code
stringlengths 82
53.2k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
|---|---|---|---|---|
import operator as op
def lowerCAmelCase_ ( __a ) -> Tuple:
"""simple docstring"""
lowerCamelCase__: Optional[Any] =[]
lowerCamelCase__: Tuple =lambda __a , __a : int(x / y ) # noqa: E731 integer division operation
lowerCamelCase__: Tuple ={
"^": op.pow,
"*": op.mul,
"/": div,
"+": op.add,
"-": op.sub,
} # operators & their respective operation
# print table header
print("Symbol".center(8 ) , "Action".center(12 ) , "Stack" , sep=" | " )
print("-" * (30 + len(__a )) )
for x in post_fix:
if x.isdigit(): # if x in digit
stack.append(__a ) # append x to stack
# output in tabular format
print(x.rjust(8 ) , ("push(" + x + ")").ljust(12 ) , ",".join(__a ) , sep=" | " )
else:
lowerCamelCase__: List[Any] =stack.pop() # pop stack
# output in tabular format
print("".rjust(8 ) , ("pop(" + b + ")").ljust(12 ) , ",".join(__a ) , sep=" | " )
lowerCamelCase__: Optional[Any] =stack.pop() # pop stack
# output in tabular format
print("".rjust(8 ) , ("pop(" + a + ")").ljust(12 ) , ",".join(__a ) , sep=" | " )
stack.append(
str(opr[x](int(__a ) , int(__a ) ) ) ) # evaluate the 2 values popped from stack & push result to stack
# output in tabular format
print(
x.rjust(8 ) , ("push(" + a + x + b + ")").ljust(12 ) , ",".join(__a ) , sep=" | " , )
return int(stack[0] )
if __name__ == "__main__":
__A = input("\n\nEnter a Postfix Equation (space separated) = ").split(" ")
print("\n\tResult = ", solve(Postfix))
| 59
|
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SwiftFormerConfig,
SwiftFormerForImageClassification,
ViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCAmelCase: List[str] = logging.get_logger(__name__)
_lowerCAmelCase: Tuple = torch.device('cpu')
def _lowercase( ):
a__ ='http://images.cocodataset.org/val2017/000000039769.jpg'
a__ =Image.open(requests.get(__a , stream=__a ).raw )
return im
def _lowercase( __a : Optional[Any] ):
if swiftformer_name == "swiftformer_xs":
return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] )
elif swiftformer_name == "swiftformer_s":
return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] )
elif swiftformer_name == "swiftformer_l1":
return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] )
elif swiftformer_name == "swiftformer_l3":
return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] )
def _lowercase( __a : int , __a : int , __a : Optional[Any] ):
a__ =dct.pop(__a )
a__ =val
def _lowercase( __a : Optional[Any] ):
a__ =[]
for k in state_dict.keys():
a__ =k
if ".pwconv" in k:
a__ =k_new.replace('.pwconv' , '.point_wise_conv' )
if ".dwconv" in k:
a__ =k_new.replace('.dwconv' , '.depth_wise_conv' )
if ".Proj." in k:
a__ =k_new.replace('.Proj.' , '.proj.' )
if "patch_embed" in k_new:
a__ =k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' )
if "network" in k_new:
a__ =k_new.split('.' )
if ls[2].isdigit():
a__ ='swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] )
else:
a__ =k_new.replace('network' , 'swiftformer.encoder.network' )
rename_keys.append((k, k_new) )
return rename_keys
@torch.no_grad()
def _lowercase( __a : Union[str, Any] , __a : int , __a : str ):
a__ =SwiftFormerConfig()
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
a__ =1000
a__ ='huggingface/label-files'
a__ ='imagenet-1k-id2label.json'
a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) )
a__ ={int(__a ): v for k, v in idalabel.items()}
a__ =idalabel
a__ ={v: k for k, v in idalabel.items()}
# size of the architecture
if swiftformer_name == "swiftformer_xs":
a__ =[3, 3, 6, 4]
a__ =[48, 56, 112, 220]
elif swiftformer_name == "swiftformer_s":
a__ =[3, 3, 9, 6]
a__ =[48, 64, 168, 224]
elif swiftformer_name == "swiftformer_l1":
a__ =[4, 3, 10, 5]
a__ =[48, 96, 192, 384]
elif swiftformer_name == "swiftformer_l3":
a__ =[4, 4, 12, 6]
a__ =[64, 128, 320, 512]
# load state_dict of original model, remove and rename some keys
if original_ckpt:
if original_ckpt.startswith('https' ):
a__ =torch.hub.load_state_dict_from_url(__a , map_location='cpu' , check_hash=__a )
else:
a__ =torch.load(__a , map_location='cpu' )
a__ =checkpoint
a__ =create_rename_keys(__a )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(__a , __a , __a )
# load HuggingFace model
a__ =SwiftFormerForImageClassification(__a ).eval()
hf_model.load_state_dict(__a )
# prepare test inputs
a__ =prepare_img()
a__ =ViTImageProcessor.from_pretrained('preprocessor_config' )
a__ =processor(images=__a , return_tensors='pt' )
# compare outputs from both models
a__ =get_expected_output(__a )
a__ =hf_model(inputs['pixel_values'] ).logits
assert hf_logits.shape == torch.Size([1, 1000] )
assert torch.allclose(hf_logits[0, 0:5] , __a , atol=1e-3 )
Path(__a ).mkdir(exist_ok=__a )
print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" )
hf_model.save_pretrained(__a )
if __name__ == "__main__":
_lowerCAmelCase: Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--swiftformer_name',
default='swiftformer_xs',
choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'],
type=str,
help='Name of the SwiftFormer model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='./converted_outputs/',
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.')
_lowerCAmelCase: Optional[int] = parser.parse_args()
convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
| 20
| 0
|
'''simple docstring'''
import argparse
import requests
import torch
from PIL import Image
from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel
def a_ ( lowerCamelCase : Any ):
# vision encoder
if "img_encoder.pos_embed" in name:
lowerCAmelCase = name.replace('img_encoder.pos_embed' , 'vision_model.embeddings.position_embeddings' )
if "img_encoder.patch_embed.proj" in name:
lowerCAmelCase = name.replace('img_encoder.patch_embed.proj' , 'vision_model.embeddings.patch_embeddings.projection' )
if "img_encoder.patch_embed.norm" in name:
lowerCAmelCase = name.replace('img_encoder.patch_embed.norm' , 'vision_model.embeddings.layernorm' )
if "img_encoder.layers" in name:
lowerCAmelCase = name.replace('img_encoder.layers' , 'vision_model.encoder.stages' )
if "blocks" in name and "res" not in name:
lowerCAmelCase = name.replace('blocks' , 'layers' )
if "attn" in name and "pre_assign" not in name:
lowerCAmelCase = name.replace('attn' , 'self_attn' )
if "proj" in name and "self_attn" in name and "text" not in name:
lowerCAmelCase = name.replace('proj' , 'out_proj' )
if "pre_assign_attn.attn.proj" in name:
lowerCAmelCase = name.replace('pre_assign_attn.attn.proj' , 'pre_assign_attn.attn.out_proj' )
if "norm1" in name:
lowerCAmelCase = name.replace('norm1' , 'layer_norm1' )
if "norm2" in name and "pre_assign" not in name:
lowerCAmelCase = name.replace('norm2' , 'layer_norm2' )
if "img_encoder.norm" in name:
lowerCAmelCase = name.replace('img_encoder.norm' , 'vision_model.layernorm' )
# text encoder
if "text_encoder.token_embedding" in name:
lowerCAmelCase = name.replace('text_encoder.token_embedding' , 'text_model.embeddings.token_embedding' )
if "text_encoder.positional_embedding" in name:
lowerCAmelCase = name.replace('text_encoder.positional_embedding' , 'text_model.embeddings.position_embedding.weight' )
if "text_encoder.transformer.resblocks." in name:
lowerCAmelCase = name.replace('text_encoder.transformer.resblocks.' , 'text_model.encoder.layers.' )
if "ln_1" in name:
lowerCAmelCase = name.replace('ln_1' , 'layer_norm1' )
if "ln_2" in name:
lowerCAmelCase = name.replace('ln_2' , 'layer_norm2' )
if "c_fc" in name:
lowerCAmelCase = name.replace('c_fc' , 'fc1' )
if "c_proj" in name:
lowerCAmelCase = name.replace('c_proj' , 'fc2' )
if "text_encoder" in name:
lowerCAmelCase = name.replace('text_encoder' , 'text_model' )
if "ln_final" in name:
lowerCAmelCase = name.replace('ln_final' , 'final_layer_norm' )
# projection layers
if "img_projector.linear_hidden." in name:
lowerCAmelCase = name.replace('img_projector.linear_hidden.' , 'visual_projection.' )
if "img_projector.linear_out." in name:
lowerCAmelCase = name.replace('img_projector.linear_out.' , 'visual_projection.3.' )
if "text_projector.linear_hidden" in name:
lowerCAmelCase = name.replace('text_projector.linear_hidden' , 'text_projection' )
if "text_projector.linear_out" in name:
lowerCAmelCase = name.replace('text_projector.linear_out' , 'text_projection.3' )
return name
def a_ ( lowerCamelCase : Tuple , lowerCamelCase : List[Any] ):
for key in orig_state_dict.copy().keys():
lowerCAmelCase = orig_state_dict.pop(lowerCamelCase )
if "qkv" in key:
# weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
lowerCAmelCase = key.split('.' )
lowerCAmelCase , lowerCAmelCase = int(key_split[2] ), int(key_split[4] )
lowerCAmelCase = config.vision_config.hidden_size
if "weight" in key:
lowerCAmelCase = val[:dim, :]
lowerCAmelCase = val[dim : dim * 2, :]
lowerCAmelCase = val[-dim:, :]
else:
lowerCAmelCase = val[:dim]
lowerCAmelCase = val[dim : dim * 2]
lowerCAmelCase = val[-dim:]
elif "in_proj" in key:
# weights and biases of the key, value and query projections of text encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
lowerCAmelCase = key.split('.' )
lowerCAmelCase = int(key_split[3] )
lowerCAmelCase = config.text_config.hidden_size
if "weight" in key:
lowerCAmelCase = val[:dim, :]
lowerCAmelCase = val[
dim : dim * 2, :
]
lowerCAmelCase = val[-dim:, :]
else:
lowerCAmelCase = val[:dim]
lowerCAmelCase = val[dim : dim * 2]
lowerCAmelCase = val[-dim:]
else:
lowerCAmelCase = rename_key(lowerCamelCase )
# squeeze if necessary
if (
"text_projection.0" in new_name
or "text_projection.3" in new_name
or "visual_projection.0" in new_name
or "visual_projection.3" in new_name
):
lowerCAmelCase = val.squeeze_()
else:
lowerCAmelCase = val
return orig_state_dict
def a_ ( ):
lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
lowerCAmelCase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw )
return im
@torch.no_grad()
def a_ ( lowerCamelCase : str , lowerCamelCase : Optional[int] , lowerCamelCase : Dict="groupvit-gcc-yfcc" , lowerCamelCase : Dict=False ):
lowerCAmelCase = GroupViTConfig()
lowerCAmelCase = GroupViTModel(lowerCamelCase ).eval()
lowerCAmelCase = torch.load(lowerCamelCase , map_location='cpu' )['model']
lowerCAmelCase = convert_state_dict(lowerCamelCase , lowerCamelCase )
lowerCAmelCase , lowerCAmelCase = model.load_state_dict(lowerCamelCase , strict=lowerCamelCase )
assert missing_keys == ["text_model.embeddings.position_ids"]
assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCamelCase ) == 0)
# verify result
lowerCAmelCase = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32' )
lowerCAmelCase = prepare_img()
lowerCAmelCase = processor(text=['a photo of a cat', 'a photo of a dog'] , images=lowerCamelCase , padding=lowerCamelCase , return_tensors='pt' )
with torch.no_grad():
lowerCAmelCase = model(**lowerCamelCase )
if model_name == "groupvit-gcc-yfcc":
lowerCAmelCase = torch.tensor([[13.3_523, 6.3_629]] )
elif model_name == "groupvit-gcc-redcaps":
lowerCAmelCase = torch.tensor([[16.1_873, 8.6_230]] )
else:
raise ValueError(f'''Model name {model_name} not supported.''' )
assert torch.allclose(outputs.logits_per_image , lowerCamelCase , atol=1e-3 )
processor.save_pretrained(lowerCamelCase )
model.save_pretrained(lowerCamelCase )
print('Successfully saved processor and model to' , lowerCamelCase )
if push_to_hub:
print('Pushing to the hub...' )
processor.push_to_hub(lowerCamelCase , organization='nielsr' )
model.push_to_hub(lowerCamelCase , organization='nielsr' )
if __name__ == "__main__":
__snake_case =argparse.ArgumentParser()
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model."""
)
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""")
parser.add_argument(
"""--model_name""",
default="""groupvit-gccy-fcc""",
type=str,
help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""",
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""",
)
__snake_case =parser.parse_args()
convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 513
|
'''simple docstring'''
def a_ ( lowerCamelCase : Tuple , lowerCamelCase : Tuple ):
# "extended trapezoidal rule"
# int(f) = dx/2 * (f1 + 2f2 + ... + fn)
lowerCAmelCase = (boundary[1] - boundary[0]) / steps
lowerCAmelCase = boundary[0]
lowerCAmelCase = boundary[1]
lowerCAmelCase = make_points(lowerCamelCase , lowerCamelCase , lowerCamelCase )
lowerCAmelCase = 0.0
y += (h / 2.0) * f(lowerCamelCase )
for i in x_i:
# print(i)
y += h * f(lowerCamelCase )
y += (h / 2.0) * f(lowerCamelCase )
return y
def a_ ( lowerCamelCase : Dict , lowerCamelCase : Union[str, Any] , lowerCamelCase : Any ):
lowerCAmelCase = a + h
while x < (b - h):
yield x
lowerCAmelCase = x + h
def a_ ( lowerCamelCase : Optional[Any] ): # enter your function here
lowerCAmelCase = (x - 0) * (x - 0)
return y
def a_ ( ):
lowerCAmelCase = 0.0 # Lower bound of integration
lowerCAmelCase = 1.0 # Upper bound of integration
lowerCAmelCase = 10.0 # define number of steps or resolution
lowerCAmelCase = [a, b] # define boundary of integration
lowerCAmelCase = method_a(lowerCamelCase , lowerCamelCase )
print(f'''y = {y}''' )
if __name__ == "__main__":
main()
| 513
| 1
|
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = 256
# Modulus to hash a string
SCREAMING_SNAKE_CASE_ = 1_000_003
def lowercase (_lowerCAmelCase , _lowerCAmelCase ):
__lowerCAmelCase = len(_lowerCAmelCase )
__lowerCAmelCase = len(_lowerCAmelCase )
if p_len > t_len:
return False
__lowerCAmelCase = 0
__lowerCAmelCase = 0
__lowerCAmelCase = 1
# Calculating the hash of pattern and substring of text
for i in range(_lowerCAmelCase ):
__lowerCAmelCase = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus
__lowerCAmelCase = (ord(text[i] ) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
__lowerCAmelCase = (modulus_power * alphabet_size) % modulus
for i in range(0 , t_len - p_len + 1 ):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
__lowerCAmelCase = (
(text_hash - ord(text[i] ) * modulus_power) * alphabet_size
+ ord(text[i + p_len] )
) % modulus
return False
def lowercase ():
__lowerCAmelCase = """abc1abc12"""
__lowerCAmelCase = """alskfjaldsabc1abc1abc12k23adsfabcabc"""
__lowerCAmelCase = """alskfjaldsk23adsfabcabc"""
assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) and not rabin_karp(_lowerCAmelCase , _lowerCAmelCase )
# Test 2)
__lowerCAmelCase = """ABABX"""
__lowerCAmelCase = """ABABZABABYABABX"""
assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase )
# Test 3)
__lowerCAmelCase = """AAAB"""
__lowerCAmelCase = """ABAAAAAB"""
assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase )
# Test 4)
__lowerCAmelCase = """abcdabcy"""
__lowerCAmelCase = """abcxabcdabxabcdabcdabcy"""
assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase )
# Test 5)
__lowerCAmelCase = """Lü"""
__lowerCAmelCase = """Lüsai"""
assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase )
__lowerCAmelCase = """Lue"""
assert not rabin_karp(_lowerCAmelCase , _lowerCAmelCase )
print("""Success.""" )
if __name__ == "__main__":
test_rabin_karp()
| 465
|
"""simple docstring"""
import enum
import warnings
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
class lowerCAmelCase_ ( enum.Enum ):
'''simple docstring'''
_snake_case = 0
_snake_case = 1
@add_end_docstrings(A__ )
class lowerCAmelCase_ ( A__ ):
'''simple docstring'''
_snake_case = '''generated'''
def __init__( self , *snake_case_ , **snake_case_ ) -> Optional[int]:
super().__init__(*snake_case_ , **snake_case_ )
self.check_model_type(
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if self.framework == """tf"""
else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING )
def A__ ( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , **snake_case_ , ) -> Union[str, Any]:
__lowerCAmelCase = {}
if truncation is not None:
__lowerCAmelCase = truncation
__lowerCAmelCase = generate_kwargs
__lowerCAmelCase = {}
if return_tensors is not None and return_type is None:
__lowerCAmelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT
if return_type is not None:
__lowerCAmelCase = return_type
if clean_up_tokenization_spaces is not None:
__lowerCAmelCase = clean_up_tokenization_spaces
if stop_sequence is not None:
__lowerCAmelCase = self.tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ )
if len(snake_case_ ) > 1:
warnings.warn(
"""Stopping on a multiple token sequence is not yet supported on transformers. The first token of"""
""" the stop sequence will be used as the stop sequence string in the interim.""" )
__lowerCAmelCase = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def A__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> Any:
return True
def A__ ( self , *snake_case_ , snake_case_ ) -> Dict:
__lowerCAmelCase = self.model.config.prefix if self.model.config.prefix is not None else """"""
if isinstance(args[0] , snake_case_ ):
if self.tokenizer.pad_token_id is None:
raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" )
__lowerCAmelCase = ([prefix + arg for arg in args[0]],)
__lowerCAmelCase = True
elif isinstance(args[0] , snake_case_ ):
__lowerCAmelCase = (prefix + args[0],)
__lowerCAmelCase = False
else:
raise ValueError(
f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" )
__lowerCAmelCase = self.tokenizer(*snake_case_ , padding=snake_case_ , truncation=snake_case_ , return_tensors=self.framework )
# This is produced by tokenizers but is an invalid generate kwargs
if "token_type_ids" in inputs:
del inputs["token_type_ids"]
return inputs
def __call__( self , *snake_case_ , **snake_case_ ) -> Dict:
__lowerCAmelCase = super().__call__(*snake_case_ , **snake_case_ )
if (
isinstance(args[0] , snake_case_ )
and all(isinstance(snake_case_ , snake_case_ ) for el in args[0] )
and all(len(snake_case_ ) == 1 for res in result )
):
return [res[0] for res in result]
return result
def A__ ( self , snake_case_ , snake_case_=TruncationStrategy.DO_NOT_TRUNCATE , **snake_case_ ) -> Tuple:
__lowerCAmelCase = self._parse_and_tokenize(snake_case_ , truncation=snake_case_ , **snake_case_ )
return inputs
def A__ ( self , snake_case_ , **snake_case_ ) -> Union[str, Any]:
if self.framework == "pt":
__lowerCAmelCase , __lowerCAmelCase = model_inputs["""input_ids"""].shape
elif self.framework == "tf":
__lowerCAmelCase , __lowerCAmelCase = tf.shape(model_inputs["""input_ids"""] ).numpy()
__lowerCAmelCase = generate_kwargs.get("""min_length""" , self.model.config.min_length )
__lowerCAmelCase = generate_kwargs.get("""max_length""" , self.model.config.max_length )
self.check_inputs(snake_case_ , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] )
__lowerCAmelCase = self.model.generate(**snake_case_ , **snake_case_ )
__lowerCAmelCase = output_ids.shape[0]
if self.framework == "pt":
__lowerCAmelCase = output_ids.reshape(snake_case_ , out_b // in_b , *output_ids.shape[1:] )
elif self.framework == "tf":
__lowerCAmelCase = tf.reshape(snake_case_ , (in_b, out_b // in_b, *output_ids.shape[1:]) )
return {"output_ids": output_ids}
def A__ ( self , snake_case_ , snake_case_=ReturnType.TEXT , snake_case_=False ) -> Dict:
__lowerCAmelCase = []
for output_ids in model_outputs["output_ids"][0]:
if return_type == ReturnType.TENSORS:
__lowerCAmelCase = {f"""{self.return_name}_token_ids""": output_ids}
elif return_type == ReturnType.TEXT:
__lowerCAmelCase = {
f"""{self.return_name}_text""": self.tokenizer.decode(
snake_case_ , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ , )
}
records.append(snake_case_ )
return records
@add_end_docstrings(A__ )
class lowerCAmelCase_ ( A__ ):
'''simple docstring'''
_snake_case = '''summary'''
def __call__( self , *snake_case_ , **snake_case_ ) -> Tuple:
return super().__call__(*snake_case_ , **snake_case_ )
def A__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> bool:
if max_length < min_length:
logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" )
if input_length < max_length:
logger.warning(
f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """
"""a summarization task, where outputs shorter than the input are typically wanted, you might """
f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" )
@add_end_docstrings(A__ )
class lowerCAmelCase_ ( A__ ):
'''simple docstring'''
_snake_case = '''translation'''
def A__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]:
if input_length > 0.9 * max_length:
logger.warning(
f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """
"""increasing your max_length manually, e.g. translator('...', max_length=400)""" )
return True
def A__ ( self , *snake_case_ , snake_case_=TruncationStrategy.DO_NOT_TRUNCATE , snake_case_=None , snake_case_=None ) -> List[Any]:
if getattr(self.tokenizer , """_build_translation_inputs""" , snake_case_ ):
return self.tokenizer._build_translation_inputs(
*snake_case_ , return_tensors=self.framework , truncation=snake_case_ , src_lang=snake_case_ , tgt_lang=snake_case_ )
else:
return super()._parse_and_tokenize(*snake_case_ , truncation=snake_case_ )
def A__ ( self , snake_case_=None , snake_case_=None , **snake_case_ ) -> List[Any]:
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = super()._sanitize_parameters(**snake_case_ )
if src_lang is not None:
__lowerCAmelCase = src_lang
if tgt_lang is not None:
__lowerCAmelCase = tgt_lang
if src_lang is None and tgt_lang is None:
# Backward compatibility, direct arguments use is preferred.
__lowerCAmelCase = kwargs.get("""task""" , self.task )
__lowerCAmelCase = task.split("""_""" )
if task and len(snake_case_ ) == 4:
# translation, XX, to YY
__lowerCAmelCase = items[1]
__lowerCAmelCase = items[3]
return preprocess_params, forward_params, postprocess_params
def __call__( self , *snake_case_ , **snake_case_ ) -> List[Any]:
return super().__call__(*snake_case_ , **snake_case_ )
| 465
| 1
|
import warnings
from ..trainer import Trainer
from ..utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
class UpperCamelCase_ ( _lowerCamelCase ):
def __init__( self , lowerCAmelCase_=None , **lowerCAmelCase_ ) -> Dict:
warnings.warn(
'`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` '
'instead.' , lowerCAmelCase_ , )
super().__init__(args=lowerCAmelCase_ , **lowerCAmelCase_ )
| 541
|
def lowerCamelCase__ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : str ) -> List[Any]:
'''simple docstring'''
if index == r:
for j in range(UpperCamelCase__ ):
print(data[j] , end=' ' )
print(' ' )
return
# When no more elements are there to put in data[]
if i >= n:
return
# current is included, put next at next location
_snake_case = arr[i]
combination_util(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , index + 1 , UpperCamelCase__ , i + 1 )
# current is excluded, replace it with
# next (Note that i+1 is passed, but
# index is not changed)
combination_util(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , i + 1 )
# The main function that prints all combinations
# of size r in arr[] of size n. This function
# mainly uses combinationUtil()
def lowerCamelCase__ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] ) -> Tuple:
'''simple docstring'''
_snake_case = [0] * r
# Print all combination using temporary array 'data[]'
combination_util(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , 0 , UpperCamelCase__ , 0 )
if __name__ == "__main__":
# Driver code to check the function above
UpperCAmelCase_ = [10, 20, 30, 40, 50]
print_combination(arr, len(arr), 3)
# This code is contributed by Ambuj sahu
| 541
| 1
|
'''simple docstring'''
from functools import lru_cache
@lru_cache
def __snake_case ( UpperCAmelCase_ : int ):
if num < 0:
raise ValueError("Number should not be negative." )
return 1 if num in (0, 1) else num * factorial(num - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 675
|
from __future__ import annotations
class __snake_case :
"""simple docstring"""
def __init__( self , _UpperCamelCase , _UpperCamelCase ) -> Tuple:
"""simple docstring"""
__snake_case , __snake_case = text, pattern
__snake_case , __snake_case = len(_UpperCamelCase ), len(_UpperCamelCase )
def a ( self , _UpperCamelCase ) -> int:
"""simple docstring"""
for i in range(self.patLen - 1 , -1 , -1 ):
if char == self.pattern[i]:
return i
return -1
def a ( self , _UpperCamelCase ) -> int:
"""simple docstring"""
for i in range(self.patLen - 1 , -1 , -1 ):
if self.pattern[i] != self.text[current_pos + i]:
return current_pos + i
return -1
def a ( self ) -> list[int]:
"""simple docstring"""
__snake_case = []
for i in range(self.textLen - self.patLen + 1 ):
__snake_case = self.mismatch_in_text(_UpperCamelCase )
if mismatch_index == -1:
positions.append(_UpperCamelCase )
else:
__snake_case = self.match_in_pattern(self.text[mismatch_index] )
__snake_case = (
mismatch_index - match_index
) # shifting index lgtm [py/multiple-definition]
return positions
UpperCamelCase__ = '''ABAABA'''
UpperCamelCase__ = '''AB'''
UpperCamelCase__ = BoyerMooreSearch(text, pattern)
UpperCamelCase__ = bms.bad_character_heuristic()
if len(positions) == 0:
print('''No match found''')
else:
print('''Pattern found in following positions: ''')
print(positions)
| 268
| 0
|
import warnings
from typing import Dict, List, Optional, Tuple
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
a_ :Union[str, Any] = logging.get_logger(__name__)
class snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""]
def __init__( self : List[str], _snake_case : List[str]="</s>", _snake_case : Union[str, Any]="<unk>", _snake_case : Tuple="<pad>", _snake_case : Optional[int]=1_2_5, _snake_case : Dict=None, **_snake_case : List[Any], ) ->None:
# Add extra_ids to the special token list
if extra_ids > 0 and additional_special_tokens is None:
snake_case__ : Union[str, Any] = [F'''<extra_id_{i}>''' for i in range(_snake_case )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra_id special tokens
snake_case__ : Tuple = len(set(filter(lambda _snake_case : bool('extra_id' in str(_snake_case ) ), _snake_case ) ) )
if extra_tokens != extra_ids:
raise ValueError(
F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are'''
' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the'
' extra_ids tokens' )
snake_case__ : Optional[Any] = AddedToken(_snake_case, lstrip=_snake_case, rstrip=_snake_case ) if isinstance(_snake_case, _snake_case ) else pad_token
snake_case__ : Dict = AddedToken(_snake_case, lstrip=_snake_case, rstrip=_snake_case ) if isinstance(_snake_case, _snake_case ) else eos_token
snake_case__ : Tuple = AddedToken(_snake_case, lstrip=_snake_case, rstrip=_snake_case ) if isinstance(_snake_case, _snake_case ) else unk_token
super().__init__(
eos_token=_snake_case, unk_token=_snake_case, pad_token=_snake_case, extra_ids=_snake_case, additional_special_tokens=_snake_case, **_snake_case, )
snake_case__ : List[Any] = extra_ids
snake_case__ : str = 2**8 # utf is 8 bits
# define special tokens dict
snake_case__ : Dict[int, str] = {
self.pad_token: 0,
self.eos_token: 1,
self.unk_token: 2,
}
snake_case__ : List[str] = len(self.special_tokens_encoder )
snake_case__ : Dict = len(_snake_case )
for i, token in enumerate(_snake_case ):
snake_case__ : Optional[Any] = self.vocab_size + i - n
snake_case__ : Dict[str, int] = {v: k for k, v in self.special_tokens_encoder.items()}
@property
def lowercase_ ( self : Optional[int] ) ->Tuple:
return self._utf_vocab_size + self._num_special_tokens + self._extra_ids
def lowercase_ ( self : List[str], _snake_case : List[int], _snake_case : Optional[List[int]] = None, _snake_case : bool = False ) ->List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_snake_case, token_ids_a=_snake_case, already_has_special_tokens=_snake_case )
# normal case: some special tokens
if token_ids_a is None:
return ([0] * len(_snake_case )) + [1]
return ([0] * len(_snake_case )) + [1] + ([0] * len(_snake_case )) + [1]
def lowercase_ ( self : List[Any], _snake_case : List[int] ) ->List[int]:
if len(_snake_case ) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
F'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated'''
' eos tokens being added.' )
return token_ids
else:
return token_ids + [self.eos_token_id]
def lowercase_ ( self : List[str], _snake_case : List[int], _snake_case : Optional[List[int]] = None ) ->List[int]:
snake_case__ : int = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def lowercase_ ( self : Dict, _snake_case : List[int], _snake_case : Optional[List[int]] = None ) ->List[int]:
snake_case__ : str = self._add_eos_if_not_present(_snake_case )
if token_ids_a is None:
return token_ids_a
else:
snake_case__ : Tuple = self._add_eos_if_not_present(_snake_case )
return token_ids_a + token_ids_a
def lowercase_ ( self : Union[str, Any], _snake_case : str ) ->List[str]:
snake_case__ : int = [chr(_snake_case ) for i in text.encode('utf-8' )]
return tokens
def lowercase_ ( self : Optional[int], _snake_case : Dict ) ->str:
if token in self.special_tokens_encoder:
snake_case__ : List[Any] = self.special_tokens_encoder[token]
elif token in self.added_tokens_encoder:
snake_case__ : str = self.added_tokens_encoder[token]
elif len(_snake_case ) != 1:
snake_case__ : List[str] = self.unk_token_id
else:
snake_case__ : Optional[int] = ord(_snake_case ) + self._num_special_tokens
return token_id
def lowercase_ ( self : Dict, _snake_case : str ) ->List[Any]:
if index in self.special_tokens_decoder:
snake_case__ : int = self.special_tokens_decoder[index]
else:
snake_case__ : Union[str, Any] = chr(index - self._num_special_tokens )
return token
def lowercase_ ( self : List[Any], _snake_case : Tuple ) ->str:
snake_case__ : Union[str, Any] = b''
for token in tokens:
if token in self.special_tokens_decoder:
snake_case__ : Union[str, Any] = self.special_tokens_decoder[token].encode('utf-8' )
elif token in self.added_tokens_decoder:
snake_case__ : Optional[Any] = self.special_tokens_decoder[token].encode('utf-8' )
elif token in self.special_tokens_encoder:
snake_case__ : Tuple = token.encode('utf-8' )
elif token in self.added_tokens_encoder:
snake_case__ : str = token.encode('utf-8' )
else:
snake_case__ : Tuple = bytes([ord(_snake_case )] )
bstring += tok_string
snake_case__ : Optional[Any] = bstring.decode('utf-8', errors='ignore' )
return string
def lowercase_ ( self : Tuple, _snake_case : str, _snake_case : Optional[str] = None ) ->Tuple[str]:
return ()
| 243
|
import random
def lowercase_ (A : int ):
snake_case__ : List[str] = num - 1
snake_case__ : Union[str, Any] = 0
while s % 2 == 0:
snake_case__ : Any = s // 2
t += 1
for _ in range(5 ):
snake_case__ : List[Any] = random.randrange(2 , num - 1 )
snake_case__ : Tuple = pow(A , A , A )
if v != 1:
snake_case__ : str = 0
while v != (num - 1):
if i == t - 1:
return False
else:
snake_case__ : Tuple = i + 1
snake_case__ : Optional[int] = (v**2) % num
return True
def lowercase_ (A : int ):
if num < 2:
return False
snake_case__ : Dict = [
2,
3,
5,
7,
1_1,
1_3,
1_7,
1_9,
2_3,
2_9,
3_1,
3_7,
4_1,
4_3,
4_7,
5_3,
5_9,
6_1,
6_7,
7_1,
7_3,
7_9,
8_3,
8_9,
9_7,
1_0_1,
1_0_3,
1_0_7,
1_0_9,
1_1_3,
1_2_7,
1_3_1,
1_3_7,
1_3_9,
1_4_9,
1_5_1,
1_5_7,
1_6_3,
1_6_7,
1_7_3,
1_7_9,
1_8_1,
1_9_1,
1_9_3,
1_9_7,
1_9_9,
2_1_1,
2_2_3,
2_2_7,
2_2_9,
2_3_3,
2_3_9,
2_4_1,
2_5_1,
2_5_7,
2_6_3,
2_6_9,
2_7_1,
2_7_7,
2_8_1,
2_8_3,
2_9_3,
3_0_7,
3_1_1,
3_1_3,
3_1_7,
3_3_1,
3_3_7,
3_4_7,
3_4_9,
3_5_3,
3_5_9,
3_6_7,
3_7_3,
3_7_9,
3_8_3,
3_8_9,
3_9_7,
4_0_1,
4_0_9,
4_1_9,
4_2_1,
4_3_1,
4_3_3,
4_3_9,
4_4_3,
4_4_9,
4_5_7,
4_6_1,
4_6_3,
4_6_7,
4_7_9,
4_8_7,
4_9_1,
4_9_9,
5_0_3,
5_0_9,
5_2_1,
5_2_3,
5_4_1,
5_4_7,
5_5_7,
5_6_3,
5_6_9,
5_7_1,
5_7_7,
5_8_7,
5_9_3,
5_9_9,
6_0_1,
6_0_7,
6_1_3,
6_1_7,
6_1_9,
6_3_1,
6_4_1,
6_4_3,
6_4_7,
6_5_3,
6_5_9,
6_6_1,
6_7_3,
6_7_7,
6_8_3,
6_9_1,
7_0_1,
7_0_9,
7_1_9,
7_2_7,
7_3_3,
7_3_9,
7_4_3,
7_5_1,
7_5_7,
7_6_1,
7_6_9,
7_7_3,
7_8_7,
7_9_7,
8_0_9,
8_1_1,
8_2_1,
8_2_3,
8_2_7,
8_2_9,
8_3_9,
8_5_3,
8_5_7,
8_5_9,
8_6_3,
8_7_7,
8_8_1,
8_8_3,
8_8_7,
9_0_7,
9_1_1,
9_1_9,
9_2_9,
9_3_7,
9_4_1,
9_4_7,
9_5_3,
9_6_7,
9_7_1,
9_7_7,
9_8_3,
9_9_1,
9_9_7,
]
if num in low_primes:
return True
for prime in low_primes:
if (num % prime) == 0:
return False
return rabin_miller(A )
def lowercase_ (A : int = 1_0_2_4 ):
while True:
snake_case__ : List[str] = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) )
if is_prime_low_num(A ):
return num
if __name__ == "__main__":
a_ :Any = generate_large_prime()
print(("Prime number:", num))
print(("is_prime_low_num:", is_prime_low_num(num)))
| 243
| 1
|
'''simple docstring'''
def lowercase_ ( __A : List[str] ) -> Union[str, Any]:
"""simple docstring"""
lowercase : str =[0] * len(__A )
lowercase : Union[str, Any] =[]
lowercase : str =[]
lowercase : List[Any] =0
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(__A ) ):
if indegree[i] == 0:
queue.append(__A )
while queue:
lowercase : List[str] =queue.pop(0 )
cnt += 1
topo.append(__A )
for x in graph[vertex]:
indegree[x] -= 1
if indegree[x] == 0:
queue.append(__A )
if cnt != len(__A ):
print('''Cycle exists''' )
else:
print(__A )
# Adjacency List of Graph
SCREAMING_SNAKE_CASE = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []}
topological_sort(graph)
| 94
|
"""simple docstring"""
import os
import tempfile
import unittest
from transformers import FlaubertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class UpperCamelCase__ ( a_):
"""simple docstring"""
def __init__( self : List[str] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[int]=1_3 , UpperCamelCase_ : Dict=7 , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Any=False , UpperCamelCase_ : Tuple=2 , UpperCamelCase_ : List[Any]=9_9 , UpperCamelCase_ : List[Any]=0 , UpperCamelCase_ : Tuple=3_2 , UpperCamelCase_ : Any=5 , UpperCamelCase_ : Dict=4 , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : Any=0.1 , UpperCamelCase_ : Optional[Any]=5_1_2 , UpperCamelCase_ : Union[str, Any]=1_2 , UpperCamelCase_ : List[str]=2 , UpperCamelCase_ : str=0.02 , UpperCamelCase_ : List[str]=3 , UpperCamelCase_ : Dict=4 , UpperCamelCase_ : Optional[int]="last" , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Tuple=None , ):
'''simple docstring'''
__magic_name__ = parent
__magic_name__ = batch_size
__magic_name__ = seq_length
__magic_name__ = is_training
__magic_name__ = use_input_lengths
__magic_name__ = use_token_type_ids
__magic_name__ = use_labels
__magic_name__ = gelu_activation
__magic_name__ = sinusoidal_embeddings
__magic_name__ = causal
__magic_name__ = asm
__magic_name__ = n_langs
__magic_name__ = vocab_size
__magic_name__ = n_special
__magic_name__ = hidden_size
__magic_name__ = num_hidden_layers
__magic_name__ = num_attention_heads
__magic_name__ = hidden_dropout_prob
__magic_name__ = attention_probs_dropout_prob
__magic_name__ = max_position_embeddings
__magic_name__ = type_vocab_size
__magic_name__ = type_sequence_label_size
__magic_name__ = initializer_range
__magic_name__ = num_labels
__magic_name__ = num_choices
__magic_name__ = summary_type
__magic_name__ = use_proj
__magic_name__ = scope
def a__ ( self : List[str] ):
'''simple docstring'''
__magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__magic_name__ = random_attention_mask([self.batch_size, self.seq_length] )
__magic_name__ = None
if self.use_input_lengths:
__magic_name__ = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
__magic_name__ = None
if self.use_token_type_ids:
__magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
__magic_name__ = None
__magic_name__ = None
__magic_name__ = None
if self.use_labels:
__magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__magic_name__ = ids_tensor([self.batch_size] , 2 ).float()
__magic_name__ = ids_tensor([self.batch_size] , self.num_choices )
__magic_name__ = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def a__ ( self : int ):
'''simple docstring'''
return FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , )
def a__ ( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[int] , ):
'''simple docstring'''
__magic_name__ = FlaubertModel(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__magic_name__ = model(UpperCamelCase_ , lengths=UpperCamelCase_ , langs=UpperCamelCase_ )
__magic_name__ = model(UpperCamelCase_ , langs=UpperCamelCase_ )
__magic_name__ = model(UpperCamelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a__ ( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : str , ):
'''simple docstring'''
__magic_name__ = FlaubertWithLMHeadModel(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__magic_name__ = model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a__ ( self : Union[str, Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str , ):
'''simple docstring'''
__magic_name__ = FlaubertForQuestionAnsweringSimple(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__magic_name__ = model(UpperCamelCase_ )
__magic_name__ = model(UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a__ ( self : str , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any] , ):
'''simple docstring'''
__magic_name__ = FlaubertForQuestionAnswering(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__magic_name__ = model(UpperCamelCase_ )
__magic_name__ = model(
UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ , cls_index=UpperCamelCase_ , is_impossible=UpperCamelCase_ , p_mask=UpperCamelCase_ , )
__magic_name__ = model(
UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ , cls_index=UpperCamelCase_ , is_impossible=UpperCamelCase_ , )
((__magic_name__) , ) = result_with_labels.to_tuple()
__magic_name__ = model(UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ )
((__magic_name__) , ) = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def a__ ( self : str , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] , ):
'''simple docstring'''
__magic_name__ = FlaubertForSequenceClassification(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__magic_name__ = model(UpperCamelCase_ )
__magic_name__ = model(UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def a__ ( self : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple , ):
'''simple docstring'''
__magic_name__ = self.num_labels
__magic_name__ = FlaubertForTokenClassification(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__magic_name__ = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a__ ( self : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , ):
'''simple docstring'''
__magic_name__ = self.num_choices
__magic_name__ = FlaubertForMultipleChoice(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__magic_name__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__magic_name__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__magic_name__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__magic_name__ = model(
UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a__ ( self : Union[str, Any] ):
'''simple docstring'''
__magic_name__ = self.prepare_config_and_inputs()
(
(
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) ,
) = config_and_inputs
__magic_name__ = {
'input_ids': input_ids,
'token_type_ids': token_type_ids,
'lengths': input_lengths,
'attention_mask': input_mask,
}
return config, inputs_dict
@require_torch
class UpperCamelCase__ ( a_ , a_ , unittest.TestCase):
"""simple docstring"""
__UpperCAmelCase = (
(
FlaubertModel,
FlaubertWithLMHeadModel,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertForMultipleChoice,
)
if is_torch_available()
else ()
)
__UpperCAmelCase = (
{
"""feature-extraction""": FlaubertModel,
"""fill-mask""": FlaubertWithLMHeadModel,
"""question-answering""": FlaubertForQuestionAnsweringSimple,
"""text-classification""": FlaubertForSequenceClassification,
"""token-classification""": FlaubertForTokenClassification,
"""zero-shot""": FlaubertForSequenceClassification,
}
if is_torch_available()
else {}
)
def a__ ( self : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict ):
'''simple docstring'''
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith('Fast' )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def a__ ( self : List[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any]=False ):
'''simple docstring'''
__magic_name__ = super()._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ )
if return_labels:
if model_class.__name__ == "FlaubertForQuestionAnswering":
__magic_name__ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase_ )
__magic_name__ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase_ )
return inputs_dict
def a__ ( self : List[str] ):
'''simple docstring'''
__magic_name__ = FlaubertModelTester(self )
__magic_name__ = ConfigTester(self , config_class=UpperCamelCase_ , emb_dim=3_7 )
def a__ ( self : Optional[int] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def a__ ( self : Optional[Any] ):
'''simple docstring'''
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*UpperCamelCase_ )
def a__ ( self : Dict ):
'''simple docstring'''
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*UpperCamelCase_ )
def a__ ( self : int ):
'''simple docstring'''
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_simple_qa(*UpperCamelCase_ )
def a__ ( self : int ):
'''simple docstring'''
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*UpperCamelCase_ )
def a__ ( self : Optional[int] ):
'''simple docstring'''
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*UpperCamelCase_ )
def a__ ( self : str ):
'''simple docstring'''
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_token_classif(*UpperCamelCase_ )
def a__ ( self : Union[str, Any] ):
'''simple docstring'''
__magic_name__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_multiple_choice(*UpperCamelCase_ )
@slow
def a__ ( self : Any ):
'''simple docstring'''
for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ = FlaubertModel.from_pretrained(UpperCamelCase_ )
self.assertIsNotNone(UpperCamelCase_ )
@slow
@require_torch_gpu
def a__ ( self : str ):
'''simple docstring'''
__magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# FlauBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == FlaubertForMultipleChoice:
return
__magic_name__ = True
__magic_name__ = model_class(config=UpperCamelCase_ )
__magic_name__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ )
__magic_name__ = torch.jit.trace(
UpperCamelCase_ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(UpperCamelCase_ , os.path.join(UpperCamelCase_ , 'traced_model.pt' ) )
__magic_name__ = torch.jit.load(os.path.join(UpperCamelCase_ , 'traced_model.pt' ) , map_location=UpperCamelCase_ )
loaded(inputs_dict['input_ids'].to(UpperCamelCase_ ) , inputs_dict['attention_mask'].to(UpperCamelCase_ ) )
@require_torch
class UpperCamelCase__ ( unittest.TestCase):
"""simple docstring"""
@slow
def a__ ( self : Dict ):
'''simple docstring'''
__magic_name__ = FlaubertModel.from_pretrained('flaubert/flaubert_base_cased' )
__magic_name__ = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] )
with torch.no_grad():
__magic_name__ = model(UpperCamelCase_ )[0]
__magic_name__ = torch.Size((1, 1_1, 7_6_8) )
self.assertEqual(output.shape , UpperCamelCase_ )
__magic_name__ = torch.tensor(
[[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1e-4 ) )
| 545
| 0
|
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class _UpperCamelCase ( _UpperCAmelCase ):
"""simple docstring"""
__a : torch.FloatTensor
class _UpperCamelCase ( _UpperCAmelCase ,_UpperCAmelCase ):
"""simple docstring"""
@register_to_config
def __init__( self , lowerCAmelCase__ = 3 , lowerCAmelCase__ = 3 , lowerCAmelCase__ = ("DownEncoderBlock2D",) , lowerCAmelCase__ = ("UpDecoderBlock2D",) , lowerCAmelCase__ = (64,) , lowerCAmelCase__ = 1 , lowerCAmelCase__ = "silu" , lowerCAmelCase__ = 3 , lowerCAmelCase__ = 32 , lowerCAmelCase__ = 2_56 , lowerCAmelCase__ = 32 , lowerCAmelCase__ = None , lowerCAmelCase__ = 0.1_8215 , lowerCAmelCase__ = "group" , ) -> Tuple:
'''simple docstring'''
super().__init__()
# pass init params to Encoder
__lowercase = Encoder(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , down_block_types=lowerCAmelCase__ , block_out_channels=lowerCAmelCase__ , layers_per_block=lowerCAmelCase__ , act_fn=lowerCAmelCase__ , norm_num_groups=lowerCAmelCase__ , double_z=lowerCAmelCase__ , )
__lowercase = vq_embed_dim if vq_embed_dim is not None else latent_channels
__lowercase = nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , 1 )
__lowercase = VectorQuantizer(lowerCAmelCase__ , lowerCAmelCase__ , beta=0.25 , remap=lowerCAmelCase__ , sane_index_shape=lowerCAmelCase__ )
__lowercase = nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , 1 )
# pass init params to Decoder
__lowercase = Decoder(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , up_block_types=lowerCAmelCase__ , block_out_channels=lowerCAmelCase__ , layers_per_block=lowerCAmelCase__ , act_fn=lowerCAmelCase__ , norm_num_groups=lowerCAmelCase__ , norm_type=lowerCAmelCase__ , )
@apply_forward_hook
def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ = True ) -> VQEncoderOutput:
'''simple docstring'''
__lowercase = self.encoder(lowerCAmelCase__ )
__lowercase = self.quant_conv(lowerCAmelCase__ )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=lowerCAmelCase__ )
@apply_forward_hook
def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ = False , lowerCAmelCase__ = True ) -> Union[DecoderOutput, torch.FloatTensor]:
'''simple docstring'''
if not force_not_quantize:
__lowercase , __lowercase , __lowercase = self.quantize(lowerCAmelCase__ )
else:
__lowercase = h
__lowercase = self.post_quant_conv(lowerCAmelCase__ )
__lowercase = self.decoder(lowerCAmelCase__ , quant if self.config.norm_type == '''spatial''' else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowerCAmelCase__ )
def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ = True ) -> Union[DecoderOutput, torch.FloatTensor]:
'''simple docstring'''
__lowercase = sample
__lowercase = self.encode(lowerCAmelCase__ ).latents
__lowercase = self.decode(lowerCAmelCase__ ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowerCAmelCase__ )
| 522
|
import random
from typing import Any
def UpperCAmelCase ( lowercase ):
"""simple docstring"""
for _ in range(len(lowercase ) ):
__lowercase = random.randint(0 , len(lowercase ) - 1 )
__lowercase = random.randint(0 , len(lowercase ) - 1 )
__lowercase , __lowercase = data[b], data[a]
return data
if __name__ == "__main__":
