code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class __UpperCAmelCase ( __A ): """simple docstring""" _lowerCamelCase = """glpn""" def __init__( self , __A=3 , __A=4 , __A=[2, 2, 2, 2] , __A=[8, 4, 2, 1] , __A=[32, 64, 160, 256] , __A=[7, 3, 3, 3] , __A=[4, 2, 2, 2] , __A=[1, 2, 5, 8] , __A=[4, 4, 4, 4] , __A="gelu" , __A=0.0 , __A=0.0 , __A=0.02 , __A=0.1 , __A=1E-6 , __A=64 , __A=10 , __A=-1 , **__A , ): super().__init__(**__A ) __a = num_channels __a = num_encoder_blocks __a = depths __a = sr_ratios __a = hidden_sizes __a = patch_sizes __a = strides __a = mlp_ratios __a = num_attention_heads __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = initializer_range __a = drop_path_rate __a = layer_norm_eps __a = decoder_hidden_size __a = max_depth __a = head_in_index
99
"""simple docstring""" import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): __lowerCamelCase : List[Any] = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def UpperCAmelCase ( self : str , a_ : Optional[Any]=0 ) -> Union[str, Any]: '''simple docstring''' a__ : Union[str, Any] = np.random.RandomState(a_ ) a__ : List[Any] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def UpperCAmelCase ( self : Dict ) -> Optional[Any]: '''simple docstring''' a__ : Tuple = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=a_ ) a__ : Optional[int] = self.get_dummy_inputs() a__ : Union[str, Any] = pipe(**a_ ).images a__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a__ : List[str] = np.array([0.6_5072, 0.5_8492, 0.4_8219, 0.5_5521, 0.5_3180, 0.5_5939, 0.5_0697, 0.3_9800, 0.4_6455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' a__ : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) a__ : List[str] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=a_ ) pipe.set_progress_bar_config(disable=a_ ) a__ : Optional[int] = self.get_dummy_inputs() a__ : List[Any] = pipe(**a_ ).images a__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a__ : List[str] = np.array([0.6_5863, 0.5_9425, 0.4_9326, 0.5_6313, 0.5_3875, 0.5_6627, 0.5_1065, 0.3_9777, 0.4_6330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase ( self : Tuple ) -> Tuple: '''simple docstring''' a__ : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) a__ : Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a_ ) a__ : List[Any] = self.get_dummy_inputs() a__ : Optional[Any] = pipe(**a_ ).images a__ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a__ : Dict = np.array([0.5_3755, 0.6_0786, 0.4_7402, 0.4_9488, 0.5_1869, 0.4_9819, 0.4_7985, 0.3_8957, 0.4_4279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase ( self : Optional[Any] ) -> Dict: '''simple docstring''' a__ : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) a__ : Dict = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a_ ) a__ : Optional[int] = self.get_dummy_inputs() a__ : int = pipe(**a_ ).images a__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a__ : str = np.array([0.5_3755, 0.6_0786, 0.4_7402, 0.4_9488, 0.5_1869, 0.4_9819, 0.4_7985, 0.3_8957, 0.4_4279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase ( self : Union[str, Any] ) -> str: '''simple docstring''' a__ : str = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) a__ : Dict = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a_ ) a__ : Any = self.get_dummy_inputs() a__ : List[str] = pipe(**a_ ).images a__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a__ : Any = np.array([0.5_3817, 0.6_0812, 0.4_7384, 0.4_9530, 0.5_1894, 0.4_9814, 0.4_7984, 0.3_8958, 0.4_4271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase ( self : Tuple ) -> Any: '''simple docstring''' a__ : str = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) a__ : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a_ ) a__ : Tuple = self.get_dummy_inputs() a__ : List[str] = pipe(**a_ ).images a__ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a__ : Any = np.array([0.5_3895, 0.6_0808, 0.4_7933, 0.4_9608, 0.5_1886, 0.4_9950, 0.4_8053, 0.3_8957, 0.4_4200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase ( self : str ) -> Tuple: '''simple docstring''' a__ : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=a_ ) a__ : Any = self.get_dummy_inputs() a__ : Any = 3 * [inputs["prompt"]] # forward a__ : Union[str, Any] = pipe(**a_ ) a__ : int = output.images[0, -3:, -3:, -1] a__ : Union[str, Any] = self.get_dummy_inputs() a__ : List[Any] = 3 * [inputs.pop("prompt" )] a__ : Optional[Any] = pipe.tokenizer( a_ , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=a_ , return_tensors="np" , ) a__ : List[str] = text_inputs["input_ids"] a__ : int = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] a__ : List[Any] = prompt_embeds # forward a__ : List[Any] = pipe(**a_ ) a__ : List[str] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 def UpperCAmelCase ( self : Dict ) -> Optional[int]: '''simple docstring''' a__ : Tuple = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=a_ ) a__ : Tuple = self.get_dummy_inputs() a__ : Dict = 3 * ["this is a negative prompt"] a__ : Optional[Any] = negative_prompt a__ : Any = 3 * [inputs["prompt"]] # forward a__ : str = pipe(**a_ ) a__ : List[str] = output.images[0, -3:, -3:, -1] a__ : Union[str, Any] = self.get_dummy_inputs() a__ : Union[str, Any] = 3 * [inputs.pop("prompt" )] a__ : List[Any] = [] for p in [prompt, negative_prompt]: a__ : int = pipe.tokenizer( a_ , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=a_ , return_tensors="np" , ) a__ : Any = text_inputs["input_ids"] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) a__ , a__ : Union[str, Any] = embeds # forward a__ : Dict = pipe(**a_ ) a__ : Any = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @nightly @require_onnxruntime @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): @property def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase ( self : Optional[int] ) -> Tuple: '''simple docstring''' a__ : List[str] = ort.SessionOptions() a__ : List[str] = False return options def UpperCAmelCase ( self : Optional[int] ) -> List[Any]: '''simple docstring''' a__ : Dict = OnnxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=a_ , feature_extractor=a_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=a_ ) a__ : Optional[int] = "A painting of a squirrel eating a burger" np.random.seed(0 ) a__ : Dict = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="np" ) a__ : Any = output.images a__ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) a__ : str = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' a__ : Any = DDIMScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) a__ : str = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=a_ , safety_checker=a_ , feature_extractor=a_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=a_ ) a__ : str = "open neural network exchange" a__ : Tuple = np.random.RandomState(0 ) a__ : Dict = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=a_ , output_type="np" ) a__ : Dict = output.images a__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) a__ : Dict = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase ( self : Optional[int] ) -> Dict: '''simple docstring''' a__ : List[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) a__ : List[Any] = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=a_ , safety_checker=a_ , feature_extractor=a_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=a_ ) a__ : Any = "open neural network exchange" a__ : Optional[Any] = np.random.RandomState(0 ) a__ : Optional[int] = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=a_ , output_type="np" ) a__ : int = output.images a__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) a__ : Dict = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase ( self : int ) -> Optional[Any]: '''simple docstring''' a__ : List[str] = 0 def test_callback_fn(a_ : int , a_ : int , a_ : np.ndarray ) -> None: a__ : Optional[int] = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) a__ : Any = latents[0, -3:, -3:, -1] a__ : Union[str, Any] = np.array( [-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) a__ : Union[str, Any] = latents[0, -3:, -3:, -1] a__ : Optional[int] = np.array( [-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 a__ : Tuple = False a__ : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=a_ , feature_extractor=a_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a_ ) a__ : List[Any] = "Andromeda galaxy in a bottle" a__ : str = np.random.RandomState(0 ) pipe( prompt=a_ , num_inference_steps=5 , guidance_scale=7.5 , generator=a_ , callback=a_ , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def UpperCAmelCase ( self : Tuple ) -> List[str]: '''simple docstring''' a__ : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=a_ , feature_extractor=a_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(a_ , a_ ) assert pipe.safety_checker is None a__ : Tuple = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) a__ : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained(a_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None a__ : Dict = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None
642
0
import math import sys import cva import numpy as np def snake_case ( UpperCAmelCase : np.ndarray, UpperCAmelCase : float ): # For applying gaussian function for each element in matrix. A = math.sqrt(_lowerCamelCase ) A = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def snake_case ( UpperCAmelCase : np.ndarray, UpperCAmelCase : int, UpperCAmelCase : int, UpperCAmelCase : int ): A = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def snake_case ( UpperCAmelCase : int, UpperCAmelCase : float ): # Creates a gaussian kernel of given dimension. A = np.zeros((kernel_size, kernel_size) ) for i in range(0, _lowerCamelCase ): for j in range(0, _lowerCamelCase ): A = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_lowerCamelCase, _lowerCamelCase ) def snake_case ( UpperCAmelCase : np.ndarray, UpperCAmelCase : float, UpperCAmelCase : float, UpperCAmelCase : int, ): A = np.zeros(img.shape ) A = get_gauss_kernel(_lowerCamelCase, _lowerCamelCase ) A = img.shape for i in range(kernel_size // 2, size_x - kernel_size // 2 ): for j in range(kernel_size // 2, size_y - kernel_size // 2 ): A = get_slice(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) A = img_s - img_s[kernel_size // 2, kernel_size // 2] A = vec_gaussian(_lowerCamelCase, _lowerCamelCase ) A = np.multiply(_lowerCamelCase, _lowerCamelCase ) A = np.multiply(_lowerCamelCase, _lowerCamelCase ) A = np.sum(_lowerCamelCase ) / np.sum(_lowerCamelCase ) A = val return imga def snake_case ( UpperCAmelCase : list ): A = args[1] if args[1:] else """../image_data/lena.jpg""" A = float(args[2] ) if args[2:] else 1.0 A = float(args[3] ) if args[3:] else 1.0 if args[4:]: A = int(args[4] ) A = kernel_size + abs(kernel_size % 2 - 1 ) else: A = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = parse_args(sys.argv) lowerCAmelCase_ = cva.imread(filename, 0) cva.imshow('input image', img) lowerCAmelCase_ = img / 255 lowerCAmelCase_ = out.astype('float32') lowerCAmelCase_ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) lowerCAmelCase_ = out * 255 lowerCAmelCase_ = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
719
import copy import re class UpperCamelCase : """simple docstring""" snake_case = "hp" snake_case = {} snake_case = None @classmethod def A( cls : Union[str, Any] ,_SCREAMING_SNAKE_CASE : int ,_SCREAMING_SNAKE_CASE : List[Any] ) -> int: '''simple docstring''' A = prefix A = defaults cls.build_naming_info() @staticmethod def A( _SCREAMING_SNAKE_CASE : List[str] ,_SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]: '''simple docstring''' if len(_SCREAMING_SNAKE_CASE ) == 0: return "" A = None if any(char.isdigit() for char in word ): raise Exception(f'Parameters should not contain numbers: \'{word}\' contains a number' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 ,len(_SCREAMING_SNAKE_CASE ) + 1 ): A = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: A = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(_SCREAMING_SNAKE_CASE : Optional[int] ): A = '' while integer != 0: A = chr(ord('A' ) + integer % 1_0 ) + s integer //= 1_0 return s A = 0 while True: A = word + '#' + int_to_alphabetic(_SCREAMING_SNAKE_CASE ) if sword in info["reverse_short_word"]: continue else: A = sword break A = short_word A = word return short_word @staticmethod def A( _SCREAMING_SNAKE_CASE : Optional[int] ,_SCREAMING_SNAKE_CASE : Optional[int] ) -> int: '''simple docstring''' A = param_name.split('_' ) A = [TrialShortNamer.shortname_for_word(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name A = ['', '_'] for separator in separators: A = separator.join(_SCREAMING_SNAKE_CASE ) if shortname not in info["reverse_short_param"]: A = shortname A = param_name return shortname return param_name @staticmethod def A( _SCREAMING_SNAKE_CASE : Optional[Any] ,_SCREAMING_SNAKE_CASE : Optional[int] ) -> List[str]: '''simple docstring''' A = TrialShortNamer.shortname_for_key(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) A = short_name A = param_name @classmethod def A( cls : Optional[int] ) -> str: '''simple docstring''' if cls.NAMING_INFO is not None: return A = { 'short_word': {}, 'reverse_short_word': {}, 'short_param': {}, 'reverse_short_param': {}, } A = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) A = info @classmethod def A( cls : List[str] ,_SCREAMING_SNAKE_CASE : str ) -> List[Any]: '''simple docstring''' cls.build_naming_info() assert cls.PREFIX is not None A = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'You should provide a default value for the param name {k} with value {v}' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue A = cls.NAMING_INFO['short_param'][k] if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): A = 1 if v else 0 A = '' if isinstance(_SCREAMING_SNAKE_CASE ,(int, float) ) else '-' A = f'{key}{sep}{v}' name.append(_SCREAMING_SNAKE_CASE ) return "_".join(_SCREAMING_SNAKE_CASE ) @classmethod def A( cls : int ,_SCREAMING_SNAKE_CASE : Optional[int] ) -> str: '''simple docstring''' A = repr[len(cls.PREFIX ) + 1 :] if repr == "": A = [] else: A = repr.split('_' ) A = {} for value in values: if "-" in value: A , A = value.split('-' ) else: A = re.sub('[0-9.]' ,'' ,_SCREAMING_SNAKE_CASE ) A = float(re.sub('[^0-9.]' ,'' ,_SCREAMING_SNAKE_CASE ) ) A = cls.NAMING_INFO['reverse_short_param'][p_k] A = p_v for k in cls.DEFAULTS: if k not in parameters: A = cls.DEFAULTS[k] return parameters
110
0
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration __UpperCamelCase : Optional[int] = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] __UpperCamelCase : str = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] __UpperCamelCase : str = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) __UpperCamelCase : List[str] = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) __UpperCamelCase : Union[str, Any] = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] ): for tf_name, hf_name in patterns: lowerCAmelCase = k.replace(_UpperCAmelCase , _UpperCAmelCase ) return k def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict , _UpperCAmelCase : dict ): lowerCAmelCase = BigBirdPegasusConfig(**_UpperCAmelCase ) lowerCAmelCase = BigBirdPegasusForConditionalGeneration(_UpperCAmelCase ) lowerCAmelCase = torch_model.state_dict() lowerCAmelCase = {} # separating decoder weights lowerCAmelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} lowerCAmelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ): lowerCAmelCase = [k.endswith(_UpperCAmelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCAmelCase ): continue lowerCAmelCase = DECODER_PATTERNS lowerCAmelCase = rename_state_dict_key(_UpperCAmelCase , _UpperCAmelCase ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): lowerCAmelCase = v.T lowerCAmelCase = torch.from_numpy(_UpperCAmelCase ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ): lowerCAmelCase = [k.endswith(_UpperCAmelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCAmelCase ): continue lowerCAmelCase = REMAINING_PATTERNS lowerCAmelCase = rename_state_dict_key(_UpperCAmelCase , _UpperCAmelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): lowerCAmelCase = v.T lowerCAmelCase = torch.from_numpy(_UpperCAmelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' lowerCAmelCase = mapping['model.embed_positions.weight'] lowerCAmelCase = mapping.pop('model.embed_positions.weight' ) lowerCAmelCase ,lowerCAmelCase = torch_model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) lowerCAmelCase = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] ): lowerCAmelCase = tf.train.list_variables(_UpperCAmelCase ) lowerCAmelCase = {} lowerCAmelCase = ['global_step'] for name, shape in tqdm(_UpperCAmelCase , desc='converting tf checkpoint to dict' ): lowerCAmelCase = any(pat in name for pat in ignore_name ) if skip_key: continue lowerCAmelCase = tf.train.load_variable(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = array return tf_weights def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : dict ): lowerCAmelCase = get_tf_weights_as_numpy(_UpperCAmelCase ) lowerCAmelCase = convert_bigbird_pegasus(_UpperCAmelCase , _UpperCAmelCase ) torch_model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') __UpperCamelCase : Optional[int] = parser.parse_args() __UpperCamelCase : Optional[Any] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
4
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): for attribute in key.split('''.''' ): __lowercase : str = getattr(__UpperCamelCase , __UpperCamelCase ) if weight_type is not None: __lowercase : int = getattr(__UpperCamelCase , __UpperCamelCase ).shape else: __lowercase : int = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowercase : List[str] = value elif weight_type == "weight_g": __lowercase : Optional[Any] = value elif weight_type == "weight_v": __lowercase : Tuple = value elif weight_type == "bias": __lowercase : Dict = value else: __lowercase : Union[str, Any] = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : Tuple = [] __lowercase : Union[str, Any] = fairseq_model.state_dict() __lowercase : Optional[Any] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __lowercase : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , hf_model.config.feat_extract_norm == '''group''' , ) __lowercase : List[str] = True else: for key, mapped_key in MAPPING.items(): __lowercase : List[str] = '''hubert.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or (key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0] and not is_finetuned): __lowercase : int = True if "*" in mapped_key: __lowercase : Union[str, Any] = name.split(__UpperCamelCase )[0].split('''.''' )[-2] __lowercase : Tuple = mapped_key.replace('''*''' , __UpperCamelCase ) if "weight_g" in name: __lowercase : Tuple = '''weight_g''' elif "weight_v" in name: __lowercase : Optional[int] = '''weight_v''' elif "weight" in name: __lowercase : str = '''weight''' elif "bias" in name: __lowercase : Optional[int] = '''bias''' else: __lowercase : List[str] = None set_recursively(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) continue if not is_used: unused_weights.append(__UpperCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : List[Any] = full_name.split('''conv_layers.''' )[-1] __lowercase : str = name.split('''.''' ) __lowercase : Dict = int(items[0] ) __lowercase : Any = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowercase : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowercase : Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __lowercase : Union[str, Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowercase : Tuple = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__UpperCamelCase ) @torch.no_grad() def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=True ): if config_path is not None: __lowercase : Dict = HubertConfig.from_pretrained(__UpperCamelCase ) else: __lowercase : str = HubertConfig() if is_finetuned: if dict_path: __lowercase : Tuple = Dictionary.load(__UpperCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowercase : int = target_dict.pad_index __lowercase : Union[str, Any] = target_dict.bos_index __lowercase : int = target_dict.eos_index __lowercase : int = len(target_dict.symbols ) __lowercase : Dict = os.path.join(__UpperCamelCase , '''vocab.json''' ) if not os.path.isdir(__UpperCamelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__UpperCamelCase ) ) return os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) with open(__UpperCamelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , __UpperCamelCase ) __lowercase : str = WavaVecaCTCTokenizer( __UpperCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__UpperCamelCase , ) __lowercase : str = True if config.feat_extract_norm == '''layer''' else False __lowercase : Any = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__UpperCamelCase , return_attention_mask=__UpperCamelCase , ) __lowercase : Union[str, Any] = WavaVecaProcessor(feature_extractor=__UpperCamelCase , tokenizer=__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) __lowercase : Optional[Any] = HubertForCTC(__UpperCamelCase ) else: __lowercase : Union[str, Any] = HubertModel(__UpperCamelCase ) if is_finetuned: __lowercase ,__lowercase ,__lowercase : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __lowercase ,__lowercase ,__lowercase : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) __lowercase : Union[str, Any] = model[0].eval() recursively_load_weights(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) hf_wavavec.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) a_ = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
76
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Any = logging.get_logger(__name__) _lowerCamelCase : str = { 'asapp/sew-tiny-100k': 'https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json', # See all SEW models at https://huggingface.co/models?filter=sew } class lowercase ( __UpperCAmelCase): __lowerCAmelCase : Tuple = """sew""" def __init__( self : Optional[int] , _lowerCamelCase : List[str]=32 , _lowerCamelCase : Dict=7_68 , _lowerCamelCase : List[str]=12 , _lowerCamelCase : int=12 , _lowerCamelCase : str=30_72 , _lowerCamelCase : Union[str, Any]=2 , _lowerCamelCase : List[Any]="gelu" , _lowerCamelCase : Optional[Any]=0.1 , _lowerCamelCase : Tuple=0.1 , _lowerCamelCase : List[Any]=0.1 , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : Dict=0.1 , _lowerCamelCase : Optional[Any]=0.1 , _lowerCamelCase : Any=0.02 , _lowerCamelCase : Dict=1E-5 , _lowerCamelCase : Tuple="group" , _lowerCamelCase : List[Any]="gelu" , _lowerCamelCase : Optional[Any]=(64, 1_28, 1_28, 1_28, 1_28, 2_56, 2_56, 2_56, 2_56, 5_12, 5_12, 5_12, 5_12) , _lowerCamelCase : List[str]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _lowerCamelCase : int=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _lowerCamelCase : Optional[int]=False , _lowerCamelCase : Optional[int]=1_28 , _lowerCamelCase : Optional[int]=16 , _lowerCamelCase : Dict=True , _lowerCamelCase : List[str]=0.05 , _lowerCamelCase : Tuple=10 , _lowerCamelCase : List[str]=2 , _lowerCamelCase : Union[str, Any]=0.0 , _lowerCamelCase : List[Any]=10 , _lowerCamelCase : Optional[Any]=0 , _lowerCamelCase : Union[str, Any]="mean" , _lowerCamelCase : Dict=False , _lowerCamelCase : Dict=False , _lowerCamelCase : Dict=2_56 , _lowerCamelCase : Union[str, Any]=0 , _lowerCamelCase : Optional[Any]=1 , _lowerCamelCase : Dict=2 , **_lowerCamelCase : Any , ): """simple docstring""" super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase ) A_ : Tuple = hidden_size A_ : int = feat_extract_norm A_ : List[Any] = feat_extract_activation A_ : Union[str, Any] = list(_lowerCamelCase ) A_ : List[Any] = list(_lowerCamelCase ) A_ : Optional[Any] = list(_lowerCamelCase ) A_ : int = conv_bias A_ : Dict = num_conv_pos_embeddings A_ : Union[str, Any] = num_conv_pos_embedding_groups A_ : Tuple = len(self.conv_dim ) A_ : int = num_hidden_layers A_ : Tuple = intermediate_size A_ : Any = squeeze_factor A_ : int = hidden_act A_ : int = num_attention_heads A_ : Tuple = hidden_dropout A_ : Union[str, Any] = attention_dropout A_ : Tuple = activation_dropout A_ : Tuple = feat_proj_dropout A_ : Union[str, Any] = final_dropout A_ : Optional[Any] = layerdrop A_ : Optional[Any] = layer_norm_eps A_ : str = initializer_range A_ : int = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" F"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A_ : Dict = apply_spec_augment A_ : Union[str, Any] = mask_time_prob A_ : Dict = mask_time_length A_ : Union[str, Any] = mask_time_min_masks A_ : int = mask_feature_prob A_ : List[Any] = mask_feature_length A_ : List[Any] = mask_feature_min_masks # ctc loss A_ : int = ctc_loss_reduction A_ : str = ctc_zero_infinity # sequence classification A_ : Dict = use_weighted_layer_sum A_ : Tuple = classifier_proj_size @property def a_ ( self : Tuple ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
361
"""simple docstring""" import requests from bsa import BeautifulSoup def lowercase_ ( _UpperCAmelCase = "https://www.worldometers.info/coronavirus" ): """simple docstring""" A_ : str = BeautifulSoup(requests.get(_UpperCAmelCase ).text , '''html.parser''' ) A_ : Union[str, Any] = soup.findAll('''h1''' ) A_ : Union[str, Any] = soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(_UpperCAmelCase , _UpperCAmelCase )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(f'{key}\n{value}\n')
361
1
'''simple docstring''' import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path UpperCAmelCase : Any = [ {'dataset': 'wikipedia', 'config_name': '20220301.de'}, {'dataset': 'wikipedia', 'config_name': '20220301.en'}, {'dataset': 'wikipedia', 'config_name': '20220301.fr'}, {'dataset': 'wikipedia', 'config_name': '20220301.frr'}, {'dataset': 'wikipedia', 'config_name': '20220301.it'}, {'dataset': 'wikipedia', 'config_name': '20220301.simple'}, {'dataset': 'snli', 'config_name': 'plain_text'}, {'dataset': 'eli5', 'config_name': 'LFQA_reddit'}, {'dataset': 'wiki40b', 'config_name': 'en'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.compressed'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.no_index'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.multiset.no_index'}, {'dataset': 'natural_questions', 'config_name': 'default'}, ] def a__ ( a__=True ): """simple docstring""" if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=a ) ) class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = None lowerCAmelCase__ = None def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Any ) -> str: """simple docstring""" with TemporaryDirectory() as tmp_dir: __SCREAMING_SNAKE_CASE = dataset_module_factory(__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = import_main_class(dataset_module.module_path , dataset=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = builder_cls( cache_dir=__SCREAMING_SNAKE_CASE , config_name=__SCREAMING_SNAKE_CASE , hash=dataset_module.hash , ) __SCREAMING_SNAKE_CASE = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=__SCREAMING_SNAKE_CASE ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) __SCREAMING_SNAKE_CASE = cached_path(__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE ) self.assertTrue(os.path.exists(__SCREAMING_SNAKE_CASE ) ) @pytest.mark.integration def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" __SCREAMING_SNAKE_CASE = dataset_module_factory("""wikipedia""" , cache_dir=a__ ) __SCREAMING_SNAKE_CASE = import_main_class(dataset_module.module_path ) __SCREAMING_SNAKE_CASE = builder_cls( cache_dir=a__ , config_name="""20220301.frr""" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam __SCREAMING_SNAKE_CASE = None builder_instance.download_and_prepare() __SCREAMING_SNAKE_CASE = builder_instance.as_dataset() assert ds @pytest.mark.integration def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = dataset_module_factory("""wikipedia""" , cache_dir=a__ ) __SCREAMING_SNAKE_CASE = import_main_class(dataset_module.module_path , dataset=a__ ) __SCREAMING_SNAKE_CASE = builder_cls( cache_dir=a__ , config_name="""20220301.frr""" , hash=dataset_module.hash , ) __SCREAMING_SNAKE_CASE = builder_instance.as_streaming_dataset() assert ds assert isinstance(a__ , a__ ) assert "train" in ds assert isinstance(ds["""train"""] , a__ ) assert next(iter(ds["""train"""] ) )
627
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase : Any = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = "mra" def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Dict=50_265 , __SCREAMING_SNAKE_CASE : Union[str, Any]=768 , __SCREAMING_SNAKE_CASE : int=12 , __SCREAMING_SNAKE_CASE : List[Any]=12 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3_072 , __SCREAMING_SNAKE_CASE : Optional[Any]="gelu" , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : List[Any]=0.1 , __SCREAMING_SNAKE_CASE : List[Any]=512 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1 , __SCREAMING_SNAKE_CASE : Any=0.02 , __SCREAMING_SNAKE_CASE : Optional[Any]=1E-5 , __SCREAMING_SNAKE_CASE : str="absolute" , __SCREAMING_SNAKE_CASE : List[Any]=4 , __SCREAMING_SNAKE_CASE : Optional[Any]="full" , __SCREAMING_SNAKE_CASE : str=0 , __SCREAMING_SNAKE_CASE : Dict=0 , __SCREAMING_SNAKE_CASE : Optional[Any]=1 , __SCREAMING_SNAKE_CASE : Dict=0 , __SCREAMING_SNAKE_CASE : Dict=2 , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = block_per_row __SCREAMING_SNAKE_CASE = approx_mode __SCREAMING_SNAKE_CASE = initial_prior_first_n_blocks __SCREAMING_SNAKE_CASE = initial_prior_diagonal_n_blocks
627
1
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class _a ( SCREAMING_SNAKE_CASE_ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization a_ : str = field(default='question-answering-extractive' , metadata={'include_in_asdict_even_if_is_default': True} ) a_ : ClassVar[Features] = Features({'question': Value('string' ), 'context': Value('string' )} ) a_ : ClassVar[Features] = Features( { 'answers': Sequence( { 'text': Value('string' ), 'answer_start': Value('int32' ), } ) } ) a_ : str = "question" a_ : str = "context" a_ : str = "answers" @property def _UpperCamelCase ( self : int ): return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
659
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } _snake_case = { "facebook/nllb-large-en-ro": 1024, "facebook/nllb-200-distilled-600M": 1024, } # fmt: off _snake_case = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class _a ( SCREAMING_SNAKE_CASE_ ): a_ : Any = VOCAB_FILES_NAMES a_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a_ : List[str] = ['input_ids', 'attention_mask'] a_ : Union[str, Any] = NllbTokenizer a_ : List[int] = [] a_ : List[int] = [] def __init__( self : int , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Any="</s>" , SCREAMING_SNAKE_CASE__ : List[str]="<s>" , SCREAMING_SNAKE_CASE__ : Tuple="<unk>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE__ : Any="<mask>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Tuple=False , **SCREAMING_SNAKE_CASE__ : str , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token lowerCamelCase__ = legacy_behaviour super().__init__( vocab_file=SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , src_lang=SCREAMING_SNAKE_CASE__ , tgt_lang=SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , legacy_behaviour=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) lowerCamelCase__ = vocab_file lowerCamelCase__ = False if not self.vocab_file else True lowerCamelCase__ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowerCamelCase__ = { lang_code: self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase__ = src_lang if src_lang is not None else 'eng_Latn' lowerCamelCase__ = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _UpperCamelCase ( self : str ): return self._src_lang @src_lang.setter def _UpperCamelCase ( self : int , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _UpperCamelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _UpperCamelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] , SCREAMING_SNAKE_CASE__ : Optional[str] , **SCREAMING_SNAKE_CASE__ : Optional[int] ): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowerCamelCase__ = src_lang lowerCamelCase__ = self(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tgt_lang_id return inputs def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str = "eng_Latn" , SCREAMING_SNAKE_CASE__ : Optional[List[str]] = None , SCREAMING_SNAKE_CASE__ : str = "fra_Latn" , **SCREAMING_SNAKE_CASE__ : Dict , ): lowerCamelCase__ = src_lang lowerCamelCase__ = tgt_lang return super().prepare_seqaseq_batch(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[str] ): return self.set_src_lang_special_tokens(self.src_lang ) def _UpperCamelCase ( self : List[Any] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): lowerCamelCase__ = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) if self.legacy_behaviour: lowerCamelCase__ = [] lowerCamelCase__ = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ = [self.cur_lang_code] lowerCamelCase__ = [self.eos_token_id] lowerCamelCase__ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) if self.legacy_behaviour: lowerCamelCase__ = [] lowerCamelCase__ = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ = [self.cur_lang_code] lowerCamelCase__ = [self.eos_token_id] lowerCamelCase__ = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return lowerCamelCase__ = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
659
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A = { """configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["""VisionEncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["""TFVisionEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["""FlaxVisionEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys __A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
93
"""simple docstring""" def _lowerCamelCase ( UpperCAmelCase_ : bytes ) -> str: """simple docstring""" return "".join([hex(UpperCAmelCase_ )[2:].zfill(2 ).upper() for byte in list(UpperCAmelCase_ )] ) def _lowerCamelCase ( UpperCAmelCase_ : str ) -> bytes: """simple docstring""" if (len(UpperCAmelCase_ ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(UpperCAmelCase_ ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1], 16 ) for i in range(0, len(UpperCAmelCase_ ), 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
104
0
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer UpperCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase__ = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class lowerCAmelCase__ ( A_ ): __a = 42 class lowerCAmelCase__ ( A_ ): def __init__( self : List[Any] , _lowerCamelCase : PriorTransformer , _lowerCamelCase : CLIPVisionModel , _lowerCamelCase : CLIPImageProcessor , _lowerCamelCase : HeunDiscreteScheduler , _lowerCamelCase : ShapERenderer , ): super().__init__() self.register_modules( prior=_lowerCamelCase , image_encoder=_lowerCamelCase , image_processor=_lowerCamelCase , scheduler=_lowerCamelCase , renderer=_lowerCamelCase , ) def lowercase ( self : Optional[int] , _lowerCamelCase : Any , _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any , _lowerCamelCase : Dict ): if latents is None: _snake_case = randn_tensor(_lowerCamelCase , generator=_lowerCamelCase , device=_lowerCamelCase , dtype=_lowerCamelCase ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _snake_case = latents.to(_lowerCamelCase ) _snake_case = latents * scheduler.init_noise_sigma return latents def lowercase ( self : Any , _lowerCamelCase : Optional[int]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) _snake_case = torch.device(f'''cuda:{gpu_id}''' ) _snake_case = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowerCamelCase , _lowerCamelCase ) @property def lowercase ( self : str ): if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder , '''_hf_hook''' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_lowerCamelCase , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowercase ( self : List[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : str , _lowerCamelCase : Dict , _lowerCamelCase : Optional[int] , ): if isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(image[0] , torch.Tensor ): _snake_case = torch.cat(_lowerCamelCase , axis=0 ) if image[0].ndim == 4 else torch.stack(_lowerCamelCase , axis=0 ) if not isinstance(_lowerCamelCase , torch.Tensor ): _snake_case = self.image_processor(_lowerCamelCase , return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 ) _snake_case = image.to(dtype=self.image_encoder.dtype , device=_lowerCamelCase ) _snake_case = self.image_encoder(_lowerCamelCase )['''last_hidden_state'''] _snake_case = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _snake_case = image_embeds.repeat_interleave(_lowerCamelCase , dim=0 ) if do_classifier_free_guidance: _snake_case = torch.zeros_like(_lowerCamelCase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _snake_case = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_lowerCamelCase ) def __call__( self : Dict , _lowerCamelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , _lowerCamelCase : int = 1 , _lowerCamelCase : int = 25 , _lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowerCamelCase : Optional[torch.FloatTensor] = None , _lowerCamelCase : float = 4.0 , _lowerCamelCase : int = 64 , _lowerCamelCase : Optional[str] = "pil" , _lowerCamelCase : bool = True , ): if isinstance(_lowerCamelCase , PIL.Image.Image ): _snake_case = 1 elif isinstance(_lowerCamelCase , torch.Tensor ): _snake_case = image.shape[0] elif isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): _snake_case = len(_lowerCamelCase ) else: raise ValueError( f'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_lowerCamelCase )}''' ) _snake_case = self._execution_device _snake_case = batch_size * num_images_per_prompt _snake_case = guidance_scale > 1.0 _snake_case = self._encode_image(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # prior self.scheduler.set_timesteps(_lowerCamelCase , device=_lowerCamelCase ) _snake_case = self.scheduler.timesteps _snake_case = self.prior.config.num_embeddings _snake_case = self.prior.config.embedding_dim _snake_case = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _snake_case = latents.reshape(latents.shape[0] , _lowerCamelCase , _lowerCamelCase ) for i, t in enumerate(self.progress_bar(_lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance _snake_case = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _snake_case = self.scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) _snake_case = self.prior( _lowerCamelCase , timestep=_lowerCamelCase , proj_embedding=_lowerCamelCase , ).predicted_image_embedding # remove the variance _snake_case , _snake_case = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _snake_case , _snake_case = noise_pred.chunk(2 ) _snake_case = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _snake_case = self.scheduler.step( _lowerCamelCase , timestep=_lowerCamelCase , sample=_lowerCamelCase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_lowerCamelCase ) _snake_case = [] for i, latent in enumerate(_lowerCamelCase ): print() _snake_case = self.renderer.decode( latent[None, :] , _lowerCamelCase , size=_lowerCamelCase , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(_lowerCamelCase ) _snake_case = torch.stack(_lowerCamelCase ) if output_type not in ["np", "pil"]: raise ValueError(f'''Only the output types `pil` and `np` are supported not output_type={output_type}''' ) _snake_case = images.cpu().numpy() if output_type == "pil": _snake_case = [self.numpy_to_pil(_lowerCamelCase ) for image in images] # Offload last model to CPU if hasattr(self , '''final_offload_hook''' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_lowerCamelCase )
430
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def _UpperCAmelCase ( __lowerCamelCase : int ) -> Tuple: # A local function to see if a dot lands in the circle. def is_in_circle(__lowerCamelCase : float , __lowerCamelCase : float ) -> bool: _snake_case = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _snake_case = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__lowerCamelCase ) ) # The ratio of the area for circle to square is pi/4. _snake_case = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : Callable[[float], float] , __lowerCamelCase : float = 0.0 , __lowerCamelCase : float = 1.0 , ) -> float: return mean( function_to_integrate(uniform(__lowerCamelCase , __lowerCamelCase ) ) for _ in range(__lowerCamelCase ) ) * (max_value - min_value) def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : float = 0.0 , __lowerCamelCase : float = 1.0 ) -> None: def identity_function(__lowerCamelCase : float ) -> float: return x _snake_case = area_under_curve_estimator( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _snake_case = (max_value * max_value - min_value * min_value) / 2 print('''******************''' ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print('''******************''' ) def _UpperCAmelCase ( __lowerCamelCase : int ) -> None: def function_to_integrate(__lowerCamelCase : float ) -> float: return sqrt(4.0 - x * x ) _snake_case = area_under_curve_estimator( __lowerCamelCase , __lowerCamelCase , 0.0 , 2.0 ) print('''******************''' ) print('''Estimating pi using area_under_curve_estimator''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print('''******************''' ) if __name__ == "__main__": import doctest doctest.testmod()
430
1
'''simple docstring''' def lowerCamelCase( SCREAMING_SNAKE_CASE_ = 6008_5147_5143 ) -> int: try: A_ = int(SCREAMING_SNAKE_CASE_ ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) A_ = 2 A_ = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 A_ = i while n % i == 0: A_ = n // i i += 1 return int(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": print(f"""{solution() = }""")
366
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class __UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' _UpperCamelCase = """mvp""" _UpperCamelCase = ["""past_key_values"""] _UpperCamelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[str] , _lowercase : int=50_267 , _lowercase : str=1_024 , _lowercase : int=12 , _lowercase : int=4_096 , _lowercase : Tuple=16 , _lowercase : Optional[Any]=12 , _lowercase : Union[str, Any]=4_096 , _lowercase : List[Any]=16 , _lowercase : str=0.0 , _lowercase : List[str]=0.0 , _lowercase : Dict="gelu" , _lowercase : Union[str, Any]=1_024 , _lowercase : str=0.1 , _lowercase : List[Any]=0.0 , _lowercase : Any=0.0 , _lowercase : List[str]=0.02 , _lowercase : List[Any]=0.0 , _lowercase : List[str]=False , _lowercase : Tuple=True , _lowercase : Any=1 , _lowercase : Optional[Any]=0 , _lowercase : Dict=2 , _lowercase : int=True , _lowercase : Any=2 , _lowercase : Tuple=2 , _lowercase : Optional[Any]=False , _lowercase : List[str]=100 , _lowercase : List[str]=800 , **_lowercase : Dict , ) -> Dict: A_ = vocab_size A_ = max_position_embeddings A_ = d_model A_ = encoder_ffn_dim A_ = encoder_layers A_ = encoder_attention_heads A_ = decoder_ffn_dim A_ = decoder_layers A_ = decoder_attention_heads A_ = dropout A_ = attention_dropout A_ = activation_dropout A_ = activation_function A_ = init_std A_ = encoder_layerdrop A_ = decoder_layerdrop A_ = classifier_dropout A_ = use_cache A_ = encoder_layers A_ = scale_embedding # scale factor will be sqrt(d_model) if True A_ = use_prompt A_ = prompt_length A_ = prompt_mid_dim super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , forced_eos_token_id=_lowercase , **_lowercase , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , _lowercase): A_ = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' 'The config can simply be saved and uploaded again to be fixed.')
