = self.__min_dist_top_down_dp(m - 1 , n - 1 ) lowercase : str = 1 + min(_a , _a , _a ) return self.dp[m][n] def __magic_name__ ( self , _a , _a ): lowercase : str = worda lowercase : Optional[Any] = worda lowercase : List[str] = [[-1 for _ in range(len(_a ) )] for _ in range(len(_a ) )] return self.__min_dist_top_down_dp(len(_a ) - 1 , len(_a ) - 1 ) def __magic_name__ ( self , _a , _a ): lowercase : Dict = worda lowercase : Dict = worda lowercase : Optional[Any] = len(_a ) lowercase : Optional[Any] = len(_a ) lowercase : Any = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty lowercase : str = j elif j == 0: # second string is empty lowercase : List[str] = i elif worda[i - 1] == worda[j - 1]: # last characters are equal lowercase : List[Any] = self.dp[i - 1][j - 1] else: lowercase : Optional[Any] = self.dp[i][j - 1] lowercase : Any = self.dp[i - 1][j] lowercase : int = self.dp[i - 1][j - 1] lowercase : Optional[Any] = 1 + min(_a , _a , _a ) return self.dp[m][n] if __name__ == "__main__": _A : List[str] = EditDistance() print("""****************** Testing Edit Distance DP Algorithm ******************""") print() _A : List[Any] = input("""Enter the first string: """).strip() _A : Optional[Any] = input("""Enter the second string: """).strip() print() print(F"The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}") print(F"The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}") print() print("""*************** End of Testing Edit Distance DP Algorithm ***************""")
518
"""simple docstring""" def __magic_name__ ( __snake_case : str ) -> list: lowercase : Optional[Any] = [0] * len(__snake_case ) for i in range(1 , len(__snake_case ) ): # use last results for better performance - dynamic programming lowercase : int = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: lowercase : Any = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 lowercase : List[str] = j return prefix_result def __magic_name__ ( __snake_case : str ) -> int: return max(prefix_function(__snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod()
518
1
from __future__ import annotations def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' if len(_A ) == 0: return False SCREAMING_SNAKE_CASE__ = len(_A ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , _A ) else: return binary_search(a_list[midpoint + 1 :] , _A ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[Any] = input('''Enter numbers separated by comma:\n''').strip() _SCREAMING_SNAKE_CASE : Optional[Any] = [int(item.strip()) for item in user_input.split(''',''')] _SCREAMING_SNAKE_CASE : Optional[int] = int(input('''Enter the number to be found in the list:\n''').strip()) _SCREAMING_SNAKE_CASE : List[Any] = '''''' if binary_search(sequence, target) else '''not ''' print(F"{target} was {not_str}found in {sequence}")
493
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class UpperCAmelCase__ ( A__ , A__ ): """simple docstring""" @register_to_config def __init__( self : int , __lowerCamelCase : int = 128 , __lowerCamelCase : int = 256 , __lowerCamelCase : float = 2000.0 , __lowerCamelCase : int = 768 , __lowerCamelCase : int = 12 , __lowerCamelCase : int = 12 , __lowerCamelCase : int = 64 , __lowerCamelCase : int = 2048 , __lowerCamelCase : float = 0.1 , ) -> Dict: super().__init__() SCREAMING_SNAKE_CASE__ = nn.Sequential( nn.Linear(__lowerCamelCase , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , ) SCREAMING_SNAKE_CASE__ = nn.Embedding(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = nn.Dropout(p=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = nn.ModuleList() for lyr_num in range(__lowerCamelCase ): # FiLM conditional T5 decoder SCREAMING_SNAKE_CASE__ = DecoderLayer(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase ) self.decoders.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = TaLayerNorm(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = nn.Dropout(p=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) def lowercase_ ( self : Dict , __lowerCamelCase : str , __lowerCamelCase : int ) -> List[Any]: SCREAMING_SNAKE_CASE__ = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def lowercase_ ( self : int , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Dict ) -> Any: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. SCREAMING_SNAKE_CASE__ = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) SCREAMING_SNAKE_CASE__ = self.conditioning_emb(__lowerCamelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) SCREAMING_SNAKE_CASE__ = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. SCREAMING_SNAKE_CASE__ = torch.broadcast_to( torch.arange(__lowerCamelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) SCREAMING_SNAKE_CASE__ = self.position_encoding(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.continuous_inputs_projection(__lowerCamelCase ) inputs += position_encodings SCREAMING_SNAKE_CASE__ = self.dropout(__lowerCamelCase ) # decoder: No padding present. SCREAMING_SNAKE_CASE__ = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. SCREAMING_SNAKE_CASE__ = [(x, self.encoder_decoder_mask(__lowerCamelCase , __lowerCamelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings SCREAMING_SNAKE_CASE__ = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) SCREAMING_SNAKE_CASE__ = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: SCREAMING_SNAKE_CASE__ = lyr( __lowerCamelCase , conditioning_emb=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , )[0] SCREAMING_SNAKE_CASE__ = self.decoder_norm(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.post_dropout(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.spec_out(__lowerCamelCase ) return spec_out class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any]=1e-6 ) -> List[Any]: super().__init__() SCREAMING_SNAKE_CASE__ = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase ) ) def lowercase_ ( self : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : Dict=None , __lowerCamelCase : Any=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=None , ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.layer[0]( __lowerCamelCase , conditioning_emb=__lowerCamelCase , attention_mask=__lowerCamelCase , ) if encoder_hidden_states is not None: SCREAMING_SNAKE_CASE__ = torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to( encoder_hidden_states.dtype ) SCREAMING_SNAKE_CASE__ = self.layer[1]( __lowerCamelCase , key_value_states=__lowerCamelCase , attention_mask=__lowerCamelCase , ) # Apply Film Conditional Feed Forward layer SCREAMING_SNAKE_CASE__ = self.layer[-1](__lowerCamelCase , __lowerCamelCase ) return (hidden_states,) class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Any , __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : List[str] ) -> Dict: super().__init__() SCREAMING_SNAKE_CASE__ = TaLayerNorm(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = nn.Dropout(__lowerCamelCase ) def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple=None , __lowerCamelCase : Union[str, Any]=None , ) -> Dict: # pre_self_attention_layer_norm SCREAMING_SNAKE_CASE__ = self.layer_norm(__lowerCamelCase ) if conditioning_emb is not None: SCREAMING_SNAKE_CASE__ = self.FiLMLayer(__lowerCamelCase , __lowerCamelCase ) # Self-attention block SCREAMING_SNAKE_CASE__ = self.attention(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = hidden_states + self.dropout(__lowerCamelCase ) return hidden_states class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] ) -> int: super().__init__() SCREAMING_SNAKE_CASE__ = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = nn.Dropout(__lowerCamelCase ) def lowercase_ ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Dict=None , __lowerCamelCase : Tuple=None , ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.layer_norm(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.attention( __lowerCamelCase , encoder_hidden_states=__lowerCamelCase , attention_mask=attention_mask.squeeze(1 ) , ) SCREAMING_SNAKE_CASE__ = hidden_states + self.dropout(__lowerCamelCase ) return layer_output class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] ) -> Tuple: super().__init__() SCREAMING_SNAKE_CASE__ = TaDenseGatedActDense(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = nn.Dropout(__lowerCamelCase ) def lowercase_ ( self : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any=None ) -> Dict: SCREAMING_SNAKE_CASE__ = self.layer_norm(__lowerCamelCase ) if conditioning_emb is not None: SCREAMING_SNAKE_CASE__ = self.film(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.DenseReluDense(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = hidden_states + self.dropout(__lowerCamelCase ) return hidden_states class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : int , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ) -> List[Any]: super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = nn.Dropout(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = NewGELUActivation() def lowercase_ ( self : List[Any] , __lowerCamelCase : Dict ) -> Dict: SCREAMING_SNAKE_CASE__ = self.act(self.wi_a(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = self.wi_a(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = hidden_gelu * hidden_linear SCREAMING_SNAKE_CASE__ = self.dropout(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.wo(__lowerCamelCase ) return hidden_states class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : List[str]=1e-6 ) -> List[str]: super().__init__() SCREAMING_SNAKE_CASE__ = nn.Parameter(torch.ones(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = eps def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : str ) -> List[Any]: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 SCREAMING_SNAKE_CASE__ = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: SCREAMING_SNAKE_CASE__ = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def lowercase_ ( self : str , __lowerCamelCase : torch.Tensor ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044715 * torch.pow(__lowerCamelCase , 3.0 )) )) class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : List[str] ) -> Tuple: super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(__lowerCamelCase , out_features * 2 , bias=__lowerCamelCase ) def lowercase_ ( self : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict ) -> str: SCREAMING_SNAKE_CASE__ = self.scale_bias(__lowerCamelCase ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = torch.chunk(__lowerCamelCase , 2 , -1 ) SCREAMING_SNAKE_CASE__ = x * (1 + scale) + shift return x
493
1
'''simple docstring''' import csv import tweepy # Twitter API credentials lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" def lowerCamelCase_ ( lowerCAmelCase: str )-> None: # authorize twitter, initialize tweepy _snake_case : Optional[Any] = tweepy.OAuthHandler(lowerCAmelCase , lowerCAmelCase ) auth.set_access_token(lowerCAmelCase , lowerCAmelCase ) _snake_case : List[Any] = tweepy.API(lowerCAmelCase ) # initialize a list to hold all the tweepy Tweets _snake_case : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) _snake_case : List[str] = api.user_timeline(screen_name=lowerCAmelCase , count=2_00 ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # save the id of the oldest tweet less one _snake_case : List[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCAmelCase ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates _snake_case : Tuple = api.user_timeline( screen_name=lowerCAmelCase , count=2_00 , max_id=lowerCAmelCase ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # update the id of the oldest tweet less one _snake_case : List[str] = alltweets[-1].id - 1 print(F"""...{len(lowerCAmelCase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv _snake_case : int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , 'w' ) as f: _snake_case : Any = csv.writer(lowerCAmelCase ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(lowerCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
701
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowerCAmelCase_ = """http://www.mocksite.com/file1.txt""" lowerCAmelCase_ = """\"text\": [\"foo\", \"foo\"]""" lowerCAmelCase_ = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class _lowerCAmelCase : '''simple docstring''' a_ : int =200 a_ : List[str] ={"""Content-Length""": """100"""} a_ : Tuple ={} def UpperCamelCase_ ( self : Any , **UpperCamelCase : Any ): '''simple docstring''' return [bytes(UpperCamelCase , 'utf-8' )] def lowerCamelCase_ ( *lowerCAmelCase: Tuple , **lowerCAmelCase: Tuple )-> str: return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict )-> Optional[Any]: import requests monkeypatch.setattr(lowerCAmelCase , 'request' , lowerCAmelCase ) _snake_case : List[str] = URL if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[int] = url elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Any = [url] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': url} _snake_case : int = 'dummy' _snake_case : Optional[Any] = 'downloads' _snake_case : Union[str, Any] = tmp_path _snake_case : Dict = DownloadConfig( cache_dir=os.path.join(lowerCAmelCase , lowerCAmelCase ) , use_etag=lowerCAmelCase , ) _snake_case : str = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Optional[int] = dl_manager.download(lowerCAmelCase ) _snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = [downloaded_paths] _snake_case : List[str] = [urls] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in downloaded_paths.keys() _snake_case : Any = downloaded_paths.values() _snake_case : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowerCAmelCase , lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _snake_case : str = Path(lowerCAmelCase ) _snake_case : int = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _snake_case : List[str] = downloaded_path.read_text() assert content == CONTENT _snake_case : Any = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _snake_case : Tuple = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Any )-> str: _snake_case : str = str(lowerCAmelCase ) if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : str = filename elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[Any] = [filename] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': filename} _snake_case : Any = 'dummy' _snake_case : Union[str, Any] = xz_file.parent _snake_case : int = 'extracted' _snake_case : Union[str, Any] = DownloadConfig( cache_dir=lowerCAmelCase , use_etag=lowerCAmelCase , ) _snake_case : List[str] = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Dict = dl_manager.extract(lowerCAmelCase ) _snake_case : Optional[int] = paths for extracted_paths in [extracted_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[str] = [extracted_paths] _snake_case : int = [paths] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in extracted_paths.keys() _snake_case : Optional[int] = extracted_paths.values() _snake_case : str = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowerCAmelCase , lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _snake_case : List[str] = Path(lowerCAmelCase ) _snake_case : Optional[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowerCAmelCase , etag=lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _snake_case : Optional[int] = extracted_path.read_text() _snake_case : int = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[Any] )-> Dict: assert path.endswith('.jsonl' ) for num_items, line in enumerate(lowerCAmelCase , start=1 ): _snake_case : Dict = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[str] )-> Dict: _snake_case : List[str] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: int )-> str: _snake_case : List[Any] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def lowerCamelCase_ ( lowerCAmelCase: Any )-> int: _snake_case : Tuple = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowerCAmelCase ) , start=1 ): assert os.path.basename(lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
669
0
"""simple docstring""" def lowerCAmelCase_( lowercase_ : int = 1 , lowercase_ : int = 10_00 ) -> int: _lowerCamelCase = 1 _lowerCamelCase = 0 for divide_by_number in range(lowercase_ , digit + 1 ): _lowerCamelCase = [] _lowerCamelCase = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(lowercase_ ): _lowerCamelCase = len(lowercase_ ) _lowerCamelCase = divide_by_number else: has_been_divided.append(lowercase_ ) _lowerCamelCase = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
661
"""simple docstring""" from __future__ import annotations from math import ceil, floor, sqrt def lowerCAmelCase_( lowercase_ : int = 2_00_00_00 ) -> int: _lowerCamelCase = [0] _lowerCamelCase = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target _lowerCamelCase = 0 # the area corresponding to the grid that gives the product closest to target _lowerCamelCase = 0 # an estimate of b, using the quadratic formula _lowerCamelCase = 42 # the largest integer less than b_estimate _lowerCamelCase = 42 # the largest integer less than b_estimate _lowerCamelCase = 42 # the triangle number corresponding to b_floor _lowerCamelCase = 42 # the triangle number corresponding to b_ceil _lowerCamelCase = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): _lowerCamelCase = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 _lowerCamelCase = floor(lowercase_ ) _lowerCamelCase = ceil(lowercase_ ) _lowerCamelCase = triangle_numbers[b_floor] _lowerCamelCase = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): _lowerCamelCase = triangle_b_first_guess * triangle_a _lowerCamelCase = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): _lowerCamelCase = triangle_b_second_guess * triangle_a _lowerCamelCase = idx_a * b_ceil return area if __name__ == "__main__": print(F"""{solution() = }""")
661
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) class a ( UpperCamelCase_ ): _snake_case = '''timm_backbone''' def __init__( self : int, SCREAMING_SNAKE_CASE_ : Any=None, SCREAMING_SNAKE_CASE_ : str=3, SCREAMING_SNAKE_CASE_ : List[str]=True, SCREAMING_SNAKE_CASE_ : str=True, SCREAMING_SNAKE_CASE_ : List[str]=None, **SCREAMING_SNAKE_CASE_ : List[str], ): super().__init__(**UpperCamelCase__ ) snake_case : Optional[Any] = backbone snake_case : str = num_channels snake_case : Dict = features_only snake_case : Dict = use_pretrained_backbone snake_case : List[str] = True snake_case : int = out_indices if out_indices is not None else (-1,)
712
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase = { "configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertOnnxConfig"], "tokenization_convbert": ["ConvBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ["ConvBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvBertForMaskedLM", "ConvBertForMultipleChoice", "ConvBertForQuestionAnswering", "ConvBertForSequenceClassification", "ConvBertForTokenClassification", "ConvBertLayer", "ConvBertModel", "ConvBertPreTrainedModel", "load_tf_weights_in_convbert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFConvBertForMaskedLM", "TFConvBertForMultipleChoice", "TFConvBertForQuestionAnswering", "TFConvBertForSequenceClassification", "TFConvBertForTokenClassification", "TFConvBertLayer", "TFConvBertModel", "TFConvBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
555
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowercase__( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Optional[int] ) -> Union[str, Any]: lowercase_ = TFCamembertModel.from_pretrained('''jplu/tf-camembert-base''' ) lowercase_ = tf.convert_to_tensor( [[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" lowercase_ = model(SCREAMING_SNAKE_CASE_ )['''last_hidden_state'''] lowercase_ = tf.TensorShape((1, 1_0, 7_6_8) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) # compare the actual values for a slice. lowercase_ = tf.convert_to_tensor( [[[-0.02_54, 0.02_35, 0.10_27], [0.06_06, -0.18_11, -0.04_18], [-0.15_61, -0.11_27, 0.26_87]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
97
'''simple docstring''' import math import sys def lowercase__ ( __UpperCamelCase )-> int: if number != int(__UpperCamelCase ): raise ValueError("""the value of input must be a natural number""" ) if number < 0: raise ValueError("""the value of input must not be a negative number""" ) if number == 0: return 1 UpperCamelCase = [-1] * (number + 1) UpperCamelCase = 0 for i in range(1 , number + 1 ): UpperCamelCase = sys.maxsize UpperCamelCase = int(math.sqrt(__UpperCamelCase ) ) for j in range(1 , root + 1 ): UpperCamelCase = 1 + answers[i - (j**2)] UpperCamelCase = min(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
301
0
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder lowerCAmelCase__ = """__DUMMY_TRANSFORMERS_USER__""" lowerCAmelCase__ = """Dummy User""" lowerCAmelCase__ = """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""" lowerCAmelCase__ = """https://hub-ci.huggingface.co""" lowerCAmelCase__ = CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}""" lowerCAmelCase__ = CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}""" lowerCAmelCase__ = Path("""~/.huggingface/hub_ci_token""").expanduser() @pytest.fixture def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> Dict: '''simple docstring''' monkeypatch.setattr( 'huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE' , UpperCAmelCase_ ) @pytest.fixture def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr('datasets.config.HF_ENDPOINT' , UpperCAmelCase_ ) monkeypatch.setattr('datasets.config.HUB_DATASETS_URL' , UpperCAmelCase_ ) @pytest.fixture def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' monkeypatch.setattr('huggingface_hub.hf_api.HfFolder.path_token' , UpperCAmelCase_ ) @pytest.fixture def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' HfFolder.save_token(UpperCAmelCase_ ) yield HfFolder.delete_token() @pytest.fixture(scope='session' ) def lowerCamelCase_ ( ) -> int: '''simple docstring''' return HfApi(endpoint=UpperCAmelCase_ ) @pytest.fixture(scope='session' ) def lowerCamelCase_ ( UpperCAmelCase_ : HfApi ) -> List[Any]: '''simple docstring''' _UpperCamelCase : str = HfFolder.get_token() HfFolder.save_token(UpperCAmelCase_ ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(UpperCAmelCase_ ) @pytest.fixture def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] ) -> Any: '''simple docstring''' def _cleanup_repo(UpperCAmelCase_ : List[str] ): hf_api.delete_repo(UpperCAmelCase_ , token=UpperCAmelCase_ , repo_type='dataset' ) return _cleanup_repo @pytest.fixture def lowerCamelCase_ ( UpperCAmelCase_ : List[str] ) -> int: '''simple docstring''' @contextmanager def _temporary_repo(UpperCAmelCase_ : Union[str, Any] ): try: yield repo_id finally: cleanup_repo(UpperCAmelCase_ ) return _temporary_repo @pytest.fixture(scope='session' ) def lowerCamelCase_ ( UpperCAmelCase_ : HfApi , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any ) -> str: '''simple docstring''' _UpperCamelCase : Union[str, Any] = F'''repo_txt_data-{int(time.time() * 1_0e3 )}''' _UpperCamelCase : Union[str, Any] = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(UpperCAmelCase_ , token=UpperCAmelCase_ , repo_type='dataset' , private=UpperCAmelCase_ ) hf_api.upload_file( token=UpperCAmelCase_ , path_or_fileobj=str(UpperCAmelCase_ ) , path_in_repo='data/text_data.txt' , repo_id=UpperCAmelCase_ , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(UpperCAmelCase_ , token=UpperCAmelCase_ , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] ) -> Union[str, Any]: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='session' ) def lowerCamelCase_ ( UpperCAmelCase_ : HfApi , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] ) -> str: '''simple docstring''' _UpperCamelCase : Dict = F'''repo_zipped_txt_data-{int(time.time() * 1_0e3 )}''' _UpperCamelCase : str = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(UpperCAmelCase_ , token=UpperCAmelCase_ , repo_type='dataset' , private=UpperCAmelCase_ ) hf_api.upload_file( token=UpperCAmelCase_ , path_or_fileobj=str(UpperCAmelCase_ ) , path_in_repo='data.zip' , repo_id=UpperCAmelCase_ , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(UpperCAmelCase_ , token=UpperCAmelCase_ , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple ) -> str: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='session' ) def lowerCamelCase_ ( UpperCAmelCase_ : HfApi , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict ) -> int: '''simple docstring''' _UpperCamelCase : str = F'''repo_zipped_img_data-{int(time.time() * 1_0e3 )}''' _UpperCamelCase : int = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(UpperCAmelCase_ , token=UpperCAmelCase_ , repo_type='dataset' , private=UpperCAmelCase_ ) hf_api.upload_file( token=UpperCAmelCase_ , path_or_fileobj=str(UpperCAmelCase_ ) , path_in_repo='data.zip' , repo_id=UpperCAmelCase_ , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(UpperCAmelCase_ , token=UpperCAmelCase_ , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ) -> List[str]: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
648
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=99 , __snake_case=64 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=37 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=16 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=3 , __snake_case=4 , __snake_case=None , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Optional[Any] = batch_size _UpperCamelCase : int = seq_length _UpperCamelCase : str = is_training _UpperCamelCase : Tuple = use_input_mask _UpperCamelCase : Union[str, Any] = use_token_type_ids _UpperCamelCase : Union[str, Any] = use_labels _UpperCamelCase : Optional[Any] = vocab_size _UpperCamelCase : List[Any] = hidden_size _UpperCamelCase : Optional[Any] = embedding_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : int = intermediate_size _UpperCamelCase : int = hidden_act _UpperCamelCase : Tuple = hidden_dropout_prob _UpperCamelCase : int = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : List[str] = type_vocab_size _UpperCamelCase : Dict = type_sequence_label_size _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : Optional[Any] = num_labels _UpperCamelCase : Tuple = num_choices _UpperCamelCase : List[str] = scope def A__ ( self): _UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase : Any = None if self.use_input_mask: _UpperCamelCase : int = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase : Optional[Any] = None if self.use_token_type_ids: _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase : int = None _UpperCamelCase : List[str] = None _UpperCamelCase : Dict = None if self.use_labels: _UpperCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = MegatronBertModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Dict = model(__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForMaskedLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = MegatronBertForCausalLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Tuple = MegatronBertForNextSentencePrediction(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = MegatronBertForPreTraining(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[str] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , next_sentence_label=__snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForQuestionAnswering(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[int] = self.num_labels _UpperCamelCase : Union[str, Any] = MegatronBertForSequenceClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Any = self.num_labels _UpperCamelCase : Optional[int] = MegatronBertForTokenClassification(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = self.num_choices _UpperCamelCase : Optional[int] = MegatronBertForMultipleChoice(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : List[Any] = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Optional[Any] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Union[str, Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Optional[int] = config_and_inputs _UpperCamelCase : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) a__ = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) a__ = True # test_resize_embeddings = False a__ = False def A__ ( self , __snake_case , __snake_case , __snake_case=False): _UpperCamelCase : str = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case) if return_labels: if model_class in get_values(__snake_case): _UpperCamelCase : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__snake_case) _UpperCamelCase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case) return inputs_dict def A__ ( self): _UpperCamelCase : Any = MegatronBertModelTester(self) _UpperCamelCase : int = ConfigTester(self , config_class=__snake_case , hidden_size=37) def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__snake_case) def A__ ( self): _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__snake_case) def A__ ( self): _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__snake_case) def A__ ( self): _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__snake_case) def A__ ( self): _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__snake_case) def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> Optional[Any]: '''simple docstring''' return torch.tensor( UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ , ) lowerCAmelCase__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip('Model is not available.') def A__ ( self): _UpperCamelCase : int = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: _UpperCamelCase : int = os.path.join(os.environ['MYDIR'] , __snake_case) _UpperCamelCase : Optional[int] = MegatronBertModel.from_pretrained(__snake_case) model.to(__snake_case) model.half() _UpperCamelCase : Optional[Any] = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]]) with torch.no_grad(): _UpperCamelCase : str = model(__snake_case)[0] _UpperCamelCase : Optional[int] = torch.Size((1, 9, 10_24)) self.assertEqual(output.shape , __snake_case) _UpperCamelCase : Union[str, Any] = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3): for jj in range(3): _UpperCamelCase : Optional[Any] = output[0, ii, jj] _UpperCamelCase : Dict = expected[3 * ii + jj] _UpperCamelCase : Optional[int] = 'ii={} jj={} a={} b={}'.format(__snake_case , __snake_case , __snake_case , __snake_case) self.assertTrue(math.isclose(__snake_case , __snake_case , rel_tol=__snake_case , abs_tol=__snake_case) , msg=__snake_case)
648
1
def UpperCamelCase__ ( UpperCAmelCase_ ) -> int: '''simple docstring''' _lowercase : Tuple = hex_num.strip() if not hex_num: raise ValueError('''No value was passed to the function''' ) _lowercase : int = hex_num[0] == '''-''' if is_negative: _lowercase : List[str] = hex_num[1:] try: _lowercase : str = int(UpperCAmelCase_ , 16 ) except ValueError: raise ValueError('''Invalid value was passed to the function''' ) _lowercase : Optional[int] = '''''' while int_num > 0: _lowercase : List[Any] = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('''-''' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
322
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class UpperCAmelCase__ ( A_ ): '''simple docstring''' UpperCAmelCase_ = '''mra''' def __init__( self : Union[str, Any] , UpperCamelCase : Optional[Any]=5_02_65 , UpperCamelCase : Any=7_68 , UpperCamelCase : Tuple=12 , UpperCamelCase : Union[str, Any]=12 , UpperCamelCase : int=30_72 , UpperCamelCase : Any="gelu" , UpperCamelCase : Any=0.1 , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Optional[Any]=5_12 , UpperCamelCase : Union[str, Any]=1 , UpperCamelCase : Tuple=0.02 , UpperCamelCase : Union[str, Any]=1E-5 , UpperCamelCase : Tuple="absolute" , UpperCamelCase : Union[str, Any]=4 , UpperCamelCase : Optional[Any]="full" , UpperCamelCase : List[str]=0 , UpperCamelCase : Tuple=0 , UpperCamelCase : Any=1 , UpperCamelCase : Any=0 , UpperCamelCase : Optional[int]=2 , **UpperCamelCase : Union[str, Any] , ): """simple docstring""" super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) _lowercase : List[Any] = vocab_size _lowercase : Any = max_position_embeddings _lowercase : List[str] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Optional[Any] = num_attention_heads _lowercase : Any = intermediate_size _lowercase : Any = hidden_act _lowercase : str = hidden_dropout_prob _lowercase : str = attention_probs_dropout_prob _lowercase : int = initializer_range _lowercase : Dict = type_vocab_size _lowercase : Union[str, Any] = layer_norm_eps _lowercase : Tuple = position_embedding_type _lowercase : List[str] = block_per_row _lowercase : int = approx_mode _lowercase : Optional[Any] = initial_prior_first_n_blocks _lowercase : Dict = initial_prior_diagonal_n_blocks
322
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCamelCase :str = logging.get_logger(__name__) lowerCamelCase :Dict = '▁' lowerCamelCase :Optional[Any] = {'vocab_file': 'sentencepiece.bpe.model'} lowerCamelCase :List[Any] = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model' ), } } lowerCamelCase :List[str] = { 'facebook/nllb-200-distilled-600M': 1024, } # fmt: off lowerCamelCase :Dict = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class UpperCAmelCase ( __snake_case ): a: List[str] = VOCAB_FILES_NAMES a: Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a: Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP a: List[str] = ["input_ids", "attention_mask"] a: List[int] = [] a: List[int] = [] def __init__( self: Any , __UpperCamelCase: Tuple , __UpperCamelCase: str="<s>" , __UpperCamelCase: Dict="</s>" , __UpperCamelCase: Union[str, Any]="</s>" , __UpperCamelCase: str="<s>" , __UpperCamelCase: List[str]="<unk>" , __UpperCamelCase: Union[str, Any]="<pad>" , __UpperCamelCase: List[Any]="<mask>" , __UpperCamelCase: Optional[Any]=None , __UpperCamelCase: Tuple=None , __UpperCamelCase: Optional[int]=None , __UpperCamelCase: Optional[Dict[str, Any]] = None , __UpperCamelCase: Optional[int]=None , __UpperCamelCase: Optional[int]=False , **__UpperCamelCase: int , ): # Mask token behave like a normal word, i.e. include the space before it _a = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token _a = {} if sp_model_kwargs is None else sp_model_kwargs _a = legacy_behaviour super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , tokenizer_file=__UpperCamelCase , src_lang=__UpperCamelCase , tgt_lang=__UpperCamelCase , additional_special_tokens=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=__UpperCamelCase , **__UpperCamelCase , ) _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCamelCase ) ) _a = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token _a = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _a = 1 _a = len(self.sp_model ) _a = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__UpperCamelCase ) } _a = {v: k for k, v in self.lang_code_to_id.items()} _a = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _a = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _a = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) _a = src_lang if src_lang is not None else '''eng_Latn''' _a = self.lang_code_to_id[self._src_lang] _a = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self: int ): _a = self.__dict__.copy() _a = None _a = self.sp_model.serialized_model_proto() return state def __setstate__( self: List[str] , __UpperCamelCase: Any ): _a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _a = {} _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _A ( self: Dict ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _A ( self: Optional[int] ): return self._src_lang @src_lang.setter def _A ( self: int , __UpperCamelCase: str ): _a = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _A ( self: Any , __UpperCamelCase: List[int] , __UpperCamelCase: Optional[List[int]] = None , __UpperCamelCase: bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) _a = [1] * len(self.prefix_tokens ) _a = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__UpperCamelCase )) + suffix_ones return prefix_ones + ([0] * len(__UpperCamelCase )) + ([0] * len(__UpperCamelCase )) + suffix_ones def _A ( self: Union[str, Any] , __UpperCamelCase: List[int] , __UpperCamelCase: Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _A ( self: List[Any] , __UpperCamelCase: List[int] , __UpperCamelCase: Optional[List[int]] = None ): _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _A ( self: Tuple , __UpperCamelCase: Any , __UpperCamelCase: str , __UpperCamelCase: Optional[str] , __UpperCamelCase: Optional[str] , **__UpperCamelCase: Union[str, Any] ): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) _a = src_lang _a = self(__UpperCamelCase , add_special_tokens=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) _a = self.convert_tokens_to_ids(__UpperCamelCase ) _a = tgt_lang_id return inputs def _A ( self: Dict ): _a = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _A ( self: Dict , __UpperCamelCase: str ): return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def _A ( self: List[str] , __UpperCamelCase: str ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _a = self.sp_model.PieceToId(__UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _A ( self: Optional[Any] , __UpperCamelCase: Optional[int] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _A ( self: Optional[int] , __UpperCamelCase: int ): _a = ''''''.join(__UpperCamelCase ).replace(__UpperCamelCase , ''' ''' ).strip() return out_string def _A ( self: List[str] , __UpperCamelCase: str , __UpperCamelCase: Optional[str] = None ): if not os.path.isdir(__UpperCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _a = os.path.join( __UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , '''wb''' ) as fi: _a = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,) def _A ( self: Optional[int] , __UpperCamelCase: List[str] , __UpperCamelCase: str = "eng_Latn" , __UpperCamelCase: Optional[List[str]] = None , __UpperCamelCase: str = "fra_Latn" , **__UpperCamelCase: Tuple , ): _a = src_lang _a = tgt_lang return super().prepare_seqaseq_batch(__UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) def _A ( self: Any ): return self.set_src_lang_special_tokens(self.src_lang ) def _A ( self: Union[str, Any] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _A ( self: Any , __UpperCamelCase: List[Any] ): _a = self.lang_code_to_id[src_lang] if self.legacy_behaviour: _a = [] _a = [self.eos_token_id, self.cur_lang_code] else: _a = [self.cur_lang_code] _a = [self.eos_token_id] def _A ( self: Optional[Any] , __UpperCamelCase: str ): _a = self.lang_code_to_id[lang] if self.legacy_behaviour: _a = [] _a = [self.eos_token_id, self.cur_lang_code] else: _a = [self.cur_lang_code] _a = [self.eos_token_id]
346
def __snake_case ( _UpperCamelCase ) -> str: if number > 0: raise ValueError('''input must be a negative integer''' ) _a = len(bin(_UpperCamelCase )[3:] ) _a = bin(abs(_UpperCamelCase ) - (1 << binary_number_length) )[3:] _a = ( ( '''1''' + '''0''' * (binary_number_length - len(_UpperCamelCase )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
346
1
"""simple docstring""" from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar A : Optional[Any] = TypeVar('T') A : List[Any] = TypeVar('U') class lowerCAmelCase ( Generic[T, U] ): '''simple docstring''' def __init__( self :Tuple , lowerCamelCase_ :T | None , lowerCamelCase_ :U | None ) -> List[Any]: """simple docstring""" UpperCamelCase__ = key UpperCamelCase__ = val UpperCamelCase__ = None UpperCamelCase__ = None def __repr__( self :Optional[Any] ) -> str: """simple docstring""" return ( f'Node: key: {self.key}, val: {self.val}, ' f'has next: {bool(self.next )}, has prev: {bool(self.prev )}' ) class lowerCAmelCase ( Generic[T, U] ): '''simple docstring''' def __init__( self :Optional[Any] ) -> None: """simple docstring""" UpperCamelCase__ = DoubleLinkedListNode(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = DoubleLinkedListNode(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ , UpperCamelCase__ = self.rear, self.head def __repr__( self :Optional[Any] ) -> str: """simple docstring""" UpperCamelCase__ = ["DoubleLinkedList"] UpperCamelCase__ = self.head while node.next is not None: rep.append(str(lowerCamelCase_ ) ) UpperCamelCase__ = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowerCamelCase_ ) def lowerCamelCase__ ( self :Union[str, Any] , lowerCamelCase_ :DoubleLinkedListNode[T, U] ) -> None: """simple docstring""" UpperCamelCase__ = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None UpperCamelCase__ = node UpperCamelCase__ = previous UpperCamelCase__ = node UpperCamelCase__ = self.rear def lowerCamelCase__ ( self :Tuple , lowerCamelCase_ :DoubleLinkedListNode[T, U] ) -> DoubleLinkedListNode[T, U] | None: """simple docstring""" if node.prev is None or node.next is None: return None UpperCamelCase__ = node.next UpperCamelCase__ = node.prev UpperCamelCase__ = None UpperCamelCase__ = None return node class lowerCAmelCase ( Generic[T, U] ): '''simple docstring''' A = {} def __init__( self :List[str] , lowerCamelCase_ :int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = DoubleLinkedList() UpperCamelCase__ = capacity UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = {} def __repr__( self :List[Any] ) -> str: """simple docstring""" return ( f'CacheInfo(hits={self.hits}, misses={self.miss}, ' f'capacity={self.capacity}, current size={self.num_keys})' ) def __contains__( self :Optional[int] , lowerCamelCase_ :T ) -> bool: """simple docstring""" return key in self.cache def lowerCamelCase__ ( self :Union[str, Any] , lowerCamelCase_ :T ) -> U | None: """simple docstring""" if key in self.cache: self.hits += 1 UpperCamelCase__ = self.cache[key] UpperCamelCase__ = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowerCamelCase_ ) return node.val self.miss += 1 return None def lowerCamelCase__ ( self :Any , lowerCamelCase_ :T , lowerCamelCase_ :U ) -> None: """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity UpperCamelCase__ = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowerCamelCase_ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 UpperCamelCase__ = DoubleLinkedListNode(lowerCamelCase_ , lowerCamelCase_ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value UpperCamelCase__ = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list UpperCamelCase__ = value self.list.add(lowerCamelCase_ ) @classmethod def lowerCamelCase__ ( cls :Optional[int] , lowerCamelCase_ :int = 1_2_8 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: """simple docstring""" def cache_decorator_inner(lowerCamelCase_ :Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*lowerCamelCase_ :T ) -> U: if func not in cls.decorator_function_to_instance_map: UpperCamelCase__ = LRUCache(lowerCamelCase_ ) UpperCamelCase__ = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: UpperCamelCase__ = func(*lowerCamelCase_ ) cls.decorator_function_to_instance_map[func].put(args[0] , lowerCamelCase_ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowerCamelCase_ , "cache_info" , lowerCamelCase_ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
516
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() A : Any = logging.get_logger(__name__) def snake_case__ ( _snake_case : Optional[Any] , _snake_case : Any , _snake_case : List[Any] , _snake_case : List[str] ): """simple docstring""" UpperCamelCase__ = original_name.split("." )[0] UpperCamelCase__ = key.split("." ) UpperCamelCase__ = int(key_list[key_list.index(_snake_case ) - 2] ) UpperCamelCase__ = int(key_list[key_list.index(_snake_case ) - 1] ) UpperCamelCase__ = orig_block_num - offset UpperCamelCase__ = key.replace(F'{orig_block_num}.{layer_num}.{original_name}' , F'block.{new_block_num}.{layer_num}.{new_name}' ) return key def snake_case__ ( _snake_case : Tuple ): """simple docstring""" UpperCamelCase__ = OrderedDict() UpperCamelCase__ , UpperCamelCase__ = 0, 0 for key, value in state_dict.items(): if key.startswith("network" ): UpperCamelCase__ = key.replace("network" , "poolformer.encoder" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias" ) and "patch_embed" not in key: patch_emb_offset += 1 UpperCamelCase__ = key[: key.find("proj" )] UpperCamelCase__ = key.replace(_snake_case , F'patch_embeddings.{total_embed_found}.' ) UpperCamelCase__ = key.replace("proj" , "projection" ) if key.endswith("bias" ): total_embed_found += 1 if "patch_embeddings" in key: UpperCamelCase__ = "poolformer.encoder." + key if "mlp.fc1" in key: UpperCamelCase__ = replace_key_with_offset(_snake_case , _snake_case , "mlp.fc1" , "output.conv1" ) if "mlp.fc2" in key: UpperCamelCase__ = replace_key_with_offset(_snake_case , _snake_case , "mlp.fc2" , "output.conv2" ) if "norm1" in key: UpperCamelCase__ = replace_key_with_offset(_snake_case , _snake_case , "norm1" , "before_norm" ) if "norm2" in key: UpperCamelCase__ = replace_key_with_offset(_snake_case , _snake_case , "norm2" , "after_norm" ) if "layer_scale_1" in key: UpperCamelCase__ = replace_key_with_offset(_snake_case , _snake_case , "layer_scale_1" , "layer_scale_1" ) if "layer_scale_2" in key: UpperCamelCase__ = replace_key_with_offset(_snake_case , _snake_case , "layer_scale_2" , "layer_scale_2" ) if "head" in key: UpperCamelCase__ = key.replace("head" , "classifier" ) UpperCamelCase__ = value return new_state_dict def snake_case__ ( ): """simple docstring""" UpperCamelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCamelCase__ = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return image @torch.no_grad() def snake_case__ ( _snake_case : Any , _snake_case : List[str] , _snake_case : List[Any] ): """simple docstring""" UpperCamelCase__ = PoolFormerConfig() # set attributes based on model_name UpperCamelCase__ = "huggingface/label-files" UpperCamelCase__ = model_name[-3:] UpperCamelCase__ = 10_00 UpperCamelCase__ = "imagenet-1k-id2label.json" UpperCamelCase__ = (1, 10_00) # set config attributes UpperCamelCase__ = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type="dataset" ) , "r" ) ) UpperCamelCase__ = {int(_snake_case ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} if size == "s12": UpperCamelCase__ = [2, 2, 6, 2] UpperCamelCase__ = [64, 1_28, 3_20, 5_12] UpperCamelCase__ = 4.0 UpperCamelCase__ = 0.9 elif size == "s24": UpperCamelCase__ = [4, 4, 12, 4] UpperCamelCase__ = [64, 1_28, 3_20, 5_12] UpperCamelCase__ = 4.0 UpperCamelCase__ = 0.9 elif size == "s36": UpperCamelCase__ = [6, 6, 18, 6] UpperCamelCase__ = [64, 1_28, 3_20, 5_12] UpperCamelCase__ = 4.0 UpperCamelCase__ = 1E-6 UpperCamelCase__ = 0.9 elif size == "m36": UpperCamelCase__ = [6, 6, 18, 6] UpperCamelCase__ = [96, 1_92, 3_84, 7_68] UpperCamelCase__ = 4.0 UpperCamelCase__ = 1E-6 UpperCamelCase__ = 0.95 elif size == "m48": UpperCamelCase__ = [8, 8, 24, 8] UpperCamelCase__ = [96, 1_92, 3_84, 7_68] UpperCamelCase__ = 4.0 UpperCamelCase__ = 1E-6 UpperCamelCase__ = 0.95 else: raise ValueError(F'Size {size} not supported' ) # load image processor UpperCamelCase__ = PoolFormerImageProcessor(crop_pct=_snake_case ) # Prepare image UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=_snake_case , return_tensors="pt" ).pixel_values logger.info(F'Converting model {model_name}...' ) # load original state dict UpperCamelCase__ = torch.load(_snake_case , map_location=torch.device("cpu" ) ) # rename keys UpperCamelCase__ = rename_keys(_snake_case ) # create HuggingFace model and load state dict UpperCamelCase__ = PoolFormerForImageClassification(_snake_case ) model.load_state_dict(_snake_case ) model.eval() # Define image processor UpperCamelCase__ = PoolFormerImageProcessor(crop_pct=_snake_case ) UpperCamelCase__ = image_processor(images=prepare_img() , return_tensors="pt" ).pixel_values # forward pass UpperCamelCase__ = model(_snake_case ) UpperCamelCase__ = outputs.logits # define expected logit slices for different models if size == "s12": UpperCamelCase__ = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": UpperCamelCase__ = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": UpperCamelCase__ = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": UpperCamelCase__ = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": UpperCamelCase__ = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , _snake_case , atol=1E-2 ) # finally, save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) model.save_pretrained(_snake_case ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_snake_case ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) A : List[str] = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
516
1
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowerCamelCase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase_ : Dict[str, int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : int = None , UpperCamelCase_ : int = None ) -> Any: '''simple docstring''' super().__init__() _lowercase : Tuple = pad_token_id _lowercase : int = max_length _lowercase : List[Any] = vocab _lowercase : Tuple = merges _lowercase : int = BytePairTokenizer(UpperCamelCase_ , UpperCamelCase_ , sequence_length=UpperCamelCase_ ) @classmethod def __UpperCAmelCase ( cls : Any , UpperCamelCase_ : GPTaTokenizer , *UpperCamelCase_ : List[str] , **UpperCamelCase_ : Union[str, Any] ) -> List[str]: '''simple docstring''' _lowercase : Union[str, Any] = [' '.join(UpperCamelCase_ ) for m in tokenizer.bpe_ranks.keys()] _lowercase : int = tokenizer.get_vocab() return cls(UpperCamelCase_ , UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def __UpperCAmelCase ( cls : int , UpperCamelCase_ : Union[str, os.PathLike] , *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Dict ) -> Dict: '''simple docstring''' _lowercase : int = GPTaTokenizer.from_pretrained(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) return cls.from_tokenizer(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Any ) -> List[str]: '''simple docstring''' return cls(**UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int = None ) -> List[Any]: '''simple docstring''' _lowercase : Any = self.tf_tokenizer(UpperCamelCase_ ) _lowercase : Optional[Any] = tf.ones_like(UpperCamelCase_ ) if self.pad_token_id is not None: # pad the tokens up to max length _lowercase : Optional[int] = max_length if max_length is not None else self.max_length if max_length is not None: _lowercase , _lowercase : List[Any] = pad_model_inputs( UpperCamelCase_ , max_seq_length=UpperCamelCase_ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
4
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __UpperCamelCase ( _lowercase ) -> None: _lowercase , _lowercase : List[Any] = analyze_text(_lowercase ) _lowercase : Any = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. _lowercase : Union[str, Any] = sum(single_char_strings.values() ) # one length string _lowercase : Union[str, Any] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: _lowercase : Any = single_char_strings[ch] _lowercase : int = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string _lowercase : str = sum(two_char_strings.values() ) _lowercase : str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: _lowercase : Optional[Any] = cha + cha if sequence in two_char_strings: _lowercase : int = two_char_strings[sequence] _lowercase : Optional[int] = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def __UpperCamelCase ( _lowercase ) -> tuple[dict, dict]: _lowercase : Optional[Any] = Counter() # type: ignore _lowercase : List[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0, len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __UpperCamelCase ( ) -> List[Any]: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
4
1
"""simple docstring""" import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") lowerCAmelCase: int ="https://www.google.com/search?q=" + " ".join(sys.argv[1:]) lowerCAmelCase: Optional[Any] =requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) lowerCAmelCase: int =BeautifulSoup(res.text, "html.parser") lowerCAmelCase: int =list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(F'https://google.com{link.get("href")}')
607
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class lowerCamelCase__ ( __UpperCamelCase , unittest.TestCase ): __UpperCAmelCase = MvpTokenizer __UpperCAmelCase = MvpTokenizerFast __UpperCAmelCase = True __UpperCAmelCase = filter_roberta_detectors def _UpperCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" super().setUp() lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] lowercase : Optional[Any] = dict(zip(snake_case , range(len(snake_case ) ) ) ) lowercase : Dict = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowercase : int = {"""unk_token""": """<unk>"""} lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(snake_case ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(snake_case ) ) def _UpperCAmelCase ( self , **snake_case ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case ) def _UpperCAmelCase ( self , **snake_case ) -> Dict: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **snake_case ) def _UpperCAmelCase ( self , snake_case ) -> Optional[int]: """simple docstring""" return "lower newer", "lower newer" @cached_property def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" return MvpTokenizer.from_pretrained("""RUCAIBox/mvp""" ) @cached_property def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" return MvpTokenizerFast.from_pretrained("""RUCAIBox/mvp""" ) @require_torch def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" lowercase : str = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] lowercase : Dict = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : Union[str, Any] = tokenizer(snake_case , max_length=len(snake_case ) , padding=snake_case , return_tensors="""pt""" ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowercase : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(snake_case , snake_case ) # Test that special tokens are reset @require_torch def _UpperCAmelCase ( self ) -> Tuple: """simple docstring""" lowercase : List[str] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : Any = tokenizer(snake_case , padding=snake_case , return_tensors="""pt""" ) # check if input_ids are returned and no labels self.assertIn("""input_ids""" , snake_case ) self.assertIn("""attention_mask""" , snake_case ) self.assertNotIn("""labels""" , snake_case ) self.assertNotIn("""decoder_attention_mask""" , snake_case ) @require_torch def _UpperCAmelCase ( self ) -> Dict: """simple docstring""" lowercase : Optional[int] = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : int = tokenizer(text_target=snake_case , max_length=3_2 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(3_2 , targets["""input_ids"""].shape[1] ) @require_torch def _UpperCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : str = tokenizer( ["""I am a small frog""" * 1_0_2_4, """I am a small frog"""] , padding=snake_case , truncation=snake_case , return_tensors="""pt""" ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual(batch.input_ids.shape , (2, 1_0_2_4) ) @require_torch def _UpperCAmelCase ( self ) -> Dict: """simple docstring""" lowercase : List[Any] = ["""A long paragraph for summarization."""] lowercase : List[str] = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : List[str] = tokenizer(snake_case , text_target=snake_case , return_tensors="""pt""" ) lowercase : Union[str, Any] = inputs["""input_ids"""] lowercase : Optional[Any] = inputs["""labels"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def _UpperCAmelCase ( self ) -> int: """simple docstring""" pass def _UpperCAmelCase ( self ) -> Tuple: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase : List[str] = self.rust_tokenizer_class.from_pretrained(snake_case , **snake_case ) lowercase : Optional[Any] = self.tokenizer_class.from_pretrained(snake_case , **snake_case ) lowercase : str = """A, <mask> AllenNLP sentence.""" lowercase : int = tokenizer_r.encode_plus(snake_case , add_special_tokens=snake_case , return_token_type_ids=snake_case ) lowercase : str = tokenizer_p.encode_plus(snake_case , add_special_tokens=snake_case , return_token_type_ids=snake_case ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) lowercase : Tuple = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) lowercase : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( snake_case , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( snake_case , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
607