__a : List[str] = [0, 1, 2, 3, 4, 5, 6, 7]
__a : Any = ["""python""", """says""", """hello""", """!"""]
print("""Fisher-Yates Shuffle:""")
print("""List""", integers, strings)
print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
| 522
| 1
|
"""simple docstring"""
import numpy as np
def lowercase__ ( lowerCAmelCase__ : Union[str, Any] ) -> Dict:
'''simple docstring'''
return 1 / (1 + np.exp(-vector ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 642
|
"""simple docstring"""
import argparse
from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird
from transformers.utils import logging
logging.set_verbosity_info()
def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
"""simple docstring"""
# Initialise PyTorch model
_lowerCAmelCase = BigBirdConfig.from_json_file(__lowerCamelCase )
print(F'''Building PyTorch model from configuration: {config}''' )
if is_trivia_qa:
_lowerCAmelCase = BigBirdForQuestionAnswering(__lowerCamelCase )
else:
_lowerCAmelCase = BigBirdForPreTraining(__lowerCamelCase )
# Load weights from tf checkpoint
load_tf_weights_in_big_bird(__lowerCamelCase, __lowerCamelCase, is_trivia_qa=__lowerCamelCase )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
model.save_pretrained(__lowerCamelCase )
if __name__ == "__main__":
a__ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--big_bird_config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained BERT model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head."""
)
a__ : List[Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa
)
| 589
| 0
|
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json",
# See all Nat models at https://huggingface.co/models?filter=nat
}
class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ):
__lowerCamelCase : str = "nat"
__lowerCamelCase : Union[str, Any] = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=64 , _lowerCAmelCase=[3, 4, 6, 5] , _lowerCAmelCase=[2, 4, 8, 16] , _lowerCAmelCase=7 , _lowerCAmelCase=3.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.0 , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase , ) -> Union[str, Any]:
super().__init__(**_lowerCAmelCase )
_lowerCAmelCase = patch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = embed_dim
_lowerCAmelCase = depths
_lowerCAmelCase = len(_lowerCAmelCase )
_lowerCAmelCase = num_heads
_lowerCAmelCase = kernel_size
_lowerCAmelCase = mlp_ratio
_lowerCAmelCase = qkv_bias
_lowerCAmelCase = hidden_dropout_prob
_lowerCAmelCase = attention_probs_dropout_prob
_lowerCAmelCase = drop_path_rate
_lowerCAmelCase = hidden_act
_lowerCAmelCase = layer_norm_eps
_lowerCAmelCase = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_lowerCAmelCase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
_lowerCAmelCase = layer_scale_init_value
_lowerCAmelCase = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(_lowerCAmelCase ) + 1 )]
_lowerCAmelCase , _lowerCAmelCase = get_aligned_output_features_output_indices(
out_features=_lowerCAmelCase , out_indices=_lowerCAmelCase , stage_names=self.stage_names )
| 489
|
'''simple docstring'''
_SCREAMING_SNAKE_CASE = range(2, 20 + 1)
_SCREAMING_SNAKE_CASE = [10**k for k in range(ks[-1] + 1)]
_SCREAMING_SNAKE_CASE = {}
def __a(SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] ):
'''simple docstring'''
_lowerCAmelCase = sum(a_i[j] for j in range(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) )
_lowerCAmelCase = sum(a_i[j] * base[j] for j in range(min(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) )
_lowerCAmelCase , _lowerCAmelCase = 0, 0
_lowerCAmelCase = n - i
_lowerCAmelCase = memo.get(SCREAMING_SNAKE_CASE_ )
if sub_memo is not None:
_lowerCAmelCase = sub_memo.get(SCREAMING_SNAKE_CASE_ )
if jumps is not None and len(SCREAMING_SNAKE_CASE_ ) > 0:
# find and make the largest jump without going over
_lowerCAmelCase = -1
for _k in range(len(SCREAMING_SNAKE_CASE_ ) - 1 , -1 , -1 ):
if jumps[_k][2] <= k and jumps[_k][1] <= max_dn:
_lowerCAmelCase = _k
break
if max_jump >= 0:
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = jumps[max_jump]
# since the difference between jumps is cached, add c
_lowerCAmelCase = diff + c
for j in range(min(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) ):
_lowerCAmelCase , _lowerCAmelCase = divmod(SCREAMING_SNAKE_CASE_ , 10 )
if new_c > 0:
add(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
else:
_lowerCAmelCase = []
else:
_lowerCAmelCase = {c: []}
_lowerCAmelCase = sub_memo
if dn >= max_dn or c + diff >= base[k]:
return diff, dn
if k > ks[0]:
while True:
# keep doing smaller jumps
_lowerCAmelCase , _lowerCAmelCase = next_term(SCREAMING_SNAKE_CASE_ , k - 1 , i + dn , SCREAMING_SNAKE_CASE_ )
diff += _diff
dn += terms_jumped
if dn >= max_dn or c + diff >= base[k]:
break
else:
# would be too small a jump, just compute sequential terms instead
_lowerCAmelCase , _lowerCAmelCase = compute(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , i + dn , SCREAMING_SNAKE_CASE_ )
diff += _diff
dn += terms_jumped
_lowerCAmelCase = sub_memo[c]
# keep jumps sorted by # of terms skipped
_lowerCAmelCase = 0
while j < len(SCREAMING_SNAKE_CASE_ ):
if jumps[j][1] > dn:
break
j += 1
# cache the jump for this value digitsum(b) and c
sub_memo[c].insert(SCREAMING_SNAKE_CASE_ , (diff, dn, k) )
return (diff, dn)
def __a(SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] ):
'''simple docstring'''
if i >= n:
return 0, i
if k > len(SCREAMING_SNAKE_CASE_ ):
a_i.extend([0 for _ in range(k - len(SCREAMING_SNAKE_CASE_ ) )] )
# note: a_i -> b * 10^k + c
# ds_b -> digitsum(b)
# ds_c -> digitsum(c)
_lowerCAmelCase = i
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0, 0, 0
for j in range(len(SCREAMING_SNAKE_CASE_ ) ):
if j >= k:
ds_b += a_i[j]
else:
ds_c += a_i[j]
while i < n:
i += 1
_lowerCAmelCase = ds_c + ds_b
diff += addend
_lowerCAmelCase = 0
for j in range(SCREAMING_SNAKE_CASE_ ):
_lowerCAmelCase = a_i[j] + addend
_lowerCAmelCase , _lowerCAmelCase = divmod(SCREAMING_SNAKE_CASE_ , 10 )
ds_c += a_i[j]
if addend > 0:
break
if addend > 0:
add(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return diff, i - start_i
def __a(SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any ):
'''simple docstring'''
for j in range(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ):
_lowerCAmelCase = digits[j] + addend
if s >= 10:
_lowerCAmelCase , _lowerCAmelCase = divmod(SCREAMING_SNAKE_CASE_ , 10 )
_lowerCAmelCase = addend // 10 + quotient
else:
_lowerCAmelCase = s
_lowerCAmelCase = addend // 10
if addend == 0:
break
while addend > 0:
_lowerCAmelCase , _lowerCAmelCase = divmod(SCREAMING_SNAKE_CASE_ , 10 )
digits.append(SCREAMING_SNAKE_CASE_ )
def __a(SCREAMING_SNAKE_CASE_ : int = 10**15 ):
'''simple docstring'''
_lowerCAmelCase = [1]
_lowerCAmelCase = 1
_lowerCAmelCase = 0
while True:
_lowerCAmelCase , _lowerCAmelCase = next_term(SCREAMING_SNAKE_CASE_ , 20 , i + dn , SCREAMING_SNAKE_CASE_ )
dn += terms_jumped
if dn == n - i:
break
_lowerCAmelCase = 0
for j in range(len(SCREAMING_SNAKE_CASE_ ) ):
a_n += digits[j] * 10**j
return a_n
if __name__ == "__main__":
print(f'''{solution() = }''')
| 489
| 1
|
"""simple docstring"""
import warnings
from diffusers import StableDiffusionImgaImgPipeline # noqa F401
warnings.warn(
'The `image_to_image.py` script is outdated. Please use directly `from diffusers import'
' StableDiffusionImg2ImgPipeline` instead.'
)
| 621
|
"""simple docstring"""
def lowercase__ ( lowerCamelCase, lowerCamelCase ):
return abs(lowerCamelCase ) if a == 0 else greatest_common_divisor(b % a, lowerCamelCase )
def lowercase__ ( lowerCamelCase, lowerCamelCase ):
while y: # --> when y=0 then loop will terminate and return x as final GCD.
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = y, x % y
return abs(lowerCamelCase )
def lowercase__ ( ):
try:
_SCREAMING_SNAKE_CASE : Union[str, Any] = input('Enter two integers separated by comma (,): ' ).split(',' )
_SCREAMING_SNAKE_CASE : Dict = int(nums[0] )
_SCREAMING_SNAKE_CASE : Dict = int(nums[1] )
print(
f"""greatest_common_divisor({num_a}, {num_a}) = """
f"""{greatest_common_divisor(lowerCamelCase, lowerCamelCase )}""" )
print(f"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(lowerCamelCase, lowerCamelCase )}""" )
except (IndexError, UnboundLocalError, ValueError):
print('Wrong input' )
if __name__ == "__main__":
main()
| 621
| 1
|
"""simple docstring"""
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import debug_launcher
from accelerate.test_utils import (
execute_subprocess_async,
require_cpu,
require_huggingface_suite,
require_multi_gpu,
require_single_gpu,
)
from accelerate.utils import patch_environment
@require_huggingface_suite
class A__ ( unittest.TestCase):
"""simple docstring"""
def a__ ( self: Union[str, Any] )-> Optional[int]:
lowerCamelCase : Union[str, Any] = inspect.getfile(accelerate.test_utils )
lowerCamelCase : List[Any] = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps""", """test_metrics.py"""] )
from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401
lowerCamelCase : Dict = test_metrics
@require_cpu
def a__ ( self: Tuple )-> Optional[int]:
debug_launcher(self.test_metrics.main , num_processes=1 )
@require_cpu
def a__ ( self: int )-> List[str]:
debug_launcher(self.test_metrics.main )
@require_single_gpu
def a__ ( self: Dict )-> Dict:
self.test_metrics.main()
@require_multi_gpu
def a__ ( self: str )-> str:
print(f'Found {torch.cuda.device_count()} devices.' )
lowerCamelCase : Optional[int] = ["""torchrun""", f'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__a , env=os.environ.copy() )
| 42
|
"""simple docstring"""
import inspect
import unittest
import torch
import torch.nn as nn
from accelerate.hooks import (
AlignDevicesHook,
ModelHook,
SequentialHook,
add_hook_to_module,
attach_align_device_hook,
remove_hook_from_module,
remove_hook_from_submodules,
)
from accelerate.test_utils import require_multi_gpu
class A__ ( nn.Module):
"""simple docstring"""
def __init__( self: Dict )-> Dict:
super().__init__()
lowerCamelCase : Tuple = nn.Linear(3 , 4 )
lowerCamelCase : Optional[Any] = nn.BatchNormad(4 )
lowerCamelCase : Optional[Any] = nn.Linear(4 , 5 )
def a__ ( self: List[str] , __a: List[Any] )-> Optional[Any]:
return self.lineara(self.batchnorm(self.lineara(__a ) ) )
class A__ ( __lowercase):
"""simple docstring"""
def a__ ( self: Tuple , __a: int , *__a: Any , **__a: Tuple )-> Tuple:
return (args[0] + 1,) + args[1:], kwargs
class A__ ( __lowercase):
"""simple docstring"""
def a__ ( self: Optional[int] , __a: List[str] , __a: List[Any] )-> List[str]:
return output + 1
class A__ ( unittest.TestCase):
"""simple docstring"""
def a__ ( self: int )-> str:
lowerCamelCase : List[str] = ModelForTest()
lowerCamelCase : Dict = ModelHook()
add_hook_to_module(__a , __a )
self.assertEqual(test_model._hf_hook , __a )
self.assertTrue(hasattr(__a , """_old_forward""" ) )
# Check adding the hook did not change the name or the signature
self.assertEqual(test_model.forward.__name__ , """forward""" )
self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] )
remove_hook_from_module(__a )
self.assertFalse(hasattr(__a , """_hf_hook""" ) )
self.assertFalse(hasattr(__a , """_old_forward""" ) )
def a__ ( self: int )-> str:
lowerCamelCase : List[str] = ModelForTest()
lowerCamelCase : Union[str, Any] = ModelHook()
add_hook_to_module(__a , __a )
add_hook_to_module(__a , __a , append=__a )
self.assertEqual(isinstance(test_model._hf_hook , __a ) , __a )
self.assertEqual(len(test_model._hf_hook.hooks ) , 2 )
self.assertTrue(hasattr(__a , """_old_forward""" ) )
# Check adding the hook did not change the name or the signature
self.assertEqual(test_model.forward.__name__ , """forward""" )
self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] )
remove_hook_from_module(__a )
self.assertFalse(hasattr(__a , """_hf_hook""" ) )
self.assertFalse(hasattr(__a , """_old_forward""" ) )
def a__ ( self: List[Any] )-> List[str]:
lowerCamelCase : str = ModelForTest()
lowerCamelCase : Dict = torch.randn(2 , 3 )
lowerCamelCase : Union[str, Any] = test_model(x + 1 )
lowerCamelCase : Optional[int] = test_model(x + 2 )
lowerCamelCase : List[Any] = PreForwardHook()
add_hook_to_module(__a , __a )
lowerCamelCase : Optional[int] = test_model(__a )
self.assertTrue(torch.allclose(__a , __a , atol=1e-5 ) )
# Attaching a hook to a model when it already has one replaces, does not chain
lowerCamelCase : Dict = PreForwardHook()
add_hook_to_module(__a , __a )
lowerCamelCase : Tuple = test_model(__a )
self.assertTrue(torch.allclose(__a , __a , atol=1e-5 ) )
# You need to use the sequential hook to chain two or more hooks
lowerCamelCase : Any = SequentialHook(PreForwardHook() , PreForwardHook() )
add_hook_to_module(__a , __a )
lowerCamelCase : Optional[Any] = test_model(__a )
assert torch.allclose(__a , __a , atol=1e-5 )
def a__ ( self: Any )-> Optional[int]:
lowerCamelCase : str = ModelForTest()
lowerCamelCase : List[str] = torch.randn(2 , 3 )
lowerCamelCase : int = test_model(__a )
lowerCamelCase : Dict = PostForwardHook()
add_hook_to_module(__a , __a )
lowerCamelCase : Tuple = test_model(__a )
self.assertTrue(torch.allclose(__a , output + 1 , atol=1e-5 ) )
# Attaching a hook to a model when it already has one replaces, does not chain
lowerCamelCase : str = PostForwardHook()
add_hook_to_module(__a , __a )
lowerCamelCase : Optional[Any] = test_model(__a )
self.assertTrue(torch.allclose(__a , output + 1 , atol=1e-5 ) )
# You need to use the sequential hook to chain two or more hooks
lowerCamelCase : Union[str, Any] = SequentialHook(PostForwardHook() , PostForwardHook() )
add_hook_to_module(__a , __a )
lowerCamelCase : str = test_model(__a )
assert torch.allclose(__a , output + 2 , atol=1e-5 )
def a__ ( self: int )-> Dict:
lowerCamelCase : List[Any] = ModelForTest()
lowerCamelCase : Optional[int] = torch.randn(2 , 3 )
lowerCamelCase : List[str] = test_model(__a )
lowerCamelCase : Any = PostForwardHook()
add_hook_to_module(__a , __a )
lowerCamelCase : str = test_model(__a )
self.assertTrue(torch.allclose(__a , output + 1 ) )
self.assertTrue(outputa.requires_grad )
lowerCamelCase : Optional[int] = True
lowerCamelCase : Optional[int] = test_model(__a )
self.assertFalse(outputa.requires_grad )
@require_multi_gpu
def a__ ( self: List[str] )-> Union[str, Any]:
lowerCamelCase : int = ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# This will move each submodule on different devices
add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) )
add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) )
add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) )
self.assertEqual(model.lineara.weight.device , torch.device(0 ) )
self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) )
self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) )
self.assertEqual(model.lineara.weight.device , torch.device(1 ) )
# We can still make a forward pass. The input does not need to be on any particular device
lowerCamelCase : str = torch.randn(2 , 3 )
lowerCamelCase : Dict = model(__a )
self.assertEqual(output.device , torch.device(1 ) )
# We can add a general hook to put back output on same device as input.
add_hook_to_module(__a , AlignDevicesHook(io_same_device=__a ) )
lowerCamelCase : Optional[int] = torch.randn(2 , 3 ).to(0 )
lowerCamelCase : str = model(__a )
self.assertEqual(output.device , torch.device(0 ) )
def a__ ( self: List[str] )-> Tuple:
lowerCamelCase : Union[str, Any] = ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# This will move each submodule on different devices
lowerCamelCase : Tuple = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True}
add_hook_to_module(model.lineara , AlignDevicesHook(**__a ) )
add_hook_to_module(model.batchnorm , AlignDevicesHook(**__a ) )
add_hook_to_module(model.lineara , AlignDevicesHook(**__a ) )
# Parameters have been offloaded, so on the meta device
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
# Buffers are not included in the offload by default, so are on the execution device
lowerCamelCase : List[Any] = torch.device(hook_kwargs["""execution_device"""] )
self.assertEqual(model.batchnorm.running_mean.device , __a )
lowerCamelCase : Optional[Any] = torch.randn(2 , 3 )
lowerCamelCase : Optional[Any] = model(__a )
self.assertEqual(output.device , __a )
# Removing hooks loads back the weights in the model.
remove_hook_from_module(model.lineara )
remove_hook_from_module(model.batchnorm )
remove_hook_from_module(model.lineara )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# Now test with buffers included in the offload
lowerCamelCase : Any = {
"""execution_device""": 0 if torch.cuda.is_available() else """cpu""",
"""offload""": True,
"""offload_buffers""": True,
}
add_hook_to_module(model.lineara , AlignDevicesHook(**__a ) )
add_hook_to_module(model.batchnorm , AlignDevicesHook(**__a ) )
add_hook_to_module(model.lineara , AlignDevicesHook(**__a ) )
# Parameters have been offloaded, so on the meta device, buffers included
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) )
lowerCamelCase : int = torch.randn(2 , 3 )
lowerCamelCase : Optional[int] = model(__a )
self.assertEqual(output.device , __a )
# Removing hooks loads back the weights in the model.
remove_hook_from_module(model.lineara )
remove_hook_from_module(model.batchnorm )
remove_hook_from_module(model.lineara )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
def a__ ( self: Any )-> List[str]:
lowerCamelCase : int = ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# This will move each submodule on different devices
lowerCamelCase : int = 0 if torch.cuda.is_available() else """cpu"""
attach_align_device_hook(__a , execution_device=__a , offload=__a )
# Parameters have been offloaded, so on the meta device
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
# Buffers are not included in the offload by default, so are on the execution device
lowerCamelCase : List[Any] = torch.device(__a )
self.assertEqual(model.batchnorm.running_mean.device , __a )
lowerCamelCase : Dict = torch.randn(2 , 3 )
lowerCamelCase : Optional[Any] = model(__a )
self.assertEqual(output.device , __a )
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(__a )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# Now test with buffers included in the offload
attach_align_device_hook(__a , execution_device=__a , offload=__a , offload_buffers=__a )
# Parameters have been offloaded, so on the meta device, buffers included
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) )
lowerCamelCase : Optional[int] = torch.randn(2 , 3 )
lowerCamelCase : int = model(__a )
self.assertEqual(output.device , __a )
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(__a )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
def a__ ( self: Optional[Any] )-> List[Any]:
lowerCamelCase : List[Any] = ModelForTest()
# Everything is on CPU
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# This will move each submodule on different devices
lowerCamelCase : Any = 0 if torch.cuda.is_available() else """cpu"""
attach_align_device_hook(
__a , execution_device=__a , offload=__a , weights_map=model.state_dict() )
# Parameters have been offloaded, so on the meta device
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
# Buffers are not included in the offload by default, so are on the execution device
lowerCamelCase : List[Any] = torch.device(__a )
self.assertEqual(model.batchnorm.running_mean.device , __a )
lowerCamelCase : Dict = torch.randn(2 , 3 )
lowerCamelCase : int = model(__a )
self.assertEqual(output.device , __a )
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(__a )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
# Now test with buffers included in the offload
attach_align_device_hook(
__a , execution_device=__a , offload=__a , weights_map=model.state_dict() , offload_buffers=__a , )
# Parameters have been offloaded, so on the meta device, buffers included
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) )
self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) )
lowerCamelCase : Tuple = torch.randn(2 , 3 )
lowerCamelCase : Any = model(__a )
self.assertEqual(output.device , __a )
# Removing hooks loads back the weights in the model.
remove_hook_from_submodules(__a )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) )
self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
| 42
| 1
|
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a__ : List[Any] = logging.get_logger(__name__)
a__ : str = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'}
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = '''ctrl'''
__SCREAMING_SNAKE_CASE = ['''past_key_values''']
__SCREAMING_SNAKE_CASE = {
'''max_position_embeddings''': '''n_positions''',
'''hidden_size''': '''n_embd''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self , lowercase=2_4_6_5_3_4 , lowercase=2_5_6 , lowercase=1_2_8_0 , lowercase=8_1_9_2 , lowercase=4_8 , lowercase=1_6 , lowercase=0.1 , lowercase=0.1 , lowercase=1E-6 , lowercase=0.02 , lowercase=True , **lowercase , ) -> Any:
__UpperCamelCase = vocab_size
__UpperCamelCase = n_positions
__UpperCamelCase = n_embd
__UpperCamelCase = n_layer
__UpperCamelCase = n_head
__UpperCamelCase = dff
__UpperCamelCase = resid_pdrop
__UpperCamelCase = embd_pdrop
__UpperCamelCase = layer_norm_epsilon
__UpperCamelCase = initializer_range
__UpperCamelCase = use_cache
super().__init__(**lowercase )
| 601
|
'''simple docstring'''
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class UpperCAmelCase__ ( unittest.TestCase):
def __lowerCamelCase ( self , lowercase ) -> str:
for model_result in results.values():
for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ):
__UpperCamelCase = model_result["""result"""][batch_size][sequence_length]
self.assertIsNotNone(lowercase )
def __lowerCamelCase ( self ) -> Tuple:
__UpperCamelCase = """sshleifer/tiny-gpt2"""
__UpperCamelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , )
__UpperCamelCase = PyTorchBenchmark(lowercase )
__UpperCamelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __lowerCamelCase ( self ) -> Optional[int]:
__UpperCamelCase = """sgugger/tiny-distilbert-classification"""
__UpperCamelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , only_pretrain_model=lowercase , )
__UpperCamelCase = PyTorchBenchmark(lowercase )
__UpperCamelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __lowerCamelCase ( self ) -> Union[str, Any]:
__UpperCamelCase = """sshleifer/tiny-gpt2"""
__UpperCamelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowercase , inference=lowercase , torchscript=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , )
__UpperCamelCase = PyTorchBenchmark(lowercase )
__UpperCamelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" )
def __lowerCamelCase ( self ) -> Any:
__UpperCamelCase = """sshleifer/tiny-gpt2"""
__UpperCamelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowercase , inference=lowercase , fpaa=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , )
__UpperCamelCase = PyTorchBenchmark(lowercase )
__UpperCamelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __lowerCamelCase ( self ) -> Dict:
__UpperCamelCase = """sshleifer/tiny-gpt2"""
__UpperCamelCase = AutoConfig.from_pretrained(lowercase )
# set architectures equal to `None`
__UpperCamelCase = None
__UpperCamelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , )
__UpperCamelCase = PyTorchBenchmark(lowercase , configs=[config] )
__UpperCamelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __lowerCamelCase ( self ) -> List[Any]:
__UpperCamelCase = """sshleifer/tiny-gpt2"""
__UpperCamelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , )
__UpperCamelCase = PyTorchBenchmark(lowercase )
__UpperCamelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" )
def __lowerCamelCase ( self ) -> int:
__UpperCamelCase = """sshleifer/tiny-gpt2"""
__UpperCamelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=lowercase , multi_process=lowercase , )
__UpperCamelCase = PyTorchBenchmark(lowercase )
__UpperCamelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def __lowerCamelCase ( self ) -> int:
__UpperCamelCase = """sshleifer/tiny-gpt2"""
__UpperCamelCase = AutoConfig.from_pretrained(lowercase )
__UpperCamelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , )
__UpperCamelCase = PyTorchBenchmark(lowercase , configs=[config] )
__UpperCamelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __lowerCamelCase ( self ) -> List[str]:
__UpperCamelCase = """sshleifer/tinier_bart"""
__UpperCamelCase = AutoConfig.from_pretrained(lowercase )
__UpperCamelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , )
__UpperCamelCase = PyTorchBenchmark(lowercase , configs=[config] )
__UpperCamelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def __lowerCamelCase ( self ) -> Optional[Any]:
__UpperCamelCase = """sshleifer/tiny-gpt2"""
__UpperCamelCase = AutoConfig.from_pretrained(lowercase )
__UpperCamelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , )
__UpperCamelCase = PyTorchBenchmark(lowercase , configs=[config] )
__UpperCamelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def __lowerCamelCase ( self ) -> Optional[int]:
__UpperCamelCase = """sshleifer/tinier_bart"""
__UpperCamelCase = AutoConfig.from_pretrained(lowercase )
__UpperCamelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , )
__UpperCamelCase = PyTorchBenchmark(lowercase , configs=[config] )
__UpperCamelCase = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def __lowerCamelCase ( self ) -> List[Any]:
__UpperCamelCase = """sshleifer/tiny-gpt2"""
with tempfile.TemporaryDirectory() as tmp_dir:
__UpperCamelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowercase , inference=lowercase , save_to_csv=lowercase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(lowercase , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(lowercase , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(lowercase , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(lowercase , """train_time.csv""" ) , env_info_csv_file=os.path.join(lowercase , """env.csv""" ) , multi_process=lowercase , )
__UpperCamelCase = PyTorchBenchmark(lowercase )
benchmark.run()
self.assertTrue(Path(os.path.join(lowercase , """inf_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(lowercase , """train_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(lowercase , """inf_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(lowercase , """train_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(lowercase , """env.csv""" ) ).exists() )
def __lowerCamelCase ( self ) -> int:
__UpperCamelCase = """sshleifer/tiny-gpt2"""
def _check_summary_is_not_empty(lowercase ):
self.assertTrue(hasattr(lowercase , """sequential""" ) )
self.assertTrue(hasattr(lowercase , """cumulative""" ) )
self.assertTrue(hasattr(lowercase , """current""" ) )
self.assertTrue(hasattr(lowercase , """total""" ) )
with tempfile.TemporaryDirectory() as tmp_dir:
__UpperCamelCase = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(lowercase , """log.txt""" ) , log_print=lowercase , trace_memory_line_by_line=lowercase , multi_process=lowercase , )
__UpperCamelCase = PyTorchBenchmark(lowercase )
__UpperCamelCase = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(lowercase , """log.txt""" ) ).exists() )
| 601
| 1
|
"""simple docstring"""
from maths.is_square_free import is_square_free
from maths.prime_factors import prime_factors
def __lowercase ( a : int ) -> int:
__snake_case : Optional[int] =prime_factors(a )
if is_square_free(a ):
return -1 if len(a ) % 2 else 1
return 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 715
|
"""simple docstring"""
from __future__ import annotations
def __lowercase ( a : int , a : int ) -> list[str]:
if partitions <= 0:
raise ValueError('''partitions must be a positive number!''' )
if partitions > number_of_bytes:
raise ValueError('''partitions can not > number_of_bytes!''' )
__snake_case : List[str] =number_of_bytes // partitions
__snake_case : str =[]
for i in range(a ):
__snake_case : Optional[Any] =i * bytes_per_partition + 1
__snake_case : Any =(
number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition
)
allocation_list.append(f'''{start_bytes}-{end_bytes}''' )
return allocation_list
if __name__ == "__main__":
import doctest
doctest.testmod()
| 497
| 0
|
def UpperCamelCase ( lowercase_ ) -> list:
'''simple docstring'''
for i in range(len(lowercase_ ) - 1 , 0 , -1 ):
lowercase__ : Union[str, Any] = False
for j in range(lowercase_ , 0 , -1 ):
if unsorted[j] < unsorted[j - 1]:
lowercase__ , lowercase__ : Tuple = unsorted[j - 1], unsorted[j]
lowercase__ : str = True
for j in range(lowercase_ ):
if unsorted[j] > unsorted[j + 1]:
lowercase__ , lowercase__ : List[Any] = unsorted[j + 1], unsorted[j]
lowercase__ : Dict = True
if not swapped:
break
return unsorted
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCamelCase__ : Optional[int] = input("""Enter numbers separated by a comma:\n""").strip()
lowerCamelCase__ : Dict = [int(item) for item in user_input.split(""",""")]
print(f'''{cocktail_shaker_sort(unsorted) = }''')
| 12
|
"""simple docstring"""
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json",
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 'blip_2_vision_model'
def __init__( self , _a=1_408 , _a=6_144 , _a=39 , _a=16 , _a=224 , _a=14 , _a="gelu" , _a=0.0_0001 , _a=0.0 , _a=1E-10 , _a=True , **_a , ):
super().__init__(**_a )
__a = hidden_size
__a = intermediate_size
__a = num_hidden_layers
__a = num_attention_heads
__a = patch_size
__a = image_size
__a = initializer_range
__a = attention_dropout
__a = layer_norm_eps
__a = hidden_act
__a = qkv_bias
@classmethod
def __UpperCAmelCase ( cls , _a , **_a ):
cls._set_token_in_kwargs(_a )
__a , __a = cls.get_config_dict(_a , **_a )
# get the vision config dict if we are loading from Blip2Config
if config_dict.get('''model_type''' ) == "blip-2":
__a = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(_a , **_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : str = 'blip_2_qformer'
def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a=2 , _a=1_408 , **_a , ):
super().__init__(pad_token_id=_a , **_a )
__a = vocab_size
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = hidden_act
__a = intermediate_size
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = initializer_range
__a = layer_norm_eps
__a = position_embedding_type
__a = cross_attention_frequency
__a = encoder_hidden_size
@classmethod
def __UpperCAmelCase ( cls , _a , **_a ):
cls._set_token_in_kwargs(_a )
__a , __a = cls.get_config_dict(_a , **_a )
# get the qformer config dict if we are loading from Blip2Config
if config_dict.get('''model_type''' ) == "blip-2":
__a = config_dict['''qformer_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(_a , **_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Any = 'blip-2'
__UpperCAmelCase : List[str] = True
def __init__( self , _a=None , _a=None , _a=None , _a=32 , **_a ):
super().__init__(**_a )
if vision_config is None:
__a = {}
logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' )
if qformer_config is None:
__a = {}
logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' )
if text_config is None:
__a = {}
logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' )
__a = BlipaVisionConfig(**_a )
__a = BlipaQFormerConfig(**_a )
__a = text_config['''model_type'''] if '''model_type''' in text_config else '''opt'''
__a = CONFIG_MAPPING[text_model_type](**_a )
__a = self.text_config.tie_word_embeddings
__a = self.text_config.is_encoder_decoder
__a = num_query_tokens
__a = self.vision_config.hidden_size
__a = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
__a = 1.0
__a = 0.02
@classmethod
def __UpperCAmelCase ( cls , _a , _a , _a , **_a , ):
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_a , )
def __UpperCAmelCase ( self ):
__a = copy.deepcopy(self.__dict__ )
__a = self.vision_config.to_dict()
__a = self.qformer_config.to_dict()
__a = self.text_config.to_dict()
__a = self.__class__.model_type
return output
| 695
| 0
|
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _lowerCAmelCase ( __a , unittest.TestCase ):
_lowercase =KandinskyInpaintPipeline
_lowercase =['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''']
_lowercase =[
'''prompt''',
'''negative_prompt''',
'''image_embeds''',
'''negative_image_embeds''',
'''image''',
'''mask_image''',
]
_lowercase =[
'''generator''',
'''height''',
'''width''',
'''latents''',
'''guidance_scale''',
'''negative_prompt''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
_lowercase =False
@property
def __a ( self ) -> List[Any]:
return 32
@property
def __a ( self ) -> str:
return 32
@property
def __a ( self ) -> List[str]:
return self.time_input_dim
@property
def __a ( self ) -> Any:
return self.time_input_dim * 4
@property
def __a ( self ) -> Union[str, Any]:
return 100
@property
def __a ( self ) -> Dict:
lowerCAmelCase_ = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" )
return tokenizer
@property
def __a ( self ) -> Optional[Any]:
torch.manual_seed(0 )
lowerCAmelCase_ = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , )
lowerCAmelCase_ = MultilingualCLIP(_UpperCamelCase )
lowerCAmelCase_ = text_encoder.eval()
return text_encoder
@property
def __a ( self ) -> str:
torch.manual_seed(0 )
lowerCAmelCase_ = {
"in_channels": 9,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "text_image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "text_image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
lowerCAmelCase_ = UNetaDConditionModel(**_UpperCamelCase )
return model
@property
def __a ( self ) -> List[Any]:
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def __a ( self ) -> Tuple:
torch.manual_seed(0 )
lowerCAmelCase_ = VQModel(**self.dummy_movq_kwargs )
return model
def __a ( self ) -> Tuple:
lowerCAmelCase_ = self.dummy_text_encoder
lowerCAmelCase_ = self.dummy_tokenizer
lowerCAmelCase_ = self.dummy_unet
lowerCAmelCase_ = self.dummy_movq
lowerCAmelCase_ = DDIMScheduler(
num_train_timesteps=1_000 , beta_schedule="linear" , beta_start=0.00085 , beta_end=0.012 , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , steps_offset=1 , prediction_type="epsilon" , thresholding=_UpperCamelCase , )
lowerCAmelCase_ = {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def __a ( self , _UpperCamelCase , _UpperCamelCase=0 ) -> Any:
lowerCAmelCase_ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase )
lowerCAmelCase_ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_UpperCamelCase )
# create init_image
lowerCAmelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase )
lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCAmelCase_ = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert("RGB" ).resize((256, 256) )
# create mask
lowerCAmelCase_ = np.ones((64, 64) , dtype=np.floataa )
lowerCAmelCase_ = 0
if str(_UpperCamelCase ).startswith("mps" ):
lowerCAmelCase_ = torch.manual_seed(_UpperCamelCase )
else:
lowerCAmelCase_ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase )
lowerCAmelCase_ = {
"prompt": "horse",
"image": init_image,
"mask_image": mask,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 64,
"width": 64,
"num_inference_steps": 2,
"guidance_scale": 4.0,
"output_type": "np",
}
return inputs
def __a ( self ) -> List[Any]:
lowerCAmelCase_ = "cpu"
lowerCAmelCase_ = self.get_dummy_components()
lowerCAmelCase_ = self.pipeline_class(**_UpperCamelCase )
lowerCAmelCase_ = pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
lowerCAmelCase_ = pipe(**self.get_dummy_inputs(_UpperCamelCase ) )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = pipe(
**self.get_dummy_inputs(_UpperCamelCase ) , return_dict=_UpperCamelCase , )[0]
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1]
print(f"""image.shape {image.shape}""" )
assert image.shape == (1, 64, 64, 3)
lowerCAmelCase_ = np.array(
[0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
def __a ( self ) -> Dict:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
def __a ( self ) -> List[str]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __a ( self ) -> Optional[int]:
lowerCAmelCase_ = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" )
lowerCAmelCase_ = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
lowerCAmelCase_ = np.ones((768, 768) , dtype=np.floataa )
lowerCAmelCase_ = 0
lowerCAmelCase_ = "a hat"
lowerCAmelCase_ = KandinskyPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa )
pipe_prior.to(_UpperCamelCase )
lowerCAmelCase_ = KandinskyInpaintPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa )
lowerCAmelCase_ = pipeline.to(_UpperCamelCase )
pipeline.set_progress_bar_config(disable=_UpperCamelCase )
lowerCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 )
lowerCAmelCase_ , lowerCAmelCase_ = pipe_prior(
_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
lowerCAmelCase_ = pipeline(
_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , image_embeds=_UpperCamelCase , negative_image_embeds=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=100 , height=768 , width=768 , output_type="np" , )
lowerCAmelCase_ = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase )
| 704
|
import math
class _lowerCAmelCase :
def __init__( self , _UpperCamelCase=0 ) -> Tuple: # a graph with Node 0,1,...,N-1
lowerCAmelCase_ = n
lowerCAmelCase_ = [
[math.inf for j in range(0 , _UpperCamelCase )] for i in range(0 , _UpperCamelCase )
] # adjacency matrix for weight
lowerCAmelCase_ = [
[math.inf for j in range(0 , _UpperCamelCase )] for i in range(0 , _UpperCamelCase )
] # dp[i][j] stores minimum distance from i to j
def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]:
lowerCAmelCase_ = w
def __a ( self ) -> List[str]:
for k in range(0 , self.n ):
for i in range(0 , self.n ):
for j in range(0 , self.n ):
lowerCAmelCase_ = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] )
def __a ( self , _UpperCamelCase , _UpperCamelCase ) -> Dict:
return self.dp[u][v]
if __name__ == "__main__":
_A = Graph(5)
graph.add_edge(0, 2, 9)
graph.add_edge(0, 4, 10)
graph.add_edge(1, 3, 5)
graph.add_edge(2, 3, 7)
graph.add_edge(3, 0, 10)
graph.add_edge(3, 1, 2)
graph.add_edge(3, 2, 1)
graph.add_edge(3, 4, 6)
graph.add_edge(4, 1, 3)
graph.add_edge(4, 2, 4)
graph.add_edge(4, 3, 9)
graph.floyd_warshall()
graph.show_min(1, 4)
graph.show_min(0, 3)
| 279
| 0
|
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
_A = "\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n"
_A = "\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n"
_A = "\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _lowerCAmelCase ( datasets.Metric ):
def __a ( self ) -> str:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[
"https://arxiv.org/abs/2102.01454",
"https://github.com/krishnap25/mauve",
] , )
def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase="auto" , _UpperCamelCase=-1 , _UpperCamelCase=0.9 , _UpperCamelCase=5 , _UpperCamelCase=500 , _UpperCamelCase="gpt2-large" , _UpperCamelCase=-1 , _UpperCamelCase=1_024 , _UpperCamelCase=25 , _UpperCamelCase=5 , _UpperCamelCase=True , _UpperCamelCase=25 , ) -> Union[str, Any]:
lowerCAmelCase_ = compute_mauve(
p_text=lowerCAmelCase__ , q_text=lowerCAmelCase__ , p_features=lowerCAmelCase__ , q_features=lowerCAmelCase__ , p_tokens=lowerCAmelCase__ , q_tokens=lowerCAmelCase__ , num_buckets=lowerCAmelCase__ , pca_max_data=lowerCAmelCase__ , kmeans_explained_var=lowerCAmelCase__ , kmeans_num_redo=lowerCAmelCase__ , kmeans_max_iter=lowerCAmelCase__ , featurize_model_name=lowerCAmelCase__ , device_id=lowerCAmelCase__ , max_text_length=lowerCAmelCase__ , divergence_curve_discretization_size=lowerCAmelCase__ , mauve_scaling_factor=lowerCAmelCase__ , verbose=lowerCAmelCase__ , seed=lowerCAmelCase__ , )
return out
| 290
|
from argparse import ArgumentParser, Namespace
from typing import Any, List, Optional
from ..pipelines import Pipeline, get_supported_tasks, pipeline
from ..utils import logging
from . import BaseTransformersCLICommand
try:
from fastapi import Body, FastAPI, HTTPException
from fastapi.routing import APIRoute
from pydantic import BaseModel
from starlette.responses import JSONResponse
from uvicorn import run
__magic_name__: str = True
except (ImportError, AttributeError):
__magic_name__: Dict = object
def UpperCamelCase ( *_A, **_A ):
"""simple docstring"""
pass
__magic_name__: Dict = False
__magic_name__: Optional[int] = logging.get_logger("transformers-cli/serving")
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : Tuple = pipeline(
task=args.task, model=args.model if args.model else None, config=args.config, tokenizer=args.tokenizer, device=args.device, )
return ServeCommand(_A, args.host, args.port, args.workers )
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : dict
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : List[str]
lowercase__ : Optional[List[int]]
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : str
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : Any
class snake_case__ ( _lowerCAmelCase ):
@staticmethod
def __magic_name__ ( lowerCAmelCase__ ) -> Any:
__magic_name__ : List[str] = parser.add_parser(
"""serve""" , help="""CLI tool to run inference requests through REST and GraphQL endpoints.""" )
serve_parser.add_argument(
"""--task""" , type=lowerCAmelCase__ , choices=get_supported_tasks() , help="""The task to run the pipeline on""" , )
serve_parser.add_argument("""--host""" , type=lowerCAmelCase__ , default="""localhost""" , help="""Interface the server will listen on.""" )
serve_parser.add_argument("""--port""" , type=lowerCAmelCase__ , default=88_88 , help="""Port the serving will listen to.""" )
serve_parser.add_argument("""--workers""" , type=lowerCAmelCase__ , default=1 , help="""Number of http workers""" )
serve_parser.add_argument("""--model""" , type=lowerCAmelCase__ , help="""Model's name or path to stored model.""" )
serve_parser.add_argument("""--config""" , type=lowerCAmelCase__ , help="""Model's config name or path to stored model.""" )
serve_parser.add_argument("""--tokenizer""" , type=lowerCAmelCase__ , help="""Tokenizer name to use.""" )
serve_parser.add_argument(
"""--device""" , type=lowerCAmelCase__ , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , )
serve_parser.set_defaults(func=lowerCAmelCase__ )
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]:
__magic_name__ : List[str] = pipeline
__magic_name__ : Any = host
__magic_name__ : List[str] = port
__magic_name__ : Any = workers
if not _serve_dependencies_installed:
raise RuntimeError(
"""Using serve command requires FastAPI and uvicorn. """
"""Please install transformers with [serving]: pip install \"transformers[serving]\"."""