366
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase = { """configuration_efficientformer""": [ """EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientFormerConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ["""EfficientFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientFormerForImageClassification""", """EfficientFormerForImageClassificationWithTeacher""", """EfficientFormerModel""", """EfficientFormerPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFEfficientFormerForImageClassification""", """TFEfficientFormerForImageClassificationWithTeacher""", """TFEfficientFormerModel""", """TFEfficientFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
700
"""simple docstring""" import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __A : List[str] = VQModel __A : Any = "sample" @property def __snake_case ( self : int , snake_case__ : int=(3_2, 3_2) ): '''simple docstring''' lowercase :Optional[int] = 4 lowercase :Tuple = 3 lowercase :List[str] = floats_tensor((batch_size, num_channels) + sizes ).to(snake_case__ ) return {"sample": image} @property def __snake_case ( self : Union[str, Any] ): '''simple docstring''' return (3, 3_2, 3_2) @property def __snake_case ( self : List[str] ): '''simple docstring''' return (3, 3_2, 3_2) def __snake_case ( self : Dict ): '''simple docstring''' lowercase :Optional[int] = { '''block_out_channels''': [3_2, 6_4], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } lowercase :Dict = self.dummy_input return init_dict, inputs_dict def __snake_case ( self : Optional[int] ): '''simple docstring''' pass def __snake_case ( self : Union[str, Any] ): '''simple docstring''' pass def __snake_case ( self : Dict ): '''simple docstring''' lowercase , lowercase :Optional[int] = VQModel.from_pretrained('''fusing/vqgan-dummy''' , output_loading_info=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(snake_case__ ) lowercase :List[str] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def __snake_case ( self : Optional[int] ): '''simple docstring''' lowercase :Optional[int] = VQModel.from_pretrained('''fusing/vqgan-dummy''' ) model.to(snake_case__ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowercase :List[Any] = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) lowercase :int = image.to(snake_case__ ) with torch.no_grad(): lowercase :str = model(snake_case__ ).sample lowercase :List[Any] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowercase :Tuple = torch.tensor([-0.01_53, -0.40_44, -0.18_80, -0.51_61, -0.24_18, -0.40_72, -0.16_12, -0.06_33, -0.01_43] ) # fmt: on self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) )
475
0
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE_ = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def __snake_case ( _lowercase = "mumbai" ): """simple docstring""" UpperCamelCase = BeautifulSoup(requests.get(url + location ).content ,'''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' ,attrs={'''data-tn-component''': '''organicJob'''} ): UpperCamelCase = job.find('''a''' ,attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() UpperCamelCase = job.find('''span''' ,{'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f'Job {i:>2} is {job[0]} at {job[1]}')
34
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = "char" _UpperCAmelCase = "bpe" _UpperCAmelCase = "wp" __UpperCamelCase : Optional[Any] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = ["image_processor", "char_tokenizer"] _UpperCAmelCase = "ViTImageProcessor" _UpperCAmelCase = "MgpstrTokenizer" def __init__( self: Optional[int] , UpperCamelCase: Dict=None , UpperCamelCase: Any=None , **UpperCamelCase: Any ) -> str: snake_case__ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) snake_case__ = kwargs.pop('feature_extractor' ) snake_case__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) snake_case__ = tokenizer snake_case__ = AutoTokenizer.from_pretrained('gpt2' ) snake_case__ = AutoTokenizer.from_pretrained('bert-base-uncased' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self: str , UpperCamelCase: List[str]=None , UpperCamelCase: Any=None , UpperCamelCase: Optional[Any]=None , **UpperCamelCase: Optional[int] ) -> List[str]: if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: snake_case__ = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None: snake_case__ = self.char_tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is None: return inputs elif images is None: return encodings else: snake_case__ = encodings['input_ids'] return inputs def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: List[str] ) -> int: snake_case__ , snake_case__ , snake_case__ = sequences snake_case__ = char_preds.size(0 ) snake_case__ , snake_case__ = self._decode_helper(UpperCamelCase , 'char' ) snake_case__ , snake_case__ = self._decode_helper(UpperCamelCase , 'bpe' ) snake_case__ , snake_case__ = self._decode_helper(UpperCamelCase , 'wp' ) snake_case__ = [] snake_case__ = [] for i in range(UpperCamelCase ): snake_case__ = [char_scores[i], bpe_scores[i], wp_scores[i]] snake_case__ = [char_strs[i], bpe_strs[i], wp_strs[i]] snake_case__ = scores.index(max(UpperCamelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) snake_case__ = {} snake_case__ = final_strs snake_case__ = final_scores snake_case__ = char_strs snake_case__ = bpe_strs snake_case__ = wp_strs return out def lowerCAmelCase_ ( self: str , UpperCamelCase: str , UpperCamelCase: Tuple ) -> Optional[int]: if format == DecodeType.CHARACTER: snake_case__ = self.char_decode snake_case__ = 1 snake_case__ = '[s]' elif format == DecodeType.BPE: snake_case__ = self.bpe_decode snake_case__ = 2 snake_case__ = '#' elif format == DecodeType.WORDPIECE: snake_case__ = self.wp_decode snake_case__ = 1_02 snake_case__ = '[SEP]' else: raise ValueError(F'''Format {format} is not supported.''' ) snake_case__ , snake_case__ = [], [] snake_case__ = pred_logits.size(0 ) snake_case__ = pred_logits.size(1 ) snake_case__ , snake_case__ = pred_logits.topk(1 , dim=-1 , largest=UpperCamelCase , sorted=UpperCamelCase ) snake_case__ = preds_index.view(-1 , UpperCamelCase )[:, 1:] snake_case__ = decoder(UpperCamelCase ) snake_case__ , snake_case__ = torch.nn.functional.softmax(UpperCamelCase , dim=2 ).max(dim=2 ) snake_case__ = preds_max_prob[:, 1:] for index in range(UpperCamelCase ): snake_case__ = preds_str[index].find(UpperCamelCase ) snake_case__ = preds_str[index][:pred_eos] snake_case__ = preds_index[index].cpu().tolist() snake_case__ = pred_index.index(UpperCamelCase ) if eos_token in pred_index else -1 snake_case__ = preds_max_prob[index][: pred_eos_index + 1] snake_case__ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(UpperCamelCase ) conf_scores.append(UpperCamelCase ) return dec_strs, conf_scores def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: str ) -> int: snake_case__ = [seq.replace(' ' , '' ) for seq in self.char_tokenizer.batch_decode(UpperCamelCase )] return decode_strs def lowerCAmelCase_ ( self: int , UpperCamelCase: Optional[int] ) -> Dict: return self.bpe_tokenizer.batch_decode(UpperCamelCase ) def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: str ) -> Union[str, Any]: snake_case__ = [seq.replace(' ' , '' ) for seq in self.wp_tokenizer.batch_decode(UpperCamelCase )] return decode_strs
328
0
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=4 , ): __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_attention_mask __a = use_token_type_ids __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = type_sequence_label_size __a = initializer_range __a = num_choices def __UpperCAmelCase ( self ): __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_attention_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) __a = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=_a , ) return config, input_ids, attention_mask def __UpperCAmelCase ( self ): __a = self.prepare_config_and_inputs() __a , __a , __a = config_and_inputs __a = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCAmelCase ( self ): __a = FlaxDistilBertModelTester(self ) @slow def __UpperCAmelCase ( self ): for model_class_name in self.all_model_classes: __a = model_class_name.from_pretrained('''distilbert-base-uncased''' ) __a = model(np.ones((1, 1) ) ) self.assertIsNotNone(_a ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self ): __a = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __a = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) __a = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __a = model(_a , attention_mask=_a )[0] __a = (1, 11, 768) self.assertEqual(output.shape , _a ) __a = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _a , atol=1E-4 ) )
65
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir("fixtures/test_sentencepiece_bpe_char.model") @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = SpeechTaTokenizer __UpperCAmelCase : Tuple = False __UpperCAmelCase : Dict = True def __UpperCAmelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing __a = SpeechTaTokenizer(_a ) __a = AddedToken('''<mask>''' , lstrip=_a , rstrip=_a ) __a = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCAmelCase ( self , _a ): __a = '''this is a test''' __a = '''this is a test''' return input_text, output_text def __UpperCAmelCase ( self , _a , _a=False , _a=20 , _a=5 ): __a , __a = self.get_input_output_texts(_a ) __a = tokenizer.encode(_a , add_special_tokens=_a ) __a = tokenizer.decode(_a , clean_up_tokenization_spaces=_a ) return text, ids def __UpperCAmelCase ( self ): __a = '''<pad>''' __a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __UpperCAmelCase ( self ): __a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-4] , '''œ''' ) self.assertEqual(vocab_keys[-2] , '''<mask>''' ) self.assertEqual(vocab_keys[-1] , '''<ctc_blank>''' ) self.assertEqual(len(_a ) , 81 ) def __UpperCAmelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def __UpperCAmelCase ( self ): __a = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __a = tokenizer.vocab_size __a = len(_a ) self.assertNotEqual(_a , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) __a = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] __a = tokenizer.add_tokens(_a ) __a = tokenizer.vocab_size __a = len(_a ) self.assertNotEqual(_a , 0 ) self.assertEqual(_a , _a ) self.assertEqual(_a , len(_a ) ) self.assertEqual(_a , all_size + len(_a ) ) __a = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=_a ) self.assertGreaterEqual(len(_a ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) __a = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} __a = tokenizer.add_special_tokens(_a ) __a = tokenizer.vocab_size __a = len(_a ) self.assertNotEqual(_a , 0 ) self.assertEqual(_a , _a ) self.assertEqual(_a , len(_a ) ) self.assertEqual(_a , all_size_a + len(_a ) ) __a = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=_a ) self.assertGreaterEqual(len(_a ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): __a = self.get_tokenizer() __a = tokenizer.tokenize('''This is a test''' ) # fmt: off self.assertListEqual(_a , [SPIECE_UNDERLINE, '''T''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''a''', SPIECE_UNDERLINE, '''t''', '''e''', '''s''', '''t'''] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) __a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _a , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''92000''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) __a = tokenizer.convert_tokens_to_ids(_a ) # fmt: off self.assertListEqual(_a , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on __a = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''<unk>''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) @slow def __UpperCAmelCase ( self ): # Use custom sequence because this tokenizer does not handle numbers. __a = [ '''Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ''' '''general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ''' '''Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ''' '''models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.''', '''BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ''' '''conditioning on both left and right context in all layers.''', '''The quick brown fox jumps over the lazy dog.''', ] # fmt: off __a = { '''input_ids''': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name='''microsoft/speecht5_asr''' , revision='''c5ef64c71905caeccde0e4462ef3f9077224c524''' , sequences=_a , )
65
1
'''simple docstring''' import baseaa def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): return baseaa.aaaencode(string.encode("""utf-8""" ) ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): return baseaa.aaadecode(_SCREAMING_SNAKE_CASE ).decode("""utf-8""" ) if __name__ == "__main__": import doctest doctest.testmod()
585
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def lowercase (self ) -> Optional[Any]: torch.manual_seed(0 ) _snake_case = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def lowercase (self ) -> Dict: _snake_case = self.dummy_uncond_unet _snake_case = PNDMScheduler() _snake_case = PNDMPipeline(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) pndm.to(UpperCAmelCase ) pndm.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = torch.manual_seed(0 ) _snake_case = pndm(generator=UpperCAmelCase , num_inference_steps=20 , output_type="""numpy""" ).images _snake_case = torch.manual_seed(0 ) _snake_case = pndm(generator=UpperCAmelCase , num_inference_steps=20 , output_type="""numpy""" , return_dict=UpperCAmelCase )[0] _snake_case = image[0, -3:, -3:, -1] _snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _snake_case = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Optional[Any]: _snake_case = """google/ddpm-cifar10-32""" _snake_case = UNetaDModel.from_pretrained(UpperCAmelCase ) _snake_case = PNDMScheduler() _snake_case = PNDMPipeline(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) pndm.to(UpperCAmelCase ) pndm.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = torch.manual_seed(0 ) _snake_case = pndm(generator=UpperCAmelCase , output_type="""numpy""" ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _snake_case = np.array([0.1564, 0.1_4645, 0.1406, 0.1_4715, 0.1_2425, 0.1_4045, 0.1_3115, 0.1_2175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
585
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase = { 'vocab_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt', }, 'tokenizer_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json' ), 'google/realm-orqa-nq-openqa': ( 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-nq-reader': ( 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-openqa': ( 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-reader': ( 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json' ), }, } lowerCAmelCase = { 'google/realm-cc-news-pretrained-embedder': 512, 'google/realm-cc-news-pretrained-encoder': 512, 'google/realm-cc-news-pretrained-scorer': 512, 'google/realm-cc-news-pretrained-openqa': 512, 'google/realm-orqa-nq-openqa': 512, 'google/realm-orqa-nq-reader': 512, 'google/realm-orqa-wq-openqa': 512, 'google/realm-orqa-wq-reader': 512, } lowerCAmelCase = { 'google/realm-cc-news-pretrained-embedder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-encoder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-scorer': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-reader': {'do_lower_case': True}, 'google/realm-orqa-wq-openqa': {'do_lower_case': True}, 'google/realm-orqa-wq-reader': {'do_lower_case': True}, } class _a ( UpperCamelCase__ ): _lowercase : Union[str, Any] = VOCAB_FILES_NAMES _lowercase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _lowercase : Optional[int] = PRETRAINED_INIT_CONFIGURATION _lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Optional[int] = RealmTokenizer def __init__( self: Union[str, Any] , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: Any=None , UpperCamelCase_: str=True , UpperCamelCase_: Union[str, Any]="[UNK]" , UpperCamelCase_: Dict="[SEP]" , UpperCamelCase_: Union[str, Any]="[PAD]" , UpperCamelCase_: Optional[int]="[CLS]" , UpperCamelCase_: int="[MASK]" , UpperCamelCase_: str=True , UpperCamelCase_: Optional[int]=None , **UpperCamelCase_: Dict , ) -> str: """simple docstring""" super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars ): lowercase__ = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**UpperCamelCase_ ) lowercase__ = do_lower_case def lowerCamelCase_ ( self: Any , UpperCamelCase_: Any , **UpperCamelCase_: str ) -> Tuple: """simple docstring""" lowercase__ = PaddingStrategy.MAX_LENGTH lowercase__ = text lowercase__ = kwargs.pop('''text_pair''' , UpperCamelCase_ ) lowercase__ = kwargs.pop('''return_tensors''' , UpperCamelCase_ ) lowercase__ = { '''input_ids''': [], '''attention_mask''': [], '''token_type_ids''': [], } for idx, candidate_text in enumerate(UpperCamelCase_ ): if batch_text_pair is not None: lowercase__ = batch_text_pair[idx] else: lowercase__ = None lowercase__ = super().__call__(UpperCamelCase_ , UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = encoded_candidates.get('''input_ids''' ) lowercase__ = encoded_candidates.get('''attention_mask''' ) lowercase__ = encoded_candidates.get('''token_type_ids''' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCamelCase_ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCamelCase_ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCamelCase_ ) lowercase__ = {key: item for key, item in output_data.items() if len(UpperCamelCase_ ) != 0} return BatchEncoding(UpperCamelCase_ , tensor_type=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: str , UpperCamelCase_: List[Any]=None ) -> int: """simple docstring""" lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self: int , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowercase__ = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
429
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable lowerCAmelCase = { 'configuration_gpt_neox_japanese': ['GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXJapaneseConfig'], 'tokenization_gpt_neox_japanese': ['GPTNeoXJapaneseTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoXJapaneseForCausalLM', 'GPTNeoXJapaneseLayer', 'GPTNeoXJapaneseModel', 'GPTNeoXJapanesePreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
429
1
"""simple docstring""" import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=64 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=[1, 16, 4, 4] , _UpperCAmelCase=None , ): __a : List[Any] = parent __a : List[Any] = batch_size __a : int = image_size __a : List[Any] = patch_size __a : Optional[Any] = num_channels __a : int = is_training __a : str = use_labels __a : int = hidden_size __a : Any = num_hidden_layers __a : Dict = num_attention_heads __a : Any = intermediate_size __a : Dict = hidden_act __a : List[Any] = hidden_dropout_prob __a : Optional[Any] = attention_probs_dropout_prob __a : str = type_sequence_label_size __a : Any = initializer_range __a : List[str] = scope __a : int = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size __a : Any = (self.image_size // 32) ** 2 __a : int = num_patches + 1 def _lowerCamelCase ( self ): __a : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : str = None if self.use_labels: __a : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : Optional[Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self ): __a : Dict = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 16, 32], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=_UpperCAmelCase , ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : int = ViTHybridModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : Dict = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Union[str, Any] = self.type_sequence_label_size __a : List[str] = ViTHybridForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self ): __a : List[Any] = self.prepare_config_and_inputs() __a , __a , __a : Optional[int] = config_and_inputs __a : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __lowerCAmelCase = ( {'''feature-extraction''': ViTHybridModel, '''image-classification''': ViTHybridForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def _lowerCamelCase ( self ): __a : List[Any] = ViTHybridModelTester(self ) __a : Optional[Any] = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def _lowerCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): __a , __a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : List[str] = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __a : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def _lowerCamelCase ( self ): __a , __a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : List[str] = model_class(_UpperCAmelCase ) __a : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : Optional[int] = [*signature.parameters.keys()] __a : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a , __a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __a : int = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: __a : Tuple = model_class(config=_UpperCAmelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": __a : Union[str, Any] = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def _lowerCamelCase ( self ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : int = ViTHybridModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def __A ( ) -> Tuple: __a : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCamelCase ( self ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _lowerCamelCase ( self ): __a : Optional[int] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _UpperCAmelCase ) __a : List[Any] = self.default_image_processor __a : Dict = prepare_img() __a : List[str] = image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __a : List[str] = model(**_UpperCAmelCase ) # verify the logits __a : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) __a : List[str] = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow @require_accelerate def _lowerCamelCase ( self ): __a : List[Any] = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' ) __a : List[str] = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''' ) __a : Optional[int] = prepare_img() __a : Union[str, Any] = image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ) __a : Dict = model(**_UpperCAmelCase ) __a : List[str] = outputs.logits # model predicts one of the 1000 ImageNet classes __a : Dict = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''' )
52
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=4 , ): __a : Any = parent __a : Optional[int] = batch_size __a : str = seq_length __a : List[str] = is_training __a : Optional[Any] = use_attention_mask __a : Optional[Any] = use_token_type_ids __a : List[str] = use_labels __a : Union[str, Any] = vocab_size __a : int = hidden_size __a : Union[str, Any] = num_hidden_layers __a : Union[str, Any] = num_attention_heads __a : Dict = intermediate_size __a : List[str] = hidden_act __a : Dict = hidden_dropout_prob __a : Union[str, Any] = attention_probs_dropout_prob __a : int = max_position_embeddings __a : Tuple = type_vocab_size __a : Optional[int] = type_sequence_label_size __a : Optional[Any] = initializer_range __a : Optional[int] = num_choices def _lowerCamelCase ( self ): __a : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : Union[str, Any] = None if self.use_attention_mask: __a : Any = random_attention_mask([self.batch_size, self.seq_length] ) __a : Optional[int] = None if self.use_token_type_ids: __a : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a : Any = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowerCamelCase ( self ): __a : Dict = self.prepare_config_and_inputs() __a , __a , __a , __a : str = config_and_inputs __a : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def _lowerCamelCase ( self ): __a : Any = self.prepare_config_and_inputs() __a , __a , __a , __a : Union[str, Any] = config_and_inputs __a : Optional[int] = True __a : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = True __lowerCAmelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self ): __a : Dict = FlaxRobertaModelTester(self ) @slow def _lowerCamelCase ( self ): for model_class_name in self.all_model_classes: __a : int = model_class_name.from_pretrained('''roberta-base''' , from_pt=_UpperCAmelCase ) __a : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
52
1
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel SCREAMING_SNAKE_CASE = logging.getLogger(__name__) def lowercase_ ( __A : str , __A : Any ) -> Union[str, Any]: """simple docstring""" if os.path.exists(__A ): if os.path.exists(os.path.join(__A , '''config.json''' ) ) and os.path.isfile( os.path.join(__A , '''config.json''' ) ): os.remove(os.path.join(__A , '''config.json''' ) ) if os.path.exists(os.path.join(__A , '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(__A , '''pytorch_model.bin''' ) ): os.remove(os.path.join(__A , '''pytorch_model.bin''' ) ) else: os.makedirs(__A ) model.save_pretrained(__A ) def lowercase_ ( __A : int , __A : Any=False ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] =2 if unlogit: lowercase : str =torch.pow(__A , __A ) lowercase : str =p * torch.log(__A ) lowercase : List[str] =0 return -plogp.sum(dim=-1 ) def lowercase_ ( __A : List[str] ) -> int: """simple docstring""" logger.info('''lv, h >\t''' + '''\t'''.join(F'{x + 1}' for x in range(len(__A ) ) ) ) for row in range(len(__A ) ): if tensor.dtype != torch.long: logger.info(F'layer {row + 1}:\t' + '''\t'''.join(F'{x:.5f}' for x in tensor[row].cpu().data ) ) else: logger.info(F'layer {row + 1}:\t' + '''\t'''.join(F'{x:d}' for x in tensor[row].cpu().data ) ) def lowercase_ ( __A : Tuple , __A : Union[str, Any] , __A : List[str] , __A : Optional[Any]=True , __A : int=True , __A : List[Any]=None , __A : int=False ) -> Optional[Any]: """simple docstring""" lowercase , lowercase : Dict =model.config.num_hidden_layers, model.config.num_attention_heads lowercase : Optional[int] =torch.zeros(__A , __A ).to(args.device ) lowercase : Dict =torch.zeros(__A , __A ).to(args.device ) if head_mask is None: lowercase : List[Any] =torch.ones(__A , __A ).to(args.device ) head_mask.requires_grad_(requires_grad=__A ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: lowercase : int =None lowercase : str =0.0 lowercase : Dict =0.0 for step, inputs in enumerate(tqdm(__A , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ): lowercase : Dict =tuple(t.to(args.device ) for t in inputs ) ((lowercase) , ) : int =inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) lowercase : Union[str, Any] =model(__A , labels=__A , head_mask=__A ) # (loss), lm_logits, presents, (all hidden_states), (attentions) lowercase , lowercase , lowercase : int =( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__A ): lowercase : Any =entropy(attn.detach() , __A ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__A ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: lowercase : Tuple =2 lowercase : Any =torch.pow(torch.pow(__A , __A ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: lowercase : List[str] =(head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(__A ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(__A ) logger.info('''Head ranked by importance scores''' ) lowercase : Any =torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) lowercase : Union[str, Any] =torch.arange( head_importance.numel() , device=args.device ) lowercase : int =head_ranks.view_as(__A ) print_ad_tensor(__A ) return attn_entropy, head_importance, total_loss def lowercase_ ( __A : Any , __A : Dict , __A : Optional[Any] ) -> Tuple: """simple docstring""" lowercase , lowercase , lowercase : List[Any] =compute_heads_importance(__A , __A , __A , compute_entropy=__A ) lowercase : Tuple =1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , __A , original_score * args.masking_threshold ) lowercase : Tuple =torch.ones_like(__A ) lowercase : str =max(1 , int(new_head_mask.numel() * args.masking_amount ) ) lowercase : Any =original_score while current_score >= original_score * args.masking_threshold: lowercase : Optional[int] =new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads lowercase : Dict =float('''Inf''' ) lowercase : List[Any] =head_importance.view(-1 ).sort()[1] if len(__A ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads lowercase : List[Any] =current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) ) lowercase : Optional[int] =new_head_mask.view(-1 ) lowercase : Optional[Any] =0.0 lowercase : Dict =new_head_mask.view_as(__A ) lowercase : Any =new_head_mask.clone().detach() print_ad_tensor(__A ) # Compute metric and head importance again lowercase , lowercase , lowercase : List[Any] =compute_heads_importance( __A , __A , __A , compute_entropy=__A , head_mask=__A ) lowercase : Optional[int] =1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , __A , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_0_0 , ) logger.info('''Final head mask''' ) print_ad_tensor(__A ) np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() ) return head_mask def lowercase_ ( __A : Dict , __A : int , __A : Dict , __A : int ) -> Optional[int]: """simple docstring""" lowercase : Optional[Any] =datetime.now() lowercase , lowercase , lowercase : int =compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A ) lowercase : Tuple =1 / loss lowercase : Union[str, Any] =datetime.now() - before_time lowercase : Dict =sum(p.numel() for p in model.parameters() ) lowercase : Tuple ={ layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__A ) ) } for k, v in heads_to_prune.items(): if isinstance(__A , __A ): lowercase : Optional[int] =[ v, ] assert sum(len(__A ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__A ) lowercase : str =sum(p.numel() for p in model.parameters() ) lowercase : Optional[Any] =datetime.now() lowercase , lowercase , lowercase : List[str] =compute_heads_importance( __A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A , actually_pruned=__A , ) lowercase : Any =1 / loss lowercase : List[str] =datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , __A , __A , pruned_num_params / original_num_params * 1_0_0 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , __A , __A ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 1_0_0 ) save_model(__A , args.output_dir ) def lowercase_ ( ) -> List[str]: """simple docstring""" lowercase : str =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=__A , type=__A , required=__A , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=__A , type=__A , required=__A , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=__A , type=__A , required=__A , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=__A , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=__A , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=__A , type=__A , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=__A , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''' , default=0.9 , type=__A , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=__A , help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''' , default='''acc''' , type=__A , help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''' , default=1_2_8 , type=__A , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=__A , help='''Batch size.''' ) parser.add_argument('''--seed''' , type=__A , default=4_2 ) parser.add_argument('''--local_rank''' , type=__A , default=-1 , help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''' , type=__A , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=__A , default='''''' , help='''Can be used for distant debugging.''' ) lowercase : str =parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__A ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: lowercase : Optional[Any] =torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) lowercase : Dict =0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) lowercase : Dict =torch.device('''cuda''' , args.local_rank ) lowercase : Dict =1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) lowercase : int =GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: lowercase : Union[str, Any] =nn.parallel.DistributedDataParallel( __A , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__A ) elif args.n_gpu > 1: lowercase : Any =nn.DataParallel(__A ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__A ) torch.save(__A , os.path.join(args.output_dir , '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''' , __A ) # Prepare dataset lowercase : Union[str, Any] =np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) lowercase : Dict =(torch.from_numpy(__A ),) lowercase : Dict =TensorDataset(*__A ) lowercase : Optional[Any] =RandomSampler(__A ) lowercase : List[Any] =DataLoader(__A , sampler=__A , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__A , __A , __A ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: lowercase : Tuple =mask_heads(__A , __A , __A ) prune_heads(__A , __A , __A , __A ) if __name__ == "__main__": main()
8
'''simple docstring''' import mpmath # for roots of unity import numpy as np class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=None ) -> Optional[Any]: '''simple docstring''' lowercase : Any =list(poly_a or [0] )[:] lowercase : Dict =list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() lowercase : int =len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() lowercase : List[str] =len(self.polyB ) # Add 0 to make lengths equal a power of 2 lowercase : Tuple =int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform lowercase : Optional[int] =complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product lowercase : str =self.__multiply() def A__ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' lowercase : Tuple =[[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(UpperCAmelCase ) <= 1: return dft[0] # lowercase : List[Any] =self.c_max_length // 2 while next_ncol > 0: lowercase : str =[[] for i in range(UpperCAmelCase )] lowercase : List[str] =self.root**next_ncol # First half of next step lowercase : Union[str, Any] =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step lowercase : Any =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update lowercase : Tuple =new_dft lowercase : List[Any] =next_ncol // 2 return dft[0] def A__ ( self : int ) -> str: '''simple docstring''' lowercase : List[Any] =self.__dft('''A''' ) lowercase : Union[str, Any] =self.__dft('''B''' ) lowercase : Any =[[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT lowercase : Tuple =2 while next_ncol <= self.c_max_length: lowercase : Tuple =[[] for i in range(UpperCAmelCase )] lowercase : Tuple =self.root ** (next_ncol // 2) lowercase : Optional[int] =1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update lowercase : List[Any] =new_inverse_c next_ncol *= 2 # Unpack lowercase : List[str] =[round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] ='''A = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) lowercase : List[str] ='''B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) lowercase : Optional[Any] ='''A*B = ''' + ''' + '''.join( f'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return f'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device a__ : Union[str, Any] = False class UpperCAmelCase_ ( unittest.TestCase ): pass @nightly @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): """simple docstring""" A_ = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ,torch_dtype=torch.floataa ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) A_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) A_ = torch.manual_seed(0 ) A_ = pipe.dual_guided( prompt='''first prompt''' ,image=__snake_case ,text_to_image_strength=0.75 ,generator=__snake_case ,guidance_scale=7.5 ,num_inference_steps=2 ,output_type='''numpy''' ,).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__snake_case ) A_ = VersatileDiffusionPipeline.from_pretrained(__snake_case ,torch_dtype=torch.floataa ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) A_ = generator.manual_seed(0 ) A_ = pipe.dual_guided( prompt='''first prompt''' ,image=__snake_case ,text_to_image_strength=0.75 ,generator=__snake_case ,guidance_scale=7.5 ,num_inference_steps=2 ,output_type='''numpy''' ,).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def __UpperCAmelCase ( self ): """simple docstring""" A_ = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ,torch_dtype=torch.floataa ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) A_ = '''cyberpunk 2077''' A_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) A_ = torch.manual_seed(0 ) A_ = pipe.dual_guided( prompt=__snake_case ,image=__snake_case ,text_to_image_strength=0.75 ,generator=__snake_case ,guidance_scale=7.5 ,num_inference_steps=5_0 ,output_type='''numpy''' ,).images A_ = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) A_ = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 A_ = '''A painting of a squirrel eating a burger ''' A_ = torch.manual_seed(0 ) A_ = pipe.text_to_image( prompt=__snake_case ,generator=__snake_case ,guidance_scale=7.5 ,num_inference_steps=5_0 ,output_type='''numpy''' ).images A_ = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) A_ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 A_ = pipe.image_variation(__snake_case ,generator=__snake_case ,output_type='''numpy''' ).images A_ = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) A_ = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
188
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def UpperCAmelCase_ ( _UpperCAmelCase :str , _UpperCAmelCase :Optional[Any] ) -> Optional[int]: '''simple docstring''' if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer A_ = flax_key_tuple[:-1] + ('''weight''',) A_ = torch.permute(_UpperCAmelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_UpperCAmelCase ): # linear layer A_ = flax_key_tuple[:-1] + ('''weight''',) A_ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: A_ = flax_key_tuple[:-1] + ('''weight''',) return flax_key_tuple, flax_tensor def UpperCAmelCase_ ( _UpperCAmelCase :Optional[int] , _UpperCAmelCase :str , _UpperCAmelCase :Any ) -> Dict: '''simple docstring''' if "metadata" in layer: A_ = layer.split('''metadata''' ) A_ = ''''''.join(split_layer[0] )[:-1] A_ = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )] elif "kvstore" in layer: A_ = layer.split('''kvstore''' ) A_ = ''''''.join(split_layer[0] )[:-1] A_ = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )] else: A_ = layer.split('''/''' ) A_ = '''/'''.join(split_layer[:-1] ) A_ = (split_layer[-1],) if "kvstore/path" in layer: A_ = f'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: A_ = '''file''' else: A_ = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def UpperCAmelCase_ ( _UpperCAmelCase :int , _UpperCAmelCase :Union[str, Any] ) -> Any: '''simple docstring''' A_ = rename_keys(_UpperCAmelCase ) A_ = {} for k, v in current_block.items(): A_ = v A_ = new_current_block torch.save(_UpperCAmelCase , _UpperCAmelCase ) def UpperCAmelCase_ ( _UpperCAmelCase :Union[str, Any] , _UpperCAmelCase :str , _UpperCAmelCase :List[Any] , _UpperCAmelCase :str , _UpperCAmelCase :str = WEIGHTS_NAME ) -> Optional[int]: '''simple docstring''' A_ = convert_file_size_to_int(_UpperCAmelCase ) A_ = [] A_ = {} A_ = 0 A_ = 0 os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with gfile.GFile(switch_checkpoint_path + '''/checkpoint''' , '''rb''' ) as fp: A_ = serialization.msgpack_restore(fp.read() )['''optimizer''']['''target'''] A_ = flatten_dict(_UpperCAmelCase , sep='''/''' ) A_ = {} for layer in checkpoint_info.keys(): A_ , A_ , A_ = get_key_and_tensorstore_dict( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if curr_real_layer_name in all_layers: A_ = content else: A_ = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file A_ = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() A_ = torch.tensor(_UpperCAmelCase ) A_ = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts A_ , A_ = rename_base_flax_keys(tuple(key.split('''/''' ) ) , _UpperCAmelCase ) A_ = '''/'''.join(_UpperCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: A_ = os.path.join( _UpperCAmelCase , weights_name.replace('''.bin''' , f'-{len(_UpperCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_UpperCAmelCase , _UpperCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block A_ = {} A_ = 0 A_ = raw_weights.to(getattr(_UpperCAmelCase , _UpperCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block A_ = os.path.join(_UpperCAmelCase , weights_name.replace('''.bin''' , f'-{len(_UpperCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_UpperCAmelCase , _UpperCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_UpperCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index A_ = {} A_ = {} for idx, shard in enumerate(_UpperCAmelCase ): A_ = weights_name.replace( '''.bin''' , f'-{idx+1:05d}-of-{len(_UpperCAmelCase ):05d}.bin' ) # len(sharded_state_dicts):05d} A_ = os.path.join(_UpperCAmelCase , weights_name.replace('''.bin''' , f'-{idx+1:05d}-of-???.bin' ) ) os.rename(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) A_ = shard for key in shard: A_ = shard_file # Add the metadata A_ = {'''total_size''': total_size} A_ = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , '''w''' , encoding='''utf-8''' ) as f: A_ = json.dumps(_UpperCAmelCase , indent=2 , sort_keys=_UpperCAmelCase ) + '''\n''' f.write(_UpperCAmelCase ) return metadata, index if __name__ == "__main__": a__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) a__ : Tuple = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def UpperCAmelCase_ ( ) -> Union[str, Any]: '''simple docstring''' from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer A_ = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' ) config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' ) A_ = SwitchTransformersForConditionalGeneration.from_pretrained( '''/home/arthur_huggingface_co/transformers/switch_converted''' , device_map='''auto''' ) A_ = TaTokenizer.from_pretrained('''t5-small''' ) A_ = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''' A_ = tokenizer(_UpperCAmelCase , return_tensors='''pt''' ).input_ids A_ = model.generate(_UpperCAmelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
188
1
"""simple docstring""" import os from collections.abc import Iterator def lowerCAmelCase ( UpperCamelCase_: str = "." ) -> Iterator[str]: '''simple docstring''' for dir_path, dir_names, filenames in os.walk(UpperCamelCase_ ): _a = [d for d in dir_names if d != "scripts" and d[0] not in "._"] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(UpperCamelCase_ )[1] in (".py", ".ipynb"): yield os.path.join(UpperCamelCase_ , UpperCamelCase_ ).lstrip("./" ) def lowerCAmelCase ( UpperCamelCase_: Any ) -> Union[str, Any]: '''simple docstring''' return f'''{i * ' '}*''' if i else "\n##" def lowerCAmelCase ( UpperCamelCase_: str , UpperCamelCase_: str ) -> str: '''simple docstring''' _a = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(UpperCamelCase_ ) or old_parts[i] != new_part) and new_part: print(f'''{md_prefix(UpperCamelCase_ )} {new_part.replace('_' , ' ' ).title()}''' ) return new_path def lowerCAmelCase ( UpperCamelCase_: str = "." ) -> None: '''simple docstring''' _a = "" for filepath in sorted(good_file_paths(UpperCamelCase_ ) ): _a , _a = os.path.split(UpperCamelCase_ ) if filepath != old_path: _a = print_path(UpperCamelCase_ , UpperCamelCase_ ) _a = (filepath.count(os.sep ) + 1) if filepath else 0 _a = f'''{filepath}/{filename}'''.replace(" " , "%20" ) _a = os.path.splitext(filename.replace("_" , " " ).title() )[0] print(f'''{md_prefix(UpperCamelCase_ )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md(""".""")
612
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch UpperCamelCase = True except ImportError: UpperCamelCase = False try: from torch.hub import _get_torch_home UpperCamelCase = _get_torch_home() except ImportError: UpperCamelCase = os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) UpperCamelCase = os.path.join(torch_cache_home, """transformers""") UpperCamelCase = """https://cdn.huggingface.co""" UpperCamelCase = """https://s3.amazonaws.com/models.huggingface.co/bert""" UpperCamelCase = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) UpperCamelCase = os.path.join(PATH, """config.yaml""") UpperCamelCase = os.path.join(PATH, """attributes.txt""") UpperCamelCase = os.path.join(PATH, """objects.txt""") UpperCamelCase = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) UpperCamelCase = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) UpperCamelCase = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) UpperCamelCase = """pytorch_model.bin""" UpperCamelCase = """config.yaml""" def lowerCAmelCase ( UpperCamelCase_: List[str]=OBJECTS , UpperCamelCase_: str=ATTRIBUTES ) -> str: '''simple docstring''' _a = [] with open(UpperCamelCase_ ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) _a = [] with open(UpperCamelCase_ ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def lowerCAmelCase ( UpperCamelCase_: Optional[Any] ) -> Optional[Any]: '''simple docstring''' _a = OrderedDict() with open(UpperCamelCase_ , "rb" ) as f: _a = pkl.load(UpperCamelCase_ )["model"] for k in copy.deepcopy(list(ckp.keys() ) ): _a = ckp.pop(UpperCamelCase_ ) if isinstance(UpperCamelCase_ , np.ndarray ): _a = torch.tensor(UpperCamelCase_ ) else: assert isinstance(UpperCamelCase_ , torch.tensor ), type(UpperCamelCase_ ) _a = v return r class lowercase_ : A__ : Tuple = {} def __init__( self , a_ , a_ = "root" , a_=0 ) ->Optional[Any]: '''simple docstring''' _a = name _a = level _a = {} for k, v in dictionary.items(): if v is None: raise ValueError() _a = copy.deepcopy(a_ ) _a = copy.deepcopy(a_ ) if isinstance(a_ , a_ ): _a = Config(a_ , name=a_ , level=level + 1 ) _a = v setattr(self , a_ , a_ ) _a = d def __repr__( self ) ->Optional[int]: '''simple docstring''' return str(list((self._pointer.keys()) ) ) def __setattr__( self , a_ , a_ ) ->str: '''simple docstring''' _a = val _a = val _a = key.split("." ) _a = len(a_ ) - 1 _a = self._pointer if len(a_ ) > 1: for i, l in enumerate(a_ ): if hasattr(self , a_ ) and isinstance(getattr(self , a_ ) , a_ ): setattr(getattr(self , a_ ) , ".".join(levels[i:] ) , a_ ) if l == last_level: _a = val else: _a = pointer[l] def lowerCamelCase__ ( self ) ->int: '''simple docstring''' return self._pointer def lowerCamelCase__ ( self , a_ , a_ ) ->Any: '''simple docstring''' with open(f'''{file_name}''' , "w" ) as stream: dump(a_ , a_ ) def lowerCamelCase__ ( self , a_ , a_ ) ->int: '''simple docstring''' with open(f'''{file_name}''' , "w" ) as stream: json.dump(a_ , a_ ) @staticmethod def lowerCamelCase__ ( a_ ) ->Union[str, Any]: '''simple docstring''' with open(a_ ) as stream: _a = load(a_ , Loader=a_ ) return data def __str__( self ) ->List[Any]: '''simple docstring''' _a = " " if self._name != "root": _a = f'''{t * (self._level-1)}{self._name}:\n''' else: _a = "" _a = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(a_ , a_ ): r += f'''{t * (self._level)}{v}\n''' self._level += 1 else: r += f'''{t * (self._level)}{k}: {v} ({type(a_ ).__name__})\n''' _a = level return r[:-1] @classmethod def lowerCamelCase__ ( cls , a_ , **a_ ) ->Tuple: '''simple docstring''' _a , _a = cls.get_config_dict(a_ , **a_ ) return cls(a_ ) @classmethod def lowerCamelCase__ ( cls , a_ , **a_ ) ->List[Any]: '''simple docstring''' _a = kwargs.pop("cache_dir" , a_ ) _a = kwargs.pop("force_download" , a_ ) _a = kwargs.pop("resume_download" , a_ ) _a = kwargs.pop("proxies" , a_ ) _a = kwargs.pop("local_files_only" , a_ ) if os.path.isdir(a_ ): _a = os.path.join(a_ , a_ ) elif os.path.isfile(a_ ) or is_remote_url(a_ ): _a = pretrained_model_name_or_path else: _a = hf_bucket_url(a_ , filename=a_ , use_cdn=a_ ) try: # Load from URL or cache if already cached _a = cached_path( a_ , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , ) # Load config dict if resolved_config_file is None: raise EnvironmentError _a = Config.load_yaml(a_ ) except EnvironmentError: _a = "Can't load config for" raise EnvironmentError(a_ ) if resolved_config_file == config_file: print("loading configuration file from path" ) else: print("loading configuration file cache" ) return Config.load_yaml(a_ ), kwargs def lowerCAmelCase ( UpperCamelCase_: Optional[int] ) -> Tuple: '''simple docstring''' _a = torch.load("dump.pt" , map_location=in_tensor.device ) _a = in_tensor.numpy() _a = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(UpperCamelCase_ , UpperCamelCase_ , rtol=0.01 , atol=0.1 ), ( f'''{sum([1 for x in np.isclose(UpperCamelCase_ , UpperCamelCase_ , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %''' " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def lowerCAmelCase ( UpperCamelCase_: str ) -> List[str]: '''simple docstring''' _a = urlparse(UpperCamelCase_ ) return parsed.scheme in ("http", "https") def lowerCAmelCase ( UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: Dict=True ) -> str: '''simple docstring''' _a = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX _a = "/" not in model_id if legacy_format: return f'''{endpoint}/{model_id}-{filename}''' else: return f'''{endpoint}/{model_id}/{filename}''' def lowerCAmelCase ( UpperCamelCase_: List[Any] , UpperCamelCase_: str , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: Tuple=0 , UpperCamelCase_: Union[str, Any]=None , ) -> List[str]: '''simple docstring''' _a = "python/{}".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): ua += "; " + "; ".join("{}/{}".format(UpperCamelCase_ , UpperCamelCase_ ) for k, v in user_agent.items() ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): ua += "; " + user_agent _a = {"user-agent": ua} if resume_size > 0: _a = "bytes=%d-" % (resume_size,) _a = requests.get(UpperCamelCase_ , stream=UpperCamelCase_ , proxies=UpperCamelCase_ , headers=UpperCamelCase_ ) if response.status_code == 416: # Range not satisfiable return _a = response.headers.get("Content-Length" ) _a = resume_size + int(UpperCamelCase_ ) if content_length is not None else None _a = tqdm( unit="B" , unit_scale=UpperCamelCase_ , total=UpperCamelCase_ , initial=UpperCamelCase_ , desc="Downloading" , ) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(UpperCamelCase_ ) ) temp_file.write(UpperCamelCase_ ) progress.close() def lowerCAmelCase ( UpperCamelCase_: Optional[int] , UpperCamelCase_: str=None , UpperCamelCase_: Optional[Any]=False , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: int=10 , UpperCamelCase_: List[str]=False , UpperCamelCase_: int=None , UpperCamelCase_: List[str]=False , ) -> int: '''simple docstring''' if cache_dir is None: _a = TRANSFORMERS_CACHE if isinstance(UpperCamelCase_ , UpperCamelCase_ ): _a = str(UpperCamelCase_ ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) _a = None if not local_files_only: try: _a = requests.head(UpperCamelCase_ , allow_redirects=UpperCamelCase_ , proxies=UpperCamelCase_ , timeout=UpperCamelCase_ ) if response.status_code == 200: _a = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass _a = url_to_filename(UpperCamelCase_ , UpperCamelCase_ ) # get cache path to put the file _a = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(UpperCamelCase_ ): return cache_path else: _a = [ file for file in fnmatch.filter(os.listdir(UpperCamelCase_ ) , filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(UpperCamelCase_ ) > 0: return os.path.join(UpperCamelCase_ , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(UpperCamelCase_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. _a = cache_path + ".lock" with FileLock(UpperCamelCase_ ): # If the download just completed while the lock was activated. if os.path.exists(UpperCamelCase_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: _a = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(UpperCamelCase_ , "a+b" ) as f: yield f _a = _resumable_file_manager if os.path.exists(UpperCamelCase_ ): _a = os.stat(UpperCamelCase_ ).st_size else: _a = 0 else: _a = partial(tempfile.NamedTemporaryFile , dir=UpperCamelCase_ , delete=UpperCamelCase_ ) _a = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" , UpperCamelCase_ , temp_file.name , ) http_get( UpperCamelCase_ , UpperCamelCase_ , proxies=UpperCamelCase_ , resume_size=UpperCamelCase_ , user_agent=UpperCamelCase_ , ) os.replace(temp_file.name , UpperCamelCase_ ) _a = {"url": url, "etag": etag} _a = cache_path + ".json" with open(UpperCamelCase_ , "w" ) as meta_file: json.dump(UpperCamelCase_ , UpperCamelCase_ ) return cache_path def lowerCAmelCase ( UpperCamelCase_: str , UpperCamelCase_: Dict=None ) -> Any: '''simple docstring''' _a = url.encode("utf-8" ) _a = shaaaa(UpperCamelCase_ ) _a = url_hash.hexdigest() if etag: _a = etag.encode("utf-8" ) _a = shaaaa(UpperCamelCase_ ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def lowerCAmelCase ( UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: Tuple=False , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: str=False , UpperCamelCase_: Dict=None , UpperCamelCase_: int=False , UpperCamelCase_: Dict=False , UpperCamelCase_: Any=False , ) -> List[str]: '''simple docstring''' if cache_dir is None: _a = TRANSFORMERS_CACHE if isinstance(UpperCamelCase_ , UpperCamelCase_ ): _a = str(UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): _a = str(UpperCamelCase_ ) if is_remote_url(UpperCamelCase_ ): # URL, so get it from the cache (downloading if necessary) _a = get_from_cache( UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , proxies=UpperCamelCase_ , resume_download=UpperCamelCase_ , user_agent=UpperCamelCase_ , local_files_only=UpperCamelCase_ , ) elif os.path.exists(UpperCamelCase_ ): # File, and it exists. _a = url_or_filename elif urlparse(UpperCamelCase_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(UpperCamelCase_ ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(UpperCamelCase_ ) ) if extract_compressed_file: if not is_zipfile(UpperCamelCase_ ) and not tarfile.is_tarfile(UpperCamelCase_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" _a , _a = os.path.split(UpperCamelCase_ ) _a = output_file.replace("." , "-" ) + "-extracted" _a = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) if os.path.isdir(UpperCamelCase_ ) and os.listdir(UpperCamelCase_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions _a = output_path + ".lock" with FileLock(UpperCamelCase_ ): shutil.rmtree(UpperCamelCase_ , ignore_errors=UpperCamelCase_ ) os.makedirs(UpperCamelCase_ ) if is_zipfile(UpperCamelCase_ ): with ZipFile(UpperCamelCase_ , "r" ) as zip_file: zip_file.extractall(UpperCamelCase_ ) zip_file.close() elif tarfile.is_tarfile(UpperCamelCase_ ): _a = tarfile.open(UpperCamelCase_ ) tar_file.extractall(UpperCamelCase_ ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(UpperCamelCase_ ) ) return output_path_extracted return output_path def lowerCAmelCase ( UpperCamelCase_: str , UpperCamelCase_: str="," ) -> Tuple: '''simple docstring''' assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) if os.path.isfile(UpperCamelCase_ ): with open(UpperCamelCase_ ) as f: _a = eval(f.read() ) else: _a = requests.get(UpperCamelCase_ ) try: _a = requests.json() except Exception: _a = req.content.decode() assert data is not None, "could not connect" try: _a = eval(UpperCamelCase_ ) except Exception: _a = data.split("\n" ) req.close() return data def lowerCAmelCase ( UpperCamelCase_: Dict ) -> Union[str, Any]: '''simple docstring''' _a = requests.get(UpperCamelCase_ ) _a = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowerCAmelCase ( UpperCamelCase_: int ) -> Tuple: '''simple docstring''' _a = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(UpperCamelCase_ ) with open(UpperCamelCase_ , "rb" ) as stream: _a = pkl.load(UpperCamelCase_ ) _a = weights.pop("model" ) _a = {} for k, v in model.items(): _a = torch.from_numpy(UpperCamelCase_ ) if "running_var" in k: _a = torch.tensor([0] ) _a = k.replace("running_var" , "num_batches_tracked" ) _a = zero return new def lowerCAmelCase ( ) -> str: '''simple docstring''' print(f'''{os.path.abspath(os.path.join(UpperCamelCase_ , os.pardir ) )}/demo.ipynb''' ) def lowerCAmelCase ( UpperCamelCase_: List[str] , UpperCamelCase_: List[str]="RGB" ) -> List[Any]: '''simple docstring''' assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) if os.path.isfile(UpperCamelCase_ ): _a = cva.imread(UpperCamelCase_ ) else: _a = get_image_from_url(UpperCamelCase_ ) assert img is not None, f'''could not connect to: {im}''' _a = cva.cvtColor(UpperCamelCase_ , cva.COLOR_BGR2RGB ) if input_format == "RGB": _a = img[:, :, ::-1] return img def lowerCAmelCase ( UpperCamelCase_: Any , UpperCamelCase_: str=1 ) -> Any: '''simple docstring''' return (images[i : i + batch] for i in range(0 , len(UpperCamelCase_ ) , UpperCamelCase_ ))
612
1
"""simple docstring""" class lowerCAmelCase_ : """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = arr.split(""",""" ) def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = [int(self.array[0] )] * len(self.array ) SCREAMING_SNAKE_CASE__ : List[Any] = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): SCREAMING_SNAKE_CASE__ : Any = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) SCREAMING_SNAKE_CASE__ : int = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": UpperCAmelCase__ : Optional[Any] = input('please input some numbers:') UpperCAmelCase__ : Tuple = SubArray(whole_array) UpperCAmelCase__ : List[str] = array.solve_sub_array() print(('the results is:', re))
223
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed UpperCAmelCase__ : List[str] = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowercase_ ( _snake_case ): assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowercase_ ( _snake_case ,_snake_case ): if args.student_type == "roberta": SCREAMING_SNAKE_CASE__ : Optional[Any] = False elif args.student_type == "gpt2": SCREAMING_SNAKE_CASE__ : Union[str, Any] = False def lowercase_ ( _snake_case ,_snake_case ): if args.student_type == "roberta": SCREAMING_SNAKE_CASE__ : List[str] = False def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : Optional[int] = argparse.ArgumentParser(description="""Training""" ) parser.add_argument("""--force""" ,action="""store_true""" ,help="""Overwrite dump_path if it already exists.""" ) parser.add_argument( """--dump_path""" ,type=_snake_case ,required=_snake_case ,help="""The output directory (log, checkpoints, parameters, etc.)""" ) parser.add_argument( """--data_file""" ,type=_snake_case ,required=_snake_case ,help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" ,) parser.add_argument( """--student_type""" ,type=_snake_case ,choices=["""distilbert""", """roberta""", """gpt2"""] ,required=_snake_case ,help="""The student type (DistilBERT, RoBERTa).""" ,) parser.add_argument("""--student_config""" ,type=_snake_case ,required=_snake_case ,help="""Path to the student configuration.""" ) parser.add_argument( """--student_pretrained_weights""" ,default=_snake_case ,type=_snake_case ,help="""Load student initialization checkpoint.""" ) parser.add_argument( """--teacher_type""" ,choices=["""bert""", """roberta""", """gpt2"""] ,required=_snake_case ,help="""Teacher type (BERT, RoBERTa).""" ) parser.add_argument("""--teacher_name""" ,type=_snake_case ,required=_snake_case ,help="""The teacher model.""" ) parser.add_argument("""--temperature""" ,default=2.0 ,type=_snake_case ,help="""Temperature for the softmax temperature.""" ) parser.add_argument( """--alpha_ce""" ,default=0.5 ,type=_snake_case ,help="""Linear weight for the distillation loss. Must be >=0.""" ) parser.add_argument( """--alpha_mlm""" ,default=0.0 ,type=_snake_case ,help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" ,) parser.add_argument("""--alpha_clm""" ,default=0.5 ,type=_snake_case ,help="""Linear weight for the CLM loss. Must be >=0.""" ) parser.add_argument("""--alpha_mse""" ,default=0.0 ,type=_snake_case ,help="""Linear weight of the MSE loss. Must be >=0.""" ) parser.add_argument( """--alpha_cos""" ,default=0.0 ,type=_snake_case ,help="""Linear weight of the cosine embedding loss. Must be >=0.""" ) parser.add_argument( """--mlm""" ,action="""store_true""" ,help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" ) parser.add_argument( """--mlm_mask_prop""" ,default=0.15 ,type=_snake_case ,help="""Proportion of tokens for which we need to make a prediction.""" ,) parser.add_argument("""--word_mask""" ,default=0.8 ,type=_snake_case ,help="""Proportion of tokens to mask out.""" ) parser.add_argument("""--word_keep""" ,default=0.1 ,type=_snake_case ,help="""Proportion of tokens to keep.""" ) parser.add_argument("""--word_rand""" ,default=0.1 ,type=_snake_case ,help="""Proportion of tokens to randomly replace.""" ) parser.add_argument( """--mlm_smoothing""" ,default=0.7 ,type=_snake_case ,help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" ,) parser.add_argument("""--token_counts""" ,type=_snake_case ,help="""The token counts in the data_file for MLM.""" ) parser.add_argument( """--restrict_ce_to_mask""" ,action="""store_true""" ,help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" ,) parser.add_argument( """--freeze_pos_embs""" ,action="""store_true""" ,help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" ,) parser.add_argument( """--freeze_token_type_embds""" ,action="""store_true""" ,help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" ,) parser.add_argument("""--n_epoch""" ,type=_snake_case ,default=3 ,help="""Number of pass on the whole dataset.""" ) parser.add_argument("""--batch_size""" ,type=_snake_case ,default=5 ,help="""Batch size (for each process).""" ) parser.add_argument( """--group_by_size""" ,action="""store_false""" ,help="""If true, group sequences that have similar length into the same batch. Default is true.""" ,) parser.add_argument( """--gradient_accumulation_steps""" ,type=_snake_case ,default=50 ,help="""Gradient accumulation for larger training batches.""" ,) parser.add_argument("""--warmup_prop""" ,default=0.05 ,type=_snake_case ,help="""Linear warmup proportion.""" ) parser.add_argument("""--weight_decay""" ,default=0.0 ,type=_snake_case ,help="""Weight decay if we apply some.""" ) parser.add_argument("""--learning_rate""" ,default=5E-4 ,type=_snake_case ,help="""The initial learning rate for Adam.""" ) parser.add_argument("""--adam_epsilon""" ,default=1E-6 ,type=_snake_case ,help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" ,default=5.0 ,type=_snake_case ,help="""Max gradient norm.""" ) parser.add_argument("""--initializer_range""" ,default=0.02 ,type=_snake_case ,help="""Random initialization range.""" ) parser.add_argument( """--fp16""" ,action="""store_true""" ,help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" ,) parser.add_argument( """--fp16_opt_level""" ,type=_snake_case ,default="""O1""" ,help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) ,) parser.add_argument("""--n_gpu""" ,type=_snake_case ,default=1 ,help="""Number of GPUs in the node.""" ) parser.add_argument("""--local_rank""" ,type=_snake_case ,default=-1 ,help="""Distributed training - Local rank""" ) parser.add_argument("""--seed""" ,type=_snake_case ,default=56 ,help="""Random seed""" ) parser.add_argument("""--log_interval""" ,type=_snake_case ,default=500 ,help="""Tensorboard logging interval.""" ) parser.add_argument("""--checkpoint_interval""" ,type=_snake_case ,default=4_000 ,help="""Checkpoint interval.""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.parse_args() sanity_checks(_snake_case ) # ARGS # init_gpu_params(_snake_case ) set_seed(_snake_case ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' """ itUse `--force` if you want to overwrite it""" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(f'''Param: {args}''' ) with open(os.path.join(args.dump_path ,"""parameters.json""" ) ,"""w""" ) as f: json.dump(vars(_snake_case ) ,_snake_case ,indent=4 ) git_log(args.dump_path ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = MODEL_CLASSES[args.student_type] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = MODEL_CLASSES[args.teacher_type] # TOKENIZER # SCREAMING_SNAKE_CASE__ : str = teacher_tokenizer_class.from_pretrained(args.teacher_name ) SCREAMING_SNAKE_CASE__ : int = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): SCREAMING_SNAKE_CASE__ : str = tokenizer.all_special_tokens.index(_snake_case ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer.all_special_ids[idx] logger.info(f'''Special tokens {special_tok_ids}''' ) SCREAMING_SNAKE_CASE__ : List[Any] = special_tok_ids SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f'''Loading data from {args.data_file}''' ) with open(args.data_file ,"""rb""" ) as fp: SCREAMING_SNAKE_CASE__ : Union[str, Any] = pickle.load(_snake_case ) if args.mlm: logger.info(f'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts ,"""rb""" ) as fp: SCREAMING_SNAKE_CASE__ : List[Any] = pickle.load(_snake_case ) SCREAMING_SNAKE_CASE__ : Tuple = np.maximum(_snake_case ,1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): SCREAMING_SNAKE_CASE__ : Optional[int] = 0.0 # do not predict special tokens SCREAMING_SNAKE_CASE__ : int = torch.from_numpy(_snake_case ) else: SCREAMING_SNAKE_CASE__ : Tuple = None SCREAMING_SNAKE_CASE__ : Any = LmSeqsDataset(params=_snake_case ,data=_snake_case ) logger.info("""Data loader created.""" ) # STUDENT # logger.info(f'''Loading student config from {args.student_config}''' ) SCREAMING_SNAKE_CASE__ : Tuple = student_config_class.from_pretrained(args.student_config ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = True if args.student_pretrained_weights is not None: logger.info(f'''Loading pretrained weights from {args.student_pretrained_weights}''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = student_model_class.from_pretrained(args.student_pretrained_weights ,config=_snake_case ) else: SCREAMING_SNAKE_CASE__ : Tuple = student_model_class(_snake_case ) if args.n_gpu > 0: student.to(f'''cuda:{args.local_rank}''' ) logger.info("""Student loaded.""" ) # TEACHER # SCREAMING_SNAKE_CASE__ : str = teacher_model_class.from_pretrained(args.teacher_name ,output_hidden_states=_snake_case ) if args.n_gpu > 0: teacher.to(f'''cuda:{args.local_rank}''' ) logger.info(f'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(_snake_case ,_snake_case ) if args.freeze_token_type_embds: freeze_token_type_embeddings(_snake_case ,_snake_case ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() SCREAMING_SNAKE_CASE__ : int = Distiller( params=_snake_case ,dataset=_snake_case ,token_probs=_snake_case ,student=_snake_case ,teacher=_snake_case ) distiller.train() logger.info("""Let's go get some drinks.""" ) if __name__ == "__main__": main()