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __lowercase : def __init__( self : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any]=13 , __lowerCamelCase : Optional[int]=10 , __lowerCamelCase : Tuple=3 , __lowerCamelCase : int=2 , __lowerCamelCase : Tuple=2 , __lowerCamelCase : Any=2 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : int=True , __lowerCamelCase : Any=32 , __lowerCamelCase : List[Any]=5 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : List[str]=37 , __lowerCamelCase : int="gelu" , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Optional[Any]=10 , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : List[Any]=0.9 , __lowerCamelCase : Any=None , ) -> Optional[Any]: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = image_size lowercase = num_channels lowercase = patch_size lowercase = tubelet_size lowercase = num_frames lowercase = is_training lowercase = use_labels lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = type_sequence_label_size lowercase = initializer_range lowercase = mask_ratio lowercase = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowercase = (image_size // patch_size) ** 2 lowercase = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowercase = int(mask_ratio * self.seq_length ) def __a ( self : List[Any] ) -> Optional[int]: '''simple docstring''' lowercase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = self.get_config() return config, pixel_values, labels def __a ( self : Optional[Any] ) -> Tuple: '''simple docstring''' return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , ) def __a ( self : str , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] ) -> List[str]: '''simple docstring''' lowercase = VideoMAEModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowercase = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : int , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ) -> Dict: '''simple docstring''' lowercase = VideoMAEForPreTraining(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase = torch.ones((self.num_masks,) ) lowercase = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowercase = mask.expand(self.batch_size , -1 ).bool() lowercase = model(__lowerCamelCase , __lowerCamelCase ) # model only returns predictions for masked patches lowercase = mask.sum().item() lowercase = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def __a ( self : int ) -> Tuple: '''simple docstring''' lowercase = self.prepare_config_and_inputs() lowercase ,lowercase ,lowercase = config_and_inputs lowercase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowercase ( _A , _A , unittest.TestCase ): lowercase = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowercase = ( {'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False def __a ( self : Optional[Any] ) -> List[str]: '''simple docstring''' lowercase = VideoMAEModelTester(self ) lowercase = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def __a ( self : str , __lowerCamelCase : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int]=False ) -> Optional[int]: '''simple docstring''' lowercase = copy.deepcopy(__lowerCamelCase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase = torch.ones((self.model_tester.num_masks,) ) lowercase = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowercase = mask.expand(self.model_tester.batch_size , -1 ).bool() lowercase = bool_masked_pos.to(__lowerCamelCase ) if return_labels: if model_class in [ *get_values(__lowerCamelCase ), ]: lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def __a ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''' ) def __a ( self : Tuple ) -> Optional[int]: '''simple docstring''' pass def __a ( self : Any ) -> Dict: '''simple docstring''' lowercase ,lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(__lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def __a ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' lowercase ,lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(__lowerCamelCase ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def __a ( self : Any ) -> Union[str, Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def __a ( self : Any ) -> List[Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCamelCase ) @slow def __a ( self : Any ) -> int: '''simple docstring''' for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = VideoMAEModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def __a ( self : Union[str, Any] ) -> Dict: '''simple docstring''' if not self.has_attentions: pass else: lowercase ,lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = True for model_class in self.all_model_classes: lowercase = self.model_tester.seq_length - self.model_tester.num_masks lowercase = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowercase = True lowercase = False lowercase = True lowercase = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) lowercase = outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase = True lowercase = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) lowercase = outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase = len(__lowerCamelCase ) # Check attention is always last and order is fine lowercase = True lowercase = True lowercase = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(out_len + 1 , len(__lowerCamelCase ) ) lowercase = outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __a ( self : Dict ) -> List[str]: '''simple docstring''' def check_hidden_states_output(__lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] ): lowercase = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) lowercase = outputs.hidden_states lowercase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) lowercase = self.model_tester.seq_length - self.model_tester.num_masks lowercase = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase ,lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __a ( self : str ) -> int: '''simple docstring''' pass def __UpperCAmelCase ( )-> List[str]: """simple docstring""" lowercase = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''', filename='''eating_spaghetti.npy''', repo_type='''dataset''' ) lowercase = np.load(UpperCAmelCase ) return list(UpperCAmelCase ) @require_torch @require_vision class __lowercase ( unittest.TestCase ): @cached_property def __a ( self : Dict ) -> str: '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __a ( self : List[Any] ) -> List[Any]: '''simple docstring''' lowercase = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to( __lowerCamelCase ) lowercase = self.default_image_processor lowercase = prepare_video() lowercase = image_processor(__lowerCamelCase , return_tensors='''pt''' ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): lowercase = model(**__lowerCamelCase ) # verify the logits lowercase = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) lowercase = torch.tensor([0.3669, -0.0688, -0.2421] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) ) @slow def __a ( self : Any ) -> Optional[Any]: '''simple docstring''' lowercase = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(__lowerCamelCase ) lowercase = self.default_image_processor lowercase = prepare_video() lowercase = image_processor(__lowerCamelCase , return_tensors='''pt''' ).to(__lowerCamelCase ) # add boolean mask, indicating which patches to mask lowercase = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) lowercase = torch.load(__lowerCamelCase ) # forward pass with torch.no_grad(): lowercase = model(**__lowerCamelCase ) # verify the logits lowercase = torch.Size([1, 14_08, 15_36] ) lowercase = torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] , device=__lowerCamelCase ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __lowerCamelCase , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowercase = torch.tensor([0.5142] , device=__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.loss , __lowerCamelCase , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowercase = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' , norm_pix_loss=__lowerCamelCase ).to( __lowerCamelCase ) with torch.no_grad(): lowercase = model(**__lowerCamelCase ) lowercase = torch.tensor(torch.tensor([0.6469] ) , device=__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.loss , __lowerCamelCase , atol=1E-4 ) )
710
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowercase ( unittest.TestCase ): def __init__( self : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int=7 , __lowerCamelCase : Dict=3 , __lowerCamelCase : Optional[int]=18 , __lowerCamelCase : List[Any]=30 , __lowerCamelCase : Union[str, Any]=4_00 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[str]=None , __lowerCamelCase : Dict=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Tuple=True , ) -> Tuple: '''simple docstring''' lowercase = size if size is not None else {'''shortest_edge''': 20} lowercase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = image_size lowercase = min_resolution lowercase = max_resolution lowercase = do_resize lowercase = size lowercase = do_center_crop lowercase = crop_size lowercase = do_flip_channel_order def __a ( self : Optional[int] ) -> Any: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class __lowercase ( _A , unittest.TestCase ): lowercase = MobileViTImageProcessor if is_vision_available() else None def __a ( self : Dict ) -> Dict: '''simple docstring''' lowercase = MobileViTImageProcessingTester(self ) @property def __a ( self : Tuple ) -> Dict: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Dict ) -> List[Any]: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''size''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''center_crop''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_flip_channel_order''' ) ) def __a ( self : List[str] ) -> str: '''simple docstring''' lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __a ( self : Any ) -> Optional[Any]: '''simple docstring''' pass def __a ( self : Any ) -> List[str]: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __a ( self : int ) -> str: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __a ( self : Dict ) -> Any: '''simple docstring''' lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
479
0
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __lowerCamelCase ( __UpperCamelCase ) -> List[str]: """simple docstring""" def is_in_circle(__UpperCamelCase , __UpperCamelCase ) -> bool: lowerCAmelCase_ : List[Any] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle lowerCAmelCase_ : Tuple = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(_A ) ) # The ratio of the area for circle to square is pi/4. lowerCAmelCase_ : List[Any] = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 0.0 , __UpperCamelCase = 1.0 , ) -> Optional[int]: """simple docstring""" return mean( function_to_integrate(uniform(_A , _A ) ) for _ in range(_A ) ) * (max_value - min_value) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase = 0.0 , __UpperCamelCase = 1.0 ) -> Optional[int]: """simple docstring""" def identity_function(__UpperCamelCase ) -> float: return x lowerCAmelCase_ : Optional[int] = area_under_curve_estimator( _A , _A , _A , _A ) lowerCAmelCase_ : int = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print("******************" ) def __lowerCamelCase ( __UpperCamelCase ) -> Optional[Any]: """simple docstring""" def function_to_integrate(__UpperCamelCase ) -> float: return sqrt(4.0 - x * x ) lowerCAmelCase_ : Optional[int] = area_under_curve_estimator( _A , _A , 0.0 , 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
610
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : str ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = '''ylacombe/bark-small''' SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ = '''en_speaker_1''' SCREAMING_SNAKE_CASE__ = '''This is a test string''' SCREAMING_SNAKE_CASE__ = '''speaker_embeddings_path.json''' SCREAMING_SNAKE_CASE__ = '''speaker_embeddings''' def lowercase_ ( self : Union[str, Any] , **__lowerCamelCase : Dict ) -> List[Any]: return AutoTokenizer.from_pretrained(self.checkpoint , **__lowerCamelCase ) def lowercase_ ( self : Optional[int] ) -> List[str]: shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : Dict ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = BarkProcessor(tokenizer=__lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowercase_ ( self : Any ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) SCREAMING_SNAKE_CASE__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) SCREAMING_SNAKE_CASE__ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowercase_ ( self : Tuple ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) SCREAMING_SNAKE_CASE__ = 35 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = { '''semantic_prompt''': np.ones(__lowerCamelCase ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset SCREAMING_SNAKE_CASE__ = processor(text=self.input_string , voice_preset=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__lowerCamelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = processor(text=self.input_string , voice_preset=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__lowerCamelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub SCREAMING_SNAKE_CASE__ = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowercase_ ( self : str ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = BarkProcessor(tokenizer=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = processor(text=self.input_string ) SCREAMING_SNAKE_CASE__ = tokenizer( self.input_string , padding='''max_length''' , max_length=256 , add_special_tokens=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
493
0
def __SCREAMING_SNAKE_CASE ( UpperCamelCase : list ) -> list: """simple docstring""" def merge(UpperCamelCase : list , UpperCamelCase : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(UpperCamelCase ) <= 1: return collection a_ = len(UpperCamelCase ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() _A = input('Enter numbers separated by a comma:\n').strip() _A = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
403
def __SCREAMING_SNAKE_CASE ( UpperCamelCase : list[int] , UpperCamelCase : list[int] ) -> tuple[float, float]: """simple docstring""" if not len(UpperCamelCase ) == len(UpperCamelCase ) == 3: raise ValueError("""Please enter a valid equation.""" ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("""Both a & b of two equations can't be zero.""" ) # Extract the coefficients a_ , a_ , a_ = equationa a_ , a_ , a_ = equationa # Calculate the determinants of the matrices a_ = aa * ba - aa * ba a_ = ca * ba - ca * ba a_ = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("""Infinite solutions. (Consistent system)""" ) else: raise ValueError("""No solution. (Inconsistent system)""" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: a_ = determinant_x / determinant a_ = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
403
1
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : str = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : str = 'umt5' _snake_case : Dict = ['past_key_values'] def __init__( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=250112 , lowerCAmelCase__ : Optional[int]=512 , lowerCAmelCase__ : Optional[int]=64 , lowerCAmelCase__ : Optional[int]=1024 , lowerCAmelCase__ : Optional[int]=8 , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : List[str]=6 , lowerCAmelCase__ : Tuple=32 , lowerCAmelCase__ : Any=128 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : int=1e-6 , lowerCAmelCase__ : Union[str, Any]=1.0 , lowerCAmelCase__ : Union[str, Any]="gated-gelu" , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : Any="T5Tokenizer" , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Dict=0 , lowerCAmelCase__ : str=1 , lowerCAmelCase__ : int=0 , **lowerCAmelCase__ : Dict , ) -> int: '''simple docstring''' super().__init__( is_encoder_decoder=lowerCAmelCase__ , tokenizer_class=lowerCAmelCase__ , tie_word_embeddings=lowerCAmelCase__ , pad_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCamelCase = vocab_size _UpperCamelCase = d_model _UpperCamelCase = d_kv _UpperCamelCase = d_ff _UpperCamelCase = num_layers _UpperCamelCase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _UpperCamelCase = num_heads _UpperCamelCase = relative_attention_num_buckets _UpperCamelCase = relative_attention_max_distance _UpperCamelCase = dropout_rate _UpperCamelCase = layer_norm_epsilon _UpperCamelCase = initializer_factor _UpperCamelCase = feed_forward_proj _UpperCamelCase = use_cache _UpperCamelCase = self.feed_forward_proj.split('''-''' ) _UpperCamelCase = act_info[-1] _UpperCamelCase = act_info[0] == '''gated''' if len(lowerCAmelCase__ ) > 1 and act_info[0] != "gated" or len(lowerCAmelCase__ ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) if feed_forward_proj == "gated-gelu": _UpperCamelCase = '''gelu_new''' @property def snake_case__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' return self.d_model @property def snake_case__ ( self : List[str] ) -> List[Any]: '''simple docstring''' return self.num_heads @property def snake_case__ ( self : Optional[int] ) -> Any: '''simple docstring''' return self.num_layers class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def snake_case__ ( self : Dict ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' _UpperCamelCase = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: _UpperCamelCase = '''past_encoder_sequence + sequence''' _UpperCamelCase = {0: '''batch'''} _UpperCamelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: _UpperCamelCase = {0: '''batch''', 1: '''decoder_sequence'''} _UpperCamelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase__ , direction='''inputs''' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def snake_case__ ( self : Tuple ) -> int: '''simple docstring''' return 13 @property def snake_case__ ( self : Optional[Any] ) -> float: '''simple docstring''' return 5e-4
98
from __future__ import annotations from typing import Any class lowercase : def __init__( self : int , _lowercase : int ): SCREAMING_SNAKE_CASE__ : List[str] = num_of_nodes SCREAMING_SNAKE_CASE__ : list[list[int]] = [] SCREAMING_SNAKE_CASE__ : dict[int, int] = {} def lowercase__ ( self : Union[str, Any] , _lowercase : int , _lowercase : int , _lowercase : int ): self.m_edges.append([u_node, v_node, weight] ) def lowercase__ ( self : Optional[int] , _lowercase : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase__ ( self : Optional[Any] , _lowercase : int ): if self.m_component[u_node] != u_node: for k in self.m_component: SCREAMING_SNAKE_CASE__ : Any = self.find_component(_lowercase ) def lowercase__ ( self : int , _lowercase : list[int] , _lowercase : int , _lowercase : int ): if component_size[u_node] <= component_size[v_node]: SCREAMING_SNAKE_CASE__ : Dict = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowercase ) elif component_size[u_node] >= component_size[v_node]: SCREAMING_SNAKE_CASE__ : List[Any] = self.find_component(_lowercase ) component_size[u_node] += component_size[v_node] self.set_component(_lowercase ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) SCREAMING_SNAKE_CASE__ : List[str] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = edge SCREAMING_SNAKE_CASE__ : Tuple = self.m_component[u] SCREAMING_SNAKE_CASE__ : List[str] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): SCREAMING_SNAKE_CASE__ : int = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = edge SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.m_component[u] SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowercase , _lowercase , _lowercase ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 SCREAMING_SNAKE_CASE__ : List[Any] = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def a ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
35
0
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml UpperCAmelCase__ = NewType('DataClass', Any) UpperCAmelCase__ = NewType('DataClassType', Any) def _UpperCAmelCase ( __lowerCamelCase : Any ) -> Union[str, Any]: if isinstance(__lowerCamelCase , __lowerCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def _UpperCAmelCase ( __lowerCamelCase : list ) -> Callable[[str], Any]: _snake_case = {str(__lowerCamelCase ): choice for choice in choices} return lambda __lowerCamelCase : str_to_choice.get(__lowerCamelCase , __lowerCamelCase ) def _UpperCAmelCase ( *, __lowerCamelCase : Union[str, List[str]] = None , __lowerCamelCase : str = None , __lowerCamelCase : Any = dataclasses.MISSING , __lowerCamelCase : Callable[[], Any] = dataclasses.MISSING , __lowerCamelCase : dict = None , **__lowerCamelCase : Optional[Any] , ) -> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls _snake_case = {} if aliases is not None: _snake_case = aliases if help is not None: _snake_case = help return dataclasses.field(metadata=__lowerCamelCase , default=__lowerCamelCase , default_factory=__lowerCamelCase , **__lowerCamelCase ) class lowerCAmelCase__ ( A_ ): __a = 42 def __init__( self : str , _lowerCamelCase : Union[DataClassType, Iterable[DataClassType]] , **_lowerCamelCase : List[str] ): # To make the default appear when using --help if "formatter_class" not in kwargs: _snake_case = ArgumentDefaultsHelpFormatter super().__init__(**_lowerCamelCase ) if dataclasses.is_dataclass(_lowerCamelCase ): _snake_case = [dataclass_types] _snake_case = list(_lowerCamelCase ) for dtype in self.dataclass_types: self._add_dataclass_arguments(_lowerCamelCase ) @staticmethod def lowercase ( _lowerCamelCase : ArgumentParser , _lowerCamelCase : dataclasses.Field ): _snake_case = f'''--{field.name}''' _snake_case = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , _lowerCamelCase ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) _snake_case = kwargs.pop('''aliases''' , [] ) if isinstance(_lowerCamelCase , _lowerCamelCase ): _snake_case = [aliases] _snake_case = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(_lowerCamelCase , '''UnionType''' ) and isinstance(_lowerCamelCase , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(_lowerCamelCase ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' f''' Problem encountered in field \'{field.name}\'.''' ) if type(_lowerCamelCase ) not in field.type.__args__: # filter `str` in Union _snake_case = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] _snake_case = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) _snake_case = ( field.type.__args__[0] if isinstance(_lowerCamelCase , field.type.__args__[1] ) else field.type.__args__[1] ) _snake_case = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) _snake_case = {} if origin_type is Literal or (isinstance(field.type , _lowerCamelCase ) and issubclass(field.type , _lowerCamelCase )): if origin_type is Literal: _snake_case = field.type.__args__ else: _snake_case = [x.value for x in field.type] _snake_case = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: _snake_case = field.default else: _snake_case = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument _snake_case = copy(_lowerCamelCase ) # Hack because type=bool in argparse does not behave as we want. _snake_case = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. _snake_case = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way _snake_case = default # This tells argparse we accept 0 or 1 value after --field_name _snake_case = '''?''' # This is the value that will get picked if we do --field_name (without value) _snake_case = True elif isclass(_lowerCamelCase ) and issubclass(_lowerCamelCase , _lowerCamelCase ): _snake_case = field.type.__args__[0] _snake_case = '''+''' if field.default_factory is not dataclasses.MISSING: _snake_case = field.default_factory() elif field.default is dataclasses.MISSING: _snake_case = True else: _snake_case = field.type if field.default is not dataclasses.MISSING: _snake_case = field.default elif field.default_factory is not dataclasses.MISSING: _snake_case = field.default_factory() else: _snake_case = True parser.add_argument(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): _snake_case = False parser.add_argument(f'''--no_{field.name}''' , action='''store_false''' , dest=field.name , **_lowerCamelCase ) def lowercase ( self : Tuple , _lowerCamelCase : DataClassType ): if hasattr(_lowerCamelCase , '''_argument_group_name''' ): _snake_case = self.add_argument_group(dtype._argument_group_name ) else: _snake_case = self try: _snake_case = get_type_hints(_lowerCamelCase ) except NameError: raise RuntimeError( f'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_lowerCamelCase ): _snake_case = '''.'''.join(map(_lowerCamelCase , sys.version_info[:3] ) ) raise RuntimeError( f'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(_lowerCamelCase ): if not field.init: continue _snake_case = type_hints[field.name] self._parse_dataclass_field(_lowerCamelCase , _lowerCamelCase ) def lowercase ( self : Dict , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : List[Any]=False , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : Any=None , ): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): _snake_case = [] if args_filename: args_files.append(Path(_lowerCamelCase ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values _snake_case = ArgumentParser() args_file_parser.add_argument(_lowerCamelCase , type=_lowerCamelCase , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) _snake_case , _snake_case = args_file_parser.parse_known_args(args=_lowerCamelCase ) _snake_case = vars(_lowerCamelCase ).get(args_file_flag.lstrip('''-''' ) , _lowerCamelCase ) if cmd_args_file_paths: args_files.extend([Path(_lowerCamelCase ) for p in cmd_args_file_paths] ) _snake_case = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last _snake_case = file_args + args if args is not None else file_args + sys.argv[1:] _snake_case , _snake_case = self.parse_known_args(args=_lowerCamelCase ) _snake_case = [] for dtype in self.dataclass_types: _snake_case = {f.name for f in dataclasses.fields(_lowerCamelCase ) if f.init} _snake_case = {k: v for k, v in vars(_lowerCamelCase ).items() if k in keys} for k in keys: delattr(_lowerCamelCase , _lowerCamelCase ) _snake_case = dtype(**_lowerCamelCase ) outputs.append(_lowerCamelCase ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(_lowerCamelCase ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def lowercase ( self : Optional[int] , _lowerCamelCase : Dict[str, Any] , _lowerCamelCase : bool = False ): _snake_case = set(args.keys() ) _snake_case = [] for dtype in self.dataclass_types: _snake_case = {f.name for f in dataclasses.fields(_lowerCamelCase ) if f.init} _snake_case = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) _snake_case = dtype(**_lowerCamelCase ) outputs.append(_lowerCamelCase ) if not allow_extra_keys and unused_keys: raise ValueError(f'''Some keys are not used by the HfArgumentParser: {sorted(_lowerCamelCase )}''' ) return tuple(_lowerCamelCase ) def lowercase ( self : List[str] , _lowerCamelCase : str , _lowerCamelCase : bool = False ): with open(Path(_lowerCamelCase ) , encoding='''utf-8''' ) as open_json_file: _snake_case = json.loads(open_json_file.read() ) _snake_case = self.parse_dict(_lowerCamelCase , allow_extra_keys=_lowerCamelCase ) return tuple(_lowerCamelCase ) def lowercase ( self : str , _lowerCamelCase : str , _lowerCamelCase : bool = False ): _snake_case = self.parse_dict(yaml.safe_load(Path(_lowerCamelCase ).read_text() ) , allow_extra_keys=_lowerCamelCase ) return tuple(_lowerCamelCase )
430
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase__ : def __init__( self : Dict , _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any]=2 , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Any=False , _lowerCamelCase : Optional[int]=10 , _lowerCamelCase : List[Any]=3 , _lowerCamelCase : str=32 * 8 , _lowerCamelCase : Optional[int]=32 * 8 , _lowerCamelCase : Optional[Any]=4 , _lowerCamelCase : Union[str, Any]=64 , ): _snake_case = parent _snake_case = batch_size _snake_case = is_training _snake_case = use_auxiliary_loss _snake_case = num_queries _snake_case = num_channels _snake_case = min_size _snake_case = max_size _snake_case = num_labels _snake_case = hidden_dim _snake_case = hidden_dim def lowercase ( self : Optional[int] ): _snake_case = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowerCamelCase ) _snake_case = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowerCamelCase ) _snake_case = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowerCamelCase ) > 0.5 ).float() _snake_case = (torch.rand((self.batch_size, self.num_labels) , device=_lowerCamelCase ) > 0.5).long() _snake_case = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase ( self : Union[str, Any] ): _snake_case = MaskaFormerConfig( hidden_size=self.hidden_dim , ) _snake_case = self.num_queries _snake_case = self.num_labels _snake_case = [1, 1, 1, 1] _snake_case = self.num_channels _snake_case = 64 _snake_case = 128 _snake_case = self.hidden_dim _snake_case = self.hidden_dim _snake_case = self.hidden_dim return config def lowercase ( self : Union[str, Any] ): _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.prepare_config_and_inputs() _snake_case = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def lowercase ( self : Any , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any ): _snake_case = output.encoder_hidden_states _snake_case = output.pixel_decoder_hidden_states _snake_case = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ) , config.decoder_layers ) def lowercase ( self : Any , _lowerCamelCase : int , _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Any=False ): with torch.no_grad(): _snake_case = MaskaFormerModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase ) _snake_case = model(_lowerCamelCase , output_hidden_states=_lowerCamelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowerCamelCase , _lowerCamelCase ) def lowercase ( self : str , _lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple , _lowerCamelCase : str , _lowerCamelCase : List[Any] ): _snake_case = MaskaFormerForUniversalSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() def comm_check_on_output(_lowerCamelCase : List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _snake_case = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase ) _snake_case = model(_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) _snake_case = model( pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCAmelCase__ ( A_ , A_ , unittest.TestCase ): __a = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () __a = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} __a = False __a = False __a = False __a = False def lowercase ( self : Any ): _snake_case = MaskaFormerModelTester(self ) _snake_case = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def lowercase ( self : Dict ): self.config_tester.run_common_tests() def lowercase ( self : List[str] ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase ) def lowercase ( self : int ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_lowerCamelCase ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def lowercase ( self : Union[str, Any] ): pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def lowercase ( self : Optional[Any] ): pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def lowercase ( self : Optional[Any] ): pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def lowercase ( self : Dict ): pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def lowercase ( self : Tuple ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase ( self : Union[str, Any] ): pass def lowercase ( self : str ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(_lowerCamelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) @slow def lowercase ( self : Dict ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _snake_case = MaskaFormerModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def lowercase ( self : Tuple ): _snake_case = (self.model_tester.min_size,) * 2 _snake_case = { '''pixel_values''': torch.randn((2, 3, *size) , device=_lowerCamelCase ), '''mask_labels''': torch.randn((2, 10, *size) , device=_lowerCamelCase ), '''class_labels''': torch.zeros(2 , 10 , device=_lowerCamelCase ).long(), } _snake_case = self.model_tester.get_config() _snake_case = MaskaFormerForUniversalSegmentation(_lowerCamelCase ).to(_lowerCamelCase ) _snake_case = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None ) def lowercase ( self : List[str] ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase ) def lowercase ( self : Any ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(_lowerCamelCase ).to(_lowerCamelCase ) _snake_case = model(**_lowerCamelCase , output_attentions=_lowerCamelCase ) self.assertTrue(outputs.attentions is not None ) def lowercase ( self : int ): if not self.model_tester.is_training: return _snake_case = self.all_model_classes[1] _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() _snake_case = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ).loss loss.backward() def lowercase ( self : Dict ): _snake_case = self.all_model_classes[1] _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = True _snake_case = True _snake_case = model_class(_lowerCamelCase ).to(_lowerCamelCase ) model.train() _snake_case = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ) _snake_case = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _snake_case = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _snake_case = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _snake_case = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowerCamelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase__ = 1e-4 def _UpperCAmelCase ( ) -> int: _snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def lowercase ( self : Tuple ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowercase ( self : Optional[Any] ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowercase ( self : Any ): _snake_case = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) _snake_case = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCamelCase , (1, 3, 384, 384) ) with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) _snake_case = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) _snake_case = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) _snake_case = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def lowercase ( self : List[Any] ): _snake_case = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) _snake_case = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCamelCase , (1, 3, 384, 384) ) with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) # masks_queries_logits _snake_case = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) _snake_case = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] _snake_case = torch.tensor(_lowerCamelCase ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) # class_queries_logits _snake_case = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) _snake_case = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def lowercase ( self : List[str] ): _snake_case = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() _snake_case = self.default_image_processor _snake_case = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) _snake_case = inputs['''pixel_values'''].to(_lowerCamelCase ) _snake_case = [el.to(_lowerCamelCase ) for el in inputs['''mask_labels''']] _snake_case = [el.to(_lowerCamelCase ) for el in inputs['''class_labels''']] with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None )
430
1
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: __lowerCamelCase : List[str] = k_size // 2 __lowerCamelCase , __lowerCamelCase : Tuple = mgrid[0 - center : k_size - center, 0 - center : k_size - center] __lowerCamelCase : int = 1 / (2 * pi * sigma) * exp(-(square(lowerCamelCase__ ) + square(lowerCamelCase__ )) / (2 * square(lowerCamelCase__ )) ) return g def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase : str = image.shape[0], image.shape[1] # dst image height and width __lowerCamelCase : int = height - k_size + 1 __lowerCamelCase : List[str] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows __lowerCamelCase : Tuple = zeros((dst_height * dst_width, k_size * k_size) ) __lowerCamelCase : Any = 0 for i, j in product(range(lowerCamelCase__ ) , range(lowerCamelCase__ ) ): __lowerCamelCase : str = ravel(image[i : i + k_size, j : j + k_size] ) __lowerCamelCase : int = window row += 1 # turn the kernel into shape(k*k, 1) __lowerCamelCase : Tuple = gen_gaussian_kernel(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase : str = ravel(lowerCamelCase__ ) # reshape and get the dst image __lowerCamelCase : int = dot(lowerCamelCase__ , lowerCamelCase__ ).reshape(lowerCamelCase__ , lowerCamelCase__ ).astype(lowerCamelCase__ ) return dst if __name__ == "__main__": # read original image a =imread(r"""../image_data/lena.jpg""") # turn image in gray scale value a =cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size a =gaussian_filter(gray, 3, sigma=1) a =gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("""gaussian filter with 3x3 mask""", gaussianaxa) imshow("""gaussian filter with 5x5 mask""", gaussianaxa) waitKey()
652
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
652
1
"""simple docstring""" import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_=1_0_2_4, lowerCamelCase_=1_0_2_4, lowerCamelCase_=3.6 ): '''simple docstring''' lowerCamelCase__ : str = tokenizer lowerCamelCase__ : Any = tokenizer.bos_token_id lowerCamelCase__ : Dict = dataset lowerCamelCase__ : Dict = seq_length lowerCamelCase__ : int = seq_length * chars_per_token * num_of_sequences def __iter__(self ): '''simple docstring''' lowerCamelCase__ : List[Any] = iter(self.dataset ) lowerCamelCase__ : int = True while more_examples: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(lowerCamelCase_ )['content'] ) buffer_len += len(buffer[-1] ) except StopIteration: lowerCamelCase__ : Union[str, Any] = False break lowerCamelCase__ : Union[str, Any] = tokenizer(lowerCamelCase_, truncation=lowerCamelCase_ )['input_ids'] lowerCamelCase__ : Dict = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0, len(lowerCamelCase_ ), self.seq_length ): lowerCamelCase__ : List[Any] = all_token_ids[i : i + self.seq_length] if len(lowerCamelCase_ ) == self.seq_length: yield torch.tensor(lowerCamelCase_ ) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Tuple = {'streaming': True} lowerCamelCase__ : Optional[Any] = load_dataset(args.dataset_name , split='train' , **_lowerCamelCase ) lowerCamelCase__ : int = ConstantLengthDataset(_lowerCamelCase , _lowerCamelCase , seq_length=args.seq_length ) lowerCamelCase__ : List[Any] = DataLoader(_lowerCamelCase , batch_size=args.batch_size ) return eval_dataloader def lowerCamelCase_ ( _lowerCamelCase ): model.eval() lowerCamelCase__ : int = [] for step, batch in enumerate(_lowerCamelCase ): with torch.no_grad(): lowerCamelCase__ : int = model(_lowerCamelCase , labels=_lowerCamelCase ) lowerCamelCase__ : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(_lowerCamelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break lowerCamelCase__ : Any = torch.mean(torch.cat(_lowerCamelCase ) ) try: lowerCamelCase__ : Dict = torch.exp(_lowerCamelCase ) except OverflowError: lowerCamelCase__ : Optional[Any] = float('inf' ) return loss.item(), perplexity.item() # Setup Accelerator A_ : Optional[int] = Accelerator() # Parse configuration A_ : Any = HfArgumentParser(EvaluationArguments) A_ : Dict = parser.parse_args() set_seed(args.seed) # Logging A_ : Optional[int] = logging.getLogger(__name__) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) # Load model and tokenizer A_ : str = AutoModelForCausalLM.from_pretrained(args.model_ckpt) A_ : int = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader A_ : List[Any] = create_dataloader(args) # Prepare everything with our `accelerator`. A_, A_ : Any = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info("Evaluating and saving model after training") A_, A_ : Optional[Any] = evaluate(args) logger.info(f"loss/eval: {eval_loss}, perplexity: {perplexity}")
696
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : int = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : Optional[int] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : str = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : Optional[int] = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Tuple = c.n_embd + 1 # int lowerCamelCase__ : Union[str, Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : List[Any] = not c.scale_attn_weights # bool lowerCamelCase__ : List[Any] = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = PretrainedConfig() lowerCamelCase__ : Optional[Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : Any = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : int = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = mock.Mock() lowerCamelCase__ : List[str] = 5_0_0 lowerCamelCase__ : Any = {} lowerCamelCase__ : int = HTTPError lowerCamelCase__ : Optional[Any] = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : str = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : str = ['config.42.0.0.json'] lowerCamelCase__ : Union[str, Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Optional[int] = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Dict = 'v3.0.0' lowerCamelCase__ : List[str] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
696
1
'''simple docstring''' from __future__ import annotations from collections import deque class lowerCamelCase_ : def __init__( self : List[Any] , _A : list[str] ): '''simple docstring''' UpperCAmelCase__ : list[dict] = [] self.adlist.append( {'''value''': '''''', '''next_states''': [], '''fail_state''': 0, '''output''': []} ) for keyword in keywords: self.add_keyword(_A ) self.set_fail_transitions() def lowercase_ ( self : Union[str, Any] , _A : int , _A : str ): '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def lowercase_ ( self : Union[str, Any] , _A : str ): '''simple docstring''' UpperCAmelCase__ : List[Any] = 0 for character in keyword: UpperCAmelCase__ : Tuple = self.find_next_state(_A , _A ) if next_state is None: self.adlist.append( { '''value''': character, '''next_states''': [], '''fail_state''': 0, '''output''': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) UpperCAmelCase__ : int = len(self.adlist ) - 1 else: UpperCAmelCase__ : str = next_state self.adlist[current_state]["output"].append(_A ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : deque = deque() for node in self.adlist[0]["next_states"]: q.append(_A ) UpperCAmelCase__ : int = 0 while q: UpperCAmelCase__ : Tuple = q.popleft() for child in self.adlist[r]["next_states"]: q.append(_A ) UpperCAmelCase__ : Dict = self.adlist[r]['''fail_state'''] while ( self.find_next_state(_A , self.adlist[child]['''value'''] ) is None and state != 0 ): UpperCAmelCase__ : Union[str, Any] = self.adlist[state]['''fail_state'''] UpperCAmelCase__ : Tuple = self.find_next_state( _A , self.adlist[child]['''value'''] ) if self.adlist[child]["fail_state"] is None: UpperCAmelCase__ : Optional[Any] = 0 UpperCAmelCase__ : int = ( self.adlist[child]['''output'''] + self.adlist[self.adlist[child]['''fail_state''']]['''output'''] ) def lowercase_ ( self : Dict , _A : str ): '''simple docstring''' UpperCAmelCase__ : dict = {} # returns a dict with keywords and list of its occurrences UpperCAmelCase__ : Optional[Any] = 0 for i in range(len(_A ) ): while ( self.find_next_state(_A , string[i] ) is None and current_state != 0 ): UpperCAmelCase__ : int = self.adlist[current_state]['''fail_state'''] UpperCAmelCase__ : Dict = self.find_next_state(_A , string[i] ) if next_state is None: UpperCAmelCase__ : Union[str, Any] = 0 else: UpperCAmelCase__ : Any = next_state for key in self.adlist[current_state]["output"]: if key not in result: UpperCAmelCase__ : str = [] result[key].append(i - len(_A ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
75
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCamelCase__ = '''platform''' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , ) -> Tuple: if attention_mask is None: UpperCAmelCase__ : List[Any] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: UpperCAmelCase__ : Union[str, Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: UpperCAmelCase__ : Optional[Any] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase__ : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase__ : Any = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCamelCase_ : def __init__( self : Optional[Any] , _A : Optional[Any] , _A : str=13 , _A : int=7 , _A : Any=True , _A : List[Any]=False , _A : Optional[int]=99 , _A : Optional[int]=16 , _A : int=2 , _A : Optional[int]=4 , _A : Optional[int]=4 , _A : int="gelu" , _A : List[str]=0.1 , _A : str=0.1 , _A : int=32 , _A : Optional[int]=2 , _A : int=1 , _A : Dict=0 , _A : Dict=0.0_2 , ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Dict = seq_length UpperCAmelCase__ : str = is_training UpperCAmelCase__ : int = use_labels UpperCAmelCase__ : Union[str, Any] = vocab_size UpperCAmelCase__ : Union[str, Any] = hidden_size UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : Any = num_attention_heads UpperCAmelCase__ : List[str] = intermediate_size UpperCAmelCase__ : str = hidden_act UpperCAmelCase__ : str = hidden_dropout_prob UpperCAmelCase__ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase__ : Union[str, Any] = max_position_embeddings UpperCAmelCase__ : int = eos_token_id UpperCAmelCase__ : Optional[int] = pad_token_id UpperCAmelCase__ : List[str] = bos_token_id UpperCAmelCase__ : Union[str, Any] = initializer_range def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) UpperCAmelCase__ : str = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) UpperCAmelCase__ : List[Any] = shift_tokens_right(_A , 1 , 2 ) UpperCAmelCase__ : List[Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_A , ) UpperCAmelCase__ : Tuple = prepare_blenderbot_inputs_dict(_A , _A , _A ) return config, inputs_dict def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.prepare_config_and_inputs() return config, inputs_dict def lowercase_ ( self : int , _A : List[Any] , _A : Optional[Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : List[str] = 20 UpperCAmelCase__ : int = model_class_name(_A ) UpperCAmelCase__ : str = model.encode(inputs_dict['''input_ids'''] ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) UpperCAmelCase__ : Tuple = model.init_cache(decoder_input_ids.shape[0] , _A , _A ) UpperCAmelCase__ : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) UpperCAmelCase__ : str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase__ : str = model.decode( decoder_input_ids[:, :-1] , _A , decoder_attention_mask=_A , past_key_values=_A , decoder_position_ids=_A , ) UpperCAmelCase__ : Dict = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) UpperCAmelCase__ : Tuple = model.decode( decoder_input_ids[:, -1:] , _A , decoder_attention_mask=_A , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_A , ) UpperCAmelCase__ : int = model.decode(_A , _A ) UpperCAmelCase__ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def lowercase_ ( self : Tuple , _A : List[Any] , _A : Tuple , _A : Tuple ): '''simple docstring''' UpperCAmelCase__ : Tuple = 20 UpperCAmelCase__ : Optional[int] = model_class_name(_A ) UpperCAmelCase__ : Optional[int] = model.encode(inputs_dict['''input_ids'''] ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) UpperCAmelCase__ : Any = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) UpperCAmelCase__ : List[Any] = model.init_cache(decoder_input_ids.shape[0] , _A , _A ) UpperCAmelCase__ : Optional[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase__ : int = model.decode( decoder_input_ids[:, :-1] , _A , decoder_attention_mask=_A , past_key_values=_A , decoder_position_ids=_A , ) UpperCAmelCase__ : List[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) UpperCAmelCase__ : Any = model.decode( decoder_input_ids[:, -1:] , _A , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_A , decoder_position_ids=_A , ) UpperCAmelCase__ : List[str] = model.decode(_A , _A , decoder_attention_mask=_A ) UpperCAmelCase__ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class lowerCamelCase_ ( unittest.TestCase ): lowerCAmelCase__ = 9_9 def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[str] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) UpperCAmelCase__ : int = input_ids.shape[0] UpperCAmelCase__ : List[str] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self._get_config_and_data() UpperCAmelCase__ : Any = FlaxBlenderbotForConditionalGeneration(_A ) UpperCAmelCase__ : Optional[int] = lm_model(input_ids=_A ) UpperCAmelCase__ : Dict = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , _A ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : List[str] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) UpperCAmelCase__ : Union[str, Any] = FlaxBlenderbotForConditionalGeneration(_A ) UpperCAmelCase__ : str = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) UpperCAmelCase__ : Any = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) UpperCAmelCase__ : Tuple = lm_model(input_ids=_A , decoder_input_ids=_A ) UpperCAmelCase__ : int = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , _A ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) UpperCAmelCase__ : Union[str, Any] = shift_tokens_right(_A , 1 , 2 ) UpperCAmelCase__ : str = np.equal(_A , 1 ).astype(np.floataa ).sum() UpperCAmelCase__ : Dict = np.equal(_A , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_A , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowerCamelCase_ ( __a , unittest.TestCase , __a ): lowerCAmelCase__ = True lowerCAmelCase__ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowerCAmelCase__ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Dict = FlaxBlenderbotModelTester(self ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_A , _A , _A ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_A , _A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase__ : Dict = self._prepare_for_class(_A , _A ) UpperCAmelCase__ : str = model_class(_A ) @jax.jit def encode_jitted(_A : Any , _A : Tuple=None , **_A : Optional[int] ): return model.encode(input_ids=_A , attention_mask=_A ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase__ : Optional[Any] = encode_jitted(**_A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase__ : Tuple = encode_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase__ : List[str] = model_class(_A ) UpperCAmelCase__ : Tuple = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) UpperCAmelCase__ : Tuple = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(_A : Optional[int] , _A : List[Any] , _A : int ): return model.decode( decoder_input_ids=_A , decoder_attention_mask=_A , encoder_outputs=_A , ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase__ : Any = decode_jitted(**_A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase__ : Optional[int] = decode_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase_ ( self : List[str] ): '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase__ : Union[str, Any] = model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids UpperCAmelCase__ : Tuple = np.ones((1, 1) ) * model.config.eos_token_id UpperCAmelCase__ : Union[str, Any] = model(_A ) self.assertIsNotNone(_A ) @unittest.skipUnless(jax_device != '''cpu''' , '''3B test too slow on CPU.''' ) @slow def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = {'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 15, '''max_length''': 25} UpperCAmelCase__ : int = {'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True} UpperCAmelCase__ : str = FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' , from_pt=_A ) UpperCAmelCase__ : Optional[Any] = BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' ) UpperCAmelCase__ : Optional[Any] = ['''Sam'''] UpperCAmelCase__ : Dict = tokenizer(_A , return_tensors='''jax''' ) UpperCAmelCase__ : List[str] = model.generate(**_A , **_A ) UpperCAmelCase__ : Dict = '''Sam is a great name. It means "sun" in Gaelic.''' UpperCAmelCase__ : Any = tokenizer.batch_decode(_A , **_A ) assert generated_txt[0].strip() == tgt_text
75
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowercase ( __magic_name__ , __magic_name__ , unittest.TestCase ): _a = CycleDiffusionPipeline _a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """negative_prompt""", """height""", """width""", """negative_prompt_embeds""", } _a = PipelineTesterMixin.required_optional_params - {"""latents"""} _a = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""source_prompt"""} ) _a = IMAGE_TO_IMAGE_IMAGE_PARAMS _a = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase__ ( self ) -> Dict: torch.manual_seed(0 ) __a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) __a = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , num_train_timesteps=1000 , clip_sample=UpperCamelCase , set_alpha_to_one=UpperCamelCase , ) torch.manual_seed(0 ) __a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __a = CLIPTextModel(UpperCamelCase ) __a = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __a = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase__ ( self , UpperCamelCase , UpperCamelCase=0 ) -> Any: __a = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) __a = image / 2 + 0.5 if str(UpperCamelCase ).startswith('mps' ): __a = torch.manual_seed(UpperCamelCase ) else: __a = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) __a = { 'prompt': 'An astronaut riding an elephant', 'source_prompt': 'An astronaut riding a horse', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'eta': 0.1, 'strength': 0.8, 'guidance_scale': 3, 'source_guidance_scale': 1, 'output_type': 'numpy', } return inputs def UpperCamelCase__ ( self ) -> Union[str, Any]: __a = 'cpu' # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = CycleDiffusionPipeline(**UpperCamelCase ) __a = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) __a = self.get_dummy_inputs(UpperCamelCase ) __a = pipe(**UpperCamelCase ) __a = output.images __a = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __a = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def UpperCamelCase__ ( self ) -> Tuple: __a = self.get_dummy_components() for name, module in components.items(): if hasattr(UpperCamelCase , 'half' ): __a = module.half() __a = CycleDiffusionPipeline(**UpperCamelCase ) __a = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) __a = self.get_dummy_inputs(UpperCamelCase ) __a = pipe(**UpperCamelCase ) __a = output.images __a = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __a = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCamelCase__ ( self ) -> int: return super().test_save_load_local() @unittest.skip('non-deterministic pipeline' ) def UpperCamelCase__ ( self ) -> List[Any]: return super().test_inference_batch_single_identical() @skip_mps def UpperCamelCase__ ( self ) -> Any: return super().test_dict_tuple_outputs_equivalent() @skip_mps def UpperCamelCase__ ( self ) -> int: return super().test_save_load_optional_components() @skip_mps def UpperCamelCase__ ( self ) -> Tuple: return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): def UpperCamelCase__ ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> Tuple: __a = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) __a = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy' ) __a = init_image.resize((512, 512) ) __a = 'CompVis/stable-diffusion-v1-4' __a = DDIMScheduler.from_pretrained(UpperCamelCase , subfolder='scheduler' ) __a = CycleDiffusionPipeline.from_pretrained( UpperCamelCase , scheduler=UpperCamelCase , safety_checker=UpperCamelCase , torch_dtype=torch.floataa , revision='fp16' ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) pipe.enable_attention_slicing() __a = 'A black colored car' __a = 'A blue colored car' __a = torch.manual_seed(0 ) __a = pipe( prompt=UpperCamelCase , source_prompt=UpperCamelCase , image=UpperCamelCase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=UpperCamelCase , output_type='np' , ) __a = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def UpperCamelCase__ ( self ) -> List[Any]: __a = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) __a = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy' ) __a = init_image.resize((512, 512) ) __a = 'CompVis/stable-diffusion-v1-4' __a = DDIMScheduler.from_pretrained(UpperCamelCase , subfolder='scheduler' ) __a = CycleDiffusionPipeline.from_pretrained(UpperCamelCase , scheduler=UpperCamelCase , safety_checker=UpperCamelCase ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) pipe.enable_attention_slicing() __a = 'A black colored car' __a = 'A blue colored car' __a = torch.manual_seed(0 ) __a = pipe( prompt=UpperCamelCase , source_prompt=UpperCamelCase , image=UpperCamelCase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=UpperCamelCase , output_type='np' , ) __a = output.images assert np.abs(image - expected_image ).max() < 2e-2
720
'''simple docstring''' import os def SCREAMING_SNAKE_CASE ( ): with open(os.path.dirname(a_ ) + '/grid.txt' ) as f: __a = [] # noqa: E741 for _ in range(20 ): l.append([int(a_ ) for x in f.readline().split()] ) __a = 0 # right for i in range(20 ): for j in range(17 ): __a = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: __a = temp # down for i in range(17 ): for j in range(20 ): __a = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: __a = temp # diagonal 1 for i in range(17 ): for j in range(17 ): __a = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: __a = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): __a = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: __a = temp return maximum if __name__ == "__main__": print(solution())
490