"""Or install FastAPI and uvicorn separately.""" )
else:
logger.info(F'Serving model over {host}:{port}' )
__magic_name__ : Any = FastAPI(
routes=[
APIRoute(
"""/""" , self.model_info , response_model=lowerCAmelCase__ , response_class=lowerCAmelCase__ , methods=["""GET"""] , ),
APIRoute(
"""/tokenize""" , self.tokenize , response_model=lowerCAmelCase__ , response_class=lowerCAmelCase__ , methods=["""POST"""] , ),
APIRoute(
"""/detokenize""" , self.detokenize , response_model=lowerCAmelCase__ , response_class=lowerCAmelCase__ , methods=["""POST"""] , ),
APIRoute(
"""/forward""" , self.forward , response_model=lowerCAmelCase__ , response_class=lowerCAmelCase__ , methods=["""POST"""] , ),
] , timeout=6_00 , )
def __magic_name__ ( self ) -> Union[str, Any]:
run(self._app , host=self.host , port=self.port , workers=self.workers )
def __magic_name__ ( self ) -> List[Any]:
return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) )
def __magic_name__ ( self , lowerCAmelCase__ = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) , lowerCAmelCase__ = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) ) -> str:
try:
__magic_name__ : Dict = self._pipeline.tokenizer.tokenize(lowerCAmelCase__ )
if return_ids:
__magic_name__ : int = self._pipeline.tokenizer.convert_tokens_to_ids(lowerCAmelCase__ )
return ServeTokenizeResult(tokens=lowerCAmelCase__ , tokens_ids=lowerCAmelCase__ )
else:
return ServeTokenizeResult(tokens=lowerCAmelCase__ )
except Exception as e:
raise HTTPException(status_code=5_00 , detail={"""model""": """""", """error""": str(lowerCAmelCase__ )} )
def __magic_name__ ( self , lowerCAmelCase__ = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) , lowerCAmelCase__ = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) , lowerCAmelCase__ = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) , ) -> Union[str, Any]:
try:
__magic_name__ : List[Any] = self._pipeline.tokenizer.decode(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
return ServeDeTokenizeResult(model="""""" , text=lowerCAmelCase__ )
except Exception as e:
raise HTTPException(status_code=5_00 , detail={"""model""": """""", """error""": str(lowerCAmelCase__ )} )
async def __magic_name__ ( self , lowerCAmelCase__=Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) ) -> Any:
# Check we don't have empty string
if len(lowerCAmelCase__ ) == 0:
return ServeForwardResult(output=[] , attention=[] )
try:
# Forward through the model
__magic_name__ : Union[str, Any] = self._pipeline(lowerCAmelCase__ )
return ServeForwardResult(output=lowerCAmelCase__ )
except Exception as e:
raise HTTPException(5_00 , {"""error""": str(lowerCAmelCase__ )} )
| 324
| 0
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_A : Optional[int] = {
'''configuration_mobilebert''': [
'''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''MobileBertConfig''',
'''MobileBertOnnxConfig''',
],
'''tokenization_mobilebert''': ['''MobileBertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : Any = ['''MobileBertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : Union[str, Any] = [
'''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MobileBertForMaskedLM''',
'''MobileBertForMultipleChoice''',
'''MobileBertForNextSentencePrediction''',
'''MobileBertForPreTraining''',
'''MobileBertForQuestionAnswering''',
'''MobileBertForSequenceClassification''',
'''MobileBertForTokenClassification''',
'''MobileBertLayer''',
'''MobileBertModel''',
'''MobileBertPreTrainedModel''',
'''load_tf_weights_in_mobilebert''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : Optional[Any] = [
'''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFMobileBertForMaskedLM''',
'''TFMobileBertForMultipleChoice''',
'''TFMobileBertForNextSentencePrediction''',
'''TFMobileBertForPreTraining''',
'''TFMobileBertForQuestionAnswering''',
'''TFMobileBertForSequenceClassification''',
'''TFMobileBertForTokenClassification''',
'''TFMobileBertMainLayer''',
'''TFMobileBertModel''',
'''TFMobileBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mobilebert import (
MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
MobileBertConfig,
MobileBertOnnxConfig,
)
from .tokenization_mobilebert import MobileBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mobilebert_fast import MobileBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilebert import (
MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileBertForMaskedLM,
MobileBertForMultipleChoice,
MobileBertForNextSentencePrediction,
MobileBertForPreTraining,
MobileBertForQuestionAnswering,
MobileBertForSequenceClassification,
MobileBertForTokenClassification,
MobileBertLayer,
MobileBertModel,
MobileBertPreTrainedModel,
load_tf_weights_in_mobilebert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mobilebert import (
TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileBertForMaskedLM,
TFMobileBertForMultipleChoice,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertMainLayer,
TFMobileBertModel,
TFMobileBertPreTrainedModel,
)
else:
import sys
_A : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 711
|
'''simple docstring'''
from __future__ import annotations
from collections import Counter
from random import random
class _lowercase :
'''simple docstring'''
def __init__( self : Tuple ) -> Any:
__lowerCAmelCase = {}
def a ( self : Dict , SCREAMING_SNAKE_CASE__ : str ) -> None:
__lowerCAmelCase = {}
def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : float ) -> None:
if nodea not in self.connections:
self.add_node(SCREAMING_SNAKE_CASE__ )
if nodea not in self.connections:
self.add_node(SCREAMING_SNAKE_CASE__ )
__lowerCAmelCase = probability
def a ( self : Union[str, Any] ) -> list[str]:
return list(self.connections )
def a ( self : str , SCREAMING_SNAKE_CASE__ : str ) -> str:
__lowerCAmelCase = 0
__lowerCAmelCase = random()
for dest in self.connections[node]:
current_probability += self.connections[node][dest]
if current_probability > random_value:
return dest
return ""
def UpperCamelCase_ ( snake_case_ : str , snake_case_ : list[tuple[str, str, float]] , snake_case_ : int ) -> dict[str, int]:
'''simple docstring'''
__lowerCAmelCase = MarkovChainGraphUndirectedUnweighted()
for nodea, nodea, probability in transitions:
graph.add_transition_probability(snake_case_ , snake_case_ , snake_case_ )
__lowerCAmelCase = Counter(graph.get_nodes() )
__lowerCAmelCase = start
for _ in range(snake_case_ ):
__lowerCAmelCase = graph.transition(snake_case_ )
visited[node] += 1
return visited
if __name__ == "__main__":
import doctest
doctest.testmod()
| 330
| 0
|
import unittest
from transformers import AlbertTokenizer, AlbertTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
snake_case__ = get_tests_dir('''fixtures/spiece.model''')
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase_ ( _a ,unittest.TestCase):
lowerCamelCase_ = AlbertTokenizer
lowerCamelCase_ = AlbertTokenizerFast
lowerCamelCase_ = True
lowerCamelCase_ = True
lowerCamelCase_ = True
def _snake_case ( self : Optional[int] ) ->Tuple:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
a__ :List[Any] = AlbertTokenizer(__A )
tokenizer.save_pretrained(self.tmpdirname )
def _snake_case ( self : str , __A : Union[str, Any] ) ->str:
"""simple docstring"""
a__ :Union[str, Any] = "this is a test"
a__ :List[Any] = "this is a test"
return input_text, output_text
def _snake_case ( self : Dict ) ->Optional[Any]:
"""simple docstring"""
a__ :Optional[int] = "<pad>"
a__ :Dict = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__A ) , __A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__A ) , __A )
def _snake_case ( self : List[Any] ) ->int:
"""simple docstring"""
a__ :int = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<pad>" )
self.assertEqual(vocab_keys[1] , "<unk>" )
self.assertEqual(vocab_keys[-1] , "▁eloquent" )
self.assertEqual(len(__A ) , 30000 )
def _snake_case ( self : Optional[int] ) ->Any:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 30000 )
def _snake_case ( self : List[str] ) ->List[Any]:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
a__ :List[Any] = self.get_tokenizer()
a__ :Tuple = self.get_rust_tokenizer()
a__ :Optional[int] = "I was born in 92000, and this is falsé."
a__ :Tuple = tokenizer.tokenize(__A )
a__ :List[str] = rust_tokenizer.tokenize(__A )
self.assertListEqual(__A , __A )
a__ :int = tokenizer.encode(__A , add_special_tokens=__A )
a__ :List[str] = rust_tokenizer.encode(__A , add_special_tokens=__A )
self.assertListEqual(__A , __A )
a__ :List[Any] = self.get_rust_tokenizer()
a__ :Optional[int] = tokenizer.encode(__A )
a__ :Optional[Any] = rust_tokenizer.encode(__A )
self.assertListEqual(__A , __A )
def _snake_case ( self : Tuple ) ->Optional[int]:
"""simple docstring"""
a__ :Tuple = AlbertTokenizer(__A , keep_accents=__A )
a__ :Tuple = tokenizer.tokenize("This is a test" )
self.assertListEqual(__A , ["▁this", "▁is", "▁a", "▁test"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , [48, 25, 21, 1289] )
a__ :Optional[int] = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
__A , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."] )
a__ :Tuple = tokenizer.convert_tokens_to_ids(__A )
self.assertListEqual(__A , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] )
a__ :List[Any] = tokenizer.convert_ids_to_tokens(__A )
self.assertListEqual(
__A , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."] , )
def _snake_case ( self : Union[str, Any] ) ->str:
"""simple docstring"""
a__ :Tuple = AlbertTokenizer(__A )
a__ :Optional[Any] = tokenizer.encode("sequence builders" )
a__ :Any = tokenizer.encode("multi-sequence build" )
a__ :Tuple = tokenizer.build_inputs_with_special_tokens(__A )
a__ :Optional[Any] = tokenizer.build_inputs_with_special_tokens(__A , __A )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
@slow
def _snake_case ( self : str ) ->Optional[int]:
"""simple docstring"""
a__ :Any = {"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "input_ids": [[2, 21970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 12051, 18, 17, 7103, 2153, 673, 8, 3515, 18684, 8, 4461, 6, 1927, 297, 8, 12060, 2607, 18, 13, 5, 4461, 15, 10538, 38, 8, 135, 15, 822, 58, 15, 993, 10363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 10641, 6, 29, 84, 2512, 2430, 782, 18684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 11712, 15, 7103, 2153, 673, 17, 24883, 9990, 9, 3], [2, 11502, 25, 1006, 20, 782, 8, 11809, 855, 1732, 19393, 18667, 37, 367, 21018, 69, 1854, 34, 11860, 19124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 17659, 84, 14, 16792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__A , model_name="albert-base-v2" , revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e" , )
| 395
|
import argparse
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
snake_case__ = 16
snake_case__ = 32
def lowerCamelCase__ ( a : Accelerator , a : int = 16 ) -> int:
"""simple docstring"""
a__ :Tuple = AutoTokenizer.from_pretrained("bert-base-cased" )
a__ :int = load_dataset("glue" , "mrpc" )
def tokenize_function(a : List[Any] ):
# max_length=None => use the model max length (it's actually the default)
a__ :Optional[int] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=a , max_length=a )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
a__ :Union[str, Any] = datasets.map(
a , batched=a , remove_columns=["idx", "sentence1", "sentence2"] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
a__ :Optional[int] = tokenized_datasets.rename_column("label" , "labels" )
def collate_fn(a : Dict ):
# On TPU it's best to pad everything to the same length or training will be very slow.
a__ :Dict = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
a__ :List[str] = 16
elif accelerator.mixed_precision != "no":
a__ :Optional[int] = 8
else:
a__ :Tuple = None
return tokenizer.pad(
a , padding="longest" , max_length=a , pad_to_multiple_of=a , return_tensors="pt" , )
# Instantiate dataloaders.
a__ :str = DataLoader(
tokenized_datasets["train"] , shuffle=a , collate_fn=a , batch_size=a , drop_last=a )
a__ :str = DataLoader(
tokenized_datasets["validation"] , shuffle=a , collate_fn=a , batch_size=a , drop_last=(accelerator.mixed_precision == "fp8") , )
return train_dataloader, eval_dataloader
def lowerCamelCase__ ( a : List[str] , a : Dict ) -> List[str]:
"""simple docstring"""
# Initialize accelerator
a__ :Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
a__ :Optional[int] = config["lr"]
a__ :List[str] = int(config["num_epochs"] )
a__ :List[Any] = int(config["seed"] )
a__ :List[Any] = int(config["batch_size"] )
a__ :Any = evaluate.load("glue" , "mrpc" )
# If the batch size is too big we use gradient accumulation
a__ :str = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
a__ :Tuple = batch_size // MAX_GPU_BATCH_SIZE
a__ :List[str] = MAX_GPU_BATCH_SIZE
set_seed(a )
a__ , a__ :Tuple = get_dataloaders(a , a )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
a__ :List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=a )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
a__ :int = model.to(accelerator.device )
# Instantiate optimizer
a__ :Any = AdamW(params=model.parameters() , lr=a )
# Instantiate scheduler
a__ :Union[str, Any] = get_linear_schedule_with_warmup(
optimizer=a , num_warmup_steps=100 , num_training_steps=(len(a ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
a__ , a__ , a__ , a__ , a__ :Any = accelerator.prepare(
a , a , a , a , a )
# Now we train the model
for epoch in range(a ):
model.train()
for step, batch in enumerate(a ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
a__ :List[str] = model(**a )
a__ :Union[str, Any] = outputs.loss
a__ :str = loss / gradient_accumulation_steps
accelerator.backward(a )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(a ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
a__ :Optional[int] = model(**a )
a__ :str = outputs.logits.argmax(dim=-1 )
a__ , a__ :List[Any] = accelerator.gather_for_metrics((predictions, batch["labels"]) )
metric.add_batch(
predictions=a , references=a , )
a__ :Optional[int] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'''epoch {epoch}:''' , a )
def lowerCamelCase__ ( ) -> Any:
"""simple docstring"""
a__ :List[str] = argparse.ArgumentParser(description="Simple example of training script." )
parser.add_argument(
"--mixed_precision" , type=a , default=a , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU." , )
parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." )
a__ :Union[str, Any] = parser.parse_args()
a__ :Optional[Any] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16}
training_function(a , a )
if __name__ == "__main__":
main()
| 395
| 1
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
snake_case__ : Optional[Any] = {
"""configuration_instructblip""": [
"""INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""InstructBlipConfig""",
"""InstructBlipQFormerConfig""",
"""InstructBlipVisionConfig""",
],
"""processing_instructblip""": ["""InstructBlipProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Optional[int] = [
"""INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""InstructBlipQFormerModel""",
"""InstructBlipPreTrainedModel""",
"""InstructBlipForConditionalGeneration""",
"""InstructBlipVisionModel""",
]
if TYPE_CHECKING:
from .configuration_instructblip import (
INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
InstructBlipConfig,
InstructBlipQFormerConfig,
InstructBlipVisionConfig,
)
from .processing_instructblip import InstructBlipProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_instructblip import (
INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
InstructBlipForConditionalGeneration,
InstructBlipPreTrainedModel,
InstructBlipQFormerModel,
InstructBlipVisionModel,
)
else:
import sys
snake_case__ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 655
|
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
for param, grad_param in zip(model_a.parameters() , model_b.parameters() ):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is False
), F"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})"""
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is True
), F"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})"""
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ):
model.train()
__lowercase = model(_SCREAMING_SNAKE_CASE )
__lowercase = F.mse_loss(_SCREAMING_SNAKE_CASE , target.to(output.device ) )
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(_SCREAMING_SNAKE_CASE )
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ):
set_seed(4_2 )
__lowercase = RegressionModel()
__lowercase = deepcopy(_SCREAMING_SNAKE_CASE )
__lowercase = RegressionDataset(length=8_0 )
__lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 )
model.to(accelerator.device )
if sched:
__lowercase = AdamW(params=model.parameters() , lr=1E-3 )
__lowercase = AdamW(params=ddp_model.parameters() , lr=1E-3 )
__lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 )
__lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 )
# Make a copy of `model`
if sched:
__lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
else:
__lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
# Test when on a single CPU or GPU that the context manager does nothing
__lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE )
# Use a single batch
__lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
__lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) )
__lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_SCREAMING_SNAKE_CASE ):
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
else:
# Sync grads
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
__lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )]
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
# Test on distributed setup that context manager behaves properly
__lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE )
# Use a single batch
__lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
__lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) )
__lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_SCREAMING_SNAKE_CASE ):
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
else:
# Sync grads
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), F"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"""
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
__lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )]
def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ):
__lowercase = Accelerator(
split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
__lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE )
for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ):
__lowercase , __lowercase = batch.values()
# Gather the distributed inputs and targs for the base model
__lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) )
__lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Do "gradient accumulation" (noop)
with accelerator.accumulate(_SCREAMING_SNAKE_CASE ):
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(_SCREAMING_SNAKE_CASE ) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), F"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), F"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
__lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )]
GradientState._reset_state()
def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ):
__lowercase = Accelerator(
split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ):
__lowercase , __lowercase = batch.values()
# Gather the distributed inputs and targs for the base model
__lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) )
__lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes ):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(_SCREAMING_SNAKE_CASE ):
step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), F"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n"""
__lowercase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE ))
if accelerator.num_processes > 1:
check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
GradientState._reset_state()
def snake_case_ ( ):
__lowercase = Accelerator()
__lowercase = RegressionDataset(length=8_0 )
__lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 )
__lowercase = RegressionDataset(length=9_6 )
__lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 )
__lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(_SCREAMING_SNAKE_CASE ):
assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE )
if iteration < len(_SCREAMING_SNAKE_CASE ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(_SCREAMING_SNAKE_CASE ):
assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE )
if batch_num < len(_SCREAMING_SNAKE_CASE ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def snake_case_ ( ):
__lowercase = Accelerator()
__lowercase = accelerator.state
if state.local_process_index == 0:
print("**Test `accumulate` gradient accumulation with dataloader break**" )
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print("**Test NOOP `no_sync` context manager**" )
test_noop_sync(_SCREAMING_SNAKE_CASE )
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print("**Test Distributed `no_sync` context manager**" )
test_distributed_sync(_SCREAMING_SNAKE_CASE )
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , )
test_gradient_accumulation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , )
test_gradient_accumulation_with_opt_and_scheduler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 655
| 1
|
'''simple docstring'''
from __future__ import annotations
import typing
from collections.abc import Iterable
import numpy as np
A__ : Dict = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007
A__ : Optional[Any] = typing.Union[np.floataa, int, float] # noqa: UP007
def UpperCAmelCase__ ( UpperCAmelCase_ : Vector , UpperCAmelCase_ : Vector ) -> VectorOut:
return np.sqrt(np.sum((np.asarray(UpperCAmelCase_ ) - np.asarray(UpperCAmelCase_ )) ** 2 ) )
def UpperCAmelCase__ ( UpperCAmelCase_ : Vector , UpperCAmelCase_ : Vector ) -> VectorOut:
return sum((va - va) ** 2 for va, va in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) ** (1 / 2)
if __name__ == "__main__":
def UpperCAmelCase__ ( ) -> None:
from timeit import timeit
print('Without Numpy' )
print(
timeit(
'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=1_00_00 , globals=globals() , ) )
print('With Numpy' )
print(
timeit(
'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=1_00_00 , globals=globals() , ) )
benchmark()
| 13
|
'''simple docstring'''
def __UpperCamelCase ( lowercase__ : list[int] ):
'''simple docstring'''
if not nums: # Makes sure that the list is not empty
raise ValueError('List is empty' )
__lowercase =sum(lowercase__ ) / len(lowercase__ ) # Calculate the average
return sum(abs(x - average ) for x in nums ) / len(lowercase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 119
| 0
|
from math import pi
def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> float:
return 2 * pi * radius * (angle / 360)
if __name__ == "__main__":
print(arc_length(90, 10))
| 38
|
from PIL import Image
def A_ ( _lowerCAmelCase ) -> Image:
UpperCamelCase , UpperCamelCase : List[Any] = image.size
UpperCamelCase : Union[str, Any] = 0
UpperCamelCase : List[str] = image.load()
for i in range(_lowerCAmelCase ):
for j in range(_lowerCAmelCase ):
UpperCamelCase : List[Any] = pixels[j, i]
mean += pixel
mean //= width * height
for j in range(_lowerCAmelCase ):
for i in range(_lowerCAmelCase ):
UpperCamelCase : Union[str, Any] = 255 if pixels[i, j] > mean else 0
return image
if __name__ == "__main__":
__lowerCamelCase : Union[str, Any] = mean_threshold(Image.open("""path_to_image""").convert("""L"""))
image.save("""output_image_path""")
| 38
| 1
|
"""simple docstring"""
import math
import os
import sys
def _lowercase ( __lowerCAmelCase ) -> str:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = """"""
try:
with open(__lowerCAmelCase , """rb""" ) as binary_file:
SCREAMING_SNAKE_CASE__ : Optional[int] = binary_file.read()
for dat in data:
SCREAMING_SNAKE_CASE__ : Dict = F'''{dat:08b}'''
result += curr_byte
return result
except OSError:
print("""File not accessible""" )
sys.exit()
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> None:
lexicon.pop(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : List[Any] = last_match_id
if math.loga(__lowerCAmelCase ).is_integer():
for curr_key in lexicon:
SCREAMING_SNAKE_CASE__ : Dict = """0""" + lexicon[curr_key]
SCREAMING_SNAKE_CASE__ : str = bin(__lowerCAmelCase )[2:]
def _lowercase ( __lowerCAmelCase ) -> str:
SCREAMING_SNAKE_CASE__ : Dict = {"""0""": """0""", """1""": """1"""}
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = """""", """"""
SCREAMING_SNAKE_CASE__ : Any = len(__lowerCAmelCase )
for i in range(len(__lowerCAmelCase ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
SCREAMING_SNAKE_CASE__ : Optional[int] = lexicon[curr_string]
result += last_match_id
add_key_to_lexicon(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
index += 1
SCREAMING_SNAKE_CASE__ : List[str] = """"""
while curr_string != "" and curr_string not in lexicon:
curr_string += "0"
if curr_string != "":
SCREAMING_SNAKE_CASE__ : List[Any] = lexicon[curr_string]
result += last_match_id
return result
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> str:
SCREAMING_SNAKE_CASE__ : Any = os.path.getsize(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Optional[Any] = bin(__lowerCAmelCase )[2:]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = len(__lowerCAmelCase )
return "0" * (length_length - 1) + file_length_binary + compressed
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> None:
SCREAMING_SNAKE_CASE__ : Optional[int] = 8
try:
with open(__lowerCAmelCase , """wb""" ) as opened_file:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [
to_write[i : i + byte_length]
for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append("""10000000""" )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array:
opened_file.write(int(__lowerCAmelCase , 2 ).to_bytes(1 , byteorder="""big""" ) )
except OSError:
print("""File not accessible""" )
sys.exit()
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> None:
SCREAMING_SNAKE_CASE__ : Dict = read_file_binary(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Optional[int] = compress_data(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Optional[int] = add_file_length(__lowerCAmelCase , __lowerCAmelCase )
write_file_binary(__lowerCAmelCase , __lowerCAmelCase )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 680
|
"""simple docstring"""
import os
import re
import shutil
from argparse import ArgumentParser, Namespace
from datasets.commands import BaseDatasetsCLICommand
from datasets.utils.logging import get_logger
a :Optional[Any] = "<<<<<<< This should probably be modified because it mentions: "
a :Tuple = "=======\n>>>>>>>\n"
a :str = [
"TextEncoderConfig",
"ByteTextEncoder",
"SubwordTextEncoder",
"encoder_config",
"maybe_build_from_corpus",
"manual_dir",
]
a :Union[str, Any] = [
# (pattern, replacement)
# Order is important here for some replacements
(r"tfds\.core", r"datasets"),
(r"tf\.io\.gfile\.GFile", r"open"),
(r"tf\.([\w\d]+)", r"datasets.Value('\1')"),
(r"tfds\.features\.Text\(\)", r"datasets.Value('string')"),
(r"tfds\.features\.Text\(", r"datasets.Value('string'),"),
(r"features\s*=\s*tfds.features.FeaturesDict\(", r"features=datasets.Features("),
(r"tfds\.features\.FeaturesDict\(", r"dict("),
(r"The TensorFlow Datasets Authors", r"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"),
(r"tfds\.", r"datasets."),
(r"dl_manager\.manual_dir", r"self.config.data_dir"),
(r"self\.builder_config", r"self.config"),
]
def _lowercase ( __lowerCAmelCase ) -> int:
return ConvertCommand(args.tfds_path , args.datasets_directory )
class __a (UpperCamelCase_):
'''simple docstring'''
@staticmethod
def _a ( _a ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.add_parser(
"""convert""" , help="""Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.""" , )
train_parser.add_argument(
"""--tfds_path""" , type=_a , required=_a , help="""Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.""" , )
train_parser.add_argument(
"""--datasets_directory""" , type=_a , required=_a , help="""Path to the HuggingFace Datasets folder.""" )
train_parser.set_defaults(func=_a )
def __init__( self , _a , _a , *_a ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = get_logger("""datasets-cli/converting""" )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = tfds_path
SCREAMING_SNAKE_CASE__ : List[Any] = datasets_directory
def _a ( self ) -> List[str]:
"""simple docstring"""
if os.path.isdir(self._tfds_path ):
SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.abspath(self._tfds_path )
elif os.path.isfile(self._tfds_path ):
SCREAMING_SNAKE_CASE__ : Tuple = os.path.dirname(self._tfds_path )
else:
raise ValueError("""--tfds_path is neither a directory nor a file. Please check path.""" )
SCREAMING_SNAKE_CASE__ : Dict = os.path.abspath(self._datasets_directory )
self._logger.info(f'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' )
SCREAMING_SNAKE_CASE__ : str = []
SCREAMING_SNAKE_CASE__ : str = []
SCREAMING_SNAKE_CASE__ : List[Any] = {}
if os.path.isdir(self._tfds_path ):
SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.listdir(_a )
else:
SCREAMING_SNAKE_CASE__ : List[Any] = [os.path.basename(self._tfds_path )]
for f_name in file_names:
self._logger.info(f'''Looking at file {f_name}''' )
SCREAMING_SNAKE_CASE__ : int = os.path.join(_a , _a )
SCREAMING_SNAKE_CASE__ : Dict = os.path.join(_a , _a )
if not os.path.isfile(_a ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name:
self._logger.info("""Skipping file""" )
continue
with open(_a , encoding="""utf-8""" ) as f:
SCREAMING_SNAKE_CASE__ : List[str] = f.readlines()
SCREAMING_SNAKE_CASE__ : Optional[int] = []
SCREAMING_SNAKE_CASE__ : str = False
SCREAMING_SNAKE_CASE__ : Optional[int] = False
SCREAMING_SNAKE_CASE__ : Dict = []
for line in lines:
SCREAMING_SNAKE_CASE__ : List[str] = line
# Convert imports
if "import tensorflow.compat.v2 as tf" in out_line:
continue
elif "@tfds.core" in out_line:
continue
elif "builder=self" in out_line:
continue
elif "import tensorflow_datasets.public_api as tfds" in out_line:
SCREAMING_SNAKE_CASE__ : List[Any] = """import datasets\n"""
elif "import tensorflow" in out_line:
# order is important here
SCREAMING_SNAKE_CASE__ : Optional[Any] = """"""
continue
elif "from absl import logging" in out_line:
SCREAMING_SNAKE_CASE__ : Any = """from datasets import logging\n"""
elif "getLogger" in out_line:
SCREAMING_SNAKE_CASE__ : Optional[int] = out_line.replace("""getLogger""" , """get_logger""" )
elif any(expression in out_line for expression in TO_HIGHLIGHT ):
SCREAMING_SNAKE_CASE__ : Union[str, Any] = True
SCREAMING_SNAKE_CASE__ : Tuple = list(filter(lambda _a : e in out_line , _a ) )
out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_a ) + """\n""" )
out_lines.append(_a )
out_lines.append(_a )
continue
else:
for pattern, replacement in TO_CONVERT:
SCREAMING_SNAKE_CASE__ : int = re.sub(_a , _a , _a )
# Take care of saving utilities (to later move them together with main script)
if "tensorflow_datasets" in out_line:
SCREAMING_SNAKE_CASE__ : Dict = re.match(r"""from\stensorflow_datasets.*import\s([^\.\r\n]+)""" , _a )
tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(""",""" ) )
SCREAMING_SNAKE_CASE__ : Dict = """from . import """ + match.group(1 )
# Check we have not forget anything
if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line:
raise ValueError(f'''Error converting {out_line.strip()}''' )
if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = True
out_lines.append(_a )
if is_builder or "wmt" in f_name:
# We create a new directory for each dataset
SCREAMING_SNAKE_CASE__ : Union[str, Any] = f_name.replace(""".py""" , """""" )
SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(_a , _a )
SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(_a , _a )
os.makedirs(_a , exist_ok=_a )
self._logger.info(f'''Adding directory {output_dir}''' )
imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} )
else:
# Utilities will be moved at the end
utils_files.append(_a )
if needs_manual_update:
with_manual_update.append(_a )
with open(_a , """w""" , encoding="""utf-8""" ) as f:
f.writelines(_a )
self._logger.info(f'''Converted in {output_file}''' )
for utils_file in utils_files:
try:
SCREAMING_SNAKE_CASE__ : str = os.path.basename(_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = imports_to_builder_map[f_name.replace(""".py""" , """""" )]
self._logger.info(f'''Moving {dest_folder} to {utils_file}''' )
shutil.copy(_a , _a )
except KeyError:
self._logger.error(f'''Cannot find destination folder for {utils_file}. Please copy manually.''' )
if with_manual_update:
for file_path in with_manual_update:
self._logger.warning(
f'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
| 680
| 1
|
'''simple docstring'''
def _a ( _SCREAMING_SNAKE_CASE : Any ):
_SCREAMING_SNAKE_CASE = [0] * len(_SCREAMING_SNAKE_CASE )
_SCREAMING_SNAKE_CASE = []
_SCREAMING_SNAKE_CASE = [1] * len(_SCREAMING_SNAKE_CASE )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
if indegree[i] == 0:
queue.append(_SCREAMING_SNAKE_CASE )
while queue:
_SCREAMING_SNAKE_CASE = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
_SCREAMING_SNAKE_CASE = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(_SCREAMING_SNAKE_CASE )
print(max(_SCREAMING_SNAKE_CASE ) )
# Adjacency list of Graph
_snake_case : Optional[int] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 493
|
'''simple docstring'''
import os
from typing import List, Optional, Union
from ...image_processing_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
from ..auto import AutoTokenizer
class lowerCAmelCase ( __UpperCAmelCase ):
a : Optional[int] = ["""image_processor""", """tokenizer"""]
a : Optional[int] = """BlipImageProcessor"""
a : Optional[int] = """AutoTokenizer"""
def __init__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ):
super().__init__(UpperCamelCase , UpperCamelCase )
# add QFormer tokenizer
_SCREAMING_SNAKE_CASE = qformer_tokenizer
def __call__( self , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = True , UpperCamelCase = False , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = 0 , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = False , UpperCamelCase = False , UpperCamelCase = False , UpperCamelCase = False , UpperCamelCase = False , UpperCamelCase = True , UpperCamelCase = None , **UpperCamelCase , ):
if images is None and text is None:
raise ValueError("You have to specify at least images or text." )
_SCREAMING_SNAKE_CASE = BatchFeature()
if text is not None:
_SCREAMING_SNAKE_CASE = self.tokenizer(
text=UpperCamelCase , add_special_tokens=UpperCamelCase , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=UpperCamelCase , stride=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_attention_mask=UpperCamelCase , return_overflowing_tokens=UpperCamelCase , return_special_tokens_mask=UpperCamelCase , return_offsets_mapping=UpperCamelCase , return_token_type_ids=UpperCamelCase , return_length=UpperCamelCase , verbose=UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase , )
encoding.update(UpperCamelCase )
_SCREAMING_SNAKE_CASE = self.qformer_tokenizer(
text=UpperCamelCase , add_special_tokens=UpperCamelCase , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=UpperCamelCase , stride=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_attention_mask=UpperCamelCase , return_overflowing_tokens=UpperCamelCase , return_special_tokens_mask=UpperCamelCase , return_offsets_mapping=UpperCamelCase , return_token_type_ids=UpperCamelCase , return_length=UpperCamelCase , verbose=UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase , )
_SCREAMING_SNAKE_CASE = qformer_text_encoding.pop("input_ids" )
_SCREAMING_SNAKE_CASE = qformer_text_encoding.pop("attention_mask" )
if images is not None:
_SCREAMING_SNAKE_CASE = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase )
encoding.update(UpperCamelCase )
return encoding
def lowercase ( self , *UpperCamelCase , **UpperCamelCase ):
return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase )
def lowercase ( self , *UpperCamelCase , **UpperCamelCase ):
return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase )
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def lowercase ( self ):
_SCREAMING_SNAKE_CASE = self.tokenizer.model_input_names
_SCREAMING_SNAKE_CASE = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
def lowercase ( self , UpperCamelCase , **UpperCamelCase ):
if os.path.isfile(UpperCamelCase ):
raise ValueError(F'Provided path ({save_directory}) should be a directory, not a file' )
os.makedirs(UpperCamelCase , exist_ok=UpperCamelCase )
_SCREAMING_SNAKE_CASE = os.path.join(UpperCamelCase , "qformer_tokenizer" )
self.qformer_tokenizer.save_pretrained(UpperCamelCase )
return super().save_pretrained(UpperCamelCase , **UpperCamelCase )
@classmethod
def lowercase ( cls , UpperCamelCase , **UpperCamelCase ):
_SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCamelCase , subfolder="qformer_tokenizer" )
_SCREAMING_SNAKE_CASE = cls._get_arguments_from_pretrained(UpperCamelCase , **UpperCamelCase )
args.append(UpperCamelCase )
return cls(*UpperCamelCase )
| 493
| 1
|
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import (
AutoencoderKL,
EulerDiscreteScheduler,
StableDiffusionLatentUpscalePipeline,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
def __snake_case ( lowerCamelCase_ : Union[str, Any] ):
'''simple docstring'''
__magic_name__ = [tensor.shape for tensor in tensor_list]
return all(shape == shapes[0] for shape in shapes[1:] )
class UpperCamelCase_ ( A , A , A , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase__ : Any = StableDiffusionLatentUpscalePipeline
UpperCAmelCase__ : int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
'''height''',
'''width''',
'''cross_attention_kwargs''',
'''negative_prompt_embeds''',
'''prompt_embeds''',
}
UpperCAmelCase__ : Optional[int] = PipelineTesterMixin.required_optional_params - {'''num_images_per_prompt'''}
UpperCAmelCase__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
UpperCAmelCase__ : Tuple = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
UpperCAmelCase__ : Tuple = frozenset([] )
UpperCAmelCase__ : Union[str, Any] = True
@property
def __A ( self : Optional[Any] ) -> int:
__magic_name__ = 1
__magic_name__ = 4
__magic_name__ = (16, 16)
__magic_name__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCamelCase )
return image
def __A ( self : Union[str, Any] ) -> Tuple:
torch.manual_seed(0 )
__magic_name__ = UNetaDConditionModel(
act_fn="gelu" , attention_head_dim=8 , norm_num_groups=_lowerCamelCase , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=(
"KDownBlock2D",
"KCrossAttnDownBlock2D",
"KCrossAttnDownBlock2D",
"KCrossAttnDownBlock2D",
) , in_channels=8 , mid_block_type=_lowerCamelCase , only_cross_attention=_lowerCamelCase , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , )
__magic_name__ = AutoencoderKL(
block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
__magic_name__ = EulerDiscreteScheduler(prediction_type="sample" )
__magic_name__ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="quick_gelu" , projection_dim=5_12 , )
__magic_name__ = CLIPTextModel(_lowerCamelCase )
__magic_name__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
__magic_name__ = {
"unet": model.eval(),
"vae": vae.eval(),
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
}
return components
def __A ( self : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any]=0 ) -> Any:
if str(_lowerCamelCase ).startswith("mps" ):
__magic_name__ = torch.manual_seed(_lowerCamelCase )
else:
__magic_name__ = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase )
__magic_name__ = {
"prompt": "A painting of a squirrel eating a burger",
"image": self.dummy_image.cpu(),
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def __A ( self : Dict ) -> int:
__magic_name__ = "cpu"
__magic_name__ = self.get_dummy_components()
__magic_name__ = self.pipeline_class(**_lowerCamelCase )
pipe.to(_lowerCamelCase )
pipe.set_progress_bar_config(disable=_lowerCamelCase )
__magic_name__ = self.get_dummy_inputs(_lowerCamelCase )
__magic_name__ = pipe(**_lowerCamelCase ).images
__magic_name__ = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 2_56, 2_56, 3) )
__magic_name__ = np.array(
[0.47_222_412, 0.41_921_633, 0.44_717_434, 0.46_874_192, 0.42_588_258, 0.46_150_726, 0.4_677_534, 0.45_583_832, 0.48_579_055] )
__magic_name__ = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_lowerCamelCase , 1e-3 )
def __A ( self : List[str] ) -> List[Any]:
super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 )
def __A ( self : str ) -> Dict:
super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 )
def __A ( self : Any ) -> int:
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
def __A ( self : str ) -> Optional[int]:
super().test_inference_batch_single_identical(expected_max_diff=7e-3 )
def __A ( self : str ) -> int:
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 )
def __A ( self : List[Any] ) -> Optional[int]:
super().test_save_load_local(expected_max_difference=3e-3 )
def __A ( self : Union[str, Any] ) -> Tuple:
super().test_save_load_optional_components(expected_max_difference=3e-3 )
def __A ( self : Union[str, Any] ) -> Any:
__magic_name__ = [
"DDIMScheduler",
"DDPMScheduler",