223
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCAmelCase ( snake_case__ : List[str] , snake_case__ : Optional[Any]=0.9_9_9 , snake_case__ : Optional[Any]="cosine" , )-> Optional[Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case__ : Optional[int] ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case__ : Union[str, Any] ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) A_ = [] for i in range(snake_case__ ): A_ = i / num_diffusion_timesteps A_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(snake_case__ ) / alpha_bar_fn(snake_case__ ) , snake_case__ ) ) return torch.tensor(snake_case__ , dtype=torch.floataa ) class lowerCamelCase ( __snake_case , __snake_case ): """simple docstring""" lowerCAmelCase_ = [e.name for e in KarrasDiffusionSchedulers] lowerCAmelCase_ = 2 @register_to_config def __init__( self , __UpperCamelCase = 1000 , __UpperCamelCase = 0.0_0085 , __UpperCamelCase = 0.012 , __UpperCamelCase = "linear" , __UpperCamelCase = None , __UpperCamelCase = "epsilon" , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = 1.0 , __UpperCamelCase = "linspace" , __UpperCamelCase = 0 , ): if trained_betas is not None: A_ = torch.tensor(__UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": A_ = torch.linspace(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. A_ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule A_ = betas_for_alpha_bar(__UpperCamelCase , alpha_transform_type="cosine" ) elif beta_schedule == "exp": A_ = betas_for_alpha_bar(__UpperCamelCase , alpha_transform_type="exp" ) else: raise NotImplementedError(f'{beta_schedule} does is not implemented for {self.__class__}' ) A_ = 1.0 - self.betas A_ = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) A_ = use_karras_sigmas def lowercase_ ( self , __UpperCamelCase , __UpperCamelCase=None ): if schedule_timesteps is None: A_ = self.timesteps A_ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: A_ = 1 if len(__UpperCamelCase ) > 1 else 0 else: A_ = timestep.cpu().item() if torch.is_tensor(__UpperCamelCase ) else timestep A_ = self._index_counter[timestep_int] return indices[pos].item() @property def lowercase_ ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowercase_ ( self , __UpperCamelCase , __UpperCamelCase , ): A_ = self.index_for_timestep(__UpperCamelCase ) A_ = self.sigmas[step_index] A_ = sample / ((sigma**2 + 1) ** 0.5) return sample def lowercase_ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , ): A_ = num_inference_steps A_ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": A_ = np.linspace(0 , num_train_timesteps - 1 , __UpperCamelCase , dtype=__UpperCamelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": A_ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 A_ = (np.arange(0 , __UpperCamelCase ) * step_ratio).round()[::-1].copy().astype(__UpperCamelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": A_ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 A_ = (np.arange(__UpperCamelCase , 0 , -step_ratio )).round().copy().astype(__UpperCamelCase ) timesteps -= 1 else: raise ValueError( f'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) A_ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) A_ = np.log(__UpperCamelCase ) A_ = np.interp(__UpperCamelCase , np.arange(0 , len(__UpperCamelCase ) ) , __UpperCamelCase ) if self.config.use_karras_sigmas: A_ = self._convert_to_karras(in_sigmas=__UpperCamelCase , num_inference_steps=self.num_inference_steps ) A_ = np.array([self._sigma_to_t(__UpperCamelCase , __UpperCamelCase ) for sigma in sigmas] ) A_ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) A_ = torch.from_numpy(__UpperCamelCase ).to(device=__UpperCamelCase ) A_ = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) A_ = torch.from_numpy(__UpperCamelCase ) A_ = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(__UpperCamelCase ).startswith("mps" ): # mps does not support float64 A_ = timesteps.to(__UpperCamelCase , dtype=torch.floataa ) else: A_ = timesteps.to(device=__UpperCamelCase ) # empty dt and derivative A_ = None A_ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter A_ = defaultdict(__UpperCamelCase ) def lowercase_ ( self , __UpperCamelCase , __UpperCamelCase ): # get log sigma A_ = np.log(__UpperCamelCase ) # get distribution A_ = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range A_ = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) A_ = low_idx + 1 A_ = log_sigmas[low_idx] A_ = log_sigmas[high_idx] # interpolate sigmas A_ = (low - log_sigma) / (low - high) A_ = np.clip(__UpperCamelCase , 0 , 1 ) # transform interpolation to time range A_ = (1 - w) * low_idx + w * high_idx A_ = t.reshape(sigma.shape ) return t def lowercase_ ( self , __UpperCamelCase , __UpperCamelCase ): A_ = in_sigmas[-1].item() A_ = in_sigmas[0].item() A_ = 7.0 # 7.0 is the value used in the paper A_ = np.linspace(0 , 1 , __UpperCamelCase ) A_ = sigma_min ** (1 / rho) A_ = sigma_max ** (1 / rho) A_ = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def lowercase_ ( self ): return self.dt is None def lowercase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = True , ): A_ = self.index_for_timestep(__UpperCamelCase ) # advance index counter by 1 A_ = timestep.cpu().item() if torch.is_tensor(__UpperCamelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: A_ = self.sigmas[step_index] A_ = self.sigmas[step_index + 1] else: # 2nd order / Heun's method A_ = self.sigmas[step_index - 1] A_ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API A_ = 0 A_ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": A_ = sigma_hat if self.state_in_first_order else sigma_next A_ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": A_ = sigma_hat if self.state_in_first_order else sigma_next A_ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": A_ = model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.config.clip_sample: A_ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order A_ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep A_ = sigma_next - sigma_hat # store for 2nd order step A_ = derivative A_ = dt A_ = sample else: # 2. 2nd order / Heun's method A_ = (sample - pred_original_sample) / sigma_next A_ = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample A_ = self.dt A_ = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" A_ = None A_ = None A_ = None A_ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__UpperCamelCase ) def lowercase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples A_ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(__UpperCamelCase ): # mps does not support float64 A_ = self.timesteps.to(original_samples.device , dtype=torch.floataa ) A_ = timesteps.to(original_samples.device , dtype=torch.floataa ) else: A_ = self.timesteps.to(original_samples.device ) A_ = timesteps.to(original_samples.device ) A_ = [self.index_for_timestep(__UpperCamelCase , __UpperCamelCase ) for t in timesteps] A_ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): A_ = sigma.unsqueeze(-1 ) A_ = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
718
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowerCamelCase ( unittest.TestCase ): """simple docstring""" @require_torch def lowercase_ ( self ): A_ = pipeline( task="zero-shot-audio-classification" , model="hf-internal-testing/tiny-clap-htsat-unfused" ) A_ = load_dataset("ashraq/esc50" ) A_ = dataset["train"]["audio"][-1]["array"] A_ = audio_classifier(__UpperCamelCase , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , [{"score": 0.501, "label": "Sound of a dog"}, {"score": 0.499, "label": "Sound of vaccum cleaner"}] , ) @unittest.skip("No models are available in TF" ) def lowercase_ ( self ): pass @slow @require_torch def lowercase_ ( self ): A_ = pipeline( task="zero-shot-audio-classification" , model="laion/clap-htsat-unfused" , ) # This is an audio of a dog A_ = load_dataset("ashraq/esc50" ) A_ = dataset["train"]["audio"][-1]["array"] A_ = audio_classifier(__UpperCamelCase , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , [ {"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}, ] , ) A_ = audio_classifier([audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , [ [ {"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}, ], ] * 5 , ) A_ = audio_classifier( [audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] , batch_size=5 ) self.assertEqual( nested_simplify(__UpperCamelCase ) , [ [ {"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}, ], ] * 5 , ) @unittest.skip("No models are available in TF" ) def lowercase_ ( self ): pass
608
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=lowercase__ ): """simple docstring""" __UpperCAmelCase : Tuple = ['''note_seq'''] def __init__( self : int ,*_a : str ,**_a : List[str] ): '''simple docstring''' requires_backends(self ,['note_seq'] ) @classmethod def __lowercase ( cls : Dict ,*_a : str ,**_a : Optional[int] ): '''simple docstring''' requires_backends(cls ,['note_seq'] ) @classmethod def __lowercase ( cls : Union[str, Any] ,*_a : str ,**_a : Optional[int] ): '''simple docstring''' requires_backends(cls ,['note_seq'] )
229
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { """google/mobilenet_v2_1.4_224""": """https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json""", """google/mobilenet_v2_1.0_224""": """https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json""", """google/mobilenet_v2_0.75_160""": """https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json""", """google/mobilenet_v2_0.35_96""": """https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json""", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : int = '''mobilenet_v2''' def __init__( self : Optional[int] ,_a : str=3 ,_a : Dict=224 ,_a : Tuple=1.0 ,_a : List[Any]=8 ,_a : int=8 ,_a : Dict=6 ,_a : Tuple=32 ,_a : str=True ,_a : str=True ,_a : int="relu6" ,_a : Tuple=True ,_a : List[str]=0.8 ,_a : Dict=0.02 ,_a : Tuple=0.001 ,_a : Optional[Any]=255 ,**_a : List[Any] ,): '''simple docstring''' super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) _a : Union[str, Any] = num_channels _a : List[Any] = image_size _a : Optional[Any] = depth_multiplier _a : Union[str, Any] = depth_divisible_by _a : Tuple = min_depth _a : Union[str, Any] = expand_ratio _a : Union[str, Any] = output_stride _a : Union[str, Any] = first_layer_is_expansion _a : Optional[Any] = finegrained_output _a : Any = hidden_act _a : int = tf_padding _a : List[str] = classifier_dropout_prob _a : List[Any] = initializer_range _a : Union[str, Any] = layer_norm_eps _a : Any = semantic_loss_ignore_index class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : str = version.parse('''1.11''' ) @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def __lowercase ( self : Optional[int] ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def __lowercase ( self : List[str] ): '''simple docstring''' return 1E-4
229
1
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class lowercase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self , _lowercase ): lowerCAmelCase_ : str = 3 lowerCAmelCase_ : Optional[int] = 250 lowerCAmelCase_ : Any = ids_tensor((batch_size, length) , _lowercase ) lowerCAmelCase_ : Union[str, Any] = torch.ones((batch_size, length) , device=_lowercase , dtype=torch.float ) / length return input_ids, scores def UpperCAmelCase__ ( self ): lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = self._get_tensors(5 ) lowerCAmelCase_ : Tuple = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(_lowercase , _lowercase ) ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = self._get_tensors(9 ) self.assertFalse(criteria(_lowercase , _lowercase ) ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = self._get_tensors(10 ) self.assertTrue(criteria(_lowercase , _lowercase ) ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : List[str] = MaxLengthCriteria(max_length=10 ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self._get_tensors(5 ) self.assertFalse(criteria(_lowercase , _lowercase ) ) lowerCAmelCase_ , lowerCAmelCase_ : int = self._get_tensors(9 ) self.assertFalse(criteria(_lowercase , _lowercase ) ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = self._get_tensors(10 ) self.assertTrue(criteria(_lowercase , _lowercase ) ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : str = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) lowerCAmelCase_ , lowerCAmelCase_ : int = self._get_tensors(5 ) self.assertFalse(criteria(_lowercase , _lowercase ) ) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = self._get_tensors(9 ) self.assertFalse(criteria(_lowercase , _lowercase ) ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = self._get_tensors(10 ) self.assertTrue(criteria(_lowercase , _lowercase ) ) lowerCAmelCase_ : Optional[Any] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ , lowerCAmelCase_ : Any = self._get_tensors(5 ) lowerCAmelCase_ : List[str] = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(_lowercase , _lowercase ) ) lowerCAmelCase_ : Union[str, Any] = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(_lowercase , _lowercase ) ) def UpperCAmelCase__ ( self ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(_lowercase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) lowerCAmelCase_ : List[Any] = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(_lowercase ) , 1 )
440
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowercase__ ( unittest.TestCase ): __UpperCamelCase = inspect.getfile(accelerate.test_utils ) __UpperCamelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_cli.py"""] ) __UpperCamelCase = ["""accelerate""", """launch"""] __UpperCamelCase = Path.home() / """.cache/huggingface/accelerate""" __UpperCamelCase = """default_config.yaml""" __UpperCamelCase = config_folder / config_file __UpperCamelCase = config_folder / """_default_config.yaml""" __UpperCamelCase = Path("""tests/test_configs""" ) @classmethod def UpperCAmelCase__ ( cls ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def UpperCAmelCase__ ( cls ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : int = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def UpperCAmelCase__ ( self ): for config in sorted(self.test_config_path.glob("""**/*.yaml""" ) ): with self.subTest(config_file=_lowercase ): execute_subprocess_async( self.base_cmd + ["""--config_file""", str(_lowercase ), self.test_file_path] , env=os.environ.copy() ) def UpperCAmelCase__ ( self ): execute_subprocess_async(["""accelerate""", """test"""] , env=os.environ.copy() ) class lowercase__ ( unittest.TestCase ): __UpperCamelCase = """test-tpu""" __UpperCamelCase = """us-central1-a""" __UpperCamelCase = """ls""" __UpperCamelCase = ["""accelerate""", """tpu-config"""] __UpperCamelCase = """cd /usr/share""" __UpperCamelCase = """tests/test_samples/test_command_file.sh""" __UpperCamelCase = """Running gcloud compute tpus tpu-vm ssh""" def UpperCAmelCase__ ( self ): lowerCAmelCase_ : str = run_command( self.cmd + ["""--command""", self.command, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug"""] , return_stdout=_lowercase , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , _lowercase , ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : str = run_command( self.cmd + [ """--config_file""", """tests/test_configs/0_12_0.yaml""", """--command""", self.command, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug""", ] , return_stdout=_lowercase , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , _lowercase , ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Optional[Any] = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--debug"""] , return_stdout=_lowercase ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , _lowercase , ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Tuple = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--command""", self.command, """--debug"""] , return_stdout=_lowercase , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , _lowercase , ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : str = run_command( self.cmd + [ """--config_file""", """tests/test_configs/latest.yaml""", """--command""", self.command, """--command""", """echo \"Hello World\"""", """--debug""", ] , return_stdout=_lowercase , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all' , _lowercase , ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : str = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--command_file""", self.command_file, """--debug"""] , return_stdout=_lowercase , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , _lowercase , ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Optional[Any] = run_command( self.cmd + [ """--config_file""", """tests/test_configs/0_12_0.yaml""", """--command_file""", self.command_file, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug""", ] , return_stdout=_lowercase , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , _lowercase , ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Tuple = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--install_accelerate""", """--debug"""] , return_stdout=_lowercase , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all' , _lowercase , ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Any = run_command( self.cmd + [ """--config_file""", """tests/test_configs/latest.yaml""", """--install_accelerate""", """--accelerate_version""", """12.0.0""", """--debug""", ] , return_stdout=_lowercase , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all' , _lowercase , )
440
1
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger __A =get_logger(__name__) class _SCREAMING_SNAKE_CASE ( enum.Enum ): lowerCAmelCase__ = 'all_checks' lowerCAmelCase__ = 'basic_checks' lowerCAmelCase__ = 'no_checks' class _SCREAMING_SNAKE_CASE ( snake_case_ ): pass class _SCREAMING_SNAKE_CASE ( snake_case_ ): pass class _SCREAMING_SNAKE_CASE ( snake_case_ ): pass class _SCREAMING_SNAKE_CASE ( snake_case_ ): pass def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): if expected_checksums is None: logger.info("Unable to verify checksums." ) return if len(set(lowerCamelCase__ ) - set(lowerCamelCase__ ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(lowerCamelCase__ ) - set(lowerCamelCase__ ) ) ) if len(set(lowerCamelCase__ ) - set(lowerCamelCase__ ) ) > 0: raise UnexpectedDownloadedFile(str(set(lowerCamelCase__ ) - set(lowerCamelCase__ ) ) ) lowerCamelCase_ = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] lowerCamelCase_ = " for " + verification_name if verification_name is not None else "" if len(lowerCamelCase__ ) > 0: raise NonMatchingChecksumError( F'Checksums didn\'t match{for_verification_name}:\n' F'{bad_urls}\n' "Set `verification_mode='no_checks'` to skip checksums verification and ignore this error" ) logger.info("All the checksums matched successfully" + for_verification_name ) class _SCREAMING_SNAKE_CASE ( snake_case_ ): pass class _SCREAMING_SNAKE_CASE ( snake_case_ ): pass class _SCREAMING_SNAKE_CASE ( snake_case_ ): pass class _SCREAMING_SNAKE_CASE ( snake_case_ ): pass def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): if expected_splits is None: logger.info("Unable to verify splits sizes." ) return if len(set(lowerCamelCase__ ) - set(lowerCamelCase__ ) ) > 0: raise ExpectedMoreSplits(str(set(lowerCamelCase__ ) - set(lowerCamelCase__ ) ) ) if len(set(lowerCamelCase__ ) - set(lowerCamelCase__ ) ) > 0: raise UnexpectedSplits(str(set(lowerCamelCase__ ) - set(lowerCamelCase__ ) ) ) lowerCamelCase_ = [ {"expected": expected_splits[name], "recorded": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(lowerCamelCase__ ) > 0: raise NonMatchingSplitsSizesError(str(lowerCamelCase__ ) ) logger.info("All the splits matched successfully." ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ = True ): if record_checksum: lowerCamelCase_ = shaaaa() with open(lowerCamelCase__ , "rb" ) as f: for chunk in iter(lambda: f.read(1 << 2_0 ) , b"" ): m.update(lowerCamelCase__ ) lowerCamelCase_ = m.hexdigest() else: lowerCamelCase_ = None return {"num_bytes": os.path.getsize(lowerCamelCase__ ), "checksum": checksum} def lowerCamelCase_ ( lowerCamelCase__ ): if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
463
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer __A =logging.get_logger(__name__) __A ={'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __A =[ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] __A ={ '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } __A ={F"""funnel-transformer/{name}""": 5_1_2 for name in _model_names} __A ={F"""funnel-transformer/{name}""": {'''do_lower_case''': True} for name in _model_names} class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = FunnelTokenizer lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = 2 def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="<unk>" , lowercase="<sep>" , lowercase="<pad>" , lowercase="<cls>" , lowercase="<mask>" , lowercase="<s>" , lowercase="</s>" , lowercase=True , lowercase=True , lowercase=None , lowercase="##" , **lowercase , ) -> List[str]: super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , bos_token=lowercase , eos_token=lowercase , clean_text=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , wordpieces_prefix=lowercase , **lowercase , ) lowerCamelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowercase ) != do_lower_case or normalizer_state.get("strip_accents" , lowercase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowercase ) != tokenize_chinese_chars ): lowerCamelCase_ = getattr(lowercase , normalizer_state.pop("type" ) ) lowerCamelCase_ = do_lower_case lowerCamelCase_ = strip_accents lowerCamelCase_ = tokenize_chinese_chars lowerCamelCase_ = normalizer_class(**lowercase ) lowerCamelCase_ = do_lower_case def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase=None ) -> str: lowerCamelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[int]: lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> Tuple[str]: lowerCamelCase_ = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase )
463
1
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowercase__ :Optional[int] = { "gwf-440k": { "url": "https://model-server.zqevans2.workers.dev/gwf-440k.ckpt", "sample_rate": 4_8000, "sample_size": 6_5536, }, "jmann-small-190k": { "url": "https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt", "sample_rate": 4_8000, "sample_size": 6_5536, }, "jmann-large-580k": { "url": "https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt", "sample_rate": 4_8000, "sample_size": 13_1072, }, "maestro-uncond-150k": { "url": "https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt", "sample_rate": 1_6000, "sample_size": 6_5536, }, "unlocked-uncond-250k": { "url": "https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt", "sample_rate": 1_6000, "sample_size": 6_5536, }, "honk-140k": { "url": "https://model-server.zqevans2.workers.dev/honk-140k.ckpt", "sample_rate": 1_6000, "sample_size": 6_5536, }, } def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' return torch.atana(lowerCAmelCase__ , lowerCAmelCase__ ) / math.pi * 2 def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = torch.sin(t * math.pi / 2 ) ** 2 lowercase = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(lowerCAmelCase__ , lowerCAmelCase__ ) class lowercase ( SCREAMING_SNAKE_CASE__ ): pass class lowercase ( nn.Module ): def __init__( self ,A__): super().__init__() lowercase = DiffusionAttnUnetaD(A__ ,n_attn_layers=4) lowercase = deepcopy(self.diffusion) lowercase = torch.quasirandom.SobolEngine(1 ,scramble=A__) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = MODELS_MAP[model_name]['''url'''] os.system(f'wget {url} ./' ) return f'./{model_name}.ckpt' lowercase__ :Optional[Any] = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", } lowercase__ :Tuple = { "8": "resnets.0", "9": "attentions.0", "10": "resnets.1", "11": "attentions.1", "12": "resnets.2", "13": "attentions.2", } lowercase__ :int = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", "8": "resnets.3", "9": "attentions.3", "10": "resnets.4", "11": "attentions.4", "12": "resnets.5", "13": "attentions.5", } lowercase__ :Dict = { "0": "resnets.0", "1": "resnets.1", "2": "resnets.2", "4": "resnets.0", "5": "resnets.1", "6": "resnets.2", } lowercase__ :Optional[Any] = { "skip": "conv_skip", "main.0": "conv_1", "main.1": "group_norm_1", "main.3": "conv_2", "main.4": "group_norm_2", } lowercase__ :List[Any] = { "norm": "group_norm", "qkv_proj": ["query", "key", "value"], "out_proj": ["proj_attn"], } def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if name.startswith('''skip''' ): return name.replace('''skip''' , RES_CONV_MAP['''skip'''] ) # name has to be of format main.{digit} if not name.startswith('''main.''' ): raise ValueError(f'ResConvBlock error with {name}' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' for key, value in ATTN_MAP.items(): if name.startswith(lowerCAmelCase__ ) and not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return name.replace(lowerCAmelCase__ , lowerCAmelCase__ ) elif name.startswith(lowerCAmelCase__ ): return [name.replace(lowerCAmelCase__ , lowerCAmelCase__ ) for v in value] raise ValueError(f'Attn error with {name}' ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__=13 ): '''simple docstring''' lowercase = input_string if string.split('''.''' )[0] == "timestep_embed": return string.replace('''timestep_embed''' , '''time_proj''' ) lowercase = 0 if string.startswith('''net.3.''' ): depth += 1 lowercase = string[6:] elif string.startswith('''net.''' ): lowercase = string[4:] while string.startswith('''main.7.''' ): depth += 1 lowercase = string[7:] if string.startswith('''main.''' ): lowercase = string[5:] # mid block if string[:2].isdigit(): lowercase = string[:2] lowercase = string[2:] else: lowercase = string[0] lowercase = string[1:] if depth == max_depth: lowercase = MID_NUM_TO_LAYER[layer_num] lowercase = '''mid_block''' elif depth > 0 and int(lowerCAmelCase__ ) < 7: lowercase = DOWN_NUM_TO_LAYER[layer_num] lowercase = f'down_blocks.{depth}' elif depth > 0 and int(lowerCAmelCase__ ) > 7: lowercase = UP_NUM_TO_LAYER[layer_num] lowercase = f'up_blocks.{max_depth - depth - 1}' elif depth == 0: lowercase = DEPTH_0_TO_LAYER[layer_num] lowercase = f'up_blocks.{max_depth - 1}' if int(lowerCAmelCase__ ) > 3 else '''down_blocks.0''' if not string_left.startswith('''.''' ): raise ValueError(f'Naming error with {input_string} and string_left: {string_left}.' ) lowercase = string_left[1:] if "resnets" in new_layer: lowercase = convert_resconv_naming(lowerCAmelCase__ ) elif "attentions" in new_layer: lowercase = convert_attn_naming(lowerCAmelCase__ ) lowercase = new_string_left if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = prefix + '''.''' + new_layer + '''.''' + string_left else: lowercase = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left] return new_string def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = {} for k, v in state_dict.items(): if k.endswith('''kernel''' ): # up- and downsample layers, don't have trainable weights continue lowercase = rename(lowerCAmelCase__ ) # check if we need to transform from Conv => Linear for attention if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = transform_conv_attns(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: lowercase = v return new_state_dict def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' if len(lowerCAmelCase__ ) == 1: if len(v.shape ) == 3: # weight lowercase = v[:, :, 0] else: # bias lowercase = v else: # qkv matrices lowercase = v.shape[0] lowercase = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: lowercase = v[i * single_shape : (i + 1) * single_shape, :, 0] else: lowercase = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) lowercase = args.model_path.split('''/''' )[-1].split('''.''' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f'Make sure to provide one of the official model names {MODELS_MAP.keys()}' lowercase = download(lowerCAmelCase__ ) lowercase = MODELS_MAP[model_name]['''sample_rate'''] lowercase = MODELS_MAP[model_name]['''sample_size'''] lowercase = Object() lowercase = sample_size lowercase = sample_rate lowercase = 0 lowercase = UNetaDModel(sample_size=lowerCAmelCase__ , sample_rate=lowerCAmelCase__ ) lowercase = diffusers_model.state_dict() lowercase = DiffusionUncond(lowerCAmelCase__ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=lowerCAmelCase__ )['''state_dict'''] ) lowercase = orig_model.diffusion_ema.eval() lowercase = orig_model.state_dict() lowercase = rename_orig_weights(lowerCAmelCase__ ) lowercase = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) lowercase = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(lowerCAmelCase__ ) == 0, f'Problem with {renamed_minus_diffusers}' assert all(k.endswith('''kernel''' ) for k in list(lowerCAmelCase__ ) ), f'Problem with {diffusers_minus_renamed}' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f'Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}' if key == "time_proj.weight": lowercase = value.squeeze() lowercase = value diffusers_model.load_state_dict(lowerCAmelCase__ ) lowercase = 100 lowercase = 33 lowercase = IPNDMScheduler(num_train_timesteps=lowerCAmelCase__ ) lowercase = torch.manual_seed(lowerCAmelCase__ ) lowercase = torch.randn([1, 2, config.sample_size] , generator=lowerCAmelCase__ ).to(lowerCAmelCase__ ) lowercase = torch.linspace(1 , 0 , steps + 1 , device=lowerCAmelCase__ )[:-1] lowercase = get_crash_schedule(lowerCAmelCase__ ) lowercase = DanceDiffusionPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) lowercase = torch.manual_seed(33 ) lowercase = pipe(num_inference_steps=lowerCAmelCase__ , generator=lowerCAmelCase__ ).audios lowercase = sampling.iplms_sample(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , {} ) lowercase = generated.clamp(-1 , 1 ) lowercase = (generated - audio).abs().sum() lowercase = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('''Diff sum''' , lowerCAmelCase__ ) print('''Diff max''' , lowerCAmelCase__ ) assert diff_max < 1E-3, f'Diff max: {diff_max} is too much :-/' print(f'Conversion for {model_name} successful!' ) if __name__ == "__main__": lowercase__ :Tuple = argparse.ArgumentParser() parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") lowercase__ :Dict = parser.parse_args() main(args)
712
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ :Tuple = { "configuration_instructblip": [ "INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "InstructBlipConfig", "InstructBlipQFormerConfig", "InstructBlipVisionConfig", ], "processing_instructblip": ["InstructBlipProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ :List[str] = [ "INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "InstructBlipQFormerModel", "InstructBlipPreTrainedModel", "InstructBlipForConditionalGeneration", "InstructBlipVisionModel", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys lowercase__ :List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
633
0
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( lowercase_): """simple docstring""" lowerCAmelCase_ = (UnCLIPScheduler,) def UpperCamelCase__ ( self : str , **UpperCamelCase__ : Tuple ) -> Union[str, Any]: _UpperCamelCase ={ '''num_train_timesteps''': 1000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**A_ ) return config def UpperCamelCase__ ( self : str ) -> Optional[Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=A_ ) def UpperCamelCase__ ( self : Tuple ) -> Any: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=A_ ) def UpperCamelCase__ ( self : Tuple ) -> str: for clip_sample in [True, False]: self.check_over_configs(clip_sample=A_ ) def UpperCamelCase__ ( self : Union[str, Any] ) -> List[str]: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=A_ ) def UpperCamelCase__ ( self : str ) -> Union[str, Any]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=A_ ) def UpperCamelCase__ ( self : Any ) -> Union[str, Any]: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=A_ , prev_timestep=A_ ) def UpperCamelCase__ ( self : Dict ) -> Any: _UpperCamelCase =self.scheduler_classes[0] _UpperCamelCase =self.get_scheduler_config(variance_type='''fixed_small_log''' ) _UpperCamelCase =scheduler_class(**A_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0549625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9994987 ) ) < 1E-5 def UpperCamelCase__ ( self : int ) -> Optional[Any]: _UpperCamelCase =self.scheduler_classes[0] _UpperCamelCase =self.get_scheduler_config(variance_type='''learned_range''' ) _UpperCamelCase =scheduler_class(**A_ ) _UpperCamelCase =0.5 assert scheduler._get_variance(1 , predicted_variance=A_ ) - -10.1712790 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=A_ ) - -5.7998052 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=A_ ) - -0.0010011 < 1E-5 def UpperCamelCase__ ( self : str ) -> Optional[Any]: _UpperCamelCase =self.scheduler_classes[0] _UpperCamelCase =self.get_scheduler_config() _UpperCamelCase =scheduler_class(**A_ ) _UpperCamelCase =scheduler.timesteps _UpperCamelCase =self.dummy_model() _UpperCamelCase =self.dummy_sample_deter _UpperCamelCase =torch.manual_seed(0 ) for i, t in enumerate(A_ ): # 1. predict noise residual _UpperCamelCase =model(A_ , A_ ) # 2. predict previous mean of sample x_t-1 _UpperCamelCase =scheduler.step(A_ , A_ , A_ , generator=A_ ).prev_sample _UpperCamelCase =pred_prev_sample _UpperCamelCase =torch.sum(torch.abs(A_ ) ) _UpperCamelCase =torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1E-2 assert abs(result_mean.item() - 0.3284743 ) < 1E-3 def UpperCamelCase__ ( self : Optional[int] ) -> Any: _UpperCamelCase =self.scheduler_classes[0] _UpperCamelCase =self.get_scheduler_config() _UpperCamelCase =scheduler_class(**A_ ) scheduler.set_timesteps(25 ) _UpperCamelCase =scheduler.timesteps _UpperCamelCase =self.dummy_model() _UpperCamelCase =self.dummy_sample_deter _UpperCamelCase =torch.manual_seed(0 ) for i, t in enumerate(A_ ): # 1. predict noise residual _UpperCamelCase =model(A_ , A_ ) if i + 1 == timesteps.shape[0]: _UpperCamelCase =None else: _UpperCamelCase =timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _UpperCamelCase =scheduler.step( A_ , A_ , A_ , prev_timestep=A_ , generator=A_ ).prev_sample _UpperCamelCase =pred_prev_sample _UpperCamelCase =torch.sum(torch.abs(A_ ) ) _UpperCamelCase =torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1E-2 assert abs(result_mean.item() - 0.3362038 ) < 1E-3 def UpperCamelCase__ ( self : Union[str, Any] ) -> Tuple: pass def UpperCamelCase__ ( self : Dict ) -> List[Any]: pass
404
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) def _UpperCAmelCase ( A ): '''simple docstring''' UpperCAmelCase__ =SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) UpperCAmelCase__ =MaskFormerConfig(backbone_config=A ) UpperCAmelCase__ ="huggingface/label-files" if "ade20k-full" in model_name: # this should be ok UpperCAmelCase__ =847 UpperCAmelCase__ ="maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok UpperCAmelCase__ =150 UpperCAmelCase__ ="ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok UpperCAmelCase__ =171 UpperCAmelCase__ ="maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO UpperCAmelCase__ =133 UpperCAmelCase__ ="coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok UpperCAmelCase__ =19 UpperCAmelCase__ ="cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok UpperCAmelCase__ =65 UpperCAmelCase__ ="mapillary-vistas-id2label.json" UpperCAmelCase__ =json.load(open(hf_hub_download(A , A , repo_type="dataset" ) , "r" ) ) UpperCAmelCase__ ={int(A ): v for k, v in idalabel.items()} return config def _UpperCAmelCase ( A ): '''simple docstring''' UpperCAmelCase__ =[] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def _UpperCAmelCase ( A , A , A ): '''simple docstring''' UpperCAmelCase__ =dct.pop(A ) UpperCAmelCase__ =val def _UpperCAmelCase ( A , A ): '''simple docstring''' UpperCAmelCase__ =[int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCAmelCase__ =num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCAmelCase__ =state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) UpperCAmelCase__ =state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase__ =in_proj_weight[:dim, :] UpperCAmelCase__ =in_proj_bias[: dim] UpperCAmelCase__ =in_proj_weight[ dim : dim * 2, : ] UpperCAmelCase__ =in_proj_bias[ dim : dim * 2 ] UpperCAmelCase__ =in_proj_weight[ -dim :, : ] UpperCAmelCase__ =in_proj_bias[-dim :] # fmt: on def _UpperCAmelCase ( A , A ): '''simple docstring''' UpperCAmelCase__ =config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase__ =state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) UpperCAmelCase__ =state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase__ =in_proj_weight[: hidden_size, :] UpperCAmelCase__ =in_proj_bias[:config.hidden_size] UpperCAmelCase__ =in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase__ =in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase__ =in_proj_weight[-hidden_size :, :] UpperCAmelCase__ =in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase__ =state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) UpperCAmelCase__ =state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase__ =in_proj_weight[: hidden_size, :] UpperCAmelCase__ =in_proj_bias[:config.hidden_size] UpperCAmelCase__ =in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase__ =in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase__ =in_proj_weight[-hidden_size :, :] UpperCAmelCase__ =in_proj_bias[-hidden_size :] # fmt: on def _UpperCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ ="http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase__ =Image.open(requests.get(A , stream=A ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( A , A , A , A = False ): '''simple docstring''' UpperCAmelCase__ =get_maskformer_config(A ) # load original state_dict with open(A , "rb" ) as f: UpperCAmelCase__ =pickle.load(A ) UpperCAmelCase__ =data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys UpperCAmelCase__ =create_rename_keys(A ) for src, dest in rename_keys: rename_key(A , A , A ) read_in_swin_q_k_v(A , config.backbone_config ) read_in_decoder_q_k_v(A , A ) # update to torch tensors for key, value in state_dict.items(): UpperCAmelCase__ =torch.from_numpy(A ) # load 🤗 model UpperCAmelCase__ =MaskFormerForInstanceSegmentation(A ) model.eval() for name, param in model.named_parameters(): print(A , param.shape ) UpperCAmelCase__ , UpperCAmelCase__ =model.load_state_dict(A , strict=A ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(A ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results UpperCAmelCase__ =prepare_img() if "vistas" in model_name: UpperCAmelCase__ =65 elif "cityscapes" in model_name: UpperCAmelCase__ =65535 else: UpperCAmelCase__ =255 UpperCAmelCase__ =True if "ade" in model_name else False UpperCAmelCase__ =MaskFormerImageProcessor(ignore_index=A , reduce_labels=A ) UpperCAmelCase__ =image_processor(A , return_tensors="pt" ) UpperCAmelCase__ =model(**A ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": UpperCAmelCase__ =torch.tensor( [[3.63_53, -4.47_70, -2.60_65], [0.50_81, -4.23_94, -3.53_43], [2.19_09, -5.03_53, -1.93_23]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , A , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(A ).mkdir(exist_ok=A ) model.save_pretrained(A ) image_processor.save_pretrained(A ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCamelCase_ = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
625
0
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger lowerCamelCase =get_logger(__name__) class _lowerCamelCase ( enum.Enum ): """simple docstring""" SCREAMING_SNAKE_CASE_ = """all_checks""" SCREAMING_SNAKE_CASE_ = """basic_checks""" SCREAMING_SNAKE_CASE_ = """no_checks""" class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ): if expected_checksums is None: logger.info('''Unable to verify checksums.''' ) return if len(set(_UpperCamelCase ) - set(_UpperCamelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(_UpperCamelCase ) - set(_UpperCamelCase ) ) ) if len(set(_UpperCamelCase ) - set(_UpperCamelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(_UpperCamelCase ) - set(_UpperCamelCase ) ) ) UpperCamelCase__ : int = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] UpperCamelCase__ : List[str] = ''' for ''' + verification_name if verification_name is not None else '''''' if len(_UpperCamelCase ) > 0: raise NonMatchingChecksumError( f'''Checksums didn\'t match{for_verification_name}:\n''' f'''{bad_urls}\n''' '''Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error''' ) logger.info('''All the checksums matched successfully''' + for_verification_name ) class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ ): if expected_splits is None: logger.info('''Unable to verify splits sizes.''' ) return if len(set(_UpperCamelCase ) - set(_UpperCamelCase ) ) > 0: raise ExpectedMoreSplits(str(set(_UpperCamelCase ) - set(_UpperCamelCase ) ) ) if len(set(_UpperCamelCase ) - set(_UpperCamelCase ) ) > 0: raise UnexpectedSplits(str(set(_UpperCamelCase ) - set(_UpperCamelCase ) ) ) UpperCamelCase__ : Optional[Any] = [ {'''expected''': expected_splits[name], '''recorded''': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(_UpperCamelCase ) > 0: raise NonMatchingSplitsSizesError(str(_UpperCamelCase ) ) logger.info('''All the splits matched successfully.''' ) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ = True ): if record_checksum: UpperCamelCase__ : Union[str, Any] = shaaaa() with open(_UpperCamelCase , '''rb''' ) as f: for chunk in iter(lambda: f.read(1 << 2_0 ) , b'''''' ): m.update(_UpperCamelCase ) UpperCamelCase__ : Dict = m.hexdigest() else: UpperCamelCase__ : int = None return {"num_bytes": os.path.getsize(_UpperCamelCase ), "checksum": checksum} def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
716
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase ={ "configuration_clipseg": [ "CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPSegConfig", "CLIPSegTextConfig", "CLIPSegVisionConfig", ], "processing_clipseg": ["CLIPSegProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase =[ "CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPSegModel", "CLIPSegPreTrainedModel", "CLIPSegTextModel", "CLIPSegVisionModel", "CLIPSegForImageSegmentation", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
462
0
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def snake_case ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(lowerCAmelCase_ ): requests.request("""GET""" , """https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 ) @pytest.mark.integration def snake_case ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" , """https://huggingface.co""" ) def snake_case ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(lowerCAmelCase_ ): http_head("""https://huggingface.co""" )
80
import random def _A ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Any ): """simple docstring""" lowerCAmelCase__ = a[left_index] lowerCAmelCase__ = left_index + 1 for j in range(left_index + 1 , lowerCAmelCase_ ): if a[j] < pivot: lowerCAmelCase__ , lowerCAmelCase__ = a[i], a[j] i += 1 lowerCAmelCase__ , lowerCAmelCase__ = a[i - 1], a[left_index] return i - 1 def _A ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str ): """simple docstring""" if left < right: lowerCAmelCase__ = random.randint(lowerCAmelCase_ , right - 1 ) lowerCAmelCase__ , lowerCAmelCase__ = ( a[left], a[pivot], ) # switches the pivot with the left most bound lowerCAmelCase__ = partition(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) quick_sort_random( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowerCAmelCase_ , pivot_index + 1 , lowerCAmelCase_ ) # recursive quicksort to the right of the pivot point def _A ( ): """simple docstring""" lowerCAmelCase__ = input("Enter numbers separated by a comma:\n" ).strip() lowerCAmelCase__ = [int(lowerCAmelCase_ ) for item in user_input.split("," )] quick_sort_random(lowerCAmelCase_ , 0 , len(lowerCAmelCase_ ) ) print(lowerCAmelCase_ ) if __name__ == "__main__": main()
61
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" while a != 0: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = b % a, a return b def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" if gcd(lowerCamelCase__ , lowerCamelCase__ ) != 1: __UpperCAmelCase : Any = f"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(lowerCamelCase__ ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = 1, 0, a __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = 0, 1, m while va != 0: __UpperCAmelCase : Any = ua // va __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
10
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def _lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: """simple docstring""" if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ): # Color current vertex __UpperCAmelCase : List[str] = i # Validate coloring if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ): return True # Backtrack __UpperCAmelCase : Any = -1 return False def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> list[int]: """simple docstring""" __UpperCAmelCase : Optional[Any] = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ): return colored_vertices return []
10
1
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowercase__: """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any]=1_3 , SCREAMING_SNAKE_CASE_ : int=7 , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=9_9 , SCREAMING_SNAKE_CASE_ : Optional[Any]=6_4 , SCREAMING_SNAKE_CASE_ : Optional[Any]=3_2 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=5 , SCREAMING_SNAKE_CASE_ : Any=4 , SCREAMING_SNAKE_CASE_ : Dict=3_7 , SCREAMING_SNAKE_CASE_ : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE_ : Dict=0.1 , SCREAMING_SNAKE_CASE_ : Any=0.1 , SCREAMING_SNAKE_CASE_ : Tuple=5_1_2 , SCREAMING_SNAKE_CASE_ : Any=1_6 , SCREAMING_SNAKE_CASE_ : str=2 , SCREAMING_SNAKE_CASE_ : int=0.02 , SCREAMING_SNAKE_CASE_ : Dict=3 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=4 , SCREAMING_SNAKE_CASE_ : str=None , ) -> List[Any]: lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = embedding_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope def _lowercase ( self : Optional[int] ) -> Optional[int]: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self : Tuple ) -> List[Any]: return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : str ) -> str: lowercase_ = MegatronBertModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) lowercase_ = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int ) -> Tuple: lowercase_ = MegatronBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[int]: lowercase_ = MegatronBertForCausalLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> List[str]: lowercase_ = MegatronBertForNextSentencePrediction(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _lowercase ( self : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> int: lowercase_ = MegatronBertForPreTraining(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , next_sentence_label=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str ) -> Tuple: lowercase_ = MegatronBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int ) -> List[str]: lowercase_ = self.num_labels lowercase_ = MegatronBertForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Optional[Any]: lowercase_ = self.num_labels lowercase_ = MegatronBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple ) -> int: lowercase_ = self.num_choices lowercase_ = MegatronBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self : Any ) -> Dict: lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase__( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :str = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) a :Tuple = ( { 'feature-extraction': MegatronBertModel, 'fill-mask': MegatronBertForMaskedLM, 'question-answering': MegatronBertForQuestionAnswering, 'text-classification': MegatronBertForSequenceClassification, 'text-generation': MegatronBertForCausalLM, 'token-classification': MegatronBertForTokenClassification, 'zero-shot': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) a :List[str] = True # test_resize_embeddings = False a :str = False def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any]=False ) -> int: lowercase_ = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) if return_labels: if model_class in get_values(SCREAMING_SNAKE_CASE_ ): lowercase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) lowercase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) return inputs_dict def _lowercase ( self : Tuple ) -> List[Any]: lowercase_ = MegatronBertModelTester(self ) lowercase_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=3_7 ) def _lowercase ( self : int ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase ( self : Optional[Any] ) -> Optional[Any]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : int ) -> Any: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : int ) -> int: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[int] ) -> str: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Dict ) -> Optional[int]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Tuple ) -> Optional[Any]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : List[Any] ) -> Optional[int]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Tuple ) -> List[Any]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*SCREAMING_SNAKE_CASE_ ) def a ( snake_case__: Any ): '''simple docstring''' return torch.tensor( snake_case__ , dtype=torch.long , device=snake_case__ , ) __a = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class lowercase__( unittest.TestCase ): """simple docstring""" @slow @unittest.skip('''Model is not available.''' ) def _lowercase ( self : Union[str, Any] ) -> Dict: lowercase_ = '''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: lowercase_ = os.path.join(os.environ['''MYDIR'''] , SCREAMING_SNAKE_CASE_ ) lowercase_ = MegatronBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.half() lowercase_ = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): lowercase_ = model(SCREAMING_SNAKE_CASE_ )[0] lowercase_ = torch.Size((1, 9, 1_0_2_4) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) lowercase_ = [-0.60_40, -0.25_17, -0.10_25, 0.34_20, -0.67_58, -0.00_17, -0.10_89, -0.19_90, 0.57_28] for ii in range(3 ): for jj in range(3 ): lowercase_ = output[0, ii, jj] lowercase_ = expected[3 * ii + jj] lowercase_ = '''ii={} jj={} a={} b={}'''.format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertTrue(math.isclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rel_tol=SCREAMING_SNAKE_CASE_ , abs_tol=SCREAMING_SNAKE_CASE_ ) , msg=SCREAMING_SNAKE_CASE_ )
97
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __A : str = logging.get_logger(__name__) __A : Optional[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __A : Tuple = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __A : Optional[Any] = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __A : str = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } __A : Optional[Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2, 'facebook/dpr-ctx_encoder-multiset-base': 5_1_2, } __A : List[str] = { 'facebook/dpr-question_encoder-single-nq-base': 5_1_2, 'facebook/dpr-question_encoder-multiset-base': 5_1_2, } __A : Any = { 'facebook/dpr-reader-single-nq-base': 5_1_2, 'facebook/dpr-reader-multiset-base': 5_1_2, } __A : str = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } __A : Any = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } __A : Dict = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __A : Optional[int] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) __A : List[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) __A : List[Any] = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(__snake_case ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __call__( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Union[bool, str] = False , __lowerCamelCase : Union[bool, str] = False , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : Optional[bool] = None , **__lowerCamelCase : Any , ): if titles is None and texts is None: return super().__call__( __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE = titles if texts is None else texts return super().__call__( __lowerCamelCase , __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE = titles if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [titles] SCREAMING_SNAKE_CASE = texts if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [texts] SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE = questions if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [questions] * n_passages if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError( f"There should be as many titles than texts but got {len(__lowerCamelCase )} titles and {len(__lowerCamelCase )} texts." ) SCREAMING_SNAKE_CASE = super().__call__(__lowerCamelCase , __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase )["input_ids"] SCREAMING_SNAKE_CASE = super().__call__(__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase )["input_ids"] SCREAMING_SNAKE_CASE = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__lowerCamelCase , __lowerCamelCase ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE = attention_mask return self.pad(__lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase ) def _snake_case ( self : Tuple , __lowerCamelCase : BatchEncoding , __lowerCamelCase : DPRReaderOutput , __lowerCamelCase : int = 16 , __lowerCamelCase : int = 64 , __lowerCamelCase : int = 4 , ): SCREAMING_SNAKE_CASE = reader_input["input_ids"] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = reader_output[:3] SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE = sorted(range(__lowerCamelCase ) , reverse=__lowerCamelCase , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__lowerCamelCase , top_spans=__lowerCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__lowerCamelCase , start_index=__lowerCamelCase , end_index=__lowerCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__lowerCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _snake_case ( self : Optional[int] , __lowerCamelCase : List[int] , __lowerCamelCase : List[int] , __lowerCamelCase : int , __lowerCamelCase : int , ): SCREAMING_SNAKE_CASE = [] for start_index, start_score in enumerate(__lowerCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE = sorted(__lowerCamelCase , key=lambda __lowerCamelCase : x[1] , reverse=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"Wrong span indices: [{start_index}:{end_index}]" ) SCREAMING_SNAKE_CASE = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"Span is too long: {length} > {max_answer_length}" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__lowerCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__snake_case ) class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = READER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ = ["input_ids", "attention_mask"]
16
0
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip SCREAMING_SNAKE_CASE : Tuple = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def __lowerCamelCase ( lowerCAmelCase__ ): if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): return max(metric_fn(lowerCAmelCase__ ,lowerCAmelCase__ ) for gt in ground_truths ) def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): A__ = [line.strip() for line in open(lowerCAmelCase__ ,'r' ).readlines()] A__ = [] if args.gold_data_mode == "qa": A__ = pd.read_csv(lowerCAmelCase__ ,sep='\t' ,header=lowerCAmelCase__ ) for answer_list in data[1]: A__ = ast.literal_eval(lowerCAmelCase__ ) answers.append(lowerCAmelCase__ ) else: A__ = [line.strip() for line in open(lowerCAmelCase__ ,'r' ).readlines()] A__ = [[reference] for reference in references] A__ = A__ = A__ = 0 for prediction, ground_truths in zip(lowerCAmelCase__ ,lowerCAmelCase__ ): total += 1 em += metric_max_over_ground_truths(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) fa += metric_max_over_ground_truths(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) A__ = 100.0 * em / total A__ = 100.0 * fa / total logger.info(f'''F1: {fa:.2f}''' ) logger.info(f'''EM: {em:.2f}''' ) def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): A__ = args.k A__ = [line.strip() for line in open(lowerCAmelCase__ ,'r' ).readlines()] A__ = [line.strip() for line in open(lowerCAmelCase__ ,'r' ).readlines()] A__ = A__ = 0 for hypo, reference in zip(lowerCAmelCase__ ,lowerCAmelCase__ ): A__ = set(hypo.split('\t' )[:k] ) A__ = set(reference.split('\t' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k A__ = 100.0 * em / total logger.info(f'''Precision@{k}: {em: .2f}''' ) def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): def strip_title(lowerCAmelCase__ ): if title.startswith('"' ): A__ = title[1:] if title.endswith('"' ): A__ = title[:-1] return title A__ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ ,return_tensors='pt' ,padding=lowerCAmelCase__ ,truncation=lowerCAmelCase__ ,)['input_ids'].to(args.device ) A__ = rag_model.rag.question_encoder(lowerCAmelCase__ ) A__ = question_enc_outputs[0] A__ = rag_model.retriever( lowerCAmelCase__ ,question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() ,prefix=rag_model.rag.generator.config.prefix ,n_docs=rag_model.config.n_docs ,return_tensors='pt' ,) A__ = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) A__ = [] for docs in all_docs: A__ = [strip_title(lowerCAmelCase__ ) for title in docs['title']] provenance_strings.append('\t'.join(lowerCAmelCase__ ) ) return provenance_strings def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): with torch.no_grad(): A__ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ ,return_tensors='pt' ,padding=lowerCAmelCase__ ,truncation=lowerCAmelCase__ ) A__ = inputs_dict.input_ids.to(args.device ) A__ = inputs_dict.attention_mask.to(args.device ) A__ = rag_model.generate( # rag_model overwrites generate lowerCAmelCase__ ,attention_mask=lowerCAmelCase__ ,num_beams=args.num_beams ,min_length=args.min_length ,max_length=args.max_length ,early_stopping=lowerCAmelCase__ ,num_return_sequences=1 ,bad_words_ids=[[0, 0]] ,) A__ = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase__ ,skip_special_tokens=lowerCAmelCase__ ) if args.print_predictions: for q, a in zip(lowerCAmelCase__ ,lowerCAmelCase__ ): logger.info('Q: {} - A: {}'.format(lowerCAmelCase__ ,lowerCAmelCase__ ) ) return answers def __lowerCamelCase ( ): A__ = argparse.ArgumentParser() parser.add_argument( '--model_type' ,choices=['rag_sequence', 'rag_token', 'bart'] ,type=lowerCAmelCase__ ,help=( 'RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the' ' model_name_or_path' ) ,) parser.add_argument( '--index_name' ,default=lowerCAmelCase__ ,choices=['exact', 'compressed', 'legacy'] ,type=lowerCAmelCase__ ,help='RAG model retriever type' ,) parser.add_argument( '--index_path' ,default=lowerCAmelCase__ ,type=lowerCAmelCase__ ,help='Path to the retrieval index' ,) parser.add_argument('--n_docs' ,default=5 ,type=lowerCAmelCase__ ,help='Number of retrieved docs' ) parser.add_argument( '--model_name_or_path' ,default=lowerCAmelCase__ ,type=lowerCAmelCase__ ,required=lowerCAmelCase__ ,help='Path to pretrained checkpoints or model identifier from huggingface.co/models' ,) parser.add_argument( '--eval_mode' ,choices=['e2e', 'retrieval'] ,default='e2e' ,type=lowerCAmelCase__ ,help=( 'Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates' ' precision@k.' ) ,) parser.add_argument('--k' ,default=1 ,type=lowerCAmelCase__ ,help='k for the precision@k calculation' ) parser.add_argument( '--evaluation_set' ,default=lowerCAmelCase__ ,type=lowerCAmelCase__ ,required=lowerCAmelCase__ ,help='Path to a file containing evaluation samples' ,) parser.add_argument( '--gold_data_path' ,default=lowerCAmelCase__ ,type=lowerCAmelCase__ ,required=lowerCAmelCase__ ,help='Path to a tab-separated file with gold samples' ,) parser.add_argument( '--gold_data_mode' ,default='qa' ,type=lowerCAmelCase__ ,choices=['qa', 'ans'] ,help=( 'Format of the gold data file' 'qa - a single line in the following format: question [tab] answer_list' 'ans - a single line of the gold file contains the expected answer string' ) ,) parser.add_argument( '--predictions_path' ,type=lowerCAmelCase__ ,default='predictions.txt' ,help='Name of the predictions file, to be stored in the checkpoints directory' ,) parser.add_argument( '--eval_all_checkpoints' ,action='store_true' ,help='Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number' ,) parser.add_argument( '--eval_batch_size' ,default=8 ,type=lowerCAmelCase__ ,help='Batch size per GPU/CPU for evaluation.' ,) parser.add_argument( '--recalculate' ,help='Recalculate predictions even if the prediction file exists' ,action='store_true' ,) parser.add_argument( '--num_beams' ,default=4 ,type=lowerCAmelCase__ ,help='Number of beams to be used when generating answers' ,) parser.add_argument('--min_length' ,default=1 ,type=lowerCAmelCase__ ,help='Min length of the generated answers' ) parser.add_argument('--max_length' ,default=50 ,type=lowerCAmelCase__ ,help='Max length of the generated answers' ) parser.add_argument( '--print_predictions' ,action='store_true' ,help='If True, prints predictions while evaluating.' ,) parser.add_argument( '--print_docs' ,action='store_true' ,help='If True, prints docs retried while generating.' ,) A__ = parser.parse_args() A__ = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) return args def __lowerCamelCase ( lowerCAmelCase__ ): A__ = {} if args.model_type is None: A__ = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('rag' ): A__ = RagTokenForGeneration if args.model_type == 'rag_token' else RagSequenceForGeneration A__ = args.n_docs if args.index_name is not None: A__ = args.index_name if args.index_path is not None: A__ = args.index_path else: A__ = BartForConditionalGeneration A__ = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('Evaluate the following checkpoints: %s' ,lowerCAmelCase__ ) A__ = get_scores if args.eval_mode == 'e2e' else get_precision_at_k A__ = evaluate_batch_eae if args.eval_mode == 'e2e' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('Calculating metrics based on an existing predictions file: {}'.format(args.predictions_path ) ) score_fn(lowerCAmelCase__ ,args.predictions_path ,args.gold_data_path ) continue logger.info('***** Running evaluation for {} *****'.format(lowerCAmelCase__ ) ) logger.info(' Batch size = %d' ,args.eval_batch_size ) logger.info(' Predictions will be stored under {}'.format(args.predictions_path ) ) if args.model_type.startswith('rag' ): A__ = RagRetriever.from_pretrained(lowerCAmelCase__ ,**lowerCAmelCase__ ) A__ = model_class.from_pretrained(lowerCAmelCase__ ,retriever=lowerCAmelCase__ ,**lowerCAmelCase__ ) model.retriever.init_retrieval() else: A__ = model_class.from_pretrained(lowerCAmelCase__ ,**lowerCAmelCase__ ) model.to(args.device ) with open(args.evaluation_set ,'r' ) as eval_file, open(args.predictions_path ,'w' ) as preds_file: A__ = [] for line in tqdm(lowerCAmelCase__ ): questions.append(line.strip() ) if len(lowerCAmelCase__ ) == args.eval_batch_size: A__ = evaluate_batch_fn(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) preds_file.write('\n'.join(lowerCAmelCase__ ) + '\n' ) preds_file.flush() A__ = [] if len(lowerCAmelCase__ ) > 0: A__ = evaluate_batch_fn(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) preds_file.write('\n'.join(lowerCAmelCase__ ) ) preds_file.flush() score_fn(lowerCAmelCase__ ,args.predictions_path ,args.gold_data_path ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Tuple = get_args() main(args)