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: UpperCamelCase__ : List[Any] = None UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase__ : Dict = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase__ : int = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), }, '''tokenizer_file''': { '''google/bigbird-roberta-base''': ( '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json''' ), '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json''' ), }, } UpperCamelCase__ : List[Any] = { '''google/bigbird-roberta-base''': 40_96, '''google/bigbird-roberta-large''': 40_96, '''google/bigbird-base-trivia-itc''': 40_96, } UpperCamelCase__ : Union[str, Any] = '''▁''' class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Union[str, Any] = VOCAB_FILES_NAMES __a : Any = PRETRAINED_VOCAB_FILES_MAP __a : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Any = BigBirdTokenizer __a : str = ["input_ids", "attention_mask"] __a : List[int] = [] def __init__( self ,snake_case__=None ,snake_case__=None ,snake_case__="<unk>" ,snake_case__="<s>" ,snake_case__="</s>" ,snake_case__="<pad>" ,snake_case__="[SEP]" ,snake_case__="[MASK]" ,snake_case__="[CLS]" ,**snake_case__ ,): SCREAMING_SNAKE_CASE_ : Tuple = AddedToken(snake_case__ ,lstrip=snake_case__ ,rstrip=snake_case__ ) if isinstance(snake_case__ ,snake_case__ ) else bos_token SCREAMING_SNAKE_CASE_ : Union[str, Any] = AddedToken(snake_case__ ,lstrip=snake_case__ ,rstrip=snake_case__ ) if isinstance(snake_case__ ,snake_case__ ) else eos_token SCREAMING_SNAKE_CASE_ : List[Any] = AddedToken(snake_case__ ,lstrip=snake_case__ ,rstrip=snake_case__ ) if isinstance(snake_case__ ,snake_case__ ) else unk_token SCREAMING_SNAKE_CASE_ : str = AddedToken(snake_case__ ,lstrip=snake_case__ ,rstrip=snake_case__ ) if isinstance(snake_case__ ,snake_case__ ) else pad_token SCREAMING_SNAKE_CASE_ : int = AddedToken(snake_case__ ,lstrip=snake_case__ ,rstrip=snake_case__ ) if isinstance(snake_case__ ,snake_case__ ) else cls_token SCREAMING_SNAKE_CASE_ : Optional[int] = AddedToken(snake_case__ ,lstrip=snake_case__ ,rstrip=snake_case__ ) if isinstance(snake_case__ ,snake_case__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ : List[Any] = AddedToken(snake_case__ ,lstrip=snake_case__ ,rstrip=snake_case__ ) if isinstance(snake_case__ ,snake_case__ ) else mask_token super().__init__( snake_case__ ,tokenizer_file=snake_case__ ,bos_token=snake_case__ ,eos_token=snake_case__ ,unk_token=snake_case__ ,sep_token=snake_case__ ,pad_token=snake_case__ ,cls_token=snake_case__ ,mask_token=snake_case__ ,**snake_case__ ,) SCREAMING_SNAKE_CASE_ : Optional[Any] = vocab_file SCREAMING_SNAKE_CASE_ : int = False if not self.vocab_file else True def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Dict = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case ( self ,snake_case__ ,snake_case__ = None ,snake_case__ = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case ( self ,snake_case__ ,snake_case__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(snake_case__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE_ : str = os.path.join( snake_case__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file ,snake_case__ ) return (out_vocab_file,)
105
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version _SCREAMING_SNAKE_CASE : List[Any] = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize _SCREAMING_SNAKE_CASE : List[Any] = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' _SCREAMING_SNAKE_CASE : List[Any] = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' _SCREAMING_SNAKE_CASE : List[Any] = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase__ ( self : Optional[int]): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence"), "references": datasets.Value("string" , id="sequence"), }) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def UpperCAmelCase__ ( self : Union[str, Any] , _UpperCamelCase : Union[str, Any]): import nltk nltk.download("wordnet") if NLTK_VERSION >= version.Version("3.6.5"): nltk.download("punkt") if NLTK_VERSION >= version.Version("3.6.6"): nltk.download("omw-1.4") def UpperCAmelCase__ ( self : int , _UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : int=0.9 , _UpperCamelCase : List[str]=3 , _UpperCamelCase : Dict=0.5): if NLTK_VERSION >= version.Version("3.6.5"): _lowercase: List[str] = [ meteor_score.single_meteor_score( word_tokenize(_UpperCamelCase) , word_tokenize(_UpperCamelCase) , alpha=_UpperCamelCase , beta=_UpperCamelCase , gamma=_UpperCamelCase) for ref, pred in zip(_UpperCamelCase , _UpperCamelCase) ] else: _lowercase: Optional[int] = [ meteor_score.single_meteor_score(_UpperCamelCase , _UpperCamelCase , alpha=_UpperCamelCase , beta=_UpperCamelCase , gamma=_UpperCamelCase) for ref, pred in zip(_UpperCamelCase , _UpperCamelCase) ] return {"meteor": np.mean(_UpperCamelCase)}
226
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : List[str] = {"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = ["PLBartTokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : str = [ "PLBART_PRETRAINED_MODEL_ARCHIVE_LIST", "PLBartForCausalLM", "PLBartForConditionalGeneration", "PLBartForSequenceClassification", "PLBartModel", "PLBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys lowerCamelCase_ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure)
345
from __future__ import annotations from typing import Any def __lowercase( __snake_case : list ) -> int: if not postfix_notation: return 0 __snake_case = {'+', '-', '*', '/'} __snake_case = [] for token in postfix_notation: if token in operations: __snake_case , __snake_case = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(__snake_case ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
345
1
"""simple docstring""" import numpy as np def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): return np.where(vector > 0 , __UpperCamelCase , (alpha * (np.exp(__UpperCamelCase ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
76
'''simple docstring''' from __future__ import annotations from typing import Any def snake_case_ ( __snake_case : list[Any]) -> None: create_state_space_tree(__snake_case , [] , 0) def snake_case_ ( __snake_case : list[Any] , __snake_case : list[Any] , __snake_case : int) -> None: if index == len(__snake_case): print(__snake_case) return create_state_space_tree(__snake_case , __snake_case , index + 1) current_subsequence.append(sequence[index]) create_state_space_tree(__snake_case , __snake_case , index + 1) current_subsequence.pop() if __name__ == "__main__": A_ : list[Any] =[3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['''A''', '''B''', '''C''']) generate_all_subsequences(seq)
274
0
import itertools import math def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case_ ( ) -> Optional[Any]: lowercase__ : List[str] = 2 while True: if is_prime(SCREAMING_SNAKE_CASE_ ): yield num num += 1 def snake_case_ ( SCREAMING_SNAKE_CASE_ = 1_00_01 ) -> int: return next(itertools.islice(prime_generator() ,nth - 1 ,SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": print(f'{solution() = }')
708
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( "compression_format, is_archive" ,[ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ] ,) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,) -> List[Any]: lowercase__ : List[str] = { "7z": (seven_zip_file, SevenZipExtractor), "bz2": (bza_file, BzipaExtractor), "gzip": (gz_file, GzipExtractor), "lz4": (lza_file, LzaExtractor), "tar": (tar_file, TarExtractor), "xz": (xz_file, XzExtractor), "zip": (zip_file, ZipExtractor), "zstd": (zstd_file, ZstdExtractor), } lowercase__ , lowercase__ : Tuple = input_paths_and_base_extractors[compression_format] if input_path is None: lowercase__ : List[Any] = F"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(SCREAMING_SNAKE_CASE_ ) assert base_extractor.is_extractable(SCREAMING_SNAKE_CASE_ ) lowercase__ : str = tmp_path / ("extracted" if is_archive else "extracted.txt") base_extractor.extract(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase__ : Tuple = file_path.read_text(encoding="utf-8" ) else: lowercase__ : List[str] = output_path.read_text(encoding="utf-8" ) lowercase__ : Dict = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( "compression_format, is_archive" ,[ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ] ,) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,) -> Optional[Any]: lowercase__ : Optional[Any] = { "7z": seven_zip_file, "bz2": bza_file, "gzip": gz_file, "lz4": lza_file, "tar": tar_file, "xz": xz_file, "zip": zip_file, "zstd": zstd_file, } lowercase__ : List[Any] = input_paths[compression_format] if input_path is None: lowercase__ : Union[str, Any] = F"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(SCREAMING_SNAKE_CASE_ ) lowercase__ : List[Any] = Extractor.infer_extractor_format(SCREAMING_SNAKE_CASE_ ) assert extractor_format is not None lowercase__ : Optional[int] = tmp_path / ("extracted" if is_archive else "extracted.txt") Extractor.extract(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase__ : Tuple = file_path.read_text(encoding="utf-8" ) else: lowercase__ : Dict = output_path.read_text(encoding="utf-8" ) lowercase__ : Optional[Any] = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.fixture def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> int: import tarfile lowercase__ : Any = tmp_path / "data_dot_dot" directory.mkdir() lowercase__ : Union[str, Any] = directory / "tar_file_with_dot_dot.tar" with tarfile.TarFile(SCREAMING_SNAKE_CASE_ ,"w" ) as f: f.add(SCREAMING_SNAKE_CASE_ ,arcname=os.path.join(".." ,text_file.name ) ) return path @pytest.fixture def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> int: import tarfile lowercase__ : List[str] = tmp_path / "data_sym_link" directory.mkdir() lowercase__ : Tuple = directory / "tar_file_with_sym_link.tar" os.symlink(".." ,directory / "subdir" ,target_is_directory=SCREAMING_SNAKE_CASE_ ) with tarfile.TarFile(SCREAMING_SNAKE_CASE_ ,"w" ) as f: f.add(str(directory / "subdir" ) ,arcname="subdir" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( "insecure_tar_file, error_log" ,[("tar_file_with_dot_dot", "illegal path"), ("tar_file_with_sym_link", "Symlink")] ,) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> Tuple: lowercase__ : Dict = { "tar_file_with_dot_dot": tar_file_with_dot_dot, "tar_file_with_sym_link": tar_file_with_sym_link, } lowercase__ : Dict = insecure_tar_files[insecure_tar_file] lowercase__ : Optional[int] = tmp_path / "extracted" TarExtractor.extract(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number lowercase__ : Dict = tmpdir / "not_a_zip_file" # From: https://github.com/python/cpython/pull/5053 lowercase__ : str = ( b"\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00" b"\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I" b"DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07" b"\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82" ) with not_a_zip_file.open("wb" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) assert zipfile.is_zipfile(str(SCREAMING_SNAKE_CASE_ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(SCREAMING_SNAKE_CASE_ ) # but we're right
298
0
"""simple docstring""" import torch from diffusers import DiffusionPipeline class lowercase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , _A , _A ): '''simple docstring''' super().__init__() self.register_modules(unet=_A , scheduler=_A ) def __call__( self ): '''simple docstring''' UpperCamelCase : Tuple = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) UpperCamelCase : Any = 1 UpperCamelCase : Optional[Any] = self.unet(_A , _A ).sample UpperCamelCase : List[str] = self.scheduler.step(_A , _A , _A ).prev_sample UpperCamelCase : Optional[int] = scheduler_output - scheduler_output + torch.ones_like(_A ) return result
102
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __magic_name__ : List[Any] = logging.get_logger(__name__) __magic_name__ : List[str] = ["""model.decoder.embed_positions.weights"""] def UpperCamelCase (SCREAMING_SNAKE_CASE ): if "emb" in name: UpperCamelCase : Tuple = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: UpperCamelCase : List[str] = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: UpperCamelCase : str = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: UpperCamelCase : Optional[int] = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: UpperCamelCase : int = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: UpperCamelCase : List[Any] = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: UpperCamelCase : int = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: UpperCamelCase : str = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: UpperCamelCase : Tuple = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: UpperCamelCase : str = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: UpperCamelCase : Dict = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : List[str] = list(state_dict.keys() ) UpperCamelCase : Optional[Any] = {} for key in keys: UpperCamelCase : Optional[int] = state_dict.pop(SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = rename_keys(SCREAMING_SNAKE_CASE ) if "in_proj_weight" in key: # split fused qkv proj UpperCamelCase : Optional[int] = val[:hidden_size, :] UpperCamelCase : List[Any] = val[hidden_size : 2 * hidden_size, :] UpperCamelCase : Dict = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: UpperCamelCase : Any = val else: UpperCamelCase : str = val return state_dict, enc_dec_proj_state_dict def UpperCamelCase (SCREAMING_SNAKE_CASE ): if checkpoint == "small": # default config values UpperCamelCase : Tuple = 1024 UpperCamelCase : Dict = 24 UpperCamelCase : Optional[int] = 16 elif checkpoint == "medium": UpperCamelCase : Optional[Any] = 1536 UpperCamelCase : int = 48 UpperCamelCase : int = 24 elif checkpoint == "large": UpperCamelCase : Any = 2048 UpperCamelCase : List[Any] = 48 UpperCamelCase : str = 32 else: raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) UpperCamelCase : Optional[int] = MusicgenDecoderConfig( hidden_size=SCREAMING_SNAKE_CASE , ffn_dim=hidden_size * 4 , num_hidden_layers=SCREAMING_SNAKE_CASE , num_attention_heads=SCREAMING_SNAKE_CASE , ) return config @torch.no_grad() def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="cpu" ): UpperCamelCase : Optional[Any] = MusicGen.get_pretrained(SCREAMING_SNAKE_CASE , device=SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = decoder_config_from_checkpoint(SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = fairseq_model.lm.state_dict() UpperCamelCase , UpperCamelCase : Optional[int] = rename_state_dict( SCREAMING_SNAKE_CASE , hidden_size=decoder_config.hidden_size ) UpperCamelCase : int = TaEncoderModel.from_pretrained("""t5-base""" ) UpperCamelCase : List[str] = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) UpperCamelCase : Optional[int] = MusicgenForCausalLM(SCREAMING_SNAKE_CASE ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection UpperCamelCase , UpperCamelCase : Tuple = decoder.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" ) if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model UpperCamelCase : Tuple = MusicgenForConditionalGeneration(text_encoder=SCREAMING_SNAKE_CASE , audio_encoder=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(SCREAMING_SNAKE_CASE ) # check we can do a forward pass UpperCamelCase : int = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) UpperCamelCase : Tuple = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): UpperCamelCase : Any = model(input_ids=SCREAMING_SNAKE_CASE , decoder_input_ids=SCREAMING_SNAKE_CASE ).logits if logits.shape != (8, 1, 2048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor UpperCamelCase : Any = AutoTokenizer.from_pretrained("""t5-base""" ) UpperCamelCase : Tuple = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) UpperCamelCase : int = MusicgenProcessor(feature_extractor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) # set the appropriate bos/pad token ids UpperCamelCase : Optional[int] = 2048 UpperCamelCase : Tuple = 2048 # set other default generation config params UpperCamelCase : Optional[int] = int(30 * audio_encoder.config.frame_rate ) UpperCamelCase : int = True UpperCamelCase : Dict = 3.0 if pytorch_dump_folder is not None: Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) if repo_id: logger.info(f"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(SCREAMING_SNAKE_CASE ) processor.push_to_hub(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __magic_name__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) __magic_name__ : Optional[Any] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
102
1
"""simple docstring""" def lowercase__ ( lowercase_ ,lowercase_ ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def lowercase__ ( ) -> None: """simple docstring""" assert nand_gate(0 ,0 ) == 1 assert nand_gate(0 ,1 ) == 1 assert nand_gate(1 ,0 ) == 1 assert nand_gate(1 ,1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
51
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def lowercase__ ( lowercase_ = 1_000_000 ,lowercase_ = 10 ) -> int: """simple docstring""" _UpperCamelCase : defaultdict = defaultdict(lowercase_ ) for outer_width in range(3 ,(t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _UpperCamelCase : Any = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) ,1 ) else: _UpperCamelCase : str = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(lowercase_ ,outer_width - 1 ,2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"""{solution() = }""")
51
1
'''simple docstring''' import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class a__: def __init__( self , _UpperCAmelCase , _UpperCAmelCase=3 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ) -> int: snake_case__ =parent snake_case__ =batch_size snake_case__ =seq_length snake_case__ =is_training snake_case__ =use_input_mask snake_case__ =use_token_type_ids snake_case__ =use_labels snake_case__ =vocab_size snake_case__ =hidden_size snake_case__ =num_hidden_layers snake_case__ =num_attention_heads snake_case__ =intermediate_size snake_case__ =hidden_act snake_case__ =hidden_dropout_prob snake_case__ =attention_probs_dropout_prob snake_case__ =max_position_embeddings snake_case__ =type_vocab_size snake_case__ =type_sequence_label_size snake_case__ =initializer_range snake_case__ =num_labels snake_case__ =num_choices snake_case__ =scope def _lowercase ( self ) -> Tuple: snake_case__ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ =None if self.use_input_mask: snake_case__ =random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ =None snake_case__ =None snake_case__ =None snake_case__ =None if self.use_labels: snake_case__ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ =ids_tensor([self.batch_size] , self.num_choices ) snake_case__ =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self ) -> str: return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=_UpperCAmelCase , ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: snake_case__ =FalconModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case__ =model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) snake_case__ =model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> List[str]: snake_case__ =True snake_case__ =FalconModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case__ =model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) snake_case__ =model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , ) snake_case__ =model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> Dict: snake_case__ =FalconForCausalLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case__ =model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> Optional[Any]: snake_case__ =True snake_case__ =True snake_case__ =FalconForCausalLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() # first forward pass snake_case__ =model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase , ) snake_case__ =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case__ =ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ =ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case__ =torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ =torch.cat([input_mask, next_mask] , dim=-1 ) snake_case__ =model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , )['hidden_states'][0] snake_case__ =model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , )['hidden_states'][0] # select random slice snake_case__ =ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ =output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) def _lowercase ( self ) -> List[str]: snake_case__ =self.prepare_config_and_inputs() ( snake_case__ ) =config_and_inputs snake_case__ ={'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a__( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): a_ : Optional[int] = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) a_ : Tuple = (FalconForCausalLM,) if is_torch_available() else () a_ : Union[str, Any] = ( { "feature-extraction": FalconModel, "text-classification": FalconForSequenceClassification, "text-generation": FalconForCausalLM, "question-answering": FalconForQuestionAnswering, "token-classification": FalconForTokenClassification, "zero-shot": FalconForSequenceClassification, } if is_torch_available() else {} ) a_ : Optional[int] = False a_ : List[str] = False def _lowercase ( self ) -> Optional[int]: snake_case__ =FalconModelTester(self ) snake_case__ =ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def _lowercase ( self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase ( self ) -> Optional[int]: snake_case__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def _lowercase ( self ) -> List[Any]: snake_case__ =self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: snake_case__ =alibi self.model_tester.create_and_check_model(_UpperCAmelCase , *_UpperCAmelCase ) def _lowercase ( self ) -> Union[str, Any]: snake_case__ =self.model_tester.prepare_config_and_inputs_for_common() snake_case__ =3 snake_case__ =input_dict['input_ids'] snake_case__ =input_ids.ne(1 ).to(_UpperCAmelCase ) snake_case__ =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case__ =FalconForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case__ =model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase ( self ) -> Optional[Any]: snake_case__ =self.model_tester.prepare_config_and_inputs_for_common() snake_case__ =3 snake_case__ ='single_label_classification' snake_case__ =input_dict['input_ids'] snake_case__ =input_ids.ne(1 ).to(_UpperCAmelCase ) snake_case__ =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case__ =FalconForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case__ =model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase ( self ) -> Tuple: snake_case__ =self.model_tester.prepare_config_and_inputs_for_common() snake_case__ =input_dict['input_ids'] snake_case__ =FalconForCausalLM(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case__ =model(_UpperCAmelCase , use_cache=_UpperCAmelCase ) snake_case__ =input_ids.shape[0] snake_case__ =model._convert_to_rw_cache(result.past_key_values ) snake_case__ =model._convert_cache_to_standard_format(_UpperCAmelCase , _UpperCAmelCase ) for layer in range(len(_UpperCAmelCase ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def _lowercase ( self ) -> Union[str, Any]: snake_case__ =self.model_tester.prepare_config_and_inputs_for_common() snake_case__ =3 snake_case__ ='multi_label_classification' snake_case__ =input_dict['input_ids'] snake_case__ =input_ids.ne(1 ).to(_UpperCAmelCase ) snake_case__ =ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case__ =FalconForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case__ =model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase ( self ) -> str: # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: snake_case__ =self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(_UpperCAmelCase , 'use_cache' ): return snake_case__ =model_class(_UpperCAmelCase ).to(_UpperCAmelCase ) if "use_cache" not in inputs: snake_case__ =True snake_case__ =model(**_UpperCAmelCase ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return snake_case__ =( getattr(_UpperCAmelCase , 'decoder_layers' , _UpperCAmelCase ) or getattr(_UpperCAmelCase , 'num_decoder_layers' , _UpperCAmelCase ) or config.num_hidden_layers ) snake_case__ =getattr(_UpperCAmelCase , 'num_kv_heads' , config.num_attention_heads ) snake_case__ =getattr(_UpperCAmelCase , 'd_model' , config.hidden_size ) snake_case__ =embed_dim // num_attention_heads snake_case__ =outputs['past_key_values'] self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) snake_case__ =inputs['input_ids'].shape for i in range(_UpperCAmelCase ): if config.new_decoder_architecture: snake_case__ =config.num_attention_heads elif config.multi_query: snake_case__ =1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class a__( unittest.TestCase ): @slow def _lowercase ( self ) -> int: snake_case__ =AutoTokenizer.from_pretrained('Rocketknight1/falcon-rw-1b' ) snake_case__ =FalconForCausalLM.from_pretrained('Rocketknight1/falcon-rw-1b' ) model.eval() model.to(_UpperCAmelCase ) snake_case__ =tokenizer('My favorite food is' , return_tensors='pt' ).to(_UpperCAmelCase ) snake_case__ =( 'My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.' ) snake_case__ =model.generate(**_UpperCAmelCase , do_sample=_UpperCAmelCase , max_new_tokens=19 ) snake_case__ =tokenizer.batch_decode(_UpperCAmelCase )[0] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def _lowercase ( self ) -> Any: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: snake_case__ =AutoTokenizer.from_pretrained(_UpperCAmelCase ) snake_case__ =FalconForCausalLM.from_pretrained(_UpperCAmelCase ) model.eval() model.to(_UpperCAmelCase ) snake_case__ =tokenizer('My favorite food is' , return_tensors='pt' ).to(_UpperCAmelCase ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**_UpperCAmelCase , do_sample=_UpperCAmelCase , max_new_tokens=4 ) model.generate(**_UpperCAmelCase , do_sample=_UpperCAmelCase , max_new_tokens=4 ) model.generate(**_UpperCAmelCase , num_beams=2 , max_new_tokens=4 ) @slow def _lowercase ( self ) -> List[Any]: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: snake_case__ =AutoTokenizer.from_pretrained(_UpperCAmelCase ) snake_case__ =FalconForCausalLM.from_pretrained(_UpperCAmelCase ) model.eval() model.to(device=_UpperCAmelCase ) snake_case__ =tokenizer('My favorite food is' , return_tensors='pt' ).to(_UpperCAmelCase ) # Test results are the same with and without cache snake_case__ =model.generate(**_UpperCAmelCase , do_sample=_UpperCAmelCase , max_new_tokens=20 , use_cache=_UpperCAmelCase ) snake_case__ =model.generate(**_UpperCAmelCase , do_sample=_UpperCAmelCase , max_new_tokens=20 , use_cache=_UpperCAmelCase ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
538
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class __SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): '''simple docstring''' lowerCAmelCase__ : torch.FloatTensor class __SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' @register_to_config def __init__( self : Optional[Any] ,UpperCamelCase : int = 3 ,UpperCamelCase : int = 3 ,UpperCamelCase : Tuple[str] = ("DownEncoderBlock2D",) ,UpperCamelCase : Tuple[str] = ("UpDecoderBlock2D",) ,UpperCamelCase : Tuple[int] = (64,) ,UpperCamelCase : int = 1 ,UpperCamelCase : str = "silu" ,UpperCamelCase : int = 3 ,UpperCamelCase : int = 32 ,UpperCamelCase : int = 256 ,UpperCamelCase : int = 32 ,UpperCamelCase : Optional[int] = None ,UpperCamelCase : float = 0.1_8_2_1_5 ,UpperCamelCase : str = "group" ,) -> List[Any]: super().__init__() # pass init params to Encoder _lowercase : Any = Encoder( in_channels=UpperCamelCase ,out_channels=UpperCamelCase ,down_block_types=UpperCamelCase ,block_out_channels=UpperCamelCase ,layers_per_block=UpperCamelCase ,act_fn=UpperCamelCase ,norm_num_groups=UpperCamelCase ,double_z=UpperCamelCase ,) _lowercase : Tuple = vq_embed_dim if vq_embed_dim is not None else latent_channels _lowercase : List[str] = nn.Convad(UpperCamelCase ,UpperCamelCase ,1 ) _lowercase : Dict = VectorQuantizer(UpperCamelCase ,UpperCamelCase ,beta=0.2_5 ,remap=UpperCamelCase ,sane_index_shape=UpperCamelCase ) _lowercase : List[str] = nn.Convad(UpperCamelCase ,UpperCamelCase ,1 ) # pass init params to Decoder _lowercase : Optional[Any] = Decoder( in_channels=UpperCamelCase ,out_channels=UpperCamelCase ,up_block_types=UpperCamelCase ,block_out_channels=UpperCamelCase ,layers_per_block=UpperCamelCase ,act_fn=UpperCamelCase ,norm_num_groups=UpperCamelCase ,norm_type=UpperCamelCase ,) @apply_forward_hook def _lowerCamelCase ( self : Optional[int] ,UpperCamelCase : torch.FloatTensor ,UpperCamelCase : bool = True ) -> VQEncoderOutput: _lowercase : Optional[int] = self.encoder(UpperCamelCase ) _lowercase : Any = self.quant_conv(UpperCamelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=UpperCamelCase ) @apply_forward_hook def _lowerCamelCase ( self : Optional[int] ,UpperCamelCase : torch.FloatTensor ,UpperCamelCase : bool = False ,UpperCamelCase : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: _lowercase , _lowercase , _lowercase : Optional[int] = self.quantize(UpperCamelCase ) else: _lowercase : Tuple = h _lowercase : Optional[int] = self.post_quant_conv(UpperCamelCase ) _lowercase : Dict = self.decoder(UpperCamelCase ,quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase ) def _lowerCamelCase ( self : Optional[Any] ,UpperCamelCase : torch.FloatTensor ,UpperCamelCase : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: _lowercase : Dict = sample _lowercase : Dict = self.encode(UpperCamelCase ).latents _lowercase : str = self.decode(UpperCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase )
125
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class a_ : lowerCamelCase__ : Union[str, Any] = XGLMConfig lowerCamelCase__ : str = {} lowerCamelCase__ : Any = 'gelu' def __init__( self , UpperCAmelCase , UpperCAmelCase=14 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_12 , UpperCAmelCase=0.02 , ): a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = use_labels a_ = vocab_size a_ = d_model a_ = num_hidden_layers a_ = num_attention_heads a_ = ffn_dim a_ = activation_function a_ = activation_dropout a_ = attention_dropout a_ = max_position_embeddings a_ = initializer_range a_ = None a_ = 0 a_ = 2 a_ = 1 def lowerCAmelCase__ ( self ): return XGLMConfig.from_pretrained("""facebook/xglm-564M""" ) def lowerCAmelCase__ ( self ): a_ = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) a_ = None if self.use_input_mask: a_ = random_attention_mask([self.batch_size, self.seq_length] ) a_ = self.get_config() a_ = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def lowerCAmelCase__ ( self ): return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=UpperCAmelCase , ) def lowerCAmelCase__ ( self ): a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = { """input_ids""": input_ids, """head_mask""": head_mask, } return config, inputs_dict @require_tf class a_ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): lowerCamelCase__ : List[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowerCamelCase__ : Dict = (TFXGLMForCausalLM,) if is_tf_available() else () lowerCamelCase__ : List[Any] = ( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) lowerCamelCase__ : Dict = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Union[str, Any] = False def lowerCAmelCase__ ( self ): a_ = TFXGLMModelTester(self ) a_ = ConfigTester(self , config_class=UpperCAmelCase , n_embd=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() @slow def lowerCAmelCase__ ( self ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = TFXGLMModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" ) def lowerCAmelCase__ ( self ): super().test_resize_token_embeddings() @require_tf class a_ ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self , UpperCAmelCase=True ): a_ = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) a_ = tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off a_ = [2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81] # fmt: on a_ = model.generate(UpperCAmelCase , do_sample=UpperCAmelCase , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , UpperCAmelCase ) @slow def lowerCAmelCase__ ( self ): a_ = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) a_ = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) tf.random.set_seed(0 ) a_ = tokenizer("""Today is a nice day and""" , return_tensors="""tf""" ) a_ = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(""":/CPU:0""" ): a_ = model.generate(UpperCAmelCase , do_sample=UpperCAmelCase , seed=[7, 0] ) a_ = tokenizer.decode(output_ids[0] , skip_special_tokens=UpperCAmelCase ) a_ = ( """Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due""" ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) @slow def lowerCAmelCase__ ( self ): a_ = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) a_ = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) a_ = """left""" # use different length sentences to test batching a_ = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When""", """Hello, my dog is a little""", ] a_ = tokenizer(UpperCAmelCase , return_tensors="""tf""" , padding=UpperCAmelCase ) a_ = inputs["""input_ids"""] a_ = model.generate(input_ids=UpperCAmelCase , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 ) a_ = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids a_ = model.generate(input_ids=UpperCAmelCase , max_new_tokens=12 ) a_ = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids a_ = model.generate(input_ids=UpperCAmelCase , max_new_tokens=12 ) a_ = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) a_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCAmelCase ) a_ = tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCAmelCase ) a_ = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """ """a single""", """Hello, my dog is a little bit of a shy one, but he is very friendly""", ] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , [non_padded_sentence, padded_sentence] )
511
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): lowercase__ =get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right lowercase__ =12_80_22 lowercase__ =12_80_28 @require_sentencepiece class a_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase__ : Union[str, Any] = MaMaaaTokenizer lowerCamelCase__ : str = False lowerCamelCase__ : Dict = False lowerCamelCase__ : str = True def lowerCAmelCase__ ( self ): super().setUp() a_ = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] a_ = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) a_ = Path(self.tmpdirname ) save_json(UpperCAmelCase , save_dir / VOCAB_FILES_NAMES["""vocab_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(UpperCAmelCase , save_dir / VOCAB_FILES_NAMES["""spm_file"""] ) a_ = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self , **UpperCAmelCase ): return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def lowerCAmelCase__ ( self , UpperCAmelCase ): return ( "This is a test", "This is a test", ) def lowerCAmelCase__ ( self ): a_ = """</s>""" a_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = self.get_tokenizer() a_ = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<s>""" ) self.assertEqual(len(UpperCAmelCase ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("""Skip this test while all models are still to be uploaded.""" ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): a_ = self.get_tokenizer() a_ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [2, 3, 4, 5, 6] , ) a_ = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(UpperCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) a_ = tokenizer.convert_tokens_to_string(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , """This is a test""" ) @slow def lowerCAmelCase__ ( self ): # fmt: off a_ = {"""input_ids""": [[12_80_22, 11_01_08, 3_97, 11, 3_82_72, 22_47, 12_48_11, 2_85, 1_81_05, 15_86, 2_07, 7, 3_95_34, 44_28, 3_97, 10_19, 1_81_05, 15_86, 2_07, 7, 4_13_37, 1_67_86, 2_41, 7, 2_02_14, 17, 12_56_90, 1_03_98, 7, 4_43_78, 5_80_69, 6_83_42, 77_98, 73_43, 11, 2_99, 3_33_10, 4, 1_58, 3_73_50, 9_40_77, 45_69, 2_99, 3_33_10, 90, 4, 5_28_40, 2_90, 4, 3_12_70, 1_12, 2_99, 6_82, 4, 5_28_40, 3_99_53, 1_40_79, 1_93, 5_25_19, 9_08_94, 1_78_94, 12_06_97, 11, 4_04_45, 5_51, 17, 10_19, 5_25_19, 9_08_94, 1_77_56, 9_63, 11, 4_04_45, 4_80, 17, 97_92, 11_20, 51_73, 13_93, 62_40, 1_67_86, 2_41, 12_09_96, 28, 12_45, 13_93, 11_82_40, 1_11_23, 10_19, 9_36_12, 26_91, 1_06_18, 9_80_58, 12_04_09, 19_28, 2_79, 4, 4_06_83, 3_67, 1_78, 2_07, 10_19, 1_03, 10_31_21, 5_06, 6_52_96, 5, 2], [12_80_22, 2_12_17, 3_67, 1_17, 12_54_50, 1_28, 7_19, 7, 73_08, 40, 9_36_12, 1_26_69, 11_16, 1_67_04, 71, 1_77_85, 36_99, 1_55_92, 35, 1_44, 95_84, 2_41, 1_19_43, 7_13, 9_50, 7_99, 22_47, 8_84_27, 1_50, 1_49, 11_88_13, 12_07_06, 10_19, 10_69_06, 8_15_18, 28, 12_24, 2_27_99, 3_97, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [12_80_22, 16_58, 12_33_11, 51_55, 55_78, 47_22, 2_79, 1_49_47, 23_66, 11_20, 11_97, 14, 13_48, 92_32, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name="""facebook/m2m100_418M""" , revision="""c168bae485c864188cf9aa0e4108b0b6934dc91e""" , ) @require_torch @require_sentencepiece @require_tokenizers class a_ ( unittest.TestCase ): lowerCamelCase__ : int = 'facebook/m2m100_418M' lowerCamelCase__ : Union[str, Any] = [ 'In my opinion, there are two levels of response from the French government.', 'NSA Affair Emphasizes Complete Lack of Debate on Intelligence', ] lowerCamelCase__ : int = [ 'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.', 'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement', ] # fmt: off lowerCamelCase__ : Optional[int] = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2] @classmethod def lowerCAmelCase__ ( cls ): a_ = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en""" , tgt_lang="""fr""" ) a_ = 1 return cls def lowerCAmelCase__ ( self ): self.assertEqual(self.tokenizer.get_lang_id("""ar""" ) , 12_80_06 ) self.assertEqual(self.tokenizer.get_lang_id("""en""" ) , 12_80_22 ) self.assertEqual(self.tokenizer.get_lang_id("""ro""" ) , 12_80_76 ) self.assertEqual(self.tokenizer.get_lang_id("""mr""" ) , 12_80_63 ) def lowerCAmelCase__ ( self ): a_ = self.tokenizer.get_vocab() self.assertEqual(len(UpperCAmelCase ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["""<unk>"""] , 3 ) self.assertIn(self.tokenizer.get_lang_token("""en""" ) , UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = """en""" a_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase ) def lowerCAmelCase__ ( self ): self.assertIn(UpperCAmelCase , self.tokenizer.all_special_ids ) # fmt: off a_ = [FR_CODE, 53_64, 82, 86_42, 4, 2_94, 47, 8, 1_40_28, 1_36, 32_86, 97_06, 6, 9_07_97, 6, 14_40_12, 1_62, 8_81_28, 3_00_61, 5, 2] # fmt: on a_ = self.tokenizer.decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) a_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = tempfile.mkdtemp() a_ = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(UpperCAmelCase ) a_ = MaMaaaTokenizer.from_pretrained(UpperCAmelCase ) self.assertDictEqual(new_tok.lang_token_to_id , UpperCAmelCase ) @require_torch def lowerCAmelCase__ ( self ): a_ = """en""" a_ = """fr""" a_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase , return_tensors="""pt""" ) a_ = shift_tokens_right( batch["""labels"""] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: a_ = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def lowerCAmelCase__ ( self ): a_ = """mr""" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""mr""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) a_ = """zh""" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""zh""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def lowerCAmelCase__ ( self ): a_ = """mr""" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""mr""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) a_ = """zh""" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""zh""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def lowerCAmelCase__ ( self ): a_ = self.tokenizer._build_translation_inputs("""A test""" , return_tensors="""pt""" , src_lang="""en""" , tgt_lang="""ar""" ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { # en_XX, A, test, EOS """input_ids""": [[12_80_22, 58, 41_83, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 12_80_06, } , )
511
1
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = RoFormerTokenizer UpperCamelCase = RoFormerTokenizerFast UpperCamelCase = True UpperCamelCase = True def A__ ( self :List[str] ): '''simple docstring''' super().setUp() def A__ ( self :List[str] , **__snake_case :str ): '''simple docstring''' return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **__snake_case ) def A__ ( self :str , **__snake_case :Dict ): '''simple docstring''' return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **__snake_case ) def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ : List[str] ="""永和服装饰品有限公司,今天天气非常好""" __magic_name__ : Any ="""永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Optional[Any] =self.get_tokenizer() __magic_name__ , __magic_name__ : Optional[int] =self.get_chinese_input_output_texts() __magic_name__ : Any =tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , output_text.split() ) __magic_name__ : Any =tokens + [tokenizer.unk_token] __magic_name__ : Union[str, Any] =[2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : str =self.get_rust_tokenizer() __magic_name__ , __magic_name__ : Any =self.get_chinese_input_output_texts() __magic_name__ : Any =tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , output_text.split() ) __magic_name__ : Optional[int] =tokens + [tokenizer.unk_token] __magic_name__ : Any =[2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def A__ ( self :Tuple ): '''simple docstring''' pass def A__ ( self :Dict ): '''simple docstring''' pass def A__ ( self :Tuple ): '''simple docstring''' pass
21
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : Optional[int] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''lxmert''' lowerCAmelCase = {} def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=9500 , _UpperCAmelCase=1600 , _UpperCAmelCase=400 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=9 , _UpperCAmelCase=5 , _UpperCAmelCase=5 , _UpperCAmelCase=2048 , _UpperCAmelCase=4 , _UpperCAmelCase=6.67 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , **_UpperCAmelCase , ): '''simple docstring''' __A : Tuple = vocab_size __A : int = hidden_size __A : str = num_attention_heads __A : Tuple = hidden_act __A : int = intermediate_size __A : str = hidden_dropout_prob __A : Optional[int] = attention_probs_dropout_prob __A : Optional[Any] = max_position_embeddings __A : Tuple = type_vocab_size __A : Optional[int] = initializer_range __A : Any = layer_norm_eps __A : Optional[Any] = num_qa_labels __A : Optional[int] = num_object_labels __A : Any = num_attr_labels __A : Union[str, Any] = l_layers __A : Optional[int] = x_layers __A : List[Any] = r_layers __A : Tuple = visual_feat_dim __A : Tuple = visual_pos_dim __A : Optional[int] = visual_loss_normalizer __A : int = task_matched __A : List[Any] = task_mask_lm __A : Optional[Any] = task_obj_predict __A : str = task_qa __A : List[Any] = visual_obj_loss __A : Optional[Any] = visual_attr_loss __A : Union[str, Any] = visual_feat_loss __A : Union[str, Any] = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**_UpperCAmelCase)
8
0
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def snake_case__ ( _snake_case : Union[str, Any] ): """simple docstring""" if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x20000 and cp <= 0x2a6df) # or (cp >= 0x2a700 and cp <= 0x2b73f) # or (cp >= 0x2b740 and cp <= 0x2b81f) # or (cp >= 0x2b820 and cp <= 0x2ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2f800 and cp <= 0x2fa1f) # ): # return True return False def snake_case__ ( _snake_case : str ): """simple docstring""" for char in word: UpperCamelCase__ = ord(_snake_case ) if not _is_chinese_char(_snake_case ): return 0 return 1 def snake_case__ ( _snake_case : List[str] ): """simple docstring""" UpperCamelCase__ = set() for token in tokens: UpperCamelCase__ = len(_snake_case ) > 1 and is_chinese(_snake_case ) if chinese_word: word_set.add(_snake_case ) UpperCamelCase__ = list(_snake_case ) return word_list def snake_case__ ( _snake_case : List[str] , _snake_case : set() ): """simple docstring""" if not chinese_word_set: return bert_tokens UpperCamelCase__ = max([len(_snake_case ) for w in chinese_word_set] ) UpperCamelCase__ = bert_tokens UpperCamelCase__ , UpperCamelCase__ = 0, len(_snake_case ) while start < end: UpperCamelCase__ = True if is_chinese(bert_word[start] ): UpperCamelCase__ = min(end - start , _snake_case ) for i in range(_snake_case , 1 , -1 ): UpperCamelCase__ = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): UpperCamelCase__ = "##" + bert_word[j] UpperCamelCase__ = start + i UpperCamelCase__ = False break if single_word: start += 1 return bert_word def snake_case__ ( _snake_case : List[str] , _snake_case : LTP , _snake_case : BertTokenizer ): """simple docstring""" UpperCamelCase__ = [] for i in range(0 , len(_snake_case ) , 1_00 ): UpperCamelCase__ = ltp_tokenizer.pipeline(lines[i : i + 1_00] , tasks=["cws"] ).cws UpperCamelCase__ = [get_chinese_word(_snake_case ) for r in res] ltp_res.extend(_snake_case ) assert len(_snake_case ) == len(_snake_case ) UpperCamelCase__ = [] for i in range(0 , len(_snake_case ) , 1_00 ): UpperCamelCase__ = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=_snake_case , truncation=_snake_case , max_length=5_12 ) bert_res.extend(res["input_ids"] ) assert len(_snake_case ) == len(_snake_case ) UpperCamelCase__ = [] for input_ids, chinese_word in zip(_snake_case , _snake_case ): UpperCamelCase__ = [] for id in input_ids: UpperCamelCase__ = bert_tokenizer._convert_id_to_token(_snake_case ) input_tokens.append(_snake_case ) UpperCamelCase__ = add_sub_symbol(_snake_case , _snake_case ) UpperCamelCase__ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_snake_case ): if token[:2] == "##": UpperCamelCase__ = token[2:] # save chinese tokens' pos if len(_snake_case ) == 1 and _is_chinese_char(ord(_snake_case ) ): ref_id.append(_snake_case ) ref_ids.append(_snake_case ) assert len(_snake_case ) == len(_snake_case ) return ref_ids def snake_case__ ( _snake_case : Any ): """simple docstring""" with open(args.file_name , "r" , encoding="utf-8" ) as f: UpperCamelCase__ = f.readlines() UpperCamelCase__ = [line.strip() for line in data if len(_snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' UpperCamelCase__ = LTP(args.ltp ) # faster in GPU device UpperCamelCase__ = BertTokenizer.from_pretrained(args.bert ) UpperCamelCase__ = prepare_ref(_snake_case , _snake_case , _snake_case ) with open(args.save_path , "w" , encoding="utf-8" ) as f: UpperCamelCase__ = [json.dumps(_snake_case ) + "\n" for ref in ref_ids] f.writelines(_snake_case ) if __name__ == "__main__": A : int = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', required=False, type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', required=False, type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path', ) parser.add_argument( '--bert', required=False, type=str, default='./resources/robert', help='resources for Bert tokenizer', ) parser.add_argument( '--save_path', required=False, type=str, default='./resources/ref.txt', help='path to save res', ) A : Optional[int] = parser.parse_args() main(args)
304
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase ( snake_case__ , unittest.TestCase ): '''simple docstring''' A = KandinskyVaaPipeline A = [ 'image_embeds', 'negative_image_embeds', ] A = ['image_embeds', 'negative_image_embeds'] A = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] A = False @property def lowerCamelCase__ ( self :Optional[Any] ) -> Union[str, Any]: """simple docstring""" return 3_2 @property def lowerCamelCase__ ( self :Union[str, Any] ) -> Optional[int]: """simple docstring""" return 3_2 @property def lowerCamelCase__ ( self :Any ) -> int: """simple docstring""" return self.time_input_dim @property def lowerCamelCase__ ( self :List[Any] ) -> Tuple: """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase__ ( self :Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return 1_0_0 @property def lowerCamelCase__ ( self :Tuple ) -> str: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase__ = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCamelCase__ = UNetaDConditionModel(**lowerCamelCase_ ) return model @property def lowerCamelCase__ ( self :str ) -> Optional[int]: """simple docstring""" return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCamelCase__ ( self :Optional[int] ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase__ = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase__ ( self :int ) -> str: """simple docstring""" UpperCamelCase__ = self.dummy_unet UpperCamelCase__ = self.dummy_movq UpperCamelCase__ = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule="linear" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , steps_offset=1 , prediction_type="epsilon" , thresholding=lowerCamelCase_ , ) UpperCamelCase__ = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCamelCase__ ( self :int , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[int]=0 ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) UpperCamelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCamelCase_ ) if str(lowerCamelCase_ ).startswith("mps" ): UpperCamelCase__ = torch.manual_seed(lowerCamelCase_ ) else: UpperCamelCase__ = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) UpperCamelCase__ = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 6_4, "width": 6_4, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def lowerCamelCase__ ( self :Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = "cpu" UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = self.pipeline_class(**lowerCamelCase_ ) UpperCamelCase__ = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase__ = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) ) UpperCamelCase__ = output.images UpperCamelCase__ = pipe( **self.get_dummy_inputs(lowerCamelCase_ ) , return_dict=lowerCamelCase_ , )[0] UpperCamelCase__ = image[0, -3:, -3:, -1] UpperCamelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase__ = np.array( [0.6_237_976, 1.0, 0.36_441_332, 1.0, 0.70_639_634, 0.29_877_186, 0.85_652_125, 0.5_216_843, 0.54_454_046] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ ( self :str ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self :List[Any] ) -> Tuple: """simple docstring""" UpperCamelCase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy" ) UpperCamelCase__ = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase_ ) UpperCamelCase__ = KandinskyVaaPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) UpperCamelCase__ = pipeline.to(lowerCamelCase_ ) pipeline.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase__ = "red cat, 4k photo" UpperCamelCase__ = torch.Generator(device="cuda" ).manual_seed(0 ) UpperCamelCase__ , UpperCamelCase__ = pipe_prior( lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCamelCase__ = torch.Generator(device="cuda" ).manual_seed(0 ) UpperCamelCase__ = pipeline( image_embeds=lowerCamelCase_ , negative_image_embeds=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=1_0_0 , output_type="np" , ) UpperCamelCase__ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_ )
304
1
"""simple docstring""" def _SCREAMING_SNAKE_CASE (): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] __UpperCamelCase : Union[str, Any] = generate_large_matrix() __UpperCamelCase : Tuple = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[int]] ): assert all(row == sorted(_UpperCAmelCase , reverse=_UpperCAmelCase ) for row in grid ) assert all(list(_UpperCAmelCase ) == sorted(_UpperCAmelCase , reverse=_UpperCAmelCase ) for col in zip(*_UpperCAmelCase ) ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[int] ): lowerCAmelCase = 0 lowerCAmelCase = len(_UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowerCAmelCase = (left + right) // 2 lowerCAmelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowerCAmelCase = mid + 1 else: lowerCAmelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[int]] ): lowerCAmelCase = 0 lowerCAmelCase = len(grid[0] ) for i in range(len(_UpperCAmelCase ) ): lowerCAmelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(_UpperCAmelCase ) * len(grid[0] )) - total def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[int]] ): return len([number for row in grid for number in row if number < 0] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[int]] ): lowerCAmelCase = 0 for row in grid: for i, number in enumerate(_UpperCAmelCase ): if number < 0: total += len(_UpperCAmelCase ) - i break return total def _SCREAMING_SNAKE_CASE (): from timeit import timeit print('Running benchmarks' ) lowerCAmelCase = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowerCAmelCase = timeit(F'{func}(grid=grid)' , setup=_UpperCAmelCase , number=500 ) print(F'{func}() took {time:0.4f} seconds' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
4
"""simple docstring""" import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=_UpperCAmelCase , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=_UpperCAmelCase , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=_UpperCAmelCase , default=42 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=_UpperCAmelCase , default=0 , help='cuda_id.' , ) lowerCAmelCase = parser.parse_args() return args def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] ): if not len(_UpperCAmelCase ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) lowerCAmelCase ,lowerCAmelCase = imgs[0].size lowerCAmelCase = Image.new('RGB' , size=(cols * w, rows * h) ) lowerCAmelCase ,lowerCAmelCase = grid.size for i, img in enumerate(_UpperCAmelCase ): grid.paste(_UpperCAmelCase , box=(i % cols * w, i // cols * h) ) return grid def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any]="robotic cat with wings" , _UpperCAmelCase : Optional[int]=7.5 , _UpperCAmelCase : Dict=50 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=42 , ): lowerCAmelCase = torch.Generator(pipeline.device ).manual_seed(_UpperCAmelCase ) lowerCAmelCase = pipeline( _UpperCAmelCase , guidance_scale=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , generator=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , ).images lowerCAmelCase = int(math.sqrt(_UpperCAmelCase ) ) lowerCAmelCase = image_grid(_UpperCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images __UpperCamelCase : Optional[Any] = parse_args() # Load models and create wrapper for stable diffusion __UpperCamelCase : List[Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') __UpperCamelCase : str = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') __UpperCamelCase : Optional[int] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') __UpperCamelCase : List[str] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') __UpperCamelCase : Tuple = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __UpperCamelCase : Union[str, Any] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): __UpperCamelCase : Dict = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: __UpperCamelCase : Dict = unet.to(torch.device('''cuda''', args.cuda_id)) __UpperCamelCase : Optional[Any] = pipeline.to(unet.device) __UpperCamelCase ,__UpperCamelCase : List[Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) __UpperCamelCase : int = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
4
1
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : List[Any] =logging.get_logger(__name__) a__ : int ={ '''huggingface/time-series-transformer-tourism-monthly''': ( '''https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json''' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] ="time_series_transformer" SCREAMING_SNAKE_CASE_ : Optional[int] ={ "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Dict , __A : Optional[int] = None , __A : Optional[int] = None , __A : str = "student_t" , __A : str = "nll" , __A : int = 1 , __A : List[int] = [1, 2, 3, 4, 5, 6, 7] , __A : Optional[Union[str, bool]] = "mean" , __A : int = 0 , __A : int = 0 , __A : int = 0 , __A : int = 0 , __A : Optional[List[int]] = None , __A : Optional[List[int]] = None , __A : int = 3_2 , __A : int = 3_2 , __A : int = 2 , __A : int = 2 , __A : int = 2 , __A : int = 2 , __A : bool = True , __A : str = "gelu" , __A : int = 6_4 , __A : float = 0.1 , __A : float = 0.1 , __A : float = 0.1 , __A : float = 0.1 , __A : float = 0.1 , __A : int = 1_0_0 , __A : float = 0.02 , __A : int=True , **__A : Tuple , ): # time series specific configuration __UpperCamelCase = prediction_length __UpperCamelCase = context_length or prediction_length __UpperCamelCase = distribution_output __UpperCamelCase = loss __UpperCamelCase = input_size __UpperCamelCase = num_time_features __UpperCamelCase = lags_sequence __UpperCamelCase = scaling __UpperCamelCase = num_dynamic_real_features __UpperCamelCase = num_static_real_features __UpperCamelCase = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(__A ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) __UpperCamelCase = cardinality else: __UpperCamelCase = [0] if embedding_dimension and num_static_categorical_features > 0: if len(__A ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) __UpperCamelCase = embedding_dimension else: __UpperCamelCase = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] __UpperCamelCase = num_parallel_samples # Transformer architecture configuration __UpperCamelCase = input_size * len(__A ) + self._number_of_features __UpperCamelCase = d_model __UpperCamelCase = encoder_attention_heads __UpperCamelCase = decoder_attention_heads __UpperCamelCase = encoder_ffn_dim __UpperCamelCase = decoder_ffn_dim __UpperCamelCase = encoder_layers __UpperCamelCase = decoder_layers __UpperCamelCase = dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation_dropout __UpperCamelCase = encoder_layerdrop __UpperCamelCase = decoder_layerdrop __UpperCamelCase = activation_function __UpperCamelCase = init_std __UpperCamelCase = use_cache super().__init__(is_encoder_decoder=__A , **__A ) @property def _lowerCamelCase ( self : List[str] ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
434
'''simple docstring''' import inspect import unittest class snake_case ( unittest.TestCase ): """simple docstring""" def _lowerCamelCase ( self : Optional[Any] ): try: import diffusers # noqa: F401 except ImportError: assert False def _lowerCamelCase ( self : Tuple ): import diffusers from diffusers.dependency_versions_table import deps __UpperCamelCase = inspect.getmembers(__A , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": __UpperCamelCase = 'k-diffusion' elif backend == "invisible_watermark": __UpperCamelCase = 'invisible-watermark' assert backend in deps, f'''{backend} is not in the deps table!'''