"PNDMScheduler",
"HeunDiscreteScheduler",
"EulerAncestralDiscreteScheduler",
"KDPM2DiscreteScheduler",
"KDPM2AncestralDiscreteScheduler",
"DPMSolverSDEScheduler",
]
__magic_name__ = self.get_dummy_components()
__magic_name__ = self.pipeline_class(**_lowerCamelCase )
# make sure that PNDM does not need warm-up
pipe.scheduler.register_to_config(skip_prk_steps=_lowerCamelCase )
pipe.to(_lowerCamelCase )
pipe.set_progress_bar_config(disable=_lowerCamelCase )
__magic_name__ = self.get_dummy_inputs(_lowerCamelCase )
__magic_name__ = 2
__magic_name__ = []
for scheduler_enum in KarrasDiffusionSchedulers:
if scheduler_enum.name in skip_schedulers:
# no sigma schedulers are not supported
# no schedulers
continue
__magic_name__ = getattr(_lowerCamelCase , scheduler_enum.name )
__magic_name__ = scheduler_cls.from_config(pipe.scheduler.config )
__magic_name__ = pipe(**_lowerCamelCase )[0]
outputs.append(_lowerCamelCase )
assert check_same_shape(_lowerCamelCase )
@require_torch_gpu
@slow
class UpperCamelCase_ ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : Dict ) -> Any:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self : Union[str, Any] ) -> Optional[int]:
__magic_name__ = torch.manual_seed(33 )
__magic_name__ = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa )
pipe.to("cuda" )
__magic_name__ = StableDiffusionLatentUpscalePipeline.from_pretrained(
"stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa )
upscaler.to("cuda" )
__magic_name__ = "a photo of an astronaut high resolution, unreal engine, ultra realistic"
__magic_name__ = pipe(_lowerCamelCase , generator=_lowerCamelCase , output_type="latent" ).images
__magic_name__ = upscaler(
prompt=_lowerCamelCase , image=_lowerCamelCase , num_inference_steps=20 , guidance_scale=0 , generator=_lowerCamelCase , output_type="np" , ).images[0]
__magic_name__ = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" )
assert np.abs((expected_image - image).mean() ) < 5e-2
def __A ( self : Union[str, Any] ) -> str:
__magic_name__ = torch.manual_seed(33 )
__magic_name__ = StableDiffusionLatentUpscalePipeline.from_pretrained(
"stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa )
upscaler.to("cuda" )
__magic_name__ = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas"
__magic_name__ = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" )
__magic_name__ = upscaler(
prompt=_lowerCamelCase , image=_lowerCamelCase , num_inference_steps=20 , guidance_scale=0 , generator=_lowerCamelCase , output_type="np" , ).images[0]
__magic_name__ = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" )
assert np.abs((expected_image - image).max() ) < 5e-2
| 664
|
'''simple docstring'''
import argparse
from tax import checkpoints
from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM
def __snake_case ( lowerCamelCase_ : Any , lowerCamelCase_ : int , lowerCamelCase_ : Optional[Any] ):
'''simple docstring'''
__magic_name__ = AutoConfig.from_pretrained(lowerCamelCase_ )
__magic_name__ = FlaxAutoModelForSeqaSeqLM.from_config(config=lowerCamelCase_ )
__magic_name__ = checkpoints.load_tax_checkpoint(lowerCamelCase_ )
__magic_name__ = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"]
if config.model_type == "t5":
__magic_name__ = "SelfAttention"
if config.model_type == "longt5" and config.encoder_attention_type == "local":
__magic_name__ = "LocalSelfAttention"
elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
__magic_name__ = "TransientGlobalSelfAttention"
else:
raise ValueError(
"Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`"
" attribute with a value from ['local', 'transient-global]." )
# Encoder
for layer_index in range(config.num_layers ):
__magic_name__ = F'layers_{str(lowerCamelCase_ )}'
# Self-Attention
__magic_name__ = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"]
__magic_name__ = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"]
__magic_name__ = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"]
__magic_name__ = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"]
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
__magic_name__ = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"]
# Layer Normalization
__magic_name__ = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"]
if split_mlp_wi:
__magic_name__ = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"]
__magic_name__ = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"]
else:
__magic_name__ = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"]
__magic_name__ = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"]
# Layer Normalization
__magic_name__ = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"]
# Assigning
__magic_name__ = flax_model.params["encoder"]["block"][str(lowerCamelCase_ )]["layer"]
__magic_name__ = tax_attention_key
__magic_name__ = tax_attention_out
__magic_name__ = tax_attention_query
__magic_name__ = tax_attention_value
__magic_name__ = tax_attention_layer_norm
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
__magic_name__ = tax_global_layer_norm
if split_mlp_wi:
__magic_name__ = tax_mlp_wi_a
__magic_name__ = tax_mlp_wi_a
else:
__magic_name__ = tax_mlp_wi
__magic_name__ = tax_mlp_wo
__magic_name__ = tax_mlp_layer_norm
__magic_name__ = flax_model_encoder_layer_block
# Only for layer 0:
__magic_name__ = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T
__magic_name__ = tax_encoder_rel_embedding
# Side/global relative position_bias + layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
__magic_name__ = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T
__magic_name__ = tax_encoder_global_rel_embedding
# Assigning
__magic_name__ = tax_model["target"]["encoder"]["encoder_norm"]["scale"]
__magic_name__ = tax_encoder_norm
# Decoder
for layer_index in range(config.num_layers ):
__magic_name__ = F'layers_{str(lowerCamelCase_ )}'
# Self-Attention
__magic_name__ = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"]
__magic_name__ = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"]
__magic_name__ = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"]
__magic_name__ = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"]
# Layer Normalization
__magic_name__ = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][
"scale"
]
# Encoder-Decoder-Attention
__magic_name__ = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"]
__magic_name__ = tax_enc_dec_attention_module["key"]["kernel"]
__magic_name__ = tax_enc_dec_attention_module["out"]["kernel"]
__magic_name__ = tax_enc_dec_attention_module["query"]["kernel"]
__magic_name__ = tax_enc_dec_attention_module["value"]["kernel"]
# Layer Normalization
__magic_name__ = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"]
# MLP
if split_mlp_wi:
__magic_name__ = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"]
__magic_name__ = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"]
else:
__magic_name__ = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"]
__magic_name__ = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"]
# Layer Normalization
__magic_name__ = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"]
# Assigning
__magic_name__ = flax_model.params["decoder"]["block"][str(lowerCamelCase_ )]["layer"]
__magic_name__ = tax_attention_key
__magic_name__ = tax_attention_out
__magic_name__ = tax_attention_query
__magic_name__ = tax_attention_value
__magic_name__ = tax_pre_attention_layer_norm
__magic_name__ = tax_enc_dec_attention_key
__magic_name__ = tax_enc_dec_attention_out
__magic_name__ = tax_enc_dec_attention_query
__magic_name__ = tax_enc_dec_attention_value
__magic_name__ = tax_cross_layer_norm
if split_mlp_wi:
__magic_name__ = tax_mlp_wi_a
__magic_name__ = tax_mlp_wi_a
else:
__magic_name__ = tax_mlp_wi
__magic_name__ = tax_mlp_wo
__magic_name__ = txa_mlp_layer_norm
__magic_name__ = flax_model_decoder_layer_block
# Decoder Normalization
__magic_name__ = tax_model["target"]["decoder"]["decoder_norm"]["scale"]
__magic_name__ = txa_decoder_norm
# Only for layer 0:
__magic_name__ = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T
__magic_name__ = tax_decoder_rel_embedding
# Token Embeddings
__magic_name__ = tax_model["target"]["token_embedder"]["embedding"]
__magic_name__ = txa_token_embeddings
# LM Head (only in v1.1 and LongT5 checkpoints)
if "logits_dense" in tax_model["target"]["decoder"]:
__magic_name__ = tax_model["target"]["decoder"]["logits_dense"]["kernel"]
flax_model.save_pretrained(lowerCamelCase_ )
print("T5X Model was sucessfully converted!" )
if __name__ == "__main__":
__magic_name__ : Optional[Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.'
)
parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.')
parser.add_argument(
'--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.'
)
__magic_name__ : Optional[int] =parser.parse_args()
convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
| 664
| 1
|
import json
import os
import unittest
from transformers.models.blenderbot_small.tokenization_blenderbot_small import (
VOCAB_FILES_NAMES,
BlenderbotSmallTokenizer,
)
from ...test_tokenization_common import TokenizerTesterMixin
class snake_case_ ( __a , unittest.TestCase):
lowerCamelCase :Optional[int] = BlenderbotSmallTokenizer
lowerCamelCase :Union[str, Any] = False
def __lowercase ( self ) -> List[str]:
super().setUp()
lowerCamelCase : Any =['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__''']
lowerCamelCase : Any =dict(zip(snake_case__ , range(len(snake_case__ ) ) ) )
lowerCamelCase : Optional[int] =['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', '''''']
lowerCamelCase : Tuple ={'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''}
lowerCamelCase : Tuple =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
lowerCamelCase : List[str] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(snake_case__ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(snake_case__ ) )
def __lowercase ( self , **__lowercase ) -> Optional[Any]:
kwargs.update(self.special_tokens_map )
return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **snake_case__ )
def __lowercase ( self , __lowercase ) -> List[Any]:
lowerCamelCase : Optional[int] ='''adapt act apte'''
lowerCamelCase : Any ='''adapt act apte'''
return input_text, output_text
def __lowercase ( self ) -> Tuple:
lowerCamelCase : List[Any] =BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
lowerCamelCase : List[Any] ='''adapt act apte'''
lowerCamelCase : Optional[Any] =['''adapt''', '''act''', '''ap@@''', '''te''']
lowerCamelCase : Any =tokenizer.tokenize(snake_case__ )
self.assertListEqual(snake_case__ , snake_case__ )
lowerCamelCase : List[Any] =[tokenizer.bos_token] + tokens + [tokenizer.eos_token]
lowerCamelCase : Any =[0, 1, 2, 3, 4, 5]
self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ )
def __lowercase ( self ) -> Optional[int]:
lowerCamelCase : List[str] =BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' )
assert tok('''sam''' ).input_ids == [1_3_8_4]
lowerCamelCase : int ='''I am a small frog.'''
lowerCamelCase : Optional[Any] =tok([src_text] , padding=snake_case__ , truncation=snake_case__ )['''input_ids''']
lowerCamelCase : Optional[int] =tok.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ )[0]
assert src_text != decoded # I wish it did!
assert decoded == "i am a small frog ."
def __lowercase ( self ) -> Tuple:
lowerCamelCase : Optional[Any] =BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' )
lowerCamelCase : str ='''I am a small frog .'''
lowerCamelCase : Any ='''.'''
lowerCamelCase : Union[str, Any] =tok(snake_case__ )['''input_ids''']
lowerCamelCase : Union[str, Any] =tok(snake_case__ )['''input_ids''']
assert encoded[-1] == encoded_dot[0]
| 706
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
snake_case_ = {'''configuration_swin''': ['''SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwinConfig''', '''SwinOnnxConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ = [
'''SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''SwinForImageClassification''',
'''SwinForMaskedImageModeling''',
'''SwinModel''',
'''SwinPreTrainedModel''',
'''SwinBackbone''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ = [
'''TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFSwinForImageClassification''',
'''TFSwinForMaskedImageModeling''',
'''TFSwinModel''',
'''TFSwinPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swin import (
SWIN_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinBackbone,
SwinForImageClassification,
SwinForMaskedImageModeling,
SwinModel,
SwinPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_swin import (
TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST,
TFSwinForImageClassification,
TFSwinForMaskedImageModeling,
TFSwinModel,
TFSwinPreTrainedModel,
)
else:
import sys
snake_case_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 262
| 0
|
'''simple docstring'''
from __future__ import annotations
from math import pow, sqrt
def lowerCamelCase ( _snake_case : float ,_snake_case : float ,_snake_case : float ):
'''simple docstring'''
if (resistance, reactance, impedance).count(0 ) != 1:
raise ValueError("One and only one argument must be 0" )
if resistance == 0:
return {"resistance": sqrt(pow(_snake_case ,2 ) - pow(_snake_case ,2 ) )}
elif reactance == 0:
return {"reactance": sqrt(pow(_snake_case ,2 ) - pow(_snake_case ,2 ) )}
elif impedance == 0:
return {"impedance": sqrt(pow(_snake_case ,2 ) + pow(_snake_case ,2 ) )}
else:
raise ValueError("Exactly one argument must be 0" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 267
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE__ = {
"configuration_clap": [
"CLAP_PRETRAINED_MODEL_ARCHIVE_LIST",
"ClapAudioConfig",
"ClapConfig",
"ClapTextConfig",
],
"processing_clap": ["ClapProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"CLAP_PRETRAINED_MODEL_ARCHIVE_LIST",
"ClapModel",
"ClapPreTrainedModel",
"ClapTextModel",
"ClapTextModelWithProjection",
"ClapAudioModel",
"ClapAudioModelWithProjection",
]
SCREAMING_SNAKE_CASE__ = ["ClapFeatureExtractor"]
if TYPE_CHECKING:
from .configuration_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioConfig,
ClapConfig,
ClapTextConfig,
)
from .processing_clap import ClapProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clap import ClapFeatureExtractor
from .modeling_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioModel,
ClapAudioModelWithProjection,
ClapModel,
ClapPreTrainedModel,
ClapTextModel,
ClapTextModelWithProjection,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 267
| 1
|
'''simple docstring'''
UpperCamelCase_ = {
'''A''': ['''B''', '''C''', '''E'''],
'''B''': ['''A''', '''D''', '''E'''],
'''C''': ['''A''', '''F''', '''G'''],
'''D''': ['''B'''],
'''E''': ['''A''', '''B''', '''D'''],
'''F''': ['''C'''],
'''G''': ['''C'''],
}
def lowerCamelCase ( UpperCAmelCase__ : dict , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Dict ) -> list[str]:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Optional[Any] = set()
# keep track of all the paths to be checked
SCREAMING_SNAKE_CASE__ :Any = [[start]]
# return path if start is goal
if start == goal:
return [start]
# keeps looping until all possible paths have been checked
while queue:
# pop the first path from the queue
SCREAMING_SNAKE_CASE__ :List[str] = queue.pop(0 )
# get the last node from the path
SCREAMING_SNAKE_CASE__ :Any = path[-1]
if node not in explored:
SCREAMING_SNAKE_CASE__ :List[str] = graph[node]
# go through all neighbour nodes, construct a new path and
# push it into the queue
for neighbour in neighbours:
SCREAMING_SNAKE_CASE__ :Optional[int] = list(UpperCAmelCase__ )
new_path.append(UpperCAmelCase__ )
queue.append(UpperCAmelCase__ )
# return path if neighbour is goal
if neighbour == goal:
return new_path
# mark node as explored
explored.add(UpperCAmelCase__ )
# in case there's no path between the 2 nodes
return []
def lowerCamelCase ( UpperCAmelCase__ : dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict ) -> int:
'''simple docstring'''
if not graph or start not in graph or target not in graph:
return -1
if start == target:
return 0
SCREAMING_SNAKE_CASE__ :Union[str, Any] = [start]
SCREAMING_SNAKE_CASE__ :Union[str, Any] = set(UpperCAmelCase__ )
# Keep tab on distances from `start` node.
SCREAMING_SNAKE_CASE__ :Union[str, Any] = {start: 0, target: -1}
while queue:
SCREAMING_SNAKE_CASE__ :Tuple = queue.pop(0 )
if node == target:
SCREAMING_SNAKE_CASE__ :Optional[Any] = (
dist[node] if dist[target] == -1 else min(dist[target] , dist[node] )
)
for adjacent in graph[node]:
if adjacent not in visited:
visited.add(UpperCAmelCase__ )
queue.append(UpperCAmelCase__ )
SCREAMING_SNAKE_CASE__ :Union[str, Any] = dist[node] + 1
return dist[target]
if __name__ == "__main__":
print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D']
print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
| 703
|
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {'''vocab_file''': '''sentencepiece.model'''}
UpperCamelCase_ = {
'''vocab_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''',
},
}
UpperCamelCase_ = {
'''google/rembert''': 2_56,
}
class _SCREAMING_SNAKE_CASE( _SCREAMING_SNAKE_CASE ):
A_ : Dict = VOCAB_FILES_NAMES
A_ : List[str] = PRETRAINED_VOCAB_FILES_MAP
A_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict=False , UpperCamelCase_ : Any=True , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Tuple="[CLS]" , UpperCamelCase_ : Tuple="[SEP]" , UpperCamelCase_ : Union[str, Any]="[UNK]" , UpperCamelCase_ : List[Any]="[SEP]" , UpperCamelCase_ : Optional[Any]="[PAD]" , UpperCamelCase_ : List[str]="[CLS]" , UpperCamelCase_ : Tuple="[MASK]" , **UpperCamelCase_ : Any , ) -> Any:
super().__init__(
do_lower_case=UpperCamelCase_ , remove_space=UpperCamelCase_ , keep_accents=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , **UpperCamelCase_ , )
SCREAMING_SNAKE_CASE__ :Tuple = do_lower_case
SCREAMING_SNAKE_CASE__ :Optional[int] = remove_space
SCREAMING_SNAKE_CASE__ :Any = keep_accents
SCREAMING_SNAKE_CASE__ :Union[str, Any] = vocab_file
SCREAMING_SNAKE_CASE__ :int = spm.SentencePieceProcessor()
self.sp_model.Load(UpperCamelCase_ )
@property
def __lowerCamelCase ( self : Union[str, Any] ) -> Union[str, Any]:
return len(self.sp_model )
def __lowerCamelCase ( self : Any ) -> List[Any]:
SCREAMING_SNAKE_CASE__ :Union[str, Any] = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ) -> Dict:
SCREAMING_SNAKE_CASE__ :Dict = self.__dict__.copy()
SCREAMING_SNAKE_CASE__ :Optional[int] = None
return state
def __setstate__( self : int , UpperCamelCase_ : int ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE__ :Optional[int] = d
SCREAMING_SNAKE_CASE__ :str = spm.SentencePieceProcessor()
self.sp_model.Load(self.vocab_file )
def __lowerCamelCase ( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : int=False ) -> Any:
SCREAMING_SNAKE_CASE__ :Tuple = self.sp_model.EncodeAsPieces(UpperCamelCase_ )
return pieces
def __lowerCamelCase ( self : Any , UpperCamelCase_ : Union[str, Any] ) -> int:
return self.sp_model.PieceToId(UpperCamelCase_ )
def __lowerCamelCase ( self : Any , UpperCamelCase_ : List[str] ) -> Any:
return self.sp_model.IdToPiece(UpperCamelCase_ )
def __lowerCamelCase ( self : Union[str, Any] , UpperCamelCase_ : int ) -> str:
SCREAMING_SNAKE_CASE__ :Tuple = self.sp_model.decode_pieces(UpperCamelCase_ )
return out_string
def __lowerCamelCase ( self : List[str] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ) -> List[int]:
SCREAMING_SNAKE_CASE__ :Union[str, Any] = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ :Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def __lowerCamelCase ( self : Optional[int] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False ) -> List[int]:
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(UpperCamelCase_ )) + [1] + ([0] * len(UpperCamelCase_ )) + [1]
return [1] + ([0] * len(UpperCamelCase_ )) + [1]
def __lowerCamelCase ( self : List[str] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ) -> List[int]:
SCREAMING_SNAKE_CASE__ :Tuple = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ :Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCamelCase ( self : Any , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(UpperCamelCase_ ):
logger.error('Vocabulary path ({}) should be a directory'.format(UpperCamelCase_ ) )
return
SCREAMING_SNAKE_CASE__ :Optional[Any] = os.path.join(
UpperCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ):
copyfile(self.vocab_file , UpperCamelCase_ )
return (out_vocab_file,)
| 320
| 0
|
import requests
def __lowercase ( snake_case, snake_case ):
"""simple docstring"""
__magic_name__ :Dict = {'''Content-Type''': '''application/json'''}
__magic_name__ :Union[str, Any] = requests.post(snake_case, json={'''text''': message_body}, headers=snake_case )
if response.status_code != 2_0_0:
__magic_name__ :Any = (
'''Request to slack returned an error '''
f'''{response.status_code}, the response is:\n{response.text}'''
)
raise ValueError(snake_case )
if __name__ == "__main__":
# Set the slack url to the one provided by Slack when you create the webhook at
# https://my.slack.com/services/new/incoming-webhook/
send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
| 0
|
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
lowerCamelCase =(3, 9, -1_1, 0, 7, 5, 1, -1)
lowerCamelCase =(4, 6, 2, 0, 8, 1_0, 3, -2)
@dataclass
class _lowerCamelCase :
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = 42
SCREAMING_SNAKE_CASE_ = 42
class _lowerCamelCase :
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE ) -> None:
"""simple docstring"""
UpperCamelCase__ : Node | None = None
for i in sorted(__SCREAMING_SNAKE_CASE , reverse=__SCREAMING_SNAKE_CASE ):
UpperCamelCase__ : List[str] = Node(__SCREAMING_SNAKE_CASE , self.head )
def __iter__( self ) -> Iterator[int]:
"""simple docstring"""
UpperCamelCase__ : int = self.head
while node:
yield node.data
UpperCamelCase__ : List[Any] = node.next_node
def __len__( self ) -> int:
"""simple docstring"""
return sum(1 for _ in self )
def __str__( self ) -> str:
"""simple docstring"""
return " -> ".join([str(__SCREAMING_SNAKE_CASE ) for node in self] )
def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ ):
return SortedLinkedList(list(UpperCamelCase__ ) + list(UpperCamelCase__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCamelCase =SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
| 285
| 0
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ = logging.get_logger(__name__)
lowercase__ = {
"weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json",
}
class UpperCAmelCase ( _UpperCAmelCase ):
'''simple docstring'''
lowerCAmelCase_ = """roc_bert"""
def __init__( self : int , __lowercase : List[Any]=3_05_22 , __lowercase : Optional[Any]=7_68 , __lowercase : Optional[Any]=12 , __lowercase : List[Any]=12 , __lowercase : Tuple=30_72 , __lowercase : Tuple="gelu" , __lowercase : Dict=0.1 , __lowercase : List[str]=0.1 , __lowercase : Tuple=5_12 , __lowercase : Tuple=2 , __lowercase : List[str]=0.02 , __lowercase : Tuple=1E-12 , __lowercase : Any=True , __lowercase : List[Any]=0 , __lowercase : Tuple="absolute" , __lowercase : List[Any]=None , __lowercase : List[str]=True , __lowercase : List[Any]=True , __lowercase : Dict=7_68 , __lowercase : Optional[Any]=9_10 , __lowercase : List[str]=5_12 , __lowercase : Optional[int]=2_48_58 , __lowercase : List[str]=True , **__lowercase : List[str] , ):
"""simple docstring"""
snake_case_ = vocab_size
snake_case_ = max_position_embeddings
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = initializer_range
snake_case_ = type_vocab_size
snake_case_ = layer_norm_eps
snake_case_ = use_cache
snake_case_ = enable_pronunciation
snake_case_ = enable_shape
snake_case_ = pronunciation_embed_dim
snake_case_ = pronunciation_vocab_size
snake_case_ = shape_embed_dim
snake_case_ = shape_vocab_size
snake_case_ = concat_input
snake_case_ = position_embedding_type
snake_case_ = classifier_dropout
super().__init__(pad_token_id=lowercase__ , **lowercase__ )
| 704
|
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
from transformers.testing_utils import require_tokenizers, slow
from ..bert.test_tokenization_bert import BertTokenizationTest
@require_tokenizers
class UpperCAmelCase ( UpperCAmelCase__ ):
'''simple docstring'''
lowerCAmelCase_ = DistilBertTokenizer
lowerCAmelCase_ = DistilBertTokenizerFast
lowerCAmelCase_ = True
@slow
def snake_case__ ( self : Tuple ):
"""simple docstring"""
snake_case_ = DistilBertTokenizer.from_pretrained("distilbert-base-uncased" )
snake_case_ = tokenizer.encode("sequence builders" , add_special_tokens=__lowercase )
snake_case_ = tokenizer.encode("multi-sequence build" , add_special_tokens=__lowercase )
snake_case_ = tokenizer.build_inputs_with_special_tokens(__lowercase )
snake_case_ = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
| 139
| 0
|
import os
import tempfile
import unittest
from transformers import FlaubertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class _snake_case ( A__ ):
def __init__( self , a , a=13 , a=7 , a=True , a=True , a=True , a=True , a=True , a=False , a=False , a=False , a=2 , a=99 , a=0 , a=32 , a=5 , a=4 , a=0.1 , a=0.1 , a=512 , a=12 , a=2 , a=0.02 , a=3 , a=4 , a="last" , a=None , a=None , ) -> Optional[Any]:
SCREAMING_SNAKE_CASE = parent
SCREAMING_SNAKE_CASE = batch_size
SCREAMING_SNAKE_CASE = seq_length
SCREAMING_SNAKE_CASE = is_training
SCREAMING_SNAKE_CASE = use_input_lengths
SCREAMING_SNAKE_CASE = use_token_type_ids
SCREAMING_SNAKE_CASE = use_labels
SCREAMING_SNAKE_CASE = gelu_activation
SCREAMING_SNAKE_CASE = sinusoidal_embeddings
SCREAMING_SNAKE_CASE = causal
SCREAMING_SNAKE_CASE = asm
SCREAMING_SNAKE_CASE = n_langs
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = n_special
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = num_hidden_layers
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = hidden_dropout_prob
SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE = max_position_embeddings
SCREAMING_SNAKE_CASE = type_vocab_size
SCREAMING_SNAKE_CASE = type_sequence_label_size
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = num_labels
SCREAMING_SNAKE_CASE = num_choices
SCREAMING_SNAKE_CASE = summary_type
SCREAMING_SNAKE_CASE = use_proj
SCREAMING_SNAKE_CASE = scope
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length])
SCREAMING_SNAKE_CASE = None
if self.use_input_lengths:
SCREAMING_SNAKE_CASE = (
ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2
) # small variation of seq_length
SCREAMING_SNAKE_CASE = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.n_langs)
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = None
if self.use_labels:
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size)
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , 2).float()
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices)
SCREAMING_SNAKE_CASE = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
return FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , )
def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a , a , a , a , ) -> Dict:
SCREAMING_SNAKE_CASE = FlaubertModel(config=a)
model.to(a)
model.eval()
SCREAMING_SNAKE_CASE = model(a , lengths=a , langs=a)
SCREAMING_SNAKE_CASE = model(a , langs=a)
SCREAMING_SNAKE_CASE = model(a)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a , a , a , a , ) -> str:
SCREAMING_SNAKE_CASE = FlaubertWithLMHeadModel(a)
model.to(a)
model.eval()
SCREAMING_SNAKE_CASE = model(a , token_type_ids=a , labels=a)
self.parent.assertEqual(result.loss.shape , ())
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a , a , a , a , ) -> Any:
SCREAMING_SNAKE_CASE = FlaubertForQuestionAnsweringSimple(a)
model.to(a)
model.eval()
SCREAMING_SNAKE_CASE = model(a)
SCREAMING_SNAKE_CASE = model(a , start_positions=a , end_positions=a)
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a , a , a , a , ) -> Dict:
SCREAMING_SNAKE_CASE = FlaubertForQuestionAnswering(a)
model.to(a)
model.eval()
SCREAMING_SNAKE_CASE = model(a)
SCREAMING_SNAKE_CASE = model(
a , start_positions=a , end_positions=a , cls_index=a , is_impossible=a , p_mask=a , )
SCREAMING_SNAKE_CASE = model(
a , start_positions=a , end_positions=a , cls_index=a , is_impossible=a , )
((SCREAMING_SNAKE_CASE) , ) = result_with_labels.to_tuple()
SCREAMING_SNAKE_CASE = model(a , start_positions=a , end_positions=a)
((SCREAMING_SNAKE_CASE) , ) = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , ())
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top))
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top))
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top))
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top))
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,))
def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a , a , a , a , ) -> int:
SCREAMING_SNAKE_CASE = FlaubertForSequenceClassification(a)
model.to(a)
model.eval()
SCREAMING_SNAKE_CASE = model(a)
SCREAMING_SNAKE_CASE = model(a , labels=a)
self.parent.assertEqual(result.loss.shape , ())
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a , a , a , a , ) -> Any:
SCREAMING_SNAKE_CASE = self.num_labels
SCREAMING_SNAKE_CASE = FlaubertForTokenClassification(a)
model.to(a)
model.eval()
SCREAMING_SNAKE_CASE = model(a , attention_mask=a , labels=a)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a , a , a , a , ) -> Tuple:
SCREAMING_SNAKE_CASE = self.num_choices
SCREAMING_SNAKE_CASE = FlaubertForMultipleChoice(config=a)
model.to(a)
model.eval()
SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
SCREAMING_SNAKE_CASE = model(
a , attention_mask=a , token_type_ids=a , labels=a , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) ,
) = config_and_inputs
SCREAMING_SNAKE_CASE = {
'input_ids': input_ids,
'token_type_ids': token_type_ids,
'lengths': input_lengths,
'attention_mask': input_mask,
}
return config, inputs_dict
@require_torch
class _snake_case ( A__ , A__ , unittest.TestCase ):
_lowercase : Any = (
(
FlaubertModel,
FlaubertWithLMHeadModel,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertForMultipleChoice,
)
if is_torch_available()
else ()
)
_lowercase : Any = (
{
'''feature-extraction''': FlaubertModel,
'''fill-mask''': FlaubertWithLMHeadModel,
'''question-answering''': FlaubertForQuestionAnsweringSimple,
'''text-classification''': FlaubertForSequenceClassification,
'''token-classification''': FlaubertForTokenClassification,
'''zero-shot''': FlaubertForSequenceClassification,
}
if is_torch_available()
else {}
)
def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a) -> Optional[int]:
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith('Fast')
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def SCREAMING_SNAKE_CASE__ ( self , a , a , a=False) -> Any:
SCREAMING_SNAKE_CASE = super()._prepare_for_class(a , a , return_labels=a)
if return_labels:
if model_class.__name__ == "FlaubertForQuestionAnswering":
SCREAMING_SNAKE_CASE = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=a)
SCREAMING_SNAKE_CASE = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=a)
return inputs_dict
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE = FlaubertModelTester(self)
SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=a , emb_dim=37)
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*a)
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_simple_qa(*a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*a)
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*a)
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_token_classif(*a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_multiple_choice(*a)
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE = FlaubertModel.from_pretrained(a)
self.assertIsNotNone(a)
@slow
@require_torch_gpu
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# FlauBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == FlaubertForMultipleChoice:
return
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = model_class(config=a)
SCREAMING_SNAKE_CASE = self._prepare_for_class(a , a)
SCREAMING_SNAKE_CASE = torch.jit.trace(
a , (inputs_dict['input_ids'].to('cpu'), inputs_dict['attention_mask'].to('cpu')))
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(a , os.path.join(a , 'traced_model.pt'))
SCREAMING_SNAKE_CASE = torch.jit.load(os.path.join(a , 'traced_model.pt') , map_location=a)
loaded(inputs_dict['input_ids'].to(a) , inputs_dict['attention_mask'].to(a))
@require_torch
class _snake_case ( unittest.TestCase ):
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
SCREAMING_SNAKE_CASE = FlaubertModel.from_pretrained('flaubert/flaubert_base_cased')
SCREAMING_SNAKE_CASE = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]])
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(a)[0]
SCREAMING_SNAKE_CASE = torch.Size((1, 11, 768))
self.assertEqual(output.shape , a)
SCREAMING_SNAKE_CASE = torch.tensor(
[[[-2.62_51, -1.42_98, -0.02_27], [-2.85_10, -1.63_87, 0.22_58], [-2.81_14, -1.18_32, -0.30_66]]])
self.assertTrue(torch.allclose(output[:, :3, :3] , a , atol=1E-4))
| 73
|
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class UpperCAmelCase__ :
"""simple docstring"""
lowerCAmelCase__ : int
lowerCAmelCase__ : TreeNode | None = None
lowerCAmelCase__ : TreeNode | None = None
a_ = namedtuple("""CoinsDistribResult""", """moves excess""")
def __lowerCAmelCase ( A_ : TreeNode | None ) -> int:
if root is None:
return 0
# Validation
def count_nodes(A_ : TreeNode | None ) -> int:
if node is None:
return 0
return count_nodes(node.left ) + count_nodes(node.right ) + 1
def count_coins(A_ : TreeNode | None ) -> int:
if node is None:
return 0
return count_coins(node.left ) + count_coins(node.right ) + node.data
if count_nodes(A_ ) != count_coins(A_ ):
raise ValueError("The nodes number should be same as the number of coins" )
# Main calculation
def get_distrib(A_ : TreeNode | None ) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 , 1 )
__UpperCAmelCase , __UpperCAmelCase = get_distrib(node.left )
__UpperCAmelCase , __UpperCAmelCase = get_distrib(node.right )
__UpperCAmelCase = 1 - left_distrib_excess
__UpperCAmelCase = 1 - right_distrib_excess
__UpperCAmelCase = (
left_distrib_moves
+ right_distrib_moves
+ abs(A_ )
+ abs(A_ )
)
__UpperCAmelCase = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(A_ , A_ )
return get_distrib(A_ )[0]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 221
| 0
|
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : float ) -> float:
"""simple docstring"""
if edge <= 0 or not isinstance(__UpperCamelCase , __UpperCamelCase ):
raise ValueError("""Length must be a positive.""" )
return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2)
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : float ) -> float:
"""simple docstring"""
if edge <= 0 or not isinstance(__UpperCamelCase , __UpperCamelCase ):
raise ValueError("""Length must be a positive.""" )
return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 379
|
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__lowerCamelCase : List[Any] = {
'''configuration_informer''': [
'''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''InformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Union[str, Any] = [
'''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''InformerForPrediction''',
'''InformerModel''',
'''InformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_informer import (
INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
InformerForPrediction,
InformerModel,
InformerPreTrainedModel,
)
else:
import sys
__lowerCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 379
| 1
|
# Algorithm for the pigeonhole sorting
def _SCREAMING_SNAKE_CASE ( lowercase : str ):
'''simple docstring'''
lowerCamelCase_ = min(lowercase ) # min() finds the minimum value
lowerCamelCase_ = max(lowercase ) # max() finds the maximum value
lowerCamelCase_ = max_val - min_val + 1 # size is difference of max and min values plus one
# list of pigeonholes of size equal to the variable size
lowerCamelCase_ = [0] * size
# Populate the pigeonholes.
for x in a:
assert isinstance(lowercase , lowercase ), "integers only please"
holes[x - min_val] += 1
# Putting the elements back into the array in an order.
lowerCamelCase_ = 0
for count in range(lowercase ):
while holes[count] > 0:
holes[count] -= 1
lowerCamelCase_ = count + min_val
i += 1
def _SCREAMING_SNAKE_CASE ( ):
'''simple docstring'''
lowerCamelCase_ = [8, 3, 2, 7, 4, 6, 8]
pigeonhole_sort(lowercase )
print('Sorted order is:' , ' '.join(lowercase ) )
if __name__ == "__main__":
main()
| 70
|
"""simple docstring"""
from dataclasses import dataclass
from typing import Optional, Tuple
import torch
from torch import nn
from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel
from transformers.utils import ModelOutput
@dataclass
class lowerCAmelCase ( lowerCamelCase_ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[torch.FloatTensor] = None
SCREAMING_SNAKE_CASE_ : torch.FloatTensor = None
SCREAMING_SNAKE_CASE_ : Optional[Tuple[torch.FloatTensor]] = None
SCREAMING_SNAKE_CASE_ : Optional[Tuple[torch.FloatTensor]] = None
class lowerCAmelCase ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__=512 , lowerCAmelCase__="cls" , lowerCAmelCase__=False , lowerCAmelCase__=True , **lowerCAmelCase__ , ) -> Tuple:
super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
SCREAMING_SNAKE_CASE = project_dim
SCREAMING_SNAKE_CASE = pooler_fn
SCREAMING_SNAKE_CASE = learn_encoder
SCREAMING_SNAKE_CASE = use_attention_mask
class lowerCAmelCase ( lowerCamelCase_ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = [R"""pooler""", R"""logit_scale"""]
SCREAMING_SNAKE_CASE_ : List[Any] = [R"""position_ids""", R"""predictions.decoder.bias"""]
SCREAMING_SNAKE_CASE_ : Union[str, Any] = """roberta"""
SCREAMING_SNAKE_CASE_ : Dict = RobertaSeriesConfig
def __init__( self , lowerCAmelCase__ ) -> Union[str, Any]:
super().__init__(lowerCAmelCase__ )
SCREAMING_SNAKE_CASE = XLMRobertaModel(lowerCAmelCase__ )
SCREAMING_SNAKE_CASE = nn.Linear(config.hidden_size , config.project_dim )
SCREAMING_SNAKE_CASE = getattr(lowerCAmelCase__ , 'has_pre_transformation' , lowerCAmelCase__ )
if self.has_pre_transformation:
SCREAMING_SNAKE_CASE = nn.Linear(config.hidden_size , config.project_dim )
SCREAMING_SNAKE_CASE = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps )
self.post_init()
def __A ( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict
SCREAMING_SNAKE_CASE = self.base_model(
input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , inputs_embeds=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , output_attentions=lowerCAmelCase__ , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=lowerCAmelCase__ , )
if self.has_pre_transformation:
SCREAMING_SNAKE_CASE = outputs['hidden_states'][-2]
SCREAMING_SNAKE_CASE = self.pre_LN(lowerCAmelCase__ )
SCREAMING_SNAKE_CASE = self.transformation_pre(lowerCAmelCase__ )
return TransformationModelOutput(
projection_state=lowerCAmelCase__ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
else:
SCREAMING_SNAKE_CASE = self.transformation(outputs.last_hidden_state )
return TransformationModelOutput(
projection_state=lowerCAmelCase__ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
| 247
| 0
|
'''simple docstring'''
import math
import numpy as np
import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
def _lowerCamelCase ( lowercase : Dict = 3 ) -> List[str]:
'''simple docstring'''
if isinstance(_lowerCamelCase , _lowerCamelCase ):
raise TypeError("number of qubits must be a integer." )
if number_of_qubits <= 0:
raise ValueError("number of qubits must be > 0." )
if math.floor(_lowerCamelCase ) != number_of_qubits:
raise ValueError("number of qubits must be exact integer." )
if number_of_qubits > 10:
raise ValueError("number of qubits too large to simulate(>10)." )
_a = QuantumRegister(_lowerCamelCase , "qr" )
_a = ClassicalRegister(_lowerCamelCase , "cr" )
_a = QuantumCircuit(_lowerCamelCase , _lowerCamelCase )
_a = number_of_qubits
for i in range(_lowerCamelCase ):
quantum_circuit.h(number_of_qubits - i - 1 )
counter -= 1
for j in range(_lowerCamelCase ):
quantum_circuit.cp(np.pi / 2 ** (counter - j) , _lowerCamelCase , _lowerCamelCase )
for k in range(number_of_qubits // 2 ):
quantum_circuit.swap(_lowerCamelCase , number_of_qubits - k - 1 )
# measure all the qubits
quantum_circuit.measure(_lowerCamelCase , _lowerCamelCase )
# simulate with 10000 shots
_a = Aer.get_backend("qasm_simulator" )
_a = execute(_lowerCamelCase , _lowerCamelCase , shots=1_0000 )
return job.result().get_counts(_lowerCamelCase )
if __name__ == "__main__":
print(
f"""Total count for quantum fourier transform state is: \
{quantum_fourier_transform(3)}"""
)
| 717
|
'''simple docstring'''
import os
from datetime import datetime as dt
from github import Github
lowerCAmelCase_ : List[Any] = [
'good first issue',
'feature request',
'wip',
]
def _lowerCamelCase ( ) -> Dict:
_a = Github(os.environ["GITHUB_TOKEN"] )
_a = g.get_repo("huggingface/accelerate" )
_a = repo.get_issues(state="open" )
for issue in open_issues:
_a = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase : i.created_at , reverse=lowercase )
_a = comments[0] if len(lowercase ) > 0 else None
_a = dt.utcnow()
_a = (current_time - issue.updated_at).days
_a = (current_time - issue.created_at).days
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and days_since_updated > 7
and days_since_creation >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Close issue since it has been 7 days of inactivity since bot mention.