720
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ = "cpu" ,lowerCAmelCase__ = None ): A__ = torch.load(lowerCAmelCase__ ,map_location=lowerCAmelCase__ ) for k, v in tqdm(state_dict.items() ): if not isinstance(lowerCAmelCase__ ,torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) A__ = v.half() if save_path is None: # overwrite src_path A__ = src_path torch.save(lowerCAmelCase__ ,lowerCAmelCase__ ) if __name__ == "__main__": fire.Fire(convert)
554
0
"""simple docstring""" import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' assert isinstance(_lowerCamelCase , _lowerCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Tuple = tmp_path / "cache" _lowerCamelCase : Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowerCamelCase : Dict = ParquetDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase , keep_in_memory=_lowerCamelCase ).read() _check_parquet_dataset(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : Optional[Any] = tmp_path / "cache" _lowerCamelCase : List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _lowerCamelCase : Optional[Any] = features.copy() if features else default_expected_features _lowerCamelCase : Optional[Any] = ( Features({feature: Value(_lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) _lowerCamelCase : Any = ParquetDatasetReader(_lowerCamelCase , features=_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_parquet_dataset(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : Any = tmp_path / "cache" _lowerCamelCase : Dict = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _lowerCamelCase : List[str] = ParquetDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase , split=_lowerCamelCase ).read() _check_parquet_dataset(_lowerCamelCase , _lowerCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' if issubclass(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Tuple = parquet_path elif issubclass(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Any = [parquet_path] _lowerCamelCase : Any = tmp_path / "cache" _lowerCamelCase : Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _lowerCamelCase : Union[str, Any] = ParquetDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_parquet_dataset(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=("train",) ) -> Dict: '''simple docstring''' assert isinstance(_lowerCamelCase , _lowerCamelCase ) for split in splits: _lowerCamelCase : List[str] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Any = tmp_path / "cache" _lowerCamelCase : Tuple = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowerCamelCase : Any = ParquetDatasetReader( {"train": parquet_path} , cache_dir=_lowerCamelCase , keep_in_memory=_lowerCamelCase ).read() _check_parquet_datasetdict(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : int = tmp_path / "cache" _lowerCamelCase : List[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _lowerCamelCase : Union[str, Any] = features.copy() if features else default_expected_features _lowerCamelCase : str = ( Features({feature: Value(_lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) _lowerCamelCase : str = ParquetDatasetReader({"train": parquet_path} , features=_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_parquet_datasetdict(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' if split: _lowerCamelCase : Union[str, Any] = {split: parquet_path} else: _lowerCamelCase : Optional[Any] = "train" _lowerCamelCase : Optional[Any] = {"train": parquet_path, "test": parquet_path} _lowerCamelCase : Optional[int] = tmp_path / "cache" _lowerCamelCase : List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _lowerCamelCase : Tuple = ParquetDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_parquet_datasetdict(_lowerCamelCase , _lowerCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : Dict = ParquetDatasetWriter(_lowerCamelCase , tmp_path / "foo.parquet" ) assert writer.write() > 0 _lowerCamelCase : Tuple = pq.ParquetFile(tmp_path / "foo.parquet" ) _lowerCamelCase : List[Any] = pf.read() assert dataset.data.table == output_table def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : Any = str(shared_datadir / "test_image_rgb.jpg" ) _lowerCamelCase : Optional[Any] = {"image": [image_path]} _lowerCamelCase : List[str] = Features({"image": Image()} ) _lowerCamelCase : List[str] = Dataset.from_dict(_lowerCamelCase , features=_lowerCamelCase ) _lowerCamelCase : List[Any] = ParquetDatasetWriter(_lowerCamelCase , tmp_path / "foo.parquet" ) assert writer.write() > 0 _lowerCamelCase : List[Any] = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features _lowerCamelCase : List[str] = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=_lowerCamelCase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' assert get_writer_batch_size(_lowerCamelCase ) == expected
46
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging A : int = ['''bart.large''', '''bart.large.mnli''', '''bart.large.cnn''', '''bart_xsum/model.pt'''] A : Any = {'''bart.large''': BartModel, '''bart.large.mnli''': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('''0.9.0'''): raise Exception('''requires fairseq >= 0.9.0''') logging.set_verbosity_info() A : Optional[int] = logging.get_logger(__name__) A : int = ''' Hello world! cécé herlolip''' A : List[Any] = [ ('''model.classification_heads.mnli.dense.weight''', '''classification_head.dense.weight'''), ('''model.classification_heads.mnli.dense.bias''', '''classification_head.dense.bias'''), ('''model.classification_heads.mnli.out_proj.weight''', '''classification_head.out_proj.weight'''), ('''model.classification_heads.mnli.out_proj.bias''', '''classification_head.out_proj.bias'''), ] def UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Tuple: _lowercase = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> List[str]: _lowercase = dct.pop(SCREAMING_SNAKE_CASE_ ) _lowercase = val def UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ : Any ) -> Any: _lowercase = torch.load(SCREAMING_SNAKE_CASE_ , map_location="""cpu""" ) _lowercase = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval() hub_interface.model.load_state_dict(sd["""model"""] ) return hub_interface def UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[int]: _lowercase , _lowercase = emb.weight.shape _lowercase = nn.Linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) _lowercase = emb.weight.data return lin_layer @torch.no_grad() def UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int=None ) -> int: if not os.path.exists(SCREAMING_SNAKE_CASE_ ): _lowercase = torch.hub.load("""pytorch/fairseq""" , SCREAMING_SNAKE_CASE_ ).eval() else: _lowercase = load_xsum_checkpoint(SCREAMING_SNAKE_CASE_ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: _lowercase = checkpoint_path.replace(""".""" , """-""" ) _lowercase = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) _lowercase = bart.encode(SCREAMING_SNAKE_CASE_ ).unsqueeze(0 ) _lowercase = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ).encode(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ).unsqueeze(0 ) if not torch.eq(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).all(): raise ValueError( f"""converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}""" ) if checkpoint_path == "bart.large.mnli": _lowercase = bart.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE_ ) _lowercase = state_dict["""model.decoder.embed_tokens.weight"""] for src, dest in mnli_rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _lowercase = BartForSequenceClassification(SCREAMING_SNAKE_CASE_ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) _lowercase = bart.predict("""mnli""" , SCREAMING_SNAKE_CASE_ , return_logits=SCREAMING_SNAKE_CASE_ ) _lowercase = model(SCREAMING_SNAKE_CASE_ )[0] # logits else: # no classification heads to worry about _lowercase = bart.model.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE_ ) _lowercase = state_dict["""decoder.embed_tokens.weight"""] _lowercase = bart.extract_features(SCREAMING_SNAKE_CASE_ ) if hf_checkpoint_name == "facebook/bart-large": _lowercase = BartModel(SCREAMING_SNAKE_CASE_ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) _lowercase = model(SCREAMING_SNAKE_CASE_ ).model[0] else: _lowercase = BartForConditionalGeneration(SCREAMING_SNAKE_CASE_ ).eval() # an existing summarization ckpt model.model.load_state_dict(SCREAMING_SNAKE_CASE_ ) if hasattr(SCREAMING_SNAKE_CASE_ , """lm_head""" ): _lowercase = make_linear_from_emb(model.model.shared ) _lowercase = model.model(SCREAMING_SNAKE_CASE_ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( f"""`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}""" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": A : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum''' ) A : Any = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
287
0
from __future__ import annotations def UpperCamelCase ( _A : float , _A : float , _A : float )-> float: """simple docstring""" if days_between_payments <= 0: raise ValueError("days_between_payments must be > 0" ) if daily_interest_rate < 0: raise ValueError("daily_interest_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * daily_interest_rate * days_between_payments def UpperCamelCase ( _A : float , _A : float , _A : float , )-> float: """simple docstring""" if number_of_compounding_periods <= 0: raise ValueError("number_of_compounding_periods must be > 0" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("nominal_annual_interest_rate_percentage must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def UpperCamelCase ( _A : float , _A : float , _A : float , )-> float: """simple docstring""" if number_of_years <= 0: raise ValueError("number_of_years must be > 0" ) if nominal_annual_percentage_rate < 0: raise ValueError("nominal_annual_percentage_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return compound_interest( _A , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
710
import requests def UpperCamelCase ( _A : str , _A : str )-> None: """simple docstring""" A__ = {"Content-Type": "application/json"} A__ = requests.post(_A , json={"text": message_body} , headers=_A ) if response.status_code != 200: A__ = ( "Request to slack returned an error " f"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(_A ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
232
0
'''simple docstring''' import string def a__ ( lowerCAmelCase__ ) -> None: for key in range(len(string.ascii_uppercase ) ): UpperCAmelCase__ : Tuple = '''''' for symbol in message: if symbol in string.ascii_uppercase: UpperCAmelCase__ : Optional[Any] = string.ascii_uppercase.find(lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = num - key if num < 0: UpperCAmelCase__ : Optional[Any] = num + len(string.ascii_uppercase ) UpperCAmelCase__ : Optional[int] = translated + string.ascii_uppercase[num] else: UpperCAmelCase__ : Optional[Any] = translated + symbol print(F"""Decryption using Key #{key}: {translated}""" ) def a__ ( ) -> None: UpperCAmelCase__ : Union[str, Any] = input('''Encrypted message: ''' ) UpperCAmelCase__ : List[str] = message.upper() decrypt(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
75
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ = { 'configuration_albert': ['ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AlbertConfig', 'AlbertOnnxConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['AlbertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['AlbertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ 'ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'AlbertForMaskedLM', 'AlbertForMultipleChoice', 'AlbertForPreTraining', 'AlbertForQuestionAnswering', 'AlbertForSequenceClassification', 'AlbertForTokenClassification', 'AlbertModel', 'AlbertPreTrainedModel', 'load_tf_weights_in_albert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ 'TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAlbertForMaskedLM', 'TFAlbertForMultipleChoice', 'TFAlbertForPreTraining', 'TFAlbertForQuestionAnswering', 'TFAlbertForSequenceClassification', 'TFAlbertForTokenClassification', 'TFAlbertMainLayer', 'TFAlbertModel', 'TFAlbertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ 'FlaxAlbertForMaskedLM', 'FlaxAlbertForMultipleChoice', 'FlaxAlbertForPreTraining', 'FlaxAlbertForQuestionAnswering', 'FlaxAlbertForSequenceClassification', 'FlaxAlbertForTokenClassification', 'FlaxAlbertModel', 'FlaxAlbertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
421
0
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class __A : def _snake_case (self , __magic_name__ ): raise NotImplementedError() def _snake_case (self ): raise NotImplementedError() class __A ( A_ ): def __init__(self , __magic_name__ , __magic_name__ = False , **__magic_name__ ): lowerCamelCase__ : Dict = tokenizer lowerCamelCase__ : Any = skip_prompt lowerCamelCase__ : Any = decode_kwargs # variables used in the streaming process lowerCamelCase__ : Optional[int] = [] lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Union[str, Any] = True def _snake_case (self , __magic_name__ ): if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("""TextStreamer only supports batch size 1""" ) elif len(value.shape ) > 1: lowerCamelCase__ : Any = value[0] if self.skip_prompt and self.next_tokens_are_prompt: lowerCamelCase__ : Optional[Any] = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) lowerCamelCase__ : str = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("""\n""" ): lowerCamelCase__ : Tuple = text[self.print_len :] lowerCamelCase__ : Tuple = [] lowerCamelCase__ : int = 0 # If the last token is a CJK character, we print the characters. elif len(__magic_name__ ) > 0 and self._is_chinese_char(ord(text[-1] ) ): lowerCamelCase__ : Optional[int] = text[self.print_len :] self.print_len += len(__magic_name__ ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: lowerCamelCase__ : Tuple = text[self.print_len : text.rfind(""" """ ) + 1] self.print_len += len(__magic_name__ ) self.on_finalized_text(__magic_name__ ) def _snake_case (self ): # Flush the cache, if it exists if len(self.token_cache ) > 0: lowerCamelCase__ : Optional[int] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) lowerCamelCase__ : Dict = text[self.print_len :] lowerCamelCase__ : List[str] = [] lowerCamelCase__ : Optional[Any] = 0 else: lowerCamelCase__ : List[Any] = """""" lowerCamelCase__ : Dict = True self.on_finalized_text(__magic_name__ , stream_end=__magic_name__ ) def _snake_case (self , __magic_name__ , __magic_name__ = False ): print(__magic_name__ , flush=__magic_name__ , end="""""" if not stream_end else None ) def _snake_case (self , __magic_name__ ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4e_00 and cp <= 0X9f_ff) or (cp >= 0X34_00 and cp <= 0X4d_bf) # or (cp >= 0X2_00_00 and cp <= 0X2_a6_df) # or (cp >= 0X2_a7_00 and cp <= 0X2_b7_3f) # or (cp >= 0X2_b7_40 and cp <= 0X2_b8_1f) # or (cp >= 0X2_b8_20 and cp <= 0X2_ce_af) # or (cp >= 0Xf9_00 and cp <= 0Xfa_ff) or (cp >= 0X2_f8_00 and cp <= 0X2_fa_1f) # ): # return True return False class __A ( A_ ): def __init__(self , __magic_name__ , __magic_name__ = False , __magic_name__ = None , **__magic_name__ ): super().__init__(__magic_name__ , __magic_name__ , **__magic_name__ ) lowerCamelCase__ : Optional[Any] = Queue() lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : Union[str, Any] = timeout def _snake_case (self , __magic_name__ , __magic_name__ = False ): self.text_queue.put(__magic_name__ , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__(self ): return self def _snake_case (self ): lowerCamelCase__ : Optional[int] = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
715
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def _A (UpperCamelCase : str ) ->None: '''simple docstring''' lowerCamelCase__ ,lowerCamelCase__ : List[str] = analyze_text(UpperCamelCase ) lowerCamelCase__ : Any = list(""" """ + ascii_lowercase ) # what is our total sum of probabilities. lowerCamelCase__ : str = sum(single_char_strings.values() ) # one length string lowerCamelCase__ : Union[str, Any] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCamelCase__ : List[Any] = single_char_strings[ch] lowerCamelCase__ : List[str] = my_str / all_sum my_fir_sum += prob * math.loga(UpperCamelCase ) # entropy formula. # print entropy print(f"{round(-1 * my_fir_sum ):.1f}" ) # two len string lowerCamelCase__ : str = sum(two_char_strings.values() ) lowerCamelCase__ : int = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCamelCase__ : str = cha + cha if sequence in two_char_strings: lowerCamelCase__ : str = two_char_strings[sequence] lowerCamelCase__ : int = int(UpperCamelCase ) / all_sum my_sec_sum += prob * math.loga(UpperCamelCase ) # print second entropy print(f"{round(-1 * my_sec_sum ):.1f}" ) # print the difference between them print(f"{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}" ) def _A (UpperCamelCase : str ) ->tuple[dict, dict]: '''simple docstring''' lowerCamelCase__ : Optional[int] = Counter() # type: ignore lowerCamelCase__ : List[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(UpperCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def _A () ->List[str]: '''simple docstring''' import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
96
0
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _A (*UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Union[Dict, Any]] = None , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : Union[str, Any]=2 ) ->Optional[int]: '''simple docstring''' from .. import __version__ lowerCamelCase__ : Tuple = take_from lowerCamelCase__ : Union[str, Any] = () if not isinstance(args[0] , UpperCamelCase ): lowerCamelCase__ : Tuple = (args,) for attribute, version_name, message in args: if version.parse(version.parse(UpperCamelCase ).base_version ) >= version.parse(UpperCamelCase ): raise ValueError( f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" f" version {__version__} is >= {version_name}" ) lowerCamelCase__ : Optional[Any] = None if isinstance(UpperCamelCase , UpperCamelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(UpperCamelCase ),) lowerCamelCase__ : Dict = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(UpperCamelCase , UpperCamelCase ): values += (getattr(UpperCamelCase , UpperCamelCase ),) lowerCamelCase__ : int = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: lowerCamelCase__ : List[Any] = f"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: lowerCamelCase__ : Union[str, Any] = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , UpperCamelCase , stacklevel=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) > 0: lowerCamelCase__ : Optional[Any] = inspect.getouterframes(inspect.currentframe() )[1] lowerCamelCase__ : Union[str, Any] = call_frame.filename lowerCamelCase__ : Dict = call_frame.lineno lowerCamelCase__ : Optional[Any] = call_frame.function lowerCamelCase__ ,lowerCamelCase__ : Tuple = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(UpperCamelCase ) == 0: return elif len(UpperCamelCase ) == 1: return values[0] return values
157
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase = { '''configuration_swiftformer''': [ '''SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwiftFormerConfig''', '''SwiftFormerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwiftFormerForImageClassification''', '''SwiftFormerModel''', '''SwiftFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
157
1
"""simple docstring""" import warnings from .generation import TFGenerationMixin class lowercase_ (_UpperCAmelCase ): # warning at import time warnings.warn( '''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ''' '''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''', _UpperCAmelCase, )
612
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''', '''False''' ) ) is not True, reason='''Skipping test because should only be run when releasing minor transformers version''', ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 650, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 600, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class lowercase_ (unittest.TestCase ): def lowerCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="utf-8" , check=a_ , ) assert hasattr(self , "env" ) def lowerCamelCase__ ( self , a_=1 ) ->int: '''simple docstring''' return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f'''{self.env.base_job_name}-single''' , instance_count=a_ , instance_type=self.instance_type , debugger_hook_config=a_ , hyperparameters={**self.env.hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="py36" , ) def lowerCamelCase__ ( self , a_ ) ->str: '''simple docstring''' TrainingJobAnalytics(a_ ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) def lowerCamelCase__ ( self ) ->Any: '''simple docstring''' _a = self.create_estimator() # run training estimator.fit() # result dataframe _a = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _a = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) _a = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _a = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , a_ )
612
1
'''simple docstring''' import string import numpy def snake_case__ ( UpperCamelCase ,UpperCamelCase ) -> int: return b if a == 0 else greatest_common_divisor(b % a ,__lowercase ) class UpperCAmelCase : """simple docstring""" A__ : List[Any] = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) A__ : Dict = numpy.vectorize(lambda a_ : x % 36 ) A__ : str = numpy.vectorize(__snake_case ) def __init__( self , _snake_case ) -> Union[str, Any]: _UpperCamelCase : Union[str, Any] = self.modulus(lowercase_ ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key _UpperCamelCase : Any = encrypt_key.shape[0] def _lowercase ( self , _snake_case ) -> List[Any]: return self.key_string.index(lowercase_ ) def _lowercase ( self , _snake_case ) -> Union[str, Any]: return self.key_string[round(lowercase_ )] def _lowercase ( self ) -> Tuple: _UpperCamelCase : int = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _UpperCamelCase : Tuple = det % len(self.key_string ) _UpperCamelCase : Tuple = len(self.key_string ) if greatest_common_divisor(lowercase_ , len(self.key_string ) ) != 1: _UpperCamelCase : Optional[int] = ( F'''determinant modular {req_l} of encryption key({det}) ''' F'''is not co prime w.r.t {req_l}.\nTry another key.''' ) raise ValueError(lowercase_ ) def _lowercase ( self , _snake_case ) -> Tuple: _UpperCamelCase : Union[str, Any] = [char for char in text.upper() if char in self.key_string] _UpperCamelCase : Dict = chars[-1] while len(lowercase_ ) % self.break_key != 0: chars.append(lowercase_ ) return "".join(lowercase_ ) def _lowercase ( self , _snake_case ) -> List[str]: _UpperCamelCase : str = self.process_text(text.upper() ) _UpperCamelCase : Tuple = "" for i in range(0 , len(lowercase_ ) - self.break_key + 1 , self.break_key ): _UpperCamelCase : Optional[int] = text[i : i + self.break_key] _UpperCamelCase : Union[str, Any] = [self.replace_letters(lowercase_ ) for char in batch] _UpperCamelCase : int = numpy.array([vec] ).T _UpperCamelCase : List[Any] = self.modulus(self.encrypt_key.dot(lowercase_ ) ).T.tolist()[ 0 ] _UpperCamelCase : str = "".join( self.replace_digits(lowercase_ ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def _lowercase ( self ) -> Tuple: _UpperCamelCase : Any = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _UpperCamelCase : int = det % len(self.key_string ) _UpperCamelCase : List[str] = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: _UpperCamelCase : Optional[Any] = i break _UpperCamelCase : int = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(lowercase_ ) ) def _lowercase ( self , _snake_case ) -> Any: _UpperCamelCase : Union[str, Any] = self.make_decrypt_key() _UpperCamelCase : Union[str, Any] = self.process_text(text.upper() ) _UpperCamelCase : str = "" for i in range(0 , len(lowercase_ ) - self.break_key + 1 , self.break_key ): _UpperCamelCase : int = text[i : i + self.break_key] _UpperCamelCase : str = [self.replace_letters(lowercase_ ) for char in batch] _UpperCamelCase : Dict = numpy.array([vec] ).T _UpperCamelCase : int = self.modulus(decrypt_key.dot(lowercase_ ) ).T.tolist()[0] _UpperCamelCase : Dict = "".join( self.replace_digits(lowercase_ ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def snake_case__ ( ) -> None: _UpperCamelCase : Any = int(input('''Enter the order of the encryption key: ''' ) ) _UpperCamelCase : Optional[Any] = [] print('''Enter each row of the encryption key with space separated integers''' ) for _ in range(__lowercase ): _UpperCamelCase : Tuple = [int(__lowercase ) for x in input().split()] hill_matrix.append(__lowercase ) _UpperCamelCase : Tuple = HillCipher(numpy.array(__lowercase ) ) print('''Would you like to encrypt or decrypt some text? (1 or 2)''' ) _UpperCamelCase : Tuple = input('''\n1. Encrypt\n2. Decrypt\n''' ) if option == "1": _UpperCamelCase : int = input('''What text would you like to encrypt?: ''' ) print('''Your encrypted text is:''' ) print(hc.encrypt(__lowercase ) ) elif option == "2": _UpperCamelCase : Optional[Any] = input('''What text would you like to decrypt?: ''' ) print('''Your decrypted text is:''' ) print(hc.decrypt(__lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
683
from manim import * class lowercase_ ( __snake_case ): def UpperCamelCase ( self ): _snake_case : Tuple = Rectangle(height=0.5 , width=0.5 ) _snake_case : List[str] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _snake_case : List[str] = [mem.copy() for i in range(6 )] _snake_case : Any = [mem.copy() for i in range(6 )] _snake_case : Any = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : Any = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : str = VGroup(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : int = Text("CPU" , font_size=24 ) _snake_case : str = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase_ ) _snake_case : int = [mem.copy() for i in range(4 )] _snake_case : Dict = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : str = Text("GPU" , font_size=24 ) _snake_case : Optional[int] = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase_ ) _snake_case : Any = [mem.copy() for i in range(6 )] _snake_case : Any = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : Dict = Text("Model" , font_size=24 ) _snake_case : Dict = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) model.move_to([3, -1.0, 0] ) self.add(lowercase_ ) _snake_case : str = [] for i, rect in enumerate(lowercase_ ): rect.set_stroke(lowercase_ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _snake_case : Union[str, Any] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase_ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowercase_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase_ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase_ , buff=0.0 ) self.add(lowercase_ ) cpu_targs.append(lowercase_ ) _snake_case : List[Any] = [mem.copy() for i in range(6 )] _snake_case : Union[str, Any] = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) _snake_case : Optional[Any] = Text("Loaded Checkpoint" , font_size=24 ) _snake_case : Union[str, Any] = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , aligned_edge=lowercase_ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) _snake_case : Optional[int] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _snake_case : Optional[Any] = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase_ , lowercase_ ) _snake_case : Union[str, Any] = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowercase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) _snake_case : List[Any] = MarkupText( f"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase_ ) , Write(lowercase_ ) ) self.play(Write(lowercase_ , run_time=1 ) , Create(lowercase_ , run_time=1 ) ) _snake_case : int = [] _snake_case : str = [] for i, rect in enumerate(lowercase_ ): _snake_case : Dict = fill.copy().set_fill(lowercase_ , opacity=0.7 ) target.move_to(lowercase_ ) first_animations.append(GrowFromCenter(lowercase_ , run_time=1 ) ) _snake_case : Dict = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowercase_ , run_time=1.5 ) ) self.play(*lowercase_ ) self.play(*lowercase_ ) self.wait()
670
0
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def __a ( A__ , A__ , A__ ) -> Dict: lowerCAmelCase = 0 if start < end: lowerCAmelCase = randint(A__ , A__ ) lowerCAmelCase = a[end] lowerCAmelCase = a[pivot] lowerCAmelCase = temp lowerCAmelCase , lowerCAmelCase = _in_place_partition(A__ , A__ , A__ ) count += _in_place_quick_sort(A__ , A__ , p - 1 ) count += _in_place_quick_sort(A__ , p + 1 , A__ ) return count def __a ( A__ , A__ , A__ ) -> Dict: lowerCAmelCase = 0 lowerCAmelCase = randint(A__ , A__ ) lowerCAmelCase = a[end] lowerCAmelCase = a[pivot] lowerCAmelCase = temp lowerCAmelCase = start - 1 for index in range(A__ , A__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowerCAmelCase = new_pivot_index + 1 lowerCAmelCase = a[new_pivot_index] lowerCAmelCase = a[index] lowerCAmelCase = temp lowerCAmelCase = a[new_pivot_index + 1] lowerCAmelCase = a[end] lowerCAmelCase = temp return new_pivot_index + 1, count lowercase : Tuple = TemporaryFile() lowercase : str = 1_0_0 # 1000 elements are to be sorted lowercase : Dict = 0, 1 # mean and standard deviation lowercase : Optional[Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array lowercase : str = np.load(outfile) lowercase : Any = len(M) - 1 lowercase : Tuple = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
705
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class _lowerCAmelCase : """simple docstring""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any=1_3 , SCREAMING_SNAKE_CASE : Optional[Any]=3_2 , SCREAMING_SNAKE_CASE : str=2 , SCREAMING_SNAKE_CASE : str=3 , SCREAMING_SNAKE_CASE : Tuple=1_6 , SCREAMING_SNAKE_CASE : Any=[1, 2, 1] , SCREAMING_SNAKE_CASE : str=[2, 2, 4] , SCREAMING_SNAKE_CASE : Union[str, Any]=2 , SCREAMING_SNAKE_CASE : str=2.0 , SCREAMING_SNAKE_CASE : Any=True , SCREAMING_SNAKE_CASE : Tuple=0.0 , SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE : int=0.1 , SCREAMING_SNAKE_CASE : Optional[int]="gelu" , SCREAMING_SNAKE_CASE : Dict=False , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : str=0.0_2 , SCREAMING_SNAKE_CASE : Tuple=1E-5 , SCREAMING_SNAKE_CASE : Any=True , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : List[str]=1_0 , SCREAMING_SNAKE_CASE : int=8 , SCREAMING_SNAKE_CASE : str=["stage1", "stage2", "stage3"] , SCREAMING_SNAKE_CASE : str=[1, 2, 3] , ) -> Optional[int]: """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = embed_dim lowerCAmelCase = depths lowerCAmelCase = num_heads lowerCAmelCase = window_size lowerCAmelCase = mlp_ratio lowerCAmelCase = qkv_bias lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = drop_path_rate lowerCAmelCase = hidden_act lowerCAmelCase = use_absolute_embeddings lowerCAmelCase = patch_norm lowerCAmelCase = layer_norm_eps lowerCAmelCase = initializer_range lowerCAmelCase = is_training lowerCAmelCase = scope lowerCAmelCase = use_labels lowerCAmelCase = type_sequence_label_size lowerCAmelCase = encoder_stride lowerCAmelCase = out_features lowerCAmelCase = out_indices def __A ( self : Optional[int] ) -> int: """simple docstring""" lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = self.get_config() return config, pixel_values, labels def __A ( self : Optional[int] ) -> Tuple: """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __A ( self : Dict , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] ) -> int: """simple docstring""" lowerCAmelCase = MaskFormerSwinModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase = model(SCREAMING_SNAKE_CASE ) lowerCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __A ( self : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Tuple ) -> str: """simple docstring""" lowerCAmelCase = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase = model(SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [1_3, 1_6, 1_6, 1_6] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4] ) # verify ValueError with self.parent.assertRaises(SCREAMING_SNAKE_CASE ): lowerCAmelCase = ["stem"] lowerCAmelCase = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE ) def __A ( self : Union[str, Any] ) -> str: """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs lowerCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCAmelCase = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def __A ( self : Union[str, Any] ) -> str: """simple docstring""" lowerCAmelCase = MaskFormerSwinModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , embed_dim=3_7 ) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with" " `nn.DataParallel`" ) ) def __A ( self : Union[str, Any] ) -> str: """simple docstring""" pass def __A ( self : Union[str, Any] ) -> Tuple: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self : Any ) -> int: """simple docstring""" return def __A ( self : Any ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __A ( self : Union[str, Any] ) -> Any: """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE ) @unittest.skip("Swin does not use inputs_embeds" ) def __A ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip("Swin does not support feedforward chunking" ) def __A ( self : Dict ) -> int: """simple docstring""" pass def __A ( self : Dict ) -> int: """simple docstring""" lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , nn.Linear ) ) def __A ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(SCREAMING_SNAKE_CASE ) lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase = [*signature.parameters.keys()] lowerCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions" ) def __A ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone" ) def __A ( self : Optional[int] ) -> Any: """simple docstring""" pass def __A ( self : Any , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict: """simple docstring""" lowerCAmelCase = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = outputs.hidden_states lowerCAmelCase = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) # Swin has a different seq_length lowerCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __A ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowerCAmelCase = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __A ( self : Dict ) -> Tuple: """simple docstring""" lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowerCAmelCase = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) @unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints" ) def __A ( self : List[Any] ) -> Dict: """simple docstring""" pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def __A ( self : Union[str, Any] ) -> Any: """simple docstring""" pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def __A ( self : str ) -> Union[str, Any]: """simple docstring""" pass def __A ( self : str ) -> List[str]: """simple docstring""" lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE : Optional[int] ): lowerCAmelCase = 0 return t def check_equivalence(SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple={} ): with torch.no_grad(): lowerCAmelCase = model(**SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) lowerCAmelCase = model(**SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).to_tuple() def recursive_check(SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Union[str, Any] ): if isinstance(SCREAMING_SNAKE_CASE , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): recursive_check(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE ) , set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE ) , atol=1E-5 ) , msg=( "Tuple and dict output are not equal. Difference:" f" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:" f" {torch.isnan(SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE )}. Dict has" f" `nan`: {torch.isnan(SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE )}." ) , ) recursive_check(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: lowerCAmelCase = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) check_equivalence(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) lowerCAmelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) check_equivalence(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) check_equivalence(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , {"output_hidden_states": True} ) lowerCAmelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) lowerCAmelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) check_equivalence(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , {"output_hidden_states": True} ) @require_torch class _lowerCAmelCase ( unittest.TestCase , UpperCamelCase_ ): """simple docstring""" lowerCAmelCase = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCAmelCase = MaskFormerSwinConfig def __A ( self : List[Any] ) -> Any: """simple docstring""" lowerCAmelCase = MaskFormerSwinModelTester(self ) def __A ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: lowerCAmelCase = backbone_class(SCREAMING_SNAKE_CASE ) backbone.to(SCREAMING_SNAKE_CASE ) backbone.eval() lowerCAmelCase = backbone(**SCREAMING_SNAKE_CASE ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , SCREAMING_SNAKE_CASE ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True lowerCAmelCase = backbone(**SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: lowerCAmelCase = backbone(**SCREAMING_SNAKE_CASE , output_attentions=SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.attentions )
159
0
import random from typing import Any def A ( lowercase__ : list ) -> list[Any]: for _ in range(len(lowercase__ ) ): UpperCamelCase__ :Optional[int] = random.randint(0 , len(lowercase__ ) - 1 ) UpperCamelCase__ :Optional[int] = random.randint(0 , len(lowercase__ ) - 1 ) UpperCamelCase__ , UpperCamelCase__ :List[str] = data[b], data[a] return data if __name__ == "__main__": UpperCamelCase = [0, 1, 2, 3, 4, 5, 6, 7] UpperCamelCase = ["python", "says", "hello", "!"] print("Fisher-Yates Shuffle:") print("List", integers, strings) print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
45
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a_ = { 'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'], 'tokenization_cpmant': ['CpmAntTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST', 'CpmAntForCausalLM', 'CpmAntModel', 'CpmAntPreTrainedModel', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
296
0
lowercase : int = """Input must be a string of 8 numbers plus letter""" lowercase : Tuple = """TRWAGMYFPDXBNJZSQVHLCKE""" def A_ ( A__ ) -> bool: if not isinstance(A__ , A__ ): a__ : Any = F'Expected string as input, found {type(A__ ).__name__}' raise TypeError(A__ ) a__ : int = spanish_id.replace('-' , '' ).upper() if len(A__ ) != 9: raise ValueError(A__ ) try: a__ : Union[str, Any] = int(spanish_id_clean[0:8] ) a__ : Optional[int] = spanish_id_clean[8] except ValueError as ex: raise ValueError(A__ ) from ex if letter.isdigit(): raise ValueError(A__ ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
392
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging lowercase : Any = logging.get_logger(__name__) def A_ ( A__ , A__ ) -> List[Any]: a__ : List[str] = set() a__ : Union[str, Any] = [] def parse_line(A__ ): for line in fp: if isinstance(A__ , A__ ): a__ : str = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(A__ ) > 0: a__ : Dict = '\n'.join(A__ ) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets ): selected_warnings.add(A__ ) buffer.clear() continue else: a__ : int = line.strip() buffer.append(A__ ) if from_gh: for filename in os.listdir(A__ ): a__ : List[Any] = os.path.join(A__ , A__ ) if not os.path.isdir(A__ ): # read the file if filename != "warnings.txt": continue with open(A__ ) as fp: parse_line(A__ ) else: try: with zipfile.ZipFile(A__ ) as z: for filename in z.namelist(): if not os.path.isdir(A__ ): # read the file if filename != "warnings.txt": continue with z.open(A__ ) as fp: parse_line(A__ ) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def A_ ( A__ , A__ ) -> Dict: a__ : List[str] = set() a__ : Tuple = [os.path.join(A__ , A__ ) for p in os.listdir(A__ ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(A__ , A__ ) ) return selected_warnings if __name__ == "__main__": def A_ ( A__ ) -> Tuple: return values.split(',' ) lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) lowercase : List[Any] = parser.parse_args() lowercase : Union[str, Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links lowercase : Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 8_0) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts lowercase : Dict = extract_warnings(args.output_dir, args.targets) lowercase : Any = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
392
1
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() snake_case_ : Any = logging.get_logger(__name__) snake_case_ : Optional[Any] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn.grep_linear""": """encoder.layers.*.attention.gru_rel_pos_linear""", """self_attn.relative_attention_bias""": """encoder.layers.*.attention.rel_attn_embed""", """self_attn.grep_a""": """encoder.layers.*.attention.gru_rel_pos_const""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } snake_case_ : int = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def lowercase__( _UpperCamelCase : int , _UpperCamelCase : List[str] , _UpperCamelCase : Dict , _UpperCamelCase : Dict , _UpperCamelCase : List[str] )-> Optional[Any]: """simple docstring""" for attribute in key.split("." ): _UpperCamelCase = getattr(lowercase_ , lowercase_ ) if weight_type is not None: _UpperCamelCase = getattr(lowercase_ , lowercase_ ).shape else: _UpperCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": _UpperCamelCase = value elif weight_type == "weight_g": _UpperCamelCase = value elif weight_type == "weight_v": _UpperCamelCase = value elif weight_type == "bias": _UpperCamelCase = value else: _UpperCamelCase = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def lowercase__( _UpperCamelCase : Dict , _UpperCamelCase : Optional[int] )-> Dict: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = fairseq_model.state_dict() _UpperCamelCase = hf_model.feature_extractor for name, value in fairseq_dict.items(): _UpperCamelCase = False if "conv_layers" in name: load_conv_layer( lowercase_ , lowercase_ , lowercase_ , lowercase_ , hf_model.config.feat_extract_norm == "group" , ) _UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _UpperCamelCase = True if "*" in mapped_key: _UpperCamelCase = name.split(lowercase_ )[0].split("." )[-2] _UpperCamelCase = mapped_key.replace("*" , lowercase_ ) if "weight_g" in name: _UpperCamelCase = "weight_g" elif "weight_v" in name: _UpperCamelCase = "weight_v" elif "bias" in name and "relative_attention_bias" not in name: _UpperCamelCase = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj _UpperCamelCase = "weight" else: _UpperCamelCase = None set_recursively(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) continue if not is_used: unused_weights.append(lowercase_ ) logger.warning(f"Unused weights: {unused_weights}" ) def lowercase__( _UpperCamelCase : Optional[int] , _UpperCamelCase : Any , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] )-> Optional[Any]: """simple docstring""" _UpperCamelCase = full_name.split("conv_layers." )[-1] _UpperCamelCase = name.split("." ) _UpperCamelCase = int(items[0] ) _UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _UpperCamelCase = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _UpperCamelCase = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) _UpperCamelCase = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) _UpperCamelCase = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowercase_ ) @torch.no_grad() def lowercase__( _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str]=None )-> List[Any]: """simple docstring""" _UpperCamelCase = torch.load(lowercase_ ) _UpperCamelCase = WavLMConfigOrig(checkpoint["cfg"] ) _UpperCamelCase = WavLMOrig(lowercase_ ) model.load_state_dict(checkpoint["model"] ) model.eval() if config_path is not None: _UpperCamelCase = WavLMConfig.from_pretrained(lowercase_ ) else: _UpperCamelCase = WavLMConfig() _UpperCamelCase = WavLMModel(lowercase_ ) recursively_load_weights(lowercase_ , lowercase_ ) hf_wavlm.save_pretrained(lowercase_ ) if __name__ == "__main__": snake_case_ : str = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') snake_case_ : Optional[Any] = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
138
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
87
0
import requests _UpperCAmelCase : List[Any] = "" # <-- Put your OpenWeatherMap appid here! _UpperCAmelCase : str = "https://api.openweathermap.org/data/2.5/" def A ( lowercase = "Chicago" , lowercase = APPID ) -> dict: '''simple docstring''' return requests.get(URL_BASE + 'weather' , params=locals() ).json() def A ( lowercase = "Kolkata, India" , lowercase = APPID ) -> dict: '''simple docstring''' return requests.get(URL_BASE + 'forecast' , params=locals() ).json() def A ( lowercase = 5_5.6_8 , lowercase = 1_2.5_7 , lowercase = APPID ) -> dict: '''simple docstring''' return requests.get(URL_BASE + 'onecall' , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: _UpperCAmelCase : Union[str, Any] = input("Enter a location:").strip() if location: pprint(current_weather(location)) else: break
3
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _UpperCAmelCase : Tuple = logging.get_logger(__name__) _UpperCAmelCase : Tuple = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.linear_k": "encoder.layers.*.self_attn.linear_k", "self_attn.linear_v": "encoder.layers.*.self_attn.linear_v", "self_attn.linear_q": "encoder.layers.*.self_attn.linear_q", "self_attn.pos_bias_u": "encoder.layers.*.self_attn.pos_bias_u", "self_attn.pos_bias_v": "encoder.layers.*.self_attn.pos_bias_v", "self_attn.linear_out": "encoder.layers.*.self_attn.linear_out", "self_attn.linear_pos": "encoder.layers.*.self_attn.linear_pos", "self_attn.rotary_emb": "encoder.embed_positions", "self_attn_layer_norm": "encoder.layers.*.self_attn_layer_norm", "conv_module.pointwise_conv1": "encoder.layers.*.conv_module.pointwise_conv1", "conv_module.pointwise_conv2": "encoder.layers.*.conv_module.pointwise_conv2", "conv_module.depthwise_conv": "encoder.layers.*.conv_module.depthwise_conv", "conv_module.batch_norm": "encoder.layers.*.conv_module.batch_norm", "conv_module.layer_norm": "encoder.layers.*.conv_module.layer_norm", "ffn1.w_1": "encoder.layers.*.ffn1.intermediate_dense", "ffn1.w_2": "encoder.layers.*.ffn1.output_dense", "ffn1.layer_norm": "encoder.layers.*.ffn1_layer_norm", "ffn2.w_1": "encoder.layers.*.ffn2.intermediate_dense", "ffn2.w_2": "encoder.layers.*.ffn2.output_dense", "ffn2.layer_norm": "encoder.layers.*.ffn2_layer_norm", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } _UpperCAmelCase : Any = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def A ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Dict: '''simple docstring''' for attribute in key.split('.' ): UpperCamelCase = getattr(lowercase , lowercase ) if weight_type is not None: UpperCamelCase = getattr(lowercase , lowercase ).shape else: UpperCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCamelCase = value elif weight_type == "weight_g": UpperCamelCase = value elif weight_type == "weight_v": UpperCamelCase = value elif weight_type == "bias": UpperCamelCase = value elif weight_type == "running_mean": UpperCamelCase = value elif weight_type == "running_var": UpperCamelCase = value elif weight_type == "num_batches_tracked": UpperCamelCase = value elif weight_type == "inv_freq": UpperCamelCase = value else: UpperCamelCase = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def A ( lowercase , lowercase , lowercase ) -> Any: '''simple docstring''' UpperCamelCase = [] UpperCamelCase = fairseq_model.state_dict() UpperCamelCase = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase = 'wav2vec2_conformer.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: UpperCamelCase = True if "*" in mapped_key: UpperCamelCase = name.split(lowercase )[0].split('.' )[-2] UpperCamelCase = mapped_key.replace('*' , lowercase ) if "pos_bias_u" in name: UpperCamelCase = None elif "pos_bias_v" in name: UpperCamelCase = None elif "weight_g" in name: UpperCamelCase = 'weight_g' elif "weight_v" in name: UpperCamelCase = 'weight_v' elif "bias" in name: UpperCamelCase = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase = 'weight' elif "running_mean" in name: UpperCamelCase = 'running_mean' elif "inv_freq" in name: UpperCamelCase = 'inv_freq' elif "running_var" in name: UpperCamelCase = 'running_var' elif "num_batches_tracked" in name: UpperCamelCase = 'num_batches_tracked' else: UpperCamelCase = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def A ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: '''simple docstring''' UpperCamelCase = full_name.split('conv_layers.' )[-1] UpperCamelCase = name.split('.' ) UpperCamelCase = int(items[0] ) UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowercase ) @torch.no_grad() def A ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> int: '''simple docstring''' if config_path is not None: UpperCamelCase = WavaVecaConformerConfig.from_pretrained(lowercase , hidden_act='swish' ) else: UpperCamelCase = WavaVecaConformerConfig() if "rope" in checkpoint_path: UpperCamelCase = 'rotary' if is_finetuned: if dict_path: UpperCamelCase = Dictionary.load(lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase = target_dict.pad_index UpperCamelCase = target_dict.bos_index UpperCamelCase = target_dict.eos_index UpperCamelCase = len(target_dict.symbols ) UpperCamelCase = os.path.join(lowercase , 'vocab.json' ) if not os.path.isdir(lowercase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowercase ) ) return os.makedirs(lowercase , exist_ok=lowercase ) UpperCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase = 0 UpperCamelCase = 1 with open(lowercase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(lowercase , lowercase ) UpperCamelCase = WavaVecaCTCTokenizer( lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowercase , ) UpperCamelCase = True if config.feat_extract_norm == 'layer' else False UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowercase , return_attention_mask=lowercase , ) UpperCamelCase = WavaVecaProcessor(feature_extractor=lowercase , tokenizer=lowercase ) processor.save_pretrained(lowercase ) UpperCamelCase = WavaVecaConformerForCTC(lowercase ) else: UpperCamelCase = WavaVecaConformerForPreTraining(lowercase ) if is_finetuned: UpperCamelCase , UpperCamelCase , UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: UpperCamelCase = argparse.Namespace(task='audio_pretraining' ) UpperCamelCase = fairseq.tasks.setup_task(lowercase ) UpperCamelCase , UpperCamelCase , UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowercase ) UpperCamelCase = model[0].eval() recursively_load_weights(lowercase , lowercase , not is_finetuned ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _UpperCAmelCase : Dict = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
3
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : Dict = logging.get_logger(__name__) A__ : List[str] = { """google/vit-base-patch16-224""": """https://huggingface.co/vit-base-patch16-224/resolve/main/config.json""", # See all ViT models at https://huggingface.co/models?filter=vit } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Optional[Any] = 'vit' def __init__( self , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=2_24 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=16 , **SCREAMING_SNAKE_CASE_ , ) -> Tuple: super().__init__(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[str] = hidden_size __lowerCamelCase : Any = num_hidden_layers __lowerCamelCase : Union[str, Any] = num_attention_heads __lowerCamelCase : Optional[int] = intermediate_size __lowerCamelCase : Union[str, Any] = hidden_act __lowerCamelCase : Dict = hidden_dropout_prob __lowerCamelCase : int = attention_probs_dropout_prob __lowerCamelCase : Any = initializer_range __lowerCamelCase : str = layer_norm_eps __lowerCamelCase : List[str] = image_size __lowerCamelCase : int = patch_size __lowerCamelCase : List[Any] = num_channels __lowerCamelCase : List[Any] = qkv_bias __lowerCamelCase : Union[str, Any] = encoder_stride class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Optional[Any] = version.parse('1.11' ) @property def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowercase_ ( self ) -> float: return 1E-4
13
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_00 ) -> int: __lowerCamelCase : Union[str, Any] = n * (n + 1) * (2 * n + 1) / 6 __lowerCamelCase : Union[str, Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'''{solution() = }''')
13
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : List[str] = logging.get_logger(__name__) a : Optional[int] = { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json" ), } class UpperCamelCase__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = "xlm-roberta" def __init__( self , snake_case=3_0_5_2_2 , snake_case=7_6_8 , snake_case=1_2 , snake_case=1_2 , snake_case=3_0_7_2 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=5_1_2 , snake_case=2 , snake_case=0.02 , snake_case=1e-12 , snake_case=1 , snake_case=0 , snake_case=2 , snake_case="absolute" , snake_case=True , snake_case=None , **snake_case , ): '''simple docstring''' super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) UpperCAmelCase : Any = vocab_size UpperCAmelCase : Tuple = hidden_size UpperCAmelCase : Optional[int] = num_hidden_layers UpperCAmelCase : Optional[int] = num_attention_heads UpperCAmelCase : Tuple = hidden_act UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : str = hidden_dropout_prob UpperCAmelCase : List[str] = attention_probs_dropout_prob UpperCAmelCase : List[str] = max_position_embeddings UpperCAmelCase : List[Any] = type_vocab_size UpperCAmelCase : Any = initializer_range UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : Any = position_embedding_type UpperCAmelCase : Tuple = use_cache UpperCAmelCase : Optional[int] = classifier_dropout class UpperCamelCase__ ( lowercase__ ): """simple docstring""" @property def A_ ( self ): '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase : List[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase : List[str] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
718
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig a : Any = logging.get_logger(__name__) class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : List[Any] = question_encoder UpperCAmelCase : Tuple = generator UpperCAmelCase : int = self.question_encoder def A_ ( self , snake_case ): '''simple docstring''' if os.path.isfile(snake_case ): raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file" ) os.makedirs(snake_case , exist_ok=snake_case ) UpperCAmelCase : Union[str, Any] = os.path.join(snake_case , "question_encoder_tokenizer" ) UpperCAmelCase : Dict = os.path.join(snake_case , "generator_tokenizer" ) self.question_encoder.save_pretrained(snake_case ) self.generator.save_pretrained(snake_case ) @classmethod def A_ ( cls , snake_case , **snake_case ): '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer UpperCAmelCase : Dict = kwargs.pop("config" , snake_case ) if config is None: UpperCAmelCase : int = RagConfig.from_pretrained(snake_case ) UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained( snake_case , config=config.question_encoder , subfolder="question_encoder_tokenizer" ) UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( snake_case , config=config.generator , subfolder="generator_tokenizer" ) return cls(question_encoder=snake_case , generator=snake_case ) def __call__( self , *snake_case , **snake_case ): '''simple docstring''' return self.current_tokenizer(*snake_case , **snake_case ) def A_ ( self , *snake_case , **snake_case ): '''simple docstring''' return self.generator.batch_decode(*snake_case , **snake_case ) def A_ ( self , *snake_case , **snake_case ): '''simple docstring''' return self.generator.decode(*snake_case , **snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = self.question_encoder def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = self.generator def A_ ( self , snake_case , snake_case = None , snake_case = None , snake_case = None , snake_case = "longest" , snake_case = None , snake_case = True , **snake_case , ): '''simple docstring''' warnings.warn( "`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the " "regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` " "context manager to prepare your targets. See the documentation of your specific tokenizer for more " "details" , snake_case , ) if max_length is None: UpperCAmelCase : Dict = self.current_tokenizer.model_max_length UpperCAmelCase : List[str] = self( snake_case , add_special_tokens=snake_case , return_tensors=snake_case , max_length=snake_case , padding=snake_case , truncation=snake_case , **snake_case , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: UpperCAmelCase : Optional[int] = self.current_tokenizer.model_max_length UpperCAmelCase : Union[str, Any] = self( text_target=snake_case , add_special_tokens=snake_case , return_tensors=snake_case , padding=snake_case , max_length=snake_case , truncation=snake_case , **snake_case , ) UpperCAmelCase : Optional[Any] = labels["input_ids"] return model_inputs
609
0
'''simple docstring''' import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList a__ : Optional[int] = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : int , a__ : Dict , a__ : List[str] , a__ : Union[str, Any]=None , a__ : int=1 ): UpperCAmelCase = tokenizer UpperCAmelCase = dataset UpperCAmelCase = len(a__ ) if n_tasks is None else n_tasks UpperCAmelCase = n_copies def __iter__( self : int ): UpperCAmelCase = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) UpperCAmelCase = self.tokenizer(a__ , padding=a__ , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Any , a__ : List[Any] , a__ : List[str] , a__ : Optional[Any] ): UpperCAmelCase = start_length UpperCAmelCase = eof_strings UpperCAmelCase = tokenizer def __call__( self : Optional[int] , a__ : Optional[Any] , a__ : Dict , **a__ : List[str] ): UpperCAmelCase = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) UpperCAmelCase = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(a__ ) def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str] ) -> str: """simple docstring""" UpperCAmelCase = re.split('''(%s)''' % '''|'''.join(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # last string should be "" return "".join(string_list[:-2] ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=20 , **SCREAMING_SNAKE_CASE_ : int ) -> Any: """simple docstring""" UpperCAmelCase = defaultdict(SCREAMING_SNAKE_CASE_ ) # dict of list of generated tokens for step, batch in tqdm(enumerate(SCREAMING_SNAKE_CASE_ ) ): with torch.no_grad(): UpperCAmelCase = batch['''ids'''].shape[-1] UpperCAmelCase = accelerator.unwrap_model(SCREAMING_SNAKE_CASE_ ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # each task is generated batch_size times UpperCAmelCase = batch['''task_id'''].repeat(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = accelerator.pad_across_processes( SCREAMING_SNAKE_CASE_ , dim=1 , pad_index=tokenizer.pad_token_id ) UpperCAmelCase, UpperCAmelCase = accelerator.gather((generated_tokens, generated_tasks) ) UpperCAmelCase = generated_tokens.cpu().numpy() UpperCAmelCase = generated_tasks.cpu().numpy() for task, generated_tokens in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): gen_token_dict[task].append(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = [[] for _ in range(SCREAMING_SNAKE_CASE_ )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: UpperCAmelCase = tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) code_gens[task].append(remove_last_block(SCREAMING_SNAKE_CASE_ ) ) return code_gens def __snake_case ( ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = HfArgumentParser(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric UpperCAmelCase = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing UpperCAmelCase = '''false''' if args.num_workers is None: UpperCAmelCase = multiprocessing.cpu_count() # Use dataset load to feed to accelerate UpperCAmelCase = Accelerator() set_seed(args.seed , device_specific=SCREAMING_SNAKE_CASE_ ) # Load model and tokenizer UpperCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) UpperCAmelCase = tokenizer.eos_token UpperCAmelCase = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings UpperCAmelCase = { '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] ), } # Load evaluation dataset and metric UpperCAmelCase = load_dataset('''openai_humaneval''' ) UpperCAmelCase = load_metric('''code_eval''' ) UpperCAmelCase = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) UpperCAmelCase = args.n_samples // args.batch_size UpperCAmelCase = TokenizedDataset(SCREAMING_SNAKE_CASE_ , human_eval['''test'''] , n_copies=SCREAMING_SNAKE_CASE_ , n_tasks=SCREAMING_SNAKE_CASE_ ) # do not confuse args.batch_size, which is actually the num_return_sequences UpperCAmelCase = DataLoader(SCREAMING_SNAKE_CASE_ , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: UpperCAmelCase = code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception UpperCAmelCase, UpperCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = complete_code( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , n_tasks=SCREAMING_SNAKE_CASE_ , batch_size=args.batch_size , **SCREAMING_SNAKE_CASE_ , ) if accelerator.is_main_process: UpperCAmelCase = [] for task in tqdm(range(SCREAMING_SNAKE_CASE_ ) ): UpperCAmelCase = human_eval['''test'''][task]['''test'''] UpperCAmelCase = f"check({human_eval['test'][task]['entry_point']})" references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric UpperCAmelCase, UpperCAmelCase = code_eval_metric.compute( references=SCREAMING_SNAKE_CASE_ , predictions=SCREAMING_SNAKE_CASE_ , num_workers=args.num_workers ) print(f"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
51
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowercase ( _lowercase ): lowerCamelCase : List[Any] = ["image_processor", "tokenizer"] lowerCamelCase : List[str] = "LayoutLMv2ImageProcessor" lowerCamelCase : Dict = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__(self , A=None , A=None , **A ): if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , A , ) lowerCamelCase_ : Any = kwargs.pop('''feature_extractor''' ) lowerCamelCase_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(A , A ) def __call__(self , A , A = None , A = None , A = None , A = None , A = True , A = False , A = None , A = None , A = 0 , A = None , A = None , A = None , A = False , A = False , A = False , A = False , A = True , A = None , **A , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowerCamelCase_ : Union[str, Any] = self.image_processor(images=A , return_tensors=A ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(A , A ): lowerCamelCase_ : str = [text] # add batch dimension (as the image processor always adds a batch dimension) lowerCamelCase_ : Tuple = features['''words'''] lowerCamelCase_ : Any = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=A , add_special_tokens=A , padding=A , truncation=A , max_length=A , stride=A , pad_to_multiple_of=A , return_token_type_ids=A , return_attention_mask=A , return_overflowing_tokens=A , return_special_tokens_mask=A , return_offsets_mapping=A , return_length=A , verbose=A , return_tensors=A , **A , ) # add pixel values lowerCamelCase_ : Dict = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowerCamelCase_ : Union[str, Any] = self.get_overflowing_images(A , encoded_inputs['''overflow_to_sample_mapping'''] ) lowerCamelCase_ : List[str] = images return encoded_inputs def UpperCAmelCase__ (self , A , A ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image lowerCamelCase_ : Union[str, Any] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(A ) != len(A ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' F""" {len(A )} and {len(A )}""" ) return images_with_overflow def UpperCAmelCase__ (self , *A , **A ): return self.tokenizer.batch_decode(*A , **A ) def UpperCAmelCase__ (self , *A , **A ): return self.tokenizer.decode(*A , **A ) @property def UpperCAmelCase__ (self ): return ["input_ids", "bbox", "attention_mask", "image"] @property def UpperCAmelCase__ (self ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , A , ) return self.image_processor_class @property def UpperCAmelCase__ (self ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , A , ) return self.image_processor