434
1
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging UpperCamelCase__: str = logging.get_logger(__name__) def snake_case_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any=False ) -> Tuple: try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: UpperCAmelCase : int = os.path.abspath(SCREAMING_SNAKE_CASE__ ) logger.info(f"""Loading PyTorch weights from {pt_path}""" ) UpperCAmelCase : Optional[Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location='''cpu''' ) logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) UpperCAmelCase : List[Any] = convert_pytorch_state_dict_to_flax(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files UpperCAmelCase : Optional[Any] = convert_pytorch_sharded_state_dict_to_flax(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return flax_state_dict def snake_case_ ( _lowerCAmelCase : Tuple[str] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, jnp.ndarray] , _lowerCAmelCase : str , ) -> (Tuple[str], np.ndarray): def is_key_or_prefix_key_in_dict(_lowerCAmelCase : Tuple[str] ) -> bool: return len(set(SCREAMING_SNAKE_CASE__ ) & {key, (model_prefix,) + key} ) > 0 # layer norm UpperCAmelCase : Dict = pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE__ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean UpperCAmelCase : Any = pt_tuple_key[:-1] + ("mean",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE__ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var UpperCAmelCase : Union[str, Any] = pt_tuple_key[:-1] + ("var",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE__ ): return renamed_pt_tuple_key, pt_tensor # embedding UpperCAmelCase : Any = pt_tuple_key[:-1] + ("embedding",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE__ ): return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase : int = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase : str = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase : str = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase : int = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase : int = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase : Optional[int] = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 UpperCAmelCase : Union[str, Any] = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): UpperCAmelCase : Any = pt_tuple_key[-2] + "_g" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): UpperCAmelCase : str = pt_tuple_key[-2] + "_v" if name is not None: UpperCAmelCase : Dict = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple ) -> List[Any]: UpperCAmelCase : Dict = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCAmelCase : Optional[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: UpperCAmelCase : Dict = flax_model.params["params"] else: UpperCAmelCase : Optional[int] = flax_model.params UpperCAmelCase : Optional[int] = flatten_dict(SCREAMING_SNAKE_CASE__ ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCAmelCase : Any = flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase : Tuple = {} UpperCAmelCase : Tuple = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) UpperCAmelCase : Tuple = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase : Tuple = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary UpperCAmelCase : Tuple = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase : int = pt_tuple_key[1:] # Correctly rename weight parameters UpperCAmelCase : Any = rename_key_and_reshape_tensor( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # add model prefix if necessary UpperCAmelCase : Dict = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase : int = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: UpperCAmelCase : Any = jnp.asarray(SCREAMING_SNAKE_CASE__ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) continue # also add unexpected weight so that warning is thrown UpperCAmelCase : List[str] = jnp.asarray(SCREAMING_SNAKE_CASE__ ) else: # also add unexpected weight so that warning is thrown UpperCAmelCase : List[Any] = jnp.asarray(SCREAMING_SNAKE_CASE__ ) return unflatten_dict(SCREAMING_SNAKE_CASE__ ) def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ) -> int: import torch # Load the index UpperCAmelCase : Union[str, Any] = {} for shard_file in shard_filenames: # load using msgpack utils UpperCAmelCase : Optional[Any] = torch.load(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase : Dict = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCAmelCase : List[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCAmelCase : List[str] = flax_model.params["params"] UpperCAmelCase : List[Any] = flatten_dict(SCREAMING_SNAKE_CASE__ ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: UpperCAmelCase : Any = flax_model.params UpperCAmelCase : List[str] = flatten_dict(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase : Tuple = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) UpperCAmelCase : List[str] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase : str = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary UpperCAmelCase : int = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase : int = pt_tuple_key[1:] # Correctly rename weight parameters UpperCAmelCase : Dict = rename_key_and_reshape_tensor( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # add model prefix if necessary UpperCAmelCase : Optional[int] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase : List[Any] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: UpperCAmelCase : str = jnp.asarray(SCREAMING_SNAKE_CASE__ ) continue if "var" in flax_key[-1]: UpperCAmelCase : Tuple = jnp.asarray(SCREAMING_SNAKE_CASE__ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) continue # also add unexpected weight so that warning is thrown UpperCAmelCase : Tuple = jnp.asarray(SCREAMING_SNAKE_CASE__ ) else: # also add unexpected weight so that warning is thrown UpperCAmelCase : str = jnp.asarray(SCREAMING_SNAKE_CASE__ ) return unflatten_dict(SCREAMING_SNAKE_CASE__ ) def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple ) -> Union[str, Any]: UpperCAmelCase : Tuple = os.path.abspath(SCREAMING_SNAKE_CASE__ ) logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class UpperCAmelCase : List[str] = getattr(SCREAMING_SNAKE_CASE__ , '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(SCREAMING_SNAKE_CASE__ , '''rb''' ) as state_f: try: UpperCAmelCase : Optional[Any] = from_bytes(SCREAMING_SNAKE_CASE__ , state_f.read() ) except UnpicklingError: raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : Dict ) -> List[str]: try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights UpperCAmelCase : Any = flatten_dict(jax.tree_util.tree_map(lambda _lowerCAmelCase : x.dtype == jnp.bfloataa , SCREAMING_SNAKE_CASE__ ) ).values() if any(SCREAMING_SNAKE_CASE__ ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) UpperCAmelCase : Dict = jax.tree_util.tree_map( lambda _lowerCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase : List[Any] = flatten_dict(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase : Union[str, Any] = pt_model.state_dict() UpperCAmelCase : Union[str, Any] = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) UpperCAmelCase : Any = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Union[str, Any] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCAmelCase : Optional[Any] = flax_key_tuple[0] == pt_model.base_model_prefix UpperCAmelCase : Dict = ".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase : Union[str, Any] = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase : Union[str, Any] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(SCREAMING_SNAKE_CASE__ ) not in pt_model_dict: # conv layer UpperCAmelCase : int = flax_key_tuple[:-1] + ("weight",) UpperCAmelCase : Union[str, Any] = jnp.transpose(SCREAMING_SNAKE_CASE__ , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(SCREAMING_SNAKE_CASE__ ) not in pt_model_dict: # linear layer UpperCAmelCase : int = flax_key_tuple[:-1] + ("weight",) UpperCAmelCase : Dict = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCAmelCase : str = flax_key_tuple[:-1] + ("weight",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: UpperCAmelCase : Optional[Any] = flax_key_tuple[:-1] + ("running_mean",) elif "var" in flax_key_tuple[-1]: UpperCAmelCase : str = flax_key_tuple[:-1] + ("running_var",) if "batch_stats" in flax_state: UpperCAmelCase : List[str] = ".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: UpperCAmelCase : Any = ".".join(SCREAMING_SNAKE_CASE__ ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. UpperCAmelCase : List[str] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: UpperCAmelCase : Dict = key.split('''.''' ) UpperCAmelCase : Union[str, Any] = None if key_components[-3::2] == ["parametrizations", "original0"]: UpperCAmelCase : Union[str, Any] = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: UpperCAmelCase : str = key_components[-2] + "_v" if name is not None: UpperCAmelCase : List[Any] = key_components[:-3] + [name] UpperCAmelCase : str = ".".join(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase : Any = key if flax_key in special_pt_names: UpperCAmelCase : str = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict UpperCAmelCase : List[Any] = np.asarray(SCREAMING_SNAKE_CASE__ ) if not isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) else flax_tensor UpperCAmelCase : Any = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) # remove from missing keys missing_keys.remove(SCREAMING_SNAKE_CASE__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(SCREAMING_SNAKE_CASE__ ) pt_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # re-transform missing_keys to list UpperCAmelCase : Dict = list(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(SCREAMING_SNAKE_CASE__ ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ''' use it for predictions and inference.''' ) else: logger.warning( f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" '''If your task is similar to the task the model of the checkpoint was trained on, ''' f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
127
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class lowerCamelCase (__lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = "Wav2Vec2FeatureExtractor" UpperCAmelCase_ = "AutoTokenizer" def __init__( self : Tuple, _UpperCAmelCase : Dict, _UpperCAmelCase : Tuple ) -> List[str]: """simple docstring""" super().__init__(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = self.feature_extractor SCREAMING_SNAKE_CASE__ : Union[str, Any] = False @classmethod def A_ ( cls : int, _UpperCAmelCase : Dict, **_UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" try: return super().from_pretrained(_UpperCAmelCase, **_UpperCAmelCase ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: ", _UpperCAmelCase, ) SCREAMING_SNAKE_CASE__ : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained(_UpperCAmelCase, **_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : int = WavaVecaCTCTokenizer.from_pretrained(_UpperCAmelCase, **_UpperCAmelCase ) return cls(feature_extractor=_UpperCAmelCase, tokenizer=_UpperCAmelCase ) def __call__( self : Optional[Any], *_UpperCAmelCase : int, **_UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_UpperCAmelCase, **_UpperCAmelCase ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) SCREAMING_SNAKE_CASE__ : Tuple = kwargs.pop("raw_speech" ) else: SCREAMING_SNAKE_CASE__ : Dict = kwargs.pop("audio", _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = kwargs.pop("sampling_rate", _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = kwargs.pop("text", _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: SCREAMING_SNAKE_CASE__ : Optional[Any] = args[0] SCREAMING_SNAKE_CASE__ : Tuple = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: SCREAMING_SNAKE_CASE__ : Dict = self.feature_extractor(_UpperCAmelCase, *_UpperCAmelCase, sampling_rate=_UpperCAmelCase, **_UpperCAmelCase ) if text is not None: SCREAMING_SNAKE_CASE__ : Tuple = self.tokenizer(_UpperCAmelCase, **_UpperCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE__ : List[str] = encodings["input_ids"] return inputs def A_ ( self : Optional[Any], *_UpperCAmelCase : List[str], **_UpperCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_UpperCAmelCase, **_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = kwargs.pop("input_features", _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = kwargs.pop("labels", _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: SCREAMING_SNAKE_CASE__ : Optional[Any] = args[0] SCREAMING_SNAKE_CASE__ : Dict = args[1:] if input_features is not None: SCREAMING_SNAKE_CASE__ : Dict = self.feature_extractor.pad(_UpperCAmelCase, *_UpperCAmelCase, **_UpperCAmelCase ) if labels is not None: SCREAMING_SNAKE_CASE__ : str = self.tokenizer.pad(_UpperCAmelCase, **_UpperCAmelCase ) if labels is None: return input_features elif input_features is None: return labels else: SCREAMING_SNAKE_CASE__ : List[str] = labels["input_ids"] return input_features def A_ ( self : Union[str, Any], *_UpperCAmelCase : str, **_UpperCAmelCase : Any ) -> Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase, **_UpperCAmelCase ) def A_ ( self : Optional[int], *_UpperCAmelCase : Tuple, **_UpperCAmelCase : Optional[int] ) -> int: """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase, **_UpperCAmelCase ) @contextmanager def A_ ( self : Optional[int] ) -> Any: """simple docstring""" warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : int = self.tokenizer yield SCREAMING_SNAKE_CASE__ : Optional[int] = self.feature_extractor SCREAMING_SNAKE_CASE__ : Optional[Any] = False
663
0
'''simple docstring''' from __future__ import annotations def a_ ( __UpperCAmelCase ) -> float: """simple docstring""" snake_case: Optional[Any] =0.00 snake_case: List[str] =0 for resistor in resistors: if resistor <= 0: snake_case: Optional[Any] =f'''Resistor at index {index} has a negative or zero value!''' raise ValueError(__UpperCAmelCase ) first_sum += 1 / float(__UpperCAmelCase ) index += 1 return 1 / first_sum def a_ ( __UpperCAmelCase ) -> float: """simple docstring""" snake_case: Any =0.00 snake_case: Dict =0 for resistor in resistors: sum_r += resistor if resistor < 0: snake_case: int =f'''Resistor at index {index} has a negative value!''' raise ValueError(__UpperCAmelCase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
347
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors a = logging.getLogger(__name__) class a_ ( snake_case ): UpperCAmelCase : Any = """sequence-classification""" def __init__( self : int , a_ : str ) -> str: if type(a_ ) == dict: snake_case: List[Any] =Namespace(**a_ ) snake_case: Tuple =glue_output_modes[hparams.task] snake_case: Any =glue_tasks_num_labels[hparams.task] super().__init__(a_ , a_ , self.mode ) def UpperCamelCase ( self : Tuple , **a_ : Tuple ) -> Union[str, Any]: return self.model(**a_ ) def UpperCamelCase ( self : int , a_ : Union[str, Any] , a_ : Optional[int] ) -> Optional[int]: snake_case: Any ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: snake_case: Optional[int] =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None snake_case: Optional[int] =self(**a_ ) snake_case: Any =outputs[0] snake_case: Union[str, Any] =self.trainer.lr_schedulers[0]['scheduler'] snake_case: str ={'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCamelCase ( self : str ) -> Tuple: snake_case: int =self.hparams snake_case: Union[str, Any] =processors[args.task]() snake_case: Union[str, Any] =processor.get_labels() for mode in ["train", "dev"]: snake_case: Optional[Any] =self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , a_ ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) snake_case: int =( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) snake_case: Tuple =convert_examples_to_features( a_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , a_ ) torch.save(a_ , a_ ) def UpperCamelCase ( self : List[Any] , a_ : str , a_ : int , a_ : bool = False ) -> DataLoader: snake_case: List[Any] ='dev' if mode == 'test' else mode snake_case: Union[str, Any] =self._feature_file(a_ ) logger.info('Loading features from cached file %s' , a_ ) snake_case: Dict =torch.load(a_ ) snake_case: Union[str, Any] =torch.tensor([f.input_ids for f in features] , dtype=torch.long ) snake_case: List[Any] =torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) snake_case: str =torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": snake_case: Optional[Any] =torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": snake_case: Union[str, Any] =torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(a_ , a_ , a_ , a_ ) , batch_size=a_ , shuffle=a_ , ) def UpperCamelCase ( self : List[str] , a_ : Optional[int] , a_ : Any ) -> Dict: snake_case: int ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: snake_case: Tuple =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None snake_case: List[str] =self(**a_ ) snake_case , snake_case: str =outputs[:2] snake_case: Any =logits.detach().cpu().numpy() snake_case: Union[str, Any] =inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase ( self : int , a_ : Union[str, Any] ) -> tuple: snake_case: Optional[Any] =torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() snake_case: str =np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": snake_case: Union[str, Any] =np.argmax(a_ , axis=1 ) elif self.hparams.glue_output_mode == "regression": snake_case: Optional[Any] =np.squeeze(a_ ) snake_case: Tuple =np.concatenate([x['target'] for x in outputs] , axis=0 ) snake_case: Any =[[] for _ in range(out_label_ids.shape[0] )] snake_case: str =[[] for _ in range(out_label_ids.shape[0] )] snake_case: int ={**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , a_ , a_ )} snake_case: Union[str, Any] =dict(results.items() ) snake_case: Dict =results return ret, preds_list, out_label_list def UpperCamelCase ( self : str , a_ : list ) -> dict: snake_case , snake_case , snake_case: Union[str, Any] =self._eval_end(a_ ) snake_case: Optional[Any] =ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase ( self : Tuple , a_ : Tuple ) -> dict: snake_case , snake_case , snake_case: int =self._eval_end(a_ ) snake_case: List[Any] =ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase ( a_ : Optional[int] , a_ : Dict ) -> Tuple: BaseTransformer.add_model_specific_args(a_ , a_ ) parser.add_argument( '--max_seq_length' , default=1_2_8 , type=a_ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=a_ , required=a_ , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=a_ , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def a_ ( ) -> Any: """simple docstring""" snake_case: Tuple =argparse.ArgumentParser() add_generic_args(__UpperCAmelCase , os.getcwd() ) snake_case: List[Any] =GLUETransformer.add_model_specific_args(__UpperCAmelCase , os.getcwd() ) snake_case: Optional[int] =parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: snake_case: Optional[int] =os.path.join( './results' , f'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) snake_case: str =GLUETransformer(__UpperCAmelCase ) snake_case: Tuple =generic_train(__UpperCAmelCase , __UpperCAmelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: snake_case: str =sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=__UpperCAmelCase ) ) snake_case: int =model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__UpperCAmelCase ) if __name__ == "__main__": main()
347
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase : str = logging.get_logger(__name__) def UpperCamelCase_ ( __a ) -> Any: # initialize config if "resnet-50" in model_name: a__ : int = ResNetConfig.from_pretrained("microsoft/resnet-50" ) elif "resnet-101" in model_name: a__ : Optional[int] = ResNetConfig.from_pretrained("microsoft/resnet-101" ) else: raise ValueError("Model name should include either resnet50 or resnet101" ) a__ : Tuple = DetrConfig(use_timm_backbone=__a , backbone_config=__a ) # set label attributes a__ : Any = "panoptic" in model_name if is_panoptic: a__ : Dict = 250 else: a__ : Union[str, Any] = 91 a__ : str = "huggingface/label-files" a__ : Tuple = "coco-detection-id2label.json" a__ : List[str] = json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) ) a__ : str = {int(__a ): v for k, v in idalabel.items()} a__ : Union[str, Any] = idalabel a__ : Optional[Any] = {v: k for k, v in idalabel.items()} return config, is_panoptic def UpperCamelCase_ ( __a ) -> Dict: # here we list all keys to be renamed (original name on the left, our name on the right) a__ : List[Any] = [] # stem # fmt: off rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight") ) rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight") ) rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias") ) rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean") ) rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) return rename_keys def UpperCamelCase_ ( __a , __a , __a ) -> int: a__ : Tuple = state_dict.pop(__a ) a__ : Any = val def UpperCamelCase_ ( __a , __a=False ) -> int: a__ : Optional[int] = "" if is_panoptic: a__ : Optional[Any] = "detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) a__ : List[Any] = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) a__ : Optional[int] = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict a__ : Tuple = in_proj_weight[:256, :] a__ : List[Any] = in_proj_bias[:256] a__ : Any = in_proj_weight[256:512, :] a__ : Dict = in_proj_bias[256:512] a__ : int = in_proj_weight[-256:, :] a__ : Dict = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention a__ : Optional[Any] = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) a__ : List[Any] = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict a__ : str = in_proj_weight[:256, :] a__ : List[str] = in_proj_bias[:256] a__ : Any = in_proj_weight[256:512, :] a__ : List[Any] = in_proj_bias[256:512] a__ : Dict = in_proj_weight[-256:, :] a__ : List[str] = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention a__ : List[str] = state_dict.pop( f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) a__ : Optional[Any] = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict a__ : str = in_proj_weight_cross_attn[:256, :] a__ : str = in_proj_bias_cross_attn[:256] a__ : Dict = in_proj_weight_cross_attn[256:512, :] a__ : Dict = in_proj_bias_cross_attn[256:512] a__ : Dict = in_proj_weight_cross_attn[-256:, :] a__ : Tuple = in_proj_bias_cross_attn[-256:] def UpperCamelCase_ ( ) -> int: a__ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" a__ : Optional[Any] = Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def UpperCamelCase_ ( __a , __a=None , __a=False ) -> Optional[int]: a__, a__ : List[str] = get_detr_config(__a ) # load original model from torch hub a__ : str = { "detr-resnet-50": "detr_resnet50", "detr-resnet-101": "detr_resnet101", } logger.info(f'''Converting model {model_name}...''' ) a__ : int = torch.hub.load("facebookresearch/detr" , model_name_to_original_name[model_name] , pretrained=__a ).eval() a__ : Dict = detr.state_dict() # rename keys for src, dest in create_rename_keys(__a ): if is_panoptic: a__ : Dict = "detr." + src rename_key(__a , __a , __a ) # query, key and value matrices need special treatment read_in_q_k_v(__a , is_panoptic=__a ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them a__ : Optional[int] = "detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): a__ : Any = state_dict.pop(__a ) a__ : List[str] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: a__ : Optional[Any] = state_dict.pop(__a ) a__ : int = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: a__ : Dict = state_dict.pop(__a ) a__ : Optional[int] = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): a__ : Tuple = state_dict.pop(__a ) a__ : Union[str, Any] = val # finally, create HuggingFace model and load state dict a__ : Optional[Any] = DetrForSegmentation(__a ) if is_panoptic else DetrForObjectDetection(__a ) model.load_state_dict(__a ) model.eval() # verify our conversion on an image a__ : Optional[int] = "coco_panoptic" if is_panoptic else "coco_detection" a__ : Optional[int] = DetrImageProcessor(format=__a ) a__ : Union[str, Any] = processor(images=prepare_img() , return_tensors="pt" ) a__ : List[str] = encoding["pixel_values"] a__ : Tuple = detr(__a ) a__ : List[str] = model(__a ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) processor.save_pretrained(__a ) if push_to_hub: # Upload model and image processor to the hub logger.info("Uploading PyTorch model and image processor to the hub..." ) model.push_to_hub(f'''nielsr/{model_name}''' ) processor.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""detr-resnet-50""", type=str, choices=["""detr-resnet-50""", """detr-resnet-101"""], help="""Name of the DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub or not.""") UpperCamelCase : List[Any] = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
37
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCamelCase : Dict = logging.get_logger(__name__) def UpperCamelCase_ ( __a ) -> Union[str, Any]: a__ : Tuple = R"\w+[.]\d+" a__ : List[Any] = re.findall(__a , __a ) for pat in pats: a__ : Union[str, Any] = key.replace(__a , "_".join(pat.split("." ) ) ) return key def UpperCamelCase_ ( __a , __a , __a ) -> List[str]: a__ : List[str] = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): a__ : Any = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: a__ : Optional[Any] = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: a__ : Union[str, Any] = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer a__ : List[str] = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: a__ : str = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer a__ : Tuple = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": a__ : Tuple = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight a__ : Optional[Any] = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias a__ : Union[str, Any] = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCamelCase_ ( __a , __a , __a=42 ) -> str: # Step 1: Convert pytorch tensor to numpy a__ : Optional[int] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params a__ : Tuple = flax_model.init_weights(PRNGKey(__a ) ) a__ : Optional[Any] = flatten_dict(__a ) a__ : Union[str, Any] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): a__ : Optional[int] = rename_key(__a ) a__ : Optional[int] = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters a__, a__ : Union[str, Any] = rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown a__ : str = jnp.asarray(__a ) return unflatten_dict(__a )
37
1
def _SCREAMING_SNAKE_CASE ( lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = len(lowercase ) for i in range(length - 1 ): lowerCamelCase_ = i for k in range(i + 1 , lowercase ): if collection[k] < collection[least]: lowerCamelCase_ = k if least != i: lowerCamelCase_ , lowerCamelCase_ = (collection[i], collection[least]) return collection if __name__ == "__main__": lowerCamelCase : List[str] = input("Enter numbers separated by a comma:\n").strip() lowerCamelCase : Dict = [int(item) for item in user_input.split(",")] print(selection_sort(unsorted))
714
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase ) class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase = Features({'''text''': Value('''string''' )} ) UpperCamelCase = Features({} ) UpperCamelCase = "text" @property def a__ ( self : List[Any] ) -> Dict[str, str]: """simple docstring""" return {self.text_column: "text"}
651
0
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging a__ : Optional[Any] = logging.get_logger(__name__) def UpperCAmelCase_ ( _UpperCAmelCase :List[Any]=None , _UpperCAmelCase :Union[str, Any]=None ) -> List[Any]: '''simple docstring''' return field(default_factory=lambda: default , metadata=_UpperCAmelCase ) @dataclass class UpperCAmelCase_ : __lowerCAmelCase : str = list_field( default=[] , metadata={ """help""": ( """Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version""" """ of all available models""" ) } , ) __lowerCAmelCase : Optional[int] = list_field( default=[8] , metadata={"""help""": """List of batch sizes for which memory and time performance will be evaluated"""} ) __lowerCAmelCase : Optional[int] = list_field( default=[8, 32, 128, 512] , metadata={"""help""": """List of sequence lengths for which memory and time performance will be evaluated"""} , ) __lowerCAmelCase : str = field( default=_A , metadata={"""help""": """Whether to benchmark inference of model. Inference can be disabled via --no-inference."""} , ) __lowerCAmelCase : List[str] = field( default=_A , metadata={"""help""": """Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."""} , ) __lowerCAmelCase : Optional[int] = field( default=_A , metadata={"""help""": """Whether to run on available tpu devices. TPU can be disabled via --no-tpu."""} ) __lowerCAmelCase : Dict = field(default=_A , metadata={"""help""": """Use FP16 to accelerate inference."""} ) __lowerCAmelCase : List[str] = field(default=_A , metadata={"""help""": """Benchmark training of model"""} ) __lowerCAmelCase : Optional[Any] = field(default=_A , metadata={"""help""": """Verbose memory tracing"""} ) __lowerCAmelCase : Dict = field( default=_A , metadata={"""help""": """Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."""} , ) __lowerCAmelCase : Dict = field( default=_A , metadata={ """help""": """Whether to perform memory measurements. Memory measurements can be disabled via --no-memory""" } , ) __lowerCAmelCase : Union[str, Any] = field(default=_A , metadata={"""help""": """Trace memory line by line"""} ) __lowerCAmelCase : Optional[int] = field(default=_A , metadata={"""help""": """Save result to a CSV file"""} ) __lowerCAmelCase : str = field(default=_A , metadata={"""help""": """Save all print statements in a log file"""} ) __lowerCAmelCase : List[Any] = field(default=_A , metadata={"""help""": """Whether to print environment information"""} ) __lowerCAmelCase : Dict = field( default=_A , metadata={ """help""": ( """Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use""" """ multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled""" """ for debugging / testing and on TPU.""" ) } , ) __lowerCAmelCase : Optional[int] = field( default=F'''inference_time_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving time results to csv."""} , ) __lowerCAmelCase : Optional[Any] = field( default=F'''inference_memory_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving memory results to csv."""} , ) __lowerCAmelCase : Tuple = field( default=F'''train_time_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving time results to csv for training."""} , ) __lowerCAmelCase : Union[str, Any] = field( default=F'''train_memory_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving memory results to csv for training."""} , ) __lowerCAmelCase : Any = field( default=F'''env_info_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving environment information."""} , ) __lowerCAmelCase : Union[str, Any] = field( default=F'''log_{round(time() )}.csv''' , metadata={"""help""": """Log filename used if print statements are saved in log."""} , ) __lowerCAmelCase : int = field(default=3 , metadata={"""help""": """Times an experiment will be run."""} ) __lowerCAmelCase : List[str] = field( default=_A , metadata={ """help""": ( """Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain""" """ model weights.""" ) } , ) def __UpperCAmelCase ( self ): """simple docstring""" warnings.warn( f'The class {self.__class__} is deprecated. Hugging Face Benchmarking utils' ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' ,_lowerCAmelCase ,) def __UpperCAmelCase ( self ): """simple docstring""" return json.dumps(dataclasses.asdict(self ) ,indent=2 ) @property def __UpperCAmelCase ( self ): """simple docstring""" if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def __UpperCAmelCase ( self ): """simple docstring""" if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
188
_a : str = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ _a : int = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _a : Tuple = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
145
0
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE = RoCBertTokenizer __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = filter_non_english def UpperCamelCase ( self ): super().setUp() A__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] A__ = {} A__ = {} for i, value in enumerate(__lowerCamelCase ): A__ = i A__ = i A__ = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['''vocab_file'''] ) A__ = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['''word_shape_file'''] ) A__ = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['''word_pronunciation_file'''] ) with open(self.vocab_file,'''w''',encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.word_shape_file,'''w''',encoding='''utf-8''' ) as word_shape_writer: json.dump(__lowerCamelCase,__lowerCamelCase,ensure_ascii=__lowerCamelCase ) with open(self.word_pronunciation_file,'''w''',encoding='''utf-8''' ) as word_pronunciation_writer: json.dump(__lowerCamelCase,__lowerCamelCase,ensure_ascii=__lowerCamelCase ) def UpperCamelCase ( self ): A__ = self.tokenizer_class(self.vocab_file,self.word_shape_file,self.word_pronunciation_file ) A__ = tokenizer.tokenize('''你好[SEP]你是谁''' ) self.assertListEqual(__lowerCamelCase,['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ),[5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(__lowerCamelCase ),[5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(__lowerCamelCase ),[5, 6, 2, 5, 7, 8] ) def UpperCamelCase ( self ): A__ = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ),['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def UpperCamelCase ( self ): A__ = RoCBertBasicTokenizer(do_lower_case=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ),['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ),['''hello'''] ) def UpperCamelCase ( self ): A__ = RoCBertBasicTokenizer(do_lower_case=__lowerCamelCase,strip_accents=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ),['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ),['''h\u00E9llo'''] ) def UpperCamelCase ( self ): A__ = RoCBertBasicTokenizer(do_lower_case=__lowerCamelCase,strip_accents=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ),['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ),['''hello'''] ) def UpperCamelCase ( self ): A__ = RoCBertBasicTokenizer(do_lower_case=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ),['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ),['''hello'''] ) def UpperCamelCase ( self ): A__ = RoCBertBasicTokenizer(do_lower_case=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ),['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCamelCase ( self ): A__ = RoCBertBasicTokenizer(do_lower_case=__lowerCamelCase,strip_accents=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ),['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCamelCase ( self ): A__ = RoCBertBasicTokenizer(do_lower_case=__lowerCamelCase,strip_accents=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ),['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCamelCase ( self ): A__ = RoCBertBasicTokenizer(do_lower_case=__lowerCamelCase,never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ),['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def UpperCamelCase ( self ): A__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] A__ = {} for i, token in enumerate(__lowerCamelCase ): A__ = i A__ = RoCBertWordpieceTokenizer(vocab=__lowerCamelCase,unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ),[] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ),['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ),['''[UNK]''', '''runn''', '''##ing'''] ) def UpperCamelCase ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def UpperCamelCase ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def UpperCamelCase ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def UpperCamelCase ( self ): A__ = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__lowerCamelCase ) for t in ['''Test''', '''\xad''', '''test''']],[['''[UNK]'''], [], ['''[UNK]''']] ) if self.test_rust_tokenizer: A__ = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(__lowerCamelCase ) for t in ['''Test''', '''\xad''', '''test''']],[['''[UNK]'''], [], ['''[UNK]''']] ) def UpperCamelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): A__ = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase,**__lowerCamelCase ) A__ = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." A__ = tokenizer_r.encode_plus( __lowerCamelCase,return_attention_mask=__lowerCamelCase,return_token_type_ids=__lowerCamelCase,return_offsets_mapping=__lowerCamelCase,add_special_tokens=__lowerCamelCase,) A__ = tokenizer_r.do_lower_case if hasattr(__lowerCamelCase,'''do_lower_case''' ) else False A__ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results],tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results],tokens['''offset_mapping'''] ) def UpperCamelCase ( self ): A__ = ['''的''', '''人''', '''有'''] A__ = ''''''.join(__lowerCamelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): A__ = True A__ = self.tokenizer_class.from_pretrained(__lowerCamelCase,**__lowerCamelCase ) A__ = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase,**__lowerCamelCase ) A__ = tokenizer_p.encode(__lowerCamelCase,add_special_tokens=__lowerCamelCase ) A__ = tokenizer_r.encode(__lowerCamelCase,add_special_tokens=__lowerCamelCase ) A__ = tokenizer_r.convert_ids_to_tokens(__lowerCamelCase ) A__ = tokenizer_p.convert_ids_to_tokens(__lowerCamelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__lowerCamelCase,__lowerCamelCase ) self.assertListEqual(__lowerCamelCase,__lowerCamelCase ) A__ = False A__ = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase,**__lowerCamelCase ) A__ = self.tokenizer_class.from_pretrained(__lowerCamelCase,**__lowerCamelCase ) A__ = tokenizer_r.encode(__lowerCamelCase,add_special_tokens=__lowerCamelCase ) A__ = tokenizer_p.encode(__lowerCamelCase,add_special_tokens=__lowerCamelCase ) A__ = tokenizer_r.convert_ids_to_tokens(__lowerCamelCase ) A__ = tokenizer_p.convert_ids_to_tokens(__lowerCamelCase ) # it is expected that only the first Chinese character is not preceded by "##". A__ = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(__lowerCamelCase ) ] self.assertListEqual(__lowerCamelCase,__lowerCamelCase ) self.assertListEqual(__lowerCamelCase,__lowerCamelCase ) @slow def UpperCamelCase ( self ): A__ = self.tokenizer_class(self.vocab_file,self.word_shape_file,self.word_pronunciation_file ) A__ = tokenizer.encode('''你好''',add_special_tokens=__lowerCamelCase ) A__ = tokenizer.encode('''你是谁''',add_special_tokens=__lowerCamelCase ) A__ = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) A__ = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase,__lowerCamelCase ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def UpperCamelCase ( self ): A__ = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): A__ = '''你好,你是谁''' A__ = tokenizer.tokenize(__lowerCamelCase ) A__ = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) A__ = tokenizer.convert_tokens_to_shape_ids(__lowerCamelCase ) A__ = tokenizer.convert_tokens_to_pronunciation_ids(__lowerCamelCase ) A__ = tokenizer.prepare_for_model( __lowerCamelCase,__lowerCamelCase,__lowerCamelCase,add_special_tokens=__lowerCamelCase ) A__ = tokenizer.encode_plus(__lowerCamelCase,add_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase,__lowerCamelCase )
212
def UpperCamelCase__( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] )->List[str]: A__ = [1] for i in range(2 , UpperCamelCase__ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" A__ = [] A__ = list(range(UpperCamelCase__ ) ) # Find permutation while factorials: A__ = factorials.pop() A__ , A__ = divmod(UpperCamelCase__ , UpperCamelCase__ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
212
1
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : def __init__( self : List[Any] , __magic_name__ : Dict , __magic_name__ : Optional[Any]=13 , __magic_name__ : Optional[Any]=32 , __magic_name__ : Tuple=3 , __magic_name__ : Union[str, Any]=4 , __magic_name__ : Dict=[10, 20, 30, 40] , __magic_name__ : str=[2, 2, 3, 2] , __magic_name__ : Tuple=True , __magic_name__ : Any=True , __magic_name__ : Tuple=37 , __magic_name__ : int="gelu" , __magic_name__ : Union[str, Any]=10 , __magic_name__ : Optional[int]=0.02 , __magic_name__ : int=["stage2", "stage3", "stage4"] , __magic_name__ : Optional[Any]=3 , __magic_name__ : Dict=None , ) -> Tuple: """simple docstring""" __snake_case : str = parent __snake_case : List[Any] = batch_size __snake_case : Any = image_size __snake_case : int = num_channels __snake_case : List[Any] = num_stages __snake_case : Union[str, Any] = hidden_sizes __snake_case : Dict = depths __snake_case : Optional[int] = is_training __snake_case : Any = use_labels __snake_case : Union[str, Any] = intermediate_size __snake_case : str = hidden_act __snake_case : Dict = type_sequence_label_size __snake_case : Any = initializer_range __snake_case : str = out_features __snake_case : str = num_labels __snake_case : Dict = scope __snake_case : Optional[int] = num_stages def lowercase__ ( self : Any ) -> Optional[Any]: """simple docstring""" __snake_case : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Optional[int] = None if self.use_labels: __snake_case : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Optional[int] = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowercase__ ( self : int ) -> int: """simple docstring""" return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=__magic_name__ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=__magic_name__ , loss_ignore_index=2_55 , num_labels=self.num_labels , ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Any , __magic_name__ : List[str] ) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = UperNetForSemanticSegmentation(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : int = model(__magic_name__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" __snake_case : Tuple = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : List[str] = config_and_inputs __snake_case : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: int = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase__: Dict = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase__: int = False lowercase__: str = False lowercase__: Optional[Any] = False lowercase__: List[str] = False lowercase__: str = False lowercase__: str = False def lowercase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = UperNetModelTester(self ) __snake_case : Union[str, Any] = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" __snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = model_class(__magic_name__ ) __snake_case : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Any = [*signature.parameters.keys()] __snake_case : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) def lowercase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__magic_name__ ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowercase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowercase__ ( self : int ) -> int: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowercase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" def check_hidden_states_output(__magic_name__ : Dict , __magic_name__ : int , __magic_name__ : Any ): __snake_case : Dict = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Union[str, Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __snake_case : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(__magic_name__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : List[str] = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Tuple = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Any = _config_zero_init(__magic_name__ ) __snake_case : Union[str, Any] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __snake_case : Optional[int] = model_class(config=__magic_name__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" pass @slow def lowercase__ ( self : List[str] ) -> int: """simple docstring""" for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : List[str] = UperNetForSemanticSegmentation.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _a ( ) -> Any: """simple docstring""" __snake_case : Dict = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) __snake_case : List[str] = Image.open(_lowerCamelCase ).convert("""RGB""" ) return image @require_torch @require_vision @slow class _A ( unittest.TestCase ): def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) __snake_case : int = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(__magic_name__ ) __snake_case : Tuple = prepare_img() __snake_case : int = processor(images=__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) with torch.no_grad(): __snake_case : Union[str, Any] = model(**__magic_name__ ) __snake_case : str = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) __snake_case : List[str] = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __magic_name__ , atol=1E-4 ) ) def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : str = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) __snake_case : Any = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(__magic_name__ ) __snake_case : Union[str, Any] = prepare_img() __snake_case : Optional[int] = processor(images=__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) with torch.no_grad(): __snake_case : int = model(**__magic_name__ ) __snake_case : Optional[Any] = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) __snake_case : str = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __magic_name__ , atol=1E-4 ) )
26
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __UpperCamelCase = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] , __magic_name__ : Path , __magic_name__ : Union[str, None] = None , __magic_name__ : Union[List[str], None] = None , __magic_name__ : Union[str, List[str], None] = None , __magic_name__ : bool = True , ) -> Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = [file for file in os.listdir(__magic_name__ ) if os.path.isfile(os.path.join(__magic_name__ , __magic_name__ ) )] if identifier is not None: __snake_case : List[Any] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__magic_name__ , __magic_name__ ): for n_ in n_identifier: __snake_case : Optional[int] = [file for file in files if n_ not in file] else: __snake_case : Tuple = [file for file in files if n_identifier not in file] __snake_case : Dict = ignore_files or [] ignore_files.append("""__init__.py""" ) __snake_case : List[str] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , __magic_name__ ) if only_modules: __snake_case : List[Any] = file.split(""".""" )[0] try: __snake_case : List[Any] = getattr(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = doctest.DocTestSuite(__magic_name__ ) __snake_case : Dict = unittest.TextTestRunner().run(__magic_name__ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'''{module_identifier} is not a module.''' ) else: __snake_case : Tuple = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : List[Any] = Path("""src/transformers""" ) __snake_case : List[Any] = """modeling""" __snake_case : Union[str, Any] = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(__magic_name__ , identifier=__magic_name__ , ignore_files=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : Union[str, Any] = Path("""src/transformers""" ) __snake_case : Any = """tokenization""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : List[Any] = Path("""src/transformers""" ) __snake_case : List[str] = """configuration""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Dict ) -> Dict: """simple docstring""" __snake_case : Tuple = Path("""src/transformers""" ) __snake_case : int = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(__magic_name__ , n_identifier=__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __snake_case : int = Path("""docs/source""" ) __snake_case : Optional[int] = ["""favicon.ico"""] self.analyze_directory(__magic_name__ , ignore_files=__magic_name__ , only_modules=__magic_name__ )
26
1