issue.edit(state="closed" )
elif (
days_since_updated > 23
and days_since_creation >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Add stale comment
issue.create_comment(
"This issue has been automatically marked as stale because it has not had "
"recent activity. If you think this still needs to be addressed "
"please comment on this thread.\n\nPlease note that issues that do not follow the "
"[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) "
"are likely to be ignored." )
if __name__ == "__main__":
main()
| 521
| 0
|
'''simple docstring'''
from __future__ import annotations
from PIL import Image
# Define glider example
__lowerCamelCase = [
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
]
# Define blinker example
__lowerCamelCase = [[0, 1, 0], [0, 1, 0], [0, 1, 0]]
def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[list[int]]:
A_ = []
for i in range(len(UpperCAmelCase__ ) ):
A_ = []
for j in range(len(cells[i] ) ):
# Get the number of live neighbours
A_ = 0
if i > 0 and j > 0:
neighbour_count += cells[i - 1][j - 1]
if i > 0:
neighbour_count += cells[i - 1][j]
if i > 0 and j < len(cells[i] ) - 1:
neighbour_count += cells[i - 1][j + 1]
if j > 0:
neighbour_count += cells[i][j - 1]
if j < len(cells[i] ) - 1:
neighbour_count += cells[i][j + 1]
if i < len(UpperCAmelCase__ ) - 1 and j > 0:
neighbour_count += cells[i + 1][j - 1]
if i < len(UpperCAmelCase__ ) - 1:
neighbour_count += cells[i + 1][j]
if i < len(UpperCAmelCase__ ) - 1 and j < len(cells[i] ) - 1:
neighbour_count += cells[i + 1][j + 1]
# Rules of the game of life (excerpt from Wikipedia):
# 1. Any live cell with two or three live neighbours survives.
# 2. Any dead cell with three live neighbours becomes a live cell.
# 3. All other live cells die in the next generation.
# Similarly, all other dead cells stay dead.
A_ = cells[i][j] == 1
if (
(alive and 2 <= neighbour_count <= 3)
or not alive
and neighbour_count == 3
):
next_generation_row.append(1 )
else:
next_generation_row.append(0 )
next_generation.append(UpperCAmelCase__ )
return next_generation
def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> list[Image.Image]:
A_ = []
for _ in range(UpperCAmelCase__ ):
# Create output image
A_ = Image.new("""RGB""", (len(cells[0] ), len(UpperCAmelCase__ )) )
A_ = img.load()
# Save cells to image
for x in range(len(UpperCAmelCase__ ) ):
for y in range(len(cells[0] ) ):
A_ = 2_55 - cells[y][x] * 2_55
A_ = (colour, colour, colour)
# Save image
images.append(UpperCAmelCase__ )
A_ = new_generation(UpperCAmelCase__ )
return images
if __name__ == "__main__":
__lowerCamelCase = generate_images(GLIDER, 16)
images[0].save('''out.gif''', save_all=True, append_images=images[1:])
| 288
|
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__lowerCamelCase = logging.get_logger(__name__)
__lowerCamelCase = {
'''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''',
}
class A__ ( _snake_case , _snake_case ):
lowercase = "resnet"
lowercase = ["basic", "bottleneck"]
def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=64 , UpperCamelCase__=[256, 512, 1024, 2048] , UpperCamelCase__=[3, 4, 6, 3] , UpperCamelCase__="bottleneck" , UpperCamelCase__="relu" , UpperCamelCase__=False , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ , ) -> List[str]:
'''simple docstring'''
super().__init__(**UpperCamelCase__ )
if layer_type not in self.layer_types:
raise ValueError(f'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' )
A_ = num_channels
A_ = embedding_size
A_ = hidden_sizes
A_ = depths
A_ = layer_type
A_ = hidden_act
A_ = downsample_in_first_stage
A_ = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(UpperCamelCase__ ) + 1 )]
A_ , A_ = get_aligned_output_features_output_indices(
out_features=UpperCamelCase__ , out_indices=UpperCamelCase__ , stage_names=self.stage_names )
class A__ ( _snake_case ):
lowercase = version.parse("1.11" )
@property
def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def snake_case_ ( self ) -> float:
'''simple docstring'''
return 1e-3
| 288
| 1
|
"""simple docstring"""
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipaConfig,
BlipaForConditionalGeneration,
BlipaProcessor,
BlipaVisionConfig,
BlipImageProcessor,
OPTConfig,
TaConfig,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def __snake_case ( ) -> Any:
"""simple docstring"""
A = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png'
A = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert('RGB' )
return image
def __snake_case ( UpperCamelCase__ ) -> Any:
"""simple docstring"""
A = []
# fmt: off
# vision encoder
rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') )
rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') )
rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') )
rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') )
rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') )
rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((f'visual_encoder.blocks.{i}.norm1.weight', f'vision_model.encoder.layers.{i}.layer_norm1.weight') )
rename_keys.append((f'visual_encoder.blocks.{i}.norm1.bias', f'vision_model.encoder.layers.{i}.layer_norm1.bias') )
rename_keys.append((f'visual_encoder.blocks.{i}.norm2.weight', f'vision_model.encoder.layers.{i}.layer_norm2.weight') )
rename_keys.append((f'visual_encoder.blocks.{i}.norm2.bias', f'vision_model.encoder.layers.{i}.layer_norm2.bias') )
rename_keys.append((f'visual_encoder.blocks.{i}.attn.qkv.weight', f'vision_model.encoder.layers.{i}.self_attn.qkv.weight') )
rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.weight', f'vision_model.encoder.layers.{i}.self_attn.projection.weight',) )
rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.bias', f'vision_model.encoder.layers.{i}.self_attn.projection.bias') )
rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.weight', f'vision_model.encoder.layers.{i}.mlp.fc1.weight') )
rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.bias', f'vision_model.encoder.layers.{i}.mlp.fc1.bias') )
rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.weight', f'vision_model.encoder.layers.{i}.mlp.fc2.weight') )
rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.bias', f'vision_model.encoder.layers.{i}.mlp.fc2.bias') )
# QFormer
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') )
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') )
# fmt: on
return rename_keys
def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple:
"""simple docstring"""
A = dct.pop(UpperCamelCase__ )
A = val
def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> Dict:
"""simple docstring"""
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
A = state_dict.pop(f'visual_encoder.blocks.{i}.attn.q_bias' )
A = state_dict.pop(f'visual_encoder.blocks.{i}.attn.v_bias' )
# next, set bias in the state dict
A = torch.cat((q_bias, torch.zeros_like(UpperCamelCase__ , requires_grad=UpperCamelCase__ ), v_bias) )
A = qkv_bias
def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> str:
"""simple docstring"""
A = 364 if 'coco' in model_name else 224
A = BlipaVisionConfig(image_size=UpperCamelCase__ ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "opt-2.7b" in model_name:
A = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=UpperCamelCase__ ).to_dict()
elif "opt-6.7b" in model_name:
A = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=UpperCamelCase__ ).to_dict()
elif "t5-xl" in model_name:
A = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
A = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict()
A = BlipaConfig(vision_config=UpperCamelCase__ , text_config=UpperCamelCase__ )
return config, image_size
@torch.no_grad()
def __snake_case ( UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=False ) -> Tuple:
"""simple docstring"""
A = (
AutoTokenizer.from_pretrained('facebook/opt-2.7b' )
if 'opt' in model_name
else AutoTokenizer.from_pretrained('google/flan-t5-xl' )
)
A = tokenizer('\n' , add_special_tokens=UpperCamelCase__ ).input_ids[0]
A , A = get_blipa_config(UpperCamelCase__ , eos_token_id=UpperCamelCase__ )
A = BlipaForConditionalGeneration(UpperCamelCase__ ).eval()
A = {
'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'),
'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'),
'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'),
'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'),
'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'),
'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'),
'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'),
}
A , A = model_name_to_original[model_name]
# load original model
print('Loading original model...' )
A = 'cuda' if torch.cuda.is_available() else 'cpu'
A , A , A = load_model_and_preprocess(
name=UpperCamelCase__ , model_type=UpperCamelCase__ , is_eval=UpperCamelCase__ , device=UpperCamelCase__ )
original_model.eval()
print('Done!' )
# update state dict keys
A = original_model.state_dict()
A = create_rename_keys(UpperCamelCase__ )
for src, dest in rename_keys:
rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
A = state_dict.pop(UpperCamelCase__ )
if key.startswith('Qformer.bert' ):
A = key.replace('Qformer.bert' , 'qformer' )
if "attention.self" in key:
A = key.replace('self' , 'attention' )
if "opt_proj" in key:
A = key.replace('opt_proj' , 'language_projection' )
if "t5_proj" in key:
A = key.replace('t5_proj' , 'language_projection' )
if key.startswith('opt' ):
A = key.replace('opt' , 'language' )
if key.startswith('t5' ):
A = key.replace('t5' , 'language' )
A = val
# read in qv biases
read_in_q_v_bias(UpperCamelCase__ , UpperCamelCase__ )
A , A = hf_model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ )
assert len(UpperCamelCase__ ) == 0
assert unexpected_keys == ["qformer.embeddings.position_ids"]
A = load_demo_image()
A = vis_processors['eval'](UpperCamelCase__ ).unsqueeze(0 ).to(UpperCamelCase__ )
A = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(UpperCamelCase__ )
# create processor
A = BlipImageProcessor(
size={'height': image_size, 'width': image_size} , image_mean=UpperCamelCase__ , image_std=UpperCamelCase__ )
A = BlipaProcessor(image_processor=UpperCamelCase__ , tokenizer=UpperCamelCase__ )
A = processor(images=UpperCamelCase__ , return_tensors='pt' ).pixel_values.to(UpperCamelCase__ )
# make sure processor creates exact same pixel values
assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ )
original_model.to(UpperCamelCase__ )
hf_model.to(UpperCamelCase__ )
with torch.no_grad():
if "opt" in model_name:
A = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits
A = hf_model(UpperCamelCase__ , UpperCamelCase__ ).logits
else:
A = original_model(
{'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits
A = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 )
A = hf_model(UpperCamelCase__ , UpperCamelCase__ , labels=UpperCamelCase__ ).logits
assert original_logits.shape == logits.shape
print('First values of original logits:' , original_logits[0, :3, :3] )
print('First values of HF logits:' , logits[0, :3, :3] )
# assert values
if model_name == "blip2-flan-t5-xl":
A = torch.tensor(
[[-41.5850, -4.4_4_4_0, -8.9_9_2_2], [-47.4322, -5.9_1_4_3, -1.7_3_4_0]] , device=UpperCamelCase__ )
assert torch.allclose(logits[0, :3, :3] , UpperCamelCase__ , atol=1E-4 )
elif model_name == "blip2-flan-t5-xl-coco":
A = torch.tensor(
[[-57.0109, -9.8_9_6_7, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=UpperCamelCase__ )
else:
# cast to same type
A = logits.dtype
assert torch.allclose(original_logits.to(UpperCamelCase__ ) , UpperCamelCase__ , atol=1E-2 )
print('Looks ok!' )
print('Generating a caption...' )
A = ''
A = tokenizer(UpperCamelCase__ , return_tensors='pt' ).input_ids.to(UpperCamelCase__ )
A = original_model.generate({'image': original_pixel_values} )
A = hf_model.generate(
UpperCamelCase__ , UpperCamelCase__ , do_sample=UpperCamelCase__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , )
print('Original generation:' , UpperCamelCase__ )
A = input_ids.shape[1]
A = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=UpperCamelCase__ )
A = [text.strip() for text in output_text]
print('HF generation:' , UpperCamelCase__ )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(UpperCamelCase__ )
hf_model.save_pretrained(UpperCamelCase__ )
if push_to_hub:
processor.push_to_hub(f'nielsr/{model_name}' )
hf_model.push_to_hub(f'nielsr/{model_name}' )
if __name__ == "__main__":
UpperCamelCase : Optional[int] = argparse.ArgumentParser()
UpperCamelCase : str = [
"blip2-opt-2.7b",
"blip2-opt-6.7b",
"blip2-opt-2.7b-coco",
"blip2-opt-6.7b-coco",
"blip2-flan-t5-xl",
"blip2-flan-t5-xl-coco",
"blip2-flan-t5-xxl",
]
parser.add_argument(
"--model_name",
default="blip2-opt-2.7b",
choices=choices,
type=str,
help="Path to hf config.json of model to convert",
)
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether to push the model and processor to the hub after converting",
)
UpperCamelCase : str = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 716
|
"""simple docstring"""
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class lowerCamelCase__ ( unittest.TestCase ):
lowerCAmelCase = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def __a ( self : Dict , _lowercase : int , _lowercase : Any , _lowercase : int ):
A = hf_hub_download(
repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' )
A = VideoClassificationPipeline(model=_lowercase , image_processor=_lowercase , top_k=2 )
A = [
example_video_filepath,
'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4',
]
return video_classifier, examples
def __a ( self : Tuple , _lowercase : Union[str, Any] , _lowercase : List[Any] ):
for example in examples:
A = video_classifier(_lowercase )
self.assertEqual(
_lowercase , [
{'score': ANY(_lowercase ), 'label': ANY(_lowercase )},
{'score': ANY(_lowercase ), 'label': ANY(_lowercase )},
] , )
@require_torch
def __a ( self : str ):
A = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification'
A = VideoMAEFeatureExtractor(
size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10} )
A = pipeline(
'video-classification' , model=_lowercase , feature_extractor=_lowercase , frame_sampling_rate=4 )
A = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' )
A = video_classifier(_lowercase , top_k=2 )
self.assertEqual(
nested_simplify(_lowercase , decimals=4 ) , [{'score': 0.5_1_9_9, 'label': 'LABEL_0'}, {'score': 0.4_8_0_1, 'label': 'LABEL_1'}] , )
A = video_classifier(
[
video_file_path,
video_file_path,
] , top_k=2 , )
self.assertEqual(
nested_simplify(_lowercase , decimals=4 ) , [
[{'score': 0.5_1_9_9, 'label': 'LABEL_0'}, {'score': 0.4_8_0_1, 'label': 'LABEL_1'}],
[{'score': 0.5_1_9_9, 'label': 'LABEL_0'}, {'score': 0.4_8_0_1, 'label': 'LABEL_1'}],
] , )
@require_tf
def __a ( self : Dict ):
pass
| 91
| 0
|
"""simple docstring"""
from typing import Callable, Dict, Optional, Tuple
import torch
from torch import nn
from torch.distributions import (
AffineTransform,
Distribution,
Independent,
NegativeBinomial,
Normal,
StudentT,
TransformedDistribution,
)
class __lowerCAmelCase (__UpperCamelCase ):
'''simple docstring'''
def __init__( self , a , a=None , a=None , a=0 ):
"""simple docstring"""
snake_case_ :Union[str, Any] = 1.0 if scale is None else scale
snake_case_ :List[str] = 0.0 if loc is None else loc
super().__init__(a , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=a )] )
@property
def _a ( self ):
"""simple docstring"""
return self.base_dist.mean * self.scale + self.loc
@property
def _a ( self ):
"""simple docstring"""
return self.base_dist.variance * self.scale**2
@property
def _a ( self ):
"""simple docstring"""
return self.variance.sqrt()
class __lowerCAmelCase (nn.Module ):
'''simple docstring'''
def __init__( self , a , a , a , **a ):
"""simple docstring"""
super().__init__(**a )
snake_case_ :Union[str, Any] = args_dim
snake_case_ :Union[str, Any] = nn.ModuleList([nn.Linear(a , a ) for dim in args_dim.values()] )
snake_case_ :Optional[Any] = domain_map
def _a ( self , a ):
"""simple docstring"""
snake_case_ :Dict = [proj(a ) for proj in self.proj]
return self.domain_map(*a )
class __lowerCAmelCase (nn.Module ):
'''simple docstring'''
def __init__( self , a ):
"""simple docstring"""
super().__init__()
snake_case_ :Optional[Any] = function
def _a ( self , a , *a ):
"""simple docstring"""
return self.function(a , *a )
class __lowerCAmelCase :
'''simple docstring'''
a__ = 42
a__ = 42
a__ = 42
def __init__( self , a = 1 ):
"""simple docstring"""
snake_case_ :Optional[int] = dim
snake_case_ :Dict = {k: dim * self.args_dim[k] for k in self.args_dim}
def _a ( self , a ):
"""simple docstring"""
if self.dim == 1:
return self.distribution_class(*a )
else:
return Independent(self.distribution_class(*a ) , 1 )
def _a ( self , a , a = None , a = None , ):
"""simple docstring"""
snake_case_ :int = self._base_distribution(a )
if loc is None and scale is None:
return distr
else:
return AffineTransformed(a , loc=a , scale=a , event_dim=self.event_dim )
@property
def _a ( self ):
"""simple docstring"""
return () if self.dim == 1 else (self.dim,)
@property
def _a ( self ):
"""simple docstring"""
return len(self.event_shape )
@property
def _a ( self ):
"""simple docstring"""
return 0.0
def _a ( self , a ):
"""simple docstring"""
return ParameterProjection(
in_features=a , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , )
def _a ( self , *a ):
"""simple docstring"""
raise NotImplementedError()
@staticmethod
def _a ( a ):
"""simple docstring"""
return (x + torch.sqrt(torch.square(a ) + 4.0 )) / 2.0
class __lowerCAmelCase (__UpperCamelCase ):
'''simple docstring'''
a__ = {"df": 1, "loc": 1, "scale": 1}
a__ = StudentT
@classmethod
def _a ( cls , a , a , a ):
"""simple docstring"""
snake_case_ :Optional[int] = cls.squareplus(a ).clamp_min(torch.finfo(scale.dtype ).eps )
snake_case_ :int = 2.0 + cls.squareplus(a )
return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 )
class __lowerCAmelCase (__UpperCamelCase ):
'''simple docstring'''
a__ = {"loc": 1, "scale": 1}
a__ = Normal
@classmethod
def _a ( cls , a , a ):
"""simple docstring"""
snake_case_ :Optional[int] = cls.squareplus(a ).clamp_min(torch.finfo(scale.dtype ).eps )
return loc.squeeze(-1 ), scale.squeeze(-1 )
class __lowerCAmelCase (__UpperCamelCase ):
'''simple docstring'''
a__ = {"total_count": 1, "logits": 1}
a__ = NegativeBinomial
@classmethod
def _a ( cls , a , a ):
"""simple docstring"""
snake_case_ :Tuple = cls.squareplus(a )
return total_count.squeeze(-1 ), logits.squeeze(-1 )
def _a ( self , a ):
"""simple docstring"""
snake_case_ , snake_case_ :Any = distr_args
if self.dim == 1:
return self.distribution_class(total_count=a , logits=a )
else:
return Independent(self.distribution_class(total_count=a , logits=a ) , 1 )
def _a ( self , a , a = None , a = None ):
"""simple docstring"""
snake_case_ , snake_case_ :Optional[Any] = distr_args
if scale is not None:
# See scaling property of Gamma.
logits += scale.log()
return self._base_distribution((total_count, logits) )
| 584
|
"""simple docstring"""
__UpperCAmelCase : List[str] = {str(digit): digit**5 for digit in range(10)}
def A ( _A ):
"""simple docstring"""
return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_A ) )
def A ( ):
"""simple docstring"""
return sum(
number
for number in range(1_000, 1_000_000 )
if number == digits_fifth_powers_sum(_A ) )
if __name__ == "__main__":
print(solution())
| 584
| 1
|
import gc
import random
import unittest
import torch
from diffusers import (
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin
@skip_mps
class __SCREAMING_SNAKE_CASE ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase):
__SCREAMING_SNAKE_CASE : Union[str, Any] = IFPipeline
__SCREAMING_SNAKE_CASE : Optional[Any] = TEXT_TO_IMAGE_PARAMS - {"""width""", """height""", """latents"""}
__SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS
__SCREAMING_SNAKE_CASE : int = PipelineTesterMixin.required_optional_params - {"""latents"""}
def UpperCAmelCase__ ( self : Tuple ):
return self._get_dummy_components()
def UpperCAmelCase__ ( self : List[str] , __UpperCamelCase : Any , __UpperCamelCase : Optional[int]=0 ):
if str(__UpperCamelCase ).startswith("mps" ):
_UpperCAmelCase = torch.manual_seed(__UpperCamelCase )
else:
_UpperCAmelCase = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase )
_UpperCAmelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def UpperCAmelCase__ ( self : List[str] ):
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" )
def UpperCAmelCase__ ( self : Union[str, Any] ):
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1 )
def UpperCAmelCase__ ( self : List[str] ):
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def UpperCAmelCase__ ( self : Tuple ):
self._test_save_load_local()
def UpperCAmelCase__ ( self : Union[str, Any] ):
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def UpperCAmelCase__ ( self : str ):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
@slow
@require_torch_gpu
class __SCREAMING_SNAKE_CASE ( unittest.TestCase):
def UpperCAmelCase__ ( self : Optional[Any] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ ( self : Optional[Any] ):
# if
_UpperCAmelCase = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa )
_UpperCAmelCase = IFSuperResolutionPipeline.from_pretrained(
"DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase )
# pre compute text embeddings and remove T5 to save memory
pipe_a.text_encoder.to("cuda" )
_UpperCAmelCase = pipe_a.encode_prompt("anime turtle" , device="cuda" )
del pipe_a.tokenizer
del pipe_a.text_encoder
gc.collect()
_UpperCAmelCase = None
_UpperCAmelCase = None
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# img2img
_UpperCAmelCase = IFImgaImgPipeline(**pipe_a.components )
_UpperCAmelCase = IFImgaImgSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_imgaimg(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# inpainting
_UpperCAmelCase = IFInpaintingPipeline(**pipe_a.components )
_UpperCAmelCase = IFInpaintingSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_inpainting(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] ):
# pipeline 1
_start_torch_memory_measurement()
_UpperCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 )
_UpperCAmelCase = pipe_a(
prompt_embeds=__UpperCamelCase , negative_prompt_embeds=__UpperCamelCase , num_inference_steps=2 , generator=__UpperCamelCase , output_type="np" , )
_UpperCAmelCase = output.images[0]
assert image.shape == (64, 64, 3)
_UpperCAmelCase = torch.cuda.max_memory_allocated()
assert mem_bytes < 13 * 10**9
_UpperCAmelCase = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" )
assert_mean_pixel_difference(__UpperCamelCase , __UpperCamelCase )
# pipeline 2
_start_torch_memory_measurement()
_UpperCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 )
_UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__UpperCamelCase )
_UpperCAmelCase = pipe_a(
prompt_embeds=__UpperCamelCase , negative_prompt_embeds=__UpperCamelCase , image=__UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=2 , output_type="np" , )
_UpperCAmelCase = output.images[0]
assert image.shape == (256, 256, 3)
_UpperCAmelCase = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
_UpperCAmelCase = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" )
assert_mean_pixel_difference(__UpperCamelCase , __UpperCamelCase )
def UpperCAmelCase__ ( self : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] ):
# pipeline 1
_start_torch_memory_measurement()
_UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__UpperCamelCase )
_UpperCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 )
_UpperCAmelCase = pipe_a(
prompt_embeds=__UpperCamelCase , negative_prompt_embeds=__UpperCamelCase , image=__UpperCamelCase , num_inference_steps=2 , generator=__UpperCamelCase , output_type="np" , )
_UpperCAmelCase = output.images[0]
assert image.shape == (64, 64, 3)
_UpperCAmelCase = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
_UpperCAmelCase = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" )
assert_mean_pixel_difference(__UpperCamelCase , __UpperCamelCase )
# pipeline 2
_start_torch_memory_measurement()
_UpperCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 )
_UpperCAmelCase = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__UpperCamelCase )
_UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__UpperCamelCase )
_UpperCAmelCase = pipe_a(
prompt_embeds=__UpperCamelCase , negative_prompt_embeds=__UpperCamelCase , image=__UpperCamelCase , original_image=__UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=2 , output_type="np" , )
_UpperCAmelCase = output.images[0]
assert image.shape == (256, 256, 3)
_UpperCAmelCase = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
_UpperCAmelCase = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" )
assert_mean_pixel_difference(__UpperCamelCase , __UpperCamelCase )
def UpperCAmelCase__ ( self : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] ):
# pipeline 1
_start_torch_memory_measurement()
_UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__UpperCamelCase )
_UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__UpperCamelCase )
_UpperCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 )
_UpperCAmelCase = pipe_a(
prompt_embeds=__UpperCamelCase , negative_prompt_embeds=__UpperCamelCase , image=__UpperCamelCase , mask_image=__UpperCamelCase , num_inference_steps=2 , generator=__UpperCamelCase , output_type="np" , )
_UpperCAmelCase = output.images[0]
assert image.shape == (64, 64, 3)
_UpperCAmelCase = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
_UpperCAmelCase = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" )
assert_mean_pixel_difference(__UpperCamelCase , __UpperCamelCase )
# pipeline 2
_start_torch_memory_measurement()
_UpperCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 )
_UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__UpperCamelCase )
_UpperCAmelCase = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__UpperCamelCase )
_UpperCAmelCase = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(__UpperCamelCase )
_UpperCAmelCase = pipe_a(
prompt_embeds=__UpperCamelCase , negative_prompt_embeds=__UpperCamelCase , image=__UpperCamelCase , mask_image=__UpperCamelCase , original_image=__UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=2 , output_type="np" , )
_UpperCAmelCase = output.images[0]
assert image.shape == (256, 256, 3)
_UpperCAmelCase = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
_UpperCAmelCase = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" )
assert_mean_pixel_difference(__UpperCamelCase , __UpperCamelCase )
def __lowerCamelCase ( ) -> List[str]:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
| 719
|
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from ... import AutoBackbone
from ...modeling_outputs import SemanticSegmenterOutput
from ...modeling_utils import PreTrainedModel
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from ...utils.backbone_utils import BackboneMixin
from .configuration_upernet import UperNetConfig
__lowerCAmelCase = [
"openmmlab/upernet-convnext-tiny",
# See all UperNet models at https://huggingface.co/models?filter=upernet
]
# General docstring
__lowerCAmelCase = "UperNetConfig"
class __SCREAMING_SNAKE_CASE ( nn.Module):
def __init__( self : Dict , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : Union[int, Tuple[int, int]] , __UpperCamelCase : Union[int, Tuple[int, int], str] = 0 , __UpperCamelCase : bool = False , __UpperCamelCase : Union[int, Tuple[int, int]] = 1 , ):
super().__init__()
_UpperCAmelCase = nn.Convad(
in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , kernel_size=__UpperCamelCase , padding=__UpperCamelCase , bias=__UpperCamelCase , dilation=__UpperCamelCase , )
_UpperCAmelCase = nn.BatchNormad(__UpperCamelCase )
_UpperCAmelCase = nn.ReLU()
def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : torch.Tensor ):
_UpperCAmelCase = self.conv(__UpperCamelCase )
_UpperCAmelCase = self.batch_norm(__UpperCamelCase )
_UpperCAmelCase = self.activation(__UpperCamelCase )
return output
class __SCREAMING_SNAKE_CASE ( nn.Module):
def __init__( self : str , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ):
super().__init__()
_UpperCAmelCase = [
nn.AdaptiveAvgPoolad(__UpperCamelCase ),
UperNetConvModule(__UpperCamelCase , __UpperCamelCase , kernel_size=1 ),
]
for i, layer in enumerate(self.layers ):
self.add_module(str(__UpperCamelCase ) , __UpperCamelCase )
def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : torch.Tensor ):
_UpperCAmelCase = input
for layer in self.layers:
_UpperCAmelCase = layer(__UpperCamelCase )
return hidden_state
class __SCREAMING_SNAKE_CASE ( nn.Module):
def __init__( self : Dict , __UpperCamelCase : Tuple[int, ...] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : bool ):
super().__init__()
_UpperCAmelCase = pool_scales
_UpperCAmelCase = align_corners
_UpperCAmelCase = in_channels
_UpperCAmelCase = channels
_UpperCAmelCase = []
for i, pool_scale in enumerate(__UpperCamelCase ):
_UpperCAmelCase = UperNetPyramidPoolingBlock(pool_scale=__UpperCamelCase , in_channels=__UpperCamelCase , channels=__UpperCamelCase )
self.blocks.append(__UpperCamelCase )
self.add_module(str(__UpperCamelCase ) , __UpperCamelCase )
def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : torch.Tensor ):
_UpperCAmelCase = []
for ppm in self.blocks:
_UpperCAmelCase = ppm(__UpperCamelCase )
_UpperCAmelCase = nn.functional.interpolate(
__UpperCamelCase , size=x.size()[2:] , mode="bilinear" , align_corners=self.align_corners )
ppm_outs.append(__UpperCamelCase )
return ppm_outs
class __SCREAMING_SNAKE_CASE ( nn.Module):
def __init__( self : Tuple , __UpperCamelCase : int , __UpperCamelCase : Tuple ):
super().__init__()
_UpperCAmelCase = config
_UpperCAmelCase = config.pool_scales # e.g. (1, 2, 3, 6)
_UpperCAmelCase = in_channels
_UpperCAmelCase = config.hidden_size
_UpperCAmelCase = False
_UpperCAmelCase = nn.Convad(self.channels , config.num_labels , kernel_size=1 )
# PSP Module
_UpperCAmelCase = UperNetPyramidPoolingModule(
self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , )
_UpperCAmelCase = UperNetConvModule(
self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , )
# FPN Module
_UpperCAmelCase = nn.ModuleList()
_UpperCAmelCase = nn.ModuleList()
for in_channels in self.in_channels[:-1]: # skip the top layer
_UpperCAmelCase = UperNetConvModule(__UpperCamelCase , self.channels , kernel_size=1 )
_UpperCAmelCase = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 )
self.lateral_convs.append(__UpperCamelCase )
self.fpn_convs.append(__UpperCamelCase )
_UpperCAmelCase = UperNetConvModule(
len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , )
def UpperCAmelCase__ ( self : str ):
self.apply(self._init_weights )
def UpperCAmelCase__ ( self : Optional[int] , __UpperCamelCase : str ):
if isinstance(__UpperCamelCase , nn.Convad ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : Union[str, Any] ):
_UpperCAmelCase = inputs[-1]
_UpperCAmelCase = [x]
psp_outs.extend(self.psp_modules(__UpperCamelCase ) )
_UpperCAmelCase = torch.cat(__UpperCamelCase , dim=1 )
_UpperCAmelCase = self.bottleneck(__UpperCamelCase )
return output
def UpperCAmelCase__ ( self : Any , __UpperCamelCase : torch.Tensor ):
# build laterals
_UpperCAmelCase = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )]
laterals.append(self.psp_forward(__UpperCamelCase ) )
# build top-down path
_UpperCAmelCase = len(__UpperCamelCase )
for i in range(used_backbone_levels - 1 , 0 , -1 ):
_UpperCAmelCase = laterals[i - 1].shape[2:]
_UpperCAmelCase = laterals[i - 1] + nn.functional.interpolate(
laterals[i] , size=__UpperCamelCase , mode="bilinear" , align_corners=self.align_corners )
# build outputs
_UpperCAmelCase = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )]
# append psp feature
fpn_outs.append(laterals[-1] )
for i in range(used_backbone_levels - 1 , 0 , -1 ):
_UpperCAmelCase = nn.functional.interpolate(
fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="bilinear" , align_corners=self.align_corners )
_UpperCAmelCase = torch.cat(__UpperCamelCase , dim=1 )
_UpperCAmelCase = self.fpn_bottleneck(__UpperCamelCase )
_UpperCAmelCase = self.classifier(__UpperCamelCase )
return output
class __SCREAMING_SNAKE_CASE ( nn.Module):
def __init__( self : Dict , __UpperCamelCase : str , __UpperCamelCase : int = 2 , __UpperCamelCase : int = 3 , __UpperCamelCase : Union[int, Tuple[int, int]] = 1 ):
super().__init__()
_UpperCAmelCase = config
_UpperCAmelCase = config.auxiliary_in_channels
_UpperCAmelCase = config.auxiliary_channels
_UpperCAmelCase = config.auxiliary_num_convs
_UpperCAmelCase = config.auxiliary_concat_input
_UpperCAmelCase = in_index
_UpperCAmelCase = (kernel_size // 2) * dilation
_UpperCAmelCase = []
convs.append(
UperNetConvModule(
self.in_channels , self.channels , kernel_size=__UpperCamelCase , padding=__UpperCamelCase , dilation=__UpperCamelCase ) )
for i in range(self.num_convs - 1 ):
convs.append(
UperNetConvModule(
self.channels , self.channels , kernel_size=__UpperCamelCase , padding=__UpperCamelCase , dilation=__UpperCamelCase ) )
if self.num_convs == 0:
_UpperCAmelCase = nn.Identity()
else:
_UpperCAmelCase = nn.Sequential(*__UpperCamelCase )
if self.concat_input:
_UpperCAmelCase = UperNetConvModule(
self.in_channels + self.channels , self.channels , kernel_size=__UpperCamelCase , padding=kernel_size // 2 )
_UpperCAmelCase = nn.Convad(self.channels , config.num_labels , kernel_size=1 )
def UpperCAmelCase__ ( self : List[Any] ):
self.apply(self._init_weights )
def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[Any] ):
if isinstance(__UpperCamelCase , nn.Convad ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : torch.Tensor ):
# just take the relevant feature maps
_UpperCAmelCase = encoder_hidden_states[self.in_index]
_UpperCAmelCase = self.convs(__UpperCamelCase )
if self.concat_input:
_UpperCAmelCase = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) )
_UpperCAmelCase = self.classifier(__UpperCamelCase )
return output
class __SCREAMING_SNAKE_CASE ( lowercase):
__SCREAMING_SNAKE_CASE : Dict = UperNetConfig
__SCREAMING_SNAKE_CASE : str = """pixel_values"""
__SCREAMING_SNAKE_CASE : str = True
def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : int ):
if isinstance(__UpperCamelCase , __UpperCamelCase ):
module.backbone.init_weights()
module.decode_head.init_weights()
module.auxiliary_head.init_weights()
def UpperCAmelCase__ ( self : Union[str, Any] ):
self.backbone.init_weights()
self.decode_head.init_weights()
self.auxiliary_head.init_weights()
def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple=False ):
if isinstance(__UpperCamelCase , __UpperCamelCase ):
_UpperCAmelCase = value
__lowerCAmelCase = r"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n"
__lowerCAmelCase = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n"
@add_start_docstrings(
"""UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.""" , lowercase , )
class __SCREAMING_SNAKE_CASE ( lowercase):
def __init__( self : Optional[int] , __UpperCamelCase : str ):
super().__init__(__UpperCamelCase )
_UpperCAmelCase = AutoBackbone.from_config(config.backbone_config )
# Semantic segmentation head(s)
_UpperCAmelCase = UperNetHead(__UpperCamelCase , in_channels=self.backbone.channels )
_UpperCAmelCase = UperNetFCNHead(__UpperCamelCase ) if config.use_auxiliary_head else None
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("batch_size, sequence_length" ) )
@replace_return_docstrings(output_type=__UpperCamelCase , config_class=_CONFIG_FOR_DOC )
def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : Optional[torch.Tensor] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[torch.Tensor] = None , __UpperCamelCase : Optional[bool] = None , ):
_UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCAmelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_UpperCAmelCase = output_attentions if output_attentions is not None else self.config.output_attentions
_UpperCAmelCase = self.backbone.forward_with_filtered_kwargs(
__UpperCamelCase , output_hidden_states=__UpperCamelCase , output_attentions=__UpperCamelCase )
_UpperCAmelCase = outputs.feature_maps
_UpperCAmelCase = self.decode_head(__UpperCamelCase )
_UpperCAmelCase = nn.functional.interpolate(__UpperCamelCase , size=pixel_values.shape[2:] , mode="bilinear" , align_corners=__UpperCamelCase )
_UpperCAmelCase = None
if self.auxiliary_head is not None:
_UpperCAmelCase = self.auxiliary_head(__UpperCamelCase )
_UpperCAmelCase = nn.functional.interpolate(
__UpperCamelCase , size=pixel_values.shape[2:] , mode="bilinear" , align_corners=__UpperCamelCase )
_UpperCAmelCase = None
if labels is not None:
if self.config.num_labels == 1:
raise ValueError("The number of labels should be greater than one" )
else:
# compute weighted loss
_UpperCAmelCase = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index )
_UpperCAmelCase = loss_fct(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = loss_fct(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss
if not return_dict:
if output_hidden_states:
_UpperCAmelCase = (logits,) + outputs[1:]
else:
_UpperCAmelCase = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SemanticSegmenterOutput(
loss=__UpperCamelCase , logits=__UpperCamelCase , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
| 129
| 0
|
import importlib
import os
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, Optional, Union
import torch
from ..utils import BaseOutput
snake_case_ = '''scheduler_config.json'''
class SCREAMING_SNAKE_CASE__ (_UpperCAmelCase ):
__lowerCamelCase : List[Any] = 1
__lowerCamelCase : Tuple = 2
__lowerCamelCase : Dict = 3
__lowerCamelCase : str = 4
__lowerCamelCase : Optional[int] = 5
__lowerCamelCase : Any = 6
__lowerCamelCase : int = 7
__lowerCamelCase : Any = 8
__lowerCamelCase : List[Any] = 9
__lowerCamelCase : Any = 10
__lowerCamelCase : List[str] = 11
__lowerCamelCase : Optional[int] = 12
__lowerCamelCase : Any = 13
__lowerCamelCase : Dict = 14
@dataclass
class SCREAMING_SNAKE_CASE__ (_UpperCAmelCase ):
__lowerCamelCase : torch.FloatTensor
class SCREAMING_SNAKE_CASE__ :
__lowerCamelCase : Dict = SCHEDULER_CONFIG_NAME
__lowerCamelCase : List[str] = []
__lowerCamelCase : Optional[int] = True
@classmethod
def snake_case_ ( cls , a = None , a = None , a=False , **a , ):
lowercase__ , lowercase__ , lowercase__ : List[str] = cls.load_config(
pretrained_model_name_or_path=__UpperCamelCase , subfolder=__UpperCamelCase , return_unused_kwargs=__UpperCamelCase , return_commit_hash=__UpperCamelCase , **__UpperCamelCase , )
return cls.from_config(__UpperCamelCase , return_unused_kwargs=__UpperCamelCase , **__UpperCamelCase)
def snake_case_ ( self , a , a = False , **a):
self.save_config(save_directory=__UpperCamelCase , push_to_hub=__UpperCamelCase , **__UpperCamelCase)
@property
def snake_case_ ( self):
return self._get_compatibles()
@classmethod
def snake_case_ ( cls):
lowercase__ : List[str] = list(set([cls.__name__] + cls._compatibles))
lowercase__ : List[str] = importlib.import_module(__name__.split('.')[0])
lowercase__ : int = [
getattr(__UpperCamelCase , __UpperCamelCase) for c in compatible_classes_str if hasattr(__UpperCamelCase , __UpperCamelCase)
]
return compatible_classes
| 164
|
"""simple docstring"""
import os
import warnings
from typing import List, Optional
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_rag import RagConfig
a : List[str] = logging.get_logger(__name__)
class a_ :
def __init__( self : List[str] , __UpperCamelCase : Any , __UpperCamelCase : Tuple ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = question_encoder
_UpperCAmelCase = generator
_UpperCAmelCase = self.question_encoder
def _snake_case ( self : int , __UpperCamelCase : str ) ->Dict:
'''simple docstring'''
if os.path.isfile(__UpperCamelCase ):
raise ValueError(f"""Provided path ({save_directory}) should be a directory, not a file""" )
os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase )
_UpperCAmelCase = os.path.join(__UpperCamelCase , """question_encoder_tokenizer""" )
_UpperCAmelCase = os.path.join(__UpperCamelCase , """generator_tokenizer""" )
self.question_encoder.save_pretrained(__UpperCamelCase )
self.generator.save_pretrained(__UpperCamelCase )
@classmethod
def _snake_case ( cls : Optional[Any] , __UpperCamelCase : Tuple , **__UpperCamelCase : Optional[Any] ) ->Tuple:
'''simple docstring'''
from ..auto.tokenization_auto import AutoTokenizer
_UpperCAmelCase = kwargs.pop("""config""" , __UpperCamelCase )
if config is None:
_UpperCAmelCase = RagConfig.from_pretrained(__UpperCamelCase )
_UpperCAmelCase = AutoTokenizer.from_pretrained(
__UpperCamelCase , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" )
_UpperCAmelCase = AutoTokenizer.from_pretrained(
__UpperCamelCase , config=config.generator , subfolder="""generator_tokenizer""" )
return cls(question_encoder=__UpperCamelCase , generator=__UpperCamelCase )
def __call__( self : Any , *__UpperCamelCase : List[Any] , **__UpperCamelCase : Optional[Any] ) ->Optional[Any]:
'''simple docstring'''
return self.current_tokenizer(*__UpperCamelCase , **__UpperCamelCase )
def _snake_case ( self : Union[str, Any] , *__UpperCamelCase : List[Any] , **__UpperCamelCase : Tuple ) ->Any:
'''simple docstring'''
return self.generator.batch_decode(*__UpperCamelCase , **__UpperCamelCase )
def _snake_case ( self : Optional[int] , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : List[str] ) ->Union[str, Any]:
'''simple docstring'''
return self.generator.decode(*__UpperCamelCase , **__UpperCamelCase )
def _snake_case ( self : Union[str, Any] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = self.question_encoder
def _snake_case ( self : Tuple ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase = self.generator
def _snake_case ( self : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[List[str]] = None , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : str = "longest" , __UpperCamelCase : str = None , __UpperCamelCase : bool = True , **__UpperCamelCase : Tuple , ) ->BatchEncoding:
'''simple docstring'''
warnings.warn(
"""`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """
"""regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """
"""context manager to prepare your targets. See the documentation of your specific tokenizer for more """
"""details""" , __UpperCamelCase , )
if max_length is None:
_UpperCAmelCase = self.current_tokenizer.model_max_length
_UpperCAmelCase = self(
__UpperCamelCase , add_special_tokens=__UpperCamelCase , return_tensors=__UpperCamelCase , max_length=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , **__UpperCamelCase , )
if tgt_texts is None:
return model_inputs
# Process tgt_texts
if max_target_length is None:
_UpperCAmelCase = self.current_tokenizer.model_max_length
_UpperCAmelCase = self(
text_target=__UpperCamelCase , add_special_tokens=__UpperCamelCase , return_tensors=__UpperCamelCase , padding=__UpperCamelCase , max_length=__UpperCamelCase , truncation=__UpperCamelCase , **__UpperCamelCase , )
_UpperCAmelCase = labels["""input_ids"""]
return model_inputs
| 555
| 0
|
import logging
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEncoder,
BertModel,
BertPreTrainedModel,
)
lowercase_ : List[str] = logging.getLogger(__name__)
class lowercase ( a_ ):
"""simple docstring"""
def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : str , lowerCamelCase_ : Tuple=None , lowerCamelCase_ : Optional[int]=None ):
'''simple docstring'''
_snake_case : List[Any] = self.layer[current_layer](lowerCamelCase_ , lowerCamelCase_ , head_mask[current_layer] )
_snake_case : Union[str, Any] = layer_outputs[0]
return hidden_states
@add_start_docstrings(