422
0
"""simple docstring""" import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class __lowerCAmelCase ( __a ): lowercase = ['''image_processor''', '''tokenizer'''] lowercase = '''BlipImageProcessor''' lowercase = '''AutoTokenizer''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__(snake_case__ , snake_case__ ) # add QFormer tokenizer __UpperCamelCase = qformer_tokenizer def __call__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' if images is None and text is None: raise ValueError('You have to specify at least images or text.' ) __UpperCamelCase = BatchFeature() if text is not None: __UpperCamelCase = self.tokenizer( text=snake_case__ , add_special_tokens=snake_case__ , padding=snake_case__ , truncation=snake_case__ , max_length=snake_case__ , stride=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , return_overflowing_tokens=snake_case__ , return_special_tokens_mask=snake_case__ , return_offsets_mapping=snake_case__ , return_token_type_ids=snake_case__ , return_length=snake_case__ , verbose=snake_case__ , return_tensors=snake_case__ , **snake_case__ , ) encoding.update(snake_case__ ) __UpperCamelCase = self.qformer_tokenizer( text=snake_case__ , add_special_tokens=snake_case__ , padding=snake_case__ , truncation=snake_case__ , max_length=snake_case__ , stride=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , return_overflowing_tokens=snake_case__ , return_special_tokens_mask=snake_case__ , return_offsets_mapping=snake_case__ , return_token_type_ids=snake_case__ , return_length=snake_case__ , verbose=snake_case__ , return_tensors=snake_case__ , **snake_case__ , ) __UpperCamelCase = qformer_text_encoding.pop('input_ids' ) __UpperCamelCase = qformer_text_encoding.pop('attention_mask' ) if images is not None: __UpperCamelCase = self.image_processor(snake_case__ , return_tensors=snake_case__ ) encoding.update(snake_case__ ) return encoding def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.tokenizer.model_input_names __UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def UpperCAmelCase ( self , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' if os.path.isfile(snake_case__ ): raise ValueError(F'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) __UpperCamelCase = os.path.join(snake_case__ , 'qformer_tokenizer' ) self.qformer_tokenizer.save_pretrained(snake_case__ ) return super().save_pretrained(snake_case__ , **snake_case__ ) @classmethod def UpperCAmelCase ( cls , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained(snake_case__ , subfolder='qformer_tokenizer' ) __UpperCamelCase = cls._get_arguments_from_pretrained(snake_case__ , **snake_case__ ) args.append(snake_case__ ) return cls(*snake_case__ )
706
"""simple docstring""" def A ( snake_case :int , snake_case :int ) -> int: return int(input_a == input_a == 0 ) def A ( ) -> None: print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(f'| 0 | 0 | {nor_gate(0 , 0 )} |' ) print(f'| 0 | 1 | {nor_gate(0 , 1 )} |' ) print(f'| 1 | 0 | {nor_gate(1 , 0 )} |' ) print(f'| 1 | 1 | {nor_gate(1 , 1 )} |' ) if __name__ == "__main__": import doctest doctest.testmod() main()
293
0
import argparse import json import subprocess def __UpperCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [] SCREAMING_SNAKE_CASE_ : Optional[int] = ( F'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' ' https://api.github.com/repos/huggingface/transformers/actions/runners' ) SCREAMING_SNAKE_CASE_ : str = subprocess.run(lowerCamelCase_ , shell=lowerCamelCase_ , stdout=subprocess.PIPE ) SCREAMING_SNAKE_CASE_ : Any = output.stdout.decode('utf-8' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = json.loads(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] = status['runners'] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(lowerCamelCase_ ) # save the result so we can report them on Slack with open('offline_runners.txt' , 'w' ) as fp: fp.write(json.dumps(lowerCamelCase_ ) ) if len(lowerCamelCase_ ) > 0: SCREAMING_SNAKE_CASE_ : Union[str, Any] = '\n'.join([x['name'] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def __UpperCAmelCase ( lowerCamelCase_ : List[str] ) -> Tuple: """simple docstring""" return values.split(',' ) UpperCamelCase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--target_runners''', default=None, type=list_str, required=True, help='''Comma-separated list of runners to check status.''', ) parser.add_argument( '''--token''', default=None, type=str, required=True, help='''A token that has actions:read permission.''' ) UpperCamelCase__ : List[Any] = parser.parse_args() get_runner_status(args.target_runners, args.token)
105
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowerCamelCase = logging.get_logger(__name__) logging.set_verbosity_info() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): if "xprophetnet" in prophetnet_checkpoint_path: UpperCAmelCase_ = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = XLMProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase__ , output_loading_info=lowerCAmelCase__ ) else: UpperCAmelCase_ = ProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = ProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase__ , output_loading_info=lowerCAmelCase__ ) UpperCAmelCase_ = ["key_proj", "value_proj", "query_proj"] UpperCAmelCase_ = { "self_attn": "ngram_self_attn", "cross_attn": "encoder_attn", "cross_attn_layer_norm": "encoder_attn_layer_norm", "feed_forward_layer_norm": "final_layer_norm", "feed_forward": "", "intermediate": "fc1", "output": "fc2", "key_proj": "k_proj", "query_proj": "q_proj", "value_proj": "v_proj", "word_embeddings": "embed_tokens", "embeddings_layer_norm": "emb_layer_norm", "relative_pos_embeddings": "relative_linear", "ngram_embeddings": "ngram_input_embed", "position_embeddings": "embed_positions", } for key in loading_info["missing_keys"]: UpperCAmelCase_ = key.split("." ) if attributes[0] == "lm_head": UpperCAmelCase_ = prophet UpperCAmelCase_ = prophet_old else: UpperCAmelCase_ = prophet.prophetnet UpperCAmelCase_ = prophet_old.model UpperCAmelCase_ = False for attribute in attributes: if attribute in mapping: UpperCAmelCase_ = mapping[attribute] if not hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) and len(lowerCAmelCase__ ) > 0: UpperCAmelCase_ = attribute elif hasattr(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" UpperCAmelCase_ = old_model.weight logger.info(f"""{attribute} is initialized.""" ) UpperCAmelCase_ = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" UpperCAmelCase_ = old_model.bias logger.info(f"""{attribute} is initialized""" ) UpperCAmelCase_ = True break elif attribute in special_keys and hasattr(lowerCAmelCase__ , "in_proj_weight" ): UpperCAmelCase_ = old_model.in_proj_weight.shape[0] // 3 UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": UpperCAmelCase_ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) UpperCAmelCase_ = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": UpperCAmelCase_ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) UpperCAmelCase_ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": UpperCAmelCase_ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) UpperCAmelCase_ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) UpperCAmelCase_ = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." UpperCAmelCase_ = nn.Parameter(old_model.embed_positions.weight[:512, :] ) UpperCAmelCase_ = True break if attribute.isdigit(): UpperCAmelCase_ = model[int(lowerCAmelCase__ )] UpperCAmelCase_ = old_model[int(lowerCAmelCase__ )] else: UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if old_attribute == "": UpperCAmelCase_ = old_model else: if not hasattr(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError(f"""{old_model} does not have {old_attribute}""" ) UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if not is_key_init: raise ValueError(f"""{key} was not correctly initialized!""" ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) prophet.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
82
0
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCamelCase = {} UpperCamelCase = tokenizer(example['content'] , truncation=_lowercase )['input_ids'] UpperCamelCase = len(example['content'] ) / len(output['input_ids'] ) return output _snake_case = HfArgumentParser(PretokenizationArguments) _snake_case = parser.parse_args() if args.num_workers is None: _snake_case = multiprocessing.cpu_count() _snake_case = AutoTokenizer.from_pretrained(args.tokenizer_dir) _snake_case = time.time() _snake_case = load_dataset(args.dataset_name, split='''train''') print(F"Dataset loaded in {time.time()-t_start:.2f}s") _snake_case = time.time() _snake_case = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(F"Dataset tokenized in {time.time()-t_start:.2f}s") _snake_case = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F"Data pushed to the hub in {time.time()-t_start:.2f}s")
170
from math import factorial, pi def __lowerCamelCase ( _lowercase , _lowercase = 30 ) -> float: if not isinstance(_lowercase , (int, float) ): raise ValueError('maclaurin_sin() requires either an int or float for theta' ) if not isinstance(_lowercase , _lowercase ) or accuracy <= 0: raise ValueError('maclaurin_sin() requires a positive int for accuracy' ) UpperCamelCase = float(_lowercase ) UpperCamelCase = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(_lowercase ) ) def __lowerCamelCase ( _lowercase , _lowercase = 30 ) -> float: if not isinstance(_lowercase , (int, float) ): raise ValueError('maclaurin_cos() requires either an int or float for theta' ) if not isinstance(_lowercase , _lowercase ) or accuracy <= 0: raise ValueError('maclaurin_cos() requires a positive int for accuracy' ) UpperCamelCase = float(_lowercase ) UpperCamelCase = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(_lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
170
1
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : List[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __snake_case ( __magic_name__ , unittest.TestCase ): __lowerCAmelCase = ReformerTokenizer __lowerCAmelCase = ReformerTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = True def _snake_case ( self ) -> List[str]: super().setUp() snake_case__ = ReformerTokenizer(UpperCamelCase_ , keep_accents=UpperCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self ) -> Optional[Any]: snake_case__ = '<s>' snake_case__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ ) def _snake_case ( self ) -> Any: snake_case__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(UpperCamelCase_ ) , 1000 ) def _snake_case ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _snake_case ( self ) -> Dict: if not self.test_rust_tokenizer: return snake_case__ = self.get_tokenizer() snake_case__ = self.get_rust_tokenizer() snake_case__ = 'I was born in 92000, and this is falsé.' snake_case__ = tokenizer.tokenize(UpperCamelCase_ ) snake_case__ = rust_tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) snake_case__ = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) snake_case__ = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) snake_case__ = self.get_rust_tokenizer() snake_case__ = tokenizer.encode(UpperCamelCase_ ) snake_case__ = rust_tokenizer.encode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_=15 ) -> List[str]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case__ = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) # Simple input snake_case__ = 'This is a simple input' snake_case__ = ['This is a simple input 1', 'This is a simple input 2'] snake_case__ = ('This is a simple input', 'This is a pair') snake_case__ = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(UpperCamelCase_ , tokenizer_r.encode , UpperCamelCase_ , max_length=UpperCamelCase_ , padding='max_length' ) # Simple input self.assertRaises(UpperCamelCase_ , tokenizer_r.encode_plus , UpperCamelCase_ , max_length=UpperCamelCase_ , padding='max_length' ) # Simple input self.assertRaises( UpperCamelCase_ , tokenizer_r.batch_encode_plus , UpperCamelCase_ , max_length=UpperCamelCase_ , padding='max_length' , ) # Pair input self.assertRaises(UpperCamelCase_ , tokenizer_r.encode , UpperCamelCase_ , max_length=UpperCamelCase_ , padding='max_length' ) # Pair input self.assertRaises(UpperCamelCase_ , tokenizer_r.encode_plus , UpperCamelCase_ , max_length=UpperCamelCase_ , padding='max_length' ) # Pair input self.assertRaises( UpperCamelCase_ , tokenizer_r.batch_encode_plus , UpperCamelCase_ , max_length=UpperCamelCase_ , padding='max_length' , ) def _snake_case ( self ) -> Union[str, Any]: pass def _snake_case ( self ) -> str: snake_case__ = ReformerTokenizer(UpperCamelCase_ , keep_accents=UpperCamelCase_ ) snake_case__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCamelCase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [285, 46, 10, 170, 382] , ) snake_case__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCamelCase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) snake_case__ = tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) snake_case__ = tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def _snake_case ( self ) -> Optional[int]: return ReformerTokenizer.from_pretrained('google/reformer-crime-and-punishment' ) @slow def _snake_case ( self ) -> List[Any]: snake_case__ = 'Hello World!' snake_case__ = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(UpperCamelCase_ , self.big_tokenizer.encode(UpperCamelCase_ ) ) @slow def _snake_case ( self ) -> str: snake_case__ = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) snake_case__ = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(UpperCamelCase_ , self.big_tokenizer.encode(UpperCamelCase_ ) ) @require_torch @slow def _snake_case ( self ) -> str: import torch from transformers import ReformerConfig, ReformerModel # Build sequence snake_case__ = list(self.big_tokenizer.get_vocab().keys() )[:10] snake_case__ = ' '.join(UpperCamelCase_ ) snake_case__ = self.big_tokenizer.encode_plus(UpperCamelCase_ , return_tensors='pt' ) snake_case__ = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='pt' ) snake_case__ = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) snake_case__ = encoded_sequence['input_ids'].shape snake_case__ = ReformerModel(UpperCamelCase_ ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCamelCase_ ) model(**UpperCamelCase_ ) @slow def _snake_case ( self ) -> Union[str, Any]: # fmt: off snake_case__ = {'input_ids': [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 snake_case__ = [ 'This is a very simple sentence.', 'The quick brown fox jumps over the lazy dog.', ] self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase_ , model_name='google/reformer-crime-and-punishment' , revision='0e6c3decb8211d49bf881013425dc8b0448b3f5a' , padding=UpperCamelCase_ , sequences=UpperCamelCase_ , )
368
'''simple docstring''' import cmath import math def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->complex: snake_case__ = math.radians(UpperCAmelCase_ ) snake_case__ = math.radians(UpperCAmelCase_ ) # Convert voltage and current to rectangular form snake_case__ = cmath.rect(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case__ = cmath.rect(UpperCAmelCase_ , UpperCAmelCase_ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
368
1
"""simple docstring""" import copy import random from transformers import CLIPTokenizer class lowerCAmelCase ( snake_case ): def __init__( self , *a__ , **a__ ): super().__init__(*a__ , **a__ ) _UpperCAmelCase = {} def __A ( self , a__ , *a__ , **a__ ): _UpperCAmelCase = super().add_tokens(a__ , *a__ , **a__ ) if num_added_tokens == 0: raise ValueError( f"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" ' `placeholder_token` that is not already in the tokenizer.' ) def __A ( self , a__ , *a__ , a__=1 , **a__ ): _UpperCAmelCase = [] if num_vec_per_token == 1: self.try_adding_tokens(a__ , *a__ , **a__ ) output.append(a__ ) else: _UpperCAmelCase = [] for i in range(a__ ): _UpperCAmelCase = placeholder_token + f"""_{i}""" self.try_adding_tokens(a__ , *a__ , **a__ ) output.append(a__ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f"""The tokenizer already has placeholder token {token} that can get confused with""" f""" {placeholder_token}keep placeholder tokens independent""" ) _UpperCAmelCase = output def __A ( self , a__ , a__=False , a__=1.0 ): if isinstance(a__ , a__ ): _UpperCAmelCase = [] for i in range(len(a__ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=a__ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: _UpperCAmelCase = self.token_map[placeholder_token] _UpperCAmelCase = tokens[: 1 + int(len(a__ ) * prop_tokens_to_load )] if vector_shuffle: _UpperCAmelCase = copy.copy(a__ ) random.shuffle(a__ ) _UpperCAmelCase = text.replace(a__ , ' '.join(a__ ) ) return text def __call__( self , a__ , *a__ , a__=False , a__=1.0 , **a__ ): return super().__call__( self.replace_placeholder_tokens_in_text( a__ , vector_shuffle=a__ , prop_tokens_to_load=a__ ) , *a__ , **a__ , ) def __A ( self , a__ , *a__ , a__=False , a__=1.0 , **a__ ): return super().encode( self.replace_placeholder_tokens_in_text( a__ , vector_shuffle=a__ , prop_tokens_to_load=a__ ) , *a__ , **a__ , )
494
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def __lowerCamelCase ( SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" for param in module.parameters(): _UpperCAmelCase = False def __lowerCamelCase ( ) -> Dict: """simple docstring""" _UpperCAmelCase = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _UpperCAmelCase = 'mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def __lowerCamelCase ( SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase = plt.imshow(SCREAMING_SNAKE_CASE ) fig.axes.get_xaxis().set_visible(SCREAMING_SNAKE_CASE ) fig.axes.get_yaxis().set_visible(SCREAMING_SNAKE_CASE ) plt.show() def __lowerCamelCase ( ) -> Dict: """simple docstring""" _UpperCAmelCase = datetime.now() _UpperCAmelCase = current_time.strftime('%H:%M:%S' ) return timestamp
494
1
def snake_case_ ( lowerCAmelCase_ : float , lowerCAmelCase_ : float ): if density <= 0: raise ValueError("""Impossible fluid density""" ) if bulk_modulus <= 0: raise ValueError("""Impossible bulk modulus""" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
149
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , __a : Optional[int] , __a : List[str]=14 , __a : Optional[Any]=7 , __a : List[Any]=True , __a : Tuple=True , __a : Union[str, Any]=True , __a : Any=True , __a : Any=True , __a : Dict=99 , __a : List[Any]=32 , __a : Union[str, Any]=5 , __a : List[Any]=4 , __a : Tuple=37 , __a : Dict="gelu" , __a : Tuple=0.1 , __a : str=0.1 , __a : Optional[int]=512 , __a : Union[str, Any]=16 , __a : Tuple=2 , __a : Tuple=0.02 , __a : List[str]=3 , __a : Tuple=4 , __a : int=None , ) -> int: """simple docstring""" __lowercase : Tuple = parent __lowercase : Optional[int] = batch_size __lowercase : int = seq_length __lowercase : Any = is_training __lowercase : str = use_token_type_ids __lowercase : Dict = use_input_mask __lowercase : Tuple = use_labels __lowercase : Optional[Any] = use_mc_token_ids __lowercase : int = vocab_size __lowercase : Optional[int] = hidden_size __lowercase : int = num_hidden_layers __lowercase : Tuple = num_attention_heads __lowercase : Any = intermediate_size __lowercase : Any = hidden_act __lowercase : Optional[Any] = hidden_dropout_prob __lowercase : Dict = attention_probs_dropout_prob __lowercase : str = max_position_embeddings __lowercase : List[Any] = type_vocab_size __lowercase : List[str] = type_sequence_label_size __lowercase : Optional[Any] = initializer_range __lowercase : List[Any] = num_labels __lowercase : str = num_choices __lowercase : List[str] = scope __lowercase : Optional[Any] = self.vocab_size - 1 def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : int = None if self.use_input_mask: __lowercase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Tuple = None if self.use_token_type_ids: __lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Dict = None if self.use_mc_token_ids: __lowercase : int = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) __lowercase : Tuple = None __lowercase : int = None __lowercase : Any = None if self.use_labels: __lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : int = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : Dict = self.get_config() __lowercase : Union[str, Any] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def lowerCAmelCase ( self : List[str] , __a : Tuple , __a : str , __a : Optional[int] , __a : Any , __a : Union[str, Any] , *__a : List[str] ) -> Tuple: """simple docstring""" __lowercase : int = CTRLModel(config=__a ) model.to(__a ) model.eval() model(__a , token_type_ids=__a , head_mask=__a ) model(__a , token_type_ids=__a ) __lowercase : int = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def lowerCAmelCase ( self : Any , __a : Union[str, Any] , __a : str , __a : List[Any] , __a : Union[str, Any] , __a : Optional[Any] , *__a : List[Any] ) -> Tuple: """simple docstring""" __lowercase : str = CTRLLMHeadModel(__a ) model.to(__a ) model.eval() __lowercase : Any = model(__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : int = config_and_inputs __lowercase : Optional[int] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask} return config, inputs_dict def lowerCAmelCase ( self : int , __a : int , __a : Dict , __a : str , __a : List[str] , *__a : str ) -> int: """simple docstring""" __lowercase : List[str] = self.num_labels __lowercase : Optional[Any] = CTRLForSequenceClassification(__a ) model.to(__a ) model.eval() __lowercase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : List[str] = model(__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : Dict = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () _A : Any = (CTRLLMHeadModel,) if is_torch_available() else () _A : Dict = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) _A : str = True _A : List[Any] = False _A : List[Any] = False def lowerCAmelCase ( self : int , __a : Tuple , __a : int , __a : str , __a : int , __a : Dict ) -> Dict: """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = CTRLModelTester(self ) __lowercase : Any = ConfigTester(self , config_class=__a , n_embd=37 ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__a ) def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__a ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" pass @slow def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : List[Any] = CTRLModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" pass @require_torch class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowercase : int = CTRLLMHeadModel.from_pretrained("""ctrl""" ) model.to(__a ) __lowercase : str = torch.tensor( [[11859, 0, 1611, 8]] , dtype=torch.long , device=__a ) # Legal the president is __lowercase : Union[str, Any] = [ 11859, 0, 1611, 8, 5, 150, 26449, 2, 19, 348, 469, 3, 2595, 48, 20740, 246533, 246533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a __lowercase : List[Any] = model.generate(__a , do_sample=__a ) self.assertListEqual(output_ids[0].tolist() , __a )
149
1
from collections import Counter from timeit import timeit def __lowerCamelCase ( __lowerCAmelCase : str = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2 def __lowerCamelCase ( __lowerCAmelCase : str = "" ) -> bool: if len(__lowerCAmelCase ) == 0: return True __UpperCamelCase : Dict = input_str.replace(""" """ , """""" ).lower() # character_freq_dict: Stores the frequency of every character in the input string __UpperCamelCase : dict[str, int] = {} for character in lower_case_input_str: __UpperCamelCase : Dict = character_freq_dict.get(__lowerCAmelCase , 0 ) + 1 __UpperCamelCase : List[Any] = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def __lowerCamelCase ( __lowerCAmelCase : str = "" ) -> None: print("""\nFor string = """ , __lowerCAmelCase , """:""" ) print( """> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(__lowerCAmelCase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) print( """> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(__lowerCAmelCase ) , """\ttime =""" , timeit( """z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , ) if __name__ == "__main__": UpperCamelCase = input( 'Enter string to determine if it can be rearranged as a palindrome or not: ' ).strip() benchmark(check_str) UpperCamelCase = can_string_be_rearranged_as_palindrome_counter(check_str) print(F"""{check_str} can {'' if status else 'not '}be rearranged as a palindrome""")
708
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class _A ( UpperCAmelCase_ ): lowercase_ : Union[str, Any] = '''gpt_neox_japanese''' def __init__( self : Optional[Any] , lowerCamelCase__ : List[Any]=3_20_00 , lowerCamelCase__ : Any=25_60 , lowerCamelCase__ : str=32 , lowerCamelCase__ : Union[str, Any]=32 , lowerCamelCase__ : str=4 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : str=1.00 , lowerCamelCase__ : str=1_00_00 , lowerCamelCase__ : Tuple=20_48 , lowerCamelCase__ : Any=0.02 , lowerCamelCase__ : List[Any]=1e-5 , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : int=3_19_96 , lowerCamelCase__ : Optional[Any]=3_19_99 , lowerCamelCase__ : Tuple=0.1 , lowerCamelCase__ : List[Any]=0.0 , **lowerCamelCase__ : str , ): """simple docstring""" super().__init__(bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) __UpperCamelCase : List[Any] = vocab_size __UpperCamelCase : List[Any] = max_position_embeddings __UpperCamelCase : Dict = hidden_size __UpperCamelCase : Dict = num_hidden_layers __UpperCamelCase : List[Any] = num_attention_heads __UpperCamelCase : List[str] = intermediate_multiple_size __UpperCamelCase : List[str] = hidden_act __UpperCamelCase : str = rotary_pct __UpperCamelCase : Optional[int] = rotary_emb_base __UpperCamelCase : List[Any] = initializer_range __UpperCamelCase : Union[str, Any] = layer_norm_eps __UpperCamelCase : Optional[int] = use_cache __UpperCamelCase : Optional[int] = attention_dropout __UpperCamelCase : int = hidden_dropout
515
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __snake_case : Any = logging.get_logger(__name__) __snake_case : Any = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } __snake_case : List[str] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def a_ ( __a ): A__ = {} with open(__a , '''r''' ) as file: for line_number, line in enumerate(__a ): A__ = line.strip() if line: A__ = line.split() A__ = line_number A__ = words[0] A__ = value return result def a_ ( __a , __a , __a , __a , __a ): for attribute in key.split('''.''' ): A__ = getattr(__a , __a ) A__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__a ): A__ = PARAM_MAPPING[full_name.split('''.''' )[-1]] A__ = '''param''' if weight_type is not None and weight_type != "param": A__ = getattr(__a , __a ).shape elif weight_type is not None and weight_type == "param": A__ = hf_pointer for attribute in hf_param_name.split('''.''' ): A__ = getattr(__a , __a ) A__ = shape_pointer.shape # let's reduce dimension A__ = value[0] else: A__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": A__ = value elif weight_type == "weight_g": A__ = value elif weight_type == "weight_v": A__ = value elif weight_type == "bias": A__ = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): A__ = getattr(__a , __a ) A__ = value else: A__ = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def a_ ( __a , __a , __a , __a , __a ): A__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__a ): A__ = PARAM_MAPPING[full_name.split('''.''' )[-1]] A__ = '''param''' if weight_type is not None and weight_type != "param": A__ = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": A__ = '''.'''.join([key, hf_param_name] ) else: A__ = key A__ = value if '''lm_head''' in full_key else value[0] __snake_case : List[Any] = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def a_ ( __a , __a , __a=None , __a=None ): A__ = False for key, mapped_key in MAPPING.items(): A__ = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: A__ = True if "*" in mapped_key: A__ = name.split(__a )[0].split('''.''' )[-2] A__ = mapped_key.replace('''*''' , __a ) if "weight_g" in name: A__ = '''weight_g''' elif "weight_v" in name: A__ = '''weight_v''' elif "bias" in name: A__ = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj A__ = '''weight''' else: A__ = None if hf_dict is not None: rename_dict(__a , __a , __a , __a , __a ) else: set_recursively(__a , __a , __a , __a , __a ) return is_used return is_used def a_ ( __a , __a , __a ): A__ = [] A__ = fairseq_model.state_dict() A__ = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): A__ = False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == '''group''' , ) A__ = True else: A__ = load_wavaveca_layer(__a , __a , __a ) if not is_used: unused_weights.append(__a ) logger.warning(f'''Unused weights: {unused_weights}''' ) def a_ ( __a , __a , __a , __a , __a ): A__ = full_name.split('''conv_layers.''' )[-1] A__ = name.split('''.''' ) A__ = int(items[0] ) A__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) A__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) A__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) A__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) A__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__a ) @torch.no_grad() def a_ ( __a , __a , __a=None , __a=None , __a=True , __a=False ): if config_path is not None: A__ = WavaVecaConfig.from_pretrained(__a ) else: A__ = WavaVecaConfig() if is_seq_class: A__ = read_txt_into_dict(__a ) A__ = idalabel A__ = WavaVecaForSequenceClassification(__a ) A__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) feature_extractor.save_pretrained(__a ) elif is_finetuned: if dict_path: A__ = Dictionary.load(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A__ = target_dict.pad_index A__ = target_dict.bos_index A__ = target_dict.eos_index A__ = len(target_dict.symbols ) A__ = os.path.join(__a , '''vocab.json''' ) if not os.path.isdir(__a ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__a ) ) return os.makedirs(__a , exist_ok=__a ) A__ = target_dict.indices # fairseq has the <pad> and <s> switched A__ = 0 A__ = 1 with open(__a , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__a , __a ) A__ = WavaVecaCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__a , ) A__ = True if config.feat_extract_norm == '''layer''' else False A__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) A__ = WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) A__ = WavaVecaForCTC(__a ) else: A__ = WavaVecaForPreTraining(__a ) if is_finetuned or is_seq_class: A__ , A__ , A__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: A__ = argparse.Namespace(task='''audio_pretraining''' ) A__ = fairseq.tasks.setup_task(__a ) A__ , A__ , A__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__a ) A__ = model[0].eval() recursively_load_weights(__a , __a , not is_finetuned ) hf_wavavec.save_pretrained(__a ) if __name__ == "__main__": __snake_case : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) __snake_case : str = parser.parse_args() __snake_case : List[Any] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
571
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __snake_case : Union[str, Any] = logging.get_logger(__name__) __snake_case : List[Any] = OrderedDict( [ ('align', 'EfficientNetImageProcessor'), ('beit', 'BeitImageProcessor'), ('bit', 'BitImageProcessor'), ('blip', 'BlipImageProcessor'), ('blip-2', 'BlipImageProcessor'), ('bridgetower', 'BridgeTowerImageProcessor'), ('chinese_clip', 'ChineseCLIPImageProcessor'), ('clip', 'CLIPImageProcessor'), ('clipseg', 'ViTImageProcessor'), ('conditional_detr', 'ConditionalDetrImageProcessor'), ('convnext', 'ConvNextImageProcessor'), ('convnextv2', 'ConvNextImageProcessor'), ('cvt', 'ConvNextImageProcessor'), ('data2vec-vision', 'BeitImageProcessor'), ('deformable_detr', 'DeformableDetrImageProcessor'), ('deit', 'DeiTImageProcessor'), ('deta', 'DetaImageProcessor'), ('detr', 'DetrImageProcessor'), ('dinat', 'ViTImageProcessor'), ('donut-swin', 'DonutImageProcessor'), ('dpt', 'DPTImageProcessor'), ('efficientformer', 'EfficientFormerImageProcessor'), ('efficientnet', 'EfficientNetImageProcessor'), ('flava', 'FlavaImageProcessor'), ('focalnet', 'BitImageProcessor'), ('git', 'CLIPImageProcessor'), ('glpn', 'GLPNImageProcessor'), ('groupvit', 'CLIPImageProcessor'), ('imagegpt', 'ImageGPTImageProcessor'), ('instructblip', 'BlipImageProcessor'), ('layoutlmv2', 'LayoutLMv2ImageProcessor'), ('layoutlmv3', 'LayoutLMv3ImageProcessor'), ('levit', 'LevitImageProcessor'), ('mask2former', 'Mask2FormerImageProcessor'), ('maskformer', 'MaskFormerImageProcessor'), ('mgp-str', 'ViTImageProcessor'), ('mobilenet_v1', 'MobileNetV1ImageProcessor'), ('mobilenet_v2', 'MobileNetV2ImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevitv2', 'MobileViTImageProcessor'), ('nat', 'ViTImageProcessor'), ('oneformer', 'OneFormerImageProcessor'), ('owlvit', 'OwlViTImageProcessor'), ('perceiver', 'PerceiverImageProcessor'), ('pix2struct', 'Pix2StructImageProcessor'), ('poolformer', 'PoolFormerImageProcessor'), ('regnet', 'ConvNextImageProcessor'), ('resnet', 'ConvNextImageProcessor'), ('sam', 'SamImageProcessor'), ('segformer', 'SegformerImageProcessor'), ('swiftformer', 'ViTImageProcessor'), ('swin', 'ViTImageProcessor'), ('swin2sr', 'Swin2SRImageProcessor'), ('swinv2', 'ViTImageProcessor'), ('table-transformer', 'DetrImageProcessor'), ('timesformer', 'VideoMAEImageProcessor'), ('tvlt', 'TvltImageProcessor'), ('upernet', 'SegformerImageProcessor'), ('van', 'ConvNextImageProcessor'), ('videomae', 'VideoMAEImageProcessor'), ('vilt', 'ViltImageProcessor'), ('vit', 'ViTImageProcessor'), ('vit_hybrid', 'ViTHybridImageProcessor'), ('vit_mae', 'ViTImageProcessor'), ('vit_msn', 'ViTImageProcessor'), ('xclip', 'CLIPImageProcessor'), ('yolos', 'YolosImageProcessor'), ] ) __snake_case : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def a_ ( __a ): for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: A__ = model_type_to_module_name(__a ) A__ = importlib.import_module(f'''.{module_name}''' , '''transformers.models''' ) try: return getattr(__a , __a ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(__a , '''__name__''' , __a ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. A__ = importlib.import_module('''transformers''' ) if hasattr(__a , __a ): return getattr(__a , __a ) return None def a_ ( __a , __a = None , __a = False , __a = False , __a = None , __a = None , __a = None , __a = False , **__a , ): A__ = get_file_from_repo( __a , __a , cache_dir=__a , force_download=__a , resume_download=__a , proxies=__a , use_auth_token=__a , revision=__a , local_files_only=__a , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(__a , encoding='''utf-8''' ) as reader: return json.load(__a ) class UpperCamelCase : """simple docstring""" def __init__( self : List[str] ): raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(_lowerCamelCase ) def A__ ( cls : str , _lowerCamelCase : Dict , **_lowerCamelCase : List[str] ): A__ = kwargs.pop('''config''' , _lowerCamelCase ) A__ = kwargs.pop('''trust_remote_code''' , _lowerCamelCase ) A__ = True A__ , A__ = ImageProcessingMixin.get_image_processor_dict(_lowerCamelCase , **_lowerCamelCase ) A__ = config_dict.get('''image_processor_type''' , _lowerCamelCase ) A__ = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): A__ = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: A__ = config_dict.pop('''feature_extractor_type''' , _lowerCamelCase ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) A__ = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): A__ = config_dict['''auto_map''']['''AutoFeatureExtractor'''] A__ = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(_lowerCamelCase , _lowerCamelCase ): A__ = AutoConfig.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) # It could be in `config.image_processor_type`` A__ = getattr(_lowerCamelCase , '''image_processor_type''' , _lowerCamelCase ) if hasattr(_lowerCamelCase , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: A__ = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: A__ = image_processor_class_from_name(_lowerCamelCase ) A__ = image_processor_auto_map is not None A__ = image_processor_class is not None or type(_lowerCamelCase ) in IMAGE_PROCESSOR_MAPPING A__ = resolve_trust_remote_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if has_remote_code and trust_remote_code: A__ = get_class_from_dynamic_module( _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) A__ = kwargs.pop('''code_revision''' , _lowerCamelCase ) if os.path.isdir(_lowerCamelCase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(_lowerCamelCase , **_lowerCamelCase ) elif image_processor_class is not None: return image_processor_class.from_dict(_lowerCamelCase , **_lowerCamelCase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(_lowerCamelCase ) in IMAGE_PROCESSOR_MAPPING: A__ = IMAGE_PROCESSOR_MAPPING[type(_lowerCamelCase )] return image_processor_class.from_dict(_lowerCamelCase , **_lowerCamelCase ) raise ValueError( F'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' F'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def A__ ( _lowerCamelCase : str , _lowerCamelCase : str ): IMAGE_PROCESSOR_MAPPING.register(_lowerCamelCase , _lowerCamelCase )
571
1
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , lowercase__ : Optional[int] , lowercase__ : List[Any]=3 , lowercase__ : Optional[int]=32 , lowercase__ : Optional[Any]=3 , lowercase__ : int=10 , lowercase__ : str=[10, 20, 30, 40] , lowercase__ : Any=[1, 1, 2, 1] , lowercase__ : List[Any]=True , lowercase__ : Tuple=True , lowercase__ : List[str]="relu" , lowercase__ : Tuple=3 , lowercase__ : List[str]=None , ) ->List[str]: '''simple docstring''' _UpperCamelCase : Tuple = parent _UpperCamelCase : List[Any] = batch_size _UpperCamelCase : int = image_size _UpperCamelCase : Optional[int] = num_channels _UpperCamelCase : List[str] = embeddings_size _UpperCamelCase : List[Any] = hidden_sizes _UpperCamelCase : str = depths _UpperCamelCase : str = is_training _UpperCamelCase : Tuple = use_labels _UpperCamelCase : str = hidden_act _UpperCamelCase : str = num_labels _UpperCamelCase : List[Any] = scope _UpperCamelCase : int = len(lowercase__ ) def snake_case__ ( self : Any ) ->Optional[int]: '''simple docstring''' _UpperCamelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : int = self.get_config() return config, pixel_values def snake_case__ ( self : List[str] ) ->List[str]: '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def snake_case__ ( self : Any , lowercase__ : Dict , lowercase__ : Optional[Any] ) ->Optional[int]: '''simple docstring''' _UpperCamelCase : Tuple = FlaxRegNetModel(config=lowercase__ ) _UpperCamelCase : Tuple = model(lowercase__ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def snake_case__ ( self : Optional[int] , lowercase__ : Optional[Any] , lowercase__ : Tuple ) ->Tuple: '''simple docstring''' _UpperCamelCase : Optional[Any] = self.num_labels _UpperCamelCase : Tuple = FlaxRegNetForImageClassification(config=lowercase__ ) _UpperCamelCase : Any = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : List[str] ) ->Union[str, Any]: '''simple docstring''' _UpperCamelCase : Any = self.prepare_config_and_inputs() _UpperCamelCase : List[Any] = config_and_inputs _UpperCamelCase : Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def snake_case__ ( self : str ) ->None: '''simple docstring''' _UpperCamelCase : int = FlaxRegNetModelTester(self ) _UpperCamelCase : str = ConfigTester(self , config_class=lowercase__ , has_text_modality=lowercase__ ) def snake_case__ ( self : str ) ->List[str]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case__ ( self : List[str] ) ->List[str]: '''simple docstring''' return def snake_case__ ( self : Tuple ) ->str: '''simple docstring''' _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def snake_case__ ( self : Union[str, Any] ) ->List[str]: '''simple docstring''' _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__ ) @unittest.skip(reason="RegNet does not use inputs_embeds" ) def snake_case__ ( self : int ) ->str: '''simple docstring''' pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def snake_case__ ( self : List[str] ) ->Dict: '''simple docstring''' pass def snake_case__ ( self : List[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Dict = model_class(lowercase__ ) _UpperCamelCase : Any = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Tuple = [*signature.parameters.keys()] _UpperCamelCase : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase__ ) def snake_case__ ( self : Optional[int] ) ->Dict: '''simple docstring''' def check_hidden_states_output(lowercase__ : Union[str, Any] , lowercase__ : Optional[int] , lowercase__ : Optional[int] ): _UpperCamelCase : Tuple = model_class(lowercase__ ) _UpperCamelCase : List[str] = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) _UpperCamelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase : Optional[int] = self.model_tester.num_stages self.assertEqual(len(lowercase__ ) , expected_num_stages + 1 ) _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Optional[int] = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : str = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) def snake_case__ ( self : Optional[int] ) ->List[Any]: '''simple docstring''' _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCamelCase : List[Any] = self._prepare_for_class(lowercase__ , lowercase__ ) _UpperCamelCase : Union[str, Any] = model_class(lowercase__ ) @jax.jit def model_jitted(lowercase__ : Optional[int] , **lowercase__ : Dict ): return model(pixel_values=lowercase__ , **lowercase__ ) with self.subTest("JIT Enabled" ): _UpperCamelCase : str = model_jitted(**lowercase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _UpperCamelCase : Any = model_jitted(**lowercase__ ).to_tuple() self.assertEqual(len(lowercase__ ) , len(lowercase__ ) ) for jitted_output, output in zip(lowercase__ , lowercase__ ): self.assertEqual(jitted_output.shape , output.shape ) def __A ( ) -> int: '''simple docstring''' _UpperCamelCase : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case__ ( self : Tuple ) ->Dict: '''simple docstring''' return AutoImageProcessor.from_pretrained("facebook/regnet-y-040" ) if is_vision_available() else None @slow def snake_case__ ( self : Any ) ->Any: '''simple docstring''' _UpperCamelCase : str = FlaxRegNetForImageClassification.from_pretrained("facebook/regnet-y-040" ) _UpperCamelCase : Tuple = self.default_image_processor _UpperCamelCase : Optional[int] = prepare_img() _UpperCamelCase : int = image_processor(images=lowercase__ , return_tensors="np" ) _UpperCamelCase : str = model(**lowercase__ ) # verify the logits _UpperCamelCase : Tuple = (1, 1_000) self.assertEqual(outputs.logits.shape , lowercase__ ) _UpperCamelCase : List[str] = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowercase__ , atol=1e-4 ) )
702
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ : Any = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : int = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Optional[Any] = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Optional[int] = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : str = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys lowerCAmelCase_ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
204
0
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS UpperCAmelCase =logging.get_logger(__name__) UpperCAmelCase ={ "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_=None ,lowerCamelCase_=None ,*lowerCamelCase_ ,**lowerCamelCase_ ) -> Optional[int]: super().__init__(*lowerCamelCase_ ,**lowerCamelCase_ ) if config is None: assert isinstance(self.model ,lowerCamelCase_ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f' {self.model.__class__}' ) A = self.model.config else: A = config A = data_args A = self.config.tgt_vocab_size if isinstance(self.config ,lowerCamelCase_ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for' """ padding..""" ) if self.args.label_smoothing == 0: A = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss A = label_smoothed_nll_loss def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> List[Any]: if self.optimizer is None: A = ["""bias""", """LayerNorm.weight"""] A = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] A = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: A = Adafactor A = {"""scale_parameter""": False, """relative_step""": False} else: A = AdamW A = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } A = self.args.learning_rate if self.sharded_ddp: A = OSS( params=lowerCamelCase_ ,optim=lowerCamelCase_ ,**lowerCamelCase_ ,) else: A = optimizer_cls(lowerCamelCase_ ,**lowerCamelCase_ ) if self.lr_scheduler is None: A = self._get_lr_scheduler(lowerCamelCase_ ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> Union[str, Any]: A = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": A = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": A = schedule_func(self.optimizer ,num_warmup_steps=self.args.warmup_steps ) else: A = schedule_func( self.optimizer ,num_warmup_steps=self.args.warmup_steps ,num_training_steps=lowerCamelCase_ ) return scheduler def UpperCamelCase__ ( self ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset ,torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size ,distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) ,) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Optional[int]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token A = model(**lowerCamelCase_ ,use_cache=lowerCamelCase_ )[0] A = self.loss_fn(logits.view(-1 ,logits.shape[-1] ) ,labels.view(-1 ) ) else: # compute usual loss via models A , A = model(**lowerCamelCase_ ,labels=lowerCamelCase_ ,use_cache=lowerCamelCase_ )[:2] else: # compute label smoothed loss A = model(**lowerCamelCase_ ,use_cache=lowerCamelCase_ )[0] A = torch.nn.functional.log_softmax(lowerCamelCase_ ,dim=-1 ) A , A = self.loss_fn(lowerCamelCase_ ,lowerCamelCase_ ,self.args.label_smoothing ,ignore_index=self.config.pad_token_id ) return loss, logits def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> Optional[Any]: A = inputs.pop("""labels""" ) A , A = self._compute_loss(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) return loss def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = None ,) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: A = self._prepare_inputs(lowerCamelCase_ ) A = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: A = self.model.generate( inputs["""input_ids"""] ,attention_mask=inputs["""attention_mask"""] ,**lowerCamelCase_ ,) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: A = self._pad_tensors_to_max_len(lowerCamelCase_ ,gen_kwargs["""max_length"""] ) A = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data A , A = self._compute_loss(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) A = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) A = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: A = self._pad_tensors_to_max_len(lowerCamelCase_ ,gen_kwargs["""max_length"""] ) return (loss, logits, labels) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> Any: # If PAD token is not defined at least EOS token has to be defined A = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" f' padded to `max_length`={max_length}' ) A = pad_token_id * torch.ones( (tensor.shape[0], max_length) ,dtype=tensor.dtype ,device=tensor.device ) A = tensor return padded_tensor
617
"""simple docstring""" from __future__ import annotations def _A ( _a : list[float] , _a : list[float] ): """simple docstring""" A = sorted(numsa + numsa ) A , A = divmod(len(_a ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase =[float(x) for x in input("Enter the elements of first array: ").split()] UpperCAmelCase =[float(x) for x in input("Enter the elements of second array: ").split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
617
1
from math import sqrt def a_ ( __snake_case ) -> int: '''simple docstring''' UpperCamelCase_ = 0 for i in range(1 , int(sqrt(__snake_case ) + 1 ) ): if n % i == 0 and i != sqrt(__snake_case ): total += i + n // i elif i == sqrt(__snake_case ): total += i return total - n def a_ ( __snake_case = 1_0_0_0_0 ) -> int: '''simple docstring''' UpperCamelCase_ = sum( i for i in range(1 , __snake_case ) if sum_of_divisors(sum_of_divisors(__snake_case ) ) == i and sum_of_divisors(__snake_case ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
559
import argparse __a : int = """docs/source/_static/js/custom.js""" def a_ ( __snake_case ) -> Optional[int]: '''simple docstring''' with open(__snake_case , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase_ = f.readlines() UpperCamelCase_ = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 UpperCamelCase_ = F'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += F''' "v{version}": "v{version}",\n''' with open(__snake_case , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(__snake_case ) if __name__ == "__main__": __a : Tuple = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") __a : str = parser.parse_args() update_custom_js(args.version)
559
1
"""simple docstring""" import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _lowerCAmelCase = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) _lowerCAmelCase = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) _lowerCAmelCase = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) _lowerCAmelCase = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) _lowerCAmelCase = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 1_4]), ('2H 5D 3C AS 5S', False, [1_4, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [1_4, 1_3, 1_2, 1_1, 1_0]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) _lowerCAmelCase = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) _lowerCAmelCase = ( ('JH AH TH KH QH', 2_3), ('JH 9H TH KH QH', 2_2), ('JC KH JS JD JH', 2_1), ('KH KC 3S 3H 3D', 2_0), ('8C 9C 5C 3C TC', 1_9), ('JS QS 9H TS KH', 1_8), ('7C 7S KH 2H 7H', 1_7), ('3C KH 5D 5S KH', 1_6), ('QH 8H KD JH 8S', 1_5), ('2D 6D 9D TH 7D', 1_4), ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Dict = randrange(len(A__ ) ), randrange(len(A__ ) ) _lowerCAmelCase : Optional[Any] = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] _lowerCAmelCase, _lowerCAmelCase : int = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowerCamelCase__ ( _lowerCamelCase = 100 ): '''simple docstring''' return (generate_random_hand() for _ in range(A__ )) @pytest.mark.parametrize('hand, expected' , A__ ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert PokerHand(A__ )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , A__ ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert PokerHand(A__ )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , A__ ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = PokerHand(A__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , A__ ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert PokerHand(A__ )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , A__ ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert PokerHand(A__ )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , A__ ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert PokerHand(A__ ).compare_with(PokerHand(A__ ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert PokerHand(A__ ).compare_with(PokerHand(A__ ) ) == expected def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = [PokerHand(A__ ) for hand in SORTED_HANDS] _lowerCAmelCase : Optional[Any] = poker_hands.copy() shuffle(A__ ) _lowerCAmelCase : Optional[int] = chain(sorted(A__ ) ) for index, hand in enumerate(A__ ): assert hand == poker_hands[index] def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Any = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=A__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = PokerHand('2C 4S AS 3D 5C' ) _lowerCAmelCase : str = True _lowerCAmelCase : Optional[int] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Any = 0 _lowerCAmelCase : Optional[int] = os.path.abspath(os.path.dirname(A__ ) ) _lowerCAmelCase : List[str] = os.path.join(A__ , 'poker_hands.txt' ) with open(A__ ) as file_hand: for line in file_hand: _lowerCAmelCase : Dict = line[:14].strip() _lowerCAmelCase : Any = line[15:].strip() _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = PokerHand(A__ ), PokerHand(A__ ) _lowerCAmelCase : Dict = player.compare_with(A__ ) if output == "Win": answer += 1 assert answer == 376
259
from collections.abc import Callable import numpy as np def __a ( A__ : Callable , A__ : float , A__ : float , A__ : float , A__ : float ): SCREAMING_SNAKE_CASE = int(np.ceil((x_end - xa) / step_size ) ) SCREAMING_SNAKE_CASE = np.zeros((n + 1,) ) SCREAMING_SNAKE_CASE = ya SCREAMING_SNAKE_CASE = xa for k in range(A__ ): SCREAMING_SNAKE_CASE = y[k] + step_size * ode_func(A__ , y[k] ) SCREAMING_SNAKE_CASE = y[k] + ( (step_size / 2) * (ode_func(A__ , y[k] ) + ode_func(x + step_size , A__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
16
0
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch __lowerCamelCase : int = logging.get_logger(__name__) class __snake_case : def __init__( self : str , _lowercase : str = None , _lowercase : uuid.UUID = None , _lowercase : Any=None , _lowercase : List[Any]=None ): """simple docstring""" if not conversation_id: SCREAMING_SNAKE_CASE__ = uuid.uuida() if past_user_inputs is None: SCREAMING_SNAKE_CASE__ = [] if generated_responses is None: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = conversation_id SCREAMING_SNAKE_CASE__ = past_user_inputs SCREAMING_SNAKE_CASE__ = generated_responses SCREAMING_SNAKE_CASE__ = text def __eq__( self : Union[str, Any] , _lowercase : Union[str, Any] ): """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def __a ( self : List[Any] , _lowercase : str , _lowercase : bool = False ): """simple docstring""" if self.new_user_input: if overwrite: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ f"""with: \"{text}\".""" ) SCREAMING_SNAKE_CASE__ = text else: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ f"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: SCREAMING_SNAKE_CASE__ = text def __a ( self : Tuple ): """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) SCREAMING_SNAKE_CASE__ = None def __a ( self : str , _lowercase : str ): """simple docstring""" self.generated_responses.append(_UpperCamelCase ) def __a ( self : str ): """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = f"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): SCREAMING_SNAKE_CASE__ = """user""" if is_user else """bot""" output += f"""{name} >> {text} \n""" return output @add_end_docstrings( __lowerCAmelCase , r"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , ) class __snake_case ( __lowerCAmelCase ): def __init__( self : Tuple , *_lowercase : str , **_lowercase : Dict ): """simple docstring""" super().__init__(*_UpperCamelCase , **_UpperCamelCase ) if self.tokenizer.pad_token_id is None: SCREAMING_SNAKE_CASE__ = self.tokenizer.eos_token def __a ( self : int , _lowercase : Union[str, Any]=None , _lowercase : Optional[Any]=None , _lowercase : Union[str, Any]=None , **_lowercase : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = {} if min_length_for_response is not None: SCREAMING_SNAKE_CASE__ = min_length_for_response if minimum_tokens is not None: SCREAMING_SNAKE_CASE__ = minimum_tokens if "max_length" in generate_kwargs: SCREAMING_SNAKE_CASE__ = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: SCREAMING_SNAKE_CASE__ = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(_UpperCamelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self : Any , _lowercase : Union[Conversation, List[Conversation]] , _lowercase : Optional[Any]=0 , **_lowercase : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = super().__call__(_UpperCamelCase , num_workers=_UpperCamelCase , **_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) and len(_UpperCamelCase ) == 1: return outputs[0] return outputs def __a ( self : Tuple , _lowercase : Conversation , _lowercase : Tuple=32 ): """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( f"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): SCREAMING_SNAKE_CASE__ = self.tokenizer._build_conversation_input_ids(_UpperCamelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version SCREAMING_SNAKE_CASE__ = self._legacy_parse_and_tokenize(_UpperCamelCase ) if self.framework == "pt": SCREAMING_SNAKE_CASE__ = torch.LongTensor([input_ids] ) elif self.framework == "tf": SCREAMING_SNAKE_CASE__ = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def __a ( self : Dict , _lowercase : Union[str, Any] , _lowercase : Tuple=10 , **_lowercase : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = generate_kwargs.get("""max_length""" , self.model.config.max_length ) SCREAMING_SNAKE_CASE__ = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(f"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) SCREAMING_SNAKE_CASE__ = max_length - minimum_tokens SCREAMING_SNAKE_CASE__ = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: SCREAMING_SNAKE_CASE__ = model_inputs["""attention_mask"""][:, -trim:] SCREAMING_SNAKE_CASE__ = model_inputs.pop("""conversation""" ) SCREAMING_SNAKE_CASE__ = max_length SCREAMING_SNAKE_CASE__ = self.model.generate(**_UpperCamelCase , **_UpperCamelCase ) if self.model.config.is_encoder_decoder: SCREAMING_SNAKE_CASE__ = 1 else: SCREAMING_SNAKE_CASE__ = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def __a ( self : Union[str, Any] , _lowercase : List[str] , _lowercase : str=True ): """simple docstring""" SCREAMING_SNAKE_CASE__ = model_outputs["""output_ids"""] SCREAMING_SNAKE_CASE__ = self.tokenizer.decode( output_ids[0] , skip_special_tokens=_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase , ) SCREAMING_SNAKE_CASE__ = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(_UpperCamelCase ) return conversation def __a ( self : Optional[int] , _lowercase : Conversation ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.tokenizer.eos_token_id SCREAMING_SNAKE_CASE__ = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) ) if len(_UpperCamelCase ) > self.tokenizer.model_max_length: SCREAMING_SNAKE_CASE__ = input_ids[-self.tokenizer.model_max_length :] return input_ids
715
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar __lowerCamelCase : List[str] = TypeVar('''KEY''') __lowerCamelCase : int = TypeVar('''VAL''') @dataclass(frozen=lowerCamelCase_ , slots=lowerCamelCase_ ) class __snake_case ( Generic[KEY, VAL] ): lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 class __snake_case ( _Item ): def __init__( self : List[Any] ): """simple docstring""" super().__init__(_lowercase , _lowercase ) def __bool__( self : List[str] ): """simple docstring""" return False __lowerCamelCase : str = _DeletedItem() class __snake_case ( MutableMapping[KEY, VAL] ): def __init__( self : Optional[int] , _lowercase : int = 8 , _lowercase : float = 0.75 ): """simple docstring""" SCREAMING_SNAKE_CASE__ = initial_block_size SCREAMING_SNAKE_CASE__ = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 SCREAMING_SNAKE_CASE__ = capacity_factor SCREAMING_SNAKE_CASE__ = 0 def __a ( self : Union[str, Any] , _lowercase : KEY ): """simple docstring""" return hash(_lowercase ) % len(self._buckets ) def __a ( self : List[str] , _lowercase : int ): """simple docstring""" return (ind + 1) % len(self._buckets ) def __a ( self : Union[str, Any] , _lowercase : int , _lowercase : KEY , _lowercase : VAL ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self._buckets[ind] if not stored: SCREAMING_SNAKE_CASE__ = _Item(_lowercase , _lowercase ) self._len += 1 return True elif stored.key == key: SCREAMING_SNAKE_CASE__ = _Item(_lowercase , _lowercase ) return True else: return False def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = len(self._buckets ) * self._capacity_factor return len(self ) >= int(_lowercase ) def __a ( self : Dict ): """simple docstring""" if len(self._buckets ) <= self._initial_block_size: return False SCREAMING_SNAKE_CASE__ = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def __a ( self : List[Any] , _lowercase : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self._buckets SCREAMING_SNAKE_CASE__ = [None] * new_size SCREAMING_SNAKE_CASE__ = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def __a ( self : Tuple ): """simple docstring""" self._resize(len(self._buckets ) * 2 ) def __a ( self : Tuple ): """simple docstring""" self._resize(len(self._buckets ) // 2 ) def __a ( self : List[str] , _lowercase : KEY ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self._get_bucket_index(_lowercase ) for _ in range(len(self._buckets ) ): yield ind SCREAMING_SNAKE_CASE__ = self._get_next_ind(_lowercase ) def __a ( self : List[str] , _lowercase : KEY , _lowercase : VAL ): """simple docstring""" for ind in self._iterate_buckets(_lowercase ): if self._try_set(_lowercase , _lowercase , _lowercase ): break def __setitem__( self : List[str] , _lowercase : KEY , _lowercase : VAL ): """simple docstring""" if self._is_full(): self._size_up() self._add_item(_lowercase , _lowercase ) def __delitem__( self : Tuple , _lowercase : KEY ): """simple docstring""" for ind in self._iterate_buckets(_lowercase ): SCREAMING_SNAKE_CASE__ = self._buckets[ind] if item is None: raise KeyError(_lowercase ) if item is _deleted: continue if item.key == key: SCREAMING_SNAKE_CASE__ = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Tuple , _lowercase : KEY ): """simple docstring""" for ind in self._iterate_buckets(_lowercase ): SCREAMING_SNAKE_CASE__ = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(_lowercase ) def __len__( self : List[Any] ): """simple docstring""" return self._len def __iter__( self : List[str] ): """simple docstring""" yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """ ,""".join( f"""{item.key}: {item.val}""" for item in self._buckets if item ) return f"""HashMap({val_string})"""
379
0