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class A_ : def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : int = 1_3 ,SCREAMING_SNAKE_CASE__ : int = 6_4 ,SCREAMING_SNAKE_CASE__ : int = 2 ,SCREAMING_SNAKE_CASE__ : int = 3 ,SCREAMING_SNAKE_CASE__ : int = 3 ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : int = 1_2_8 ,SCREAMING_SNAKE_CASE__ : Tuple=[1_6, 3_2, 6_4, 1_2_8] ,SCREAMING_SNAKE_CASE__ : int = 7 ,SCREAMING_SNAKE_CASE__ : int = 4 ,SCREAMING_SNAKE_CASE__ : int = 3_7 ,SCREAMING_SNAKE_CASE__ : str = "gelu" ,SCREAMING_SNAKE_CASE__ : float = 0.1 ,SCREAMING_SNAKE_CASE__ : float = 0.1 ,SCREAMING_SNAKE_CASE__ : int = 1_0 ,SCREAMING_SNAKE_CASE__ : float = 0.02 ,SCREAMING_SNAKE_CASE__ : int = 2 ,SCREAMING_SNAKE_CASE__ : int = 1 ,SCREAMING_SNAKE_CASE__ : int = 1_2_8 ,SCREAMING_SNAKE_CASE__ : List[int] = [2, 2, 2, 2] ,SCREAMING_SNAKE_CASE__ : int = 2 ,SCREAMING_SNAKE_CASE__ : int = 2 ,): __lowerCamelCase : List[Any] = parent __lowerCamelCase : List[Any] = batch_size __lowerCamelCase : List[str] = image_size __lowerCamelCase : int = patch_size __lowerCamelCase : Any = num_channels __lowerCamelCase : List[Any] = is_training __lowerCamelCase : str = use_labels __lowerCamelCase : Any = hidden_size __lowerCamelCase : Any = num_hidden_layers __lowerCamelCase : Union[str, Any] = num_attention_heads __lowerCamelCase : str = intermediate_size __lowerCamelCase : Union[str, Any] = hidden_act __lowerCamelCase : Optional[Any] = hidden_dropout_prob __lowerCamelCase : Optional[int] = attention_probs_dropout_prob __lowerCamelCase : str = type_sequence_label_size __lowerCamelCase : Optional[int] = initializer_range __lowerCamelCase : List[str] = encoder_stride __lowerCamelCase : Any = num_attention_outputs __lowerCamelCase : Optional[Any] = embed_dim __lowerCamelCase : int = embed_dim + 1 __lowerCamelCase : Tuple = resolution __lowerCamelCase : Any = depths __lowerCamelCase : Optional[int] = hidden_sizes __lowerCamelCase : List[Any] = dim __lowerCamelCase : List[str] = mlp_expansion_ratio def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __lowerCamelCase : List[str] = None if self.use_labels: __lowerCamelCase : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size) __lowerCamelCase : int = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self : Any): return EfficientFormerConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=SCREAMING_SNAKE_CASE__ ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,resolution=self.resolution ,depths=self.depths ,hidden_sizes=self.hidden_sizes ,dim=self.dim ,mlp_expansion_ratio=self.mlp_expansion_ratio ,) def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : str): __lowerCamelCase : Any = TFEfficientFormerModel(config=SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = model(SCREAMING_SNAKE_CASE__ ,training=SCREAMING_SNAKE_CASE__) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size)) def lowerCAmelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : Dict = self.type_sequence_label_size __lowerCamelCase : int = TFEfficientFormerForImageClassification(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE__ ,labels=SCREAMING_SNAKE_CASE__ ,training=SCREAMING_SNAKE_CASE__) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size)) # test greyscale images __lowerCamelCase : str = 1 __lowerCamelCase : Optional[Any] = TFEfficientFormerForImageClassification(SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __lowerCamelCase : Tuple = model(SCREAMING_SNAKE_CASE__ ,labels=SCREAMING_SNAKE_CASE__) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size)) def lowerCAmelCase ( self : Any): __lowerCamelCase : int = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Union[str, Any] = config_and_inputs __lowerCamelCase : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class A_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase : Tuple = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) _UpperCAmelCase : str = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) _UpperCAmelCase : int = False _UpperCAmelCase : Union[str, Any] = False _UpperCAmelCase : Union[str, Any] = False _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Optional[Any] = False def lowerCAmelCase ( self : Any): __lowerCamelCase : Union[str, Any] = TFEfficientFormerModelTester(self) __lowerCamelCase : Optional[int] = ConfigTester( self ,config_class=SCREAMING_SNAKE_CASE__ ,has_text_modality=SCREAMING_SNAKE_CASE__ ,hidden_size=3_7) def lowerCAmelCase ( self : Optional[int]): self.config_tester.run_common_tests() @unittest.skip(reason='EfficientFormer does not use inputs_embeds') def lowerCAmelCase ( self : Union[str, Any]): pass @unittest.skip(reason='EfficientFormer does not support input and output embeddings') def lowerCAmelCase ( self : Dict): pass def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase , __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : Tuple = [*signature.parameters.keys()] __lowerCamelCase : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Any): def check_hidden_states_output(SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : str): __lowerCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) ,training=SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCamelCase : Any = getattr( self.model_tester ,'expected_num_hidden_layers' ,self.model_tester.num_hidden_layers + 1) self.assertEqual(len(SCREAMING_SNAKE_CASE__) ,SCREAMING_SNAKE_CASE__) if hasattr(self.model_tester ,'encoder_seq_length'): __lowerCamelCase : Dict = self.model_tester.encoder_seq_length if hasattr(self.model_tester ,'chunk_length') and self.model_tester.chunk_length > 1: __lowerCamelCase : int = seq_length * self.model_tester.chunk_length else: __lowerCamelCase : Dict = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:]) ,[seq_length, self.model_tester.hidden_size] ,) if config.is_encoder_decoder: __lowerCamelCase : List[Any] = outputs.decoder_hidden_states self.asseretIsInstance(SCREAMING_SNAKE_CASE__ ,(list, tuple)) self.assertEqual(len(SCREAMING_SNAKE_CASE__) ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = getattr(self.model_tester ,'seq_length' ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = getattr(self.model_tester ,'decoder_seq_length' ,SCREAMING_SNAKE_CASE__) self.assertListEqual( list(hidden_states[-1].shape[-2:]) ,[decoder_seq_length, self.model_tester.hidden_size] ,) __lowerCamelCase , __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : List[Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : Dict = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Tuple=False): __lowerCamelCase : Tuple = super()._prepare_for_class(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,return_labels=SCREAMING_SNAKE_CASE__) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__) @unittest.skip(reason='EfficientFormer does not implement masked image modeling yet') def lowerCAmelCase ( self : List[str]): __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : str): __lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : Any): for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Union[str, Any] = TFEfficientFormerModel.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : int): __lowerCamelCase , __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Tuple = True __lowerCamelCase : List[str] = getattr(self.model_tester ,'seq_length' ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = getattr(self.model_tester ,'encoder_seq_length' ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = getattr(self.model_tester ,'key_length' ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = getattr(self.model_tester ,'chunk_length' ,SCREAMING_SNAKE_CASE__) if chunk_length is not None and hasattr(self.model_tester ,'num_hashes'): __lowerCamelCase : str = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: __lowerCamelCase : List[Any] = True __lowerCamelCase : Tuple = False __lowerCamelCase : Dict = True __lowerCamelCase : Tuple = model_class(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) ,training=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE__) ,self.model_tester.num_attention_outputs) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCamelCase : str = True __lowerCamelCase : Any = model_class(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) ,training=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE__) ,self.model_tester.num_attention_outputs) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]) ,[self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] ,) else: self.assertListEqual( list(attentions[0].shape[-3:]) ,[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] ,) def lowerCAmelCase ( self : Dict): # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction __lowerCamelCase , __lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model __lowerCamelCase : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE__) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes __lowerCamelCase : List[str] = { key: tf.keras.Input(shape=val.shape[1:] ,dtype=val.dtype ,name=SCREAMING_SNAKE_CASE__) for key, val in model.input_signature.items() if key in model.dummy_inputs } __lowerCamelCase : str = model(SCREAMING_SNAKE_CASE__) self.assertTrue(outputs_dict is not None) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: __lowerCamelCase : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class A_ ( unittest.TestCase ): @cached_property def lowerCAmelCase ( self : int): return ( EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300') if is_vision_available() else None ) @slow def lowerCAmelCase ( self : Dict): __lowerCamelCase : int = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300') __lowerCamelCase : Union[str, Any] = self.default_image_processor __lowerCamelCase : List[Any] = prepare_img() __lowerCamelCase : str = image_processor(images=SCREAMING_SNAKE_CASE__ ,return_tensors='tf') # forward pass __lowerCamelCase : Dict = model(**SCREAMING_SNAKE_CASE__ ,training=SCREAMING_SNAKE_CASE__) # verify the logits __lowerCamelCase : str = tf.TensorShape((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = tf.constant([-0.0555, 0.4825, -0.0852]) self.assertTrue(np.allclose(outputs.logits[0, :3] ,SCREAMING_SNAKE_CASE__ ,atol=1E-4)) @slow def lowerCAmelCase ( self : str): __lowerCamelCase : Optional[Any] = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( 'snap-research/efficientformer-l1-300') __lowerCamelCase : str = self.default_image_processor __lowerCamelCase : List[Any] = prepare_img() __lowerCamelCase : str = image_processor(images=SCREAMING_SNAKE_CASE__ ,return_tensors='tf') # forward pass __lowerCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE__ ,training=SCREAMING_SNAKE_CASE__) # verify the logits __lowerCamelCase : List[str] = tf.TensorShape((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = tf.constant([-0.1312, 0.4353, -1.0499]) self.assertTrue(np.allclose(outputs.logits[0, :3] ,SCREAMING_SNAKE_CASE__ ,atol=1E-4))
337
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> float: _validate_point(lowerCamelCase__ ) _validate_point(lowerCamelCase__ ) if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(a - b ) for a, b in zip(lowerCamelCase__ , lowerCamelCase__ ) ) ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> None: if point: if isinstance(lowerCamelCase__ , lowerCamelCase__ ): for item in point: if not isinstance(lowerCamelCase__ , (int, float) ): __lowerCamelCase : int = ( 'Expected a list of numbers as input, found ' F"{type(lowerCamelCase__ ).__name__}" ) raise TypeError(lowerCamelCase__ ) else: __lowerCamelCase : Optional[Any] = F"Expected a list of numbers as input, found {type(lowerCamelCase__ ).__name__}" raise TypeError(lowerCamelCase__ ) else: raise ValueError('Missing an input' ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> float: _validate_point(lowerCamelCase__ ) _validate_point(lowerCamelCase__ ) if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(x - y ) for x, y in zip(lowerCamelCase__ , lowerCamelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
337
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process UpperCamelCase_ = logging.getLogger(__name__) def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: str ): """simple docstring""" return (preds == labels).mean() @dataclass class _a : '''simple docstring''' A : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class _a : '''simple docstring''' A : str = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(processors.keys() )} ) A : str = field(metadata={'''help''': '''Should contain the data files for the task.'''} ) A : int = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) A : bool = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' ,datefmt='%m/%d/%Y %H:%M:%S' ,level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN ,) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' ,training_args.local_rank ,training_args.device ,training_args.n_gpu ,bool(training_args.local_rank != -1 ) ,training_args.fpaa ,) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' ,__UpperCamelCase ) # Set seed set_seed(training_args.seed ) try: SCREAMING_SNAKE_CASE : Optional[Any] = processors[data_args.task_name]() SCREAMING_SNAKE_CASE : List[Any] = processor.get_labels() SCREAMING_SNAKE_CASE : Optional[Any] = len(__UpperCamelCase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=__UpperCamelCase ,finetuning_task=data_args.task_name ,cache_dir=model_args.cache_dir ,) SCREAMING_SNAKE_CASE : Dict = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,) SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path ,from_tf=bool('.ckpt' in model_args.model_name_or_path ) ,config=__UpperCamelCase ,cache_dir=model_args.cache_dir ,) # Get datasets SCREAMING_SNAKE_CASE : List[str] = ( MultipleChoiceDataset( data_dir=data_args.data_dir ,tokenizer=__UpperCamelCase ,task=data_args.task_name ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.train ,) if training_args.do_train else None ) SCREAMING_SNAKE_CASE : str = ( MultipleChoiceDataset( data_dir=data_args.data_dir ,tokenizer=__UpperCamelCase ,task=data_args.task_name ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.dev ,) if training_args.do_eval else None ) def compute_metrics(__UpperCamelCase: EvalPrediction ) -> Dict: SCREAMING_SNAKE_CASE : Any = np.argmax(p.predictions ,axis=1 ) return {"acc": simple_accuracy(__UpperCamelCase ,p.label_ids )} # Data collator SCREAMING_SNAKE_CASE : str = DataCollatorWithPadding(__UpperCamelCase ,pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer SCREAMING_SNAKE_CASE : Union[str, Any] = Trainer( model=__UpperCamelCase ,args=__UpperCamelCase ,train_dataset=__UpperCamelCase ,eval_dataset=__UpperCamelCase ,compute_metrics=__UpperCamelCase ,data_collator=__UpperCamelCase ,) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation SCREAMING_SNAKE_CASE : List[str] = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) SCREAMING_SNAKE_CASE : Any = trainer.evaluate() SCREAMING_SNAKE_CASE : Any = os.path.join(training_args.output_dir ,'eval_results.txt' ) if trainer.is_world_master(): with open(__UpperCamelCase ,'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' ,__UpperCamelCase ,__UpperCamelCase ) writer.write('%s = %s\n' % (key, value) ) results.update(__UpperCamelCase ) return results def lowercase__( __UpperCamelCase: Tuple ): """simple docstring""" main() if __name__ == "__main__": main()
28
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "M-CLIP" def __init__( self : Tuple , _lowerCAmelCase : List[str]=1_024 , _lowerCAmelCase : str=768 , **_lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = transformerDimSize SCREAMING_SNAKE_CASE_ = imageDimSize super().__init__(**_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = MCLIPConfig def __init__( self : Dict , _lowerCAmelCase : Union[str, Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : str ): super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = XLMRobertaModel(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.transformer(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_ = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(_lowerCAmelCase ), embs
31
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowercase__ : int = logging.get_logger(__name__) lowercase__ : Optional[int] = { "microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json", } class lowerCamelCase ( lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = '''layoutlmv3''' def __init__( self : Union[str, Any] , UpperCAmelCase__ : Tuple=5_0265 , UpperCAmelCase__ : Union[str, Any]=768 , UpperCAmelCase__ : List[Any]=12 , UpperCAmelCase__ : Union[str, Any]=12 , UpperCAmelCase__ : Optional[Any]=3072 , UpperCAmelCase__ : Optional[Any]="gelu" , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : Any=512 , UpperCAmelCase__ : int=2 , UpperCAmelCase__ : Dict=0.02 , UpperCAmelCase__ : List[str]=1e-5 , UpperCAmelCase__ : Any=1 , UpperCAmelCase__ : Tuple=0 , UpperCAmelCase__ : str=2 , UpperCAmelCase__ : List[str]=1024 , UpperCAmelCase__ : str=128 , UpperCAmelCase__ : List[Any]=128 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Union[str, Any]=32 , UpperCAmelCase__ : List[Any]=128 , UpperCAmelCase__ : str=64 , UpperCAmelCase__ : Optional[Any]=256 , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : Union[str, Any]=224 , UpperCAmelCase__ : Tuple=3 , UpperCAmelCase__ : Optional[Any]=16 , UpperCAmelCase__ : Union[str, Any]=None , **UpperCAmelCase__ : Any , ) ->Optional[Any]: super().__init__( vocab_size=UpperCAmelCase__ , hidden_size=UpperCAmelCase__ , num_hidden_layers=UpperCAmelCase__ , num_attention_heads=UpperCAmelCase__ , intermediate_size=UpperCAmelCase__ , hidden_act=UpperCAmelCase__ , hidden_dropout_prob=UpperCAmelCase__ , attention_probs_dropout_prob=UpperCAmelCase__ , max_position_embeddings=UpperCAmelCase__ , type_vocab_size=UpperCAmelCase__ , initializer_range=UpperCAmelCase__ , layer_norm_eps=UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ , ) UpperCAmelCase_ = max_ad_position_embeddings UpperCAmelCase_ = coordinate_size UpperCAmelCase_ = shape_size UpperCAmelCase_ = has_relative_attention_bias UpperCAmelCase_ = rel_pos_bins UpperCAmelCase_ = max_rel_pos UpperCAmelCase_ = has_spatial_attention_bias UpperCAmelCase_ = rel_ad_pos_bins UpperCAmelCase_ = max_rel_ad_pos UpperCAmelCase_ = text_embed UpperCAmelCase_ = visual_embed UpperCAmelCase_ = input_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = patch_size UpperCAmelCase_ = classifier_dropout class lowerCamelCase ( lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = version.parse('''1.12''' ) @property def lowerCAmelCase__ ( self : Union[str, Any] ) ->Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) else: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels'''}), ] ) @property def lowerCAmelCase__ ( self : List[Any] ) ->float: return 1e-5 @property def lowerCAmelCase__ ( self : List[str] ) ->int: return 12 def lowerCAmelCase__ ( self : str , UpperCAmelCase__ : "ProcessorMixin" , UpperCAmelCase__ : int = -1 , UpperCAmelCase__ : int = -1 , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional["TensorType"] = None , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 40 , UpperCAmelCase__ : int = 40 , ) ->Mapping[str, Any]: setattr(processor.image_processor , '''apply_ocr''' , UpperCAmelCase__ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase_ = compute_effective_axis_dimension( UpperCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase_ = processor.tokenizer.num_special_tokens_to_add(UpperCAmelCase__ ) UpperCAmelCase_ = compute_effective_axis_dimension( UpperCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCAmelCase__ ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase_ = [[''' '''.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCAmelCase_ = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCAmelCase_ = self._generate_dummy_images(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) UpperCAmelCase_ = dict( processor( UpperCAmelCase__ , text=UpperCAmelCase__ , boxes=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , ) ) return inputs
43
'''simple docstring''' lowercase__ : Union[str, Any] = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowercase__ : str = [{"type": "code", "content": INSTALL_CONTENT}] lowercase__ : Any = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
43
1
'''simple docstring''' def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> float: if digit_amount > 0: return round(number - int(__UpperCamelCase ) , __UpperCamelCase ) return number - int(__UpperCamelCase ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.3_45, 1)) print(decimal_isolate(35.3_45, 2)) print(decimal_isolate(35.3_45, 3)) print(decimal_isolate(-14.7_89, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.1_23, 1)) print(decimal_isolate(-14.1_23, 2)) print(decimal_isolate(-14.1_23, 3))
301
'''simple docstring''' def lowercase__ ( __UpperCamelCase )-> bool: UpperCamelCase = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def lowercase__ ( __UpperCamelCase = 5000 )-> int: UpperCamelCase = [(i * (3 * i - 1)) // 2 for i in range(1 , __UpperCamelCase )] for i, pentagonal_i in enumerate(__UpperCamelCase ): for j in range(__UpperCamelCase , len(__UpperCamelCase ) ): UpperCamelCase = pentagonal_nums[j] UpperCamelCase = pentagonal_i + pentagonal_j UpperCamelCase = pentagonal_j - pentagonal_i if is_pentagonal(__UpperCamelCase ) and is_pentagonal(__UpperCamelCase ): return b return -1 if __name__ == "__main__": print(f'{solution() = }')
301
1
snake_case__ : dict[tuple[int, int, int], int] = {} def _snake_case (__lowercase , __lowercase , __lowercase): # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on UpperCamelCase_ = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one UpperCamelCase_ = _calculate(days - 1 , __lowercase , late + 1) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 UpperCamelCase_ = _calculate(days - 1 , absent + 1 , 0) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter UpperCamelCase_ = _calculate(days - 1 , __lowercase , 0) UpperCamelCase_ = state_late + state_absent + state_ontime UpperCamelCase_ = prizestrings return prizestrings def _snake_case (__lowercase = 30): return _calculate(__lowercase , absent=0 , late=0) if __name__ == "__main__": print(solution())
618
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures snake_case__ : Any = logging.get_logger(__name__) @dataclass class _a : """simple docstring""" A_ = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(glue_processors.keys() )} ) A_ = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) A_ = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) A_ = field( default=UpperCAmelCase__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = self.task_name.lower() class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = """train""" A_ = """dev""" A_ = """test""" class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = 42 A_ = 42 A_ = 42 def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = Split.train , _UpperCAmelCase = None , ) -> Tuple: warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , _UpperCAmelCase , ) UpperCamelCase_ = args UpperCamelCase_ = glue_processors[args.task_name]() UpperCamelCase_ = glue_output_modes[args.task_name] if isinstance(_UpperCAmelCase , _UpperCAmelCase ): try: UpperCamelCase_ = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) # Load data features from cache or dataset file UpperCamelCase_ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) UpperCamelCase_ = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCamelCase_ , UpperCamelCase_ = label_list[2], label_list[1] UpperCamelCase_ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCamelCase_ = cached_features_file + '.lock' with FileLock(_UpperCAmelCase ): if os.path.exists(_UpperCAmelCase ) and not args.overwrite_cache: UpperCamelCase_ = time.time() UpperCamelCase_ = torch.load(_UpperCAmelCase ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) else: logger.info(f"""Creating features from dataset file at {args.data_dir}""" ) if mode == Split.dev: UpperCamelCase_ = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: UpperCamelCase_ = self.processor.get_test_examples(args.data_dir ) else: UpperCamelCase_ = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: UpperCamelCase_ = examples[:limit_length] UpperCamelCase_ = glue_convert_examples_to_features( _UpperCAmelCase , _UpperCAmelCase , max_length=args.max_seq_length , label_list=_UpperCAmelCase , output_mode=self.output_mode , ) UpperCamelCase_ = time.time() torch.save(self.features , _UpperCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self ) -> List[str]: return len(self.features ) def __getitem__( self , _UpperCAmelCase ) -> InputFeatures: return self.features[i] def _UpperCAmelCase ( self ) -> Tuple: return self.label_list
618
1
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __UpperCamelCase = logging.getLogger(__name__) class lowerCamelCase__ ( UpperCAmelCase ): """simple docstring""" _UpperCamelCase : List[str] = 'summarization' _UpperCamelCase : List[str] = ['loss'] _UpperCamelCase : Tuple = ROUGE_KEYS _UpperCamelCase : Any = 'rouge2' def __init__( self , snake_case , **snake_case ): '''simple docstring''' if hparams.sortish_sampler and hparams.gpus > 1: UpperCamelCase__ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("Dynamic Batch size does not work for multi-gpu training" ) if hparams.sortish_sampler: raise ValueError("--sortish_sampler and --max_tokens_per_batch may not be used simultaneously" ) super().__init__(__lowerCAmelCase , num_labels=__lowerCAmelCase , mode=self.mode , **__lowerCAmelCase ) use_task_specific_params(self.model , "summarization" ) save_git_info(self.hparams.output_dir ) UpperCamelCase__ = Path(self.output_dir ) / 'metrics.json' UpperCamelCase__ = Path(self.output_dir ) / 'hparams.pkl' pickle_save(self.hparams , self.hparams_save_path ) UpperCamelCase__ = 0 UpperCamelCase__ = defaultdict(__lowerCAmelCase ) UpperCamelCase__ = self.config.model_type UpperCamelCase__ = self.config.tgt_vocab_size if self.model_type == 'fsmt' else self.config.vocab_size UpperCamelCase__ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } UpperCamelCase__ = { 'train': self.hparams.n_train, 'val': self.hparams.n_val, 'test': self.hparams.n_test, } UpperCamelCase__ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} UpperCamelCase__ = { 'train': self.hparams.max_target_length, 'val': self.hparams.val_max_target_length, 'test': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) UpperCamelCase__ = get_git_info()['repo_sha'] UpperCamelCase__ = hparams.num_workers UpperCamelCase__ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , __lowerCAmelCase ): UpperCamelCase__ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] UpperCamelCase__ = self.decoder_start_token_id UpperCamelCase__ = ( SeqaSeqDataset if hasattr(self.tokenizer , "prepare_seq2seq_batch" ) else LegacySeqaSeqDataset ) UpperCamelCase__ = False UpperCamelCase__ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: UpperCamelCase__ = self.hparams.eval_max_gen_length else: UpperCamelCase__ = self.model.config.max_length UpperCamelCase__ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def snake_case__ ( self , snake_case ): '''simple docstring''' UpperCamelCase__ = { k: self.tokenizer.batch_decode(v.tolist() ) if 'mask' not in k else v.shape for k, v in batch.items() } save_json(__lowerCAmelCase , Path(self.output_dir ) / "text_batch.json" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / "tok_batch.json" ) UpperCamelCase__ = True return readable_batch def snake_case__ ( self , snake_case , **snake_case ): '''simple docstring''' return self.model(__lowerCAmelCase , **__lowerCAmelCase ) def snake_case__ ( self , snake_case ): '''simple docstring''' UpperCamelCase__ = self.tokenizer.batch_decode( __lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) return lmap(str.strip , __lowerCAmelCase ) def snake_case__ ( self , snake_case ): '''simple docstring''' UpperCamelCase__ = self.tokenizer.pad_token_id UpperCamelCase__ = batch['input_ids'], batch['attention_mask'] UpperCamelCase__ = batch['labels'] if isinstance(self.model , __lowerCAmelCase ): UpperCamelCase__ = self.model._shift_right(__lowerCAmelCase ) else: UpperCamelCase__ = shift_tokens_right(__lowerCAmelCase , __lowerCAmelCase ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero UpperCamelCase__ = decoder_input_ids self.save_readable_batch(__lowerCAmelCase ) UpperCamelCase__ = self(__lowerCAmelCase , attention_mask=__lowerCAmelCase , decoder_input_ids=__lowerCAmelCase , use_cache=__lowerCAmelCase ) UpperCamelCase__ = outputs['logits'] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id UpperCamelCase__ = nn.CrossEntropyLoss(ignore_index=__lowerCAmelCase ) assert lm_logits.shape[-1] == self.vocab_size UpperCamelCase__ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: UpperCamelCase__ = nn.functional.log_softmax(__lowerCAmelCase , dim=-1 ) UpperCamelCase__ = label_smoothed_nll_loss( __lowerCAmelCase , __lowerCAmelCase , self.hparams.label_smoothing , ignore_index=__lowerCAmelCase ) return (loss,) @property def snake_case__ ( self ): '''simple docstring''' return self.tokenizer.pad_token_id def snake_case__ ( self , snake_case , snake_case ): '''simple docstring''' UpperCamelCase__ = self._step(__lowerCAmelCase ) UpperCamelCase__ = dict(zip(self.loss_names , __lowerCAmelCase ) ) # tokens per batch UpperCamelCase__ = batch['input_ids'].ne(self.pad ).sum() + batch['labels'].ne(self.pad ).sum() UpperCamelCase__ = batch['input_ids'].shape[0] UpperCamelCase__ = batch['input_ids'].eq(self.pad ).sum() UpperCamelCase__ = batch['input_ids'].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def snake_case__ ( self , snake_case , snake_case ): '''simple docstring''' return self._generative_step(__lowerCAmelCase ) def snake_case__ ( self , snake_case , snake_case="val" ): '''simple docstring''' self.step_count += 1 UpperCamelCase__ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} UpperCamelCase__ = losses['loss'] UpperCamelCase__ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['gen_time', 'gen_len'] } UpperCamelCase__ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) UpperCamelCase__ = torch.tensor(__lowerCAmelCase ).type_as(__lowerCAmelCase ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(__lowerCAmelCase ) UpperCamelCase__ = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} UpperCamelCase__ = self.step_count self.metrics[prefix].append(__lowerCAmelCase ) # callback writes this to self.metrics_save_path UpperCamelCase__ = flatten_list([x["preds"] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def snake_case__ ( self , snake_case , snake_case ): '''simple docstring''' return calculate_rouge(__lowerCAmelCase , __lowerCAmelCase ) def snake_case__ ( self , snake_case ): '''simple docstring''' UpperCamelCase__ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') UpperCamelCase__ = self.model.generate( batch["input_ids"] , attention_mask=batch["attention_mask"] , use_cache=__lowerCAmelCase , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) UpperCamelCase__ = (time.time() - ta) / batch['input_ids'].shape[0] UpperCamelCase__ = self.ids_to_clean_text(__lowerCAmelCase ) UpperCamelCase__ = self.ids_to_clean_text(batch["labels"] ) UpperCamelCase__ = self._step(__lowerCAmelCase ) UpperCamelCase__ = dict(zip(self.loss_names , __lowerCAmelCase ) ) UpperCamelCase__ = self.calc_generative_metrics(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase__ = np.mean(lmap(__lowerCAmelCase , __lowerCAmelCase ) ) base_metrics.update(gen_time=__lowerCAmelCase , gen_len=__lowerCAmelCase , preds=__lowerCAmelCase , target=__lowerCAmelCase , **__lowerCAmelCase ) return base_metrics def snake_case__ ( self , snake_case , snake_case ): '''simple docstring''' return self._generative_step(__lowerCAmelCase ) def snake_case__ ( self , snake_case ): '''simple docstring''' return self.validation_epoch_end(__lowerCAmelCase , prefix="test" ) def snake_case__ ( self , snake_case ): '''simple docstring''' UpperCamelCase__ = self.n_obs[type_path] UpperCamelCase__ = self.target_lens[type_path] UpperCamelCase__ = self.dataset_class( self.tokenizer , type_path=__lowerCAmelCase , n_obs=__lowerCAmelCase , max_target_length=__lowerCAmelCase , **self.dataset_kwargs , ) return dataset def snake_case__ ( self , snake_case , snake_case , snake_case = False ): '''simple docstring''' UpperCamelCase__ = self.get_dataset(__lowerCAmelCase ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": UpperCamelCase__ = dataset.make_sortish_sampler(__lowerCAmelCase , distributed=self.hparams.gpus > 1 ) return DataLoader( __lowerCAmelCase , batch_size=__lowerCAmelCase , collate_fn=dataset.collate_fn , shuffle=__lowerCAmelCase , num_workers=self.num_workers , sampler=__lowerCAmelCase , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": UpperCamelCase__ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( __lowerCAmelCase , batch_sampler=__lowerCAmelCase , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( __lowerCAmelCase , batch_size=__lowerCAmelCase , collate_fn=dataset.collate_fn , shuffle=__lowerCAmelCase , num_workers=self.num_workers , sampler=__lowerCAmelCase , ) def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self.get_dataloader("train" , batch_size=self.hparams.train_batch_size , shuffle=__lowerCAmelCase ) return dataloader def snake_case__ ( self ): '''simple docstring''' return self.get_dataloader("val" , batch_size=self.hparams.eval_batch_size ) def snake_case__ ( self ): '''simple docstring''' return self.get_dataloader("test" , batch_size=self.hparams.eval_batch_size ) @staticmethod def snake_case__ ( snake_case , snake_case ): '''simple docstring''' BaseTransformer.add_model_specific_args(__lowerCAmelCase , __lowerCAmelCase ) add_generic_args(__lowerCAmelCase , __lowerCAmelCase ) parser.add_argument( "--max_source_length" , default=1024 , type=__lowerCAmelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--max_target_length" , default=56 , type=__lowerCAmelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--val_max_target_length" , default=142 , type=__lowerCAmelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--test_max_target_length" , default=142 , type=__lowerCAmelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument("--freeze_encoder" , action="store_true" ) parser.add_argument("--freeze_embeds" , action="store_true" ) parser.add_argument("--sortish_sampler" , action="store_true" , default=__lowerCAmelCase ) parser.add_argument("--overwrite_output_dir" , action="store_true" , default=__lowerCAmelCase ) parser.add_argument("--max_tokens_per_batch" , type=__lowerCAmelCase , default=__lowerCAmelCase ) parser.add_argument("--logger_name" , type=__lowerCAmelCase , choices=["default", "wandb", "wandb_shared"] , default="default" ) parser.add_argument("--n_train" , type=__lowerCAmelCase , default=-1 , required=__lowerCAmelCase , help="# examples. -1 means use all." ) parser.add_argument("--n_val" , type=__lowerCAmelCase , default=500 , required=__lowerCAmelCase , help="# examples. -1 means use all." ) parser.add_argument("--n_test" , type=__lowerCAmelCase , default=-1 , required=__lowerCAmelCase , help="# examples. -1 means use all." ) parser.add_argument( "--task" , type=__lowerCAmelCase , default="summarization" , required=__lowerCAmelCase , help="# examples. -1 means use all." ) parser.add_argument("--label_smoothing" , type=__lowerCAmelCase , default=0.0 , required=__lowerCAmelCase ) parser.add_argument("--src_lang" , type=__lowerCAmelCase , default="" , required=__lowerCAmelCase ) parser.add_argument("--tgt_lang" , type=__lowerCAmelCase , default="" , required=__lowerCAmelCase ) parser.add_argument("--eval_beams" , type=__lowerCAmelCase , default=__lowerCAmelCase , required=__lowerCAmelCase ) parser.add_argument( "--val_metric" , type=__lowerCAmelCase , default=__lowerCAmelCase , required=__lowerCAmelCase , choices=["bleu", "rouge2", "loss", None] ) parser.add_argument("--eval_max_gen_length" , type=__lowerCAmelCase , default=__lowerCAmelCase , help="never generate more than n tokens" ) parser.add_argument("--save_top_k" , type=__lowerCAmelCase , default=1 , required=__lowerCAmelCase , help="How many checkpoints to save" ) parser.add_argument( "--early_stopping_patience" , type=__lowerCAmelCase , default=-1 , required=__lowerCAmelCase , help=( "-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So" " val_check_interval will effect it." ) , ) return parser class lowerCamelCase__ ( UpperCAmelCase ): """simple docstring""" _UpperCamelCase : Optional[Any] = 'translation' _UpperCamelCase : str = ['loss'] _UpperCamelCase : Tuple = ['bleu'] _UpperCamelCase : Union[str, Any] = 'bleu' def __init__( self , snake_case , **snake_case ): '''simple docstring''' super().__init__(__lowerCAmelCase , **__lowerCAmelCase ) UpperCamelCase__ = hparams.src_lang UpperCamelCase__ = hparams.tgt_lang def snake_case__ ( self , snake_case , snake_case ): '''simple docstring''' return calculate_bleu(__lowerCAmelCase , __lowerCAmelCase ) def UpperCamelCase_( _A :Tuple , _A :List[str]=None )-> SummarizationModule: Path(args.output_dir ).mkdir(exist_ok=_A ) check_output_dir(_A , expected_items=3 ) if model is None: if "summarization" in args.task: UpperCamelCase__ = SummarizationModule(_A ) else: UpperCamelCase__ = TranslationModule(_A ) UpperCamelCase__ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("/tmp" ) or str(args.output_dir ).startswith("/var" ) ): UpperCamelCase__ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger UpperCamelCase__ = os.environ.get("WANDB_PROJECT" , _A ) UpperCamelCase__ = WandbLogger(name=model.output_dir.name , project=_A ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger UpperCamelCase__ = WandbLogger(name=model.output_dir.name , project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: UpperCamelCase__ = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: UpperCamelCase__ = False UpperCamelCase__ = args.val_metric == 'loss' UpperCamelCase__ = generic_train( _A , _A , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , _A ) , early_stopping_callback=_A , logger=_A , ) pickle_save(model.hparams , model.output_dir / "hparams.pkl" ) if not args.do_predict: return model UpperCamelCase__ = '' UpperCamelCase__ = sorted(glob.glob(os.path.join(args.output_dir , "*.ckpt" ) , recursive=_A ) ) if checkpoints: UpperCamelCase__ = checkpoints[-1] UpperCamelCase__ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() __UpperCamelCase = pl.Trainer.add_argparse_args(parser) __UpperCamelCase = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __UpperCamelCase = parser.parse_args() main(args)
551
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class snake_case_ ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase=0.01 , __lowerCAmelCase=1_000 ): SCREAMING_SNAKE_CASE_ : Optional[Any] = p_stop SCREAMING_SNAKE_CASE_ : Dict = max_length def __iter__( self ): SCREAMING_SNAKE_CASE_ : Dict = 0 SCREAMING_SNAKE_CASE_ : Dict = False while not stop and count < self.max_length: yield count count += 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = random.random() < self.p_stop class snake_case_ ( unittest.TestCase ): def __A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=True ): SCREAMING_SNAKE_CASE_ : int = [ BatchSamplerShard(__lowerCAmelCase , 2 , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) for i in range(2 ) ] SCREAMING_SNAKE_CASE_ : Tuple = [list(__lowerCAmelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__lowerCAmelCase ) for shard in batch_sampler_shards] , [len(__lowerCAmelCase ) for e in expected] ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def __A ( self ): # Check the shards when the dataset is a round multiple of total batch size. SCREAMING_SNAKE_CASE_ : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. SCREAMING_SNAKE_CASE_ : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. SCREAMING_SNAKE_CASE_ : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. SCREAMING_SNAKE_CASE_ : int = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE_ : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) def __A ( self ): # Check the shards when the dataset is a round multiple of batch size. SCREAMING_SNAKE_CASE_ : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. SCREAMING_SNAKE_CASE_ : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. SCREAMING_SNAKE_CASE_ : List[str] = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE_ : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) def __A ( self ): # Check the shards when the dataset is a round multiple of total batch size. SCREAMING_SNAKE_CASE_ : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. SCREAMING_SNAKE_CASE_ : List[str] = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. SCREAMING_SNAKE_CASE_ : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. SCREAMING_SNAKE_CASE_ : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE_ : str = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = [[[0, 1]], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) def __A ( self ): # Check the shards when the dataset is a round multiple of batch size. SCREAMING_SNAKE_CASE_ : Tuple = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. SCREAMING_SNAKE_CASE_ : int = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. SCREAMING_SNAKE_CASE_ : str = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE_ : Tuple = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [[[0, 1]], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [BatchSamplerShard(__lowerCAmelCase , 2 , __lowerCAmelCase , even_batches=__lowerCAmelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def __A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=2 , __lowerCAmelCase=False ): random.seed(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = list(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = [ IterableDatasetShard( __lowerCAmelCase , batch_size=__lowerCAmelCase , drop_last=__lowerCAmelCase , num_processes=__lowerCAmelCase , process_index=__lowerCAmelCase , split_batches=__lowerCAmelCase , ) for i in range(__lowerCAmelCase ) ] SCREAMING_SNAKE_CASE_ : List[Any] = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__lowerCAmelCase ) iterable_dataset_lists.append(list(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ : Dict = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size SCREAMING_SNAKE_CASE_ : Dict = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) self.assertTrue(len(__lowerCAmelCase ) % shard_batch_size == 0 ) SCREAMING_SNAKE_CASE_ : Dict = [] for idx in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__lowerCAmelCase ) < len(__lowerCAmelCase ): reference += reference self.assertListEqual(__lowerCAmelCase , reference[: len(__lowerCAmelCase )] ) def __A ( self ): SCREAMING_SNAKE_CASE_ : str = 42 SCREAMING_SNAKE_CASE_ : List[str] = RandomIterableDataset() self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) # Edge case with a very small dataset SCREAMING_SNAKE_CASE_ : List[str] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = BatchSampler(range(16 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = SkipBatchSampler(__lowerCAmelCase , 2 ) self.assertListEqual(list(__lowerCAmelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Dict = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) SCREAMING_SNAKE_CASE_ : Tuple = skip_first_batches(__lowerCAmelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def __A ( self ): Accelerator() SCREAMING_SNAKE_CASE_ : Any = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
345
0
"""simple docstring""" def A_ ( _lowerCAmelCase : str = "The quick brown fox jumps over the lazy dog", ): """simple docstring""" _a = set() # Replace all the whitespace in our sentence _a = input_str.replace(''' ''', '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_lowerCAmelCase ) == 26 def A_ ( _lowerCAmelCase : str = "The quick brown fox jumps over the lazy dog", ): """simple docstring""" _a = [False] * 26 for char in input_str: if char.islower(): _a = True elif char.isupper(): _a = True return all(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : str = "The quick brown fox jumps over the lazy dog", ): """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def A_ ( ): """simple docstring""" from timeit import timeit _a = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''', setup=_lowerCAmelCase ) ) print(timeit('''is_pangram_faster()''', setup=_lowerCAmelCase ) ) print(timeit('''is_pangram_fastest()''', setup=_lowerCAmelCase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
285
"""simple docstring""" import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Any = ['input_ids', 'attention_mask'] def __init__( self , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase=125 , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _a = [F'<extra_id_{i}>' for i in range(__UpperCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _a = len(set(filter(lambda __UpperCAmelCase : bool('''extra_id''' in str(__UpperCAmelCase ) ) , __UpperCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' ''' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the''' ''' extra_ids tokens''' ) _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else pad_token _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else eos_token _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else unk_token super().__init__( eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , extra_ids=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) _a = extra_ids _a = 2**8 # utf is 8 bits # define special tokens dict _a = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } _a = len(self.special_tokens_encoder ) _a = len(__UpperCAmelCase ) for i, token in enumerate(__UpperCAmelCase ): _a = self.vocab_size + i - n _a = {v: k for k, v in self.special_tokens_encoder.items()} @property def _UpperCAmelCase ( self ) -> Dict: return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(__UpperCAmelCase )) + [1] return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1] def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[int]: if len(__UpperCAmelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _a = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _a = self._add_eos_if_not_present(__UpperCAmelCase ) if token_ids_a is None: return token_ids_a else: _a = self._add_eos_if_not_present(__UpperCAmelCase ) return token_ids_a + token_ids_a def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[str]: _a = [chr(__UpperCAmelCase ) for i in text.encode('''utf-8''' )] return tokens def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]: if token in self.special_tokens_encoder: _a = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: _a = self.added_tokens_encoder[token] elif len(__UpperCAmelCase ) != 1: _a = self.unk_token_id else: _a = ord(__UpperCAmelCase ) + self._num_special_tokens return token_id def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[Any]: if index in self.special_tokens_decoder: _a = self.special_tokens_decoder[index] else: _a = chr(index - self._num_special_tokens ) return token def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Any: _a = B'''''' for token in tokens: if token in self.special_tokens_decoder: _a = self.special_tokens_decoder[token].encode('''utf-8''' ) elif token in self.added_tokens_decoder: _a = self.special_tokens_decoder[token].encode('''utf-8''' ) elif token in self.special_tokens_encoder: _a = token.encode('''utf-8''' ) elif token in self.added_tokens_encoder: _a = token.encode('''utf-8''' ) else: _a = bytes([ord(__UpperCAmelCase )] ) bstring += tok_string _a = bstring.decode('''utf-8''' , errors='''ignore''' ) return string def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: return ()
285
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = '▁' lowercase_ = {'vocab_file': 'sentencepiece.bpe.model'} lowercase_ = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model' ), } } lowercase_ = { 'facebook/nllb-200-distilled-600M': 1_024, } # fmt: off lowercase_ = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class SCREAMING_SNAKE_CASE (__SCREAMING_SNAKE_CASE ): _UpperCamelCase : Optional[int] = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Union[str, Any] = ['input_ids', 'attention_mask'] _UpperCamelCase : List[str] = [] _UpperCamelCase : Tuple = [] def __init__( self : Optional[int] , a : Tuple , a : Union[str, Any]="<s>" , a : Union[str, Any]="</s>" , a : Dict="</s>" , a : str="<s>" , a : Dict="<unk>" , a : Optional[int]="<pad>" , a : int="<mask>" , a : Tuple=None , a : Tuple=None , a : Optional[Any]=None , a : Optional[Dict[str, Any]] = None , a : Union[str, Any]=None , a : Tuple=False , **a : Optional[int] , )-> List[str]: """simple docstring""" lowercase__ = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs lowercase__ = legacy_behaviour super().__init__( bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , src_lang=_SCREAMING_SNAKE_CASE , tgt_lang=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_SCREAMING_SNAKE_CASE ) ) lowercase__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token lowercase__ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase__ = 1 lowercase__ = len(self.sp_model ) lowercase__ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_SCREAMING_SNAKE_CASE ) } lowercase__ = {v: k for k, v in self.lang_code_to_id.items()} lowercase__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowercase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowercase__ = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) lowercase__ = src_lang if src_lang is not None else "eng_Latn" lowercase__ = self.lang_code_to_id[self._src_lang] lowercase__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Any )-> str: """simple docstring""" lowercase__ = self.__dict__.copy() lowercase__ = None lowercase__ = self.sp_model.serialized_model_proto() return state def __setstate__( self : Optional[Any] , a : List[Any] )-> Tuple: """simple docstring""" lowercase__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def SCREAMING_SNAKE_CASE_ ( self : str )-> Tuple: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> str: """simple docstring""" return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE_ ( self : Any , a : str )-> None: """simple docstring""" lowercase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , a : List[int] , a : Optional[List[int]] = None , a : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) lowercase__ = [1] * len(self.prefix_tokens ) lowercase__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_SCREAMING_SNAKE_CASE )) + suffix_ones return prefix_ones + ([0] * len(_SCREAMING_SNAKE_CASE )) + ([0] * len(_SCREAMING_SNAKE_CASE )) + suffix_ones def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , a : List[int] , a : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , a : List[int] , a : Optional[List[int]] = None )-> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : Union[str, Any] , a : str , a : Optional[str] , a : Optional[str] , **a : Union[str, Any] )-> Union[str, Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowercase__ = src_lang lowercase__ = self(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowercase__ = self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) lowercase__ = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Optional[Any]: """simple docstring""" lowercase__ = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , a : str )-> List[str]: """simple docstring""" return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , a : List[Any] )-> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase__ = self.sp_model.PieceToId(_SCREAMING_SNAKE_CASE ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE_ ( self : int , a : Optional[Any] )-> Tuple: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE_ ( self : int , a : List[str] )-> int: """simple docstring""" lowercase__ = "".join(_SCREAMING_SNAKE_CASE ).replace(_SCREAMING_SNAKE_CASE , ' ' ).strip() return out_string def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : str , a : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , 'wb' ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : List[str] , a : str = "eng_Latn" , a : Optional[List[str]] = None , a : str = "fra_Latn" , **a : Optional[Any] , )-> BatchEncoding: """simple docstring""" lowercase__ = src_lang lowercase__ = tgt_lang return super().prepare_seqaseq_batch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Any: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> int: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : Optional[Any] )-> None: """simple docstring""" lowercase__ = self.lang_code_to_id[src_lang] if self.legacy_behaviour: lowercase__ = [] lowercase__ = [self.eos_token_id, self.cur_lang_code] else: lowercase__ = [self.cur_lang_code] lowercase__ = [self.eos_token_id] def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , a : str )-> None: """simple docstring""" lowercase__ = self.lang_code_to_id[lang] if self.legacy_behaviour: lowercase__ = [] lowercase__ = [self.eos_token_id, self.cur_lang_code] else: lowercase__ = [self.cur_lang_code] lowercase__ = [self.eos_token_id]