"The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , a_ , )
class lowercase ( a_ ):
"""simple docstring"""
def __init__( self : int , lowerCamelCase_ : str ):
'''simple docstring'''
super().__init__(lowerCamelCase_ )
_snake_case : List[str] = BertEncoderWithPabee(lowerCamelCase_ )
self.init_weights()
_snake_case : Tuple = 0
_snake_case : List[str] = 0
_snake_case : Dict = 0
_snake_case : Optional[int] = 0
def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Tuple ):
'''simple docstring'''
_snake_case : Optional[Any] = threshold
def __UpperCAmelCase ( self : Any , lowerCamelCase_ : int ):
'''simple docstring'''
_snake_case : Dict = patience
def __UpperCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
_snake_case : List[Any] = 0
_snake_case : str = 0
def __UpperCAmelCase ( self : Dict ):
'''simple docstring'''
_snake_case : Tuple = self.inference_layers_num / self.inference_instances_num
_snake_case : str = (
f'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up ='''
f''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***'''
)
print(lowerCamelCase_ )
@add_start_docstrings_to_model_forward(lowerCamelCase_ )
def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Tuple=None , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : List[str]=None , lowerCamelCase_ : List[str]=None , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : List[str]=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Tuple=None , lowerCamelCase_ : str=None , lowerCamelCase_ : Tuple=False , ):
'''simple docstring'''
if input_ids is not None and inputs_embeds is not None:
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' )
elif input_ids is not None:
_snake_case : List[str] = input_ids.size()
elif inputs_embeds is not None:
_snake_case : Optional[int] = inputs_embeds.size()[:-1]
else:
raise ValueError('You have to specify either input_ids or inputs_embeds' )
_snake_case : List[str] = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
_snake_case : List[Any] = torch.ones(lowerCamelCase_ , device=lowerCamelCase_ )
if token_type_ids is None:
_snake_case : Optional[int] = torch.zeros(lowerCamelCase_ , dtype=torch.long , device=lowerCamelCase_ )
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
_snake_case : torch.Tensor = self.get_extended_attention_mask(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
_snake_case , _snake_case , _snake_case : Tuple = encoder_hidden_states.size()
_snake_case : List[str] = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
_snake_case : Dict = torch.ones(lowerCamelCase_ , device=lowerCamelCase_ )
_snake_case : int = self.invert_attention_mask(lowerCamelCase_ )
else:
_snake_case : str = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
_snake_case : Any = self.get_head_mask(lowerCamelCase_ , self.config.num_hidden_layers )
_snake_case : Dict = self.embeddings(
input_ids=lowerCamelCase_ , position_ids=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , inputs_embeds=lowerCamelCase_ )
_snake_case : List[Any] = embedding_output
if self.training:
_snake_case : int = []
for i in range(self.config.num_hidden_layers ):
_snake_case : Tuple = self.encoder.adaptive_forward(
lowerCamelCase_ , current_layer=lowerCamelCase_ , attention_mask=lowerCamelCase_ , head_mask=lowerCamelCase_ )
_snake_case : int = self.pooler(lowerCamelCase_ )
_snake_case : List[str] = output_layers[i](output_dropout(lowerCamelCase_ ) )
res.append(lowerCamelCase_ )
elif self.patience == 0: # Use all layers for inference
_snake_case : Union[str, Any] = self.encoder(
lowerCamelCase_ , attention_mask=lowerCamelCase_ , head_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , )
_snake_case : int = self.pooler(encoder_outputs[0] )
_snake_case : str = [output_layers[self.config.num_hidden_layers - 1](lowerCamelCase_ )]
else:
_snake_case : Dict = 0
_snake_case : Optional[int] = None
_snake_case : Union[str, Any] = 0
for i in range(self.config.num_hidden_layers ):
calculated_layer_num += 1
_snake_case : List[str] = self.encoder.adaptive_forward(
lowerCamelCase_ , current_layer=lowerCamelCase_ , attention_mask=lowerCamelCase_ , head_mask=lowerCamelCase_ )
_snake_case : List[str] = self.pooler(lowerCamelCase_ )
_snake_case : Dict = output_layers[i](lowerCamelCase_ )
if regression:
_snake_case : Union[str, Any] = logits.detach()
if patient_result is not None:
_snake_case : Union[str, Any] = patient_result.detach()
if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold:
patient_counter += 1
else:
_snake_case : int = 0
else:
_snake_case : Optional[Any] = logits.detach().argmax(dim=1 )
if patient_result is not None:
_snake_case : Optional[int] = patient_result.detach().argmax(dim=1 )
if (patient_result is not None) and torch.all(labels.eq(lowerCamelCase_ ) ):
patient_counter += 1
else:
_snake_case : Optional[int] = 0
_snake_case : Dict = logits
if patient_counter == self.patience:
break
_snake_case : Any = [patient_result]
self.inference_layers_num += calculated_layer_num
self.inference_instances_num += 1
return res
@add_start_docstrings(
"Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , a_ , )
class lowercase ( a_ ):
"""simple docstring"""
def __init__( self : Union[str, Any] , lowerCamelCase_ : Tuple ):
'''simple docstring'''
super().__init__(lowerCamelCase_ )
_snake_case : List[str] = config.num_labels
_snake_case : List[Any] = BertModelWithPabee(lowerCamelCase_ )
_snake_case : List[str] = nn.Dropout(config.hidden_dropout_prob )
_snake_case : Optional[int] = nn.ModuleList(
[nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] )
self.init_weights()
@add_start_docstrings_to_model_forward(lowerCamelCase_ )
def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : int=None , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Any=None , lowerCamelCase_ : Tuple=None , lowerCamelCase_ : Tuple=None , lowerCamelCase_ : List[str]=None , ):
'''simple docstring'''
_snake_case : Tuple = self.bert(
input_ids=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , position_ids=lowerCamelCase_ , head_mask=lowerCamelCase_ , inputs_embeds=lowerCamelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , )
_snake_case : int = (logits[-1],)
if labels is not None:
_snake_case : Dict = None
_snake_case : Optional[Any] = 0
for ix, logits_item in enumerate(lowerCamelCase_ ):
if self.num_labels == 1:
# We are doing regression
_snake_case : int = MSELoss()
_snake_case : Optional[int] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) )
else:
_snake_case : str = CrossEntropyLoss()
_snake_case : Any = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) )
if total_loss is None:
_snake_case : List[str] = loss
else:
total_loss += loss * (ix + 1)
total_weights += ix + 1
_snake_case : Optional[int] = (total_loss / total_weights,) + outputs
return outputs
| 652
|
lowercase_ : Tuple = '''
# Installazione di Transformers
! pip install transformers datasets
# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e
# rimuovi la modalità commento al comando seguente.
# ! pip install git+https://github.com/huggingface/transformers.git
'''
lowercase_ : Optional[int] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}]
lowercase_ : str = {
'''{processor_class}''': '''FakeProcessorClass''',
'''{model_class}''': '''FakeModelClass''',
'''{object_class}''': '''FakeObjectClass''',
}
| 652
| 1
|
import functools
def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
snake_case_ = len(__snake_case )
snake_case_ = len(__snake_case )
@functools.cache
def min_distance(UpperCamelCase__ , UpperCamelCase__ ) -> int:
# if first word index is overflow - delete all from the second word
if indexa >= len_worda:
return len_worda - indexa
# if second word index is overflow - delete all from the first word
if indexa >= len_worda:
return len_worda - indexa
snake_case_ = int(worda[indexa] != worda[indexa] ) # current letters not identical
return min(
1 + min_distance(indexa + 1 , __snake_case ) , 1 + min_distance(__snake_case , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , )
return min_distance(0 , 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 362
|
"""simple docstring"""
# This script creates a super tiny model that is useful inside tests, when we just want to test that
# the machinery works, without needing to the check the quality of the outcomes.
#
# This version creates a tiny model through reduction of a normal pre-trained model, but keeping the
# full vocab, merges file, and thus also resulting in a larger model due to a large vocab size.
# This gives ~3MB in total for all files.
#
# If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated
#
#
# It will be used then as "stas/tiny-wmt19-en-de"
# Build
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration
_A : Dict = """facebook/wmt19-en-de"""
_A : str = FSMTTokenizer.from_pretrained(mname)
# get the correct vocab sizes, etc. from the master model
_A : List[Any] = FSMTConfig.from_pretrained(mname)
config.update(
dict(
d_model=4,
encoder_layers=1,
decoder_layers=1,
encoder_ffn_dim=4,
decoder_ffn_dim=4,
encoder_attention_heads=1,
decoder_attention_heads=1,
)
)
_A : int = FSMTForConditionalGeneration(config)
print(F"num of params {tiny_model.num_parameters()}")
# Test
_A : Dict = tokenizer(["""Making tiny model"""], return_tensors="""pt""")
_A : List[Any] = tiny_model(**batch)
print("""test output:""", len(outputs.logits[0]))
# Save
_A : List[Any] = """tiny-wmt19-en-de"""
tiny_model.half() # makes it smaller
tiny_model.save_pretrained(mname_tiny)
tokenizer.save_pretrained(mname_tiny)
print(F"Generated {mname_tiny}")
# Upload
# transformers-cli upload tiny-wmt19-en-de
| 361
| 0
|
from collections.abc import Callable
import numpy as np
def __UpperCamelCase ( a, a, a, a, a) ->np.ndarray:
lowerCamelCase__ = int(np.ceil((x_end - xa) / step_size))
lowerCamelCase__ = np.zeros((n + 1,))
lowerCamelCase__ = ya
lowerCamelCase__ = xa
for k in range(a):
lowerCamelCase__ = y[k] + step_size * ode_func(a, y[k])
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 360
|
def __UpperCamelCase ( a = 100) ->int:
lowerCamelCase__ = (n * (n + 1) // 2) ** 2
lowerCamelCase__ = n * (n + 1) * (2 * n + 1) // 6
return sum_cubes - sum_squares
if __name__ == "__main__":
print(f"""{solution() = }""")
| 360
| 1
|
"""simple docstring"""
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
def lowercase ( self : Any ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def lowercase ( self : str ):
_snake_case = 1
_snake_case = 3
_snake_case = (32, 32)
_snake_case = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCamelCase )
return image
@property
def lowercase ( self : int ):
torch.manual_seed(0 )
_snake_case = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
return model
@property
def lowercase ( self : Tuple ):
torch.manual_seed(0 )
_snake_case = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
return model
@property
def lowercase ( self : Union[str, Any] ):
torch.manual_seed(0 )
_snake_case = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModel(_lowerCamelCase )
@property
def lowercase ( self : Optional[Any] ):
def extract(*_lowerCamelCase : str , **_lowerCamelCase : str ):
class lowerCAmelCase__ :
def __init__( self : List[str] ):
_snake_case = torch.ones([0] )
def lowercase ( self : Any , _lowerCamelCase : Dict ):
self.pixel_values.to(_lowerCamelCase )
return self
return Out()
return extract
def lowercase ( self : Tuple ):
_snake_case = '''cpu''' # ensure determinism for the device-dependent torch.Generator
_snake_case = self.dummy_cond_unet
_snake_case = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , )
_snake_case = self.dummy_vae
_snake_case = self.dummy_text_encoder
_snake_case = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
# make sure here that pndm scheduler skips prk
_snake_case = StableDiffusionPipeline(
unet=_lowerCamelCase , scheduler=_lowerCamelCase , vae=_lowerCamelCase , text_encoder=_lowerCamelCase , tokenizer=_lowerCamelCase , safety_checker=_lowerCamelCase , feature_extractor=self.dummy_extractor , )
_snake_case = sd_pipe.to(_lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=_lowerCamelCase )
_snake_case = '''A painting of a squirrel eating a burger'''
_snake_case = torch.Generator(device=_lowerCamelCase ).manual_seed(0 )
_snake_case = sd_pipe([prompt] , generator=_lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' )
_snake_case = output.images
_snake_case = torch.Generator(device=_lowerCamelCase ).manual_seed(0 )
_snake_case = sd_pipe(
[prompt] , generator=_lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=_lowerCamelCase , )[0]
_snake_case = image[0, -3:, -3:, -1]
_snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_snake_case = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def lowercase ( self : Optional[int] ):
_snake_case = '''cpu''' # ensure determinism for the device-dependent torch.Generator
_snake_case = self.dummy_cond_unet
_snake_case = PNDMScheduler(skip_prk_steps=_lowerCamelCase )
_snake_case = self.dummy_vae
_snake_case = self.dummy_text_encoder
_snake_case = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
# make sure here that pndm scheduler skips prk
_snake_case = StableDiffusionPipeline(
unet=_lowerCamelCase , scheduler=_lowerCamelCase , vae=_lowerCamelCase , text_encoder=_lowerCamelCase , tokenizer=_lowerCamelCase , safety_checker=_lowerCamelCase , feature_extractor=self.dummy_extractor , )
_snake_case = sd_pipe.to(_lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=_lowerCamelCase )
_snake_case = '''A painting of a squirrel eating a burger'''
_snake_case = torch.Generator(device=_lowerCamelCase ).manual_seed(0 )
_snake_case = sd_pipe([prompt] , generator=_lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' )
_snake_case = output.images
_snake_case = torch.Generator(device=_lowerCamelCase ).manual_seed(0 )
_snake_case = sd_pipe(
[prompt] , generator=_lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=_lowerCamelCase , )[0]
_snake_case = image[0, -3:, -3:, -1]
_snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_snake_case = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def lowercase ( self : Optional[int] ):
_snake_case = StableDiffusionPipeline.from_pretrained(
'''hf-internal-testing/tiny-stable-diffusion-lms-pipe''' , safety_checker=_lowerCamelCase )
assert isinstance(_lowerCamelCase , _lowerCamelCase )
assert isinstance(pipe.scheduler , _lowerCamelCase )
assert pipe.safety_checker is None
_snake_case = pipe('''example prompt''' , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(_lowerCamelCase )
_snake_case = StableDiffusionPipeline.from_pretrained(_lowerCamelCase )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
_snake_case = pipe('''example prompt''' , num_inference_steps=2 ).images[0]
assert image is not None
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def lowercase ( self : List[str] ):
_snake_case = self.dummy_cond_unet
_snake_case = PNDMScheduler(skip_prk_steps=_lowerCamelCase )
_snake_case = self.dummy_vae
_snake_case = self.dummy_text_encoder
_snake_case = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
# put models in fp16
_snake_case = unet.half()
_snake_case = vae.half()
_snake_case = bert.half()
# make sure here that pndm scheduler skips prk
_snake_case = StableDiffusionPipeline(
unet=_lowerCamelCase , scheduler=_lowerCamelCase , vae=_lowerCamelCase , text_encoder=_lowerCamelCase , tokenizer=_lowerCamelCase , safety_checker=_lowerCamelCase , feature_extractor=self.dummy_extractor , )
_snake_case = sd_pipe.to(_lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=_lowerCamelCase )
_snake_case = '''A painting of a squirrel eating a burger'''
_snake_case = sd_pipe([prompt] , num_inference_steps=2 , output_type='''np''' ).images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
def lowercase ( self : Dict ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase ( self : Union[str, Any] ):
_snake_case = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=_lowerCamelCase )
_snake_case = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
_snake_case = sd_pipe.to(_lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=_lowerCamelCase )
_snake_case = (
'''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle'''
''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with'''
''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and'''
''' children from bahnhof zoo, detailed '''
)
_snake_case = 4003660346
_snake_case = 7
# without safety guidance (sld_guidance_scale = 0)
_snake_case = torch.manual_seed(_lowerCamelCase )
_snake_case = sd_pipe(
[prompt] , generator=_lowerCamelCase , guidance_scale=_lowerCamelCase , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , )
_snake_case = output.images
_snake_case = image[0, -3:, -3:, -1]
_snake_case = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
# without safety guidance (strong configuration)
_snake_case = torch.manual_seed(_lowerCamelCase )
_snake_case = sd_pipe(
[prompt] , generator=_lowerCamelCase , guidance_scale=_lowerCamelCase , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
_snake_case = output.images
_snake_case = image[0, -3:, -3:, -1]
_snake_case = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def lowercase ( self : str ):
_snake_case = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=_lowerCamelCase )
_snake_case = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
_snake_case = sd_pipe.to(_lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=_lowerCamelCase )
_snake_case = '''padme amidala taking a bath artwork, safe for work, no nudity'''
_snake_case = 2734971755
_snake_case = 7
_snake_case = torch.manual_seed(_lowerCamelCase )
_snake_case = sd_pipe(
[prompt] , generator=_lowerCamelCase , guidance_scale=_lowerCamelCase , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , )
_snake_case = output.images
_snake_case = image[0, -3:, -3:, -1]
_snake_case = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
_snake_case = torch.manual_seed(_lowerCamelCase )
_snake_case = sd_pipe(
[prompt] , generator=_lowerCamelCase , guidance_scale=_lowerCamelCase , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
_snake_case = output.images
_snake_case = image[0, -3:, -3:, -1]
_snake_case = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def lowercase ( self : Union[str, Any] ):
_snake_case = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' )
_snake_case = sd_pipe.to(_lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=_lowerCamelCase )
_snake_case = (
'''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.'''
''' leyendecker'''
)
_snake_case = 1044355234
_snake_case = 12
_snake_case = torch.manual_seed(_lowerCamelCase )
_snake_case = sd_pipe(
[prompt] , generator=_lowerCamelCase , guidance_scale=_lowerCamelCase , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , )
_snake_case = output.images
_snake_case = image[0, -3:, -3:, -1]
_snake_case = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7
_snake_case = torch.manual_seed(_lowerCamelCase )
_snake_case = sd_pipe(
[prompt] , generator=_lowerCamelCase , guidance_scale=_lowerCamelCase , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
_snake_case = output.images
_snake_case = image[0, -3:, -3:, -1]
_snake_case = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 224
|
"""simple docstring"""
import sys
from collections import defaultdict
class lowerCAmelCase__ :
def __init__( self : List[str] ):
_snake_case = []
def lowercase ( self : Optional[Any] , _lowerCamelCase : Union[str, Any] ):
return self.node_position[vertex]
def lowercase ( self : Optional[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any] ):
_snake_case = pos
def lowercase ( self : Any , _lowerCamelCase : List[str] , _lowerCamelCase : List[Any] , _lowerCamelCase : Any , _lowerCamelCase : str ):
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
_snake_case = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
_snake_case = 2 * start + 1
else:
_snake_case = 2 * start + 2
if heap[smallest_child] < heap[start]:
_snake_case , _snake_case = heap[smallest_child], positions[smallest_child]
_snake_case , _snake_case = (
heap[start],
positions[start],
)
_snake_case , _snake_case = temp, tempa
_snake_case = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , _lowerCamelCase )
self.top_to_bottom(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def lowercase ( self : Dict , _lowerCamelCase : Tuple , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] ):
_snake_case = position[index]
while index != 0:
_snake_case = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
_snake_case = heap[parent]
_snake_case = position[parent]
self.set_position(position[parent] , _lowerCamelCase )
else:
_snake_case = val
_snake_case = temp
self.set_position(_lowerCamelCase , _lowerCamelCase )
break
_snake_case = parent
else:
_snake_case = val
_snake_case = temp
self.set_position(_lowerCamelCase , 0 )
def lowercase ( self : Dict , _lowerCamelCase : Any , _lowerCamelCase : List[str] ):
_snake_case = len(_lowerCamelCase ) // 2 - 1
for i in range(_lowerCamelCase , -1 , -1 ):
self.top_to_bottom(_lowerCamelCase , _lowerCamelCase , len(_lowerCamelCase ) , _lowerCamelCase )
def lowercase ( self : str , _lowerCamelCase : int , _lowerCamelCase : List[str] ):
_snake_case = positions[0]
_snake_case = sys.maxsize
self.top_to_bottom(_lowerCamelCase , 0 , len(_lowerCamelCase ) , _lowerCamelCase )
return temp
def _UpperCAmelCase ( __lowerCamelCase : List[str] ) -> List[str]:
_snake_case = Heap()
_snake_case = [0] * len(__lowerCamelCase )
_snake_case = [-1] * len(__lowerCamelCase ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
_snake_case = [] # Heap of Distance of vertices from their neighboring vertex
_snake_case = []
for vertex in range(len(__lowerCamelCase ) ):
distance_tv.append(sys.maxsize )
positions.append(__lowerCamelCase )
heap.node_position.append(__lowerCamelCase )
_snake_case = []
_snake_case = 1
_snake_case = sys.maxsize
for neighbor, distance in adjacency_list[0]:
_snake_case = 0
_snake_case = distance
heap.heapify(__lowerCamelCase , __lowerCamelCase )
for _ in range(1 , len(__lowerCamelCase ) ):
_snake_case = heap.delete_minimum(__lowerCamelCase , __lowerCamelCase )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
_snake_case = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(__lowerCamelCase )]
):
_snake_case = distance
heap.bottom_to_top(
__lowerCamelCase , heap.get_position(__lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase )
_snake_case = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
UpperCAmelCase__ = int(input('Enter number of edges: ').strip())
UpperCAmelCase__ = defaultdict(list)
for _ in range(edges_number):
UpperCAmelCase__ = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 224
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_UpperCamelCase : List[str] = {
'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase : Dict = [
'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'GraphormerForGraphClassification',
'GraphormerModel',
'GraphormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_graphormer import (
GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
GraphormerForGraphClassification,
GraphormerModel,
GraphormerPreTrainedModel,
)
else:
import sys
_UpperCamelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 134
|
"""simple docstring"""
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel
from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class a ( unittest.TestCase ):
@property
def UpperCamelCase_ ( self ):
torch.manual_seed(0 )
lowercase = UNetaDModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , )
return model
@property
def UpperCamelCase_ ( self ):
torch.manual_seed(0 )
lowercase = VQModel(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , )
return model
@property
def UpperCamelCase_ ( self ):
torch.manual_seed(0 )
lowercase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )
return CLIPTextModel(_lowerCamelCase )
def UpperCamelCase_ ( self ):
lowercase = self.dummy_uncond_unet
lowercase = DDIMScheduler()
lowercase = self.dummy_vq_model
lowercase = LDMPipeline(unet=_lowerCamelCase , vqvae=_lowerCamelCase , scheduler=_lowerCamelCase )
ldm.to(_lowerCamelCase )
ldm.set_progress_bar_config(disable=_lowerCamelCase )
lowercase = torch.manual_seed(0 )
lowercase = ldm(generator=_lowerCamelCase , num_inference_steps=2 , output_type='numpy' ).images
lowercase = torch.manual_seed(0 )
lowercase = ldm(generator=_lowerCamelCase , num_inference_steps=2 , output_type='numpy' , return_dict=_lowerCamelCase )[0]
lowercase = image[0, -3:, -3:, -1]
lowercase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
lowercase = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] )
lowercase = 1e-2 if torch_device != 'mps' else 3e-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance
@slow
@require_torch
class a ( unittest.TestCase ):
def UpperCamelCase_ ( self ):
lowercase = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' )
ldm.to(_lowerCamelCase )
ldm.set_progress_bar_config(disable=_lowerCamelCase )
lowercase = torch.manual_seed(0 )
lowercase = ldm(generator=_lowerCamelCase , num_inference_steps=5 , output_type='numpy' ).images
lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_5_6, 2_5_6, 3)
lowercase = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] )
lowercase = 1e-2 if torch_device != 'mps' else 3e-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
| 134
| 1
|
'''simple docstring'''
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation
def snake_case_ (UpperCamelCase : List[Any] ):
'''simple docstring'''
_a = 384
if "tiny" in model_name:
_a = [3, 3, 9, 3]
_a = [96, 192, 384, 768]
if "small" in model_name:
_a = [3, 3, 27, 3]
_a = [96, 192, 384, 768]
if "base" in model_name:
_a = [3, 3, 27, 3]
_a = [128, 256, 512, 1024]
_a = 512
if "large" in model_name:
_a = [3, 3, 27, 3]
_a = [192, 384, 768, 1536]
_a = 768
if "xlarge" in model_name:
_a = [3, 3, 27, 3]
_a = [256, 512, 1024, 2048]
_a = 1024
# set label information
_a = 150
_a = '''huggingface/label-files'''
_a = '''ade20k-id2label.json'''
_a = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) )
_a = {int(UpperCamelCase ): v for k, v in idalabel.items()}
_a = {v: k for k, v in idalabel.items()}
_a = ConvNextConfig(
depths=UpperCamelCase , hidden_sizes=UpperCamelCase , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] )
_a = UperNetConfig(
backbone_config=UpperCamelCase , auxiliary_in_channels=UpperCamelCase , num_labels=UpperCamelCase , idalabel=UpperCamelCase , labelaid=UpperCamelCase , )
return config
def snake_case_ (UpperCamelCase : str ):
'''simple docstring'''
_a = []
# fmt: off
# stem
rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''') )
rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''') )
rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''') )
rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''') )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') )
rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') )
rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') )
if i > 0:
rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight') )
rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias') )
rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight') )
rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias') )
rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') )
rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') )
# decode head
rename_keys.extend(
[
('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''),
('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''),
('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''),
('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''),
] )
# fmt: on
return rename_keys
def snake_case_ (UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : str ):
'''simple docstring'''
_a = dct.pop(UpperCamelCase )
_a = val
def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] ):
'''simple docstring'''
_a = {
'''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''',
'''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''',
'''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''',
'''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''',
'''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''',
}
_a = model_name_to_url[model_name]
_a = torch.hub.load_state_dict_from_url(UpperCamelCase , map_location='''cpu''' )['''state_dict''']
_a = get_upernet_config(UpperCamelCase )
_a = UperNetForSemanticSegmentation(UpperCamelCase )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
_a = state_dict.pop(UpperCamelCase )
if "bn" in key:
_a = key.replace('''bn''' , '''batch_norm''' )
_a = val
# rename keys
_a = create_rename_keys(UpperCamelCase )
for src, dest in rename_keys:
rename_key(UpperCamelCase , UpperCamelCase , UpperCamelCase )
model.load_state_dict(UpperCamelCase )
# verify on image
_a = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg'''
_a = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ).convert('''RGB''' )
_a = SegformerImageProcessor()
_a = processor(UpperCamelCase , return_tensors='''pt''' ).pixel_values
with torch.no_grad():
_a = model(UpperCamelCase )
if model_name == "upernet-convnext-tiny":
_a = torch.tensor(
[[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] )
elif model_name == "upernet-convnext-small":
_a = torch.tensor(
[[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] )
elif model_name == "upernet-convnext-base":
_a = torch.tensor(
[[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] )
elif model_name == "upernet-convnext-large":
_a = torch.tensor(
[[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] )
elif model_name == "upernet-convnext-xlarge":
_a = torch.tensor(
[[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] )
print('''Logits:''' , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCamelCase , atol=1e-4 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(UpperCamelCase )
print(f'Saving processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(UpperCamelCase )
if push_to_hub:
print(f'Pushing model and processor for {model_name} to hub' )
model.push_to_hub(f'openmmlab/{model_name}' )
processor.push_to_hub(f'openmmlab/{model_name}' )
if __name__ == "__main__":
_snake_case : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='upernet-convnext-tiny',
type=str,
choices=[F'''upernet-convnext-{size}''' for size in ['tiny', 'small', 'base', 'large', 'xlarge']],
help='Name of the ConvNext UperNet model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
_snake_case : Dict = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 22
|
'''simple docstring'''
import logging
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEncoder,
BertModel,
BertPreTrainedModel,
)
__SCREAMING_SNAKE_CASE : int = logging.getLogger(__name__)
class lowerCamelCase_ (snake_case__ ):
'''simple docstring'''
def _A ( self : str , A : Optional[int] , A : List[str] , A : List[str]=None , A : List[Any]=None ):
_UpperCAmelCase : Union[str, Any] = self.layer[current_layer](A , A , head_mask[current_layer] )
_UpperCAmelCase : Tuple = layer_outputs[0]
return hidden_states
@add_start_docstrings(
"The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , snake_case__ , )
class lowerCamelCase_ (snake_case__ ):
'''simple docstring'''
def __init__( self : List[Any] , A : Tuple ):
super().__init__(A )
_UpperCAmelCase : Optional[Any] = BertEncoderWithPabee(A )
self.init_weights()
_UpperCAmelCase : Tuple = 0
_UpperCAmelCase : Optional[int] = 0
_UpperCAmelCase : Any = 0
_UpperCAmelCase : Optional[int] = 0
def _A ( self : Tuple , A : Tuple ):
_UpperCAmelCase : Union[str, Any] = threshold
def _A ( self : Optional[int] , A : Union[str, Any] ):
_UpperCAmelCase : Any = patience
def _A ( self : List[Any] ):
_UpperCAmelCase : List[str] = 0
_UpperCAmelCase : List[str] = 0
def _A ( self : int ):
_UpperCAmelCase : List[Any] = self.inference_layers_num / self.inference_instances_num
_UpperCAmelCase : str = (
F"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up ="""
F""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***"""
)
print(A )
@add_start_docstrings_to_model_forward(A )
def _A ( self : Optional[int] , A : int=None , A : Union[str, Any]=None , A : int=None , A : List[Any]=None , A : Dict=None , A : Dict=None , A : Optional[int]=None , A : str=None , A : Union[str, Any]=None , A : Any=None , A : List[Any]=False , ):
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" )
elif input_ids is not None:
_UpperCAmelCase : Union[str, Any] = input_ids.size()
elif inputs_embeds is not None:
_UpperCAmelCase : Tuple = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds" )
_UpperCAmelCase : Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
_UpperCAmelCase : Optional[int] = torch.ones(A , device=A )
if token_type_ids is None:
_UpperCAmelCase : Optional[int] = torch.zeros(A , dtype=torch.long , device=A )
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
_UpperCAmelCase : torch.Tensor = self.get_extended_attention_mask(A , A , A )
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Tuple = encoder_hidden_states.size()
_UpperCAmelCase : Tuple = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
_UpperCAmelCase : Tuple = torch.ones(A , device=A )
_UpperCAmelCase : Optional[int] = self.invert_attention_mask(A )
else:
_UpperCAmelCase : Optional[int] = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
_UpperCAmelCase : List[str] = self.get_head_mask(A , self.config.num_hidden_layers )
_UpperCAmelCase : List[Any] = self.embeddings(
input_ids=A , position_ids=A , token_type_ids=A , inputs_embeds=A )
_UpperCAmelCase : Optional[Any] = embedding_output
if self.training:
_UpperCAmelCase : Tuple = []
for i in range(self.config.num_hidden_layers ):
_UpperCAmelCase : int = self.encoder.adaptive_forward(
A , current_layer=A , attention_mask=A , head_mask=A )
_UpperCAmelCase : Dict = self.pooler(A )
_UpperCAmelCase : List[str] = output_layers[i](output_dropout(A ) )
res.append(A )
elif self.patience == 0: # Use all layers for inference
_UpperCAmelCase : Tuple = self.encoder(
A , attention_mask=A , head_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , )
_UpperCAmelCase : List[str] = self.pooler(encoder_outputs[0] )
_UpperCAmelCase : str = [output_layers[self.config.num_hidden_layers - 1](A )]
else:
_UpperCAmelCase : Tuple = 0
_UpperCAmelCase : List[Any] = None
_UpperCAmelCase : Tuple = 0
for i in range(self.config.num_hidden_layers ):
calculated_layer_num += 1
_UpperCAmelCase : Union[str, Any] = self.encoder.adaptive_forward(
A , current_layer=A , attention_mask=A , head_mask=A )
_UpperCAmelCase : int = self.pooler(A )
_UpperCAmelCase : Optional[Any] = output_layers[i](A )
if regression:
_UpperCAmelCase : Dict = logits.detach()
if patient_result is not None:
_UpperCAmelCase : Tuple = patient_result.detach()
if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold:
patient_counter += 1
else:
_UpperCAmelCase : Dict = 0
else:
_UpperCAmelCase : List[str] = logits.detach().argmax(dim=1 )
if patient_result is not None:
_UpperCAmelCase : int = patient_result.detach().argmax(dim=1 )
if (patient_result is not None) and torch.all(labels.eq(A ) ):
patient_counter += 1
else:
_UpperCAmelCase : int = 0
_UpperCAmelCase : Union[str, Any] = logits
if patient_counter == self.patience:
break
_UpperCAmelCase : str = [patient_result]
self.inference_layers_num += calculated_layer_num
self.inference_instances_num += 1
return res
@add_start_docstrings(
"Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , snake_case__ , )
class lowerCamelCase_ (snake_case__ ):
'''simple docstring'''
def __init__( self : List[str] , A : str ):
super().__init__(A )
_UpperCAmelCase : Union[str, Any] = config.num_labels
_UpperCAmelCase : int = BertModelWithPabee(A )
_UpperCAmelCase : List[str] = nn.Dropout(config.hidden_dropout_prob )
_UpperCAmelCase : Any = nn.ModuleList(
[nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] )
self.init_weights()
@add_start_docstrings_to_model_forward(A )
def _A ( self : Union[str, Any] , A : Any=None , A : Optional[int]=None , A : str=None , A : str=None , A : Optional[Any]=None , A : int=None , A : str=None , ):
_UpperCAmelCase : Any = self.bert(
input_ids=A , attention_mask=A , token_type_ids=A , position_ids=A , head_mask=A , inputs_embeds=A , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , )
_UpperCAmelCase : List[Any] = (logits[-1],)
if labels is not None:
_UpperCAmelCase : Optional[int] = None
_UpperCAmelCase : Any = 0
for ix, logits_item in enumerate(A ):
if self.num_labels == 1:
# We are doing regression
_UpperCAmelCase : List[Any] = MSELoss()
_UpperCAmelCase : Optional[Any] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) )
else:
_UpperCAmelCase : int = CrossEntropyLoss()
_UpperCAmelCase : Any = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) )
if total_loss is None:
_UpperCAmelCase : Dict = loss
else:
total_loss += loss * (ix + 1)
total_weights += ix + 1
_UpperCAmelCase : List[Any] = (total_loss / total_weights,) + outputs
return outputs
| 244
| 0
|
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Dict:
"""simple docstring"""
for param, grad_param in zip(model_a.parameters() , model_b.parameters() ):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is False
), f"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})"""
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is True
), f"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})"""
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=True ) -> Union[str, Any]:
"""simple docstring"""
model.train()
A__ = model(lowercase_ )
A__ = F.mse_loss(lowercase_ , target.to(output.device ) )
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=False ) -> Optional[int]:
"""simple docstring"""
set_seed(42 )
A__ = RegressionModel()
A__ = deepcopy(lowercase_ )
A__ = RegressionDataset(length=80 )
A__ = DataLoader(lowercase_ , batch_size=16 )
model.to(accelerator.device )
if sched:
A__ = AdamW(params=model.parameters() , lr=1E-3 )
A__ = AdamW(params=ddp_model.parameters() , lr=1E-3 )
A__ = LambdaLR(lowercase_ , lr_lambda=lambda lowercase_ : epoch**0.65 )
A__ = LambdaLR(lowercase_ , lr_lambda=lambda lowercase_ : epoch**0.65 )
# Make a copy of `model`
if sched:
A__ , A__ , A__ , A__ = accelerator.prepare(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
else:
A__ , A__ = accelerator.prepare(lowercase_ , lowercase_ )
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[Any]:
"""simple docstring"""
A__ , A__ , A__ = get_training_setup(lowercase_ )
# Use a single batch
A__ , A__ = next(iter(lowercase_ ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
A__ , A__ = accelerator.gather((ddp_input, ddp_target) )
A__ , A__ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(lowercase_ ):
step_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
else:
# Sync grads
step_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1_337 + iteration )
A__ = ddp_input[torch.randperm(len(lowercase_ ) )]
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict:
"""simple docstring"""
A__ , A__ , A__ = get_training_setup(lowercase_ )
# Use a single batch
A__ , A__ = next(iter(lowercase_ ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
A__ , A__ = accelerator.gather((ddp_input, ddp_target) )
A__ , A__ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(lowercase_ ):
step_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
else:
# Sync grads
step_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), f"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"""
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1_337 + iteration )
A__ = ddp_input[torch.randperm(len(lowercase_ ) )]
def SCREAMING_SNAKE_CASE ( lowercase_=False , lowercase_=False ) -> Tuple:
"""simple docstring"""
A__ = Accelerator(
split_batches=lowercase_ , dispatch_batches=lowercase_ , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
A__ , A__ , A__ = get_training_setup(lowercase_ )
for iteration, batch in enumerate(lowercase_ ):
A__ , A__ = batch.values()
# Gather the distributed inputs and targs for the base model
A__ , A__ = accelerator.gather((ddp_input, ddp_target) )
A__ , A__ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
# Do "gradient accumulation" (noop)
with accelerator.accumulate(lowercase_ ):
step_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(lowercase_ ) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), f"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), f"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1_337 + iteration )
A__ = ddp_input[torch.randperm(len(lowercase_ ) )]
GradientState._reset_state()
def SCREAMING_SNAKE_CASE ( lowercase_=False , lowercase_=False ) -> List[Any]:
"""simple docstring"""
A__ = Accelerator(
split_batches=lowercase_ , dispatch_batches=lowercase_ , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
A__ , A__ , A__ , A__ , A__ , A__ , A__ = get_training_setup(lowercase_ , lowercase_ )
for iteration, batch in enumerate(lowercase_ ):
A__ , A__ = batch.values()
# Gather the distributed inputs and targs for the base model
A__ , A__ = accelerator.gather((ddp_input, ddp_target) )
A__ , A__ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(lowercase_ )):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes ):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(lowercase_ ):
step_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), f"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n"""
A__ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(lowercase_ ))
if accelerator.num_processes > 1:
check_model_parameters(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
# Shuffle ddp_input on each iteration
torch.manual_seed(1_337 + iteration )
GradientState._reset_state()
def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]:
"""simple docstring"""
A__ = Accelerator()
A__ = RegressionDataset(length=80 )
A__ = DataLoader(lowercase_ , batch_size=16 )
A__ = RegressionDataset(length=96 )
A__ = DataLoader(lowercase_ , batch_size=16 )
A__ , A__ = accelerator.prepare(lowercase_ , lowercase_ )
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(lowercase_ ):
assert id(accelerator.gradient_state.active_dataloader ) == id(lowercase_ )
if iteration < len(lowercase_ ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(lowercase_ ):
assert id(accelerator.gradient_state.active_dataloader ) == id(lowercase_ )
if batch_num < len(lowercase_ ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]:
"""simple docstring"""
A__ = Accelerator()
A__ = accelerator.state
if state.local_process_index == 0:
print('''**Test `accumulate` gradient accumulation with dataloader break**''' )
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print('''**Test NOOP `no_sync` context manager**''' )
test_noop_sync(lowercase_ )
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print('''**Test Distributed `no_sync` context manager**''' )
test_distributed_sync(lowercase_ )
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
'''**Test `accumulate` gradient accumulation, ''' , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , )
test_gradient_accumulation(lowercase_ , lowercase_ )
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
'''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
'''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , )
test_gradient_accumulation_with_opt_and_scheduler(lowercase_ , lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 713
|
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
import numpy as np
# Parrameters
_lowerCamelCase : List[str] = (720, 1280) # Height, Width
_lowerCamelCase : Optional[Any] = (0.4, 0.6) # if height or width lower than this scale, drop it.