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : List[Any] , lowercase : str , lowercase : Union[str, Any]=13 , lowercase : Any=30 , lowercase : int=2 , lowercase : Dict=3 , lowercase : List[str]=True , lowercase : Optional[Any]=True , lowercase : Union[str, Any]=32 , lowercase : Tuple=2 , lowercase : List[Any]=4 , lowercase : Dict=37 , lowercase : Tuple="gelu" , lowercase : Any=0.1 , lowercase : List[str]=0.1 , lowercase : Tuple=10 , lowercase : int=0.02 , lowercase : Tuple=3 , lowercase : List[Any]=None , ): '''simple docstring''' _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = is_training _snake_case = use_labels _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _snake_case = (image_size // patch_size) ** 2 _snake_case = num_patches + 1 def A ( self : Optional[int] ): '''simple docstring''' _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = self.get_config() return config, pixel_values, labels def A ( self : Dict ): '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , ) def A ( self : Optional[Any] , lowercase : Any , lowercase : Optional[Any] , lowercase : Tuple ): '''simple docstring''' _snake_case = TFViTModel(config=lowercase ) _snake_case = model(lowercase , training=lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. _snake_case = self.image_size // 2 _snake_case = pixel_values[:, :, :image_size, :image_size] _snake_case = model(lowercase , interpolate_pos_encoding=lowercase , training=lowercase ) _snake_case = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def A ( self : Union[str, Any] , lowercase : int , lowercase : str , lowercase : Dict ): '''simple docstring''' _snake_case = self.type_sequence_label_size _snake_case = TFViTForImageClassification(lowercase ) _snake_case = model(lowercase , labels=lowercase , training=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. _snake_case = self.image_size // 2 _snake_case = pixel_values[:, :, :image_size, :image_size] _snake_case = model(lowercase , interpolate_pos_encoding=lowercase , training=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _snake_case = 1 _snake_case = TFViTForImageClassification(lowercase ) _snake_case = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Optional[int] = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () _UpperCAmelCase : Dict = ( {"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification} if is_tf_available() else {} ) _UpperCAmelCase : str = False _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Dict = False def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = TFViTModelTester(self ) _snake_case = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 ) def A ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def A ( self : Any ): '''simple docstring''' pass @unittest.skip(reason='ViT does not use inputs_embeds' ) def A ( self : List[str] ): '''simple docstring''' pass def A ( self : Tuple ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowercase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) _snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , tf.keras.layers.Layer ) ) def A ( self : List[Any] ): '''simple docstring''' _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowercase ) _snake_case = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase ) def A ( self : Dict ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase ) @slow def A ( self : Dict ): '''simple docstring''' _snake_case = TFViTModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(lowercase ) def a_ ( ) -> List[str]: _snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @cached_property def A ( self : Optional[int] ): '''simple docstring''' return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=lowercase , return_tensors='tf' ) # forward pass _snake_case = model(**lowercase ) # verify the logits _snake_case = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase ) _snake_case = tf.constant([-0.2744, 0.8215, -0.0836] ) tf.debugging.assert_near(outputs.logits[0, :3] , lowercase , atol=1E-4 )
686
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCamelCase : int = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
1
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('.') def lowercase__ ( A ): snake_case__ : Optional[Any] = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' f'''{test_file} instead.''' ) snake_case__ : int = components[-1] if not test_fn.endswith('py' ): raise ValueError(f'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith('test_modeling_' ): raise ValueError( f'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) snake_case__ : Union[str, Any] = components[:-1] + [test_fn.replace('.py' , '' )] snake_case__ : List[Any] = '.'.join(UpperCamelCase__ ) return test_module_path def lowercase__ ( A ): snake_case__ : str = get_module_path(UpperCamelCase__ ) snake_case__ : Union[str, Any] = importlib.import_module(UpperCamelCase__ ) return test_module def lowercase__ ( A ): snake_case__ : List[Any] = [] snake_case__ : Union[str, Any] = get_test_module(UpperCamelCase__ ) for attr in dir(UpperCamelCase__ ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(UpperCamelCase__ , UpperCamelCase__ ) ) # sort with class names return sorted(UpperCamelCase__ , key=lambda A : x.__name__ ) def lowercase__ ( A ): snake_case__ : Dict = [] snake_case__ : str = get_test_module(UpperCamelCase__ ) for attr in dir(UpperCamelCase__ ): snake_case__ : str = getattr(UpperCamelCase__ , UpperCamelCase__ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). snake_case__ : List[str] = getattr(UpperCamelCase__ , 'all_model_classes' , [] ) if len(UpperCamelCase__ ) > 0: test_classes.append(UpperCamelCase__ ) # sort with class names return sorted(UpperCamelCase__ , key=lambda A : x.__name__ ) def lowercase__ ( A ): snake_case__ : List[Any] = get_test_classes(UpperCamelCase__ ) snake_case__ : Any = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(UpperCamelCase__ , key=lambda A : x.__name__ ) def lowercase__ ( A ): snake_case__ : Any = test_class() if hasattr(UpperCamelCase__ , 'setUp' ): test.setUp() snake_case__ : Union[str, Any] = None if hasattr(UpperCamelCase__ , 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: snake_case__ : str = test.model_tester.__class__ return model_tester def lowercase__ ( A , A ): snake_case__ : Any = get_test_classes(UpperCamelCase__ ) snake_case__ : str = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(UpperCamelCase__ ) # sort with class names return sorted(UpperCamelCase__ , key=lambda A : x.__name__ ) def lowercase__ ( A , A ): snake_case__ : Optional[Any] = get_test_classes_for_model(UpperCamelCase__ , UpperCamelCase__ ) snake_case__ : Dict = [] for test_class in test_classes: snake_case__ : List[Any] = get_model_tester_from_test_class(UpperCamelCase__ ) if tester_class is not None: tester_classes.append(UpperCamelCase__ ) # sort with class names return sorted(UpperCamelCase__ , key=lambda A : x.__name__ ) def lowercase__ ( A ): snake_case__ : List[str] = get_test_classes(UpperCamelCase__ ) snake_case__ : Any = {test_class: get_model_tester_from_test_class(UpperCamelCase__ ) for test_class in test_classes} return test_tester_mapping def lowercase__ ( A ): snake_case__ : Optional[int] = get_model_classes(UpperCamelCase__ ) snake_case__ : Dict = { model_class: get_test_classes_for_model(UpperCamelCase__ , UpperCamelCase__ ) for model_class in model_classes } return model_test_mapping def lowercase__ ( A ): snake_case__ : Optional[Any] = get_model_classes(UpperCamelCase__ ) snake_case__ : List[str] = { model_class: get_tester_classes_for_model(UpperCamelCase__ , UpperCamelCase__ ) for model_class in model_classes } return model_to_tester_mapping def lowercase__ ( A ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): return o elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): return o.__name__ elif isinstance(UpperCamelCase__ , (list, tuple) ): return [to_json(UpperCamelCase__ ) for x in o] elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): return {to_json(UpperCamelCase__ ): to_json(UpperCamelCase__ ) for k, v in o.items()} else: return o
715
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class snake_case__ : def __init__( self : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any]=2 , _lowerCamelCase : Dict=True , _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : int=1_0 , _lowerCamelCase : Dict=3 , _lowerCamelCase : List[str]=3_2 * 8 , _lowerCamelCase : Tuple=3_2 * 8 , _lowerCamelCase : Optional[int]=4 , _lowerCamelCase : Optional[Any]=6_4 , ): snake_case__ : Dict = parent snake_case__ : Optional[Any] = batch_size snake_case__ : str = is_training snake_case__ : List[str] = use_auxiliary_loss snake_case__ : Union[str, Any] = num_queries snake_case__ : List[Any] = num_channels snake_case__ : Dict = min_size snake_case__ : str = max_size snake_case__ : Any = num_labels snake_case__ : int = hidden_dim snake_case__ : List[Any] = hidden_dim def UpperCAmelCase__ ( self : str ): snake_case__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowerCamelCase ) snake_case__ : List[Any] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowerCamelCase ) snake_case__ : Optional[Any] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowerCamelCase ) > 0.5 ).float() snake_case__ : str = (torch.rand((self.batch_size, self.num_labels) , device=_lowerCamelCase ) > 0.5).long() snake_case__ : int = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCAmelCase__ ( self : Optional[int] ): snake_case__ : Optional[Any] = MaskaFormerConfig( hidden_size=self.hidden_dim , ) snake_case__ : Optional[Any] = self.num_queries snake_case__ : int = self.num_labels snake_case__ : Any = [1, 1, 1, 1] snake_case__ : str = self.num_channels snake_case__ : List[str] = 6_4 snake_case__ : Optional[int] = 1_2_8 snake_case__ : Optional[int] = self.hidden_dim snake_case__ : Optional[int] = self.hidden_dim snake_case__ : Union[str, Any] = self.hidden_dim return config def UpperCAmelCase__ ( self : str ): snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ : Dict = self.prepare_config_and_inputs() snake_case__ : Tuple = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def UpperCAmelCase__ ( self : Optional[int] , _lowerCamelCase : Tuple , _lowerCamelCase : Dict ): snake_case__ : Optional[Any] = output.encoder_hidden_states snake_case__ : Optional[int] = output.pixel_decoder_hidden_states snake_case__ : Union[str, Any] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ) , config.decoder_layers ) def UpperCAmelCase__ ( self : List[str] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : int , _lowerCamelCase : List[str]=False ): with torch.no_grad(): snake_case__ : Union[str, Any] = MaskaFormerModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() snake_case__ : List[Any] = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase ) snake_case__ : Optional[Any] = model(_lowerCamelCase , output_hidden_states=_lowerCamelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase__ ( self : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] ): snake_case__ : int = MaskaFormerForUniversalSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() def comm_check_on_output(_lowerCamelCase : int ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): snake_case__ : Optional[Any] = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase ) snake_case__ : Any = model(_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) snake_case__ : List[Any] = model( pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class snake_case__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): _lowerCAmelCase =(MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () _lowerCAmelCase ={'feature-extraction': MaskaFormerModel} if is_torch_available() else {} _lowerCAmelCase =False _lowerCAmelCase =False _lowerCAmelCase =False _lowerCAmelCase =False def UpperCAmelCase__ ( self : Tuple ): snake_case__ : Optional[Any] = MaskaFormerModelTester(self ) snake_case__ : Optional[int] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def UpperCAmelCase__ ( self : Tuple ): self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Dict ): snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase ) def UpperCAmelCase__ ( self : str ): snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_lowerCamelCase ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def UpperCAmelCase__ ( self : Union[str, Any] ): pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def UpperCAmelCase__ ( self : Optional[int] ): pass @unittest.skip(reason='Mask2Former is not a generative model' ) def UpperCAmelCase__ ( self : List[Any] ): pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def UpperCAmelCase__ ( self : Optional[Any] ): pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCAmelCase__ ( self : Optional[Any] ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCAmelCase__ ( self : Optional[int] ): pass def UpperCAmelCase__ ( self : int ): snake_case__ , snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : List[str] = model_class(_lowerCamelCase ) snake_case__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Dict = [*signature.parameters.keys()] snake_case__ : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) @slow def UpperCAmelCase__ ( self : Tuple ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: snake_case__ : Tuple = MaskaFormerModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): snake_case__ : int = (self.model_tester.min_size,) * 2 snake_case__ : Tuple = { 'pixel_values': torch.randn((2, 3, *size) , device=_lowerCamelCase ), 'mask_labels': torch.randn((2, 1_0, *size) , device=_lowerCamelCase ), 'class_labels': torch.zeros(2 , 1_0 , device=_lowerCamelCase ).long(), } snake_case__ : str = self.model_tester.get_config() snake_case__ : Optional[int] = MaskaFormerForUniversalSegmentation(_lowerCamelCase ).to(_lowerCamelCase ) snake_case__ : Tuple = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None ) def UpperCAmelCase__ ( self : str ): snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase ) def UpperCAmelCase__ ( self : Tuple ): snake_case__ , snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Dict = model_class(_lowerCamelCase ).to(_lowerCamelCase ) snake_case__ : List[str] = model(**_lowerCamelCase , output_attentions=_lowerCamelCase ) self.assertTrue(outputs.attentions is not None ) def UpperCAmelCase__ ( self : Any ): if not self.model_tester.is_training: return snake_case__ : Tuple = self.all_model_classes[1] snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() snake_case__ : List[Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() snake_case__ : int = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ).loss loss.backward() def UpperCAmelCase__ ( self : Any ): snake_case__ : int = self.all_model_classes[1] snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs() snake_case__ : Union[str, Any] = True snake_case__ : Optional[Any] = True snake_case__ : Tuple = model_class(_lowerCamelCase ).to(_lowerCamelCase ) model.train() snake_case__ : Union[str, Any] = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ) snake_case__ : Tuple = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() snake_case__ : Any = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() snake_case__ : Dict = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() snake_case__ : List[Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowerCamelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowerCamelCase : int = 1e-4 def lowercase__( ): snake_case__ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class snake_case__ ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : Union[str, Any] ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def UpperCAmelCase__ ( self : str ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def UpperCAmelCase__ ( self : int ): snake_case__ : Dict = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ) snake_case__ : List[str] = self.default_image_processor snake_case__ : Union[str, Any] = prepare_img() snake_case__ : Any = image_processor(_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase ) snake_case__ : Dict = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(_lowerCamelCase , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): snake_case__ : List[Any] = model(**_lowerCamelCase ) snake_case__ : Optional[Any] = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) snake_case__ : List[Any] = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) snake_case__ : str = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def UpperCAmelCase__ ( self : List[Any] ): snake_case__ : Dict = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() snake_case__ : Union[str, Any] = self.default_image_processor snake_case__ : Union[str, Any] = prepare_img() snake_case__ : Tuple = image_processor(_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase ) snake_case__ : str = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(_lowerCamelCase , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): snake_case__ : Dict = model(**_lowerCamelCase ) # masks_queries_logits snake_case__ : Optional[Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) snake_case__ : Optional[Any] = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] snake_case__ : Optional[Any] = torch.tensor(_lowerCamelCase ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) # class_queries_logits snake_case__ : int = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) snake_case__ : List[str] = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def UpperCAmelCase__ ( self : int ): snake_case__ : Any = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() snake_case__ : Any = self.default_image_processor snake_case__ : Optional[int] = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3) ), np.zeros((3, 8_0_0, 1_3_3_3) )] , segmentation_maps=[np.zeros((3_8_4, 3_8_4) ).astype(np.floataa ), np.zeros((3_8_4, 3_8_4) ).astype(np.floataa )] , return_tensors='pt' , ) snake_case__ : Dict = inputs['pixel_values'].to(_lowerCamelCase ) snake_case__ : Optional[Any] = [el.to(_lowerCamelCase ) for el in inputs['mask_labels']] snake_case__ : Union[str, Any] = [el.to(_lowerCamelCase ) for el in inputs['class_labels']] with torch.no_grad(): snake_case__ : Tuple = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None )
303
0
def _a ( UpperCAmelCase ) -> Dict: """simple docstring""" lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : str = set({'''(''', '''[''', '''{'''} ) lowerCamelCase__ : List[Any] = set({''')''', ''']''', '''}'''} ) lowerCamelCase__ : Any = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''} for i in range(len(UpperCAmelCase ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(UpperCAmelCase ) == 0 or (len(UpperCAmelCase ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(UpperCAmelCase ) == 0 def _a ( ) -> List[Any]: """simple docstring""" lowerCamelCase__ : Optional[Any] = input('''Enter sequence of brackets: ''' ) if is_balanced(UpperCAmelCase ): print(UpperCAmelCase , '''is balanced''' ) else: print(UpperCAmelCase , '''is not balanced''' ) if __name__ == "__main__": main()
315
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
315
1
a = { "joule": 1.0, "kilojoule": 1000, "megajoule": 1000000, "gigajoule": 1000000000, "wattsecond": 1.0, "watthour": 3600, "kilowatthour": 3600000, "newtonmeter": 1.0, "calorie_nutr": 4186.8, "kilocalorie_nutr": 4186800.00, "electronvolt": 1.602176634E-19, "britishthermalunit_it": 1055.05585, "footpound": 1.355_818, } def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> float: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: _UpperCAmelCase = ( f"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" f"Valid values are: {', '.join(snake_case )}" ) raise ValueError(snake_case ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
175
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> int: assert isinstance(snake_case , snake_case ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> Optional[int]: _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = JsonDatasetReader(snake_case , cache_dir=snake_case , keep_in_memory=snake_case ).read() _check_json_dataset(snake_case , snake_case ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> Optional[Any]: _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = JsonDatasetReader(snake_case , features=snake_case , cache_dir=snake_case ).read() _check_json_dataset(snake_case , snake_case ) @pytest.mark.parametrize( """features""" , [ None, {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""}, ] , ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> int: _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = JsonDatasetReader(snake_case , features=snake_case , cache_dir=snake_case ).read() assert isinstance(snake_case , snake_case ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> Optional[int]: # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} _UpperCAmelCase = {"""col_2""": """int64""", """col_3""": """float64""", """col_1""": """string"""} _UpperCAmelCase = features.copy() _UpperCAmelCase = ( Features({feature: Value(snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = JsonDatasetReader(snake_case , features=snake_case , cache_dir=snake_case ).read() assert isinstance(snake_case , snake_case ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> List[Any]: _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase = JsonDatasetReader(snake_case , cache_dir=snake_case , split=snake_case ).read() _check_json_dataset(snake_case , snake_case ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> Any: if issubclass(snake_case , snake_case ): _UpperCAmelCase = jsonl_path elif issubclass(snake_case , snake_case ): _UpperCAmelCase = [jsonl_path] _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase = JsonDatasetReader(snake_case , cache_dir=snake_case ).read() _check_json_dataset(snake_case , snake_case ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case=("train",) ) -> str: assert isinstance(snake_case , snake_case ) for split in splits: _UpperCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> str: _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = JsonDatasetReader({"""train""": jsonl_path} , cache_dir=snake_case , keep_in_memory=snake_case ).read() _check_json_datasetdict(snake_case , snake_case ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> Tuple: _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = JsonDatasetReader({"""train""": jsonl_path} , features=snake_case , cache_dir=snake_case ).read() _check_json_datasetdict(snake_case , snake_case ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> Optional[Any]: if split: _UpperCAmelCase = {split: jsonl_path} else: _UpperCAmelCase = """train""" _UpperCAmelCase = {"""train""": jsonl_path, """test""": jsonl_path} _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase = JsonDatasetReader(snake_case , cache_dir=snake_case ).read() _check_json_datasetdict(snake_case , snake_case , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _SCREAMING_SNAKE_CASE ( snake_case ) -> List[Any]: return json.load(snake_case ) def _SCREAMING_SNAKE_CASE ( snake_case ) -> List[Any]: return [json.loads(snake_case ) for line in buffer] class _A : @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): with io.BytesIO() as buffer: JsonDatasetWriter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , lines=_SCREAMING_SNAKE_CASE ).write() buffer.seek(0 ) _UpperCAmelCase = load_json_function(_SCREAMING_SNAKE_CASE ) assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert isinstance(exported_content[0] , _SCREAMING_SNAKE_CASE ) assert len(_SCREAMING_SNAKE_CASE ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): with io.BytesIO() as buffer: JsonDatasetWriter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , lines=_SCREAMING_SNAKE_CASE , orient=_SCREAMING_SNAKE_CASE ).write() buffer.seek(0 ) _UpperCAmelCase = load_json(_SCREAMING_SNAKE_CASE ) assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_SCREAMING_SNAKE_CASE , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_SCREAMING_SNAKE_CASE ) == 10 @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): with io.BytesIO() as buffer: JsonDatasetWriter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , lines=_SCREAMING_SNAKE_CASE , num_proc=2 ).write() buffer.seek(0 ) _UpperCAmelCase = load_json_function(_SCREAMING_SNAKE_CASE ) assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert isinstance(exported_content[0] , _SCREAMING_SNAKE_CASE ) assert len(_SCREAMING_SNAKE_CASE ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): with io.BytesIO() as buffer: JsonDatasetWriter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , lines=_SCREAMING_SNAKE_CASE , orient=_SCREAMING_SNAKE_CASE , num_proc=2 ).write() buffer.seek(0 ) _UpperCAmelCase = load_json(_SCREAMING_SNAKE_CASE ) assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_SCREAMING_SNAKE_CASE , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_SCREAMING_SNAKE_CASE ) == 10 def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): with pytest.raises(_SCREAMING_SNAKE_CASE ): with io.BytesIO() as buffer: JsonDatasetWriter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=0 ) @pytest.mark.parametrize("""compression, extension""" , [("""gzip""", """gz"""), ("""bz2""", """bz2"""), ("""xz""", """xz""")] ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / F"test.json.{extension}" _UpperCAmelCase = str(shared_datadir / F"test_file.json.{extension}" ) JsonDatasetWriter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compression=_SCREAMING_SNAKE_CASE ).write() with fsspec.open(_SCREAMING_SNAKE_CASE , """rb""" , compression="""infer""" ) as f: _UpperCAmelCase = f.read() with fsspec.open(_SCREAMING_SNAKE_CASE , """rb""" , compression="""infer""" ) as f: _UpperCAmelCase = f.read() assert exported_content == original_content
175
1
'''simple docstring''' import unittest from knapsack import knapsack as k class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = 0 UpperCAmelCase__ = [0] UpperCAmelCase__ = [0] UpperCAmelCase__ = len(_UpperCAmelCase ) self.assertEqual(k.knapsack(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 0 ) UpperCAmelCase__ = [60] UpperCAmelCase__ = [10] UpperCAmelCase__ = len(_UpperCAmelCase ) self.assertEqual(k.knapsack(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 0 ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = 3 UpperCAmelCase__ = [1, 2, 3] UpperCAmelCase__ = [3, 2, 1] UpperCAmelCase__ = len(_UpperCAmelCase ) self.assertEqual(k.knapsack(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 5 ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = 50 UpperCAmelCase__ = [60, 1_00, 1_20] UpperCAmelCase__ = [10, 20, 30] UpperCAmelCase__ = len(_UpperCAmelCase ) self.assertEqual(k.knapsack(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 2_20 ) if __name__ == "__main__": unittest.main()
603
'''simple docstring''' UpperCAmelCase_ = [ 'DownloadConfig', 'DownloadManager', 'DownloadMode', 'StreamingDownloadManager', ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
603
1
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": __snake_case :int =argparse.ArgumentParser( description=( 'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2']) parser.add_argument('--model_name', default='roberta-large', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') __snake_case :Union[str, Any] =parser.parse_args() if args.model_type == "roberta": __snake_case :List[Any] =RobertaForMaskedLM.from_pretrained(args.model_name) __snake_case :str ='roberta' elif args.model_type == "gpt2": __snake_case :Any =GPTaLMHeadModel.from_pretrained(args.model_name) __snake_case :Dict ='transformer' __snake_case :str =model.state_dict() __snake_case :Tuple ={} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: __snake_case :Dict =state_dict[F'''{prefix}.{param_name}'''] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: __snake_case :Dict =F'''{prefix}.embeddings.{w}.weight''' __snake_case :Any =state_dict[param_name] for w in ["weight", "bias"]: __snake_case :Tuple =F'''{prefix}.embeddings.LayerNorm.{w}''' __snake_case :Tuple =state_dict[param_name] # Transformer Blocks # __snake_case :Dict =0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: __snake_case :Optional[int] =state_dict[ F'''{prefix}.h.{teacher_idx}.{layer}.{w}''' ] __snake_case :Tuple =state_dict[F'''{prefix}.h.{teacher_idx}.attn.bias'''] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: __snake_case :Any =state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}''' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: __snake_case :Optional[int] =state_dict[F'''{layer}'''] if args.vocab_transform: for w in ["weight", "bias"]: __snake_case :Optional[Any] =state_dict[F'''lm_head.dense.{w}'''] __snake_case :Optional[Any] =state_dict[F'''lm_head.layer_norm.{w}'''] elif args.model_type == "gpt2": for w in ["weight", "bias"]: __snake_case :Union[str, Any] =state_dict[F'''{prefix}.ln_f.{w}'''] __snake_case :str =state_dict['lm_head.weight'] print(F'''N layers selected for distillation: {std_idx}''') print(F'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(F'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
224
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def lowerCamelCase_ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int ) -> int: '''simple docstring''' A = [] for part_id in partition_order: A = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(lowerCAmelCase__ ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase_ ( ) -> Any: '''simple docstring''' A = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() A = spark.range(100 ).repartition(1 ) A = Spark(lowerCAmelCase__ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase_ ( ) -> Dict: '''simple docstring''' A = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() A = spark.range(10 ).repartition(2 ) A = [1, 0] A = _generate_iterable_examples(lowerCAmelCase__ , lowerCAmelCase__ ) # Reverse the partitions. A = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCAmelCase__ , lowerCAmelCase__ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): A , A = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase_ ( ) -> Any: '''simple docstring''' A = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() A = spark.range(10 ).repartition(1 ) A = SparkExamplesIterable(lowerCAmelCase__ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(lowerCAmelCase__ ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase_ ( ) -> List[Any]: '''simple docstring''' A = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() A = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('numpy.random.Generator' ) as generator_mock: A = lambda lowerCAmelCase__ : x.reverse() A = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCAmelCase__ , [2, 1, 0] ) A = SparkExamplesIterable(lowerCAmelCase__ ).shuffle_data_sources(lowerCAmelCase__ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(lowerCAmelCase__ ): A , A = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase_ ( ) -> Tuple: '''simple docstring''' A = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() A = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 A = SparkExamplesIterable(lowerCAmelCase__ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 A = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCAmelCase__ , [0, 2] ) for i, (row_id, row_dict) in enumerate(lowerCAmelCase__ ): A , A = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 A = SparkExamplesIterable(lowerCAmelCase__ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 A = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCAmelCase__ , [1, 3] ) for i, (row_id, row_dict) in enumerate(lowerCAmelCase__ ): A , A = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase_ ( ) -> int: '''simple docstring''' A = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() A = spark.range(100 ).repartition(1 ) A = Spark(lowerCAmelCase__ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
224
1
'''simple docstring''' import re def a ( _UpperCAmelCase ) -> str: """simple docstring""" if len(re.findall('[ATCG]' , _UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
697
'''simple docstring''' import unittest from transformers import DonutProcessor __lowerCAmelCase ="naver-clova-ix/donut-base" class _snake_case ( unittest.TestCase ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a_ = DonutProcessor.from_pretrained(UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self ) -> str: a_ = { 'name': 'John Doe', 'age': '99', 'city': 'Atlanta', 'state': 'GA', 'zip': '30301', 'phone': '123-4567', 'nicknames': [{'nickname': 'Johnny'}, {'nickname': 'JD'}], } a_ = ( '<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>' '<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>' '<s_nicknames><s_nickname>Johnny</s_nickname>' '<sep/><s_nickname>JD</s_nickname></s_nicknames>' ) a_ = self.processor.tokenajson(UpperCAmelCase__ ) self.assertDictEqual(UpperCAmelCase__ , UpperCAmelCase__ )
697
1
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def snake_case_ ( __snake_case : Tuple) -> str: lowerCAmelCase_ = os.path.join(args.tf_model_dir , '''parameters.json''') lowerCAmelCase_ = json.loads(open(__snake_case).read()) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''') if not args.output.endswith('''.pt'''): lowerCAmelCase_ = args.output + '''.pt''' lowerCAmelCase_ = OrderedDict() with tf.device('''/CPU:0'''): lowerCAmelCase_ = tf.train.load_checkpoint(args.tf_model_dir) lowerCAmelCase_ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowerCAmelCase_ = reader.get_tensor(__snake_case).astype(np.floataa) if key_name.endswith('''/adam_m''') or key_name.endswith('''/adam_v'''): continue if key_name.startswith('''pasts/'''): if key_name.startswith('''pasts/mlp'''): lowerCAmelCase_ = int(key_name[9]) elif key_name.startswith('''pasts/out'''): lowerCAmelCase_ = 8 lowerCAmelCase_ = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowerCAmelCase_ = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.startswith('''model/moe'''): lowerCAmelCase_ = int(key_name[9:].split('''/''')[0]) if key_name.endswith('''/switch_gating/kernel'''): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player lowerCAmelCase_ = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.endswith('''/softmlp/kernel'''): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player lowerCAmelCase_ = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.endswith('''/wo/kernel''') or key_name.endswith('''/wi/kernel'''): lowerCAmelCase_ = key_name[-9:-7] for i in range(16): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) lowerCAmelCase_ = ( vnp[i].transpose([1, 0]).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.startswith('''model/mlp'''): lowerCAmelCase_ = int(key_name[9:].split('''/''')[0]) if key_name.endswith('''/p1/kernel'''): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player lowerCAmelCase_ = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.endswith('''/p1/bias'''): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.endswith('''/p2/kernel'''): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player lowerCAmelCase_ = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.endswith('''/p2/bias'''): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.startswith('''model/ln'''): lowerCAmelCase_ = int(key_name[8:].split('''/''')[0]) if key_name.endswith('''/b'''): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.norm.bias''' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.endswith('''/g'''): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.norm.weight''' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.startswith('''model/att'''): lowerCAmelCase_ = int(key_name[9:].split('''/''')[0]) if key_name.endswith('''/qkv/kernel'''): lowerCAmelCase_ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowerCAmelCase_ = state[:, 0, :, :] lowerCAmelCase_ = state[:, 1, :, :] lowerCAmelCase_ = state[:, 2, :, :] lowerCAmelCase_ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]]) .transpose([1, 0]) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]]) .transpose([1, 0]) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]]) .transpose([1, 0]) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player lowerCAmelCase_ = torch.tensor(__snake_case) lowerCAmelCase_ = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player lowerCAmelCase_ = torch.tensor(__snake_case) lowerCAmelCase_ = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.endswith('''/o/kernel'''): lowerCAmelCase_ = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player lowerCAmelCase_ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]]).transpose([1, 0]).copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.startswith('''model/an'''): lowerCAmelCase_ = int(key_name[8:].split('''/''')[0]) if key_name.endswith('''/b'''): lowerCAmelCase_ = '''model.blocks.%d.self_attn.norm.bias''' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.endswith('''/g'''): lowerCAmelCase_ = '''model.blocks.%d.self_attn.norm.weight''' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(__snake_case) elif ( key_name.startswith('''model/wte''') or key_name.startswith('''model/wpe''') or key_name.startswith('''model/ete''') ): lowerCAmelCase_ = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] lowerCAmelCase_ = '''model.%s.weight''' % nlayer lowerCAmelCase_ = vnp.copy() # same in embedded lowerCAmelCase_ = torch.tensor(__snake_case) if key_name.startswith('''model/wte'''): lowerCAmelCase_ = '''lm_head.weight''' lowerCAmelCase_ = vnp.copy() # same in embedded lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name.startswith('''model/wob'''): lowerCAmelCase_ = '''final_logits_bias''' lowerCAmelCase_ = vnp.copy() # same in embedded lowerCAmelCase_ = state.reshape((1, -1)) lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name == "model/dense/kernel": lowerCAmelCase_ = '''model.last_project.weight''' lowerCAmelCase_ = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(__snake_case) elif key_name == "model/dense_1/bias": lowerCAmelCase_ = '''model.last_project.bias''' lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(__snake_case) torch.save(__snake_case , args.output) if __name__ == "__main__": A_ : Optional[Any] =argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') A_ : Union[str, Any] =parser.parse_args() convert_tf_gptsan_to_pt(args)
606
'''simple docstring''' import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy A_ : Dict =logging.getLogger(__name__) def snake_case_ ( __snake_case : torch.nn.Module , __snake_case : BnbQuantizationConfig , __snake_case : Union[str, os.PathLike] = None , __snake_case : Optional[Dict[str, Union[int, str, torch.device]]] = None , __snake_case : Optional[List[str]] = None , __snake_case : Optional[Dict[Union[int, str], Union[int, str]]] = None , __snake_case : Optional[Union[str, os.PathLike]] = None , __snake_case : bool = False , ) -> List[str]: lowerCAmelCase_ = bnb_quantization_config.load_in_abit lowerCAmelCase_ = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( '''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,''' ''' make sure you have the latest version of `bitsandbytes` installed.''') if load_in_abit and not is_abit_bnb_available(): raise ValueError( '''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,''' '''make sure you have the latest version of `bitsandbytes` installed.''') lowerCAmelCase_ = [] # custom device map if isinstance(__snake_case , __snake_case) and len(device_map.keys()) > 1: lowerCAmelCase_ = [key for key, value in device_map.items() if value in ['''disk''', '''cpu''']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowerCAmelCase_ = get_keys_to_not_convert(__snake_case) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__snake_case) lowerCAmelCase_ = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowerCAmelCase_ = [] lowerCAmelCase_ = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__snake_case) # compatibility with peft lowerCAmelCase_ = load_in_abit lowerCAmelCase_ = load_in_abit lowerCAmelCase_ = get_parameter_device(__snake_case) if model_device.type != "meta": # quantization of an already loaded model logger.warning( '''It is not recommended to quantize a loaded model. ''' '''The model should be instantiated under the `init_empty_weights` context manager.''') lowerCAmelCase_ = replace_with_bnb_layers(__snake_case , __snake_case , modules_to_not_convert=__snake_case) # convert param to the right dtype lowerCAmelCase_ = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules): param.to(torch.floataa) if param.dtype != torch.floataa: lowerCAmelCase_ = name.replace('''.weight''' , '''''').replace('''.bias''' , '''''') lowerCAmelCase_ = getattr(__snake_case , __snake_case , __snake_case) if param is not None: param.to(torch.floataa) elif torch.is_floating_point(__snake_case): param.to(__snake_case) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device()) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device()) else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''') logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' '''We move the model to cuda.''') return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''') else: with init_empty_weights(): lowerCAmelCase_ = replace_with_bnb_layers( __snake_case , __snake_case , modules_to_not_convert=__snake_case) lowerCAmelCase_ = get_quantized_model_device_map( __snake_case , __snake_case , __snake_case , max_memory=__snake_case , no_split_module_classes=__snake_case , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowerCAmelCase_ = True lowerCAmelCase_ = any(x in list(device_map.values()) for x in ['''cpu''', '''disk''']) load_checkpoint_in_model( __snake_case , __snake_case , __snake_case , dtype=bnb_quantization_config.torch_dtype , offload_folder=__snake_case , offload_state_dict=__snake_case , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(__snake_case , device_map=__snake_case , offload_dir=__snake_case) def snake_case_ ( __snake_case : int , __snake_case : Optional[Any] , __snake_case : str=None , __snake_case : List[Any]=None , __snake_case : Optional[int]=None) -> Dict: if device_map is None: if torch.cuda.is_available(): lowerCAmelCase_ = {'''''': torch.cuda.current_device()} else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''') logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''') if isinstance(__snake_case , __snake_case): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( '''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ''' '''\'sequential\'.''') lowerCAmelCase_ = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules) }) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules) }) lowerCAmelCase_ = {} lowerCAmelCase_ = special_dtypes lowerCAmelCase_ = no_split_module_classes lowerCAmelCase_ = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowerCAmelCase_ = get_balanced_memory( __snake_case , low_zero=(device_map == '''balanced_low_0''') , max_memory=__snake_case , **__snake_case , ) lowerCAmelCase_ = max_memory lowerCAmelCase_ = infer_auto_device_map(__snake_case , **__snake_case) if isinstance(__snake_case , __snake_case): # check if don't have any quantized module on the cpu lowerCAmelCase_ = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowerCAmelCase_ = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( ''' Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. ''') else: logger.info( '''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''') del device_map_without_some_modules return device_map def snake_case_ ( __snake_case : Dict , __snake_case : List[Any] , __snake_case : Dict=None , __snake_case : Optional[int]=None) -> str: if modules_to_not_convert is None: lowerCAmelCase_ = [] lowerCAmelCase_ ,lowerCAmelCase_ = _replace_with_bnb_layers( __snake_case , __snake_case , __snake_case , __snake_case) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''') return model def snake_case_ ( __snake_case : int , __snake_case : int , __snake_case : Optional[int]=None , __snake_case : int=None , ) -> Any: lowerCAmelCase_ = False for name, module in model.named_children(): if current_key_name is None: lowerCAmelCase_ = [] current_key_name.append(__snake_case) if isinstance(__snake_case , nn.Linear) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowerCAmelCase_ = '''.'''.join(__snake_case) lowerCAmelCase_ = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowerCAmelCase_ = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowerCAmelCase_ = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=__snake_case , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowerCAmelCase_ = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''') lowerCAmelCase_ = module.weight.data if module.bias is not None: lowerCAmelCase_ = module.bias.data bnb_module.requires_grad_(__snake_case) setattr(__snake_case , __snake_case , __snake_case) lowerCAmelCase_ = True if len(list(module.children())) > 0: lowerCAmelCase_ ,lowerCAmelCase_ = _replace_with_bnb_layers( __snake_case , __snake_case , __snake_case , __snake_case) lowerCAmelCase_ = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced def snake_case_ ( __snake_case : List[str]) -> Any: # Create a copy of the model with init_empty_weights(): lowerCAmelCase_ = deepcopy(__snake_case) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowerCAmelCase_ = find_tied_parameters(__snake_case) # For compatibility with Accelerate < 0.18 if isinstance(__snake_case , __snake_case): lowerCAmelCase_ = sum(list(tied_params.values()) , []) + list(tied_params.keys()) else: lowerCAmelCase_ = sum(__snake_case , []) lowerCAmelCase_ = len(__snake_case) > 0 # Check if it is a base model lowerCAmelCase_ = False if hasattr(__snake_case , '''base_model_prefix'''): lowerCAmelCase_ = not hasattr(__snake_case , model.base_model_prefix) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCAmelCase_ = list(model.named_children()) lowerCAmelCase_ = [list_modules[-1][0]] # add last module together with tied weights lowerCAmelCase_ = set(__snake_case) - set(__snake_case) lowerCAmelCase_ = list(set(__snake_case)) + list(__snake_case) # remove ".weight" from the keys lowerCAmelCase_ = ['''.weight''', '''.bias'''] lowerCAmelCase_ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCAmelCase_ = name.replace(__snake_case , '''''') filtered_module_names.append(__snake_case) return filtered_module_names def snake_case_ ( __snake_case : Union[str, Any]) -> str: for m in model.modules(): if isinstance(__snake_case , bnb.nn.Linearabit): return True return False def snake_case_ ( __snake_case : nn.Module) -> str: return next(parameter.parameters()).device def snake_case_ ( __snake_case : int , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : Tuple) -> int: # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(__snake_case , __snake_case , 0 , dtype=__snake_case , value=__snake_case) lowerCAmelCase_ = param_name lowerCAmelCase_ = model if "." in tensor_name: lowerCAmelCase_ = tensor_name.split('''.''') for split in splits[:-1]: lowerCAmelCase_ = getattr(__snake_case , __snake_case) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''') lowerCAmelCase_ = new_module lowerCAmelCase_ = splits[-1] # offload weights lowerCAmelCase_ = False offload_weight(module._parameters[tensor_name] , __snake_case , __snake_case , index=__snake_case) if hasattr(module._parameters[tensor_name] , '''SCB'''): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('''weight''' , '''SCB''') , __snake_case , index=__snake_case , ) else: offload_weight(__snake_case , __snake_case , __snake_case , index=__snake_case) offload_weight(__snake_case , param_name.replace('''weight''' , '''SCB''') , __snake_case , index=__snake_case) set_module_tensor_to_device(__snake_case , __snake_case , '''meta''' , dtype=__snake_case , value=torch.empty(*param.size()))
606
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """facebook/timesformer""": """https://huggingface.co/facebook/timesformer/resolve/main/config.json""", } class __lowerCAmelCase ( __UpperCamelCase ): lowerCAmelCase__ = """timesformer""" def __init__( self , __UpperCAmelCase=224 , __UpperCAmelCase=16 , __UpperCAmelCase=3 , __UpperCAmelCase=8 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-6 , __UpperCAmelCase=True , __UpperCAmelCase="divided_space_time" , __UpperCAmelCase=0 , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = num_frames __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = qkv_bias __lowerCamelCase = attention_type __lowerCamelCase = drop_path_rate
175
def __UpperCamelCase ( lowercase__ : int , lowercase__ : int , lowercase__ : int ) -> float: '''simple docstring''' lowerCAmelCase_ : Tuple = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def __UpperCamelCase ( ) -> str: '''simple docstring''' print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
600
0
"""simple docstring""" import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCAmelCase : Any = get_tests_dir("fixtures") class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = mock.Mock() lowercase_ = 5_0_0 lowercase_ = {} lowercase_ = HTTPError lowercase_ = {} # Download this model to make sure it's in the cache. lowercase_ = WavaVecaFeatureExtractor.from_pretrained("""hf-internal-testing/tiny-random-wav2vec2""") # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=lowerCAmelCase_) as mock_head: lowercase_ = WavaVecaFeatureExtractor.from_pretrained("""hf-internal-testing/tiny-random-wav2vec2""") # This check we did call the fake head request mock_head.assert_called() def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = WavaVecaFeatureExtractor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json""") @is_staging_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @classmethod def _UpperCAmelCase ( cls : str): """simple docstring""" lowercase_ = TOKEN HfFolder.save_token(lowerCAmelCase_) @classmethod def _UpperCAmelCase ( cls : Any): """simple docstring""" try: delete_repo(token=cls._token , repo_id="""test-feature-extractor""") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-feature-extractor-org""") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-feature-extractor""") except HTTPError: pass def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase_) feature_extractor.push_to_hub("""test-feature-extractor""" , use_auth_token=self._token) lowercase_ = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''') for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase_ , getattr(lowerCAmelCase_ , lowerCAmelCase_)) # Reset repo delete_repo(token=self._token , repo_id="""test-feature-extractor""") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowerCAmelCase_ , repo_id="""test-feature-extractor""" , push_to_hub=lowerCAmelCase_ , use_auth_token=self._token) lowercase_ = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''') for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase_ , getattr(lowerCAmelCase_ , lowerCAmelCase_)) def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase_) feature_extractor.push_to_hub("""valid_org/test-feature-extractor""" , use_auth_token=self._token) lowercase_ = WavaVecaFeatureExtractor.from_pretrained("""valid_org/test-feature-extractor""") for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase_ , getattr(lowerCAmelCase_ , lowerCAmelCase_)) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-feature-extractor""") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowerCAmelCase_ , repo_id="""valid_org/test-feature-extractor-org""" , push_to_hub=lowerCAmelCase_ , use_auth_token=self._token) lowercase_ = WavaVecaFeatureExtractor.from_pretrained("""valid_org/test-feature-extractor-org""") for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase_ , getattr(lowerCAmelCase_ , lowerCAmelCase_)) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" CustomFeatureExtractor.register_for_auto_class() lowercase_ = CustomFeatureExtractor.from_pretrained(lowerCAmelCase_) feature_extractor.push_to_hub("""test-dynamic-feature-extractor""" , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"""AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor"""} , ) lowercase_ = AutoFeatureExtractor.from_pretrained( F'''{USER}/test-dynamic-feature-extractor''' , trust_remote_code=lowerCAmelCase_) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , """CustomFeatureExtractor""")
706
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> tuple: '''simple docstring''' return (data["data"], data["target"]) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> np.ndarray: '''simple docstring''' lowercase_ = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(__lowerCAmelCase , __lowerCAmelCase ) # Predict target for test data lowercase_ = xgb.predict(__lowerCAmelCase ) lowercase_ = predictions.reshape(len(__lowerCAmelCase ) , 1 ) return predictions def _SCREAMING_SNAKE_CASE () -> None: '''simple docstring''' lowercase_ = fetch_california_housing() lowercase_ , lowercase_ = data_handling(__lowerCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = train_test_split( __lowerCAmelCase , __lowerCAmelCase , test_size=0.25 , random_state=1 ) lowercase_ = xgboost(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Error printing print(F'''Mean Absolute Error : {mean_absolute_error(__lowerCAmelCase , __lowerCAmelCase )}''' ) print(F'''Mean Square Error : {mean_squared_error(__lowerCAmelCase , __lowerCAmelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
100
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def A ( self : Optional[int] )-> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A ( self : Optional[Any] )-> int: torch.manual_seed(0 ) __UpperCamelCase = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return model @property def A ( self : str )-> List[Any]: torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , ) return model @property def A ( self : str )-> Optional[Any]: torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( sample_size=(1_28, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , ) __UpperCamelCase = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return vqvae, unet @slow def A ( self : Tuple )-> List[str]: __UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) __UpperCamelCase = DDPMScheduler() __UpperCamelCase = AudioDiffusionPipeline(vqvae=A_ , unet=self.dummy_unet , mel=A_ , scheduler=A_ ) __UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(42 ) __UpperCamelCase = pipe(generator=A_ , steps=4 ) __UpperCamelCase = output.audios[0] __UpperCamelCase = output.images[0] __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(42 ) __UpperCamelCase = pipe(generator=A_ , steps=4 , return_dict=A_ ) __UpperCamelCase = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) __UpperCamelCase = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] __UpperCamelCase = np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10] __UpperCamelCase = np.array([69, 2_55, 2_55, 2_55, 0, 0, 77, 1_81, 12, 1_27] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 __UpperCamelCase = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) __UpperCamelCase = DDIMScheduler() __UpperCamelCase = self.dummy_vqvae_and_unet __UpperCamelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=A_ , scheduler=A_ ) __UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) np.random.seed(0 ) __UpperCamelCase = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(42 ) __UpperCamelCase = pipe(raw_audio=A_ , generator=A_ , start_step=5 , steps=10 ) __UpperCamelCase = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) __UpperCamelCase = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] __UpperCamelCase = np.array([1_20, 1_17, 1_10, 1_09, 1_38, 1_67, 1_38, 1_48, 1_32, 1_21] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 __UpperCamelCase = self.dummy_unet_condition __UpperCamelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=A_ , mel=A_ , scheduler=A_ ) __UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) np.random.seed(0 ) __UpperCamelCase = torch.rand((1, 1, 10) ) __UpperCamelCase = pipe(generator=A_ , encoding=A_ ) __UpperCamelCase = output.images[0] __UpperCamelCase = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] __UpperCamelCase = np.array([1_07, 1_03, 1_20, 1_27, 1_42, 1_22, 1_13, 1_22, 97, 1_11] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def A ( self : str )-> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Optional[int] )-> Union[str, Any]: __UpperCamelCase = torch_device __UpperCamelCase = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) __UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(42 ) __UpperCamelCase = pipe(generator=A_ ) __UpperCamelCase = output.audios[0] __UpperCamelCase = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] __UpperCamelCase = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] __UpperCamelCase = np.array([1_51, 1_67, 1_54, 1_44, 1_22, 1_34, 1_21, 1_05, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
505
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case__ ) class __UpperCAmelCase ( snake_case__ ): """simple docstring""" _snake_case : str = field(default='summarization' , metadata={'include_in_asdict_even_if_is_default': True} ) _snake_case : ClassVar[Features] = Features({'text': Value('string' )} ) _snake_case : ClassVar[Features] = Features({'summary': Value('string' )} ) _snake_case : str = "text" _snake_case : str = "summary" @property def A ( self : Any )-> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
505
1
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = '''▁''' lowerCamelCase__ = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCamelCase__ = { '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } lowerCamelCase__ = { '''facebook/m2m100_418M''': 10_24, } # fmt: off lowerCamelCase__ = { '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class __magic_name__ (__lowercase ): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = ['''input_ids''', '''attention_mask'''] lowerCamelCase__ = [] lowerCamelCase__ = [] def __init__( self , _a , _a , _a=None , _a=None , _a="<s>" , _a="</s>" , _a="</s>" , _a="<pad>" , _a="<unk>" , _a="m2m100" , _a = None , _a=8 , **_a , ) -> None: lowerCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs lowerCAmelCase_ = language_codes lowerCAmelCase_ = FAIRSEQ_LANGUAGE_CODES[language_codes] lowerCAmelCase_ = {lang_code: f"__{lang_code}__" for lang_code in fairseq_language_code} lowerCAmelCase_ = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(_a ) for lang_code in fairseq_language_code if self.get_lang_token(_a ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_a , tgt_lang=_a , bos_token=_a , eos_token=_a , sep_token=_a , unk_token=_a , pad_token=_a , language_codes=_a , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=_a , **_a , ) lowerCAmelCase_ = vocab_file lowerCAmelCase_ = load_json(_a ) lowerCAmelCase_ = {v: k for k, v in self.encoder.items()} lowerCAmelCase_ = spm_file lowerCAmelCase_ = load_spm(_a , self.sp_model_kwargs ) lowerCAmelCase_ = len(self.encoder ) lowerCAmelCase_ = { self.get_lang_token(_a ): self.encoder_size + i for i, lang_code in enumerate(_a ) } lowerCAmelCase_ = {lang_code: self.encoder_size + i for i, lang_code in enumerate(_a )} lowerCAmelCase_ = {v: k for k, v in self.lang_token_to_id.items()} lowerCAmelCase_ = src_lang if src_lang is not None else "en" lowerCAmelCase_ = tgt_lang lowerCAmelCase_ = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) lowerCAmelCase_ = num_madeup_words @property def __a ( self ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def __a ( self ) -> str: return self._src_lang @src_lang.setter def __a ( self , _a ) -> None: lowerCAmelCase_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __a ( self , _a ) -> List[str]: return self.sp_model.encode(_a , out_type=_a ) def __a ( self , _a ) -> List[Any]: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(_a , self.encoder[self.unk_token] ) def __a ( self , _a ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(_a , self.unk_token ) def __a ( self , _a ) -> Optional[Any]: lowerCAmelCase_ = [] lowerCAmelCase_ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_a ) + token lowerCAmelCase_ = [] else: current_sub_tokens.append(_a ) out_string += self.sp_model.decode(_a ) return out_string.strip() def __a ( self , _a , _a = None , _a = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) lowerCAmelCase_ = [1] * len(self.prefix_tokens ) lowerCAmelCase_ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_a )) + suffix_ones return prefix_ones + ([0] * len(_a )) + ([0] * len(_a )) + suffix_ones def __a ( self , _a , _a = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __a ( self ) -> Dict: lowerCAmelCase_ = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: lowerCAmelCase_ = self.__dict__.copy() lowerCAmelCase_ = None return state def __setstate__( self , _a ) -> None: lowerCAmelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCAmelCase_ = {} lowerCAmelCase_ = load_spm(self.spm_file , self.sp_model_kwargs ) def __a ( self , _a , _a = None ) -> Tuple[str]: lowerCAmelCase_ = Path(_a ) if not save_dir.is_dir(): raise OSError(f"{save_directory} should be a directory" ) lowerCAmelCase_ = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) lowerCAmelCase_ = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , _a ) if os.path.abspath(self.spm_file ) != os.path.abspath(_a ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _a ) elif not os.path.isfile(self.spm_file ): with open(_a , "wb" ) as fi: lowerCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_a ) return (str(_a ), str(_a )) def __a ( self , _a , _a = "en" , _a = None , _a = "ro" , **_a , ) -> BatchEncoding: lowerCAmelCase_ = src_lang lowerCAmelCase_ = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(_a , _a , **_a ) def __a ( self , _a , _a , _a , **_a ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowerCAmelCase_ = src_lang lowerCAmelCase_ = self(_a , add_special_tokens=_a , **_a ) lowerCAmelCase_ = self.get_lang_id(_a ) lowerCAmelCase_ = tgt_lang_id return inputs def __a ( self ) -> Optional[int]: self.set_src_lang_special_tokens(self.src_lang ) def __a ( self ) -> Any: self.set_tgt_lang_special_tokens(self.tgt_lang ) def __a ( self , _a ) -> None: lowerCAmelCase_ = self.get_lang_token(_a ) lowerCAmelCase_ = self.lang_token_to_id[lang_token] lowerCAmelCase_ = [self.cur_lang_id] lowerCAmelCase_ = [self.eos_token_id] def __a ( self , _a ) -> None: lowerCAmelCase_ = self.get_lang_token(_a ) lowerCAmelCase_ = self.lang_token_to_id[lang_token] lowerCAmelCase_ = [self.cur_lang_id] lowerCAmelCase_ = [self.eos_token_id] def __a ( self , _a ) -> str: return self.lang_code_to_token[lang] def __a ( self , _a ) -> int: lowerCAmelCase_ = self.get_lang_token(_a ) return self.lang_token_to_id[lang_token] def A(__a: str , __a: Dict[str, Any] ): lowerCAmelCase_ = sentencepiece.SentencePieceProcessor(**__a ) spm.Load(str(__a ) ) return spm def A(__a: str ): with open(__a , "r" ) as f: return json.load(__a ) def A(__a: Union[str, Any] , __a: str ): with open(__a , "w" ) as f: json.dump(__a , __a , indent=2 )
226
from __future__ import annotations from PIL import Image # Define glider example lowerCamelCase__ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example lowerCamelCase__ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def A(__a: list[list[int]] ): lowerCAmelCase_ = [] for i in range(len(__a ) ): lowerCAmelCase_ = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours lowerCAmelCase_ = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(__a ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(__a ) - 1: neighbour_count += cells[i + 1][j] if i < len(__a ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. lowerCAmelCase_ = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(__a ) return next_generation def A(__a: list[list[int]] , __a: int ): lowerCAmelCase_ = [] for _ in range(__a ): # Create output image lowerCAmelCase_ = Image.new("RGB" , (len(cells[0] ), len(__a )) ) lowerCAmelCase_ = img.load() # Save cells to image for x in range(len(__a ) ): for y in range(len(cells[0] ) ): lowerCAmelCase_ = 255 - cells[y][x] * 255 lowerCAmelCase_ = (colour, colour, colour) # Save image images.append(__a ) lowerCAmelCase_ = new_generation(__a ) return images if __name__ == "__main__": lowerCamelCase__ = generate_images(GLIDER, 16) images[0].save('''out.gif''', save_all=True, append_images=images[1:])
226
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase : Union[str, Any] ={ '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict =[ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple =[ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys lowerCamelCase : List[Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
228
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = "isbn/0140328726" ) -> dict: UpperCamelCase__ : Dict = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes if new_olid.count("/" ) != 1: UpperCamelCase__ : int = f'{olid} is not a valid Open Library olid' raise ValueError(__lowerCAmelCase ) return requests.get(f'https://openlibrary.org/{new_olid}.json' ).json() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> dict: UpperCamelCase__ : Optional[Any] = { "title": "Title", "publish_date": "Publish date", "authors": "Authors", "number_of_pages": "Number of pages:", "first_sentence": "First sentence", "isbn_10": "ISBN (10)", "isbn_13": "ISBN (13)", } UpperCamelCase__ : Tuple = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} UpperCamelCase__ : Any = [ get_openlibrary_data(author["key"] )["name"] for author in data["Authors"] ] UpperCamelCase__ : Optional[Any] = data["First sentence"]["value"] for key, value in data.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ : Dict = ", ".join(__lowerCAmelCase ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: lowerCamelCase : Union[str, Any] =input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""") continue print(F"""\nSearching Open Library for ISBN: {isbn}...\n""") try: lowerCamelCase : str =summarize_book(get_openlibrary_data(F"""isbn/{isbn}""")) print('''\n'''.join(F"""{key}: {value}""" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F"""Sorry, there are no results for ISBN: {isbn}.""")