235
"""simple docstring""" def _lowercase ( __snake_case ,__snake_case ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def _lowercase ( ) -> None: assert or_gate(0 ,0 ) == 0 assert or_gate(0 ,1 ) == 1 assert or_gate(1 ,0 ) == 1 assert or_gate(1 ,1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
293
0
def snake_case_ ( __lowercase ): if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence UpperCAmelCase_ : str = gray_code_sequence_string(lowercase_ ) # # convert them to integers for i in range(len(lowercase_ ) ): UpperCAmelCase_ : Union[str, Any] = int(sequence[i] , 2 ) return sequence def snake_case_ ( __lowercase ): if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] UpperCAmelCase_ : str = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits UpperCAmelCase_ : Optional[int] = gray_code_sequence_string(bit_count - 1 ) UpperCAmelCase_ : str = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): UpperCAmelCase_ : Dict = "0" + smaller_sequence[i] sequence.append(lowercase_ ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): UpperCAmelCase_ : Tuple = "1" + smaller_sequence[i] sequence.append(lowercase_ ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
707
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : int A_ : int A_ : float A_ : float A_ : Tuple[int] def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = torch.arange(self.height * self.width ) UpperCAmelCase_ : Any = torch.stack( [ pixel_indices % self.width, torch.div(__snake_case , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ : List[Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(__snake_case ) ) UpperCAmelCase_ : str = self.get_image_coords() UpperCAmelCase_ : List[str] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Tuple = self.get_camera_rays(__snake_case ) UpperCAmelCase_ : Union[str, Any] = rays.view(__snake_case , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def _lowerCamelCase ( self : Dict , __snake_case : torch.Tensor ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : int = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : str = coords.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = self.resolution() UpperCAmelCase_ : Optional[Any] = self.fov() UpperCAmelCase_ : int = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[Any] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Optional[Any] = fracs.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(__snake_case , 1 , 3 ) + self.x.view(__snake_case , 1 , 3 ) * fracs[:, :, :1] + self.y.view(__snake_case , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Union[str, Any] = directions / directions.norm(dim=-1 , keepdim=__snake_case ) UpperCAmelCase_ : Optional[int] = torch.stack( [ torch.broadcast_to(self.origin.view(__snake_case , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(__snake_case , *__snake_case , 2 , 3 ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__snake_case , height=__snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : int = [] UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : Tuple = np.array([np.sin(__lowercase ), np.cos(__lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : str = -z * 4 UpperCAmelCase_ : List[Any] = np.array([np.cos(__lowercase ), -np.sin(__lowercase ), 0.0] ) UpperCAmelCase_ : Tuple = np.cross(__lowercase , __lowercase ) origins.append(__lowercase ) xs.append(__lowercase ) ys.append(__lowercase ) zs.append(__lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , width=__lowercase , height=__lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__lowercase )) , )
641
0
def __snake_case ( lowerCAmelCase_ = 1_0_0 ) -> int: SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F'{solution() = }')
100
'''simple docstring''' import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): __a =["input_ids", "attention_mask"] def __init__( self , lowerCamelCase="</s>" , lowerCamelCase="<unk>" , lowerCamelCase="<pad>" , lowerCamelCase=125 , lowerCamelCase=None , **lowerCamelCase , ) ->None: '''simple docstring''' # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __a = [F"""<extra_id_{i}>""" for i in range(lowerCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __a = len(set(filter(lambda lowerCamelCase : bool('extra_id' in str(lowerCamelCase ) ) , lowerCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the' ' extra_ids tokens' ) __a = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token __a = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token __a = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token super().__init__( eos_token=lowerCamelCase , unk_token=lowerCamelCase , pad_token=lowerCamelCase , extra_ids=lowerCamelCase , additional_special_tokens=lowerCamelCase , **lowerCamelCase , ) __a = extra_ids __a = 2**8 # utf is 8 bits # define special tokens dict __a = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } __a = len(self.special_tokens_encoder ) __a = len(lowerCamelCase ) for i, token in enumerate(lowerCamelCase ): __a = self.vocab_size + i - n __a = {v: k for k, v in self.special_tokens_encoder.items()} @property def __UpperCamelCase ( self ) ->Any: '''simple docstring''' return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowerCamelCase )) + [1] return ([0] * len(lowerCamelCase )) + [1] + ([0] * len(lowerCamelCase )) + [1] def __UpperCamelCase ( self , lowerCamelCase ) ->List[int]: '''simple docstring''' if len(lowerCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase = None ) ->List[int]: '''simple docstring''' __a = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase = None ) ->List[int]: '''simple docstring''' __a = self._add_eos_if_not_present(lowerCamelCase ) if token_ids_a is None: return token_ids_a else: __a = self._add_eos_if_not_present(lowerCamelCase ) return token_ids_a + token_ids_a def __UpperCamelCase ( self , lowerCamelCase ) ->List[str]: '''simple docstring''' __a = [chr(lowerCamelCase ) for i in text.encode('utf-8' )] return tokens def __UpperCamelCase ( self , lowerCamelCase ) ->Optional[Any]: '''simple docstring''' if token in self.special_tokens_encoder: __a = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: __a = self.added_tokens_encoder[token] elif len(lowerCamelCase ) != 1: __a = self.unk_token_id else: __a = ord(lowerCamelCase ) + self._num_special_tokens return token_id def __UpperCamelCase ( self , lowerCamelCase ) ->Tuple: '''simple docstring''' if index in self.special_tokens_decoder: __a = self.special_tokens_decoder[index] else: __a = chr(index - self._num_special_tokens ) return token def __UpperCamelCase ( self , lowerCamelCase ) ->Optional[Any]: '''simple docstring''' __a = B'' for token in tokens: if token in self.special_tokens_decoder: __a = self.special_tokens_decoder[token].encode('utf-8' ) elif token in self.added_tokens_decoder: __a = self.special_tokens_decoder[token].encode('utf-8' ) elif token in self.special_tokens_encoder: __a = token.encode('utf-8' ) elif token in self.added_tokens_encoder: __a = token.encode('utf-8' ) else: __a = bytes([ord(lowerCamelCase )] ) bstring += tok_string __a = bstring.decode('utf-8' , errors='ignore' ) return string def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase = None ) ->Tuple[str]: '''simple docstring''' return ()
448
0
from __future__ import annotations from statistics import mean def _UpperCAmelCase (UpperCamelCase_ : list[int] , UpperCamelCase_ : list[int] , UpperCamelCase_ : int ): '''simple docstring''' _lowerCAmelCase : int = [0] * no_of_processes _lowerCAmelCase : str = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(UpperCamelCase_ ): _lowerCAmelCase : Optional[int] = burst_time[i] _lowerCAmelCase : list[int] = [] _lowerCAmelCase : Any = 0 _lowerCAmelCase : Optional[int] = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: _lowerCAmelCase : Any = [] _lowerCAmelCase : Any = -1 for i in range(UpperCamelCase_ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: _lowerCAmelCase : int = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: _lowerCAmelCase : Any = i total_time += burst_time[target_process] completed += 1 _lowerCAmelCase : int = 0 _lowerCAmelCase : Optional[int] = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def _UpperCAmelCase (UpperCamelCase_ : list[int] , UpperCamelCase_ : int , UpperCamelCase_ : list[int] ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [0] * no_of_processes for i in range(UpperCamelCase_ ): _lowerCAmelCase : str = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("[TEST CASE 01]") _lowerCamelCase : Dict = 4 _lowerCamelCase : List[str] = [2, 5, 3, 7] _lowerCamelCase : str = [0, 0, 0, 0] _lowerCamelCase : List[str] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) _lowerCamelCase : List[Any] = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time") for i, process_id in enumerate(list(range(1, 5))): print( F'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t''' F'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}''' ) print(F'''\nAverage waiting time = {mean(waiting_time):.5f}''') print(F'''Average turnaround time = {mean(turn_around_time):.5f}''')
702
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __snake_case (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCAmelCase : List[str] ) -> List[str]: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): _lowerCAmelCase : List[Any] = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: '''simple docstring''' _lowerCAmelCase : Any = """sshleifer/tiny-gpt2""" _lowerCAmelCase : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , ) _lowerCAmelCase : str = PyTorchBenchmark(_UpperCAmelCase ) _lowerCAmelCase : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: '''simple docstring''' _lowerCAmelCase : List[str] = """sgugger/tiny-distilbert-classification""" _lowerCAmelCase : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , only_pretrain_model=_UpperCAmelCase , ) _lowerCAmelCase : List[Any] = PyTorchBenchmark(_UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: '''simple docstring''' _lowerCAmelCase : Tuple = """sshleifer/tiny-gpt2""" _lowerCAmelCase : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , torchscript=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , ) _lowerCAmelCase : List[str] = PyTorchBenchmark(_UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: '''simple docstring''' _lowerCAmelCase : Optional[Any] = """sshleifer/tiny-gpt2""" _lowerCAmelCase : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , fpaa=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , ) _lowerCAmelCase : Union[str, Any] = PyTorchBenchmark(_UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self : str ) -> int: '''simple docstring''' _lowerCAmelCase : List[Any] = """sshleifer/tiny-gpt2""" _lowerCAmelCase : int = AutoConfig.from_pretrained(_UpperCAmelCase ) # set architectures equal to `None` _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , ) _lowerCAmelCase : Tuple = PyTorchBenchmark(_UpperCAmelCase , configs=[config] ) _lowerCAmelCase : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: '''simple docstring''' _lowerCAmelCase : str = """sshleifer/tiny-gpt2""" _lowerCAmelCase : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , ) _lowerCAmelCase : List[str] = PyTorchBenchmark(_UpperCAmelCase ) _lowerCAmelCase : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: '''simple docstring''' _lowerCAmelCase : int = """sshleifer/tiny-gpt2""" _lowerCAmelCase : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_UpperCAmelCase , multi_process=_UpperCAmelCase , ) _lowerCAmelCase : Union[str, Any] = PyTorchBenchmark(_UpperCAmelCase ) _lowerCAmelCase : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = """sshleifer/tiny-gpt2""" _lowerCAmelCase : List[Any] = AutoConfig.from_pretrained(_UpperCAmelCase ) _lowerCAmelCase : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , ) _lowerCAmelCase : List[str] = PyTorchBenchmark(_UpperCAmelCase , configs=[config] ) _lowerCAmelCase : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: '''simple docstring''' _lowerCAmelCase : Any = """sshleifer/tinier_bart""" _lowerCAmelCase : Tuple = AutoConfig.from_pretrained(_UpperCAmelCase ) _lowerCAmelCase : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , ) _lowerCAmelCase : Tuple = PyTorchBenchmark(_UpperCAmelCase , configs=[config] ) _lowerCAmelCase : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: '''simple docstring''' _lowerCAmelCase : List[Any] = """sshleifer/tiny-gpt2""" _lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained(_UpperCAmelCase ) _lowerCAmelCase : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , ) _lowerCAmelCase : Optional[Any] = PyTorchBenchmark(_UpperCAmelCase , configs=[config] ) _lowerCAmelCase : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: '''simple docstring''' _lowerCAmelCase : Any = """sshleifer/tinier_bart""" _lowerCAmelCase : Dict = AutoConfig.from_pretrained(_UpperCAmelCase ) _lowerCAmelCase : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , ) _lowerCAmelCase : Optional[Any] = PyTorchBenchmark(_UpperCAmelCase , configs=[config] ) _lowerCAmelCase : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE ( self : int ) -> int: '''simple docstring''' _lowerCAmelCase : Tuple = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , save_to_csv=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_UpperCAmelCase , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(_UpperCAmelCase , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(_UpperCAmelCase , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(_UpperCAmelCase , """train_time.csv""" ) , env_info_csv_file=os.path.join(_UpperCAmelCase , """env.csv""" ) , multi_process=_UpperCAmelCase , ) _lowerCAmelCase : List[Any] = PyTorchBenchmark(_UpperCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(_UpperCAmelCase , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_UpperCAmelCase , """train_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_UpperCAmelCase , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_UpperCAmelCase , """train_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(_UpperCAmelCase , """env.csv""" ) ).exists() ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: '''simple docstring''' _lowerCAmelCase : str = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(_UpperCAmelCase : int ): self.assertTrue(hasattr(_UpperCAmelCase , """sequential""" ) ) self.assertTrue(hasattr(_UpperCAmelCase , """cumulative""" ) ) self.assertTrue(hasattr(_UpperCAmelCase , """current""" ) ) self.assertTrue(hasattr(_UpperCAmelCase , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_UpperCAmelCase , """log.txt""" ) , log_print=_UpperCAmelCase , trace_memory_line_by_line=_UpperCAmelCase , multi_process=_UpperCAmelCase , ) _lowerCAmelCase : str = PyTorchBenchmark(_UpperCAmelCase ) _lowerCAmelCase : Any = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_UpperCAmelCase , """log.txt""" ) ).exists() )
196
0
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger('transformers.models.encodec') lowerCAmelCase__ = { 'quantizer.vq.layers.*._codebook.inited': 'quantizer.layers.*.codebook.inited', 'quantizer.vq.layers.*._codebook.cluster_size': 'quantizer.layers.*.codebook.cluster_size', 'quantizer.vq.layers.*._codebook.embed': 'quantizer.layers.*.codebook.embed', 'quantizer.vq.layers.*._codebook.embed_avg': 'quantizer.layers.*.codebook.embed_avg', } lowerCAmelCase__ = { 'encoder.model.0.conv.conv': 'encoder.layers.0.conv', 'encoder.model.1.block.1.conv.conv': 'encoder.layers.1.block.1.conv', 'encoder.model.1.block.3.conv.conv': 'encoder.layers.1.block.3.conv', 'encoder.model.1.shortcut.conv.conv': 'encoder.layers.1.shortcut.conv', 'encoder.model.3.conv.conv': 'encoder.layers.3.conv', 'encoder.model.4.block.1.conv.conv': 'encoder.layers.4.block.1.conv', 'encoder.model.4.block.3.conv.conv': 'encoder.layers.4.block.3.conv', 'encoder.model.4.shortcut.conv.conv': 'encoder.layers.4.shortcut.conv', 'encoder.model.6.conv.conv': 'encoder.layers.6.conv', 'encoder.model.7.block.1.conv.conv': 'encoder.layers.7.block.1.conv', 'encoder.model.7.block.3.conv.conv': 'encoder.layers.7.block.3.conv', 'encoder.model.7.shortcut.conv.conv': 'encoder.layers.7.shortcut.conv', 'encoder.model.9.conv.conv': 'encoder.layers.9.conv', 'encoder.model.10.block.1.conv.conv': 'encoder.layers.10.block.1.conv', 'encoder.model.10.block.3.conv.conv': 'encoder.layers.10.block.3.conv', 'encoder.model.10.shortcut.conv.conv': 'encoder.layers.10.shortcut.conv', 'encoder.model.12.conv.conv': 'encoder.layers.12.conv', 'encoder.model.13.lstm': 'encoder.layers.13.lstm', 'encoder.model.15.conv.conv': 'encoder.layers.15.conv', } lowerCAmelCase__ = { 'encoder.model.0.conv.norm': 'encoder.layers.0.norm', 'encoder.model.1.block.1.conv.norm': 'encoder.layers.1.block.1.norm', 'encoder.model.1.block.3.conv.norm': 'encoder.layers.1.block.3.norm', 'encoder.model.1.shortcut.conv.norm': 'encoder.layers.1.shortcut.norm', 'encoder.model.3.conv.norm': 'encoder.layers.3.norm', 'encoder.model.4.block.1.conv.norm': 'encoder.layers.4.block.1.norm', 'encoder.model.4.block.3.conv.norm': 'encoder.layers.4.block.3.norm', 'encoder.model.4.shortcut.conv.norm': 'encoder.layers.4.shortcut.norm', 'encoder.model.6.conv.norm': 'encoder.layers.6.norm', 'encoder.model.7.block.1.conv.norm': 'encoder.layers.7.block.1.norm', 'encoder.model.7.block.3.conv.norm': 'encoder.layers.7.block.3.norm', 'encoder.model.7.shortcut.conv.norm': 'encoder.layers.7.shortcut.norm', 'encoder.model.9.conv.norm': 'encoder.layers.9.norm', 'encoder.model.10.block.1.conv.norm': 'encoder.layers.10.block.1.norm', 'encoder.model.10.block.3.conv.norm': 'encoder.layers.10.block.3.norm', 'encoder.model.10.shortcut.conv.norm': 'encoder.layers.10.shortcut.norm', 'encoder.model.12.conv.norm': 'encoder.layers.12.norm', 'encoder.model.15.conv.norm': 'encoder.layers.15.norm', } lowerCAmelCase__ = { 'decoder.model.0.conv.conv': 'decoder.layers.0.conv', 'decoder.model.1.lstm': 'decoder.layers.1.lstm', 'decoder.model.3.convtr.convtr': 'decoder.layers.3.conv', 'decoder.model.4.block.1.conv.conv': 'decoder.layers.4.block.1.conv', 'decoder.model.4.block.3.conv.conv': 'decoder.layers.4.block.3.conv', 'decoder.model.4.shortcut.conv.conv': 'decoder.layers.4.shortcut.conv', 'decoder.model.6.convtr.convtr': 'decoder.layers.6.conv', 'decoder.model.7.block.1.conv.conv': 'decoder.layers.7.block.1.conv', 'decoder.model.7.block.3.conv.conv': 'decoder.layers.7.block.3.conv', 'decoder.model.7.shortcut.conv.conv': 'decoder.layers.7.shortcut.conv', 'decoder.model.9.convtr.convtr': 'decoder.layers.9.conv', 'decoder.model.10.block.1.conv.conv': 'decoder.layers.10.block.1.conv', 'decoder.model.10.block.3.conv.conv': 'decoder.layers.10.block.3.conv', 'decoder.model.10.shortcut.conv.conv': 'decoder.layers.10.shortcut.conv', 'decoder.model.12.convtr.convtr': 'decoder.layers.12.conv', 'decoder.model.13.block.1.conv.conv': 'decoder.layers.13.block.1.conv', 'decoder.model.13.block.3.conv.conv': 'decoder.layers.13.block.3.conv', 'decoder.model.13.shortcut.conv.conv': 'decoder.layers.13.shortcut.conv', 'decoder.model.15.conv.conv': 'decoder.layers.15.conv', } lowerCAmelCase__ = { 'decoder.model.0.conv.norm': 'decoder.layers.0.norm', 'decoder.model.3.convtr.norm': 'decoder.layers.3.norm', 'decoder.model.4.block.1.conv.norm': 'decoder.layers.4.block.1.norm', 'decoder.model.4.block.3.conv.norm': 'decoder.layers.4.block.3.norm', 'decoder.model.4.shortcut.conv.norm': 'decoder.layers.4.shortcut.norm', 'decoder.model.6.convtr.norm': 'decoder.layers.6.norm', 'decoder.model.7.block.1.conv.norm': 'decoder.layers.7.block.1.norm', 'decoder.model.7.block.3.conv.norm': 'decoder.layers.7.block.3.norm', 'decoder.model.7.shortcut.conv.norm': 'decoder.layers.7.shortcut.norm', 'decoder.model.9.convtr.norm': 'decoder.layers.9.norm', 'decoder.model.10.block.1.conv.norm': 'decoder.layers.10.block.1.norm', 'decoder.model.10.block.3.conv.norm': 'decoder.layers.10.block.3.norm', 'decoder.model.10.shortcut.conv.norm': 'decoder.layers.10.shortcut.norm', 'decoder.model.12.convtr.norm': 'decoder.layers.12.norm', 'decoder.model.13.block.1.conv.norm': 'decoder.layers.13.block.1.norm', 'decoder.model.13.block.3.conv.norm': 'decoder.layers.13.block.3.norm', 'decoder.model.13.shortcut.conv.norm': 'decoder.layers.13.shortcut.norm', 'decoder.model.15.conv.norm': 'decoder.layers.15.norm', } lowerCAmelCase__ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } lowerCAmelCase__ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } lowerCAmelCase__ = [] lowerCAmelCase__ = [] def _UpperCAmelCase (UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : int ): for attribute in key.split("." ): _A : Dict = getattr(UpperCamelCase__ , UpperCamelCase__ ) if weight_type is not None: _A : Union[str, Any] = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape else: _A : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": _A : List[str] = value elif weight_type == "weight_g": _A : List[Any] = value elif weight_type == "weight_v": _A : Union[str, Any] = value elif weight_type == "bias": _A : Any = value elif weight_type == "running_mean": _A : Dict = value elif weight_type == "running_var": _A : List[Any] = value elif weight_type == "num_batches_tracked": _A : Dict = value elif weight_type == "weight_ih_l0": _A : List[str] = value elif weight_type == "weight_hh_l0": _A : Optional[int] = value elif weight_type == "bias_ih_l0": _A : Dict = value elif weight_type == "bias_hh_l0": _A : Optional[Any] = value elif weight_type == "weight_ih_l1": _A : Optional[Any] = value elif weight_type == "weight_hh_l1": _A : List[str] = value elif weight_type == "bias_ih_l1": _A : Union[str, Any] = value elif weight_type == "bias_hh_l1": _A : List[str] = value else: _A : List[Any] = value logger.info(f"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." ) def _UpperCAmelCase (UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] ): for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: _A , _A : int = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def _UpperCAmelCase (UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ): _A : Optional[Any] = [] if model_name == "encodec_24khz" or "encodec_32khz": _A : List[Any] = MAPPING_24K elif model_name == "encodec_48khz": _A : Any = MAPPING_48K else: raise ValueError(f"Unsupported model: {model_name}" ) for name, value in orig_dict.items(): if should_ignore(UpperCamelCase__ , UpperCamelCase__ ): logger.info(f"{name} was ignored" ) continue _A : int = False for key, mapped_key in MAPPING.items(): if "*" in key: _A , _A : Union[str, Any] = key.split(".*." ) if prefix in name and suffix in name: _A : int = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("embed" ) and name.endswith("embed_avg" ): continue _A : Optional[int] = True if "*" in mapped_key: _A : List[str] = name.split(UpperCamelCase__ )[0].split("." )[-2] _A : Dict = mapped_key.replace("*" , UpperCamelCase__ ) if "weight_g" in name: _A : Optional[Any] = "weight_g" elif "weight_v" in name: _A : List[str] = "weight_v" elif "weight_ih_l0" in name: _A : Any = "weight_ih_l0" elif "weight_hh_l0" in name: _A : Optional[int] = "weight_hh_l0" elif "bias_ih_l0" in name: _A : int = "bias_ih_l0" elif "bias_hh_l0" in name: _A : Union[str, Any] = "bias_hh_l0" elif "weight_ih_l1" in name: _A : str = "weight_ih_l1" elif "weight_hh_l1" in name: _A : int = "weight_hh_l1" elif "bias_ih_l1" in name: _A : int = "bias_ih_l1" elif "bias_hh_l1" in name: _A : Dict = "bias_hh_l1" elif "bias" in name: _A : Optional[int] = "bias" elif "weight" in name: _A : List[str] = "weight" elif "running_mean" in name: _A : Optional[int] = "running_mean" elif "running_var" in name: _A : Dict = "running_var" elif "num_batches_tracked" in name: _A : Dict = "num_batches_tracked" else: _A : int = None set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) continue if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(f"Unused weights: {unused_weights}" ) @torch.no_grad() def _UpperCAmelCase (UpperCamelCase__ : int , UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : str=None , UpperCamelCase__ : Optional[Any]=None , ): if config_path is not None: _A : List[Any] = EncodecConfig.from_pretrained(UpperCamelCase__ ) else: _A : List[Any] = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": _A : Union[str, Any] = [8, 5, 4, 4] _A : Dict = [2.2] _A : Union[str, Any] = 64 _A : Dict = 32000 _A : Tuple = 2048 _A : Optional[int] = False _A : int = False _A : Any = False elif model_name == "encodec_48khz": _A : Optional[int] = [8, 5, 4, 2] _A : int = [3.0, 6.0, 12.0, 24.0] _A : str = 48000 _A : List[Any] = 2 _A : str = False _A : List[str] = "time_group_norm" _A : Dict = True _A : Optional[Any] = 1.0 _A : List[Any] = 0.01 else: raise ValueError(f"Unknown model name: {model_name}" ) _A : Optional[Any] = EncodecModel(UpperCamelCase__ ) _A : Optional[int] = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(UpperCamelCase__ ) _A : int = torch.load(UpperCamelCase__ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights _A : List[Any] = original_checkpoint["best_state"] recursively_load_weights(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if repo_id: print("Pushing to the hub..." ) feature_extractor.push_to_hub(UpperCamelCase__ ) model.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '--model', default='encodec_24khz', type=str, help='The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) lowerCAmelCase__ = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
503
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '▁' lowerCAmelCase__ = {'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase__ = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), } } lowerCAmelCase__ = { 'facebook/mbart-large-en-ro': 10_24, 'facebook/mbart-large-cc25': 10_24, } # fmt: off lowerCAmelCase__ = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] def __init__( self , __lowerCamelCase , __lowerCamelCase="<s>" , __lowerCamelCase="</s>" , __lowerCamelCase="</s>" , __lowerCamelCase="<s>" , __lowerCamelCase="<unk>" , __lowerCamelCase="<pad>" , __lowerCamelCase="<mask>" , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase = None , __lowerCamelCase=None , **__lowerCamelCase , ) -> int: # Mask token behave like a normal word, i.e. include the space before it _A : Union[str, Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase) if isinstance(__lowerCamelCase , __lowerCamelCase) else mask_token _A : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , tokenizer_file=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) _A : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(__lowerCamelCase)) _A : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _A : List[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _A : Optional[int] = 1 _A : Dict = len(self.sp_model) _A : List[str] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__lowerCamelCase) } _A : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()} _A : List[str] = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id) _A : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _A : int = list(self.lang_code_to_id.keys()) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens]) _A : Tuple = src_lang if src_lang is not None else "en_XX" _A : List[Any] = self.lang_code_to_id[self._src_lang] _A : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang) def __getstate__( self) -> List[Any]: _A : Optional[Any] = self.__dict__.copy() _A : List[str] = None _A : List[str] = self.sp_model.serialized_model_proto() return state def __setstate__( self , __lowerCamelCase) -> Dict: _A : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs"): _A : Optional[Any] = {} _A : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) @property def _lowerCamelCase ( self) -> Tuple: return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _lowerCamelCase ( self) -> str: return self._src_lang @src_lang.setter def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : List[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase) _A : Optional[int] = [1] * len(self.prefix_tokens) _A : Tuple = [1] * len(self.suffix_tokens) if token_ids_a is None: return prefix_ones + ([0] * len(__lowerCamelCase)) + suffix_ones return prefix_ones + ([0] * len(__lowerCamelCase)) + ([0] * len(__lowerCamelCase)) + suffix_ones def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: _A : Optional[int] = [self.sep_token_id] _A : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) -> Optional[int]: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") _A : int = src_lang _A : Any = self(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase) _A : Any = self.convert_tokens_to_ids(__lowerCamelCase) _A : int = tgt_lang_id return inputs def _lowerCamelCase ( self) -> Dict: _A : int = {self.convert_ids_to_tokens(__lowerCamelCase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _lowerCamelCase ( self , __lowerCamelCase) -> List[str]: return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _A : List[str] = self.sp_model.PieceToId(__lowerCamelCase) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[Any]: _A : Optional[Any] = "".join(__lowerCamelCase).replace(__lowerCamelCase , " ").strip() return out_string def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _A : Union[str, Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__lowerCamelCase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __lowerCamelCase) elif not os.path.isfile(self.vocab_file): with open(__lowerCamelCase , "wb") as fi: _A : List[Any] = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase) return (out_vocab_file,) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = "en_XX" , __lowerCamelCase = None , __lowerCamelCase = "ro_RO" , **__lowerCamelCase , ) -> BatchEncoding: _A : Optional[int] = src_lang _A : Optional[Any] = tgt_lang return super().prepare_seqaseq_batch(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self) -> int: return self.set_src_lang_special_tokens(self.src_lang) def _lowerCamelCase ( self) -> int: return self.set_tgt_lang_special_tokens(self.tgt_lang) def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : str = self.lang_code_to_id[src_lang] _A : Any = [] _A : Dict = [self.eos_token_id, self.cur_lang_code] def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : Any = self.lang_code_to_id[lang] _A : str = [] _A : Union[str, Any] = [self.eos_token_id, self.cur_lang_code]
503
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "google/vivit-b-16x2-kinetics400": ( "https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class UpperCamelCase__ ( lowerCAmelCase__ ): '''simple docstring''' _snake_case = "vivit" def __init__( self , SCREAMING_SNAKE_CASE=2_24 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=[2, 16, 16] , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=7_68 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=30_72 , SCREAMING_SNAKE_CASE="gelu_fast" , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0_2 , SCREAMING_SNAKE_CASE=1e-06 , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> List[str]: __lowerCAmelCase : int = hidden_size __lowerCAmelCase : Union[str, Any] = num_hidden_layers __lowerCAmelCase : Tuple = num_attention_heads __lowerCAmelCase : Dict = intermediate_size __lowerCAmelCase : str = hidden_act __lowerCAmelCase : List[str] = hidden_dropout_prob __lowerCAmelCase : Dict = attention_probs_dropout_prob __lowerCAmelCase : int = initializer_range __lowerCAmelCase : Any = layer_norm_eps __lowerCAmelCase : Optional[Any] = image_size __lowerCAmelCase : Optional[int] = num_frames __lowerCAmelCase : Tuple = tubelet_size __lowerCAmelCase : List[str] = num_channels __lowerCAmelCase : List[str] = qkv_bias super().__init__(**_lowerCamelCase )
712
'''simple docstring''' import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase__ ( a , unittest.TestCase ): '''simple docstring''' _snake_case = MgpstrTokenizer _snake_case = False _snake_case = {} _snake_case = False def snake_case ( self ) -> int: super().setUp() # fmt: off __lowerCAmelCase : Union[str, Any] = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on __lowerCAmelCase : int = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) __lowerCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) + '\n' ) def snake_case ( self , **SCREAMING_SNAKE_CASE ) -> Optional[Any]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ) def snake_case ( self , SCREAMING_SNAKE_CASE ) -> Optional[Any]: __lowerCAmelCase : Any = 'tester' __lowerCAmelCase : Optional[Any] = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def snake_case ( self ) -> int: pass def snake_case ( self ) -> List[str]: __lowerCAmelCase : Any = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __lowerCAmelCase : Optional[int] = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) __lowerCAmelCase : Optional[int] = tokenizer.encode([special_token] , add_special_tokens=SCREAMING_SNAKE_CASE ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 1 ) __lowerCAmelCase : str = tokenizer.decode(SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE ) self.assertTrue(special_token not in decoded ) def snake_case ( self ) -> Optional[int]: __lowerCAmelCase : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __lowerCAmelCase , __lowerCAmelCase : Tuple = self.get_input_output_texts(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = tokenizer.tokenize(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ) self.assertNotEqual(len(SCREAMING_SNAKE_CASE ) , 0 ) __lowerCAmelCase : int = tokenizer.decode(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertEqual(text_a.replace(' ' , '' ) , SCREAMING_SNAKE_CASE ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def snake_case ( self ) -> Any: pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def snake_case ( self ) -> str: pass
123
0
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _A ( ): """simple docstring""" __lowercase = HfArgumentParser(A__ ) __lowercase = parser.parse_args_into_dataclasses()[0] __lowercase = TensorFlowBenchmark(args=A__ ) try: __lowercase = parser.parse_args_into_dataclasses()[0] except ValueError as e: __lowercase = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' __lowercase = ''' '''.join(str(A__ ).split(''' ''' )[:-1] ) __lowercase = '''''' __lowercase = eval(str(A__ ).split(''' ''' )[-1] ) __lowercase = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(A__ ) if len(A__ ) > 0: __lowercase = full_error_msg + begin_error_msg + str(A__ ) raise ValueError(A__ ) benchmark.run() if __name__ == "__main__": main()
41
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''KEY''') lowerCAmelCase__ = TypeVar('''VAL''') @dataclass(frozen=lowerCamelCase__ , slots=lowerCamelCase__ ) class lowercase_ (Generic[KEY, VAL] ): """simple docstring""" SCREAMING_SNAKE_CASE : KEY SCREAMING_SNAKE_CASE : VAL class lowercase_ (_Item ): """simple docstring""" def __init__( self : Optional[int] ): super().__init__(lowercase__ ,lowercase__ ) def __bool__( self : List[str] ): return False lowerCAmelCase__ = _DeletedItem() class lowercase_ (MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : Dict ,lowercase__ : int = 8 ,lowercase__ : float = 0.7_5 ): __lowercase = initial_block_size __lowercase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowercase = capacity_factor __lowercase = 0 def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : KEY ): return hash(lowercase__ ) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : int ): return (ind + 1) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : int ,lowercase__ : KEY ,lowercase__ : VAL ): __lowercase = self._buckets[ind] if not stored: __lowercase = _Item(lowercase__ ,lowercase__ ) self._len += 1 return True elif stored.key == key: __lowercase = _Item(lowercase__ ,lowercase__ ) return True else: return False def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): if len(self._buckets ) <= self._initial_block_size: return False __lowercase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ): __lowercase = self._buckets __lowercase = [None] * new_size __lowercase = 0 for item in old_buckets: if item: self._add_item(item.key ,item.val ) def SCREAMING_SNAKE_CASE ( self : str ): self._resize(len(self._buckets ) * 2 ) def SCREAMING_SNAKE_CASE ( self : Tuple ): self._resize(len(self._buckets ) // 2 ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : KEY ): __lowercase = self._get_bucket_index(lowercase__ ) for _ in range(len(self._buckets ) ): yield ind __lowercase = self._get_next_ind(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): for ind in self._iterate_buckets(lowercase__ ): if self._try_set(lowercase__ ,lowercase__ ,lowercase__ ): break def __setitem__( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): if self._is_full(): self._size_up() self._add_item(lowercase__ ,lowercase__ ) def __delitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: raise KeyError(lowercase__ ) if item is _deleted: continue if item.key == key: __lowercase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowercase__ ) def __len__( self : Optional[int] ): return self._len def __iter__( self : str ): yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ): __lowercase = ''' ,'''.join( F"{item.key}: {item.val}" for item in self._buckets if item ) return F"HashMap({val_string})"
41
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer snake_case_ : Any =logging.get_logger(__name__) snake_case_ : Optional[int] ={'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case_ : List[str] ={ '''vocab_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt''' ), '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt''' ), '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''', '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json''' ), '''bert-base-multilingual-cased''': ( '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json''' ), '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-cased''': ( '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json''' ), }, } snake_case_ : Dict ={ '''bert-base-uncased''': 512, '''bert-large-uncased''': 512, '''bert-base-cased''': 512, '''bert-large-cased''': 512, '''bert-base-multilingual-uncased''': 512, '''bert-base-multilingual-cased''': 512, '''bert-base-chinese''': 512, '''bert-base-german-cased''': 512, '''bert-large-uncased-whole-word-masking''': 512, '''bert-large-cased-whole-word-masking''': 512, '''bert-large-uncased-whole-word-masking-finetuned-squad''': 512, '''bert-large-cased-whole-word-masking-finetuned-squad''': 512, '''bert-base-cased-finetuned-mrpc''': 512, '''bert-base-german-dbmdz-cased''': 512, '''bert-base-german-dbmdz-uncased''': 512, '''TurkuNLP/bert-base-finnish-cased-v1''': 512, '''TurkuNLP/bert-base-finnish-uncased-v1''': 512, '''wietsedv/bert-base-dutch-cased''': 512, } snake_case_ : Optional[int] ={ '''bert-base-uncased''': {'''do_lower_case''': True}, '''bert-large-uncased''': {'''do_lower_case''': True}, '''bert-base-cased''': {'''do_lower_case''': False}, '''bert-large-cased''': {'''do_lower_case''': False}, '''bert-base-multilingual-uncased''': {'''do_lower_case''': True}, '''bert-base-multilingual-cased''': {'''do_lower_case''': False}, '''bert-base-chinese''': {'''do_lower_case''': False}, '''bert-base-german-cased''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False}, '''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True}, '''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False}, '''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True}, '''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False}, } class a__ ( lowerCAmelCase__ ): UpperCAmelCase_ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Dict = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Optional[int] = BertTokenizer def __init__( self , lowercase__=None , lowercase__=None , lowercase__=True , lowercase__="[UNK]" , lowercase__="[SEP]" , lowercase__="[PAD]" , lowercase__="[CLS]" , lowercase__="[MASK]" , lowercase__=True , lowercase__=None , **lowercase__ , ) -> List[Any]: super().__init__( lowercase__ , tokenizer_file=lowercase__ , do_lower_case=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , pad_token=lowercase__ , cls_token=lowercase__ , mask_token=lowercase__ , tokenize_chinese_chars=lowercase__ , strip_accents=lowercase__ , **lowercase__ , ) __A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowercase__ ) != do_lower_case or normalizer_state.get("strip_accents" , lowercase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowercase__ ) != tokenize_chinese_chars ): __A = getattr(lowercase__ , normalizer_state.pop("type" ) ) __A = do_lower_case __A = strip_accents __A = tokenize_chinese_chars __A = normalizer_class(**lowercase__ ) __A = do_lower_case def _lowerCamelCase ( self , lowercase__ , lowercase__=None ) -> Any: __A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowerCamelCase ( self , lowercase__ , lowercase__ = None ) -> List[int]: __A = [self.sep_token_id] __A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCamelCase ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]: __A = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ )
205
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer snake_case_ : str =logging.get_logger(__name__) snake_case_ : Any ={'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case_ : Optional[Any] ={ '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } snake_case_ : Optional[int] ={ '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } snake_case_ : List[str] ={ '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class a__ ( lowerCAmelCase__ ): UpperCAmelCase_ : int = VOCAB_FILES_NAMES UpperCAmelCase_ : Any = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Any = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : List[Any] = RealmTokenizer def __init__( self , lowercase__=None , lowercase__=None , lowercase__=True , lowercase__="[UNK]" , lowercase__="[SEP]" , lowercase__="[PAD]" , lowercase__="[CLS]" , lowercase__="[MASK]" , lowercase__=True , lowercase__=None , **lowercase__ , ) -> str: super().__init__( lowercase__ , tokenizer_file=lowercase__ , do_lower_case=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , pad_token=lowercase__ , cls_token=lowercase__ , mask_token=lowercase__ , tokenize_chinese_chars=lowercase__ , strip_accents=lowercase__ , **lowercase__ , ) __A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowercase__ ) != do_lower_case or normalizer_state.get("strip_accents" , lowercase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowercase__ ) != tokenize_chinese_chars ): __A = getattr(lowercase__ , normalizer_state.pop("type" ) ) __A = do_lower_case __A = strip_accents __A = tokenize_chinese_chars __A = normalizer_class(**lowercase__ ) __A = do_lower_case def _lowerCamelCase ( self , lowercase__ , **lowercase__ ) -> Union[str, Any]: __A = PaddingStrategy.MAX_LENGTH __A = text __A = kwargs.pop("text_pair" , lowercase__ ) __A = kwargs.pop("return_tensors" , lowercase__ ) __A = { "input_ids": [], "attention_mask": [], "token_type_ids": [], } for idx, candidate_text in enumerate(lowercase__ ): if batch_text_pair is not None: __A = batch_text_pair[idx] else: __A = None __A = super().__call__(lowercase__ , lowercase__ , return_tensors=lowercase__ , **lowercase__ ) __A = encoded_candidates.get("input_ids" ) __A = encoded_candidates.get("attention_mask" ) __A = encoded_candidates.get("token_type_ids" ) if encoded_input_ids is not None: output_data["input_ids"].append(lowercase__ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(lowercase__ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(lowercase__ ) __A = {key: item for key, item in output_data.items() if len(lowercase__ ) != 0} return BatchEncoding(lowercase__ , tensor_type=lowercase__ ) def _lowerCamelCase ( self , lowercase__ , lowercase__=None ) -> Tuple: __A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowerCamelCase ( self , lowercase__ , lowercase__ = None ) -> List[int]: __A = [self.sep_token_id] __A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCamelCase ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]: __A = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ )
205
1
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class _UpperCamelCase (a_ ): snake_case_ = """philschmid/bart-large-cnn-samsum""" snake_case_ = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) snake_case_ = """summarizer""" snake_case_ = AutoTokenizer snake_case_ = AutoModelForSeqaSeqLM snake_case_ = ["""text"""] snake_case_ = ["""text"""] def __UpperCAmelCase ( self , __UpperCamelCase )-> Tuple: return self.pre_processor(__UpperCamelCase , return_tensors="pt" , truncation=__UpperCamelCase ) def __UpperCAmelCase ( self , __UpperCamelCase )-> Union[str, Any]: return self.model.generate(**__UpperCamelCase )[0] def __UpperCAmelCase ( self , __UpperCamelCase )-> str: return self.pre_processor.decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase )
367
'''simple docstring''' import re def lowerCAmelCase__ ( lowerCamelCase : str ): if len(re.findall('[ATCG]' ,lowerCamelCase ) ) != len(lowerCamelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' ,'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
128
0
"""simple docstring""" from __future__ import annotations _UpperCamelCase = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class lowerCamelCase__ : def __init__( self ,A ,A ): UpperCAmelCase = graph # mapping node to its parent in resulting breadth first tree UpperCAmelCase = {} UpperCAmelCase = source_vertex def _UpperCamelCase ( self ): UpperCAmelCase = {self.source_vertex} UpperCAmelCase = None UpperCAmelCase = [self.source_vertex] # first in first out queue while queue: UpperCAmelCase = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(_SCREAMING_SNAKE_CASE ) UpperCAmelCase = vertex queue.append(_SCREAMING_SNAKE_CASE ) def _UpperCamelCase ( self ,A ): if target_vertex == self.source_vertex: return self.source_vertex UpperCAmelCase = self.parent.get(_SCREAMING_SNAKE_CASE ) if target_vertex_parent is None: UpperCAmelCase = ( F'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(_SCREAMING_SNAKE_CASE ) return self.shortest_path(_SCREAMING_SNAKE_CASE ) + F'''->{target_vertex}''' if __name__ == "__main__": _UpperCamelCase = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
708
"""simple docstring""" from math import sqrt def _a ( _snake_case = 100_0000 ): """simple docstring""" UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_snake_case , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"""{solution() = }""")
74
0
import os def _lowerCamelCase ( snake_case = "input.txt" ): with open(os.path.join(os.path.dirname(snake_case ) , snake_case ) ) as input_file: _lowerCAmelCase = [ [int(snake_case ) for element in line.split(',' )] for line in input_file.readlines() ] _lowerCAmelCase = len(snake_case ) _lowerCAmelCase = len(matrix[0] ) _lowerCAmelCase = [[-1 for _ in range(snake_case )] for _ in range(snake_case )] for i in range(snake_case ): _lowerCAmelCase = matrix[i][0] for j in range(1 , snake_case ): for i in range(snake_case ): _lowerCAmelCase = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , snake_case ): _lowerCAmelCase = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): _lowerCAmelCase = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"""{solution() = }""")
192