_lowerCamelCase : List[Any] = 1 / 100
_lowerCamelCase : List[str] = """"""
_lowerCamelCase : List[str] = """"""
_lowerCamelCase : List[str] = """"""
_lowerCamelCase : Union[str, Any] = 250
def SCREAMING_SNAKE_CASE ( ) -> None:
"""simple docstring"""
A__ , A__ = get_dataset(lowercase_ , lowercase_ )
for index in range(lowercase_ ):
A__ = random.sample(range(len(lowercase_ ) ) , 4 )
A__ , A__ , A__ = update_image_and_anno(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , filter_scale=lowercase_ , )
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
A__ = random_chars(32 )
A__ = path.split(os.sep )[-1].rsplit('''.''' , 1 )[0]
A__ = f"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}"""
cva.imwrite(f"""{file_root}.jpg""" , lowercase_ , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" )
A__ = []
for anno in new_annos:
A__ = anno[3] - anno[1]
A__ = anno[4] - anno[2]
A__ = anno[1] + width / 2
A__ = anno[2] + height / 2
A__ = f"""{anno[0]} {x_center} {y_center} {width} {height}"""
annos_list.append(lowercase_ )
with open(f"""{file_root}.txt""" , '''w''' ) as outfile:
outfile.write('''\n'''.join(line for line in annos_list ) )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> tuple[list, list]:
"""simple docstring"""
A__ = []
A__ = []
for label_file in glob.glob(os.path.join(lowercase_ , '''*.txt''' ) ):
A__ = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0]
with open(lowercase_ ) as in_file:
A__ = in_file.readlines()
A__ = os.path.join(lowercase_ , f"""{label_name}.jpg""" )
A__ = []
for obj_list in obj_lists:
A__ = obj_list.rstrip('''\n''' ).split(''' ''' )
A__ = float(obj[1] ) - float(obj[3] ) / 2
A__ = float(obj[2] ) - float(obj[4] ) / 2
A__ = float(obj[1] ) + float(obj[3] ) / 2
A__ = float(obj[2] ) + float(obj[4] ) / 2
boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] )
if not boxes:
continue
img_paths.append(lowercase_ )
labels.append(lowercase_ )
return img_paths, labels
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = 0.0 , ) -> tuple[list, list, str]:
"""simple docstring"""
A__ = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta )
A__ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
A__ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
A__ = int(scale_x * output_size[1] )
A__ = int(scale_y * output_size[0] )
A__ = []
A__ = []
for i, index in enumerate(lowercase_ ):
A__ = all_img_list[index]
path_list.append(lowercase_ )
A__ = all_annos[index]
A__ = cva.imread(lowercase_ )
if i == 0: # top-left
A__ = cva.resize(lowercase_ , (divid_point_x, divid_point_y) )
A__ = img
for bbox in img_annos:
A__ = bbox[1] * scale_x
A__ = bbox[2] * scale_y
A__ = bbox[3] * scale_x
A__ = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 1: # top-right
A__ = cva.resize(lowercase_ , (output_size[1] - divid_point_x, divid_point_y) )
A__ = img
for bbox in img_annos:
A__ = scale_x + bbox[1] * (1 - scale_x)
A__ = bbox[2] * scale_y
A__ = scale_x + bbox[3] * (1 - scale_x)
A__ = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 2: # bottom-left
A__ = cva.resize(lowercase_ , (divid_point_x, output_size[0] - divid_point_y) )
A__ = img
for bbox in img_annos:
A__ = bbox[1] * scale_x
A__ = scale_y + bbox[2] * (1 - scale_y)
A__ = bbox[3] * scale_x
A__ = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
else: # bottom-right
A__ = cva.resize(
lowercase_ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) )
A__ = img
for bbox in img_annos:
A__ = scale_x + bbox[1] * (1 - scale_x)
A__ = scale_y + bbox[2] * (1 - scale_y)
A__ = scale_x + bbox[3] * (1 - scale_x)
A__ = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
# Remove bounding box small than scale of filter
if filter_scale > 0:
A__ = [
anno
for anno in new_anno
if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2])
]
return output_img, new_anno, path_list[0]
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str:
"""simple docstring"""
assert number_char > 1, "The number of character should greater than 1"
A__ = ascii_lowercase + digits
return "".join(random.choice(lowercase_ ) for _ in range(lowercase_ ) )
if __name__ == "__main__":
main()
print("""DONE ✅""")
| 177
| 0
|
'''simple docstring'''
import itertools
import random
import unittest
import numpy as np
from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor
from transformers.testing_utils import require_torch, slow
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
a : int = random.Random()
def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=1.0 , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Union[str, Any]=None ) -> List[Any]:
if rng is None:
__snake_case = global_rng
__snake_case = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def __init__( self : List[str] , a_ : List[str] , a_ : Union[str, Any]=7 , a_ : List[str]=400 , a_ : Dict=2_000 , a_ : Optional[Any]=1 , a_ : List[str]=0.0 , a_ : List[str]=16_000 , a_ : str=True , a_ : Optional[int]=True , ):
"""simple docstring"""
__snake_case = parent
__snake_case = batch_size
__snake_case = min_seq_length
__snake_case = max_seq_length
__snake_case = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
__snake_case = feature_size
__snake_case = padding_value
__snake_case = sampling_rate
__snake_case = return_attention_mask
__snake_case = do_normalize
def A ( self : int ):
"""simple docstring"""
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def A ( self : Tuple , a_ : Any=False , a_ : Union[str, Any]=False ):
"""simple docstring"""
def _flatten(a_ : Optional[Any] ):
return list(itertools.chain(*a_ ) )
if equal_length:
__snake_case = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
__snake_case = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
__snake_case = [np.asarray(a_ ) for x in speech_inputs]
return speech_inputs
class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , unittest.TestCase ):
__SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor
def A ( self : List[Any] ):
"""simple docstring"""
__snake_case = WavaVecaFeatureExtractionTester(self )
def A ( self : Tuple , a_ : Optional[int] ):
"""simple docstring"""
self.assertTrue(np.all(np.mean(a_ , axis=0 ) < 1e-3 ) )
self.assertTrue(np.all(np.abs(np.var(a_ , axis=0 ) - 1 ) < 1e-3 ) )
def A ( self : Optional[int] ):
"""simple docstring"""
__snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
__snake_case = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
__snake_case = [np.asarray(a_ ) for speech_input in speech_inputs]
# Test not batched input
__snake_case = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values
__snake_case = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values
self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) )
# Test batched
__snake_case = feat_extract(a_ , return_tensors="np" ).input_values
__snake_case = feat_extract(a_ , return_tensors="np" ).input_values
for enc_seq_a, enc_seq_a in zip(a_ , a_ ):
self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) )
# Test 2-D numpy arrays are batched.
__snake_case = [floats_list((1, x) )[0] for x in (800, 800, 800)]
__snake_case = np.asarray(a_ )
__snake_case = feat_extract(a_ , return_tensors="np" ).input_values
__snake_case = feat_extract(a_ , return_tensors="np" ).input_values
for enc_seq_a, enc_seq_a in zip(a_ , a_ ):
self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) )
def A ( self : Optional[Any] ):
"""simple docstring"""
__snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__snake_case = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
__snake_case = ["longest", "max_length", "do_not_pad"]
__snake_case = [None, 1_600, None]
for max_length, padding in zip(a_ , a_ ):
__snake_case = feat_extract(a_ , padding=a_ , max_length=a_ , return_tensors="np" )
__snake_case = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self.assertTrue(input_values[0][800:].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_values[1][:1_000] )
self.assertTrue(input_values[0][1_000:].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_values[2][:1_200] )
def A ( self : Optional[Any] ):
"""simple docstring"""
__snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__snake_case = range(800 , 1_400 , 200 )
__snake_case = [floats_list((1, x) )[0] for x in lengths]
__snake_case = ["longest", "max_length", "do_not_pad"]
__snake_case = [None, 1_600, None]
for max_length, padding in zip(a_ , a_ ):
__snake_case = feat_extract(a_ , max_length=a_ , padding=a_ )
__snake_case = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self._check_zero_mean_unit_variance(input_values[1][:1_000] )
self._check_zero_mean_unit_variance(input_values[2][:1_200] )
def A ( self : str ):
"""simple docstring"""
__snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__snake_case = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
__snake_case = feat_extract(
a_ , truncation=a_ , max_length=1_000 , padding="max_length" , return_tensors="np" )
__snake_case = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1] )
self._check_zero_mean_unit_variance(input_values[2] )
def A ( self : Optional[int] ):
"""simple docstring"""
__snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__snake_case = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
__snake_case = feat_extract(
a_ , truncation=a_ , max_length=1_000 , padding="longest" , return_tensors="np" )
__snake_case = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1_000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertTrue(input_values.shape == (3, 1_000) )
__snake_case = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
__snake_case = feat_extract(
a_ , truncation=a_ , max_length=2_000 , padding="longest" , return_tensors="np" )
__snake_case = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1_000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length > longest -> then pad to longest
self.assertTrue(input_values.shape == (3, 1_200) )
@require_torch
def A ( self : Tuple ):
"""simple docstring"""
import torch
__snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__snake_case = np.random.rand(100 ).astype(np.floataa )
__snake_case = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
__snake_case = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
__snake_case = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
@slow
@require_torch
def A ( self : str ):
"""simple docstring"""
for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST:
__snake_case = WavaVecaConfig.from_pretrained(a_ )
__snake_case = WavaVecaFeatureExtractor.from_pretrained(a_ )
# only "layer" feature extraction norm should make use of
# attention_mask
self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == "layer" )
| 69
|
'''simple docstring'''
def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int:
assert (
isinstance(_UpperCAmelCase , _UpperCAmelCase ) and number_of_steps > 0
), F'''number_of_steps needs to be positive integer, your input {number_of_steps}'''
if number_of_steps == 1:
return 1
__snake_case , __snake_case = 1, 1
for _ in range(number_of_steps - 1 ):
__snake_case , __snake_case = current + previous, current
return current
if __name__ == "__main__":
import doctest
doctest.testmod()
| 69
| 1
|
'''simple docstring'''
import inspect
import unittest
from transformers import ConvNextConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel
from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _lowerCAmelCase :
'''simple docstring'''
def __init__( self : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : str=13 , UpperCamelCase_ : Dict=32 , UpperCamelCase_ : Union[str, Any]=3 , UpperCamelCase_ : str=4 , UpperCamelCase_ : Any=[10, 20, 30, 40] , UpperCamelCase_ : Optional[int]=[2, 2, 3, 2] , UpperCamelCase_ : Dict=True , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : List[str]=37 , UpperCamelCase_ : str="gelu" , UpperCamelCase_ : Union[str, Any]=10 , UpperCamelCase_ : str=0.02 , UpperCamelCase_ : Optional[int]=["stage2", "stage3", "stage4"] , UpperCamelCase_ : List[Any]=[2, 3, 4] , UpperCamelCase_ : Dict=None , ) -> Dict:
'''simple docstring'''
_lowercase : Union[str, Any] = parent
_lowercase : int = batch_size
_lowercase : Optional[int] = image_size
_lowercase : Optional[int] = num_channels
_lowercase : List[str] = num_stages
_lowercase : Union[str, Any] = hidden_sizes
_lowercase : Tuple = depths
_lowercase : int = is_training
_lowercase : List[Any] = use_labels
_lowercase : str = intermediate_size
_lowercase : Optional[Any] = hidden_act
_lowercase : Optional[int] = num_labels
_lowercase : List[Any] = initializer_range
_lowercase : int = out_features
_lowercase : List[str] = out_indices
_lowercase : Optional[Any] = scope
def __lowercase ( self : Optional[int] ) -> int:
'''simple docstring'''
_lowercase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowercase : Any = None
if self.use_labels:
_lowercase : Dict = ids_tensor([self.batch_size] , self.num_labels )
_lowercase : Any = self.get_config()
return config, pixel_values, labels
def __lowercase ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
return ConvNextConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def __lowercase ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Any , UpperCamelCase_ : int ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : Optional[Any] = ConvNextModel(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
_lowercase : List[Any] = model(UpperCamelCase_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def __lowercase ( self : Union[str, Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any ) -> List[str]:
'''simple docstring'''
_lowercase : Dict = ConvNextForImageClassification(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
_lowercase : Optional[int] = model(UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowercase ( self : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] ) -> Optional[int]:
'''simple docstring'''
_lowercase : List[Any] = ConvNextBackbone(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
_lowercase : Tuple = model(UpperCamelCase_ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
_lowercase : Dict = None
_lowercase : List[Any] = ConvNextBackbone(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
_lowercase : Tuple = model(UpperCamelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def __lowercase ( self : int ) -> List[str]:
'''simple docstring'''
_lowercase : List[str] = self.prepare_config_and_inputs()
_lowercase , _lowercase , _lowercase : Tuple = config_and_inputs
_lowercase : List[Any] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class _lowerCAmelCase ( __A , __A , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (
(
ConvNextModel,
ConvNextForImageClassification,
ConvNextBackbone,
)
if is_torch_available()
else ()
)
snake_case_ = (
{'feature-extraction': ConvNextModel, 'image-classification': ConvNextForImageClassification}
if is_torch_available()
else {}
)
snake_case_ = True
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def __lowercase ( self : Any ) -> int:
'''simple docstring'''
_lowercase : Tuple = ConvNextModelTester(self )
_lowercase : str = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 )
def __lowercase ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __lowercase ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
return
@unittest.skip(reason='''ConvNext does not use inputs_embeds''' )
def __lowercase ( self : Tuple ) -> List[Any]:
'''simple docstring'''
pass
@unittest.skip(reason='''ConvNext does not support input and output embeddings''' )
def __lowercase ( self : Any ) -> Optional[int]:
'''simple docstring'''
pass
@unittest.skip(reason='''ConvNext does not use feedforward chunking''' )
def __lowercase ( self : str ) -> List[Any]:
'''simple docstring'''
pass
def __lowercase ( self : Optional[int] ) -> List[Any]:
'''simple docstring'''
_lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowercase : Any = model_class(UpperCamelCase_ )
_lowercase : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowercase : List[Any] = [*signature.parameters.keys()]
_lowercase : Tuple = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , UpperCamelCase_ )
def __lowercase ( self : int ) -> Dict:
'''simple docstring'''
_lowercase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase_ )
def __lowercase ( self : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
_lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*UpperCamelCase_ )
def __lowercase ( self : Dict ) -> List[str]:
'''simple docstring'''
def check_hidden_states_output(UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Union[str, Any] ):
_lowercase : Optional[Any] = model_class(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
with torch.no_grad():
_lowercase : Any = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) )
_lowercase : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_lowercase : List[Any] = self.model_tester.num_stages
self.assertEqual(len(UpperCamelCase_ ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_lowercase , _lowercase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowercase : str = True
check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowercase : Tuple = True
check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
def __lowercase ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_lowercase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ )
@slow
def __lowercase ( self : List[str] ) -> List[str]:
'''simple docstring'''
for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowercase : int = ConvNextModel.from_pretrained(UpperCamelCase_ )
self.assertIsNotNone(UpperCamelCase_ )
def _SCREAMING_SNAKE_CASE( ) ->Any:
'''simple docstring'''
_lowercase : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def __lowercase ( self : int ) -> Optional[int]:
'''simple docstring'''
return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None
@slow
def __lowercase ( self : int ) -> List[Any]:
'''simple docstring'''
_lowercase : List[Any] = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(UpperCamelCase_ )
_lowercase : Union[str, Any] = self.default_image_processor
_lowercase : str = prepare_img()
_lowercase : Tuple = image_processor(images=UpperCamelCase_ , return_tensors='''pt''' ).to(UpperCamelCase_ )
# forward pass
with torch.no_grad():
_lowercase : List[Any] = model(**UpperCamelCase_ )
# verify the logits
_lowercase : int = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , UpperCamelCase_ )
_lowercase : int = torch.tensor([-0.0_260, -0.4_739, 0.1_911] ).to(UpperCamelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1e-4 ) )
@require_torch
class _lowerCAmelCase ( unittest.TestCase , __A ):
'''simple docstring'''
snake_case_ = (ConvNextBackbone,) if is_torch_available() else ()
snake_case_ = ConvNextConfig
snake_case_ = False
def __lowercase ( self : List[str] ) -> Any:
'''simple docstring'''
_lowercase : Any = ConvNextModelTester(self )
| 411
|
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ....tokenization_utils_fast import PreTrainedTokenizerFast
from ....utils import logging
from .tokenization_retribert import RetriBertTokenizer
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
lowerCamelCase__ = {
'vocab_file': {
'yjernite/retribert-base-uncased': (
'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'yjernite/retribert-base-uncased': (
'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json'
),
},
}
lowerCamelCase__ = {
'yjernite/retribert-base-uncased': 5_12,
}
lowerCamelCase__ = {
'yjernite/retribert-base-uncased': {'do_lower_case': True},
}
class _lowerCAmelCase ( __A ):
'''simple docstring'''
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = PRETRAINED_INIT_CONFIGURATION
snake_case_ = RetriBertTokenizer
snake_case_ = ['input_ids', 'attention_mask']
def __init__( self : str , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : str=None , UpperCamelCase_ : Tuple=True , UpperCamelCase_ : str="[UNK]" , UpperCamelCase_ : Optional[int]="[SEP]" , UpperCamelCase_ : Union[str, Any]="[PAD]" , UpperCamelCase_ : List[Any]="[CLS]" , UpperCamelCase_ : int="[MASK]" , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : List[Any] , ) -> Union[str, Any]:
'''simple docstring'''
super().__init__(
UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , )
_lowercase : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case
or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars
):
_lowercase : Any = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) )
_lowercase : Any = do_lower_case
_lowercase : List[Any] = strip_accents
_lowercase : Union[str, Any] = tokenize_chinese_chars
_lowercase : Optional[int] = normalizer_class(**UpperCamelCase_ )
_lowercase : str = do_lower_case
def __lowercase ( self : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str=None ) -> Any:
'''simple docstring'''
_lowercase : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowercase ( self : int , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_lowercase : List[str] = [self.sep_token_id]
_lowercase : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowercase ( self : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
_lowercase : str = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ )
return tuple(UpperCamelCase_ )
| 411
| 1
|
'''simple docstring'''
import warnings
from ..trainer import Trainer
from ..utils import logging
lowercase = logging.get_logger(__name__)
class __lowerCamelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , a__=None , **a__ ):
warnings.warn(
"`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` "
"instead." , a__ , )
super().__init__(args=a__ , **a__ )
| 211
|
'''simple docstring'''
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
TextToVideoSDPipeline,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class __lowerCamelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case__ : Dict = TextToVideoSDPipeline
snake_case__ : str = TEXT_TO_IMAGE_PARAMS
snake_case__ : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS
# No `output_type`.
snake_case__ : Tuple = frozenset(
[
'''num_inference_steps''',
'''generator''',
'''latents''',
'''return_dict''',
'''callback''',
'''callback_steps''',
] )
def a_ ( self ):
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE : Optional[int] = UNetaDConditionModel(
block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , )
__SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=a__ , set_alpha_to_one=a__ , )
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE : List[Any] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE : Tuple = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , )
__SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(a__ )
__SCREAMING_SNAKE_CASE : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
__SCREAMING_SNAKE_CASE : int = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
}
return components
def a_ ( self , a__ , a__=0 ):
if str(a__ ).startswith("mps" ):
__SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(a__ )
else:
__SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=a__ ).manual_seed(a__ )
__SCREAMING_SNAKE_CASE : Optional[int] = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "pt",
}
return inputs
def a_ ( self ):
__SCREAMING_SNAKE_CASE : Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator
__SCREAMING_SNAKE_CASE : str = self.get_dummy_components()
__SCREAMING_SNAKE_CASE : Optional[int] = TextToVideoSDPipeline(**a__ )
__SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(a__ )
sd_pipe.set_progress_bar_config(disable=a__ )
__SCREAMING_SNAKE_CASE : str = self.get_dummy_inputs(a__ )
__SCREAMING_SNAKE_CASE : Any = "np"
__SCREAMING_SNAKE_CASE : str = sd_pipe(**a__ ).frames
__SCREAMING_SNAKE_CASE : Optional[int] = frames[0][-3:, -3:, -1]
assert frames[0].shape == (64, 64, 3)
__SCREAMING_SNAKE_CASE : str = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def a_ ( self ):
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=a__ , expected_max_diff=3e-3 )
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def a_ ( self ):
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=a__ , expected_max_diff=1e-2 )
@unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." )
def a_ ( self ):
pass
@unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." )
def a_ ( self ):
pass
@unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." )
def a_ ( self ):
pass
def a_ ( self ):
return super().test_progress_bar()
@slow
@skip_mps
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def a_ ( self ):
__SCREAMING_SNAKE_CASE : Tuple = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy" )
__SCREAMING_SNAKE_CASE : Optional[Any] = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" )
__SCREAMING_SNAKE_CASE : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
__SCREAMING_SNAKE_CASE : List[Any] = pipe.to("cuda" )
__SCREAMING_SNAKE_CASE : Dict = "Spiderman is surfing"
__SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device="cpu" ).manual_seed(0 )
__SCREAMING_SNAKE_CASE : Union[str, Any] = pipe(a__ , generator=a__ , num_inference_steps=25 , output_type="pt" ).frames
__SCREAMING_SNAKE_CASE : Optional[Any] = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5e-2
def a_ ( self ):
__SCREAMING_SNAKE_CASE : int = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy" )
__SCREAMING_SNAKE_CASE : List[Any] = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" )
__SCREAMING_SNAKE_CASE : Optional[int] = pipe.to("cuda" )
__SCREAMING_SNAKE_CASE : List[str] = "Spiderman is surfing"
__SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device="cpu" ).manual_seed(0 )
__SCREAMING_SNAKE_CASE : Any = pipe(a__ , generator=a__ , num_inference_steps=2 , output_type="pt" ).frames
__SCREAMING_SNAKE_CASE : List[Any] = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5e-2
| 211
| 1
|
'''simple docstring'''
from typing import Dict, Iterable, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
UpperCAmelCase : List[Any] = logging.get_logger(__name__)
class lowerCamelCase (a__ ):
_lowercase : int = ["""pixel_values"""]
def __init__( self , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = True , lowercase__ = None , lowercase__ = True , lowercase__ = 1 / 255 , lowercase__ = True , lowercase__ = IMAGENET_DEFAULT_MEAN , lowercase__ = IMAGENET_DEFAULT_STD , **lowercase__ , ) -> None:
"""simple docstring"""
super().__init__(**lowercase__ )
_snake_case : Any = size if size is not None else {'''shortest_edge''': 224}
_snake_case : Union[str, Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ )
_snake_case : Optional[int] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
_snake_case : str = get_size_dict(lowercase__ , param_name='''crop_size''' )
_snake_case : Optional[Any] = do_resize
_snake_case : Tuple = size
_snake_case : Dict = resample
_snake_case : Optional[int] = do_center_crop
_snake_case : List[str] = crop_size
_snake_case : int = do_rescale
_snake_case : Dict = rescale_factor
_snake_case : List[str] = do_normalize
_snake_case : Tuple = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
_snake_case : List[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = PILImageResampling.BICUBIC , lowercase__ = None , **lowercase__ , ) -> np.ndarray:
"""simple docstring"""
_snake_case : Optional[Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ )
# size_dict is a dict with either keys "height" and "width" or "shortest_edge"
if "shortest_edge" in size:
_snake_case : Union[str, Any] = int((256 / 224) * size['''shortest_edge'''] )
_snake_case : Tuple = get_resize_output_image_size(lowercase__ , size=lowercase__ , default_to_square=lowercase__ )
_snake_case : str = {'''height''': output_size[0], '''width''': output_size[1]}
if "height" not in size_dict or "width" not in size_dict:
raise ValueError(
F'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' )
return resize(
lowercase__ , size=(size_dict['''height'''], size_dict['''width''']) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ) -> np.ndarray:
"""simple docstring"""
_snake_case : Union[str, Any] = get_size_dict(lowercase__ )
if "height" not in size or "width" not in size:
raise ValueError(F'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' )
return center_crop(lowercase__ , size=(size['''height'''], size['''width''']) , data_format=lowercase__ , **lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ) -> np.ndarray:
"""simple docstring"""
return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ) -> np.ndarray:
"""simple docstring"""
return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__ )
def UpperCAmelCase_ ( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> BatchFeature:
"""simple docstring"""
_snake_case : Optional[int] = do_resize if do_resize is not None else self.do_resize
_snake_case : Dict = resample if resample is not None else self.resample
_snake_case : Any = do_center_crop if do_center_crop is not None else self.do_center_crop
_snake_case : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale
_snake_case : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor
_snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize
_snake_case : List[Any] = image_mean if image_mean is not None else self.image_mean
_snake_case : Union[str, Any] = image_std if image_std is not None else self.image_std
_snake_case : Tuple = size if size is not None else self.size
_snake_case : Optional[Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ )
_snake_case : Union[str, Any] = crop_size if crop_size is not None else self.crop_size
_snake_case : str = get_size_dict(lowercase__ , param_name='''crop_size''' )
_snake_case : str = make_list_of_images(lowercase__ )
if not valid_images(lowercase__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
_snake_case : List[Any] = [to_numpy_array(lowercase__ ) for image in images]
if do_resize:
_snake_case : Optional[int] = [self.resize(lowercase__ , lowercase__ , lowercase__ ) for image in images]
if do_center_crop:
_snake_case : Tuple = [self.center_crop(lowercase__ , lowercase__ ) for image in images]
if do_rescale:
_snake_case : Optional[Any] = [self.rescale(lowercase__ , lowercase__ ) for image in images]
if do_normalize:
_snake_case : str = [self.normalize(lowercase__ , lowercase__ , lowercase__ ) for image in images]
_snake_case : int = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images]
_snake_case : Dict = {'''pixel_values''': images}
return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
| 714
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase : int = {
'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Union[str, Any] = [
'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST',
'PegasusXForConditionalGeneration',
'PegasusXModel',
'PegasusXPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 47
| 0
|
from math import factorial
UpperCAmelCase__ : dict[str, int] = {str(digit): factorial(digit) for digit in range(10)}
def A ( snake_case__ : int ) -> int:
'''simple docstring'''
if not isinstance(snake_case__ , snake_case__ ):
raise TypeError('Parameter number must be int' )
if number < 0:
raise ValueError('Parameter number must be greater than or equal to 0' )
# Converts number in string to iterate on its digits and adds its factorial.
return sum(DIGIT_FACTORIAL[digit] for digit in str(snake_case__ ) )
def A ( snake_case__ : int = 60 , snake_case__ : int = 100_0000 ) -> int:
'''simple docstring'''
if not isinstance(snake_case__ , snake_case__ ) or not isinstance(snake_case__ , snake_case__ ):
raise TypeError('Parameters chain_length and number_limit must be int' )
if chain_length <= 0 or number_limit <= 0:
raise ValueError(
'Parameters chain_length and number_limit must be greater than 0' )
# the counter for the chains with the exact desired length
__snake_case = 0
# the cached sizes of the previous chains
__snake_case = {}
for start_chain_element in range(1 , snake_case__ ):
# The temporary set will contain the elements of the chain
__snake_case = set()
__snake_case = 0
# Stop computing the chain when you find a cached size, a repeating item or the
# length is greater then the desired one.
__snake_case = start_chain_element
while (
chain_element not in chain_sets_lengths
and chain_element not in chain_set
and chain_set_length <= chain_length
):
chain_set.add(snake_case__ )
chain_set_length += 1
__snake_case = digit_factorial_sum(snake_case__ )
if chain_element in chain_sets_lengths:
chain_set_length += chain_sets_lengths[chain_element]
__snake_case = chain_set_length
# If chain contains the exact amount of elements increase the counter
if chain_set_length == chain_length:
chains_counter += 1
return chains_counter
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F"""{solution()}""")
| 313
|
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
UpperCAmelCase__ : Union[str, Any] = logging.getLogger(__name__)
class __lowercase ( lowerCamelCase__ ):
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None) -> List[Any]:
super().__init__(
lowercase_ , question_encoder_tokenizer=lowercase_ , generator_tokenizer=lowercase_ , index=lowercase_ , init_retrieval=lowercase_ , )
__snake_case = None
def _a ( self , lowercase_) -> Union[str, Any]:
logger.info('initializing retrieval')
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info('dist initialized')
# needs to be set manually
__snake_case = self._infer_socket_ifname()
# avoid clash with the NCCL port
__snake_case = str(distributed_port + 1)
__snake_case = dist.new_group(ranks=lowercase_ , backend='gloo')
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info('dist not initialized / main')
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group)
def _a ( self) -> int:
return dist.get_rank(group=self.process_group) == 0
def _a ( self , lowercase_ , lowercase_ , lowercase_=torch.floataa) -> Dict:
__snake_case = torch.empty(lowercase_ , dtype=lowercase_)
dist.scatter(lowercase_ , src=0 , scatter_list=lowercase_ , group=self.process_group)
return target_tensor
def _a ( self) -> str:
__snake_case = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
__snake_case = next((addr for addr in addrs if addr.startswith('e')) , lowercase_)
return ifname
def _a ( self , lowercase_ , lowercase_) -> Tuple[np.ndarray, List[dict]]:
# single GPU training
if not dist.is_initialized():
__snake_case , __snake_case = self._main_retrieve(lowercase_ , lowercase_)
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowercase_)
# distributed training
__snake_case = dist.get_world_size(group=self.process_group)
# gather logic
__snake_case = None
if self._is_main():
__snake_case = [torch.empty(question_hidden_states.shape , dtype=torch.floataa) for _ in range(lowercase_)]
dist.gather(torch.tensor(lowercase_) , dst=0 , gather_list=lowercase_ , group=self.process_group)
# scatter logic
__snake_case = question_hidden_states.shape[0]
__snake_case = []
__snake_case = []
if self._is_main():
assert len(lowercase_) == world_size
__snake_case , __snake_case = self._main_retrieve(torch.cat(lowercase_).numpy() , lowercase_)
__snake_case , __snake_case = torch.tensor(lowercase_), torch.tensor(lowercase_)
__snake_case = self._chunk_tensor(lowercase_ , lowercase_)
__snake_case = self._chunk_tensor(lowercase_ , lowercase_)
__snake_case = self._scattered(lowercase_ , [n_queries, n_docs] , target_type=torch.intaa)
__snake_case = self._scattered(lowercase_ , [n_queries, n_docs, question_hidden_states.shape[1]])
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(lowercase_)
| 313
| 1
|
import unittest
import numpy as np
from transformers import BertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.bert.modeling_flax_bert import (
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
)
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self :Optional[int], snake_case :List[str], snake_case :Tuple=13, snake_case :List[Any]=7, snake_case :List[str]=True, snake_case :List[str]=True, snake_case :int=True, snake_case :List[Any]=True, snake_case :str=99, snake_case :Optional[int]=32, snake_case :str=5, snake_case :Optional[Any]=4, snake_case :int=37, snake_case :Tuple="gelu", snake_case :Optional[int]=0.1, snake_case :Tuple=0.1, snake_case :Optional[int]=512, snake_case :Optional[Any]=16, snake_case :Tuple=2, snake_case :List[str]=0.0_2, snake_case :Any=4, ):
"""simple docstring"""
_lowercase =parent
_lowercase =batch_size
_lowercase =seq_length
_lowercase =is_training
_lowercase =use_attention_mask
_lowercase =use_token_type_ids
_lowercase =use_labels
_lowercase =vocab_size
_lowercase =hidden_size
_lowercase =num_hidden_layers
_lowercase =num_attention_heads
_lowercase =intermediate_size
_lowercase =hidden_act
_lowercase =hidden_dropout_prob
_lowercase =attention_probs_dropout_prob
_lowercase =max_position_embeddings
_lowercase =type_vocab_size
_lowercase =type_sequence_label_size
_lowercase =initializer_range
_lowercase =num_choices
def UpperCamelCase__ ( self :str):
"""simple docstring"""
_lowercase =ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
_lowercase =None
if self.use_attention_mask:
_lowercase =random_attention_mask([self.batch_size, self.seq_length])
_lowercase =None
if self.use_token_type_ids:
_lowercase =ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
_lowercase =BertConfig(
vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=snake_case, initializer_range=self.initializer_range, )
return config, input_ids, token_type_ids, attention_mask
def UpperCamelCase__ ( self :Optional[int]):
"""simple docstring"""
_lowercase =self.prepare_config_and_inputs()
_lowercase =config_and_inputs
_lowercase ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def UpperCamelCase__ ( self :str):
"""simple docstring"""
_lowercase =self.prepare_config_and_inputs()
_lowercase =config_and_inputs
_lowercase =True
_lowercase =floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
_lowercase =ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
return (
config,
input_ids,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class SCREAMING_SNAKE_CASE_ ( UpperCAmelCase__ , unittest.TestCase ):
"""simple docstring"""
__lowerCAmelCase : Optional[Any] =True
__lowerCAmelCase : Any =(
(
FlaxBertModel,
FlaxBertForPreTraining,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForQuestionAnswering,
FlaxBertForNextSentencePrediction,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def UpperCamelCase__ ( self :List[Any]):
"""simple docstring"""
_lowercase =FlaxBertModelTester(self)
@slow
def UpperCamelCase__ ( self :Union[str, Any]):
"""simple docstring"""
_lowercase =FlaxBertModel.from_pretrained('bert-base-cased')
_lowercase =model(np.ones((1, 1)))
self.assertIsNotNone(snake_case)
| 714
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
_SCREAMING_SNAKE_CASE = {
"configuration_encodec": [
"ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP",
"EncodecConfig",
],
"feature_extraction_encodec": ["EncodecFeatureExtractor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST",
"EncodecModel",
"EncodecPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_encodec import (
ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP,
EncodecConfig,
)
from .feature_extraction_encodec import EncodecFeatureExtractor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encodec import (
ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST,
EncodecModel,
EncodecPreTrainedModel,
)
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 557
| 0
|
"""simple docstring"""
from __future__ import annotations
import math
import random
from collections.abc import Collection
from typing import overload
class UpperCAmelCase_ :
def __init__( self , UpperCamelCase_ = None ) -> None:
if components is None:
__lowercase : Optional[int] = []
__lowercase : List[Any] = list(UpperCamelCase_ )
def __len__( self ) -> int:
return len(self.__components )
def __str__( self ) -> str:
return "(" + ",".join(map(UpperCamelCase_ , self.__components ) ) + ")"
def __add__( self , UpperCamelCase_ ) -> Vector:
__lowercase : Any = len(self )
if size == len(UpperCamelCase_ ):
__lowercase : List[str] = [self.__components[i] + other.component(UpperCamelCase_ ) for i in range(UpperCamelCase_ )]
return Vector(UpperCamelCase_ )
else:
raise Exception('''must have the same size''' )
def __sub__( self , UpperCamelCase_ ) -> Vector:
__lowercase : Dict = len(self )
if size == len(UpperCamelCase_ ):
__lowercase : str = [self.__components[i] - other.component(UpperCamelCase_ ) for i in range(UpperCamelCase_ )]
return Vector(UpperCamelCase_ )
else: # error case
raise Exception('''must have the same size''' )
@overload
def __mul__( self , UpperCamelCase_ ) -> Vector:
...