228
1
"""simple docstring""" from __future__ import annotations import requests UpperCAmelCase__ = set( 'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split() ) def _UpperCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : int = 1 , __lowerCamelCase : str = "new" , __lowerCamelCase : list | None = None ) -> List[Any]: _snake_case = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(UpperCamelCase__ ) - valid_terms ) ): _snake_case = f'''Invalid search term: {invalid_search_terms}''' raise ValueError(UpperCamelCase__ ) _snake_case = requests.get( f'''https://reddit.com/r/{subreddit}/{age}.json?limit={limit}''' , headers={'''User-agent''': '''A random string'''} , ) if response.status_code == 4_29: raise requests.HTTPError _snake_case = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(UpperCamelCase__ )} _snake_case = {} for id_ in range(UpperCamelCase__ ): _snake_case = { item: data['''data''']['''children'''][id_]['''data'''][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
715
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase__ : def __init__( self : Dict , _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any]=2 , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Any=False , _lowerCamelCase : Optional[int]=10 , _lowerCamelCase : List[Any]=3 , _lowerCamelCase : str=32 * 8 , _lowerCamelCase : Optional[int]=32 * 8 , _lowerCamelCase : Optional[Any]=4 , _lowerCamelCase : Union[str, Any]=64 , ): _snake_case = parent _snake_case = batch_size _snake_case = is_training _snake_case = use_auxiliary_loss _snake_case = num_queries _snake_case = num_channels _snake_case = min_size _snake_case = max_size _snake_case = num_labels _snake_case = hidden_dim _snake_case = hidden_dim def lowercase ( self : Optional[int] ): _snake_case = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowerCamelCase ) _snake_case = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowerCamelCase ) _snake_case = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowerCamelCase ) > 0.5 ).float() _snake_case = (torch.rand((self.batch_size, self.num_labels) , device=_lowerCamelCase ) > 0.5).long() _snake_case = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase ( self : Union[str, Any] ): _snake_case = MaskaFormerConfig( hidden_size=self.hidden_dim , ) _snake_case = self.num_queries _snake_case = self.num_labels _snake_case = [1, 1, 1, 1] _snake_case = self.num_channels _snake_case = 64 _snake_case = 128 _snake_case = self.hidden_dim _snake_case = self.hidden_dim _snake_case = self.hidden_dim return config def lowercase ( self : Union[str, Any] ): _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.prepare_config_and_inputs() _snake_case = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def lowercase ( self : Any , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any ): _snake_case = output.encoder_hidden_states _snake_case = output.pixel_decoder_hidden_states _snake_case = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ) , config.decoder_layers ) def lowercase ( self : Any , _lowerCamelCase : int , _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Any=False ): with torch.no_grad(): _snake_case = MaskaFormerModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase ) _snake_case = model(_lowerCamelCase , output_hidden_states=_lowerCamelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowerCamelCase , _lowerCamelCase ) def lowercase ( self : str , _lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple , _lowerCamelCase : str , _lowerCamelCase : List[Any] ): _snake_case = MaskaFormerForUniversalSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() def comm_check_on_output(_lowerCamelCase : List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _snake_case = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase ) _snake_case = model(_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) _snake_case = model( pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCAmelCase__ ( A_ , A_ , unittest.TestCase ): __a = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () __a = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} __a = False __a = False __a = False __a = False def lowercase ( self : Any ): _snake_case = MaskaFormerModelTester(self ) _snake_case = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def lowercase ( self : Dict ): self.config_tester.run_common_tests() def lowercase ( self : List[str] ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase ) def lowercase ( self : int ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_lowerCamelCase ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def lowercase ( self : Union[str, Any] ): pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def lowercase ( self : Optional[Any] ): pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def lowercase ( self : Optional[Any] ): pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def lowercase ( self : Dict ): pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def lowercase ( self : Tuple ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase ( self : Union[str, Any] ): pass def lowercase ( self : str ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(_lowerCamelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) @slow def lowercase ( self : Dict ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _snake_case = MaskaFormerModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def lowercase ( self : Tuple ): _snake_case = (self.model_tester.min_size,) * 2 _snake_case = { '''pixel_values''': torch.randn((2, 3, *size) , device=_lowerCamelCase ), '''mask_labels''': torch.randn((2, 10, *size) , device=_lowerCamelCase ), '''class_labels''': torch.zeros(2 , 10 , device=_lowerCamelCase ).long(), } _snake_case = self.model_tester.get_config() _snake_case = MaskaFormerForUniversalSegmentation(_lowerCamelCase ).to(_lowerCamelCase ) _snake_case = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None ) def lowercase ( self : List[str] ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase ) def lowercase ( self : Any ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(_lowerCamelCase ).to(_lowerCamelCase ) _snake_case = model(**_lowerCamelCase , output_attentions=_lowerCamelCase ) self.assertTrue(outputs.attentions is not None ) def lowercase ( self : int ): if not self.model_tester.is_training: return _snake_case = self.all_model_classes[1] _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() _snake_case = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ).loss loss.backward() def lowercase ( self : Dict ): _snake_case = self.all_model_classes[1] _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = True _snake_case = True _snake_case = model_class(_lowerCamelCase ).to(_lowerCamelCase ) model.train() _snake_case = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ) _snake_case = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _snake_case = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _snake_case = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _snake_case = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowerCamelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase__ = 1e-4 def _UpperCAmelCase ( ) -> int: _snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def lowercase ( self : Tuple ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowercase ( self : Optional[Any] ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowercase ( self : Any ): _snake_case = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) _snake_case = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCamelCase , (1, 3, 384, 384) ) with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) _snake_case = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) _snake_case = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) _snake_case = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def lowercase ( self : List[Any] ): _snake_case = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) _snake_case = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCamelCase , (1, 3, 384, 384) ) with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) # masks_queries_logits _snake_case = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) _snake_case = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] _snake_case = torch.tensor(_lowerCamelCase ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) # class_queries_logits _snake_case = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) _snake_case = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def lowercase ( self : List[str] ): _snake_case = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() _snake_case = self.default_image_processor _snake_case = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) _snake_case = inputs['''pixel_values'''].to(_lowerCamelCase ) _snake_case = [el.to(_lowerCamelCase ) for el in inputs['''mask_labels''']] _snake_case = [el.to(_lowerCamelCase ) for el in inputs['''class_labels''']] with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None )
430
0
'''simple docstring''' import math import tensorflow as tf from packaging import version def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Dict = tf.convert_to_tensor(lowerCamelCase__ ) A_ : Optional[Any] = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Optional[Any] = tf.convert_to_tensor(lowerCamelCase__ ) A_ : List[Any] = tf.cast(math.pi , x.dtype ) A_ : Any = tf.cast(0.044_715 , x.dtype ) A_ : Union[str, Any] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase__ , 3 )) )) return x * cdf def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Tuple = tf.convert_to_tensor(lowerCamelCase__ ) return x * tf.tanh(tf.math.softplus(lowerCamelCase__ ) ) def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Tuple = tf.convert_to_tensor(lowerCamelCase__ ) A_ : Optional[Any] = tf.cast(0.044_715 , x.dtype ) A_ : str = tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Optional[int] = tf.convert_to_tensor(lowerCamelCase__ ) A_ : List[Any] = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def a ( lowerCamelCase__ ): '''simple docstring''' return tf.clip_by_value(_gelu(lowerCamelCase__ ) , -10 , 10 ) def a ( lowerCamelCase__ , lowerCamelCase__=-1 ): '''simple docstring''' A_, A_ : Any = tf.split(lowerCamelCase__ , 2 , axis=lowerCamelCase__ ) return a * tf.math.sigmoid(lowerCamelCase__ ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def a ( lowerCamelCase__ ): '''simple docstring''' return tf.keras.activations.gelu(lowerCamelCase__ , approximate=lowerCamelCase__ ) lowerCamelCase :Union[str, Any] = tf.keras.activations.gelu lowerCamelCase :Optional[Any] = approximate_gelu_wrap else: lowerCamelCase :Optional[int] = _gelu lowerCamelCase :List[str] = _gelu_new lowerCamelCase :Union[str, Any] = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def a ( lowerCamelCase__ ): '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
667
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCamelCase :List[str] = imread(R'''digital_image_processing/image_data/lena_small.jpg''') lowerCamelCase :Optional[int] = cvtColor(img, COLOR_BGR2GRAY) def a ( ): '''simple docstring''' A_ : List[Any] = cn.convert_to_negative(lowerCamelCase__ ) # assert negative_img array for at least one True assert negative_img.any() def a ( ): '''simple docstring''' with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(lowerCamelCase__ , 1_10 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def a ( ): '''simple docstring''' A_ : int = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def a ( ): '''simple docstring''' A_ : int = imread("""digital_image_processing/image_data/lena_small.jpg""" , 0 ) # assert ambiguous array for all == True assert canny_img.all() A_ : List[Any] = canny.canny(lowerCamelCase__ ) # assert canny array for at least one True assert canny_array.any() def a ( ): '''simple docstring''' assert gg.gaussian_filter(lowerCamelCase__ , 5 , sigma=0.9 ).all() def a ( ): '''simple docstring''' A_ : int = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) A_ : Optional[Any] = conv.img_convolve(lowerCamelCase__ , lowerCamelCase__ ).astype(lowerCamelCase__ ) assert res.any() def a ( ): '''simple docstring''' assert med.median_filter(lowerCamelCase__ , 3 ).any() def a ( ): '''simple docstring''' A_, A_ : int = sob.sobel_filter(lowerCamelCase__ ) assert grad.any() and theta.any() def a ( ): '''simple docstring''' A_ : int = sp.make_sepia(lowerCamelCase__ , 20 ) assert sepia.all() def a ( lowerCamelCase__ = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' A_ : Any = bs.Burkes(imread(lowerCamelCase__ , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def a ( lowerCamelCase__ = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' A_ : Union[str, Any] = rs.NearestNeighbour(imread(lowerCamelCase__ , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def a ( ): '''simple docstring''' A_ : int = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. A_ : Union[str, Any] = imread(lowerCamelCase__ , 0 ) # Test for get_neighbors_pixel function() return not None A_ : str = 0 A_ : str = 0 A_ : Dict = image[x_coordinate][y_coordinate] A_ : Optional[Any] = lbp.get_neighbors_pixel( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image A_ : str = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): A_ : Any = lbp.local_binary_value(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) assert lbp_image.any()
667
1
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_=0.01 , snake_case_=1_0_0_0 ): """simple docstring""" A_ : int = p_stop A_ : Tuple = max_length def __iter__( self ): """simple docstring""" A_ : Optional[Any] = 0 A_ : Tuple = False while not stop and count < self.max_length: yield count count += 1 A_ : Tuple = random.random() < self.p_stop class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_=False , snake_case_=True ): """simple docstring""" A_ : Optional[int] = [ BatchSamplerShard(snake_case_ , 2 , snake_case_ , split_batches=snake_case_ , even_batches=snake_case_ ) for i in range(2 ) ] A_ : str = [list(snake_case_ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(snake_case_ ) for shard in batch_sampler_shards] , [len(snake_case_ ) for e in expected] ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : Optional[Any] = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=snake_case_ ) A_ : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ ) A_ : Optional[Any] = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=snake_case_ ) # Expected shouldn't change self.check_batch_sampler_shards(snake_case_ , snake_case_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. A_ : Tuple = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=snake_case_ ) A_ : Any = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [0, 1, 2]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ ) A_ : Any = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=snake_case_ ) A_ : Any = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. A_ : Optional[int] = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=snake_case_ ) A_ : Any = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 0, 1]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ ) A_ : Union[str, Any] = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=snake_case_ ) A_ : Dict = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. A_ : Any = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=snake_case_ ) A_ : Dict = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [1, 2, 3]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ ) A_ : Optional[Any] = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=snake_case_ ) A_ : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ ) # Check the shards when the dataset is very small. A_ : Tuple = BatchSampler(range(2 ) , batch_size=3 , drop_last=snake_case_ ) A_ : Dict = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(snake_case_ , snake_case_ ) A_ : List[Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=snake_case_ ) A_ : List[Any] = [[], []] self.check_batch_sampler_shards(snake_case_ , snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : List[str] = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=snake_case_ ) A_ : Dict = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , split_batches=snake_case_ ) A_ : Union[str, Any] = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=snake_case_ ) # Expected shouldn't change self.check_batch_sampler_shards(snake_case_ , snake_case_ , split_batches=snake_case_ ) # Check the shards when the dataset is not a round multiple of batch size. A_ : Optional[Any] = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=snake_case_ ) A_ : Tuple = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [0, 1]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , split_batches=snake_case_ ) A_ : int = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=snake_case_ ) A_ : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , split_batches=snake_case_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. A_ : List[str] = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=snake_case_ ) A_ : List[str] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [1, 2]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , split_batches=snake_case_ ) A_ : int = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=snake_case_ ) A_ : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , split_batches=snake_case_ ) # Check the shards when the dataset is very small. A_ : List[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=snake_case_ ) A_ : List[str] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(snake_case_ , snake_case_ , split_batches=snake_case_ ) A_ : List[str] = BatchSampler(range(2 ) , batch_size=4 , drop_last=snake_case_ ) A_ : int = [[], []] self.check_batch_sampler_shards(snake_case_ , snake_case_ , split_batches=snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : Optional[Any] = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=snake_case_ ) A_ : Tuple = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , even_batches=snake_case_ ) A_ : List[str] = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=snake_case_ ) # Expected shouldn't change self.check_batch_sampler_shards(snake_case_ , snake_case_ , even_batches=snake_case_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. A_ : Union[str, Any] = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=snake_case_ ) A_ : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , even_batches=snake_case_ ) A_ : Dict = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=snake_case_ ) A_ : Tuple = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , even_batches=snake_case_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. A_ : Dict = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=snake_case_ ) A_ : Dict = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , even_batches=snake_case_ ) A_ : Any = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=snake_case_ ) A_ : Any = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , even_batches=snake_case_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. A_ : int = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=snake_case_ ) A_ : str = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , even_batches=snake_case_ ) A_ : List[Any] = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=snake_case_ ) A_ : List[str] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , even_batches=snake_case_ ) # Check the shards when the dataset is very small. A_ : Union[str, Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=snake_case_ ) A_ : Union[str, Any] = [[[0, 1]], []] self.check_batch_sampler_shards(snake_case_ , snake_case_ , even_batches=snake_case_ ) A_ : str = BatchSampler(range(2 ) , batch_size=3 , drop_last=snake_case_ ) A_ : Tuple = [[], []] self.check_batch_sampler_shards(snake_case_ , snake_case_ , even_batches=snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : Dict = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=snake_case_ ) A_ : Any = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , split_batches=snake_case_ , even_batches=snake_case_ ) A_ : Tuple = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=snake_case_ ) # Expected shouldn't change self.check_batch_sampler_shards(snake_case_ , snake_case_ , split_batches=snake_case_ , even_batches=snake_case_ ) # Check the shards when the dataset is not a round multiple of batch size. A_ : Dict = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=snake_case_ ) A_ : List[Any] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , split_batches=snake_case_ , even_batches=snake_case_ ) A_ : str = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=snake_case_ ) A_ : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , split_batches=snake_case_ , even_batches=snake_case_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. A_ : List[Any] = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=snake_case_ ) A_ : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , split_batches=snake_case_ , even_batches=snake_case_ ) A_ : List[str] = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=snake_case_ ) A_ : List[str] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(snake_case_ , snake_case_ , split_batches=snake_case_ , even_batches=snake_case_ ) # Check the shards when the dataset is very small. A_ : List[str] = BatchSampler(range(2 ) , batch_size=4 , drop_last=snake_case_ ) A_ : Optional[int] = [[[0, 1]], []] self.check_batch_sampler_shards(snake_case_ , snake_case_ , split_batches=snake_case_ , even_batches=snake_case_ ) A_ : int = BatchSampler(range(2 ) , batch_size=4 , drop_last=snake_case_ ) A_ : Any = [[], []] self.check_batch_sampler_shards(snake_case_ , snake_case_ , split_batches=snake_case_ , even_batches=snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : List[Any] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 1_0, 1_1], [1_2, 1_3]] A_ : Union[str, Any] = [BatchSamplerShard(snake_case_ , 2 , snake_case_ , even_batches=snake_case_ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [1_2, 1_3]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 1_0, 1_1]] ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=False , snake_case_=2 , snake_case_=False ): """simple docstring""" random.seed(snake_case_ ) A_ : Optional[Any] = list(snake_case_ ) A_ : Any = [ IterableDatasetShard( snake_case_ , batch_size=snake_case_ , drop_last=snake_case_ , num_processes=snake_case_ , process_index=snake_case_ , split_batches=snake_case_ , ) for i in range(snake_case_ ) ] A_ : Optional[Any] = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(snake_case_ ) iterable_dataset_lists.append(list(snake_case_ ) ) A_ : Any = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size A_ : Tuple = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) self.assertTrue(len(snake_case_ ) % shard_batch_size == 0 ) A_ : List[Any] = [] for idx in range(0 , len(snake_case_ ) , snake_case_ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(snake_case_ ) < len(snake_case_ ): reference += reference self.assertListEqual(snake_case_ , reference[: len(snake_case_ )] ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : int = 4_2 A_ : str = RandomIterableDataset() self.check_iterable_dataset_shards(snake_case_ , snake_case_ , batch_size=4 , drop_last=snake_case_ , split_batches=snake_case_ ) self.check_iterable_dataset_shards(snake_case_ , snake_case_ , batch_size=4 , drop_last=snake_case_ , split_batches=snake_case_ ) self.check_iterable_dataset_shards(snake_case_ , snake_case_ , batch_size=4 , drop_last=snake_case_ , split_batches=snake_case_ ) self.check_iterable_dataset_shards(snake_case_ , snake_case_ , batch_size=4 , drop_last=snake_case_ , split_batches=snake_case_ ) # Edge case with a very small dataset A_ : List[str] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(snake_case_ , snake_case_ , batch_size=4 , drop_last=snake_case_ , split_batches=snake_case_ ) self.check_iterable_dataset_shards(snake_case_ , snake_case_ , batch_size=4 , drop_last=snake_case_ , split_batches=snake_case_ ) self.check_iterable_dataset_shards(snake_case_ , snake_case_ , batch_size=4 , drop_last=snake_case_ , split_batches=snake_case_ ) self.check_iterable_dataset_shards(snake_case_ , snake_case_ , batch_size=4 , drop_last=snake_case_ , split_batches=snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : Optional[int] = BatchSampler(range(1_6 ) , batch_size=4 , drop_last=snake_case_ ) A_ : List[Any] = SkipBatchSampler(snake_case_ , 2 ) self.assertListEqual(list(snake_case_ ) , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : List[Any] = SkipDataLoader(list(range(1_6 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : Optional[int] = DataLoader(list(range(1_6 ) ) , batch_size=4 ) A_ : Optional[Any] = skip_first_batches(snake_case_ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : Union[str, Any] = DataLoaderShard(list(range(1_6 ) ) , batch_size=4 ) for idx, _ in enumerate(snake_case_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(snake_case_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def lowerCamelCase_ ( self ): """simple docstring""" Accelerator() A_ : Optional[Any] = DataLoaderDispatcher(range(1_6 ) , batch_size=4 ) for idx, _ in enumerate(snake_case_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(snake_case_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
302
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCamelCase_ : Tuple = logging.get_logger(__name__) lowerCamelCase_ : Union[str, Any] = OrderedDict( [ ('audio-spectrogram-transformer', 'ASTFeatureExtractor'), ('beit', 'BeitFeatureExtractor'), ('chinese_clip', 'ChineseCLIPFeatureExtractor'), ('clap', 'ClapFeatureExtractor'), ('clip', 'CLIPFeatureExtractor'), ('clipseg', 'ViTFeatureExtractor'), ('conditional_detr', 'ConditionalDetrFeatureExtractor'), ('convnext', 'ConvNextFeatureExtractor'), ('cvt', 'ConvNextFeatureExtractor'), ('data2vec-audio', 'Wav2Vec2FeatureExtractor'), ('data2vec-vision', 'BeitFeatureExtractor'), ('deformable_detr', 'DeformableDetrFeatureExtractor'), ('deit', 'DeiTFeatureExtractor'), ('detr', 'DetrFeatureExtractor'), ('dinat', 'ViTFeatureExtractor'), ('donut-swin', 'DonutFeatureExtractor'), ('dpt', 'DPTFeatureExtractor'), ('encodec', 'EncodecFeatureExtractor'), ('flava', 'FlavaFeatureExtractor'), ('glpn', 'GLPNFeatureExtractor'), ('groupvit', 'CLIPFeatureExtractor'), ('hubert', 'Wav2Vec2FeatureExtractor'), ('imagegpt', 'ImageGPTFeatureExtractor'), ('layoutlmv2', 'LayoutLMv2FeatureExtractor'), ('layoutlmv3', 'LayoutLMv3FeatureExtractor'), ('levit', 'LevitFeatureExtractor'), ('maskformer', 'MaskFormerFeatureExtractor'), ('mctct', 'MCTCTFeatureExtractor'), ('mobilenet_v1', 'MobileNetV1FeatureExtractor'), ('mobilenet_v2', 'MobileNetV2FeatureExtractor'), ('mobilevit', 'MobileViTFeatureExtractor'), ('nat', 'ViTFeatureExtractor'), ('owlvit', 'OwlViTFeatureExtractor'), ('perceiver', 'PerceiverFeatureExtractor'), ('poolformer', 'PoolFormerFeatureExtractor'), ('regnet', 'ConvNextFeatureExtractor'), ('resnet', 'ConvNextFeatureExtractor'), ('segformer', 'SegformerFeatureExtractor'), ('sew', 'Wav2Vec2FeatureExtractor'), ('sew-d', 'Wav2Vec2FeatureExtractor'), ('speech_to_text', 'Speech2TextFeatureExtractor'), ('speecht5', 'SpeechT5FeatureExtractor'), ('swiftformer', 'ViTFeatureExtractor'), ('swin', 'ViTFeatureExtractor'), ('swinv2', 'ViTFeatureExtractor'), ('table-transformer', 'DetrFeatureExtractor'), ('timesformer', 'VideoMAEFeatureExtractor'), ('tvlt', 'TvltFeatureExtractor'), ('unispeech', 'Wav2Vec2FeatureExtractor'), ('unispeech-sat', 'Wav2Vec2FeatureExtractor'), ('van', 'ConvNextFeatureExtractor'), ('videomae', 'VideoMAEFeatureExtractor'), ('vilt', 'ViltFeatureExtractor'), ('vit', 'ViTFeatureExtractor'), ('vit_mae', 'ViTFeatureExtractor'), ('vit_msn', 'ViTFeatureExtractor'), ('wav2vec2', 'Wav2Vec2FeatureExtractor'), ('wav2vec2-conformer', 'Wav2Vec2FeatureExtractor'), ('wavlm', 'Wav2Vec2FeatureExtractor'), ('whisper', 'WhisperFeatureExtractor'), ('xclip', 'CLIPFeatureExtractor'), ('yolos', 'YolosFeatureExtractor'), ] ) lowerCamelCase_ : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: A_ : Optional[Any] = model_type_to_module_name(_UpperCAmelCase ) A_ : Optional[int] = importlib.import_module(f""".{module_name}""" , 'transformers.models' ) try: return getattr(_UpperCAmelCase , _UpperCAmelCase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_UpperCAmelCase , '__name__' , _UpperCAmelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. A_ : Optional[Any] = importlib.import_module('transformers' ) if hasattr(_UpperCAmelCase , _UpperCAmelCase ): return getattr(_UpperCAmelCase , _UpperCAmelCase ) return None def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , **_UpperCAmelCase , ): """simple docstring""" A_ : List[Any] = get_file_from_repo( _UpperCAmelCase , _UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , resume_download=_UpperCAmelCase , proxies=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , local_files_only=_UpperCAmelCase , ) if resolved_config_file is None: logger.info( 'Could not locate the feature extractor configuration file, will try to use the model config instead.' ) return {} with open(_UpperCAmelCase , encoding='utf-8' ) as reader: return json.load(_UpperCAmelCase ) class _UpperCAmelCase : '''simple docstring''' def __init__( self ): """simple docstring""" raise EnvironmentError( 'AutoFeatureExtractor is designed to be instantiated ' 'using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(snake_case_ ) def lowerCamelCase_ ( cls , snake_case_ , **snake_case_ ): """simple docstring""" A_ : str = kwargs.pop('config' , snake_case_ ) A_ : Optional[Any] = kwargs.pop('trust_remote_code' , snake_case_ ) A_ : Any = True A_ , A_ : List[Any] = FeatureExtractionMixin.get_feature_extractor_dict(snake_case_ , **snake_case_ ) A_ : List[Any] = config_dict.get('feature_extractor_type' , snake_case_ ) A_ : Optional[int] = None if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): A_ : Optional[Any] = config_dict['auto_map']['AutoFeatureExtractor'] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(snake_case_ , snake_case_ ): A_ : Any = AutoConfig.from_pretrained(snake_case_ , **snake_case_ ) # It could be in `config.feature_extractor_type`` A_ : str = getattr(snake_case_ , 'feature_extractor_type' , snake_case_ ) if hasattr(snake_case_ , 'auto_map' ) and "AutoFeatureExtractor" in config.auto_map: A_ : List[str] = config.auto_map['AutoFeatureExtractor'] if feature_extractor_class is not None: A_ : Union[str, Any] = feature_extractor_class_from_name(snake_case_ ) A_ : Dict = feature_extractor_auto_map is not None A_ : Tuple = feature_extractor_class is not None or type(snake_case_ ) in FEATURE_EXTRACTOR_MAPPING A_ : Optional[int] = resolve_trust_remote_code( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if has_remote_code and trust_remote_code: A_ : Optional[int] = get_class_from_dynamic_module( snake_case_ , snake_case_ , **snake_case_ ) A_ : str = kwargs.pop('code_revision' , snake_case_ ) if os.path.isdir(snake_case_ ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(snake_case_ , **snake_case_ ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(snake_case_ , **snake_case_ ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(snake_case_ ) in FEATURE_EXTRACTOR_MAPPING: A_ : List[str] = FEATURE_EXTRACTOR_MAPPING[type(snake_case_ )] return feature_extractor_class.from_dict(snake_case_ , **snake_case_ ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def lowerCamelCase_ ( snake_case_ , snake_case_ ): """simple docstring""" FEATURE_EXTRACTOR_MAPPING.register(snake_case_ , snake_case_ )
302
1
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class A__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase( self : List[Any] ): a__ : Union[str, Any] = inspect.getfile(accelerate.test_utils ) a__ : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) a__ : List[Any] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] ) a__ : Dict = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] ) @require_multi_gpu def _UpperCamelCase( self : Optional[int] ): print(f'''Found {torch.cuda.device_count()} devices.''' ) a__ : int = ["torchrun", f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCamelCase__ , env=os.environ.copy() ) @require_multi_gpu def _UpperCamelCase( self : Optional[int] ): print(f'''Found {torch.cuda.device_count()} devices.''' ) a__ : Tuple = ["torchrun", f'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(f'''Command: {cmd}''' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCamelCase__ , env=os.environ.copy() ) @require_multi_gpu def _UpperCamelCase( self : Tuple ): a__ : List[str] = ["torchrun", f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCamelCase__ , env=os.environ.copy() ) @require_multi_gpu def _UpperCamelCase( self : Any ): print(f'''Found {torch.cuda.device_count()} devices, using 2 devices only''' ) a__ : Optional[int] = ["torchrun", f'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ): execute_subprocess_async(lowerCamelCase__ , env=os.environ.copy() ) if __name__ == "__main__": UpperCamelCase : str = Accelerator() UpperCamelCase : int = (accelerator.state.process_index + 2, 10) UpperCamelCase : Optional[Any] = torch.randint(0, 10, shape).to(accelerator.device) UpperCamelCase : Optional[int] = """""" UpperCamelCase : Union[str, Any] = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." UpperCamelCase : int = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." UpperCamelCase : Tuple = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
37
def UpperCamelCase_ ( __a , __a ) -> Tuple: a__ : Optional[int] = [0 for i in range(r + 1 )] # nc0 = 1 a__ : Union[str, Any] = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. a__ : Any = min(__a , __a ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
37
1
'''simple docstring''' import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { """google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""", """google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""", """google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""", } class __SCREAMING_SNAKE_CASE ( lowercase__ ): lowerCamelCase_ = 'owlvit_text_model' def __init__( self : Optional[Any] , UpperCAmelCase__ : Optional[int]=49408 , UpperCAmelCase__ : int=512 , UpperCAmelCase__ : Dict=2048 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : Dict=8 , UpperCAmelCase__ : Any=16 , UpperCAmelCase__ : List[Any]="quick_gelu" , UpperCAmelCase__ : Union[str, Any]=1E-5 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : Optional[Any]=0.02 , UpperCAmelCase__ : Union[str, Any]=1.0 , UpperCAmelCase__ : Any=0 , UpperCAmelCase__ : Dict=49406 , UpperCAmelCase__ : str=49407 , **UpperCAmelCase__ : Tuple , ): '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) lowercase : Tuple =vocab_size lowercase : Optional[Any] =hidden_size lowercase : Dict =intermediate_size lowercase : Optional[Any] =num_hidden_layers lowercase : Union[str, Any] =num_attention_heads lowercase : Tuple =max_position_embeddings lowercase : Optional[int] =hidden_act lowercase : Tuple =layer_norm_eps lowercase : List[Any] =attention_dropout lowercase : Dict =initializer_range lowercase : Tuple =initializer_factor @classmethod def lowerCamelCase_ ( cls : Optional[int] , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : List[str] ): '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase__ ) lowercase : List[Any] =cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": lowercase : Optional[Any] =config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) class __SCREAMING_SNAKE_CASE ( lowercase__ ): lowerCamelCase_ = 'owlvit_vision_model' def __init__( self : Tuple , UpperCAmelCase__ : int=768 , UpperCAmelCase__ : Tuple=3072 , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : Optional[Any]=12 , UpperCAmelCase__ : Any=3 , UpperCAmelCase__ : Union[str, Any]=768 , UpperCAmelCase__ : int=32 , UpperCAmelCase__ : int="quick_gelu" , UpperCAmelCase__ : str=1E-5 , UpperCAmelCase__ : Optional[Any]=0.0 , UpperCAmelCase__ : Union[str, Any]=0.02 , UpperCAmelCase__ : Dict=1.0 , **UpperCAmelCase__ : Union[str, Any] , ): '''simple docstring''' super().__init__(**UpperCAmelCase__ ) lowercase : Dict =hidden_size lowercase : List[Any] =intermediate_size lowercase : Optional[int] =num_hidden_layers lowercase : Tuple =num_attention_heads lowercase : str =num_channels lowercase : Tuple =image_size lowercase : Optional[Any] =patch_size lowercase : List[str] =hidden_act lowercase : Any =layer_norm_eps lowercase : List[str] =attention_dropout lowercase : Union[str, Any] =initializer_range lowercase : List[str] =initializer_factor @classmethod def lowerCamelCase_ ( cls : Tuple , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : Union[str, Any] ): '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase__ ) lowercase : str =cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": lowercase : Optional[Any] =config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) class __SCREAMING_SNAKE_CASE ( lowercase__ ): lowerCamelCase_ = 'owlvit' lowerCamelCase_ = True def __init__( self : str , UpperCAmelCase__ : str=None , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : Union[str, Any]=512 , UpperCAmelCase__ : List[Any]=2.65_92 , UpperCAmelCase__ : Tuple=True , **UpperCAmelCase__ : Optional[int] , ): '''simple docstring''' super().__init__(**UpperCAmelCase__ ) if text_config is None: lowercase : Any ={} logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''' ) if vision_config is None: lowercase : Dict ={} logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''' ) lowercase : Tuple =OwlViTTextConfig(**UpperCAmelCase__ ) lowercase : Any =OwlViTVisionConfig(**UpperCAmelCase__ ) lowercase : int =projection_dim lowercase : List[str] =logit_scale_init_value lowercase : Union[str, Any] =return_dict lowercase : int =1.0 @classmethod def lowerCamelCase_ ( cls : Tuple , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : Tuple ): '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase__ ) lowercase : int =cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) @classmethod def lowerCamelCase_ ( cls : str , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Tuple ): '''simple docstring''' lowercase : Dict ={} lowercase : Tuple =text_config lowercase : Optional[Any] =vision_config return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) def lowerCamelCase_ ( self : int ): '''simple docstring''' lowercase : Optional[int] =copy.deepcopy(self.__dict__ ) lowercase : List[str] =self.text_config.to_dict() lowercase : Optional[Any] =self.vision_config.to_dict() lowercase : Tuple =self.__class__.model_type return output class __SCREAMING_SNAKE_CASE ( lowercase__ ): @property def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ] ) @property def lowerCamelCase_ ( self : Dict ): '''simple docstring''' return OrderedDict( [ ('''logits_per_image''', {0: '''batch'''}), ('''logits_per_text''', {0: '''batch'''}), ('''text_embeds''', {0: '''batch'''}), ('''image_embeds''', {0: '''batch'''}), ] ) @property def lowerCamelCase_ ( self : Dict ): '''simple docstring''' return 1E-4 def lowerCamelCase_ ( self : str , UpperCAmelCase__ : "ProcessorMixin" , UpperCAmelCase__ : int = -1 , UpperCAmelCase__ : int = -1 , UpperCAmelCase__ : Optional["TensorType"] = None , ): '''simple docstring''' lowercase : Dict =super().generate_dummy_inputs( processor.tokenizer , batch_size=UpperCAmelCase__ , seq_length=UpperCAmelCase__ , framework=UpperCAmelCase__ ) lowercase : List[str] =super().generate_dummy_inputs( processor.image_processor , batch_size=UpperCAmelCase__ , framework=UpperCAmelCase__ ) return {**text_input_dict, **image_input_dict} @property def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' return 14
719
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys UpperCamelCase_ = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
88
0
'''simple docstring''' import operator as op def _a ( _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : List[Any] = [] __snake_case : Optional[int] = lambda _lowerCamelCase , _lowerCamelCase : int(x / y ) # noqa: E731 integer division operation __snake_case : List[Any] = { """^""": op.pow, """*""": op.mul, """/""": div, """+""": op.add, """-""": op.sub, } # operators & their respective operation # print table header print("""Symbol""".center(8 ) , """Action""".center(12 ) , """Stack""" , sep=""" | """ ) print("""-""" * (30 + len(_lowerCamelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(_lowerCamelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("""push(""" + x + """)""").ljust(12 ) , """,""".join(_lowerCamelCase ) , sep=""" | """ ) else: __snake_case : List[str] = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + b + """)""").ljust(12 ) , """,""".join(_lowerCamelCase ) , sep=""" | """ ) __snake_case : Dict = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + a + """)""").ljust(12 ) , """,""".join(_lowerCamelCase ) , sep=""" | """ ) stack.append( str(opr[x](int(_lowerCamelCase ) , int(_lowerCamelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("""push(""" + a + x + b + """)""").ljust(12 ) , """,""".join(_lowerCamelCase ) , sep=""" | """ , ) return int(stack[0] ) if __name__ == "__main__": __UpperCamelCase = input("\n\nEnter a Postfix Equation (space separated) = ").split(" ") print("\n\tResult = ", solve(Postfix))
26
'''simple docstring''' import math def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False _SCREAMING_SNAKE_CASE : List[str] = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=1 , **SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = factor * value _SCREAMING_SNAKE_CASE : Optional[Any] = value while not is_prime(SCREAMING_SNAKE_CASE__ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **SCREAMING_SNAKE_CASE__ ) return value
533
0
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __lowerCAmelCase ( A ): def _lowerCamelCase ( self : int , A : float) -> float: """simple docstring""" return 0.0 def A ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : int ) -> tuple[int | float, int | float]: '''simple docstring''' _UpperCAmelCase = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _UpperCAmelCase = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def A ( _UpperCAmelCase : FilterType , _UpperCAmelCase : int ) -> None: '''simple docstring''' _UpperCAmelCase = 512 _UpperCAmelCase = [1] + [0] * (size - 1) _UpperCAmelCase = [filter_type.process(_UpperCAmelCase ) for item in inputs] _UpperCAmelCase = [0] * (samplerate - size) # zero-padding outputs += filler _UpperCAmelCase = np.abs(np.fft.fft(_UpperCAmelCase ) ) _UpperCAmelCase = 20 * np.logaa(_UpperCAmelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('Frequency (Hz)' ) plt.xscale('log' ) # Display within reasonable bounds _UpperCAmelCase = get_bounds(_UpperCAmelCase , _UpperCAmelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('Gain (dB)' ) plt.plot(_UpperCAmelCase ) plt.show() def A ( _UpperCAmelCase : FilterType , _UpperCAmelCase : int ) -> None: '''simple docstring''' _UpperCAmelCase = 512 _UpperCAmelCase = [1] + [0] * (size - 1) _UpperCAmelCase = [filter_type.process(_UpperCAmelCase ) for item in inputs] _UpperCAmelCase = [0] * (samplerate - size) # zero-padding outputs += filler _UpperCAmelCase = np.angle(np.fft.fft(_UpperCAmelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('Frequency (Hz)' ) plt.xscale('log' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('Phase shift (Radians)' ) plt.plot(np.unwrap(_UpperCAmelCase , -2 * pi ) ) plt.show()
639
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' # Initialise PyTorch model _UpperCAmelCase = TaConfig.from_json_file(_UpperCAmelCase ) print(F"Building PyTorch model from configuration: {config}" ) _UpperCAmelCase = TaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
639
1
import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() UpperCamelCase__ : str = { '''bart''': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''bert''': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-base-cased-finetuned-mrpc''': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''dpr''': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''gpt2''': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlnet''': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm''': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm-roberta''': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''transfo-xl''': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''openai-gpt''': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''roberta''': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''layoutlm''': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''roberta-large-mnli''': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''camembert''': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''flaubert''': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert''': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert-base-distilled-squad''': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert''': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert-visual-feature-encoder''': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''ctrl''': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''albert''': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''t5''': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''electra''': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''wav2vec2''': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def __UpperCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Dict , lowerCamelCase_ : int=False , lowerCamelCase_ : Optional[Any]=True ) -> List[str]: """simple docstring""" if model_type not in MODEL_CLASSES: raise ValueError(F'Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: SCREAMING_SNAKE_CASE_ : Optional[int] = cached_file(lowerCamelCase_ , lowerCamelCase_ , force_download=not use_cached_models ) SCREAMING_SNAKE_CASE_ : Dict = config_class.from_json_file(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = True SCREAMING_SNAKE_CASE_ : Optional[int] = True print(F'Building TensorFlow model from configuration: {config}' ) SCREAMING_SNAKE_CASE_ : List[Any] = model_class(lowerCamelCase_ ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): SCREAMING_SNAKE_CASE_ : str = cached_file( lowerCamelCase_ , lowerCamelCase_ , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: SCREAMING_SNAKE_CASE_ : Optional[int] = load_pytorch_checkpoint_in_tfa_model(lowerCamelCase_ , lowerCamelCase_ ) if compare_with_pt_model: SCREAMING_SNAKE_CASE_ : Dict = tf_model(tf_model.dummy_inputs , training=lowerCamelCase_ ) # build the network SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.load(lowerCamelCase_ , map_location='cpu' ) SCREAMING_SNAKE_CASE_ : str = pt_model_class.from_pretrained( pretrained_model_name_or_path=lowerCamelCase_ , config=lowerCamelCase_ , state_dict=lowerCamelCase_ ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Dict = pt_model(**pt_model.dummy_inputs ) SCREAMING_SNAKE_CASE_ : Optional[int] = pto[0].numpy() SCREAMING_SNAKE_CASE_ : List[str] = tfo[0].numpy() SCREAMING_SNAKE_CASE_ : Optional[Any] = np.amax(np.abs(np_pt - np_tf ) ) print(F'Max absolute difference between models outputs {diff}' ) assert diff <= 2E-2, F'Error, model absolute difference is >2e-2: {diff}' # Save pytorch-model print(F'Save TensorFlow model to {tf_dump_path}' ) tf_model.save_weights(lowerCamelCase_ , save_format='h5' ) def __UpperCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : List[str]=None , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Optional[Any]=False , lowerCamelCase_ : str=False , lowerCamelCase_ : Union[str, Any]=False , lowerCamelCase_ : List[Any]=False , ) -> Dict: """simple docstring""" if args_model_type is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(MODEL_CLASSES.keys() ) else: SCREAMING_SNAKE_CASE_ : Dict = [args_model_type] for j, model_type in enumerate(lowerCamelCase_ , start=1 ): print('=' * 1_00 ) print(F' Converting model type {j}/{len(lowerCamelCase_ )}: {model_type}' ) print('=' * 1_00 ) if model_type not in MODEL_CLASSES: raise ValueError(F'Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: SCREAMING_SNAKE_CASE_ : List[Any] = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: SCREAMING_SNAKE_CASE_ : Optional[int] = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(lowerCamelCase_ , lowerCamelCase_ ) , start=1 ): print('-' * 1_00 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F' Skipping finetuned checkpoint {model_shortcut_name}' ) continue SCREAMING_SNAKE_CASE_ : Union[str, Any] = model_shortcut_name elif only_convert_finetuned_models: print(F' Skipping not finetuned checkpoint {model_shortcut_name}' ) continue print( F' Converting checkpoint {i}/{len(lowerCamelCase_ )}: {model_shortcut_name} - model_type {model_type}' ) print('-' * 1_00 ) if config_shortcut_name in aws_config_map: SCREAMING_SNAKE_CASE_ : Optional[Any] = cached_file(lowerCamelCase_ , lowerCamelCase_ , force_download=not use_cached_models ) else: SCREAMING_SNAKE_CASE_ : List[str] = config_shortcut_name if model_shortcut_name in aws_model_maps: SCREAMING_SNAKE_CASE_ : Dict = cached_file(lowerCamelCase_ , lowerCamelCase_ , force_download=not use_cached_models ) else: SCREAMING_SNAKE_CASE_ : Any = model_shortcut_name if os.path.isfile(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Tuple = 'converted_model' convert_pt_checkpoint_to_tf( model_type=lowerCamelCase_ , pytorch_checkpoint_path=lowerCamelCase_ , config_file=lowerCamelCase_ , tf_dump_path=os.path.join(lowerCamelCase_ , model_shortcut_name + '-tf_model.h5' ) , compare_with_pt_model=lowerCamelCase_ , ) if remove_cached_files: os.remove(lowerCamelCase_ ) os.remove(lowerCamelCase_ ) if __name__ == "__main__": UpperCamelCase__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_dump_path''', default=None, type=str, required=True, help='''Path to the output Tensorflow dump file.''' ) parser.add_argument( '''--model_type''', default=None, type=str, help=( F"""Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and """ '''convert all the models from AWS.''' ), ) parser.add_argument( '''--pytorch_checkpoint_path''', default=None, type=str, help=( '''Path to the PyTorch checkpoint path or shortcut name to download from AWS. ''' '''If not given, will download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--config_file''', default=None, type=str, help=( '''The config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture. If not given and ''' '''--pytorch_checkpoint_path is not given or is a shortcut name ''' '''use the configuration associated to the shortcut name on the AWS''' ), ) parser.add_argument( '''--compare_with_pt_model''', action='''store_true''', help='''Compare Tensorflow and PyTorch model predictions.''' ) parser.add_argument( '''--use_cached_models''', action='''store_true''', help='''Use cached models if possible instead of updating to latest checkpoint versions.''', ) parser.add_argument( '''--remove_cached_files''', action='''store_true''', help='''Remove pytorch models after conversion (save memory when converting in batches).''', ) parser.add_argument('''--only_convert_finetuned_models''', action='''store_true''', help='''Only convert finetuned models.''') UpperCamelCase__ : str = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
105
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class a_ ( a_ ): '''simple docstring''' __a: jnp.ndarray __a: jnp.ndarray class a_ ( nn.Module ): '''simple docstring''' __a: int __a: Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) __a: jnp.dtype = jnp.floataa def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCAmelCase_ = [] for i in range(len(self.block_out_channels ) - 1 ): lowerCAmelCase_ = self.block_out_channels[i] lowerCAmelCase_ = self.block_out_channels[i + 1] lowerCAmelCase_ = nn.Conv( lowercase_ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(lowercase_ ) lowerCAmelCase_ = nn.Conv( lowercase_ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(lowercase_ ) lowerCAmelCase_ = blocks lowerCAmelCase_ = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , lowercase_ ) -> int: '''simple docstring''' lowerCAmelCase_ = self.conv_in(lowercase_ ) lowerCAmelCase_ = nn.silu(lowercase_ ) for block in self.blocks: lowerCAmelCase_ = block(lowercase_ ) lowerCAmelCase_ = nn.silu(lowercase_ ) lowerCAmelCase_ = self.conv_out(lowercase_ ) return embedding @flax_register_to_config class a_ ( nn.Module , a_ , a_ ): '''simple docstring''' __a: int = 3_2 __a: int = 4 __a: Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __a: Union[bool, Tuple[bool]] = False __a: Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) __a: int = 2 __a: Union[int, Tuple[int]] = 8 __a: Optional[Union[int, Tuple[int]]] = None __a: int = 1_2_8_0 __a: float = 0.0 __a: bool = False __a: jnp.dtype = jnp.floataa __a: bool = True __a: int = 0 __a: str = "rgb" __a: Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) def _lowercase ( self , lowercase_ ) -> FrozenDict: '''simple docstring''' lowerCAmelCase_ = (1, self.in_channels, self.sample_size, self.sample_size) lowerCAmelCase_ = jnp.zeros(lowercase_ , dtype=jnp.floataa ) lowerCAmelCase_ = jnp.ones((1,) , dtype=jnp.intaa ) lowerCAmelCase_ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowerCAmelCase_ = (1, 3, self.sample_size * 8, self.sample_size * 8) lowerCAmelCase_ = jnp.zeros(lowercase_ , dtype=jnp.floataa ) lowerCAmelCase_ , lowerCAmelCase_ = jax.random.split(lowercase_ ) lowerCAmelCase_ = {'params': params_rng, 'dropout': dropout_rng} return self.init(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )["params"] def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = self.block_out_channels lowerCAmelCase_ = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCAmelCase_ = self.num_attention_heads or self.attention_head_dim # input lowerCAmelCase_ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCAmelCase_ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowerCAmelCase_ = FlaxTimestepEmbedding(lowercase_ , dtype=self.dtype ) lowerCAmelCase_ = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) lowerCAmelCase_ = self.only_cross_attention if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase_ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase_ = (num_attention_heads,) * len(self.down_block_types ) # down lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = block_out_channels[0] lowerCAmelCase_ = nn.Conv( lowercase_ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowercase_ ) for i, down_block_type in enumerate(self.down_block_types ): lowerCAmelCase_ = output_channel lowerCAmelCase_ = block_out_channels[i] lowerCAmelCase_ = i == len(lowercase_ ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCAmelCase_ = FlaxCrossAttnDownBlockaD( in_channels=lowercase_ , out_channels=lowercase_ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: lowerCAmelCase_ = FlaxDownBlockaD( in_channels=lowercase_ , out_channels=lowercase_ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(lowercase_ ) for _ in range(self.layers_per_block ): lowerCAmelCase_ = nn.Conv( lowercase_ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowercase_ ) if not is_final_block: lowerCAmelCase_ = nn.Conv( lowercase_ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowercase_ ) lowerCAmelCase_ = down_blocks lowerCAmelCase_ = controlnet_down_blocks # mid lowerCAmelCase_ = block_out_channels[-1] lowerCAmelCase_ = FlaxUNetMidBlockaDCrossAttn( in_channels=lowercase_ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) lowerCAmelCase_ = nn.Conv( lowercase_ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = 1.0 , lowercase_ = True , lowercase_ = False , ) -> Union[FlaxControlNetOutput, Tuple]: '''simple docstring''' lowerCAmelCase_ = self.controlnet_conditioning_channel_order if channel_order == "bgr": lowerCAmelCase_ = jnp.flip(lowercase_ , axis=1 ) # 1. time if not isinstance(lowercase_ , jnp.ndarray ): lowerCAmelCase_ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(lowercase_ , jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCAmelCase_ = timesteps.astype(dtype=jnp.floataa ) lowerCAmelCase_ = jnp.expand_dims(lowercase_ , 0 ) lowerCAmelCase_ = self.time_proj(lowercase_ ) lowerCAmelCase_ = self.time_embedding(lowercase_ ) # 2. pre-process lowerCAmelCase_ = jnp.transpose(lowercase_ , (0, 2, 3, 1) ) lowerCAmelCase_ = self.conv_in(lowercase_ ) lowerCAmelCase_ = jnp.transpose(lowercase_ , (0, 2, 3, 1) ) lowerCAmelCase_ = self.controlnet_cond_embedding(lowercase_ ) sample += controlnet_cond # 3. down lowerCAmelCase_ = (sample,) for down_block in self.down_blocks: if isinstance(lowercase_ , lowercase_ ): lowerCAmelCase_ , lowerCAmelCase_ = down_block(lowercase_ , lowercase_ , lowercase_ , deterministic=not train ) else: lowerCAmelCase_ , lowerCAmelCase_ = down_block(lowercase_ , lowercase_ , deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowerCAmelCase_ = self.mid_block(lowercase_ , lowercase_ , lowercase_ , deterministic=not train ) # 5. contronet blocks lowerCAmelCase_ = () for down_block_res_sample, controlnet_block in zip(lowercase_ , self.controlnet_down_blocks ): lowerCAmelCase_ = controlnet_block(lowercase_ ) controlnet_down_block_res_samples += (down_block_res_sample,) lowerCAmelCase_ = controlnet_down_block_res_samples lowerCAmelCase_ = self.controlnet_mid_block(lowercase_ ) # 6. scaling lowerCAmelCase_ = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowercase_ , mid_block_res_sample=lowercase_ )
318
0
'''simple docstring''' def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if mass < 0: raise ValueError('''The mass of a body cannot be negative''' ) return 0.5 * mass * abs(lowerCAmelCase_ ) * abs(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
47
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = 0 if start < end: _snake_case : List[Any] = randint(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Any = a[end] _snake_case : List[str] = a[pivot] _snake_case : Optional[int] = temp _snake_case , _snake_case : List[Any] = _in_place_partition(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) count += _in_place_quick_sort(lowerCAmelCase_ , lowerCAmelCase_ , p - 1 ) count += _in_place_quick_sort(lowerCAmelCase_ , p + 1 , lowerCAmelCase_ ) return count def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = 0 _snake_case : Optional[int] = randint(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : Tuple = a[end] _snake_case : Optional[Any] = a[pivot] _snake_case : Union[str, Any] = temp _snake_case : Union[str, Any] = start - 1 for index in range(lowerCAmelCase_ , lowerCAmelCase_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _snake_case : Optional[int] = new_pivot_index + 1 _snake_case : Optional[Any] = a[new_pivot_index] _snake_case : Tuple = a[index] _snake_case : str = temp _snake_case : Any = a[new_pivot_index + 1] _snake_case : str = a[end] _snake_case : Optional[int] = temp return new_pivot_index + 1, count UpperCAmelCase : Dict = TemporaryFile() UpperCAmelCase : Dict = 1_0_0 # 1000 elements are to be sorted UpperCAmelCase, UpperCAmelCase : str = 0, 1 # mean and standard deviation UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array UpperCAmelCase : int = np.load(outfile) UpperCAmelCase : Optional[int] = len(M) - 1 UpperCAmelCase : str = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
47
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __snake_case :List[str] =logging.get_logger(__name__) __snake_case :Any ={ 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } __snake_case :Any =[ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def lowerCamelCase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] ) -> Optional[Any]: '''simple docstring''' for attribute in key.split('.' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models A = 'lm_head' A = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: A = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: A = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": A = value elif weight_type == "weight_g": A = value elif weight_type == "weight_v": A = value elif weight_type == "bias": A = value else: A = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowerCamelCase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any ) -> str: '''simple docstring''' A = [] A = fairseq_model.state_dict() A = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): A = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == 'group' , ) A = True else: for key, mapped_key in MAPPING.items(): A = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: A = True if "*" in mapped_key: A = name.split(lowerCAmelCase__ )[0].split('.' )[-2] A = mapped_key.replace('*' , lowerCAmelCase__ ) if "weight_g" in name: A = 'weight_g' elif "weight_v" in name: A = 'weight_v' elif "bias" in name: A = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj A = 'weight' else: A = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowerCamelCase_ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int ) -> Optional[int]: '''simple docstring''' A = full_name.split('conv_layers.' )[-1] A = name.split('.' ) A = int(items[0] ) A = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) A = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) A = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) A = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) A = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def lowerCamelCase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : str=True ) -> str: '''simple docstring''' if config_path is not None: A = UniSpeechConfig.from_pretrained(lowerCAmelCase__ ) else: A = UniSpeechConfig() if is_finetuned: if dict_path: A = Dictionary.load_from_json(lowerCAmelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A = target_dict.pad_index A = target_dict.bos_index A = target_dict.eos_index A = len(target_dict.symbols ) A = os.path.join(lowerCAmelCase__ , 'vocab.json' ) if not os.path.isdir(lowerCAmelCase__ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCAmelCase__ ) ) return os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) A = target_dict.indices # fairseq has the <pad> and <s> switched A = 42 A = 43 with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) A = WavaVecaPhonemeCTCTokenizer( lowerCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCAmelCase__ , ) A = True if config.feat_extract_norm == 'layer' else False A = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) A = WavaVecaProcessor(feature_extractor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) A = UniSpeechForCTC(lowerCAmelCase__ ) else: A = UniSpeechForPreTraining(lowerCAmelCase__ ) if is_finetuned: A , A , A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path} ) else: A , A , A = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) A = model[0].eval() recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) hf_unispeech.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __snake_case :Any =argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) __snake_case :Optional[Any] =parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
106
from bisect import bisect from itertools import accumulate def lowerCamelCase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' A = sorted(zip(lowerCAmelCase__ , lowerCAmelCase__ ) , key=lambda lowerCAmelCase__ : x[0] / x[1] , reverse=lowerCAmelCase__ ) A , A = [i[0] for i in r], [i[1] for i in r] A = list(accumulate(lowerCAmelCase__ ) ) A = bisect(lowerCAmelCase__ , lowerCAmelCase__ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
106
1
lowerCAmelCase_ = { """Pillow""": """Pillow""", """accelerate""": """accelerate>=0.11.0""", """compel""": """compel==0.1.8""", """black""": """black~=23.1""", """datasets""": """datasets""", """filelock""": """filelock""", """flax""": """flax>=0.4.1""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.13.2""", """requests-mock""": """requests-mock==1.10.0""", """importlib_metadata""": """importlib_metadata""", """invisible-watermark""": """invisible-watermark""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2""", """jaxlib""": """jaxlib>=0.1.65""", """Jinja2""": """Jinja2""", """k-diffusion""": """k-diffusion>=0.0.12""", """torchsde""": """torchsde""", """note_seq""": """note_seq""", """librosa""": """librosa""", """numpy""": """numpy""", """omegaconf""": """omegaconf""", """parameterized""": """parameterized""", """protobuf""": """protobuf>=3.20.3,<4""", """pytest""": """pytest""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """ruff""": """ruff>=0.0.241""", """safetensors""": """safetensors""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """scipy""": """scipy""", """onnx""": """onnx""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """tensorboard""": """tensorboard""", """torch""": """torch>=1.4""", """torchvision""": """torchvision""", """transformers""": """transformers>=4.25.1""", """urllib3""": """urllib3<=2.0.0""", }
704
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =VOCAB_FILES_NAMES a_ : List[str] =PRETRAINED_VOCAB_FILES_MAP a_ : str =PRETRAINED_INIT_CONFIGURATION a_ : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[Any] =RealmTokenizer def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[Any]="[UNK]" , UpperCamelCase : Any="[SEP]" , UpperCamelCase : Optional[Any]="[PAD]" , UpperCamelCase : Optional[int]="[CLS]" , UpperCamelCase : Optional[Any]="[MASK]" , UpperCamelCase : Dict=True , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : int = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : List[str] = do_lower_case _snake_case : List[Any] = strip_accents _snake_case : Dict = tokenize_chinese_chars _snake_case : Any = normalizer_class(**UpperCamelCase ) _snake_case : Optional[int] = do_lower_case def UpperCamelCase_ ( self : Dict , UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = PaddingStrategy.MAX_LENGTH _snake_case : Any = text _snake_case : List[str] = kwargs.pop('text_pair' , UpperCamelCase ) _snake_case : int = kwargs.pop('return_tensors' , UpperCamelCase ) _snake_case : Optional[int] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCamelCase ): if batch_text_pair is not None: _snake_case : List[Any] = batch_text_pair[idx] else: _snake_case : Optional[Any] = None _snake_case : Optional[int] = super().__call__(UpperCamelCase , UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) _snake_case : str = encoded_candidates.get('input_ids' ) _snake_case : Tuple = encoded_candidates.get('attention_mask' ) _snake_case : List[str] = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCamelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCamelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCamelCase ) _snake_case : str = {key: item for key, item in output_data.items() if len(UpperCamelCase ) != 0} return BatchEncoding(UpperCamelCase , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any]=None ): '''simple docstring''' _snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : int = [self.sep_token_id] _snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : Optional[Any] = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __lowerCamelCase ( ) -> Dict: """simple docstring""" A__ = ArgumentParser( description=( """PyTorch TPU distributed training launch """ """helper utility that will spawn up """ """multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=__a , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=__a , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=__a ) return parser.parse_args() def __lowerCamelCase ( ) -> Tuple: """simple docstring""" A__ = parse_args() # Import training_script as a module. A__ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) A__ = script_fpath.stem A__ = importlib.import_module(__a ) # Patch sys.argv A__ = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
176
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A : Optional[int] = { '''configuration_pix2struct''': [ '''PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Pix2StructConfig''', '''Pix2StructTextConfig''', '''Pix2StructVisionConfig''', ], '''processing_pix2struct''': ['''Pix2StructProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = ['''Pix2StructImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ '''PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Pix2StructPreTrainedModel''', '''Pix2StructForConditionalGeneration''', '''Pix2StructVisionModel''', '''Pix2StructTextModel''', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys A : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
176
1
'''simple docstring''' from math import factorial def SCREAMING_SNAKE_CASE_ ( snake_case_ : int = 20 ) -> int: SCREAMING_SNAKE_CASE : Any = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... SCREAMING_SNAKE_CASE : Optional[int] = n // 2 return int(factorial(snake_case_ ) / (factorial(snake_case_ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: __UpperCAmelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
220
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( snake_case_ : list ) -> bool: if not isinstance(snake_case_ , snake_case_ ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(snake_case_ ) == 0: raise ValueError('Input list must be a non empty list' ) if len(snake_case_ ) == 1: return True SCREAMING_SNAKE_CASE : Any = series[1] - series[0] for index in range(len(snake_case_ ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def SCREAMING_SNAKE_CASE_ ( snake_case_ : list ) -> float: if not isinstance(snake_case_ , snake_case_ ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(snake_case_ ) == 0: raise ValueError('Input list must be a non empty list' ) SCREAMING_SNAKE_CASE : List[str] = 0 for val in series: answer += val return answer / len(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
220
1
def _lowerCAmelCase ( __magic_name__ :str , __magic_name__ :str ): UpperCAmelCase_ = len(__magic_name__ ) UpperCAmelCase_ = [] for i in range(len(__magic_name__ ) - pat_len + 1 ): UpperCAmelCase_ = True for j in range(__magic_name__ ): if s[i + j] != pattern[j]: UpperCAmelCase_ = False break if match_found: position.append(__magic_name__ ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
121
def _lowerCAmelCase ( __magic_name__ :str ): UpperCAmelCase_ = '''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def _lowerCAmelCase ( __magic_name__ :str ): UpperCAmelCase_ = [chr(i + 6_5 ) for i in range(2_6 )] # Remove duplicate characters from key UpperCAmelCase_ = remove_duplicates(key.upper() ) UpperCAmelCase_ = len(__magic_name__ ) # First fill cipher with key characters UpperCAmelCase_ = {alphabet[i]: char for i, char in enumerate(__magic_name__ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(__magic_name__ ) , 2_6 ): UpperCAmelCase_ = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 UpperCAmelCase_ = alphabet[i - offset] UpperCAmelCase_ = char return cipher_alphabet def _lowerCAmelCase ( __magic_name__ :str , __magic_name__ :dict[str, str] ): return "".join(cipher_map.get(__magic_name__ , __magic_name__ ) for ch in message.upper() ) def _lowerCAmelCase ( __magic_name__ :str , __magic_name__ :dict[str, str] ): UpperCAmelCase_ = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(__magic_name__ , __magic_name__ ) for ch in message.upper() ) def _lowerCAmelCase ( ): UpperCAmelCase_ = input('''Enter message to encode or decode: ''' ).strip() UpperCAmelCase_ = input('''Enter keyword: ''' ).strip() UpperCAmelCase_ = input('''Encipher or decipher? E/D:''' ).strip()[0].lower() try: UpperCAmelCase_ = {'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError('''invalid input option''' ) UpperCAmelCase_ = create_cipher_map(__magic_name__ ) print(func(__magic_name__ , __magic_name__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
121
1
"""simple docstring""" import os def _SCREAMING_SNAKE_CASE ( _lowercase : List[Any] ): '''simple docstring''' a : List[str] = len(grid[0] ) a : Union[str, Any] = len(_lowercase ) a : str = 0 a : List[str] = 0 a : List[Any] = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(_lowercase ): for j in range(n_rows - 3 ): a : Tuple = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] a : Dict = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: a : int = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: a : int = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) a : List[Any] = max( _lowercase , _lowercase , _lowercase , _lowercase ) if max_product > largest: a : Any = max_product return largest def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' a : List[str] = [] with open(os.path.dirname(_lowercase ) + "/grid.txt" ) as file: for line in file: grid.append(line.strip("\n" ).split(" " ) ) a : Dict = [[int(_lowercase ) for i in grid[j]] for j in range(len(_lowercase ) )] return largest_product(_lowercase ) if __name__ == "__main__": print(solution())