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCamelCase__ : def __init__( self : str , lowercase__ : Optional[Any] , lowercase__ : str=2 , lowercase__ : Union[str, Any]=3 , lowercase__ : Dict=4 , lowercase__ : Any=2 , lowercase__ : Any=7 , lowercase__ : Dict=True , lowercase__ : Any=True , lowercase__ : Optional[int]=True , lowercase__ : str=True , lowercase__ : Optional[Any]=99 , lowercase__ : int=36 , lowercase__ : Union[str, Any]=3 , lowercase__ : List[Any]=4 , lowercase__ : List[str]=37 , lowercase__ : Optional[Any]="gelu" , lowercase__ : Optional[int]=0.1 , lowercase__ : List[Any]=0.1 , lowercase__ : Tuple=5_12 , lowercase__ : Optional[Any]=16 , lowercase__ : Tuple=2 , lowercase__ : Optional[int]=0.0_2 , lowercase__ : List[str]=6 , lowercase__ : List[Any]=6 , lowercase__ : Optional[int]=3 , lowercase__ : Optional[Any]=4 , lowercase__ : Optional[Any]=None , lowercase__ : Optional[Any]=10_00 , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = text_seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = coordinate_size _lowerCAmelCase = shape_size _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope _lowerCAmelCase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _lowerCAmelCase = text_seq_length _lowerCAmelCase = (image_size // patch_size) ** 2 + 1 _lowerCAmelCase = self.text_seq_length + self.image_seq_length def SCREAMING_SNAKE_CASE__ ( self : int ): _lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowerCAmelCase = bbox[i, j, 3] _lowerCAmelCase = bbox[i, j, 1] _lowerCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowerCAmelCase = bbox[i, j, 2] _lowerCAmelCase = bbox[i, j, 0] _lowerCAmelCase = t _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.text_seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) _lowerCAmelCase = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE__ ( self : Tuple , lowercase__ : Union[str, Any] , lowercase__ : Optional[int] , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : str , lowercase__ : Tuple , lowercase__ : str , lowercase__ : Optional[Any] ): _lowerCAmelCase = LayoutLMvaModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() # text + image _lowerCAmelCase = model(lowercase__ , pixel_values=lowercase__ ) _lowerCAmelCase = model( lowercase__ , bbox=lowercase__ , pixel_values=lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ ) _lowerCAmelCase = model(lowercase__ , bbox=lowercase__ , pixel_values=lowercase__ , token_type_ids=lowercase__ ) _lowerCAmelCase = model(lowercase__ , bbox=lowercase__ , pixel_values=lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only _lowerCAmelCase = model(lowercase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _lowerCAmelCase = model(pixel_values=lowercase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , lowercase__ : List[str] , lowercase__ : Tuple , lowercase__ : Optional[Any] , lowercase__ : Tuple , lowercase__ : Union[str, Any] , lowercase__ : List[Any] , lowercase__ : List[Any] , lowercase__ : int ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = LayoutLMvaForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model( lowercase__ , bbox=lowercase__ , pixel_values=lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : int , lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : List[Any] , lowercase__ : Optional[Any] , lowercase__ : Tuple , lowercase__ : Tuple , lowercase__ : Optional[Any] , lowercase__ : int ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = LayoutLMvaForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model( lowercase__ , bbox=lowercase__ , pixel_values=lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Any , lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : List[str] , lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : List[str] , lowercase__ : Union[str, Any] ): _lowerCAmelCase = LayoutLMvaForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() _lowerCAmelCase = model( lowercase__ , bbox=lowercase__ , pixel_values=lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , start_positions=lowercase__ , end_positions=lowercase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class lowerCamelCase__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =False UpperCamelCase__ =False UpperCamelCase__ =False UpperCamelCase__ =( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) UpperCamelCase__ =( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , lowercase__ : List[Any] , lowercase__ : Union[str, Any] , lowercase__ : Any , lowercase__ : Union[str, Any] , lowercase__ : Optional[Any] ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase = LayoutLMvaModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=lowercase__ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , lowercase__ : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : Any=False ): _lowerCAmelCase = copy.deepcopy(lowercase__ ) if model_class in get_values(lowercase__ ): _lowerCAmelCase = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(lowercase__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowercase__ ): _lowerCAmelCase = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=lowercase__ ) elif model_class in get_values(lowercase__ ): _lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase__ ) _lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase__ ) elif model_class in [ *get_values(lowercase__ ), ]: _lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase__ ) elif model_class in [ *get_values(lowercase__ ), ]: _lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=lowercase__ , ) return inputs_dict def SCREAMING_SNAKE_CASE__ ( self : List[str] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : Tuple ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase = type self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : str ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = LayoutLMvaModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) def _lowerCamelCase ( ): _lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class lowerCamelCase__ ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): return LayoutLMvaImageProcessor(apply_ocr=lowercase__ ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self : Tuple ): _lowerCAmelCase = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(lowercase__ ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=lowercase__ , return_tensors='pt' ).pixel_values.to(lowercase__ ) _lowerCAmelCase = torch.tensor([[1, 2]] ) _lowerCAmelCase = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass _lowerCAmelCase = model( input_ids=input_ids.to(lowercase__ ) , bbox=bbox.to(lowercase__ ) , pixel_values=pixel_values.to(lowercase__ ) , ) # verify the logits _lowerCAmelCase = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape , lowercase__ ) _lowerCAmelCase = torch.tensor( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase__ , atol=1e-4 ) )
192
1
"""simple docstring""" import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCAmelCase : @staticmethod def lowerCamelCase ( *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): __UpperCAmelCase : str = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' snake_case : List[str] = pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) snake_case : str = [ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' snake_case : Dict = vqa_pipeline(UpperCamelCase__ , top_k=1 ) self.assertEqual( UpperCamelCase__ , [ [{"score": ANY(UpperCamelCase__ ), "answer": ANY(UpperCamelCase__ )}], [{"score": ANY(UpperCamelCase__ ), "answer": ANY(UpperCamelCase__ )}], ] , ) @require_torch def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) snake_case : Any = "./tests/fixtures/tests_samples/COCO/000000039769.png" snake_case : List[Any] = "How many cats are there?" snake_case : List[str] = vqa_pipeline(image=UpperCamelCase__ , question="How many cats are there?" , top_k=2 ) self.assertEqual( UpperCamelCase__ , [{"score": ANY(UpperCamelCase__ ), "answer": ANY(UpperCamelCase__ )}, {"score": ANY(UpperCamelCase__ ), "answer": ANY(UpperCamelCase__ )}] ) snake_case : Union[str, Any] = vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( UpperCamelCase__ , [{"score": ANY(UpperCamelCase__ ), "answer": ANY(UpperCamelCase__ )}, {"score": ANY(UpperCamelCase__ ), "answer": ANY(UpperCamelCase__ )}] ) @slow @require_torch def lowerCamelCase ( self ) -> int: '''simple docstring''' snake_case : List[str] = pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) snake_case : List[Any] = "./tests/fixtures/tests_samples/COCO/000000039769.png" snake_case : Union[str, Any] = "How many cats are there?" snake_case : Dict = vqa_pipeline(image=UpperCamelCase__ , question=UpperCamelCase__ , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}] ) snake_case : Union[str, Any] = vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}] ) snake_case : Union[str, Any] = vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [[{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' pass
117
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
117
1
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> float: if not nums: raise ValueError('List is empty' ) return sum(_UpperCamelCase ) / len(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
345
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class A_ ( lowerCAmelCase_ ): '''simple docstring''' def a ( self ): _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = 5 # Realm tok _UpperCamelCase = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _UpperCamelCase = os.path.join(self.tmpdirname , "realm_tokenizer" ) os.makedirs(A_ , exist_ok=A_ ) _UpperCamelCase = os.path.join(A_ , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) _UpperCamelCase = os.path.join(self.tmpdirname , "realm_block_records" ) os.makedirs(A_ , exist_ok=A_ ) def a ( self ): return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) ) def a ( self ): shutil.rmtree(self.tmpdirname ) def a ( self ): _UpperCamelCase = RealmConfig(num_block_records=self.num_block_records ) return config def a ( self ): _UpperCamelCase = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def a ( self ): _UpperCamelCase = np.array( [ b"This is the first record", b"This is the second record", b"This is the third record", b"This is the fourth record", b"This is the fifth record", b"This is a longer longer longer record", ] , dtype=A_ , ) return block_records def a ( self ): _UpperCamelCase = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def a ( self ): _UpperCamelCase = self.get_config() _UpperCamelCase = self.get_dummy_retriever() _UpperCamelCase = retriever.tokenizer _UpperCamelCase = np.array([0, 3] , dtype="long" ) _UpperCamelCase = tokenizer(["Test question"] ).input_ids _UpperCamelCase = tokenizer( ["the fourth"] , add_special_tokens=A_ , return_token_type_ids=A_ , return_attention_mask=A_ , ).input_ids _UpperCamelCase = config.reader_seq_len _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = retriever( A_ , A_ , answer_ids=A_ , max_length=A_ , return_tensors="np" ) self.assertEqual(len(A_ ) , 2 ) self.assertEqual(len(A_ ) , 2 ) self.assertEqual(len(A_ ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , ) def a ( self ): _UpperCamelCase = self.get_config() _UpperCamelCase = self.get_dummy_retriever() _UpperCamelCase = retriever.tokenizer _UpperCamelCase = np.array([0, 3, 5] , dtype="long" ) _UpperCamelCase = tokenizer(["Test question"] ).input_ids _UpperCamelCase = tokenizer( ["the fourth", "longer longer"] , add_special_tokens=A_ , return_token_type_ids=A_ , return_attention_mask=A_ , ).input_ids _UpperCamelCase = config.reader_seq_len _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = retriever( A_ , A_ , answer_ids=A_ , max_length=A_ , return_tensors="np" ) self.assertEqual([False, True, True] , A_ ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , A_ ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , A_ ) def a ( self ): _UpperCamelCase = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) # Test local path _UpperCamelCase = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) self.assertEqual(retriever.block_records[0] , b"This is the first record" ) # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download: _UpperCamelCase = os.path.join( os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME ) _UpperCamelCase = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" ) self.assertEqual(retriever.block_records[0] , b"This is the first record" )
138
0
'''simple docstring''' import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Union[str, Any]: # Initialise PyTorch model UpperCamelCase = LxmertConfig.from_json_file(__UpperCamelCase ) print(F"Building PyTorch model from configuration: {config}" ) UpperCamelCase = LxmertForPreTraining(__UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , __UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
35
'''simple docstring''' import fire from utils import calculate_rouge, save_json def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , **__UpperCamelCase )-> int: UpperCamelCase = [x.strip() for x in open(__UpperCamelCase ).readlines()] UpperCamelCase = [x.strip() for x in open(__UpperCamelCase ).readlines()][: len(__UpperCamelCase )] UpperCamelCase = calculate_rouge(__UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) if save_path is not None: save_json(__UpperCamelCase , __UpperCamelCase , indent=__UpperCamelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
35
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __A() -> Optional[int]: """simple docstring""" _UpperCamelCase = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=lowerCAmelCase , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=lowerCAmelCase , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=lowerCAmelCase ) return parser.parse_args() def __A() -> Any: """simple docstring""" _UpperCamelCase = parse_args() # Import training_script as a module. _UpperCamelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _UpperCamelCase = script_fpath.stem _UpperCamelCase = importlib.import_module(lowerCAmelCase ) # Patch sys.argv _UpperCamelCase = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
612
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class lowerCAmelCase__ ( __lowercase ): def __init__( self , a=0.01 , a=10_00 ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = p_stop _UpperCamelCase = max_length def __iter__( self ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = 0 _UpperCamelCase = False while not stop and count < self.max_length: yield count count += 1 _UpperCamelCase = random.random() < self.p_stop class lowerCAmelCase__ ( unittest.TestCase ): def A_ ( self , a , a , a=False , a=True ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = [ BatchSamplerShard(a , 2 , a , split_batches=a , even_batches=a ) for i in range(2 ) ] _UpperCamelCase = [list(a ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(a ) for shard in batch_sampler_shards] , [len(a ) for e in expected] ) self.assertListEqual(a , a ) def A_ ( self ) -> Any: '''simple docstring''' _UpperCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(a , a ) _UpperCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=a ) # Expected shouldn't change self.check_batch_sampler_shards(a , a ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _UpperCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(a , a ) _UpperCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a , a ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _UpperCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(a , a ) _UpperCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a , a ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _UpperCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(a , a ) _UpperCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a , a ) # Check the shards when the dataset is very small. _UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(a , a ) _UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [[], []] self.check_batch_sampler_shards(a , a ) def A_ ( self ) -> Tuple: '''simple docstring''' _UpperCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(a , a , split_batches=a ) _UpperCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=a ) # Expected shouldn't change self.check_batch_sampler_shards(a , a , split_batches=a ) # Check the shards when the dataset is not a round multiple of batch size. _UpperCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(a , a , split_batches=a ) _UpperCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a , a , split_batches=a ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _UpperCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(a , a , split_batches=a ) _UpperCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a , a , split_batches=a ) # Check the shards when the dataset is very small. _UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(a , a , split_batches=a ) _UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [[], []] self.check_batch_sampler_shards(a , a , split_batches=a ) def A_ ( self ) -> str: '''simple docstring''' _UpperCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(a , a , even_batches=a ) _UpperCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=a ) # Expected shouldn't change self.check_batch_sampler_shards(a , a , even_batches=a ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _UpperCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a , a , even_batches=a ) _UpperCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a , a , even_batches=a ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _UpperCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(a , a , even_batches=a ) _UpperCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a , a , even_batches=a ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _UpperCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a , a , even_batches=a ) _UpperCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(a , a , even_batches=a ) # Check the shards when the dataset is very small. _UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(a , a , even_batches=a ) _UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=a ) _UpperCamelCase = [[], []] self.check_batch_sampler_shards(a , a , even_batches=a ) def A_ ( self ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(a , a , split_batches=a , even_batches=a ) _UpperCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=a ) # Expected shouldn't change self.check_batch_sampler_shards(a , a , split_batches=a , even_batches=a ) # Check the shards when the dataset is not a round multiple of batch size. _UpperCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a , a , split_batches=a , even_batches=a ) _UpperCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a , a , split_batches=a , even_batches=a ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _UpperCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a , a , split_batches=a , even_batches=a ) _UpperCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(a , a , split_batches=a , even_batches=a ) # Check the shards when the dataset is very small. _UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(a , a , split_batches=a , even_batches=a ) _UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = [[], []] self.check_batch_sampler_shards(a , a , split_batches=a , even_batches=a ) def A_ ( self ) -> List[Any]: '''simple docstring''' _UpperCamelCase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] _UpperCamelCase = [BatchSamplerShard(a , 2 , a , even_batches=a ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def A_ ( self , a , a , a , a=False , a=2 , a=False ) -> Any: '''simple docstring''' random.seed(a ) _UpperCamelCase = list(a ) _UpperCamelCase = [ IterableDatasetShard( a , batch_size=a , drop_last=a , num_processes=a , process_index=a , split_batches=a , ) for i in range(a ) ] _UpperCamelCase = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(a ) iterable_dataset_lists.append(list(a ) ) _UpperCamelCase = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _UpperCamelCase = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(a ) , len(a ) ) self.assertTrue(len(a ) % shard_batch_size == 0 ) _UpperCamelCase = [] for idx in range(0 , len(a ) , a ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(a ) < len(a ): reference += reference self.assertListEqual(a , reference[: len(a )] ) def A_ ( self ) -> int: '''simple docstring''' _UpperCamelCase = 42 _UpperCamelCase = RandomIterableDataset() self.check_iterable_dataset_shards(a , a , batch_size=4 , drop_last=a , split_batches=a ) self.check_iterable_dataset_shards(a , a , batch_size=4 , drop_last=a , split_batches=a ) self.check_iterable_dataset_shards(a , a , batch_size=4 , drop_last=a , split_batches=a ) self.check_iterable_dataset_shards(a , a , batch_size=4 , drop_last=a , split_batches=a ) # Edge case with a very small dataset _UpperCamelCase = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(a , a , batch_size=4 , drop_last=a , split_batches=a ) self.check_iterable_dataset_shards(a , a , batch_size=4 , drop_last=a , split_batches=a ) self.check_iterable_dataset_shards(a , a , batch_size=4 , drop_last=a , split_batches=a ) self.check_iterable_dataset_shards(a , a , batch_size=4 , drop_last=a , split_batches=a ) def A_ ( self ) -> Any: '''simple docstring''' _UpperCamelCase = BatchSampler(range(16 ) , batch_size=4 , drop_last=a ) _UpperCamelCase = SkipBatchSampler(a , 2 ) self.assertListEqual(list(a ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A_ ( self ) -> Dict: '''simple docstring''' _UpperCamelCase = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A_ ( self ) -> Tuple: '''simple docstring''' _UpperCamelCase = DataLoader(list(range(16 ) ) , batch_size=4 ) _UpperCamelCase = skip_first_batches(a , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A_ ( self ) -> List[str]: '''simple docstring''' _UpperCamelCase = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(a ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(a ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def A_ ( self ) -> Optional[Any]: '''simple docstring''' Accelerator() _UpperCamelCase = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(a ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(a ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
612
1
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt'} _SCREAMING_SNAKE_CASE = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } _SCREAMING_SNAKE_CASE = { 'openbmb/cpm-ant-10b': 1_024, } def snake_case ( snake_case__ :List[str]) -> Dict: _A = collections.OrderedDict() with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""") as reader: _A = reader.readlines() for index, token in enumerate(UpperCAmelCase__): _A = token.rstrip("""\n""") _A = index return vocab class a ( __lowerCAmelCase ): """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_="<unk>" , lowerCAmelCase_=2_00 ) -> Dict: _A = vocab _A = unk_token _A = max_input_chars_per_word def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Optional[Any]: _A = list(__UpperCamelCase ) if len(__UpperCamelCase ) > self.max_input_chars_per_word: return [self.unk_token] _A = 0 _A = [] while start < len(__UpperCamelCase ): _A = len(__UpperCamelCase ) _A = None while start < end: _A = """""".join(chars[start:end] ) if substr in self.vocab: _A = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__UpperCamelCase ) _A = end return sub_tokens class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Dict = VOCAB_FILES_NAMES lowerCamelCase :str = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase :int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase :str = ['''input_ids''', '''attention_mask'''] lowerCamelCase :str = False def __init__( self , lowerCAmelCase_ , lowerCAmelCase_="<d>" , lowerCAmelCase_="</d>" , lowerCAmelCase_="<s>" , lowerCAmelCase_="</s>" , lowerCAmelCase_="<pad>" , lowerCAmelCase_="<unk>" , lowerCAmelCase_="</n>" , lowerCAmelCase_="</_>" , lowerCAmelCase_="left" , **lowerCAmelCase_ , ) -> List[str]: requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=__UpperCamelCase , eod_token=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , pad_token=__UpperCamelCase , unk_token=__UpperCamelCase , line_token=__UpperCamelCase , space_token=__UpperCamelCase , padding_side=__UpperCamelCase , **__UpperCamelCase , ) _A = bod_token _A = eod_token _A = load_vocab(__UpperCamelCase ) _A = self.encoder[space_token] _A = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] _A = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCAmelCase_ : x[1] ) ) _A = {v: k for k, v in self.encoder.items()} _A = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def UpperCAmelCase ( self ) -> Dict: return self.encoder[self.bod_token] @property def UpperCAmelCase ( self ) -> str: return self.encoder[self.eod_token] @property def UpperCAmelCase ( self ) -> Tuple: return self.encoder["\n"] @property def UpperCAmelCase ( self ) -> List[Any]: return len(self.encoder ) def UpperCAmelCase ( self ) -> Any: return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Dict: _A = [] for x in jieba.cut(__UpperCamelCase , cut_all=__UpperCamelCase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__UpperCamelCase ) ) return output_tokens def UpperCAmelCase ( self , lowerCAmelCase_ , **lowerCAmelCase_ ) -> Union[str, Any]: _A = [i for i in token_ids if i >= 0] _A = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__UpperCamelCase , **__UpperCamelCase ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> int: return token in self.encoder def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Optional[Any]: return "".join(__UpperCamelCase ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Any: return self.encoder.get(__UpperCamelCase , self.encoder.get(self.unk_token ) ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Optional[Any]: return self.decoder.get(__UpperCamelCase , self.unk_token ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> Dict: if os.path.isdir(__UpperCamelCase ): _A = os.path.join( __UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: _A = (filename_prefix + """-""" if filename_prefix else """""") + save_directory _A = 0 if " " in self.encoder: _A = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: _A = self.encoder["""\n"""] del self.encoder["\n"] _A = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCAmelCase_ : x[1] ) ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) _A = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> List[str]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = False ) -> Any: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is not None: return [1] + ([0] * len(__UpperCamelCase )) + [1] + ([0] * len(__UpperCamelCase )) return [1] + ([0] * len(__UpperCamelCase ))
714
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Union[str, Any] = '''speech_to_text''' lowerCamelCase :List[str] = ['''past_key_values'''] lowerCamelCase :str = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowerCAmelCase_=1_00_00 , lowerCAmelCase_=12 , lowerCAmelCase_=20_48 , lowerCAmelCase_=4 , lowerCAmelCase_=6 , lowerCAmelCase_=20_48 , lowerCAmelCase_=4 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_="relu" , lowerCAmelCase_=2_56 , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.02 , lowerCAmelCase_=2 , lowerCAmelCase_=True , lowerCAmelCase_=1 , lowerCAmelCase_=0 , lowerCAmelCase_=2 , lowerCAmelCase_=60_00 , lowerCAmelCase_=10_24 , lowerCAmelCase_=2 , lowerCAmelCase_=(5, 5) , lowerCAmelCase_=10_24 , lowerCAmelCase_=80 , lowerCAmelCase_=1 , **lowerCAmelCase_ , ) -> Tuple: _A = vocab_size _A = d_model _A = encoder_ffn_dim _A = encoder_layers _A = encoder_attention_heads _A = decoder_ffn_dim _A = decoder_layers _A = decoder_attention_heads _A = dropout _A = attention_dropout _A = activation_dropout _A = activation_function _A = init_std _A = encoder_layerdrop _A = decoder_layerdrop _A = use_cache _A = encoder_layers _A = scale_embedding # scale factor will be sqrt(d_model) if True _A = max_source_positions _A = max_target_positions _A = num_conv_layers _A = list(lowerCAmelCase_ ) _A = conv_channels _A = input_feat_per_channel _A = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` """ F'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' ) super().__init__( pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , is_encoder_decoder=lowerCAmelCase_ , decoder_start_token_id=lowerCAmelCase_ , **lowerCAmelCase_ , )
83
0
def UpperCAmelCase__ ( __magic_name__ : Dict ): '''simple docstring''' lowerCAmelCase : Optional[int] = len(__magic_name__ ) while cur > 1: # Find the maximum number in arr lowerCAmelCase : int = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCAmelCase : List[Any] = arr[mi::-1] + arr[mi + 1 : len(__magic_name__ )] # Reverse whole list lowerCAmelCase : str = arr[cur - 1 :: -1] + arr[cur : len(__magic_name__ )] cur -= 1 return arr if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[Any] = input('Enter numbers separated by a comma:\n').strip() __SCREAMING_SNAKE_CASE : Optional[Any] = [int(item) for item in user_input.split(',')] print(pancake_sort(unsorted))
348
from math import factorial, pi def UpperCAmelCase__ ( __magic_name__ : float , __magic_name__ : int = 30 ): '''simple docstring''' if not isinstance(__magic_name__ , (int, float) ): raise ValueError('''maclaurin_sin() requires either an int or float for theta''' ) if not isinstance(__magic_name__ , __magic_name__ ) or accuracy <= 0: raise ValueError('''maclaurin_sin() requires a positive int for accuracy''' ) lowerCAmelCase : Optional[int] = float(__magic_name__ ) lowerCAmelCase : Any = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(__magic_name__ ) ) def UpperCAmelCase__ ( __magic_name__ : float , __magic_name__ : int = 30 ): '''simple docstring''' if not isinstance(__magic_name__ , (int, float) ): raise ValueError('''maclaurin_cos() requires either an int or float for theta''' ) if not isinstance(__magic_name__ , __magic_name__ ) or accuracy <= 0: raise ValueError('''maclaurin_cos() requires a positive int for accuracy''' ) lowerCAmelCase : Dict = float(__magic_name__ ) lowerCAmelCase : Union[str, Any] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(__magic_name__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
348
1
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class _UpperCAmelCase : def __init__( self , a__ , a__=1_3 , a__=7 , a__=False , a__=True , a__=False , a__=False , a__=1_9 , a__=3_2 , a__=5 , a__=4 , a__=3_7 , a__="gelu" , a__=0.1 , a__=0.1 , a__=5_1_2 , a__=1_6 , a__=2 , a__=0.0_2 , a__=3 , a__=4 , a__=None , ): A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope def snake_case_ ( self): A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length]) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) A__ = ids_tensor([self.batch_size] , self.num_choices) A__ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self): A__ = EsmConfig( vocab_size=3_3 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=a__ , esmfold_config={'''trunk''': {'''num_blocks''': 2}, '''fp16_esm''': False} , ) return config def snake_case_ ( self , a__ , a__ , a__ , a__ , a__ , a__): A__ = EsmForProteinFolding(config=a__).float() model.to(a__) model.eval() A__ = model(a__ , attention_mask=a__) A__ = model(a__) A__ = model(a__) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 1_4, 3)) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2)) def snake_case_ ( self): A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( A__ , A__ , unittest.TestCase ): UpperCamelCase__ = False UpperCamelCase__ = (EsmForProteinFolding,) if is_torch_available() else () UpperCamelCase__ = () UpperCamelCase__ = {} if is_torch_available() else {} UpperCamelCase__ = False def snake_case_ ( self): A__ = EsmFoldModelTester(self) A__ = ConfigTester(self , config_class=a__ , hidden_size=3_7) def snake_case_ ( self): self.config_tester.run_common_tests() def snake_case_ ( self): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__) @unittest.skip('''Does not support attention outputs''') def snake_case_ ( self): pass @unittest.skip def snake_case_ ( self): pass @unittest.skip('''Esm does not support embedding resizing''') def snake_case_ ( self): pass @unittest.skip('''Esm does not support embedding resizing''') def snake_case_ ( self): pass @unittest.skip('''ESMFold does not support passing input embeds!''') def snake_case_ ( self): pass @unittest.skip('''ESMFold does not support head pruning.''') def snake_case_ ( self): pass @unittest.skip('''ESMFold does not support head pruning.''') def snake_case_ ( self): pass @unittest.skip('''ESMFold does not support head pruning.''') def snake_case_ ( self): pass @unittest.skip('''ESMFold does not support head pruning.''') def snake_case_ ( self): pass @unittest.skip('''ESMFold does not support head pruning.''') def snake_case_ ( self): pass @unittest.skip('''ESMFold does not output hidden states in the normal way.''') def snake_case_ ( self): pass @unittest.skip('''ESMfold does not output hidden states in the normal way.''') def snake_case_ ( self): pass @unittest.skip('''ESMFold only has one output format.''') def snake_case_ ( self): pass @unittest.skip('''This test doesn\'t work for ESMFold and doesn\'t test core functionality''') def snake_case_ ( self): pass @unittest.skip('''ESMFold does not support input chunking.''') def snake_case_ ( self): pass @unittest.skip('''ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.''') def snake_case_ ( self): pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''') def snake_case_ ( self): pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''') def snake_case_ ( self): pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''') def snake_case_ ( self): pass @unittest.skip('''ESMFold doesn\'t support data parallel.''') def snake_case_ ( self): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def snake_case_ ( self): pass @require_torch class _UpperCAmelCase ( A__ ): @slow def snake_case_ ( self): A__ = EsmForProteinFolding.from_pretrained('''facebook/esmfold_v1''').float() model.eval() A__ = torch.tensor([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]]) A__ = model(a__)['''positions'''] A__ = torch.tensor([2.5_8_2_8, 0.7_9_9_3, -1_0.9_3_3_4] , dtype=torch.floataa) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , a__ , atol=1e-4))
526
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class _UpperCAmelCase ( A__ ): UpperCamelCase__ = '''bert''' def __init__( self , a__=3_0_5_2_2 , a__=7_6_8 , a__=1_2 , a__=1_2 , a__=3_0_7_2 , a__="gelu" , a__=0.1 , a__=0.1 , a__=5_1_2 , a__=2 , a__=0.0_2 , a__=1e-12 , a__=0 , a__="absolute" , a__=True , a__=None , **a__ , ): super().__init__(pad_token_id=a__ , **a__) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = classifier_dropout class _UpperCAmelCase ( A__ ): @property def snake_case_ ( self): if self.task == "multiple-choice": A__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
526
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=snake_case_ ): """simple docstring""" A__ : List[Any] = ['''torch''', '''transformers''', '''onnx'''] def __init__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[Any]: requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def snake_case__ ( cls , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> Dict: requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def snake_case__ ( cls , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> str: requires_backends(cls , ["torch", "transformers", "onnx"] ) class UpperCamelCase__ ( metaclass=snake_case_ ): """simple docstring""" A__ : Optional[int] = ['''torch''', '''transformers''', '''onnx'''] def __init__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[str]: requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def snake_case__ ( cls , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[str]: requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def snake_case__ ( cls , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: requires_backends(cls , ["torch", "transformers", "onnx"] ) class UpperCamelCase__ ( metaclass=snake_case_ ): """simple docstring""" A__ : List[Any] = ['''torch''', '''transformers''', '''onnx'''] def __init__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> int: requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def snake_case__ ( cls , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def snake_case__ ( cls , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[str]: requires_backends(cls , ["torch", "transformers", "onnx"] ) class UpperCamelCase__ ( metaclass=snake_case_ ): """simple docstring""" A__ : Any = ['''torch''', '''transformers''', '''onnx'''] def __init__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> Tuple: requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def snake_case__ ( cls , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> Optional[int]: requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def snake_case__ ( cls , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: requires_backends(cls , ["torch", "transformers", "onnx"] ) class UpperCamelCase__ ( metaclass=snake_case_ ): """simple docstring""" A__ : Optional[Any] = ['''torch''', '''transformers''', '''onnx'''] def __init__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> Tuple: requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def snake_case__ ( cls , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> str: requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def snake_case__ ( cls , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[str]: requires_backends(cls , ["torch", "transformers", "onnx"] ) class UpperCamelCase__ ( metaclass=snake_case_ ): """simple docstring""" A__ : List[str] = ['''torch''', '''transformers''', '''onnx'''] def __init__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> int: requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def snake_case__ ( cls , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> int: requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def snake_case__ ( cls , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> int: requires_backends(cls , ["torch", "transformers", "onnx"] )
104
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __SCREAMING_SNAKE_CASE : List[Any] ={ 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : str =[ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
135
0
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors lowerCAmelCase__ = logging.getLogger(__name__) class __lowercase (__snake_case ): _lowerCamelCase = 'sequence-classification' def __init__( self : Tuple , UpperCAmelCase_ : Optional[Any]): if type(A_) == dict: UpperCamelCase__ : Any = Namespace(**A_) UpperCamelCase__ : Optional[int] = glue_output_modes[hparams.task] UpperCamelCase__ : Any = glue_tasks_num_labels[hparams.task] super().__init__(A_ , A_ , self.mode) def __UpperCamelCase ( self : List[Any] , **UpperCAmelCase_ : int): return self.model(**A_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any]): UpperCamelCase__ : Any = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: UpperCamelCase__ : Optional[int] = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None UpperCamelCase__ : List[Any] = self(**A_) UpperCamelCase__ : Dict = outputs[0] UpperCamelCase__ : Optional[Any] = self.trainer.lr_schedulers[0]["scheduler"] UpperCamelCase__ : int = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Tuple = self.hparams UpperCamelCase__ : Tuple = processors[args.task]() UpperCamelCase__ : List[str] = processor.get_labels() for mode in ["train", "dev"]: UpperCamelCase__ : str = self._feature_file(A_) if os.path.exists(A_) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , A_) else: logger.info('Creating features from dataset file at %s' , args.data_dir) UpperCamelCase__ : Optional[Any] = ( processor.get_dev_examples(args.data_dir) if mode == "dev" else processor.get_train_examples(args.data_dir) ) UpperCamelCase__ : Any = convert_examples_to_features( A_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , A_) torch.save(A_ , A_) def __UpperCamelCase ( self : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any = False): UpperCamelCase__ : Dict = "dev" if mode == "test" else mode UpperCamelCase__ : str = self._feature_file(A_) logger.info('Loading features from cached file %s' , A_) UpperCamelCase__ : Dict = torch.load(A_) UpperCamelCase__ : List[Any] = torch.tensor([f.input_ids for f in features] , dtype=torch.long) UpperCamelCase__ : Tuple = torch.tensor([f.attention_mask for f in features] , dtype=torch.long) UpperCamelCase__ : Optional[Any] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long) if self.hparams.glue_output_mode == "classification": UpperCamelCase__ : List[str] = torch.tensor([f.label for f in features] , dtype=torch.long) elif self.hparams.glue_output_mode == "regression": UpperCamelCase__ : List[str] = torch.tensor([f.label for f in features] , dtype=torch.float) return DataLoader( TensorDataset(A_ , A_ , A_ , A_) , batch_size=A_ , shuffle=A_ , ) def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple): UpperCamelCase__ : List[Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: UpperCamelCase__ : Union[str, Any] = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None UpperCamelCase__ : Tuple = self(**A_) UpperCamelCase__ : Dict = outputs[:2] UpperCamelCase__ : Dict = logits.detach().cpu().numpy() UpperCamelCase__ : int = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __UpperCamelCase ( self : int , UpperCAmelCase_ : Dict): UpperCamelCase__ : Tuple = torch.stack([x['val_loss'] for x in outputs]).mean().detach().cpu().item() UpperCamelCase__ : Optional[int] = np.concatenate([x['pred'] for x in outputs] , axis=0) if self.hparams.glue_output_mode == "classification": UpperCamelCase__ : Any = np.argmax(A_ , axis=1) elif self.hparams.glue_output_mode == "regression": UpperCamelCase__ : List[str] = np.squeeze(A_) UpperCamelCase__ : Union[str, Any] = np.concatenate([x['target'] for x in outputs] , axis=0) UpperCamelCase__ : List[str] = [[] for _ in range(out_label_ids.shape[0])] UpperCamelCase__ : Any = [[] for _ in range(out_label_ids.shape[0])] UpperCamelCase__ : List[str] = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task , A_ , A_)} UpperCamelCase__ : Optional[Any] = dict(results.items()) UpperCamelCase__ : str = results return ret, preds_list, out_label_list def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : Dict): UpperCamelCase__ : List[Any] = self._eval_end(A_) UpperCamelCase__ : Union[str, Any] = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : str): UpperCamelCase__ : List[Any] = self._eval_end(A_) UpperCamelCase__ : List[Any] = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __UpperCamelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any): BaseTransformer.add_model_specific_args(A_ , A_) parser.add_argument( '--max_seq_length' , default=128 , type=A_ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=A_ , required=A_ , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=A_ , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets') return parser def __UpperCAmelCase ( ) -> Optional[int]: UpperCamelCase__ : Dict = argparse.ArgumentParser() add_generic_args(_lowerCAmelCase , os.getcwd()) UpperCamelCase__ : Optional[int] = GLUETransformer.add_model_specific_args(_lowerCAmelCase , os.getcwd()) UpperCamelCase__ : List[str] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: UpperCamelCase__ : List[Any] = os.path.join( './results' , f'{args.task}_{time.strftime("%Y%m%d_%H%M%S")}' , ) os.makedirs(args.output_dir) UpperCamelCase__ : Optional[int] = GLUETransformer(_lowerCAmelCase) UpperCamelCase__ : str = generic_train(_lowerCAmelCase , _lowerCAmelCase) # Optionally, predict on dev set and write to output_dir if args.do_predict: UpperCamelCase__ : List[str] = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt') , recursive=_lowerCAmelCase)) UpperCamelCase__ : Tuple = model.load_from_checkpoint(checkpoints[-1]) return trainer.test(_lowerCAmelCase) if __name__ == "__main__": main()
715
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCAmelCase__ = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } lowerCAmelCase__ = {'facebook/blenderbot-3B': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __UpperCAmelCase ( ) -> Union[str, Any]: UpperCamelCase__ : Optional[Any] = ( list(range(ord('!') , ord('~') + 1)) + list(range(ord('¡') , ord('¬') + 1)) + list(range(ord('®') , ord('ÿ') + 1)) ) UpperCamelCase__ : List[Any] = bs[:] UpperCamelCase__ : Optional[int] = 0 for b in range(2**8): if b not in bs: bs.append(lowerCamelCase_) cs.append(2**8 + n) n += 1 UpperCamelCase__ : Union[str, Any] = [chr(lowerCamelCase_) for n in cs] return dict(zip(lowerCamelCase_ , lowerCamelCase_)) def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: UpperCamelCase__ : Any = set() UpperCamelCase__ : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char)) UpperCamelCase__ : str = char return pairs class __lowercase (__lowerCamelCase ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict="replace" , UpperCAmelCase_ : int="<s>" , UpperCAmelCase_ : Tuple="</s>" , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : List[Any]="<s>" , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Any="<pad>" , UpperCAmelCase_ : Optional[Any]="<mask>" , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : List[Any] , ): UpperCamelCase__ : Union[str, Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else bos_token UpperCamelCase__ : List[str] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else eos_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else sep_token UpperCamelCase__ : int = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else cls_token UpperCamelCase__ : Tuple = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else unk_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ : Any = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token super().__init__( errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , ) with open(UpperCAmelCase_ , encoding='utf-8') as vocab_handle: UpperCamelCase__ : Any = json.load(UpperCAmelCase_) UpperCamelCase__ : Dict = {v: k for k, v in self.encoder.items()} UpperCamelCase__ : Any = errors # how to handle errors in decoding UpperCamelCase__ : Tuple = bytes_to_unicode() UpperCamelCase__ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase_ , encoding='utf-8') as merges_handle: UpperCamelCase__ : List[Any] = merges_handle.read().split('\n')[1:-1] UpperCamelCase__ : List[Any] = [tuple(merge.split()) for merge in bpe_merges] UpperCamelCase__ : Any = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Dict = {} UpperCamelCase__ : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase__ : Any = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+') @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCamelCase ( self : Tuple): return len(self.encoder) def __UpperCamelCase ( self : Tuple): return dict(self.encoder , **self.added_tokens_encoder) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Union[str, Any]): if token in self.cache: return self.cache[token] UpperCamelCase__ : Optional[int] = tuple(UpperCAmelCase_) UpperCamelCase__ : int = get_pairs(UpperCAmelCase_) if not pairs: return token while True: UpperCamelCase__ : Tuple = min(UpperCAmelCase_ , key=lambda UpperCAmelCase_: self.bpe_ranks.get(UpperCAmelCase_ , float('inf'))) if bigram not in self.bpe_ranks: break UpperCamelCase__, UpperCamelCase__ : Tuple = bigram UpperCamelCase__ : Dict = [] UpperCamelCase__ : Optional[int] = 0 while i < len(UpperCAmelCase_): try: UpperCamelCase__ : Tuple = word.index(UpperCAmelCase_ , UpperCAmelCase_) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) UpperCamelCase__ : Any = j if word[i] == first and i < len(UpperCAmelCase_) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 UpperCamelCase__ : List[str] = tuple(UpperCAmelCase_) UpperCamelCase__ : Dict = new_word if len(UpperCAmelCase_) == 1: break else: UpperCamelCase__ : Optional[int] = get_pairs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : List[Any] = word return word def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Any): UpperCamelCase__ : Optional[Any] = [] for token in re.findall(self.pat , UpperCAmelCase_): UpperCamelCase__ : Optional[int] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase_).split(' ')) return bpe_tokens def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]): return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token)) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Optional[int]): return self.decoder.get(UpperCAmelCase_) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : int): UpperCamelCase__ : int = ''.join(UpperCAmelCase_) UpperCamelCase__ : Any = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8' , errors=self.errors) return text def __UpperCamelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): if not os.path.isdir(UpperCAmelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase__ : str = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_) + '\n') UpperCamelCase__ : str = 0 with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase_: kv[1]): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!') UpperCamelCase__ : List[Any] = token_index writer.write(' '.join(UpperCAmelCase_) + '\n') index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_)) + [1] return [1] + ([0] * len(UpperCAmelCase_)) + [1, 1] + ([0] * len(UpperCAmelCase_)) + [1] def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): UpperCamelCase__ : Any = [self.sep_token_id] UpperCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def __UpperCamelCase ( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : Optional[Any]): UpperCamelCase__ : Tuple = kwargs.pop('add_prefix_space' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase_) > 0 and not text[0].isspace()): UpperCamelCase__ : str = ' ' + text return (text, kwargs) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): return token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : "Conversation"): UpperCamelCase__ : List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text) else: # Generated responses should contain them already. inputs.append(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : int = self.encode(UpperCAmelCase_) if len(UpperCAmelCase_) > self.model_max_length: UpperCamelCase__ : Optional[Any] = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.') return input_ids
6
0
'''simple docstring''' def _UpperCAmelCase ( __A : list ): if len(__A ) <= 1: return lst a_ : int = 1 while i < len(__A ): if lst[i - 1] <= lst[i]: i += 1 else: a_ , a_ : Union[str, Any] = lst[i], lst[i - 1] i -= 1 if i == 0: a_ : Dict = 1 return lst if __name__ == "__main__": __lowerCAmelCase = input('Enter numbers separated by a comma:\n').strip() __lowerCAmelCase = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
466
'''simple docstring''' def _UpperCAmelCase ( __A : int ): a_ : Optional[Any] = [] a_ : Optional[Any] = [] a_ : List[str] = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator a_ : int = len(__A ) if (len(__A ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ) , '''Stack'''.center(__A ) , '''Postfix'''.center(__A ) , sep=''' | ''' , ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__A ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__A ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__A ) == 0: stack.append(__A ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__A ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__A ) # push x to stack print( x.center(8 ) , (''''''.join(__A )).ljust(__A ) , (''''''.join(__A )).ljust(__A ) , sep=''' | ''' , ) # Output in tabular format while len(__A ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ) , (''''''.join(__A )).ljust(__A ) , (''''''.join(__A )).ljust(__A ) , sep=''' | ''' , ) # Output in tabular format return "".join(__A ) # return Postfix as str def _UpperCAmelCase ( __A : Tuple ): a_ : Union[str, Any] = list(infix[::-1] ) # reverse the infix equation for i in range(len(__A ) ): if infix[i] == "(": a_ : List[str] = ''')''' # change "(" to ")" elif infix[i] == ")": a_ : str = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(__A ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __lowerCAmelCase = input('\nEnter an Infix Equation = ') # Input an Infix equation __lowerCAmelCase = ''.join(Infix.split()) # Remove spaces from the input print('\n\t', Infix, '(Infix) -> ', infix_2_prefix(Infix), '(Prefix)')
466
1