713
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : int = 200 ) ->int: '''simple docstring''' a : Dict = [1, 2, 5, 10, 20, 50, 100, 200] a : Optional[Any] = [0] * (pence + 1) a : List[Any] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(_lowercase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
31
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class UpperCAmelCase_ ( __a): lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = None class UpperCAmelCase_ ( __a , __a): lowerCamelCase__ = 2 @register_to_config def __init__( self, __a = 0.02, __a = 100, __a = 1.007, __a = 80, __a = 0.05, __a = 50, ): '''simple docstring''' _lowerCAmelCase : Dict = sigma_max # setable values _lowerCAmelCase : List[Any] = None _lowerCAmelCase : int = None _lowerCAmelCase : Any = None # sigma(t_i) def snake_case__ ( self, __a, __a = None): '''simple docstring''' return sample def snake_case__ ( self, __a, __a = None): '''simple docstring''' _lowerCAmelCase : Dict = num_inference_steps _lowerCAmelCase : List[Any] = np.arange(0, self.num_inference_steps)[::-1].copy() _lowerCAmelCase : List[str] = torch.from_numpy(lowercase_).to(lowercase_) _lowerCAmelCase : Optional[Any] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] _lowerCAmelCase : Dict = torch.tensor(lowercase_, dtype=torch.floataa, device=lowercase_) def snake_case__ ( self, __a, __a, __a = None): '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: _lowerCAmelCase : str = min(self.config.s_churn / self.num_inference_steps, 2**0.5 - 1) else: _lowerCAmelCase : Tuple = 0 # sample eps ~ N(0, S_noise^2 * I) _lowerCAmelCase : Optional[int] = self.config.s_noise * randn_tensor(sample.shape, generator=lowercase_).to(sample.device) _lowerCAmelCase : List[str] = sigma + gamma * sigma _lowerCAmelCase : str = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def snake_case__ ( self, __a, __a, __a, __a, __a = True, ): '''simple docstring''' _lowerCAmelCase : Any = sample_hat + sigma_hat * model_output _lowerCAmelCase : Tuple = (sample_hat - pred_original_sample) / sigma_hat _lowerCAmelCase : Union[str, Any] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowercase_, derivative=lowercase_, pred_original_sample=lowercase_) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a = True, ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = sample_prev + sigma_prev * model_output _lowerCAmelCase : Any = (sample_prev - pred_original_sample) / sigma_prev _lowerCAmelCase : List[str] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowercase_, derivative=lowercase_, pred_original_sample=lowercase_) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' raise NotImplementedError()
500
'''simple docstring''' import math def A_ ( SCREAMING_SNAKE_CASE_ ) ->int: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase_ = f"""Input value of [number={number}] must be an integer""" raise TypeError(SCREAMING_SNAKE_CASE_ ) if number < 1: lowercase_ = f"""Input value of [number={number}] must be > 0""" raise ValueError(SCREAMING_SNAKE_CASE_ ) elif number == 1: return 3 elif number == 2: return 5 else: lowercase_ = int(math.log(number // 3 , 2 ) ) + 2 lowercase_ = [3, 5] lowercase_ = 2 lowercase_ = 3 for block in range(1 , SCREAMING_SNAKE_CASE_ ): for _ in range(SCREAMING_SNAKE_CASE_ ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): __snake_case = 0 try: __snake_case = proth(number) except ValueError: print(f'''ValueError: there is no {number}th Proth number''') continue print(f'''The {number}th Proth number: {value}''')
451
0
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowerCAmelCase_ : Union[str, Any] = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class SCREAMING_SNAKE_CASE__ ( unittest.TestCase , __lowerCamelCase ): def __UpperCAmelCase ( self : Union[str, Any]) -> int: lowercase_ = load_tool("text-question-answering") self.tool.setup() lowercase_ = load_tool("text-question-answering" , remote=__lowerCAmelCase) def __UpperCAmelCase ( self : Dict) -> int: lowercase_ = self.tool(__lowerCAmelCase , "What did Hugging Face do in April 2021?") self.assertEqual(__lowerCAmelCase , "launched the BigScience Research Workshop") def __UpperCAmelCase ( self : int) -> Dict: lowercase_ = self.remote_tool(__lowerCAmelCase , "What did Hugging Face do in April 2021?") self.assertEqual(__lowerCAmelCase , "launched the BigScience Research Workshop") def __UpperCAmelCase ( self : Optional[int]) -> int: lowercase_ = self.tool(text=__lowerCAmelCase , question="What did Hugging Face do in April 2021?") self.assertEqual(__lowerCAmelCase , "launched the BigScience Research Workshop") def __UpperCAmelCase ( self : List[Any]) -> str: lowercase_ = self.remote_tool(text=__lowerCAmelCase , question="What did Hugging Face do in April 2021?") self.assertEqual(__lowerCAmelCase , "launched the BigScience Research Workshop")
714
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase_ : Any = logging.get_logger(__name__) class lowercase ( __lowerCamelCase ): lowerCamelCase_ =['pixel_values'] def __init__( self : Optional[int] , __lowerCAmelCase : bool = True , __lowerCAmelCase : int = 32 , __lowerCAmelCase : List[str]=PILImageResampling.BILINEAR , __lowerCAmelCase : bool = True , **__lowerCAmelCase : Union[str, Any] , ) -> None: lowercase_ = do_resize lowercase_ = do_rescale lowercase_ = size_divisor lowercase_ = resample super().__init__(**__lowerCAmelCase) def __UpperCAmelCase ( self : List[str] , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[ChannelDimension] = None , **__lowerCAmelCase : Any) -> np.ndarray: lowercase_ , lowercase_ = get_image_size(__lowerCAmelCase) # Rounds the height and width down to the closest multiple of size_divisor lowercase_ = height // size_divisor * size_divisor lowercase_ = width // size_divisor * size_divisor lowercase_ = resize(__lowerCAmelCase , (new_h, new_w) , resample=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase) return image def __UpperCAmelCase ( self : str , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : float , __lowerCAmelCase : Optional[ChannelDimension] = None , **__lowerCAmelCase : int) -> np.ndarray: return rescale(image=__lowerCAmelCase , scale=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase) def __UpperCAmelCase ( self : Optional[Any] , __lowerCAmelCase : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : str=None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[Union[TensorType, str]] = None , __lowerCAmelCase : ChannelDimension = ChannelDimension.FIRST , **__lowerCAmelCase : List[str] , ) -> BatchFeature: lowercase_ = do_resize if do_resize is not None else self.do_resize lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = size_divisor if size_divisor is not None else self.size_divisor lowercase_ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("size_divisor is required for resizing") lowercase_ = make_list_of_images(__lowerCAmelCase) if not valid_images(__lowerCAmelCase): raise ValueError("Invalid image(s)") # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(__lowerCAmelCase) for img in images] if do_resize: lowercase_ = [self.resize(__lowerCAmelCase , size_divisor=__lowerCAmelCase , resample=__lowerCAmelCase) for image in images] if do_rescale: lowercase_ = [self.rescale(__lowerCAmelCase , scale=1 / 255) for image in images] lowercase_ = [to_channel_dimension_format(__lowerCAmelCase , __lowerCAmelCase) for image in images] lowercase_ = {"pixel_values": images} return BatchFeature(data=__lowerCAmelCase , tensor_type=__lowerCAmelCase)
461
0
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = None , **_lowerCAmelCase , ): super().__init__( _lowerCAmelCase , split=_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase , streaming=_lowerCAmelCase , num_proc=_lowerCAmelCase , **_lowerCAmelCase , ) _lowercase : Dict = path_or_paths if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else {self.split: path_or_paths} _lowercase : Tuple = Text( cache_dir=_lowerCAmelCase , data_files=_lowerCAmelCase , features=_lowerCAmelCase , **_lowerCAmelCase , ) def __a ( self ): # Build iterable dataset if self.streaming: _lowercase : List[Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _lowercase : Any = None _lowercase : Optional[int] = None _lowercase : Union[str, Any] = None _lowercase : str = None self.builder.download_and_prepare( download_config=_lowerCAmelCase , download_mode=_lowerCAmelCase , verification_mode=_lowerCAmelCase , base_path=_lowerCAmelCase , num_proc=self.num_proc , ) _lowercase : Dict = self.builder.as_dataset( split=self.split , verification_mode=_lowerCAmelCase , in_memory=self.keep_in_memory ) return dataset
66
'''simple docstring''' class UpperCAmelCase : """simple docstring""" def __init__( self : Tuple ) -> List[Any]: _UpperCamelCase ='''''' _UpperCamelCase ='''''' _UpperCamelCase =[] def UpperCamelCase__ ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> int: if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: _UpperCamelCase =self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: _UpperCamelCase =self.__min_dist_top_down_dp(UpperCamelCase__ , n - 1 ) _UpperCamelCase =self.__min_dist_top_down_dp(m - 1 , UpperCamelCase__ ) _UpperCamelCase =self.__min_dist_top_down_dp(m - 1 , n - 1 ) _UpperCamelCase =1 + min(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self.dp[m][n] def UpperCamelCase__ ( self : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : str ) -> int: _UpperCamelCase =worda _UpperCamelCase =worda _UpperCamelCase =[[-1 for _ in range(len(UpperCamelCase__ ) )] for _ in range(len(UpperCamelCase__ ) )] return self.__min_dist_top_down_dp(len(UpperCamelCase__ ) - 1 , len(UpperCamelCase__ ) - 1 ) def UpperCamelCase__ ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : str ) -> int: _UpperCamelCase =worda _UpperCamelCase =worda _UpperCamelCase =len(UpperCamelCase__ ) _UpperCamelCase =len(UpperCamelCase__ ) _UpperCamelCase =[[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty _UpperCamelCase =j elif j == 0: # second string is empty _UpperCamelCase =i elif worda[i - 1] == worda[j - 1]: # last characters are equal _UpperCamelCase =self.dp[i - 1][j - 1] else: _UpperCamelCase =self.dp[i][j - 1] _UpperCamelCase =self.dp[i - 1][j] _UpperCamelCase =self.dp[i - 1][j - 1] _UpperCamelCase =1 + min(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self.dp[m][n] if __name__ == "__main__": __lowerCamelCase : int = EditDistance() print('****************** Testing Edit Distance DP Algorithm ******************') print() __lowerCamelCase : Optional[int] = input('Enter the first string: ').strip() __lowerCamelCase : Optional[int] = input('Enter the second string: ').strip() print() print(F"""The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}""") print(F"""The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}""") print() print('*************** End of Testing Edit Distance DP Algorithm ***************')
404
0
def __UpperCAmelCase ( snake_case_ : int ): '''simple docstring''' return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def __UpperCAmelCase ( snake_case_ : int ): '''simple docstring''' UpperCAmelCase: str = 0 UpperCAmelCase: str = number while duplicate > 0: UpperCAmelCase , UpperCAmelCase: Any = divmod(snake_case_ , 1_0 ) fact_sum += factorial(snake_case_ ) return fact_sum == number if __name__ == "__main__": print('Program to check whether a number is a Krisnamurthy Number or not.') snake_case_ : List[str] = int(input('Enter number: ').strip()) print( f"""{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number.""" )
166
def __UpperCAmelCase ( snake_case_ : int = 6_0_0_8_5_1_4_7_5_1_4_3 ): '''simple docstring''' try: UpperCAmelCase: Optional[int] = int(snake_case_ ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) UpperCAmelCase: List[Any] = 2 UpperCAmelCase: Any = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 UpperCAmelCase: Tuple = i while n % i == 0: UpperCAmelCase: Union[str, Any] = n // i i += 1 return int(snake_case_ ) if __name__ == "__main__": print(f"""{solution() = }""")
166
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer A__ : str = logging.get_logger(__name__) A__ : str = {"""vocab_file""": """vocab.txt"""} A__ : Union[str, Any] = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } A__ : Tuple = { """YituTech/conv-bert-base""": 512, """YituTech/conv-bert-medium-small""": 512, """YituTech/conv-bert-small""": 512, } A__ : Optional[Any] = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Any = VOCAB_FILES_NAMES lowerCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Dict = PRETRAINED_INIT_CONFIGURATION lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : List[str] = ConvBertTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> Tuple: super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or normalizer_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , SCREAMING_SNAKE_CASE_ ) != tokenize_chinese_chars ): __lowerCamelCase : Optional[Any] = getattr(SCREAMING_SNAKE_CASE_ , normalizer_state.pop('type' ) ) __lowerCamelCase : List[str] = do_lower_case __lowerCamelCase : Union[str, Any] = strip_accents __lowerCamelCase : Any = tokenize_chinese_chars __lowerCamelCase : Any = normalizer_class(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = do_lower_case def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Dict: __lowerCamelCase : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: __lowerCamelCase : Any = [self.sep_token_id] __lowerCamelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: __lowerCamelCase : List[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ )
13
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys A__ : List[str] = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
13
1
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets lowerCAmelCase__ : Optional[Any] = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' lowerCAmelCase__ : Optional[Any] = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' lowerCAmelCase__ : Optional[int] = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def UpperCamelCase__ ( A__ , A__ ) -> List[str]: return float((preds == labels).mean() ) def UpperCamelCase__ ( A__ , A__ ) -> Union[str, Any]: snake_case__ : Any = simple_accuracy(A__ , A__ ) snake_case__ : int = float(fa_score(y_true=A__ , y_pred=A__ ) ) return { "accuracy": acc, "f1": fa, } def UpperCamelCase__ ( A__ , A__ ) -> Optional[int]: snake_case__ : List[str] = float(pearsonr(A__ , A__ )[0] ) snake_case__ : Tuple = float(spearmanr(A__ , A__ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def __a ( self ) -> List[str]: '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def __a ( self , __UpperCamelCase , __UpperCamelCase ) -> str: '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(__UpperCamelCase , __UpperCamelCase )} elif self.config_name == "stsb": return pearson_and_spearman(__UpperCamelCase , __UpperCamelCase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(__UpperCamelCase , __UpperCamelCase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(__UpperCamelCase , __UpperCamelCase )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
699
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ : Dict = logging.get_logger(__name__) lowerCAmelCase__ : int = { '''sail/poolformer_s12''': '''https://huggingface.co/sail/poolformer_s12/resolve/main/config.json''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class __snake_case ( _lowerCamelCase ): __lowerCamelCase = """poolformer""" def __init__( self , __UpperCamelCase=3 , __UpperCamelCase=16 , __UpperCamelCase=16 , __UpperCamelCase=3 , __UpperCamelCase=4.0 , __UpperCamelCase=[2, 2, 6, 2] , __UpperCamelCase=[64, 128, 320, 512] , __UpperCamelCase=[7, 3, 3, 3] , __UpperCamelCase=[4, 2, 2, 2] , __UpperCamelCase=[2, 1, 1, 1] , __UpperCamelCase=4 , __UpperCamelCase=0.0 , __UpperCamelCase="gelu" , __UpperCamelCase=True , __UpperCamelCase=1E-5 , __UpperCamelCase=0.0_2 , **__UpperCamelCase , ) -> Any: '''simple docstring''' snake_case__ : List[str] = num_channels snake_case__ : Dict = patch_size snake_case__ : Optional[int] = stride snake_case__ : str = padding snake_case__ : List[str] = pool_size snake_case__ : List[Any] = hidden_sizes snake_case__ : List[Any] = mlp_ratio snake_case__ : Union[str, Any] = depths snake_case__ : Dict = patch_sizes snake_case__ : Dict = strides snake_case__ : Dict = num_encoder_blocks snake_case__ : Union[str, Any] = drop_path_rate snake_case__ : List[str] = hidden_act snake_case__ : Optional[Any] = use_layer_scale snake_case__ : int = layer_scale_init_value snake_case__ : Dict = initializer_range super().__init__(**__UpperCamelCase ) class __snake_case ( _lowerCamelCase ): __lowerCamelCase = version.parse("""1.11""" ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __a ( self ) -> float: '''simple docstring''' return 2E-3
699
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int=13 , lowerCAmelCase__ : Any=3 , lowerCAmelCase__ : Optional[Any]=224 , lowerCAmelCase__ : str=30 , lowerCAmelCase__ : int=400 , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , lowerCAmelCase__ : Optional[Any]=[0.5, 0.5, 0.5] , ) -> str: '''simple docstring''' _UpperCamelCase = size if size is not None else {'''height''': 18, '''width''': 18} _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = num_channels _UpperCamelCase = image_size _UpperCamelCase = min_resolution _UpperCamelCase = max_resolution _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = do_normalize _UpperCamelCase = image_mean _UpperCamelCase = image_std def snake_case__ ( self : Any ) -> str: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Union[str, Any] = ViTImageProcessor if is_vision_available() else None def snake_case__ ( self : Optional[int] ) -> int: '''simple docstring''' _UpperCamelCase = EfficientFormerImageProcessorTester(self ) @property def snake_case__ ( self : Dict ) -> Any: '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def snake_case__ ( self : Dict ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) ) def snake_case__ ( self : Tuple ) -> List[Any]: '''simple docstring''' pass def snake_case__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCamelCase = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processor(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def snake_case__ ( self : str ) -> str: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input _UpperCamelCase = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processor(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def snake_case__ ( self : int ) -> Dict: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCamelCase = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processor(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , )
98
def UpperCAmelCase__ ( __magic_name__ : int = 1_00 ): '''simple docstring''' lowerCAmelCase : Dict = set() lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : List[Any] = n + 1 # maximum limit for a in range(2 , __magic_name__ ): for b in range(2 , __magic_name__ ): lowerCAmelCase : Tuple = a**b # calculates the current power collect_powers.add(__magic_name__ ) # adds the result to the set return len(__magic_name__ ) if __name__ == "__main__": print('Number of terms ', solution(int(str(input()).strip())))
348
0
# Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union snake_case_ : Dict = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$") @total_ordering @dataclass class snake_case_ : '''simple docstring''' lowerCamelCase = 42 lowerCamelCase = None lowerCamelCase = None lowerCamelCase = None lowerCamelCase = None def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] = _str_to_version_tuple(self.version_str ) def __repr__( self : List[Any] ) -> Union[str, Any]: return F"{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}" @property def __SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: return self.major, self.minor, self.patch def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : Optional[int] ) -> Union[str, Any]: if isinstance(__magic_name__ , __magic_name__ ): return Version(__magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ): return other raise TypeError(F"{other} (type {type(__magic_name__ )}) cannot be compared to version." ) def __eq__( self : Optional[Any] , __magic_name__ : Any ) -> List[Any]: try: lowerCamelCase_ : Dict = self._validate_operand(__magic_name__ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : str , __magic_name__ : List[Any] ) -> Dict: lowerCamelCase_ : Optional[Any] = self._validate_operand(__magic_name__ ) return self.tuple < other.tuple def __hash__( self : Dict ) -> List[str]: return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Optional[int] , __magic_name__ : Any ) -> Tuple: lowerCamelCase_ : Optional[Any] = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: return self.version_str def __a ( __UpperCAmelCase : int ) -> Dict: """simple docstring""" lowerCamelCase_ : Tuple = _VERSION_REG.match(__UpperCAmelCase ) if not res: raise ValueError(f"Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits." ) return tuple(int(__UpperCAmelCase ) for v in [res.group("major" ), res.group("minor" ), res.group("patch" )] ) def __a ( __UpperCAmelCase : str ) -> int: """simple docstring""" return ".".join(str(__UpperCAmelCase ) for v in version_tuple )
253
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_ ( __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase = LayoutLMTokenizer lowerCamelCase = LayoutLMTokenizerFast lowerCamelCase = True lowerCamelCase = True def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: super().setUp() lowerCamelCase_ : int = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCamelCase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def __SCREAMING_SNAKE_CASE ( self : List[str] , **__magic_name__ : Dict ) -> List[str]: return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : List[Any] ) -> Union[str, Any]: lowerCamelCase_ : str = "UNwant\u00E9d,running" lowerCamelCase_ : List[Any] = "unwanted, running" return input_text, output_text def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: lowerCamelCase_ : Dict = self.tokenizer_class(self.vocab_file ) lowerCamelCase_ : List[Any] = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(__magic_name__ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , [7, 4, 5, 10, 8, 9] ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: pass
253
1
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Optional[int] = [ ["""attention""", """attn"""], ["""encoder_attention""", """encoder_attn"""], ["""q_lin""", """q_proj"""], ["""k_lin""", """k_proj"""], ["""v_lin""", """v_proj"""], ["""out_lin""", """out_proj"""], ["""norm_embeddings""", """layernorm_embedding"""], ["""position_embeddings""", """embed_positions"""], ["""embeddings""", """embed_tokens"""], ["""ffn.lin""", """fc"""], ] def __lowercase ( snake_case ): """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __magic_name__ :Any = k.replace(snake_case, snake_case ) if k.startswith('''encoder''' ): __magic_name__ :str = k.replace('''.attn''', '''.self_attn''' ) __magic_name__ :Dict = k.replace('''norm1''', '''self_attn_layer_norm''' ) __magic_name__ :Dict = k.replace('''norm2''', '''final_layer_norm''' ) elif k.startswith('''decoder''' ): __magic_name__ :Any = k.replace('''norm1''', '''self_attn_layer_norm''' ) __magic_name__ :Dict = k.replace('''norm2''', '''encoder_attn_layer_norm''' ) __magic_name__ :Optional[Any] = k.replace('''norm3''', '''final_layer_norm''' ) return k def __lowercase ( snake_case ): """simple docstring""" __magic_name__ :List[Any] = [ '''model.encoder.layernorm_embedding.weight''', '''model.encoder.layernorm_embedding.bias''', '''model.decoder.layernorm_embedding.weight''', '''model.decoder.layernorm_embedding.bias''', ] for k in keys: __magic_name__ :Dict = sd.pop(snake_case ) __magic_name__ :int = k.replace('''layernorm_embedding''', '''layer_norm''' ) assert new_k not in sd __magic_name__ :Optional[Any] = v SCREAMING_SNAKE_CASE__ : List[str] = ["""START"""] @torch.no_grad() def __lowercase ( snake_case, snake_case, snake_case ): """simple docstring""" __magic_name__ :Union[str, Any] = torch.load(snake_case, map_location='''cpu''' ) __magic_name__ :Tuple = model['''model'''] __magic_name__ :Dict = BlenderbotConfig.from_json_file(snake_case ) __magic_name__ :str = BlenderbotForConditionalGeneration(snake_case ) __magic_name__ :Tuple = m.model.state_dict().keys() __magic_name__ :Optional[int] = [] __magic_name__ :int = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __magic_name__ :Dict = rename_state_dict_key(snake_case ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __magic_name__ :Optional[Any] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(snake_case ) m.model.load_state_dict(snake_case, strict=snake_case ) m.half() m.save_pretrained(snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--src_path""", type=str, help="""like blenderbot-model.bin""") parser.add_argument("""--save_dir""", default="""hf_blenderbot""", type=str, help="""Where to save converted model.""") parser.add_argument( """--hf_config_json""", default="""blenderbot-3b-config.json""", type=str, help="""Path to config to use""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
0
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class lowerCamelCase_ : def __init__( self , __lowerCAmelCase , __lowerCAmelCase=1_3 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=9_9 , __lowerCAmelCase=3_2 , __lowerCAmelCase=2 , __lowerCAmelCase=4 , __lowerCAmelCase=3_7 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=1_6 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=None , ): """simple docstring""" __magic_name__ :Optional[int] = parent __magic_name__ :List[Any] = 1_3 __magic_name__ :Union[str, Any] = 7 __magic_name__ :Optional[Any] = True __magic_name__ :Tuple = True __magic_name__ :List[str] = True __magic_name__ :List[Any] = True __magic_name__ :int = 9_9 __magic_name__ :Any = 3_2 __magic_name__ :Union[str, Any] = 2 __magic_name__ :List[str] = 4 __magic_name__ :List[Any] = 3_7 __magic_name__ :Tuple = '''gelu''' __magic_name__ :Any = 0.1 __magic_name__ :str = 0.1 __magic_name__ :List[str] = 5_1_2 __magic_name__ :int = 1_6 __magic_name__ :Any = 2 __magic_name__ :List[Any] = 0.02 __magic_name__ :Optional[Any] = 3 __magic_name__ :Tuple = 4 __magic_name__ :Optional[Any] = None def A ( self ): """simple docstring""" __magic_name__ :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ :str = None if self.use_input_mask: __magic_name__ :Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ :str = None if self.use_token_type_ids: __magic_name__ :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ :Union[str, Any] = None __magic_name__ :Tuple = None __magic_name__ :str = None if self.use_labels: __magic_name__ :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ :List[Any] = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ :str = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__lowerCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :int = TFRoFormerModel(config=__lowerCAmelCase ) __magic_name__ :Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __magic_name__ :List[str] = [input_ids, input_mask] __magic_name__ :Any = model(__lowerCAmelCase ) __magic_name__ :List[str] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Dict = True __magic_name__ :List[str] = TFRoFormerForCausalLM(config=__lowerCAmelCase ) __magic_name__ :str = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __magic_name__ :Optional[Any] = model(__lowerCAmelCase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Optional[Any] = TFRoFormerForMaskedLM(config=__lowerCAmelCase ) __magic_name__ :Any = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __magic_name__ :Dict = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :int = self.num_labels __magic_name__ :str = TFRoFormerForSequenceClassification(config=__lowerCAmelCase ) __magic_name__ :Optional[int] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __magic_name__ :str = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Union[str, Any] = self.num_choices __magic_name__ :Tuple = TFRoFormerForMultipleChoice(config=__lowerCAmelCase ) __magic_name__ :int = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) __magic_name__ :Optional[Any] = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) __magic_name__ :Union[str, Any] = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) __magic_name__ :str = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } __magic_name__ :Tuple = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Optional[int] = self.num_labels __magic_name__ :Any = TFRoFormerForTokenClassification(config=__lowerCAmelCase ) __magic_name__ :str = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __magic_name__ :Dict = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :List[str] = TFRoFormerForQuestionAnswering(config=__lowerCAmelCase ) __magic_name__ :List[str] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __magic_name__ :Union[str, Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self ): """simple docstring""" __magic_name__ :Union[str, Any] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) :Union[str, Any] = config_and_inputs __magic_name__ :Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCamelCase_ ( lowerCamelCase , lowerCamelCase , unittest.TestCase ): a__ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) a__ = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) a__ = False a__ = False def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A ( self ): """simple docstring""" __magic_name__ :List[str] = TFRoFormerModelTester(self ) __magic_name__ :List[str] = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=3_7 ) def A ( self ): """simple docstring""" self.config_tester.run_common_tests() def A ( self ): """simple docstring""" __magic_name__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase ) @slow def A ( self ): """simple docstring""" __magic_name__ :Optional[Any] = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(__lowerCAmelCase ) @require_tf class lowerCamelCase_ ( unittest.TestCase ): @slow def A ( self ): """simple docstring""" __magic_name__ :int = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) __magic_name__ :Dict = tf.constant([[0, 1, 2, 3, 4, 5]] ) __magic_name__ :Optional[Any] = model(__lowerCAmelCase )[0] # TODO Replace vocab size __magic_name__ :int = 5_0_0_0_0 __magic_name__ :Tuple = [1, 6, vocab_size] self.assertEqual(output.shape , __lowerCAmelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. __magic_name__ :Any = tf.constant( [ [ [-0.12053341, -1.0264901, 0.29221946], [-1.5133783, 0.197433, 0.15190607], [-5.0135403, -3.900256, -0.84038764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCAmelCase , atol=1E-4 ) @require_tf class lowerCamelCase_ ( unittest.TestCase ): a__ = 1e-4 def A ( self ): """simple docstring""" __magic_name__ :Optional[int] = tf.constant([[4, 1_0]] ) __magic_name__ :Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) __magic_name__ :Optional[Any] = emba(input_ids.shape ) __magic_name__ :List[str] = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(__lowerCAmelCase , __lowerCAmelCase , atol=self.tolerance ) def A ( self ): """simple docstring""" __magic_name__ :Tuple = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) __magic_name__ :Union[str, Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_1_2 , embedding_dim=5_1_2 ) emba([2, 1_6, 5_1_2] ) __magic_name__ :Optional[int] = emba.weight[:3, :5] tf.debugging.assert_near(__lowerCAmelCase , __lowerCAmelCase , atol=self.tolerance ) @require_tf class lowerCamelCase_ ( unittest.TestCase ): a__ = 1e-4 def A ( self ): """simple docstring""" # 2,12,16,64 __magic_name__ :int = tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 __magic_name__ :str = -tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 __magic_name__ :int = TFRoFormerSinusoidalPositionalEmbedding(num_positions=3_2 , embedding_dim=6_4 ) __magic_name__ :List[str] = embed_positions([2, 1_6, 7_6_8] )[None, None, :, :] __magic_name__ , __magic_name__ :Union[str, Any] = TFRoFormerSelfAttention.apply_rotary_position_embeddings( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __magic_name__ :Tuple = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) __magic_name__ :List[str] = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , __lowerCAmelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , __lowerCAmelCase , atol=self.tolerance )
0
1
"""simple docstring""" import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging A: Optional[int] = logging.get_logger(__name__) def _snake_case ( UpperCamelCase : Tuple=None , UpperCamelCase : int=None ): return field(default_factory=lambda: default , metadata=UpperCamelCase ) @dataclass class SCREAMING_SNAKE_CASE__ : __lowerCAmelCase : List[str] = list_field( default=[] , metadata={ 'help': ( 'Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version' ' of all available models' ) } , ) __lowerCAmelCase : List[int] = list_field( default=[8] , metadata={'help': 'List of batch sizes for which memory and time performance will be evaluated'} ) __lowerCAmelCase : List[int] = list_field( default=[8, 32, 128, 512] , metadata={'help': 'List of sequence lengths for which memory and time performance will be evaluated'} , ) __lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={'help': 'Whether to benchmark inference of model. Inference can be disabled via --no-inference.'} , ) __lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={'help': 'Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'} , ) __lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={'help': 'Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'} ) __lowerCAmelCase : bool = field(default=UpperCAmelCase__ , metadata={'help': 'Use FP16 to accelerate inference.'} ) __lowerCAmelCase : bool = field(default=UpperCAmelCase__ , metadata={'help': 'Benchmark training of model'} ) __lowerCAmelCase : bool = field(default=UpperCAmelCase__ , metadata={'help': 'Verbose memory tracing'} ) __lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={'help': 'Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'} , ) __lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={ 'help': 'Whether to perform memory measurements. Memory measurements can be disabled via --no-memory' } , ) __lowerCAmelCase : bool = field(default=UpperCAmelCase__ , metadata={'help': 'Trace memory line by line'} ) __lowerCAmelCase : bool = field(default=UpperCAmelCase__ , metadata={'help': 'Save result to a CSV file'} ) __lowerCAmelCase : bool = field(default=UpperCAmelCase__ , metadata={'help': 'Save all print statements in a log file'} ) __lowerCAmelCase : bool = field(default=UpperCAmelCase__ , metadata={'help': 'Whether to print environment information'} ) __lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={ 'help': ( 'Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use' ' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled' ' for debugging / testing and on TPU.' ) } , ) __lowerCAmelCase : str = field( default=F"inference_time_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving time results to csv.'} , ) __lowerCAmelCase : str = field( default=F"inference_memory_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving memory results to csv.'} , ) __lowerCAmelCase : str = field( default=F"train_time_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving time results to csv for training.'} , ) __lowerCAmelCase : str = field( default=F"train_memory_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving memory results to csv for training.'} , ) __lowerCAmelCase : str = field( default=F"env_info_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving environment information.'} , ) __lowerCAmelCase : str = field( default=F"log_{round(time() )}.csv" , metadata={'help': 'Log filename used if print statements are saved in log.'} , ) __lowerCAmelCase : int = field(default=3 , metadata={'help': 'Times an experiment will be run.'} ) __lowerCAmelCase : bool = field( default=UpperCAmelCase__ , metadata={ 'help': ( 'Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain' ' model weights.' ) } , ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' warnings.warn( F"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils" """ are deprecated in general and it is advised to use external Benchmarking libraries """ """ to benchmark Transformer models.""" , _SCREAMING_SNAKE_CASE , ) def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' if len(self.models ) <= 0: raise ValueError( """Please make sure you provide at least one model name / model identifier, *e.g.* `--models""" """ bert-base-cased` or `args.models = ['bert-base-cased'].""" ) return self.models @property def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info("""Multiprocessing is currently not possible on TPU.""" ) return False else: return True
359
"""simple docstring""" import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , unittest.TestCase ): __lowerCAmelCase : List[Any] = TransfoXLTokenizer __lowerCAmelCase : Optional[int] = False __lowerCAmelCase : Optional[Any] = False def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' super().setUp() UpperCAmelCase : Optional[Any] = [ """<unk>""", """[CLS]""", """[SEP]""", """want""", """unwanted""", """wa""", """un""", """running""", """,""", """low""", """l""", ] UpperCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE ( self , **_SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' UpperCAmelCase : int = """<unk> UNwanted , running""" UpperCAmelCase : Dict = """<unk> unwanted, running""" return input_text, output_text def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : List[str] = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = tokenizer.tokenize("""<unk> UNwanted , running""" ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ["""<unk>""", """unwanted""", """,""", """running"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [0, 4, 8, 7] ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Tuple = TransfoXLTokenizer(lower_case=_SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] = TransfoXLTokenizer(lower_case=_SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : List[Any] = TransfoXLTokenizer(lower_case=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = """Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?""" UpperCAmelCase : Optional[Any] = [ """Hello""", """(""", """bracket""", """)""", """and""", """side""", """@-@""", """scrolled""", """[""", """and""", """]""", """Henry""", """'s""", """$""", """5""", """@,@""", """000""", """with""", """3""", """@.@""", """34""", """m""", """.""", """What""", """'s""", """up""", """!""", """?""", ] self.assertListEqual(tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.convert_tokens_to_string(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : List[str] = self.get_tokenizer() UpperCAmelCase : Tuple = len(_SCREAMING_SNAKE_CASE ) tokenizer.add_tokens(["""new1""", """new2"""] ) tokenizer.move_added_token("""new1""" , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("""new1""" ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , """new1""" )
359
1
def __UpperCAmelCase ( __a : str ) -> str: """simple docstring""" if not all(char in '''01''' for char in bin_string ): raise ValueError('''Non-binary value was passed to the function''' ) if not bin_string: raise ValueError('''Empty string was passed to the function''' ) _a : Union[str, Any] = '''''' while len(__a ) % 3 != 0: _a : Tuple = '''0''' + bin_string _a : int = [ bin_string[index : index + 3] for index in range(len(__a ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: _a : str = 0 for index, val in enumerate(__a ): oct_val += int(2 ** (2 - index) * int(__a ) ) oct_string += str(__a ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
14
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) def _UpperCAmelCase ( A ): '''simple docstring''' UpperCAmelCase__ =SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) UpperCAmelCase__ =MaskFormerConfig(backbone_config=A ) UpperCAmelCase__ ="huggingface/label-files" if "ade20k-full" in model_name: # this should be ok UpperCAmelCase__ =847 UpperCAmelCase__ ="maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok UpperCAmelCase__ =150 UpperCAmelCase__ ="ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok UpperCAmelCase__ =171 UpperCAmelCase__ ="maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO UpperCAmelCase__ =133 UpperCAmelCase__ ="coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok UpperCAmelCase__ =19 UpperCAmelCase__ ="cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok UpperCAmelCase__ =65 UpperCAmelCase__ ="mapillary-vistas-id2label.json" UpperCAmelCase__ =json.load(open(hf_hub_download(A , A , repo_type="dataset" ) , "r" ) ) UpperCAmelCase__ ={int(A ): v for k, v in idalabel.items()} return config def _UpperCAmelCase ( A ): '''simple docstring''' UpperCAmelCase__ =[] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def _UpperCAmelCase ( A , A , A ): '''simple docstring''' UpperCAmelCase__ =dct.pop(A ) UpperCAmelCase__ =val def _UpperCAmelCase ( A , A ): '''simple docstring''' UpperCAmelCase__ =[int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCAmelCase__ =num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCAmelCase__ =state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) UpperCAmelCase__ =state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase__ =in_proj_weight[:dim, :] UpperCAmelCase__ =in_proj_bias[: dim] UpperCAmelCase__ =in_proj_weight[ dim : dim * 2, : ] UpperCAmelCase__ =in_proj_bias[ dim : dim * 2 ] UpperCAmelCase__ =in_proj_weight[ -dim :, : ] UpperCAmelCase__ =in_proj_bias[-dim :] # fmt: on def _UpperCAmelCase ( A , A ): '''simple docstring''' UpperCAmelCase__ =config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase__ =state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) UpperCAmelCase__ =state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase__ =in_proj_weight[: hidden_size, :] UpperCAmelCase__ =in_proj_bias[:config.hidden_size] UpperCAmelCase__ =in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase__ =in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase__ =in_proj_weight[-hidden_size :, :] UpperCAmelCase__ =in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase__ =state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) UpperCAmelCase__ =state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase__ =in_proj_weight[: hidden_size, :] UpperCAmelCase__ =in_proj_bias[:config.hidden_size] UpperCAmelCase__ =in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase__ =in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase__ =in_proj_weight[-hidden_size :, :] UpperCAmelCase__ =in_proj_bias[-hidden_size :] # fmt: on def _UpperCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ ="http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase__ =Image.open(requests.get(A , stream=A ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( A , A , A , A = False ): '''simple docstring''' UpperCAmelCase__ =get_maskformer_config(A ) # load original state_dict with open(A , "rb" ) as f: UpperCAmelCase__ =pickle.load(A ) UpperCAmelCase__ =data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys UpperCAmelCase__ =create_rename_keys(A ) for src, dest in rename_keys: rename_key(A , A , A ) read_in_swin_q_k_v(A , config.backbone_config ) read_in_decoder_q_k_v(A , A ) # update to torch tensors for key, value in state_dict.items(): UpperCAmelCase__ =torch.from_numpy(A ) # load 🤗 model UpperCAmelCase__ =MaskFormerForInstanceSegmentation(A ) model.eval() for name, param in model.named_parameters(): print(A , param.shape ) UpperCAmelCase__ , UpperCAmelCase__ =model.load_state_dict(A , strict=A ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(A ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results UpperCAmelCase__ =prepare_img() if "vistas" in model_name: UpperCAmelCase__ =65 elif "cityscapes" in model_name: UpperCAmelCase__ =65535 else: UpperCAmelCase__ =255 UpperCAmelCase__ =True if "ade" in model_name else False UpperCAmelCase__ =MaskFormerImageProcessor(ignore_index=A , reduce_labels=A ) UpperCAmelCase__ =image_processor(A , return_tensors="pt" ) UpperCAmelCase__ =model(**A ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": UpperCAmelCase__ =torch.tensor( [[3.63_53, -4.47_70, -2.60_65], [0.50_81, -4.23_94, -3.53_43], [2.19_09, -5.03_53, -1.93_23]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , A , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(A ).mkdir(exist_ok=A ) model.save_pretrained(A ) image_processor.save_pretrained(A ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCamelCase_ = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
625
0
'''simple docstring''' import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class __snake_case ( a__ , a__): _lowerCAmelCase = 1 @register_to_config def __init__( self, A = 1000, A = None ): """simple docstring""" self.set_timesteps(A ) # standard deviation of the initial noise distribution lowerCamelCase : Optional[Any] = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. lowerCamelCase : Dict = 4 # running values lowerCamelCase : Optional[int] = [] def UpperCAmelCase_ ( self, A, A = None ): """simple docstring""" lowerCamelCase : Union[str, Any] = num_inference_steps lowerCamelCase : List[Any] = torch.linspace(1, 0, num_inference_steps + 1 )[:-1] lowerCamelCase : Tuple = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: lowerCamelCase : Union[str, Any] = torch.tensor(self.config.trained_betas, dtype=torch.floataa ) else: lowerCamelCase : Union[str, Any] = torch.sin(steps * math.pi / 2 ) ** 2 lowerCamelCase : List[Any] = (1.0 - self.betas**2) ** 0.5 lowerCamelCase : Union[str, Any] = (torch.atana(self.betas, self.alphas ) / math.pi * 2)[:-1] lowerCamelCase : Any = timesteps.to(A ) lowerCamelCase : List[Any] = [] def UpperCAmelCase_ ( self, A, A, A, A = True, ): """simple docstring""" if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) lowerCamelCase : int = (self.timesteps == timestep).nonzero().item() lowerCamelCase : Union[str, Any] = timestep_index + 1 lowerCamelCase : Optional[int] = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(A ) if len(self.ets ) == 1: lowerCamelCase : str = self.ets[-1] elif len(self.ets ) == 2: lowerCamelCase : List[str] = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: lowerCamelCase : Union[str, Any] = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: lowerCamelCase : str = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) lowerCamelCase : Tuple = self._get_prev_sample(A, A, A, A ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=A ) def UpperCAmelCase_ ( self, A, *A, **A ): """simple docstring""" return sample def UpperCAmelCase_ ( self, A, A, A, A ): """simple docstring""" lowerCamelCase : Optional[int] = self.alphas[timestep_index] lowerCamelCase : List[str] = self.betas[timestep_index] lowerCamelCase : Optional[int] = self.alphas[prev_timestep_index] lowerCamelCase : Optional[int] = self.betas[prev_timestep_index] lowerCamelCase : List[Any] = (sample - sigma * ets) / max(A, 1e-8 ) lowerCamelCase : int = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
449
'''simple docstring''' from __future__ import annotations A = '#' class __snake_case : def __init__( self ): """simple docstring""" lowerCamelCase : dict = {} def UpperCAmelCase_ ( self, A ): """simple docstring""" lowerCamelCase : int = self._trie for char in text: if char not in trie: lowerCamelCase : Dict = {} lowerCamelCase : Optional[int] = trie[char] lowerCamelCase : Optional[Any] = True def UpperCAmelCase_ ( self, A ): """simple docstring""" lowerCamelCase : Dict = self._trie for char in prefix: if char in trie: lowerCamelCase : int = trie[char] else: return [] return self._elements(A ) def UpperCAmelCase_ ( self, A ): """simple docstring""" lowerCamelCase : Optional[Any] = [] for c, v in d.items(): lowerCamelCase : Optional[Any] = [' '] if c == END else [(c + s) for s in self._elements(A )] result.extend(A ) return tuple(A ) A = Trie() A = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def UpperCAmelCase ( UpperCAmelCase__ : str): lowerCamelCase : Any = trie.find_word(UpperCAmelCase__) return tuple(string + word for word in suffixes) def UpperCAmelCase ( ): print(autocomplete_using_trie('de')) if __name__ == "__main__": import doctest doctest.testmod() main()
449
1
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs UpperCAmelCase__ : int = imread(r'''digital_image_processing/image_data/lena_small.jpg''') UpperCAmelCase__ : Any = cvtColor(img, COLOR_BGR2GRAY) def _lowercase ( ) -> Any: UpperCamelCase__ : Optional[int] = cn.convert_to_negative(__SCREAMING_SNAKE_CASE ) # assert negative_img array for at least one True assert negative_img.any() def _lowercase ( ) -> Tuple: with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(__SCREAMING_SNAKE_CASE , 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def _lowercase ( ) -> str: UpperCamelCase__ : str = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _lowercase ( ) -> Tuple: UpperCamelCase__ : Optional[Any] = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() UpperCamelCase__ : List[str] = canny.canny(__SCREAMING_SNAKE_CASE ) # assert canny array for at least one True assert canny_array.any() def _lowercase ( ) -> Dict: assert gg.gaussian_filter(__SCREAMING_SNAKE_CASE , 5 , sigma=0.9 ).all() def _lowercase ( ) -> Optional[int]: # laplace diagonals UpperCamelCase__ : Optional[int] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) UpperCamelCase__ : Tuple = conv.img_convolve(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).astype(__SCREAMING_SNAKE_CASE ) assert res.any() def _lowercase ( ) -> List[str]: assert med.median_filter(__SCREAMING_SNAKE_CASE , 3 ).any() def _lowercase ( ) -> List[str]: UpperCamelCase__ , UpperCamelCase__ : int = sob.sobel_filter(__SCREAMING_SNAKE_CASE ) assert grad.any() and theta.any() def _lowercase ( ) -> Optional[Any]: UpperCamelCase__ : str = sp.make_sepia(__SCREAMING_SNAKE_CASE , 20 ) assert sepia.all() def _lowercase ( __SCREAMING_SNAKE_CASE = "digital_image_processing/image_data/lena_small.jpg" ) -> Any: UpperCamelCase__ : int = bs.Burkes(imread(__SCREAMING_SNAKE_CASE , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def _lowercase ( __SCREAMING_SNAKE_CASE = "digital_image_processing/image_data/lena_small.jpg" , ) -> List[Any]: UpperCamelCase__ : Union[str, Any] = rs.NearestNeighbour(imread(__SCREAMING_SNAKE_CASE , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def _lowercase ( ) -> List[str]: UpperCamelCase__ : Optional[Any] = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. UpperCamelCase__ : List[str] = imread(__SCREAMING_SNAKE_CASE , 0 ) # Test for get_neighbors_pixel function() return not None UpperCamelCase__ : List[str] = 0 UpperCamelCase__ : Optional[Any] = 0 UpperCamelCase__ : Dict = image[x_coordinate][y_coordinate] UpperCamelCase__ : str = lbp.get_neighbors_pixel( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image UpperCamelCase__ : List[str] = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): UpperCamelCase__ : Any = lbp.local_binary_value(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert lbp_image.any()
410
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class UpperCamelCase_ : '''simple docstring''' def __init__( self , UpperCamelCase , UpperCamelCase=2 , UpperCamelCase=True , UpperCamelCase=False , UpperCamelCase=10 , UpperCamelCase=3 , UpperCamelCase=32 * 4 , UpperCamelCase=32 * 6 , UpperCamelCase=4 , UpperCamelCase=32 , ) -> str: UpperCamelCase__ : int = parent UpperCamelCase__ : Union[str, Any] = batch_size UpperCamelCase__ : Dict = is_training UpperCamelCase__ : Optional[int] = use_auxiliary_loss UpperCamelCase__ : List[str] = num_queries UpperCamelCase__ : List[Any] = num_channels UpperCamelCase__ : str = min_size UpperCamelCase__ : Union[str, Any] = max_size UpperCamelCase__ : int = num_labels UpperCamelCase__ : int = mask_feature_size def lowerCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to( UpperCamelCase) UpperCamelCase__ : Union[str, Any] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCamelCase) UpperCamelCase__ : Tuple = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCamelCase) > 0.5 ).float() UpperCamelCase__ : Optional[Any] = (torch.rand((self.batch_size, self.num_labels) , device=UpperCamelCase) > 0.5).long() UpperCamelCase__ : Dict = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowerCAmelCase__ ( self) -> int: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=1_28 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def lowerCAmelCase__ ( self) -> List[Any]: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : List[Any] = self.prepare_config_and_inputs() UpperCamelCase__ : Optional[int] = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def lowerCAmelCase__ ( self , UpperCamelCase , UpperCamelCase) -> str: UpperCamelCase__ : int = output.encoder_hidden_states UpperCamelCase__ : Union[str, Any] = output.pixel_decoder_hidden_states UpperCamelCase__ : Optional[Any] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(UpperCamelCase) , len(config.backbone_config.depths)) self.parent.assertTrue(len(UpperCamelCase) , len(config.backbone_config.depths)) self.parent.assertTrue(len(UpperCamelCase) , config.decoder_config.decoder_layers) def lowerCAmelCase__ ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=False) -> List[str]: with torch.no_grad(): UpperCamelCase__ : List[str] = MaskFormerModel(config=UpperCamelCase) model.to(UpperCamelCase) model.eval() UpperCamelCase__ : Union[str, Any] = model(pixel_values=UpperCamelCase , pixel_mask=UpperCamelCase) UpperCamelCase__ : Any = model(UpperCamelCase , output_hidden_states=UpperCamelCase) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(output.encoder_last_hidden_state is not None) if output_hidden_states: self.check_output_hidden_state(UpperCamelCase , UpperCamelCase) def lowerCAmelCase__ ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase) -> List[str]: UpperCamelCase__ : Tuple = MaskFormerForInstanceSegmentation(config=UpperCamelCase) model.to(UpperCamelCase) model.eval() def comm_check_on_output(UpperCamelCase): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(result.encoder_last_hidden_state is not None) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1)) with torch.no_grad(): UpperCamelCase__ : Any = model(pixel_values=UpperCamelCase , pixel_mask=UpperCamelCase) UpperCamelCase__ : Optional[Any] = model(UpperCamelCase) comm_check_on_output(UpperCamelCase) UpperCamelCase__ : Union[str, Any] = model( pixel_values=UpperCamelCase , pixel_mask=UpperCamelCase , mask_labels=UpperCamelCase , class_labels=UpperCamelCase) comm_check_on_output(UpperCamelCase) self.parent.assertTrue(result.loss is not None) self.parent.assertEqual(result.loss.shape , torch.Size([1])) @require_torch class UpperCamelCase_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () UpperCamelCase_ = ( {"""feature-extraction""": MaskFormerModel, """image-segmentation""": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def lowerCAmelCase__ ( self) -> int: UpperCamelCase__ : Tuple = MaskFormerModelTester(self) UpperCamelCase__ : Dict = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase) def lowerCAmelCase__ ( self) -> Tuple: self.config_tester.run_common_tests() def lowerCAmelCase__ ( self) -> Any: UpperCamelCase__ , UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCamelCase , **UpperCamelCase , output_hidden_states=UpperCamelCase) def lowerCAmelCase__ ( self) -> Dict: UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*UpperCamelCase) @unittest.skip(reason='MaskFormer does not use inputs_embeds') def lowerCAmelCase__ ( self) -> List[str]: pass @unittest.skip(reason='MaskFormer does not have a get_input_embeddings method') def lowerCAmelCase__ ( self) -> Optional[Any]: pass @unittest.skip(reason='MaskFormer is not a generative model') def lowerCAmelCase__ ( self) -> Any: pass @unittest.skip(reason='MaskFormer does not use token embeddings') def lowerCAmelCase__ ( self) -> Optional[Any]: pass @require_torch_multi_gpu @unittest.skip( reason='MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`') def lowerCAmelCase__ ( self) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def lowerCAmelCase__ ( self) -> Union[str, Any]: pass def lowerCAmelCase__ ( self) -> str: UpperCamelCase__ , UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] = model_class(UpperCamelCase) UpperCamelCase__ : List[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Optional[Any] = [*signature.parameters.keys()] UpperCamelCase__ : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCamelCase) @slow def lowerCAmelCase__ ( self) -> int: for model_name in ["facebook/maskformer-swin-small-coco"]: UpperCamelCase__ : Union[str, Any] = MaskFormerModel.from_pretrained(UpperCamelCase) self.assertIsNotNone(UpperCamelCase) def lowerCAmelCase__ ( self) -> Optional[int]: UpperCamelCase__ : Optional[Any] = (self.model_tester.min_size,) * 2 UpperCamelCase__ : Optional[int] = { 'pixel_values': torch.randn((2, 3, *size) , device=UpperCamelCase), 'mask_labels': torch.randn((2, 10, *size) , device=UpperCamelCase), 'class_labels': torch.zeros(2 , 10 , device=UpperCamelCase).long(), } UpperCamelCase__ : List[Any] = MaskFormerForInstanceSegmentation(MaskFormerConfig()).to(UpperCamelCase) UpperCamelCase__ : List[str] = model(**UpperCamelCase) self.assertTrue(outputs.loss is not None) def lowerCAmelCase__ ( self) -> Any: UpperCamelCase__ , UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCamelCase , **UpperCamelCase , output_hidden_states=UpperCamelCase) def lowerCAmelCase__ ( self) -> Tuple: UpperCamelCase__ , UpperCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[int] = model_class(UpperCamelCase).to(UpperCamelCase) UpperCamelCase__ : List[Any] = model(**UpperCamelCase , output_attentions=UpperCamelCase) self.assertTrue(outputs.attentions is not None) def lowerCAmelCase__ ( self) -> int: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss UpperCamelCase__ : Optional[Any] = self.all_model_classes[1] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() UpperCamelCase__ : Union[str, Any] = model_class(UpperCamelCase) model.to(UpperCamelCase) model.train() UpperCamelCase__ : List[str] = model(UpperCamelCase , mask_labels=UpperCamelCase , class_labels=UpperCamelCase).loss loss.backward() def lowerCAmelCase__ ( self) -> Optional[int]: # only MaskFormerForInstanceSegmentation has the loss UpperCamelCase__ : Any = self.all_model_classes[1] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() UpperCamelCase__ : List[Any] = True UpperCamelCase__ : int = True UpperCamelCase__ : Optional[Any] = model_class(UpperCamelCase) model.to(UpperCamelCase) model.train() UpperCamelCase__ : str = model(UpperCamelCase , mask_labels=UpperCamelCase , class_labels=UpperCamelCase) UpperCamelCase__ : str = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCamelCase__ : Dict = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't UpperCamelCase__ : Optional[int] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCamelCase__ : Union[str, Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=UpperCamelCase) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(pixel_decoder_hidden_states.grad) self.assertIsNotNone(transformer_decoder_hidden_states.grad) self.assertIsNotNone(attentions.grad) UpperCAmelCase__ : Any = 1E-4 def _lowercase ( ) -> List[str]: UpperCamelCase__ : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase__ ( self) -> Optional[Any]: return ( MaskFormerImageProcessor.from_pretrained('facebook/maskformer-swin-small-coco') if is_vision_available() else None ) def lowerCAmelCase__ ( self) -> Dict: UpperCamelCase__ : str = MaskFormerModel.from_pretrained('facebook/maskformer-swin-small-coco').to(UpperCamelCase) UpperCamelCase__ : Union[str, Any] = self.default_image_processor UpperCamelCase__ : List[str] = prepare_img() UpperCamelCase__ : Union[str, Any] = image_processor(UpperCamelCase , return_tensors='pt').to(UpperCamelCase) UpperCamelCase__ : str = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(UpperCamelCase , (1, 3, 8_00, 10_88)) with torch.no_grad(): UpperCamelCase__ : int = model(**UpperCamelCase) UpperCamelCase__ : List[Any] = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]]).to(UpperCamelCase) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCamelCase , atol=UpperCamelCase)) UpperCamelCase__ : Optional[int] = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]]).to(UpperCamelCase) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCamelCase , atol=UpperCamelCase)) UpperCamelCase__ : Optional[Any] = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]]).to(UpperCamelCase) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCamelCase , atol=UpperCamelCase)) def lowerCAmelCase__ ( self) -> Any: UpperCamelCase__ : List[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco') .to(UpperCamelCase) .eval() ) UpperCamelCase__ : Dict = self.default_image_processor UpperCamelCase__ : Optional[Any] = prepare_img() UpperCamelCase__ : Dict = image_processor(UpperCamelCase , return_tensors='pt').to(UpperCamelCase) UpperCamelCase__ : str = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(UpperCamelCase , (1, 3, 8_00, 10_88)) with torch.no_grad(): UpperCamelCase__ : Dict = model(**UpperCamelCase) # masks_queries_logits UpperCamelCase__ : int = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) UpperCamelCase__ : Optional[int] = [ [-1.373_7124, -1.772_4937, -1.936_4233], [-1.597_7281, -1.986_7939, -2.152_3695], [-1.579_5398, -1.926_9832, -2.09_3942], ] UpperCamelCase__ : Tuple = torch.tensor(UpperCamelCase).to(UpperCamelCase) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCamelCase , atol=UpperCamelCase)) # class_queries_logits UpperCamelCase__ : Union[str, Any] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1)) UpperCamelCase__ : Optional[Any] = torch.tensor( [ [1.65_12E00, -5.25_72E00, -3.35_19E00], [3.61_69E-02, -5.90_25E00, -2.93_13E00], [1.07_66E-04, -7.76_30E00, -5.12_63E00], ]).to(UpperCamelCase) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase , atol=UpperCamelCase)) def lowerCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase__ : Tuple = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-resnet101-coco-stuff') .to(UpperCamelCase) .eval() ) UpperCamelCase__ : Dict = self.default_image_processor UpperCamelCase__ : Tuple = prepare_img() UpperCamelCase__ : Tuple = image_processor(UpperCamelCase , return_tensors='pt').to(UpperCamelCase) UpperCamelCase__ : List[Any] = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(UpperCamelCase , (1, 3, 8_00, 10_88)) with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(**UpperCamelCase) # masks_queries_logits UpperCamelCase__ : Optional[int] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) UpperCamelCase__ : Optional[Any] = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] UpperCamelCase__ : int = torch.tensor(UpperCamelCase).to(UpperCamelCase) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCamelCase , atol=UpperCamelCase)) # class_queries_logits UpperCamelCase__ : Optional[Any] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1)) UpperCamelCase__ : Optional[Any] = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]]).to(UpperCamelCase) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase , atol=UpperCamelCase)) def lowerCAmelCase__ ( self) -> Tuple: UpperCamelCase__ : Union[str, Any] = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco') .to(UpperCamelCase) .eval() ) UpperCamelCase__ : Dict = self.default_image_processor UpperCamelCase__ : Any = image_processor( [np.zeros((3, 8_00, 13_33)), np.zeros((3, 8_00, 13_33))] , segmentation_maps=[np.zeros((3_84, 3_84)).astype(np.floataa), np.zeros((3_84, 3_84)).astype(np.floataa)] , return_tensors='pt' , ) UpperCamelCase__ : Dict = inputs['pixel_values'].to(UpperCamelCase) UpperCamelCase__ : Optional[int] = [el.to(UpperCamelCase) for el in inputs['mask_labels']] UpperCamelCase__ : Optional[int] = [el.to(UpperCamelCase) for el in inputs['class_labels']] with torch.no_grad(): UpperCamelCase__ : Optional[int] = model(**UpperCamelCase) self.assertTrue(outputs.loss is not None)
410
1
'''simple docstring''' import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): lowerCAmelCase_ : Union[str, Any] = True from torch.cuda.amp import autocast lowerCAmelCase_ : Union[str, Any] = logging.getLogger(__name__) @dataclass class lowerCamelCase_ : _lowerCAmelCase : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _lowerCAmelCase : Optional[str] = field( default=snake_case_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) _lowerCAmelCase : Optional[bool] = field( default=snake_case_ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) _lowerCAmelCase : Optional[bool] = field( default=snake_case_ , metadata={'help': 'Whether to log verbose messages or not.'} , ) _lowerCAmelCase : Optional[float] = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'} ) _lowerCAmelCase : Optional[float] = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'} ) _lowerCAmelCase : Optional[float] = field( default=0.99_9995 , metadata={'help': 'Decay of gumbel temperature during training.'} ) def UpperCAmelCase ( A : ModelArguments , A : TrainingArguments ): logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) SCREAMING_SNAKE_CASE : List[Any] = logging.WARNING if model_args.verbose_logging: SCREAMING_SNAKE_CASE : Dict = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): SCREAMING_SNAKE_CASE : Any = logging.INFO logger.setLevel(A ) @dataclass class lowerCamelCase_ : _lowerCAmelCase : str = field( default=snake_case_ , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) _lowerCAmelCase : Optional[str] = field( default=snake_case_ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) _lowerCAmelCase : Optional[str] = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) _lowerCAmelCase : Optional[str] = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) _lowerCAmelCase : Optional[str] = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) _lowerCAmelCase : bool = field( default=snake_case_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) _lowerCAmelCase : Optional[int] = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) _lowerCAmelCase : Optional[int] = field( default=snake_case_ , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) _lowerCAmelCase : Optional[float] = field( default=20.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'} ) @dataclass class lowerCamelCase_ : _lowerCAmelCase : WavaVecaForPreTraining _lowerCAmelCase : WavaVecaFeatureExtractor _lowerCAmelCase : Union[bool, str] = "longest" _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : Optional[int] = None def __call__( self : Any , lowerCAmelCase__ : List[Dict[str, Union[List[int], torch.Tensor]]] ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.feature_extractor.pad( lowerCAmelCase__ , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE : Optional[Any] = self.model._get_feat_extract_output_lengths(batch['''input_values'''].shape[-1] ) SCREAMING_SNAKE_CASE : Tuple = batch['''input_values'''].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula SCREAMING_SNAKE_CASE : List[Any] = self.model._get_feat_extract_output_lengths(batch['''attention_mask'''].sum(-1 ) ).to( torch.long ) SCREAMING_SNAKE_CASE : List[Any] = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch['''input_values'''].device ) # these two operations makes sure that all values # before the output lengths indices are attended to SCREAMING_SNAKE_CASE : Optional[int] = 1 SCREAMING_SNAKE_CASE : Dict = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices SCREAMING_SNAKE_CASE : List[str] = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=lowerCAmelCase__ , min_masks=2 , ) return batch class lowerCamelCase_ ( snake_case_ ): def __init__( self : str , *lowerCAmelCase__ : int , lowerCAmelCase__ : Any=1 , lowerCAmelCase__ : Dict=0 , lowerCAmelCase__ : Tuple=1.0 , **lowerCAmelCase__ : Optional[Any] ): """simple docstring""" super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : List[Any] = max_gumbel_temp SCREAMING_SNAKE_CASE : List[Any] = min_gumbel_temp SCREAMING_SNAKE_CASE : Tuple = gumbel_temp_decay def __lowercase ( self : str , lowerCAmelCase__ : nn.Module , lowerCAmelCase__ : Dict[str, Union[torch.Tensor, Any]] ): """simple docstring""" model.train() SCREAMING_SNAKE_CASE : Optional[int] = self._prepare_inputs(lowerCAmelCase__ ) if self.use_amp: with autocast(): SCREAMING_SNAKE_CASE : Any = self.compute_loss(lowerCAmelCase__ , lowerCAmelCase__ ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = self.compute_loss(lowerCAmelCase__ , lowerCAmelCase__ ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": SCREAMING_SNAKE_CASE : Any = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": SCREAMING_SNAKE_CASE : Tuple = loss.sum() / (inputs['''mask_time_indices''']).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: SCREAMING_SNAKE_CASE : List[Any] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowerCAmelCase__ ).backward() elif self.use_apex: with amp.scale_loss(lowerCAmelCase__ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowerCAmelCase__ ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def UpperCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args_into_dataclasses() configure_logger(A , A ) # Downloading and loading a dataset from the hub. SCREAMING_SNAKE_CASE : str = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" SCREAMING_SNAKE_CASE : Any = DatasetDict() SCREAMING_SNAKE_CASE : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""{data_args.train_split_name}[:{data_args.validation_split_percentage}%]""" , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""{data_args.train_split_name}[{data_args.validation_split_percentage}%:]""" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" SCREAMING_SNAKE_CASE : str = DatasetDict() SCREAMING_SNAKE_CASE : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split='''validation''' , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE : Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""{data_args.train_split_name}""" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported SCREAMING_SNAKE_CASE : int = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=A ) def prepare_dataset(A : str ): # check that all files have the correct sampling rate SCREAMING_SNAKE_CASE : List[str] = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays SCREAMING_SNAKE_CASE : Optional[Any] = datasets.map( A , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['''train'''].column_names ) # filter audio files that are too long SCREAMING_SNAKE_CASE : int = vectorized_datasets.filter( lambda A : len(data['''speech'''] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(A : List[Any] ): return feature_extractor(batch['''speech'''] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` SCREAMING_SNAKE_CASE : Union[str, Any] = vectorized_datasets.map( A , batched=A , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['''train'''].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 SCREAMING_SNAKE_CASE : Tuple = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( '''PreTraining is only supported for ``config.do_stable_layer_norm=True`` and''' ''' ``config.feat_extract_norm=\'layer\'''' ) SCREAMING_SNAKE_CASE : str = WavaVecaForPreTraining(A ) SCREAMING_SNAKE_CASE : Optional[Any] = DataCollatorForWavaVecaPretraining(model=A , feature_extractor=A ) SCREAMING_SNAKE_CASE : Dict = WavaVecaPreTrainer( model=A , data_collator=A , args=A , train_dataset=vectorized_datasets['''train'''] , eval_dataset=vectorized_datasets['''validation'''] , tokenizer=A , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
707
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
464
0