"""simple docstring""" import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) __UpperCAmelCase = logging.getLogger() def lowercase__ ( lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' a__ : Optional[Any] = {} a__ : str = os.path.join(lowerCamelCase__ , "all_results.json" ) if os.path.exists(lowerCamelCase__ ): with open(lowerCamelCase__ , "r" ) as f: a__ : Optional[int] = json.load(lowerCamelCase__ ) else: raise ValueError(F"can't find {path}" ) return results __UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class __UpperCAmelCase ( _UpperCamelCase ): def UpperCAmelCase ( self : Any ) -> Union[str, Any]: '''simple docstring''' import xla_spawn a__ : int = self.get_auto_remove_tmp_dir() a__ : Union[str, Any] = F"\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(a_ , "argv" , a_ ): a__ : Optional[Any] = time() xla_spawn.main() a__ : List[str] = time() a__ : List[Any] = get_results(a_ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 5_00 ) def UpperCAmelCase ( self : Dict ) -> Tuple: '''simple docstring''' import xla_spawn a__ : Union[str, Any] = "\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n ".split() with patch.object(a_ , "argv" , a_ ): xla_spawn.main()
721
"""simple docstring""" def lowercase__ ( lowerCAmelCase__ : str , lowerCAmelCase__ : list[str] ) -> str: '''simple docstring''' a__ : List[str] = "" for word_or_phrase in separated: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(lowerCAmelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
251
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) def __A ( _lowercase ): '''simple docstring''' _A = DPTConfig(embedding_type='''hybrid''' ) if "large" in checkpoint_url: _A = 10_24 _A = 40_96 _A = 24 _A = 16 _A = [5, 11, 17, 23] _A = [2_56, 5_12, 10_24, 10_24] _A = (1, 3_84, 3_84) if "nyu" or "midas" in checkpoint_url: _A = 7_68 _A = [1, 1, 1, 0.5] _A = [2_56, 5_12, 7_68, 7_68] _A = 1_50 _A = 16 _A = (1, 3_84, 3_84) _A = False _A = '''project''' if "ade" in checkpoint_url: _A = True _A = 7_68 _A = [1, 1, 1, 0.5] _A = 1_50 _A = 16 _A = '''huggingface/label-files''' _A = '''ade20k-id2label.json''' _A = json.load(open(cached_download(hf_hub_url(_lowercase , _lowercase , repo_type='''dataset''' ) ) , '''r''' ) ) _A = {int(_lowercase ): v for k, v in idalabel.items()} _A = idalabel _A = {v: k for k, v in idalabel.items()} _A = [1, 1_50, 4_80, 4_80] return config, expected_shape def __A ( _lowercase ): '''simple docstring''' _A = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(_lowercase , _lowercase ) def __A ( _lowercase ): '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _A = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: _A = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: _A = name.replace('''patch_embed''' , '''''' ) if "pos_embed" in name: _A = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: _A = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: _A = name.replace('''proj''' , '''projection''' ) if "blocks" in name: _A = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: _A = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _A = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name and "backbone" not in name: _A = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name and "backbone" not in name: _A = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: _A = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: _A = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: _A = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: _A = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: _A = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: _A = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: _A = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _A = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: _A = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: _A = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: _A = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: _A = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: _A = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _A = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: _A = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: _A = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: _A = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: _A = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: _A = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: _A = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: _A = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: _A = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: _A = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: _A = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: _A = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: _A = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: _A = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: _A = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: _A = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) if "backbone" in name: _A = name.replace('''backbone''' , '''backbone.bit.encoder''' ) if ".." in name: _A = name.replace('''..''' , '''.''' ) if "stem.conv" in name: _A = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: _A = name.replace('''blocks''' , '''layers''' ) if "convolution" in name and "backbone" in name: _A = name.replace('''convolution''' , '''conv''' ) if "layer" in name and "backbone" in name: _A = name.replace('''layer''' , '''layers''' ) if "backbone.bit.encoder.bit" in name: _A = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' ) if "embedder.conv" in name: _A = name.replace('''embedder.conv''' , '''embedder.convolution''' ) if "backbone.bit.encoder.stem.norm" in name: _A = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' ) return name def __A ( _lowercase , _lowercase ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _A = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) _A = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _A = in_proj_weight[: config.hidden_size, :] _A = in_proj_bias[: config.hidden_size] _A = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _A = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _A = in_proj_weight[ -config.hidden_size :, : ] _A = in_proj_bias[-config.hidden_size :] def __A ( ): '''simple docstring''' _A = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _A = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' _A ,_A = get_dpt_config(_lowercase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") _A = torch.load(_lowercase , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(_lowercase ) # rename keys for key in state_dict.copy().keys(): _A = state_dict.pop(_lowercase ) _A = val # read in qkv matrices read_in_q_k_v(_lowercase , _lowercase ) # load HuggingFace model _A = DPTForSemanticSegmentation(_lowercase ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(_lowercase ) model.load_state_dict(_lowercase ) model.eval() # Check outputs on an image _A = 4_80 if '''ade''' in checkpoint_url else 3_84 _A = DPTImageProcessor(size=_lowercase ) _A = prepare_img() _A = image_processor(_lowercase , return_tensors='''pt''' ) # forward pass _A = model(**_lowercase ).logits if '''ade''' in checkpoint_url else model(**_lowercase ).predicted_depth if show_prediction: _A = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=_lowercase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 2_55 ).show() if pytorch_dump_folder_path is not None: Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowercase ) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) __A = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
484
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
484
1
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets snake_case_ : str = ''' @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' snake_case_ : List[str] = '''\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. ''' snake_case_ : Dict = ''' Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=["About 95 species are currently accepted ."] >>> predictions=["About 95 you now get in ."] >>> references=[["About 95 species are currently known ."]] >>> wiki_split = datasets.load_metric("wiki_split") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0} ''' def lowerCamelCase( a__): def remove_articles(a__): _SCREAMING_SNAKE_CASE =re.compile(R'''\b(a|an|the)\b''' ,re.UNICODE) return re.sub(a__ ,''' ''' ,a__) def white_space_fix(a__): return " ".join(text.split()) def remove_punc(a__): _SCREAMING_SNAKE_CASE =set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(a__): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(a__)))) def lowerCamelCase( a__ ,a__): return int(normalize_answer(a__) == normalize_answer(a__)) def lowerCamelCase( a__ ,a__): _SCREAMING_SNAKE_CASE =[any(compute_exact(a__ ,a__) for ref in refs) for pred, refs in zip(a__ ,a__)] return (sum(a__) / len(a__)) * 100 def lowerCamelCase( a__ ,a__ ,a__ ,a__): _SCREAMING_SNAKE_CASE =[rgram for rgrams in rgramslist for rgram in rgrams] _SCREAMING_SNAKE_CASE =Counter(a__) _SCREAMING_SNAKE_CASE =Counter(a__) _SCREAMING_SNAKE_CASE =Counter() for sgram, scount in sgramcounter.items(): _SCREAMING_SNAKE_CASE =scount * numref _SCREAMING_SNAKE_CASE =Counter(a__) _SCREAMING_SNAKE_CASE =Counter() for cgram, ccount in cgramcounter.items(): _SCREAMING_SNAKE_CASE =ccount * numref # KEEP _SCREAMING_SNAKE_CASE =sgramcounter_rep & cgramcounter_rep _SCREAMING_SNAKE_CASE =keepgramcounter_rep & rgramcounter _SCREAMING_SNAKE_CASE =sgramcounter_rep & rgramcounter _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =1 if len(a__) > 0: _SCREAMING_SNAKE_CASE =keeptmpscorea / len(a__) if len(a__) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _SCREAMING_SNAKE_CASE =keeptmpscorea / sum(keepgramcounterall_rep.values()) _SCREAMING_SNAKE_CASE =0 if keepscore_precision > 0 or keepscore_recall > 0: _SCREAMING_SNAKE_CASE =2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _SCREAMING_SNAKE_CASE =sgramcounter_rep - cgramcounter_rep _SCREAMING_SNAKE_CASE =delgramcounter_rep - rgramcounter _SCREAMING_SNAKE_CASE =sgramcounter_rep - rgramcounter _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _SCREAMING_SNAKE_CASE =1 if len(a__) > 0: _SCREAMING_SNAKE_CASE =deltmpscorea / len(a__) # ADDITION _SCREAMING_SNAKE_CASE =set(a__) - set(a__) _SCREAMING_SNAKE_CASE =set(a__) & set(a__) _SCREAMING_SNAKE_CASE =set(a__) - set(a__) _SCREAMING_SNAKE_CASE =0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =1 if len(a__) > 0: _SCREAMING_SNAKE_CASE =addtmpscore / len(a__) if len(a__) > 0: _SCREAMING_SNAKE_CASE =addtmpscore / len(a__) _SCREAMING_SNAKE_CASE =0 if addscore_precision > 0 or addscore_recall > 0: _SCREAMING_SNAKE_CASE =2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def lowerCamelCase( a__ ,a__ ,a__): _SCREAMING_SNAKE_CASE =len(a__) _SCREAMING_SNAKE_CASE =ssent.split(''' ''') _SCREAMING_SNAKE_CASE =csent.split(''' ''') _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[] for rsent in rsents: _SCREAMING_SNAKE_CASE =rsent.split(''' ''') _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[] ragramslist.append(a__) for i in range(0 ,len(a__) - 1): if i < len(a__) - 1: _SCREAMING_SNAKE_CASE =ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(a__) if i < len(a__) - 2: _SCREAMING_SNAKE_CASE =ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(a__) if i < len(a__) - 3: _SCREAMING_SNAKE_CASE =ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(a__) ragramslist.append(a__) ragramslist.append(a__) ragramslist.append(a__) for i in range(0 ,len(a__) - 1): if i < len(a__) - 1: _SCREAMING_SNAKE_CASE =sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(a__) if i < len(a__) - 2: _SCREAMING_SNAKE_CASE =sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(a__) if i < len(a__) - 3: _SCREAMING_SNAKE_CASE =sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(a__) for i in range(0 ,len(a__) - 1): if i < len(a__) - 1: _SCREAMING_SNAKE_CASE =cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(a__) if i < len(a__) - 2: _SCREAMING_SNAKE_CASE =cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(a__) if i < len(a__) - 3: _SCREAMING_SNAKE_CASE =cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(a__) ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) =SARIngram(a__ ,a__ ,a__ ,a__) ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) =SARIngram(a__ ,a__ ,a__ ,a__) ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) =SARIngram(a__ ,a__ ,a__ ,a__) ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) =SARIngram(a__ ,a__ ,a__ ,a__) _SCREAMING_SNAKE_CASE =sum([keepascore, keepascore, keepascore, keepascore]) / 4 _SCREAMING_SNAKE_CASE =sum([delascore, delascore, delascore, delascore]) / 4 _SCREAMING_SNAKE_CASE =sum([addascore, addascore, addascore, addascore]) / 4 _SCREAMING_SNAKE_CASE =(avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def lowerCamelCase( a__ ,a__ = True ,a__ = "13a" ,a__ = True): # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: _SCREAMING_SNAKE_CASE =sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__).major >= 2: _SCREAMING_SNAKE_CASE =sacrebleu.metrics.bleu._get_tokenizer(a__)()(a__) else: _SCREAMING_SNAKE_CASE =sacrebleu.TOKENIZERS[tokenizer]()(a__) elif tokenizer == "moses": _SCREAMING_SNAKE_CASE =sacremoses.MosesTokenizer().tokenize(a__ ,return_str=a__ ,escape=a__) elif tokenizer == "penn": _SCREAMING_SNAKE_CASE =sacremoses.MosesTokenizer().penn_tokenize(a__ ,return_str=a__) else: _SCREAMING_SNAKE_CASE =sentence if not return_str: _SCREAMING_SNAKE_CASE =normalized_sent.split() return normalized_sent def lowerCamelCase( a__ ,a__ ,a__): if not (len(a__) == len(a__) == len(a__)): raise ValueError('''Sources length must match predictions and references lengths.''') _SCREAMING_SNAKE_CASE =0 for src, pred, refs in zip(a__ ,a__ ,a__): sari_score += SARIsent(normalize(a__) ,normalize(a__) ,[normalize(a__) for sent in refs]) _SCREAMING_SNAKE_CASE =sari_score / len(a__) return 100 * sari_score def lowerCamelCase( a__ ,a__ ,a__="exp" ,a__=None ,a__=False ,a__=False ,a__=False ,): _SCREAMING_SNAKE_CASE =len(references[0]) if any(len(a__) != references_per_prediction for refs in references): raise ValueError('''Sacrebleu requires the same number of references for each prediction''') _SCREAMING_SNAKE_CASE =[[refs[i] for refs in references] for i in range(a__)] _SCREAMING_SNAKE_CASE =sacrebleu.corpus_bleu( a__ ,a__ ,smooth_method=a__ ,smooth_value=a__ ,force=a__ ,lowercase=a__ ,use_effective_order=a__ ,) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def __UpperCamelCase ( self : str ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def __UpperCamelCase ( self : Any , _a : Dict , _a : str , _a : str ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ={} result.update({'''sari''': compute_sari(sources=_a , predictions=_a , references=_a )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=_a , references=_a )} ) result.update({'''exact''': compute_em(predictions=_a , references=_a )} ) return result
709
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = LxmertTokenizer UpperCAmelCase = LxmertTokenizerFast UpperCAmelCase = True UpperCAmelCase = True def __UpperCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" super().setUp() _SCREAMING_SNAKE_CASE =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __UpperCamelCase ( self : List[str] , _a : Tuple ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ='''UNwant\u00E9d,running''' _SCREAMING_SNAKE_CASE ='''unwanted, running''' return input_text, output_text def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.tokenizer_class(self.vocab_file ) _SCREAMING_SNAKE_CASE =tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [7, 4, 5, 10, 8, 9] ) def __UpperCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" if not self.test_rust_tokenizer: return _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE ='''I was born in 92000, and this is falsé.''' _SCREAMING_SNAKE_CASE =tokenizer.tokenize(_a ) _SCREAMING_SNAKE_CASE =rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _SCREAMING_SNAKE_CASE =tokenizer.encode(_a , add_special_tokens=_a ) _SCREAMING_SNAKE_CASE =rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _SCREAMING_SNAKE_CASE =self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE =tokenizer.encode(_a ) _SCREAMING_SNAKE_CASE =rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a )
191
0
'''simple docstring''' __magic_name__ : str ={0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} __magic_name__ : Dict ={0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def __snake_case ( lowerCamelCase_ : dict[int, list[int]] , lowerCamelCase_ : int , lowerCamelCase_ : list[bool] ): '''simple docstring''' __magic_name__ = True __magic_name__ = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) order.append(lowerCamelCase_ ) return order def __snake_case ( lowerCamelCase_ : dict[int, list[int]] , lowerCamelCase_ : int , lowerCamelCase_ : list[bool] ): '''simple docstring''' __magic_name__ = True __magic_name__ = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return component def __snake_case ( lowerCamelCase_ : dict[int, list[int]] ): '''simple docstring''' __magic_name__ = len(lowerCamelCase_ ) * [False] __magic_name__ = {vert: [] for vert in range(len(lowerCamelCase_ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(lowerCamelCase_ ) __magic_name__ = [] for i, was_visited in enumerate(lowerCamelCase_ ): if not was_visited: order += topology_sort(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __magic_name__ = [] __magic_name__ = len(lowerCamelCase_ ) * [False] for i in range(len(lowerCamelCase_ ) ): __magic_name__ = order[len(lowerCamelCase_ ) - i - 1] if not visited[vert]: __magic_name__ = find_components(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) components_list.append(lowerCamelCase_ ) return components_list
664
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features lowerCAmelCase :Dict = logging.get_logger(__name__) lowerCAmelCase :int = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) lowerCAmelCase :List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _lowerCamelCase : '''simple docstring''' A_ : str = field( default=lowercase__ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(lowercase__ )} ) A_ : str = field( default=lowercase__ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) A_ : int = field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) A_ : int = field( default=1_28 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) A_ : int = field( default=64 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) A_ : int = field( default=30 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) A_ : bool = field( default=lowercase__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) A_ : bool = field( default=lowercase__ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) A_ : float = field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) A_ : int = field( default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) A_ : int = field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) A_ : int = field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : List[str] = """train""" A_ : str = """dev""" class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : SquadDataTrainingArguments A_ : List[SquadFeatures] A_ : Split A_ : bool def __init__( self : Optional[int] , _A : SquadDataTrainingArguments , _A : PreTrainedTokenizer , _A : Optional[int] = None , _A : Union[str, Split] = Split.train , _A : Optional[bool] = False , _A : Optional[str] = None , _A : Optional[str] = "pt" , ) -> List[Any]: __magic_name__ : int = args __magic_name__ : Optional[Any] = is_language_sensitive __magic_name__ : int = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_A , _A ): try: __magic_name__ : List[Any] = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) __magic_name__ : List[Any] = mode # Load data features from cache or dataset file __magic_name__ : Union[str, Any] = 'v2' if args.version_2_with_negative else 'v1' __magic_name__ : Tuple = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __magic_name__ : Optional[int] = cached_features_file + '.lock' with FileLock(_A ): if os.path.exists(_A ) and not args.overwrite_cache: __magic_name__ : List[Any] = time.time() __magic_name__ : Optional[Any] = torch.load(_A ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __magic_name__ : Optional[Any] = self.old_features['features'] __magic_name__ : str = self.old_features.get('dataset' , _A ) __magic_name__ : str = self.old_features.get('examples' , _A ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' ' future run' ) else: if mode == Split.dev: __magic_name__ : Optional[Any] = self.processor.get_dev_examples(args.data_dir ) else: __magic_name__ : Union[str, Any] = self.processor.get_train_examples(args.data_dir ) __magic_name__ , __magic_name__ : Optional[int] = squad_convert_examples_to_features( examples=self.examples , tokenizer=_A , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_A , ) __magic_name__ : int = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples} , _A , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : List[Any] ) -> Optional[int]: return len(self.features ) def __getitem__( self : Optional[Any] , _A : int ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset __magic_name__ : Dict = self.features[i] __magic_name__ : Optional[int] = torch.tensor(feature.input_ids , dtype=torch.long ) __magic_name__ : Dict = torch.tensor(feature.attention_mask , dtype=torch.long ) __magic_name__ : Union[str, Any] = torch.tensor(feature.token_type_ids , dtype=torch.long ) __magic_name__ : Tuple = torch.tensor(feature.cls_index , dtype=torch.long ) __magic_name__ : Tuple = torch.tensor(feature.p_mask , dtype=torch.float ) __magic_name__ : Any = torch.tensor(feature.is_impossible , dtype=torch.float ) __magic_name__ : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __magic_name__ : List[str] = torch.tensor(feature.start_position , dtype=torch.long ) __magic_name__ : Dict = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
561
0
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class SCREAMING_SNAKE_CASE__ ( enum.Enum ): _a = 0 _a = 1 _a = 2 @add_end_docstrings(_a ) class SCREAMING_SNAKE_CASE__ ( _a ): _a = '\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n ' def __init__( self : Any , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any ): super().__init__(*lowerCAmelCase , **lowerCAmelCase ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. lowerCAmelCase = None if self.model.config.prefix is not None: lowerCAmelCase = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. lowerCAmelCase = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self._sanitize_parameters(prefix=lowerCAmelCase , **self._forward_params ) lowerCAmelCase = {**self._preprocess_params, **preprocess_params} lowerCAmelCase = {**self._forward_params, **forward_params} def __lowercase ( self : str , lowerCAmelCase : Any=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : int=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : int=None , **lowerCAmelCase : Tuple , ): lowerCAmelCase = {} if prefix is not None: lowerCAmelCase = prefix if prefix: lowerCAmelCase = self.tokenizer( lowerCAmelCase , padding=lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=self.framework ) lowerCAmelCase = prefix_inputs["""input_ids"""].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' """ [None, 'hole']""" ) lowerCAmelCase = handle_long_generation preprocess_params.update(lowerCAmelCase ) lowerCAmelCase = generate_kwargs lowerCAmelCase = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_full_text`""" ) if return_tensors is not None: raise ValueError("""`return_full_text` is mutually exclusive with `return_tensors`""" ) lowerCAmelCase = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_tensors`""" ) lowerCAmelCase = ReturnType.TENSORS if return_type is not None: lowerCAmelCase = return_type if clean_up_tokenization_spaces is not None: lowerCAmelCase = clean_up_tokenization_spaces if stop_sequence is not None: lowerCAmelCase = self.tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) if len(lowerCAmelCase ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) lowerCAmelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __lowercase ( self : Optional[int] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict ): # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"""add_space_before_punct_symbol""": True} ) return super()._parse_and_tokenize(*lowerCAmelCase , **lowerCAmelCase ) def __call__( self : Optional[Any] , lowerCAmelCase : Tuple , **lowerCAmelCase : int ): return super().__call__(lowerCAmelCase , **lowerCAmelCase ) def __lowercase ( self : List[Any] , lowerCAmelCase : int , lowerCAmelCase : int="" , lowerCAmelCase : List[str]=None , **lowerCAmelCase : Optional[Any] ): lowerCAmelCase = self.tokenizer( prefix + prompt_text , padding=lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=self.framework ) lowerCAmelCase = prompt_text if handle_long_generation == "hole": lowerCAmelCase = inputs["""input_ids"""].shape[-1] if "max_new_tokens" in generate_kwargs: lowerCAmelCase = generate_kwargs["""max_new_tokens"""] else: lowerCAmelCase = generate_kwargs.get("""max_length""" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("""We cannot infer how many new tokens are expected""" ) if cur_len + new_tokens > self.tokenizer.model_max_length: lowerCAmelCase = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( """We cannot use `hole` to handle this generation the number of desired tokens exceeds the""" """ models max length""" ) lowerCAmelCase = inputs["""input_ids"""][:, -keep_length:] if "attention_mask" in inputs: lowerCAmelCase = inputs["""attention_mask"""][:, -keep_length:] return inputs def __lowercase ( self : Dict , lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any] ): lowerCAmelCase = model_inputs["""input_ids"""] lowerCAmelCase = model_inputs.get("""attention_mask""" , lowerCAmelCase ) # Allow empty prompts if input_ids.shape[1] == 0: lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = 1 else: lowerCAmelCase = input_ids.shape[0] lowerCAmelCase = model_inputs.pop("""prompt_text""" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. lowerCAmelCase = generate_kwargs.pop("""prefix_length""" , 0 ) if prefix_length > 0: lowerCAmelCase = """max_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].max_new_tokens is not None ) if not has_max_new_tokens: lowerCAmelCase = generate_kwargs.get("""max_length""" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length lowerCAmelCase = """min_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL lowerCAmelCase = self.model.generate(input_ids=lowerCAmelCase , attention_mask=lowerCAmelCase , **lowerCAmelCase ) lowerCAmelCase = generated_sequence.shape[0] if self.framework == "pt": lowerCAmelCase = generated_sequence.reshape(lowerCAmelCase , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": lowerCAmelCase = tf.reshape(lowerCAmelCase , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __lowercase ( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : Optional[Any]=ReturnType.FULL_TEXT , lowerCAmelCase : Any=True ): lowerCAmelCase = model_outputs["""generated_sequence"""][0] lowerCAmelCase = model_outputs["""input_ids"""] lowerCAmelCase = model_outputs["""prompt_text"""] lowerCAmelCase = generated_sequence.numpy().tolist() lowerCAmelCase = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: lowerCAmelCase = {"""generated_token_ids""": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text lowerCAmelCase = self.tokenizer.decode( lowerCAmelCase , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: lowerCAmelCase = 0 else: lowerCAmelCase = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase , ) ) if return_type == ReturnType.FULL_TEXT: lowerCAmelCase = prompt_text + text[prompt_length:] else: lowerCAmelCase = text[prompt_length:] lowerCAmelCase = {"""generated_text""": all_text} records.append(lowerCAmelCase ) return records
529
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @property def __lowercase ( self : Any ): torch.manual_seed(0 ) lowerCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def __lowercase ( self : Optional[int] ): lowerCAmelCase = self.dummy_uncond_unet lowerCAmelCase = KarrasVeScheduler() lowerCAmelCase = KarrasVePipeline(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(num_inference_steps=2 , generator=lowerCAmelCase , output_type="""numpy""" ).images lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(num_inference_steps=2 , generator=lowerCAmelCase , output_type="""numpy""" , return_dict=lowerCAmelCase )[0] lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowercase ( self : str ): lowerCAmelCase = """google/ncsnpp-celebahq-256""" lowerCAmelCase = UNetaDModel.from_pretrained(lowerCAmelCase ) lowerCAmelCase = KarrasVeScheduler() lowerCAmelCase = KarrasVePipeline(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(num_inference_steps=20 , generator=lowerCAmelCase , output_type="""numpy""" ).images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCAmelCase = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
529
1
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } lowerCAmelCase_ = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } lowerCAmelCase_ = { 'jukebox': 5_1_2, } class A (_SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = PRETRAINED_LYRIC_TOKENS_SIZES _SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""] def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=["v3", "v2", "v2"] , lowercase_=512 , lowercase_=5 , lowercase_="<|endoftext|>" , **lowercase_ , ) -> List[Any]: '''simple docstring''' _snake_case : Optional[Any] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else unk_token super().__init__( unk_token=__snake_case , n_genres=__snake_case , version=__snake_case , max_n_lyric_tokens=__snake_case , **__snake_case , ) _snake_case : Union[str, Any] = version _snake_case : Dict = max_n_lyric_tokens _snake_case : List[Any] = n_genres with open(__snake_case , encoding='''utf-8''' ) as vocab_handle: _snake_case : List[str] = json.load(__snake_case ) with open(__snake_case , encoding='''utf-8''' ) as vocab_handle: _snake_case : Tuple = json.load(__snake_case ) with open(__snake_case , encoding='''utf-8''' ) as vocab_handle: _snake_case : Optional[int] = json.load(__snake_case ) _snake_case : str = R'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: _snake_case : Union[str, Any] = oov.replace(R'''\-\'''' , R'''\-+\'''' ) _snake_case : List[str] = regex.compile(__snake_case ) _snake_case : str = {v: k for k, v in self.artists_encoder.items()} _snake_case : int = {v: k for k, v in self.genres_encoder.items()} _snake_case : str = {v: k for k, v in self.lyrics_encoder.items()} @property def __a ( self ) -> List[Any]: '''simple docstring''' return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def __a ( self ) -> Any: '''simple docstring''' return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def __a ( self , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' _snake_case : str = [self.artists_encoder.get(__snake_case , 0 ) for artist in list_artists] for genres in range(len(__snake_case ) ): _snake_case : Any = [self.genres_encoder.get(__snake_case , 0 ) for genre in list_genres[genres]] _snake_case : Dict = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) _snake_case : Dict = [[self.lyrics_encoder.get(__snake_case , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def __a ( self , lowercase_ ) -> str: '''simple docstring''' return list(__snake_case ) def __a ( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ) -> Any: '''simple docstring''' _snake_case , _snake_case , _snake_case : Dict = self.prepare_for_tokenization(__snake_case , __snake_case , __snake_case ) _snake_case : Optional[int] = self._tokenize(__snake_case ) return artist, genre, lyrics def __a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = False ) -> Dict: '''simple docstring''' for idx in range(len(self.version ) ): if self.version[idx] == "v3": _snake_case : Dict = artists[idx].lower() _snake_case : Optional[Any] = [genres[idx].lower()] else: _snake_case : Optional[int] = self._normalize(artists[idx] ) + '''.v2''' _snake_case : Dict = [ self._normalize(__snake_case ) + '''.v2''' for genre in genres[idx].split('''_''' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": _snake_case : List[str] = regex.compile(R'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' ) _snake_case : Dict = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n''' _snake_case : Tuple = {vocab[index]: index + 1 for index in range(len(__snake_case ) )} _snake_case : List[str] = 0 _snake_case : Dict = len(__snake_case ) + 1 _snake_case : str = self.vocab _snake_case : Optional[int] = {v: k for k, v in self.vocab.items()} _snake_case : Any = '''''' else: _snake_case : List[Any] = regex.compile(R'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' ) _snake_case : Optional[int] = self._run_strip_accents(__snake_case ) _snake_case : Union[str, Any] = lyrics.replace('''\\''' , '''\n''' ) _snake_case : List[str] = self.out_of_vocab.sub('''''' , __snake_case ), [], [] return artists, genres, lyrics def __a ( self , lowercase_ ) -> List[Any]: '''simple docstring''' _snake_case : Dict = unicodedata.normalize('''NFD''' , __snake_case ) _snake_case : Any = [] for char in text: _snake_case : List[Any] = unicodedata.category(__snake_case ) if cat == "Mn": continue output.append(__snake_case ) return "".join(__snake_case ) def __a ( self , lowercase_ ) -> List[Any]: '''simple docstring''' _snake_case : List[str] = ( [chr(__snake_case ) for i in range(ord('''a''' ) , ord('''z''' ) + 1 )] + [chr(__snake_case ) for i in range(ord('''A''' ) , ord('''Z''' ) + 1 )] + [chr(__snake_case ) for i in range(ord('''0''' ) , ord('''9''' ) + 1 )] + ['''.'''] ) _snake_case : Optional[Any] = frozenset(__snake_case ) _snake_case : Optional[Any] = re.compile(R'''_+''' ) _snake_case : Optional[int] = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] ) _snake_case : Union[str, Any] = pattern.sub('''_''' , __snake_case ).strip('''_''' ) return text def __a ( self , lowercase_ ) -> int: '''simple docstring''' return " ".join(__snake_case ) def __a ( self , lowercase_ , lowercase_ = None , lowercase_ = False ) -> int: '''simple docstring''' if not isinstance(__snake_case , __snake_case ): _snake_case : List[Any] = TensorType(__snake_case ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( '''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' ) import tensorflow as tf _snake_case : int = tf.constant _snake_case : Optional[Any] = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' ) import torch _snake_case : List[str] = torch.tensor _snake_case : str = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' ) import jax.numpy as jnp # noqa: F811 _snake_case : int = jnp.array _snake_case : Dict = _is_jax else: _snake_case : List[str] = np.asarray _snake_case : Any = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: _snake_case : List[str] = [inputs] if not is_tensor(__snake_case ): _snake_case : str = as_tensor(__snake_case ) except: # noqa E722 raise ValueError( '''Unable to create tensor, you should probably activate truncation and/or padding ''' '''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' ) return inputs def __call__( self , lowercase_ , lowercase_ , lowercase_="" , lowercase_="pt" ) -> List[str]: '''simple docstring''' _snake_case : Tuple = [0, 0, 0] _snake_case : Optional[int] = [artist] * len(self.version ) _snake_case : Optional[Any] = [genres] * len(self.version ) _snake_case , _snake_case , _snake_case : List[Any] = self.tokenize(__snake_case , __snake_case , __snake_case ) _snake_case , _snake_case , _snake_case : List[Any] = self._convert_token_to_id(__snake_case , __snake_case , __snake_case ) _snake_case : int = [-INFINITY] * len(full_tokens[-1] ) _snake_case : Union[str, Any] = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=__snake_case ) for i in range(len(self.version ) ) ] return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} ) def __a ( self , lowercase_ , lowercase_ = None ) -> List[Any]: '''simple docstring''' if not os.path.isdir(__snake_case ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _snake_case : Optional[Any] = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=__snake_case ) ) _snake_case : int = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=__snake_case ) ) _snake_case : List[str] = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=__snake_case ) ) return (artists_file, genres_file, lyrics_file) def __a ( self , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' _snake_case : Dict = self.artists_decoder.get(__snake_case ) _snake_case : Union[str, Any] = [self.genres_decoder.get(__snake_case ) for genre in genres_index] _snake_case : Tuple = [self.lyrics_decoder.get(__snake_case ) for character in lyric_index] return artist, genres, lyrics
326
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a__ : Optional[int] = False class UpperCAmelCase_ ( unittest.TestCase ): pass @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self ): """simple docstring""" A_ = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) A_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) A_ = torch.manual_seed(0 ) A_ = pipe( image=__snake_case ,generator=__snake_case ,guidance_scale=7.5 ,num_inference_steps=5_0 ,output_type='''numpy''' ,).images A_ = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) A_ = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
188
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : Tuple = '''openai/whisper-base''' __a : int = ( '''This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the ''' '''transcribed text.''' ) __a : Union[str, Any] = '''transcriber''' __a : List[Any] = WhisperProcessor __a : List[Any] = WhisperForConditionalGeneration __a : Optional[Any] = ['''audio'''] __a : Optional[int] = ['''text'''] def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' return self.pre_processor(lowerCAmelCase__ , return_tensors='''pt''' ).input_features def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> int: '''simple docstring''' return self.model.generate(inputs=lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> Any: '''simple docstring''' return self.pre_processor.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )[0]
712
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __a : str = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def UpperCAmelCase ( lowercase ): """simple docstring""" assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" if args.student_type == "roberta": __lowercase = False elif args.student_type == "gpt2": __lowercase = False def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" if args.student_type == "roberta": __lowercase = False def UpperCAmelCase ( ): """simple docstring""" __lowercase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=lowercase , required=lowercase , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=lowercase , required=lowercase , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=lowercase , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=lowercase , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=lowercase , required=lowercase , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=lowercase , type=lowercase , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=lowercase , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=lowercase , required=lowercase , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=lowercase , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=lowercase , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=lowercase , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=lowercase , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=lowercase , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=lowercase , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=lowercase , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=lowercase , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=lowercase , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=lowercase , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=lowercase , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=lowercase , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=lowercase , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=lowercase , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=lowercase , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=lowercase , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=lowercase , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=lowercase , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=lowercase , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=lowercase , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=lowercase , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=lowercase , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=lowercase , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=lowercase , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=lowercase , default=500 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=lowercase , default=4000 , help='''Checkpoint interval.''' ) __lowercase = parser.parse_args() sanity_checks(lowercase ) # ARGS # init_gpu_params(lowercase ) set_seed(lowercase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F"Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F"Experiment will be dumped and logged in {args.dump_path}" ) # SAVE PARAMS # logger.info(F"Param: {args}" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(lowercase ) , lowercase , indent=4 ) git_log(args.dump_path ) __lowercase , __lowercase , __lowercase = MODEL_CLASSES[args.student_type] __lowercase , __lowercase , __lowercase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __lowercase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __lowercase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __lowercase = tokenizer.all_special_tokens.index(lowercase ) __lowercase = tokenizer.all_special_ids[idx] logger.info(F"Special tokens {special_tok_ids}" ) __lowercase = special_tok_ids __lowercase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F"Loading data from {args.data_file}" ) with open(args.data_file , '''rb''' ) as fp: __lowercase = pickle.load(lowercase ) if args.mlm: logger.info(F"Loading token counts from {args.token_counts} (already pre-computed)" ) with open(args.token_counts , '''rb''' ) as fp: __lowercase = pickle.load(lowercase ) __lowercase = np.maximum(lowercase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __lowercase = 0.0 # do not predict special tokens __lowercase = torch.from_numpy(lowercase ) else: __lowercase = None __lowercase = LmSeqsDataset(params=lowercase , data=lowercase ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F"Loading student config from {args.student_config}" ) __lowercase = student_config_class.from_pretrained(args.student_config ) __lowercase = True if args.student_pretrained_weights is not None: logger.info(F"Loading pretrained weights from {args.student_pretrained_weights}" ) __lowercase = student_model_class.from_pretrained(args.student_pretrained_weights , config=lowercase ) else: __lowercase = student_model_class(lowercase ) if args.n_gpu > 0: student.to(F"cuda:{args.local_rank}" ) logger.info('''Student loaded.''' ) # TEACHER # __lowercase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=lowercase ) if args.n_gpu > 0: teacher.to(F"cuda:{args.local_rank}" ) logger.info(F"Teacher loaded from {args.teacher_name}." ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(lowercase , lowercase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(lowercase , lowercase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __lowercase = Distiller( params=lowercase , dataset=lowercase , token_probs=lowercase , student=lowercase , teacher=lowercase ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
522
0
"""simple docstring""" import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class lowercase ( unittest.TestCase ): def _snake_case ( self , lowercase , lowercase ) -> List[str]: return f'gaussian_noise_s={seed}_shape={"_".join([str(lowercase ) for s in shape] )}.npy' def _snake_case ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def _snake_case ( self , lowercase=0 , lowercase=(4, 4, 64, 64) , lowercase=False ) -> Union[str, Any]: lowerCAmelCase = jnp.bfloataa if fpaa else jnp.floataa lowerCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return image def _snake_case ( self , lowercase=False , lowercase="CompVis/stable-diffusion-v1-4" ) -> Optional[Any]: lowerCAmelCase = jnp.bfloataa if fpaa else jnp.floataa lowerCAmelCase = """bf16""" if fpaa else None lowerCAmelCase , lowerCAmelCase = FlaxUNetaDConditionModel.from_pretrained( lowercase , subfolder="""unet""" , dtype=lowercase , revision=lowercase ) return model, params def _snake_case ( self , lowercase=0 , lowercase=(4, 77, 768) , lowercase=False ) -> str: lowerCAmelCase = jnp.bfloataa if fpaa else jnp.floataa lowerCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_323, -0.1_304, 0.0_813, -0.3_093, -0.0_919, -0.1_571, -0.1_125, -0.5_806]], [17, 0.55, [-0.0_831, -0.2_443, 0.0_901, -0.0_919, 0.3_396, 0.0_103, -0.3_743, 0.0_701]], [8, 0.89, [-0.4_863, 0.0_859, 0.0_875, -0.1_658, 0.9_199, -0.0_114, 0.4_839, 0.4_639]], [3, 1_000, [-0.5_649, 0.2_402, -0.5_518, 0.1_248, 1.1_328, -0.2_443, -0.0_325, -1.0_078]], # fmt: on ] ) def _snake_case ( self , lowercase , lowercase , lowercase ) -> int: lowerCAmelCase , lowerCAmelCase = self.get_unet_model(model_id="""CompVis/stable-diffusion-v1-4""" , fpaa=lowercase ) lowerCAmelCase = self.get_latents(lowercase , fpaa=lowercase ) lowerCAmelCase = self.get_encoder_hidden_states(lowercase , fpaa=lowercase ) lowerCAmelCase = model.apply( {"""params""": params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape lowerCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) lowerCAmelCase = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowercase , lowercase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_514, 0.0_807, 0.1_624, 0.1_016, -0.1_896, 0.0_263, 0.0_677, 0.2_310]], [17, 0.55, [0.1_164, -0.0_216, 0.0_170, 0.1_589, -0.3_120, 0.1_005, -0.0_581, -0.1_458]], [8, 0.89, [-0.1_758, -0.0_169, 0.1_004, -0.1_411, 0.1_312, 0.1_103, -0.1_996, 0.2_139]], [3, 1_000, [0.1_214, 0.0_352, -0.0_731, -0.1_562, -0.0_994, -0.0_906, -0.2_340, -0.0_539]], # fmt: on ] ) def _snake_case ( self , lowercase , lowercase , lowercase ) -> Dict: lowerCAmelCase , lowerCAmelCase = self.get_unet_model(model_id="""stabilityai/stable-diffusion-2""" , fpaa=lowercase ) lowerCAmelCase = self.get_latents(lowercase , shape=(4, 4, 96, 96) , fpaa=lowercase ) lowerCAmelCase = self.get_encoder_hidden_states(lowercase , shape=(4, 77, 1_024) , fpaa=lowercase ) lowerCAmelCase = model.apply( {"""params""": params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape lowerCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) lowerCAmelCase = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowercase , lowercase , atol=1e-2 )
532
"""simple docstring""" import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowercase ( unittest.TestCase ): @property def _snake_case ( self ) -> List[str]: torch.manual_seed(0 ) lowerCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _snake_case ( self ) -> List[Any]: lowerCAmelCase = self.dummy_uncond_unet lowerCAmelCase = ScoreSdeVeScheduler() lowerCAmelCase = ScoreSdeVePipeline(unet=lowercase , scheduler=lowercase ) sde_ve.to(lowercase ) sde_ve.set_progress_bar_config(disable=lowercase ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=lowercase ).images lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=lowercase , return_dict=lowercase )[ 0 ] lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class lowercase ( unittest.TestCase ): def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = """google/ncsnpp-church-256""" lowerCAmelCase = UNetaDModel.from_pretrained(lowercase ) lowerCAmelCase = ScoreSdeVeScheduler.from_pretrained(lowercase ) lowerCAmelCase = ScoreSdeVePipeline(unet=lowercase , scheduler=lowercase ) sde_ve.to(lowercase ) sde_ve.set_progress_bar_config(disable=lowercase ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sde_ve(num_inference_steps=10 , output_type="""numpy""" , generator=lowercase ).images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCAmelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
532
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : Any = logging.get_logger(__name__) class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = "encoder-decoder" snake_case__ = True def __init__( self : str ,**lowerCamelCase__ : Any ): super().__init__(**lowerCamelCase__ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCAmelCase__ = kwargs.pop('encoder' ) UpperCAmelCase__ = encoder_config.pop('model_type' ) UpperCAmelCase__ = kwargs.pop('decoder' ) UpperCAmelCase__ = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase__ = AutoConfig.for_model(lowerCamelCase__ ,**lowerCamelCase__ ) UpperCAmelCase__ = AutoConfig.for_model(lowerCamelCase__ ,**lowerCamelCase__ ) UpperCAmelCase__ = True @classmethod def __lowerCAmelCase ( cls : List[str] ,lowerCamelCase__ : PretrainedConfig ,lowerCamelCase__ : PretrainedConfig ,**lowerCamelCase__ : Dict ): logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) UpperCAmelCase__ = True UpperCAmelCase__ = True return cls(encoder=encoder_config.to_dict() ,decoder=decoder_config.to_dict() ,**lowerCamelCase__ ) def __lowerCAmelCase ( self : Optional[Any] ): UpperCAmelCase__ = copy.deepcopy(self.__dict__ ) UpperCAmelCase__ = self.encoder.to_dict() UpperCAmelCase__ = self.decoder.to_dict() UpperCAmelCase__ = self.__class__.model_type return output
720
"""simple docstring""" from __future__ import annotations import collections import pprint from pathlib import Path def a_ ( lowerCamelCase ): return "".join(sorted(lowerCamelCase ) ) def a_ ( lowerCamelCase ): return word_by_signature[signature(lowerCamelCase )] lowerCAmelCase__ : str = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') lowerCAmelCase__ : str = sorted({word.strip().lower() for word in data.splitlines()}) lowerCAmelCase__ : Optional[Any] = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": lowerCAmelCase__ : int = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
632
0