@overload
def __mul__( self , UpperCamelCase_ ) -> float:
...
def __mul__( self , UpperCamelCase_ ) -> float | Vector:
if isinstance(UpperCamelCase_ , (float, int) ):
__lowercase : List[str] = [c * other for c in self.__components]
return Vector(UpperCamelCase_ )
elif isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(self ) == len(UpperCamelCase_ ):
__lowercase : Optional[Any] = len(self )
__lowercase : str = [self.__components[i] * other.component(UpperCamelCase_ ) for i in range(UpperCamelCase_ )]
return sum(UpperCamelCase_ )
else: # error case
raise Exception('''invalid operand!''' )
def _lowerCamelCase ( self ) -> Vector:
return Vector(self.__components )
def _lowerCamelCase ( self , UpperCamelCase_ ) -> float:
if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and -len(self.__components ) <= i < len(self.__components ):
return self.__components[i]
else:
raise Exception('''index out of range''' )
def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ) -> None:
assert -len(self.__components ) <= pos < len(self.__components )
__lowercase : List[str] = value
def _lowerCamelCase ( self ) -> float:
if len(self.__components ) == 0:
raise Exception('''Vector is empty''' )
__lowercase : List[Any] = [c**2 for c in self.__components]
return math.sqrt(sum(UpperCamelCase_ ) )
def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = False ) -> float:
__lowercase : List[str] = self * other
__lowercase : int = self.euclidean_length() * other.euclidean_length()
if deg:
return math.degrees(math.acos(num / den ) )
else:
return math.acos(num / den )
def __UpperCAmelCase ( __UpperCamelCase ):
assert isinstance(__UpperCamelCase , __UpperCamelCase )
return Vector([0] * dimension )
def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ):
assert isinstance(__UpperCamelCase , __UpperCamelCase ) and (isinstance(__UpperCamelCase , __UpperCamelCase ))
__lowercase : List[Any] = [0] * dimension
__lowercase : List[Any] = 1
return Vector(__UpperCamelCase )
def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ):
assert (
isinstance(__UpperCamelCase , __UpperCamelCase )
and isinstance(__UpperCamelCase , __UpperCamelCase )
and (isinstance(__UpperCamelCase , (int, float) ))
)
return x * scalar + y
def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ):
random.seed(__UpperCamelCase )
__lowercase : Any = [random.randint(__UpperCamelCase , __UpperCamelCase ) for _ in range(__UpperCamelCase )]
return Vector(__UpperCamelCase )
class UpperCAmelCase_ :
def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> None:
__lowercase : List[Any] = matrix
__lowercase : Optional[int] = w
__lowercase : Union[str, Any] = h
def __str__( self ) -> str:
__lowercase : List[Any] = ''''''
for i in range(self.__height ):
ans += "|"
for j in range(self.__width ):
if j < self.__width - 1:
ans += str(self.__matrix[i][j] ) + ","
else:
ans += str(self.__matrix[i][j] ) + "|\n"
return ans
def __add__( self , UpperCamelCase_ ) -> Matrix:
if self.__width == other.width() and self.__height == other.height():
__lowercase : Any = []
for i in range(self.__height ):
__lowercase : Tuple = [
self.__matrix[i][j] + other.component(UpperCamelCase_ , UpperCamelCase_ )
for j in range(self.__width )
]
matrix.append(UpperCamelCase_ )
return Matrix(UpperCamelCase_ , self.__width , self.__height )
else:
raise Exception('''matrix must have the same dimension!''' )
def __sub__( self , UpperCamelCase_ ) -> Matrix:
if self.__width == other.width() and self.__height == other.height():
__lowercase : Dict = []
for i in range(self.__height ):
__lowercase : str = [
self.__matrix[i][j] - other.component(UpperCamelCase_ , UpperCamelCase_ )
for j in range(self.__width )
]
matrix.append(UpperCamelCase_ )
return Matrix(UpperCamelCase_ , self.__width , self.__height )
else:
raise Exception('''matrices must have the same dimension!''' )
@overload
def __mul__( self , UpperCamelCase_ ) -> Matrix:
...
@overload
def __mul__( self , UpperCamelCase_ ) -> Vector:
...
def __mul__( self , UpperCamelCase_ ) -> Vector | Matrix:
if isinstance(UpperCamelCase_ , UpperCamelCase_ ): # matrix-vector
if len(UpperCamelCase_ ) == self.__width:
__lowercase : str = zero_vector(self.__height )
for i in range(self.__height ):
__lowercase : List[Any] = [
self.__matrix[i][j] * other.component(UpperCamelCase_ )
for j in range(self.__width )
]
ans.change_component(UpperCamelCase_ , sum(UpperCamelCase_ ) )
return ans
else:
raise Exception(
'''vector must have the same size as the '''
'''number of columns of the matrix!''' )
elif isinstance(UpperCamelCase_ , (int, float) ): # matrix-scalar
__lowercase : Any = [
[self.__matrix[i][j] * other for j in range(self.__width )]
for i in range(self.__height )
]
return Matrix(UpperCamelCase_ , self.__width , self.__height )
return None
def _lowerCamelCase ( self ) -> int:
return self.__height
def _lowerCamelCase ( self ) -> int:
return self.__width
def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ) -> float:
if 0 <= x < self.__height and 0 <= y < self.__width:
return self.__matrix[x][y]
else:
raise Exception('''change_component: indices out of bounds''' )
def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> None:
if 0 <= x < self.__height and 0 <= y < self.__width:
__lowercase : int = value
else:
raise Exception('''change_component: indices out of bounds''' )
def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ) -> float:
if self.__height != self.__width:
raise Exception('''Matrix is not square''' )
__lowercase : Any = self.__matrix[:x] + self.__matrix[x + 1 :]
for i in range(len(UpperCamelCase_ ) ):
__lowercase : List[str] = minor[i][:y] + minor[i][y + 1 :]
return Matrix(UpperCamelCase_ , self.__width - 1 , self.__height - 1 ).determinant()
def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ) -> float:
if self.__height != self.__width:
raise Exception('''Matrix is not square''' )
if 0 <= x < self.__height and 0 <= y < self.__width:
return (-1) ** (x + y) * self.minor(UpperCamelCase_ , UpperCamelCase_ )
else:
raise Exception('''Indices out of bounds''' )
def _lowerCamelCase ( self ) -> float:
if self.__height != self.__width:
raise Exception('''Matrix is not square''' )
if self.__height < 1:
raise Exception('''Matrix has no element''' )
elif self.__height == 1:
return self.__matrix[0][0]
elif self.__height == 2:
return (
self.__matrix[0][0] * self.__matrix[1][1]
- self.__matrix[0][1] * self.__matrix[1][0]
)
else:
__lowercase : str = [
self.__matrix[0][y] * self.cofactor(0 , UpperCamelCase_ ) for y in range(self.__width )
]
return sum(UpperCamelCase_ )
def __UpperCAmelCase ( __UpperCamelCase ):
__lowercase : list[list[float]] = [[0] * n for _ in range(__UpperCamelCase )]
return Matrix(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ):
random.seed(__UpperCamelCase )
__lowercase : list[list[float]] = [
[random.randint(__UpperCamelCase , __UpperCamelCase ) for _ in range(__UpperCamelCase )] for _ in range(__UpperCamelCase )
]
return Matrix(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
| 76
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_UpperCAmelCase = logging.get_logger(__name__)
_UpperCAmelCase = {
"""google/bit-50""": """https://huggingface.co/google/bit-50/resolve/main/config.json""",
}
class UpperCAmelCase ( __A , __A ):
'''simple docstring'''
lowerCamelCase_ = '''bit'''
lowerCamelCase_ = ['''preactivation''', '''bottleneck''']
lowerCamelCase_ = ['''SAME''', '''VALID''']
def __init__( self , lowercase=3 , lowercase=6_4 , lowercase=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , lowercase=[3, 4, 6, 3] , lowercase="preactivation" , lowercase="relu" , lowercase=None , lowercase=3_2 , lowercase=0.0 , lowercase=False , lowercase=3_2 , lowercase=1 , lowercase=None , lowercase=None , **lowercase , ):
"""simple docstring"""
super().__init__(**lowercase )
if layer_type not in self.layer_types:
raise ValueError(F'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' )
if global_padding is not None:
if global_padding.upper() in self.supported_padding:
A_ : Tuple = global_padding.upper()
else:
raise ValueError(F'''Padding strategy {global_padding} not supported''' )
A_ : Any = num_channels
A_ : Any = embedding_size
A_ : List[Any] = hidden_sizes
A_ : int = depths
A_ : Union[str, Any] = layer_type
A_ : List[Any] = hidden_act
A_ : Tuple = global_padding
A_ : List[str] = num_groups
A_ : int = drop_path_rate
A_ : str = embedding_dynamic_padding
A_ : Dict = output_stride
A_ : Any = width_factor
A_ : int = ['stem'] + [F'''stage{idx}''' for idx in range(1 , len(lowercase ) + 1 )]
A_ , A_ : List[Any] = get_aligned_output_features_output_indices(
out_features=lowercase , out_indices=lowercase , stage_names=self.stage_names )
| 558
| 0
|
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
a : int = logging.get_logger(__name__)
a : str = {'vocab_file': 'sentencepiece.bpe.model'}
a : Optional[int] = {
'vocab_file': {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model',
}
}
a : Optional[int] = {
'camembert-base': 512,
}
a : Union[str, Any] = '▁'
class a ( _lowerCamelCase ):
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = ["input_ids", "attention_mask"]
def __init__( self : Union[str, Any] , lowercase_ : str , lowercase_ : str="<s>" , lowercase_ : Optional[int]="</s>" , lowercase_ : Tuple="</s>" , lowercase_ : Tuple="<s>" , lowercase_ : Optional[int]="<unk>" , lowercase_ : int="<pad>" , lowercase_ : Dict="<mask>" , lowercase_ : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] , lowercase_ : Optional[Dict[str, Any]] = None , **lowercase_ : List[str] , ):
# Mask token behave like a normal word, i.e. include the space before it
snake_case_ = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token
snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , additional_special_tokens=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , )
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(lowercase_ ) )
snake_case_ = vocab_file
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
snake_case_ = {'''<s>NOTUSED''': 0, '''<pad>''': 1, '''</s>NOTUSED''': 2, '''<unk>''': 3}
snake_case_ = len(self.fairseq_tokens_to_ids )
snake_case_ = len(self.sp_model ) + len(self.fairseq_tokens_to_ids )
snake_case_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def A_ ( self : Optional[Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
snake_case_ = [self.cls_token_id]
snake_case_ = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def A_ ( self : Optional[int] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ )
if token_ids_a is None:
return [1] + ([0] * len(lowercase_ )) + [1]
return [1] + ([0] * len(lowercase_ )) + [1, 1] + ([0] * len(lowercase_ )) + [1]
def A_ ( self : Dict , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ):
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def A_ ( self : int ):
return len(self.fairseq_tokens_to_ids ) + len(self.sp_model )
def A_ ( self : str ):
snake_case_ = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def A_ ( self : List[str] , lowercase_ : str ):
return self.sp_model.encode(lowercase_ , out_type=lowercase_ )
def A_ ( self : Any , lowercase_ : Optional[Any] ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
elif self.sp_model.PieceToId(lowercase_ ) == 0:
# Convert sentence piece unk token to fairseq unk token index
return self.unk_token_id
return self.fairseq_offset + self.sp_model.PieceToId(lowercase_ )
def A_ ( self : Tuple , lowercase_ : List[str] ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def A_ ( self : Optional[int] , lowercase_ : Optional[int] ):
snake_case_ = []
snake_case_ = ''''''
snake_case_ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(lowercase_ ) + token
snake_case_ = True
snake_case_ = []
else:
current_sub_tokens.append(lowercase_ )
snake_case_ = False
out_string += self.sp_model.decode(lowercase_ )
return out_string.strip()
def __getstate__( self : Any ):
snake_case_ = self.__dict__.copy()
snake_case_ = None
return state
def __setstate__( self : Optional[Any] , lowercase_ : Optional[Any] ):
snake_case_ = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
snake_case_ = {}
snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def A_ ( self : Dict , lowercase_ : str , lowercase_ : Optional[str] = None ):
if not os.path.isdir(lowercase_ ):
logger.error(F"Vocabulary path ({save_directory}) should be a directory" )
return
snake_case_ = os.path.join(
lowercase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowercase_ )
elif not os.path.isfile(self.vocab_file ):
with open(lowercase_ , '''wb''' ) as fi:
snake_case_ = self.sp_model.serialized_model_proto()
fi.write(lowercase_ )
return (out_vocab_file,)
| 593
|
'''simple docstring'''
import collections
import gzip
import os
import urllib
import numpy
from tensorflow.python.framework import dtypes, random_seed
from tensorflow.python.platform import gfile
from tensorflow.python.util.deprecation import deprecated
a : int = collections.namedtuple('_Datasets', ['train', 'validation', 'test'])
# CVDF mirror of http://yann.lecun.com/exdb/mnist/
a : str = 'https://storage.googleapis.com/cvdf-datasets/mnist/'
def __magic_name__ ( __UpperCAmelCase ) -> Dict:
'''simple docstring'''
snake_case_ = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' )
return numpy.frombuffer(bytestream.read(4 ), dtype=__UpperCAmelCase )[0]
@deprecated(__UpperCAmelCase, '''Please use tf.data to implement this functionality.''' )
def __magic_name__ ( __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
print('''Extracting''', f.name )
with gzip.GzipFile(fileobj=__UpperCAmelCase ) as bytestream:
snake_case_ = _readaa(__UpperCAmelCase )
if magic != 2051:
raise ValueError(
'''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) )
snake_case_ = _readaa(__UpperCAmelCase )
snake_case_ = _readaa(__UpperCAmelCase )
snake_case_ = _readaa(__UpperCAmelCase )
snake_case_ = bytestream.read(rows * cols * num_images )
snake_case_ = numpy.frombuffer(__UpperCAmelCase, dtype=numpy.uinta )
snake_case_ = data.reshape(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, 1 )
return data
@deprecated(__UpperCAmelCase, '''Please use tf.one_hot on tensors.''' )
def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
snake_case_ = labels_dense.shape[0]
snake_case_ = numpy.arange(__UpperCAmelCase ) * num_classes
snake_case_ = numpy.zeros((num_labels, num_classes) )
snake_case_ = 1
return labels_one_hot
@deprecated(__UpperCAmelCase, '''Please use tf.data to implement this functionality.''' )
def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase=False, __UpperCAmelCase=10 ) -> Dict:
'''simple docstring'''
print('''Extracting''', f.name )
with gzip.GzipFile(fileobj=__UpperCAmelCase ) as bytestream:
snake_case_ = _readaa(__UpperCAmelCase )
if magic != 2049:
raise ValueError(
'''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) )
snake_case_ = _readaa(__UpperCAmelCase )
snake_case_ = bytestream.read(__UpperCAmelCase )
snake_case_ = numpy.frombuffer(__UpperCAmelCase, dtype=numpy.uinta )
if one_hot:
return _dense_to_one_hot(__UpperCAmelCase, __UpperCAmelCase )
return labels
class a :
@deprecated(
lowercase_ , '''Please use alternatives such as official/mnist/_DataSet.py'''
''' from tensorflow/models.''' , )
def __init__( self : List[str] , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : Tuple=False , lowercase_ : Tuple=False , lowercase_ : Optional[Any]=dtypes.floataa , lowercase_ : Any=True , lowercase_ : Optional[int]=None , ):
snake_case_ ,snake_case_ = random_seed.get_seed(lowercase_ )
# If op level seed is not set, use whatever graph level seed is returned
numpy.random.seed(seeda if seed is None else seeda )
snake_case_ = dtypes.as_dtype(lowercase_ ).base_dtype
if dtype not in (dtypes.uinta, dtypes.floataa):
raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype )
if fake_data:
snake_case_ = 1_0000
snake_case_ = one_hot
else:
assert (
images.shape[0] == labels.shape[0]
), F"images.shape: {images.shape} labels.shape: {labels.shape}"
snake_case_ = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
if reshape:
assert images.shape[3] == 1
snake_case_ = images.reshape(
images.shape[0] , images.shape[1] * images.shape[2] )
if dtype == dtypes.floataa:
# Convert from [0, 255] -> [0.0, 1.0].
snake_case_ = images.astype(numpy.floataa )
snake_case_ = numpy.multiply(lowercase_ , 1.0 / 255.0 )
snake_case_ = images
snake_case_ = labels
snake_case_ = 0
snake_case_ = 0
@property
def A_ ( self : int ):
return self._images
@property
def A_ ( self : Tuple ):
return self._labels
@property
def A_ ( self : str ):
return self._num_examples
@property
def A_ ( self : List[str] ):
return self._epochs_completed
def A_ ( self : str , lowercase_ : List[str] , lowercase_ : Optional[int]=False , lowercase_ : Dict=True ):
if fake_data:
snake_case_ = [1] * 784
snake_case_ = [1] + [0] * 9 if self.one_hot else 0
return (
[fake_image for _ in range(lowercase_ )],
[fake_label for _ in range(lowercase_ )],
)
snake_case_ = self._index_in_epoch
# Shuffle for the first epoch
if self._epochs_completed == 0 and start == 0 and shuffle:
snake_case_ = numpy.arange(self._num_examples )
numpy.random.shuffle(lowercase_ )
snake_case_ = self.images[perma]
snake_case_ = self.labels[perma]
# Go to the next epoch
if start + batch_size > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Get the rest examples in this epoch
snake_case_ = self._num_examples - start
snake_case_ = self._images[start : self._num_examples]
snake_case_ = self._labels[start : self._num_examples]
# Shuffle the data
if shuffle:
snake_case_ = numpy.arange(self._num_examples )
numpy.random.shuffle(lowercase_ )
snake_case_ = self.images[perm]
snake_case_ = self.labels[perm]
# Start next epoch
snake_case_ = 0
snake_case_ = batch_size - rest_num_examples
snake_case_ = self._index_in_epoch
snake_case_ = self._images[start:end]
snake_case_ = self._labels[start:end]
return (
numpy.concatenate((images_rest_part, images_new_part) , axis=0 ),
numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ),
)
else:
self._index_in_epoch += batch_size
snake_case_ = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
@deprecated(__UpperCAmelCase, '''Please write your own downloading logic.''' )
def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> Any:
'''simple docstring'''
if not gfile.Exists(__UpperCAmelCase ):
gfile.MakeDirs(__UpperCAmelCase )
snake_case_ = os.path.join(__UpperCAmelCase, __UpperCAmelCase )
if not gfile.Exists(__UpperCAmelCase ):
urllib.request.urlretrieve(__UpperCAmelCase, __UpperCAmelCase ) # noqa: S310
with gfile.GFile(__UpperCAmelCase ) as f:
snake_case_ = f.size()
print('''Successfully downloaded''', __UpperCAmelCase, __UpperCAmelCase, '''bytes.''' )
return filepath
@deprecated(
__UpperCAmelCase, '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' )
def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase=False, __UpperCAmelCase=False, __UpperCAmelCase=dtypes.floataa, __UpperCAmelCase=True, __UpperCAmelCase=5000, __UpperCAmelCase=None, __UpperCAmelCase=DEFAULT_SOURCE_URL, ) -> Tuple:
'''simple docstring'''
if fake_data:
def fake():
return _DataSet(
[], [], fake_data=__UpperCAmelCase, one_hot=__UpperCAmelCase, dtype=__UpperCAmelCase, seed=__UpperCAmelCase )
snake_case_ = fake()
snake_case_ = fake()
snake_case_ = fake()
return _Datasets(train=__UpperCAmelCase, validation=__UpperCAmelCase, test=__UpperCAmelCase )
if not source_url: # empty string check
snake_case_ = DEFAULT_SOURCE_URL
snake_case_ = '''train-images-idx3-ubyte.gz'''
snake_case_ = '''train-labels-idx1-ubyte.gz'''
snake_case_ = '''t10k-images-idx3-ubyte.gz'''
snake_case_ = '''t10k-labels-idx1-ubyte.gz'''
snake_case_ = _maybe_download(
__UpperCAmelCase, __UpperCAmelCase, source_url + train_images_file )
with gfile.Open(__UpperCAmelCase, '''rb''' ) as f:
snake_case_ = _extract_images(__UpperCAmelCase )
snake_case_ = _maybe_download(
__UpperCAmelCase, __UpperCAmelCase, source_url + train_labels_file )
with gfile.Open(__UpperCAmelCase, '''rb''' ) as f:
snake_case_ = _extract_labels(__UpperCAmelCase, one_hot=__UpperCAmelCase )
snake_case_ = _maybe_download(
__UpperCAmelCase, __UpperCAmelCase, source_url + test_images_file )
with gfile.Open(__UpperCAmelCase, '''rb''' ) as f:
snake_case_ = _extract_images(__UpperCAmelCase )
snake_case_ = _maybe_download(
__UpperCAmelCase, __UpperCAmelCase, source_url + test_labels_file )
with gfile.Open(__UpperCAmelCase, '''rb''' ) as f:
snake_case_ = _extract_labels(__UpperCAmelCase, one_hot=__UpperCAmelCase )
if not 0 <= validation_size <= len(__UpperCAmelCase ):
snake_case_ = (
'''Validation size should be between 0 and '''
F"{len(__UpperCAmelCase )}. Received: {validation_size}."
)
raise ValueError(__UpperCAmelCase )
snake_case_ = train_images[:validation_size]
snake_case_ = train_labels[:validation_size]
snake_case_ = train_images[validation_size:]
snake_case_ = train_labels[validation_size:]
snake_case_ = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed}
snake_case_ = _DataSet(__UpperCAmelCase, __UpperCAmelCase, **__UpperCAmelCase )
snake_case_ = _DataSet(__UpperCAmelCase, __UpperCAmelCase, **__UpperCAmelCase )
snake_case_ = _DataSet(__UpperCAmelCase, __UpperCAmelCase, **__UpperCAmelCase )
return _Datasets(train=__UpperCAmelCase, validation=__UpperCAmelCase, test=__UpperCAmelCase )
| 593
| 1
|
'''simple docstring'''
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class UpperCAmelCase_ (_UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase : torch.FloatTensor
lowerCamelCase : Optional[torch.FloatTensor] = None
def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any]=0.999 , UpperCAmelCase_ : Tuple="cosine" , ) -> Optional[Any]:
if alpha_transform_type == "cosine":
def alpha_bar_fn(UpperCAmelCase_ : Optional[int] ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(UpperCAmelCase_ : Tuple ):
return math.exp(t * -12.0 )
else:
raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' )
__lowerCamelCase : List[str] = []
for i in range(UpperCAmelCase_ ):
__lowerCamelCase : int = i / num_diffusion_timesteps
__lowerCamelCase : List[str] = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(UpperCAmelCase_ ) / alpha_bar_fn(UpperCAmelCase_ ) , UpperCAmelCase_ ) )
return torch.tensor(UpperCAmelCase_ , dtype=torch.floataa )
class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase ):
"""simple docstring"""
@register_to_config
def __init__( self , SCREAMING_SNAKE_CASE_ = 10_00 , SCREAMING_SNAKE_CASE_ = "fixed_small_log" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = "epsilon" , SCREAMING_SNAKE_CASE_ = "squaredcos_cap_v2" , ) -> List[str]:
if beta_schedule != "squaredcos_cap_v2":
raise ValueError('UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'' )
__lowerCamelCase : Optional[Any] = betas_for_alpha_bar(SCREAMING_SNAKE_CASE_ )
__lowerCamelCase : str = 1.0 - self.betas
__lowerCamelCase : Union[str, Any] = torch.cumprod(self.alphas , dim=0 )
__lowerCamelCase : Optional[Any] = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
__lowerCamelCase : Optional[Any] = 1.0
# setable values
__lowerCamelCase : Optional[Any] = None
__lowerCamelCase : Optional[int] = torch.from_numpy(np.arange(0 , SCREAMING_SNAKE_CASE_ )[::-1].copy() )
__lowerCamelCase : Optional[int] = variance_type
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> torch.FloatTensor:
return sample
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Optional[int]:
__lowerCamelCase : Optional[int] = num_inference_steps
__lowerCamelCase : Any = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
__lowerCamelCase : str = (np.arange(0 , SCREAMING_SNAKE_CASE_ ) * step_ratio).round()[::-1].copy().astype(np.intaa )
__lowerCamelCase : List[str] = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) -> Dict:
if prev_timestep is None:
__lowerCamelCase : Dict = t - 1
__lowerCamelCase : int = self.alphas_cumprod[t]
__lowerCamelCase : str = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
__lowerCamelCase : Optional[int] = 1 - alpha_prod_t
__lowerCamelCase : Dict = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
__lowerCamelCase : List[str] = self.betas[t]
else:
__lowerCamelCase : List[str] = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
__lowerCamelCase : List[str] = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
__lowerCamelCase : str = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
__lowerCamelCase : Optional[Any] = torch.log(torch.clamp(SCREAMING_SNAKE_CASE_ , min=1E-20 ) )
__lowerCamelCase : List[Any] = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
__lowerCamelCase : str = variance.log()
__lowerCamelCase : Dict = beta.log()
__lowerCamelCase : List[str] = (predicted_variance + 1) / 2
__lowerCamelCase : str = frac * max_log + (1 - frac) * min_log
return variance
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]:
__lowerCamelCase : List[str] = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
__lowerCamelCase , __lowerCamelCase : List[Any] = torch.split(SCREAMING_SNAKE_CASE_ , sample.shape[1] , dim=1 )
else:
__lowerCamelCase : Optional[int] = None
# 1. compute alphas, betas
if prev_timestep is None:
__lowerCamelCase : str = t - 1
__lowerCamelCase : int = self.alphas_cumprod[t]
__lowerCamelCase : Optional[int] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
__lowerCamelCase : int = 1 - alpha_prod_t
__lowerCamelCase : List[Any] = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
__lowerCamelCase : Dict = self.betas[t]
__lowerCamelCase : List[Any] = self.alphas[t]
else:
__lowerCamelCase : Optional[Any] = 1 - alpha_prod_t / alpha_prod_t_prev
__lowerCamelCase : Dict = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
__lowerCamelCase : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
__lowerCamelCase : Optional[Any] = model_output
else:
raise ValueError(
f'prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`'
' for the UnCLIPScheduler.' )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
__lowerCamelCase : Dict = torch.clamp(
SCREAMING_SNAKE_CASE_ , -self.config.clip_sample_range , self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
__lowerCamelCase : Any = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
__lowerCamelCase : Optional[int] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
__lowerCamelCase : Union[str, Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
__lowerCamelCase : Dict = 0
if t > 0:
__lowerCamelCase : Union[str, Any] = randn_tensor(
model_output.shape , dtype=model_output.dtype , generator=SCREAMING_SNAKE_CASE_ , device=model_output.device )
__lowerCamelCase : Union[str, Any] = self._get_variance(
SCREAMING_SNAKE_CASE_ , predicted_variance=SCREAMING_SNAKE_CASE_ , prev_timestep=SCREAMING_SNAKE_CASE_ , )
if self.variance_type == "fixed_small_log":
__lowerCamelCase : Optional[Any] = variance
elif self.variance_type == "learned_range":
__lowerCamelCase : Tuple = (0.5 * variance).exp()
else:
raise ValueError(
f'variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`'
' for the UnCLIPScheduler.' )
__lowerCamelCase : Tuple = variance * variance_noise
__lowerCamelCase : List[str] = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> torch.FloatTensor:
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
__lowerCamelCase : str = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype )
__lowerCamelCase : Any = timesteps.to(original_samples.device )
__lowerCamelCase : Tuple = alphas_cumprod[timesteps] ** 0.5
__lowerCamelCase : List[Any] = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
__lowerCamelCase : Union[str, Any] = sqrt_alpha_prod.unsqueeze(-1 )
__lowerCamelCase : Optional[Any] = (1 - alphas_cumprod[timesteps]) ** 0.5
__lowerCamelCase : Tuple = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
__lowerCamelCase : str = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
__lowerCamelCase : str = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
| 13
|
'''simple docstring'''
from __future__ import annotations
import os
from collections.abc import Mapping
A__ : Optional[Any] = tuple[int, int]
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None:
__lowerCamelCase : set[int] = vertices
__lowerCamelCase : dict[EdgeT, int] = {
(min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ )): weight for edge, weight in edges.items()
}
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None:
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
__lowerCamelCase : Union[str, Any] = weight
def lowercase_ ( self ) -> Graph:
__lowerCamelCase : Graph = Graph({min(self.vertices )} , {} )
__lowerCamelCase : EdgeT
__lowerCamelCase : int
__lowerCamelCase : EdgeT
__lowerCamelCase : int
while len(subgraph.vertices ) < len(self.vertices ):
__lowerCamelCase : Any = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
__lowerCamelCase : Optional[int] = edge
__lowerCamelCase : List[str] = weight
subgraph.add_edge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return subgraph
def UpperCAmelCase__ ( UpperCAmelCase_ : str = "p107_network.txt" ) -> int:
__lowerCamelCase : str = os.path.abspath(os.path.dirname(UpperCAmelCase_ ) )
__lowerCamelCase : str = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : dict[EdgeT, int] = {}
__lowerCamelCase : list[str]
__lowerCamelCase : int
__lowerCamelCase : int
with open(UpperCAmelCase_ ) as f:
__lowerCamelCase : Any = f.read().strip().split('\n' )
__lowerCamelCase : Any = [line.split(',' ) for line in data]
for edgea in range(1 , len(UpperCAmelCase_ ) ):
for edgea in range(UpperCAmelCase_ ):
if adjaceny_matrix[edgea][edgea] != "-":
__lowerCamelCase : int = int(adjaceny_matrix[edgea][edgea] )
__lowerCamelCase : Graph = Graph(set(range(len(UpperCAmelCase_ ) ) ) , UpperCAmelCase_ )
__lowerCamelCase : Graph = graph.prims_algorithm()
__lowerCamelCase : int = sum(graph.edges.values() )
__lowerCamelCase : int = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(f'''{solution() = }''')
| 13
| 1
|
"""simple docstring"""
def __magic_name__ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : list[list[int]] ):
def update_area_of_max_square(_lowerCamelCase : int , _lowerCamelCase : int ) -> int:
# BASE CASE
if row >= rows or col >= cols:
return 0
__a : Optional[int] = update_area_of_max_square(_lowerCamelCase , col + 1 )
__a : Optional[Any] = update_area_of_max_square(row + 1 , col + 1 )
__a : Optional[Any] = update_area_of_max_square(row + 1 , _lowerCamelCase )
if mat[row][col]:
__a : str = 1 + min([right, diagonal, down] )
__a : List[str] = max(largest_square_area[0] , _lowerCamelCase )
return sub_problem_sol
else:
return 0
__a : List[Any] = [0]
update_area_of_max_square(0 , 0 )
return largest_square_area[0]
def __magic_name__ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : list[list[int]] ):
def update_area_of_max_square_using_dp_array(
_lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : list[list[int]] ) -> int:
if row >= rows or col >= cols:
return 0
if dp_array[row][col] != -1:
return dp_array[row][col]
__a : Optional[int] = update_area_of_max_square_using_dp_array(_lowerCamelCase , col + 1 , _lowerCamelCase )
__a : int = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , _lowerCamelCase )
__a : Any = update_area_of_max_square_using_dp_array(row + 1 , _lowerCamelCase , _lowerCamelCase )
if mat[row][col]:
__a : Any = 1 + min([right, diagonal, down] )
__a : str = max(largest_square_area[0] , _lowerCamelCase )
__a : Dict = sub_problem_sol
return sub_problem_sol
else:
return 0
__a : List[str] = [0]
__a : Tuple = [[-1] * cols for _ in range(_lowerCamelCase )]
update_area_of_max_square_using_dp_array(0 , 0 , _lowerCamelCase )
return largest_square_area[0]
def __magic_name__ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : list[list[int]] ):
__a : Optional[Any] = [[0] * (cols + 1) for _ in range(rows + 1 )]
__a : List[Any] = 0
for row in range(rows - 1 , -1 , -1 ):
for col in range(cols - 1 , -1 , -1 ):
__a : int = dp_array[row][col + 1]
__a : List[str] = dp_array[row + 1][col + 1]
__a : Union[str, Any] = dp_array[row + 1][col]
if mat[row][col] == 1:
__a : Any = 1 + min(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
__a : Tuple = max(dp_array[row][col] , _lowerCamelCase )
else:
__a : Optional[Any] = 0
return largest_square_area
def __magic_name__ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : list[list[int]] ):
__a : Optional[int] = [0] * (cols + 1)
__a : int = [0] * (cols + 1)
__a : Tuple = 0
for row in range(rows - 1 , -1 , -1 ):
for col in range(cols - 1 , -1 , -1 ):
__a : Tuple = current_row[col + 1]
__a : Tuple = next_row[col + 1]
__a : List[str] = next_row[col]
if mat[row][col] == 1:
__a : Any = 1 + min(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
__a : Tuple = max(current_row[col] , _lowerCamelCase )
else:
__a : Any = 0
__a : int = current_row
return largest_square_area
if __name__ == "__main__":
import doctest
doctest.testmod()
print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
| 63
|
"""simple docstring"""
import unittest
from knapsack import knapsack as k
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def lowerCAmelCase__(self ):
'''simple docstring'''
__a : str = 0
__a : Optional[Any] = [0]
__a : int = [0]
__a : str = len(_lowercase )
self.assertEqual(k.knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) , 0 )
__a : int = [60]
__a : Union[str, Any] = [10]
__a : Tuple = len(_lowercase )
self.assertEqual(k.knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) , 0 )
def lowerCAmelCase__(self ):
'''simple docstring'''
__a : int = 3
__a : str = [1, 2, 3]
__a : Optional[Any] = [3, 2, 1]
__a : int = len(_lowercase )
self.assertEqual(k.knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) , 5 )
def lowerCAmelCase__(self ):
'''simple docstring'''
__a : Dict = 50
__a : Tuple = [60, 100, 120]
__a : List[str] = [10, 20, 30]
__a : Union[str, Any] = len(_lowercase )
self.assertEqual(k.knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) , 220 )
if __name__ == "__main__":
unittest.main()
| 63
| 1
|
'''simple docstring'''
import torch
from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel
class _UpperCamelCase ( SCREAMING_SNAKE_CASE):
'''simple docstring'''
_snake_case = '''M-CLIP'''
def __init__( self , a_=1_0_2_4 , a_=7_6_8 , **a_ ) -> Tuple:
lowercase : int = transformerDimSize
lowercase : List[str] = imageDimSize
super().__init__(**a_ )
class _UpperCamelCase ( SCREAMING_SNAKE_CASE):
'''simple docstring'''
_snake_case = MCLIPConfig
def __init__( self , a_ , *a_ , **a_ ) -> List[Any]:
super().__init__(a_ , *a_ , **a_ )
lowercase : Any = XLMRobertaModel(a_ )
lowercase : int = torch.nn.Linear(
in_features=config.transformerDimensions , out_features=config.numDims )
def a__ ( self , a_ , a_ ) -> Any:
lowercase : Any = self.transformer(input_ids=a_ , attention_mask=a_ )[0]
lowercase : List[Any] = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None]
return self.LinearTransformation(a_ ), embs
| 372
|
'''simple docstring'''
from pathlib import Path
from typing import List
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import get_tests_dir, is_tool_test
from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
lowerCAmelCase : List[Any] = ["""text""", """image""", """audio"""]
def _A ( A ) -> Dict:
lowercase : str = []
for input_type in input_types:
if input_type == "text":
inputs.append("Text input" )
elif input_type == "image":
inputs.append(
Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((5_1_2, 5_1_2) ) )
elif input_type == "audio":
inputs.append(torch.ones(3_0_0_0 ) )
elif isinstance(A ,A ):
inputs.append(create_inputs(A ) )
else:
raise ValueError(F'''Invalid type requested: {input_type}''' )
return inputs
def _A ( A ) -> str:
lowercase : Tuple = []
for output in outputs:
if isinstance(A ,(str, AgentText) ):
output_types.append("text" )
elif isinstance(A ,(Image.Image, AgentImage) ):
output_types.append("image" )
elif isinstance(A ,(torch.Tensor, AgentAudio) ):
output_types.append("audio" )
else:
raise ValueError(F'''Invalid output: {output}''' )
return output_types
@is_tool_test
class _UpperCamelCase :
'''simple docstring'''
def a__ ( self ) -> Optional[Any]:
self.assertTrue(hasattr(self.tool , "inputs" ) )
self.assertTrue(hasattr(self.tool , "outputs" ) )
lowercase : Optional[Any] = self.tool.inputs
for _input in inputs:
if isinstance(_input , a_ ):
for __input in _input:
self.assertTrue(__input in authorized_types )
else:
self.assertTrue(_input in authorized_types )
lowercase : Any = self.tool.outputs
for _output in outputs:
self.assertTrue(_output in authorized_types )
def a__ ( self ) -> Any:
lowercase : Any = create_inputs(self.tool.inputs )
lowercase : Tuple = self.tool(*a_ )
# There is a single output
if len(self.tool.outputs ) == 1:
lowercase : Any = [outputs]
self.assertListEqual(output_types(a_ ) , self.tool.outputs )
def a__ ( self ) -> List[str]:
self.assertTrue(hasattr(self.tool , "description" ) )
self.assertTrue(hasattr(self.tool , "default_checkpoint" ) )
self.assertTrue(self.tool.description.startswith("This is a tool that" ) )
def a__ ( self ) -> int:
lowercase : str = create_inputs(self.tool.inputs )
lowercase : str = self.tool(*a_ )
if not isinstance(a_ , a_ ):
lowercase : Union[str, Any] = [outputs]
self.assertEqual(len(a_ ) , len(self.tool.outputs ) )
for output, output_type in zip(a_ , self.tool.outputs ):
lowercase : List[str] = AGENT_TYPE_MAPPING[output_type]
self.assertTrue(isinstance(a_ , a_ ) )
def a__ ( self ) -> Optional[int]:
lowercase : int = create_inputs(self.tool.inputs )
lowercase : str = []
for _input, input_type in zip(a_ , self.tool.inputs ):
if isinstance(a_ , a_ ):
_inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] )
else:
_inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) )
# Should not raise an error
lowercase : Optional[int] = self.tool(*a_ )
if not isinstance(a_ , a_ ):
lowercase : str = [outputs]
self.assertEqual(len(a_ ) , len(self.tool.outputs ) )
| 372
| 1
|
import os
def _lowerCAmelCase ( __lowerCAmelCase ) -> List[Any]:
"""simple docstring"""
snake_case__ : Dict = len(grid[0] )
snake_case__ : Optional[Any] = len(__lowerCAmelCase )
snake_case__ : int = 0
snake_case__ : List[str] = 0
snake_case__ : Optional[Any] = 0
# Check vertically, horizontally, diagonally at the same time (only works
# for nxn grid)
for i in range(__lowerCAmelCase ):
for j in range(n_rows - 3 ):
snake_case__ : int = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i]
snake_case__ : Optional[int] = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3]
# Left-to-right diagonal (\) product
if i < n_columns - 3:
snake_case__ : Any = (
grid[i][j]
* grid[i + 1][j + 1]
* grid[i + 2][j + 2]
* grid[i + 3][j + 3]
)
# Right-to-left diagonal(/) product
if i > 2:
snake_case__ : str = (
grid[i][j]
* grid[i - 1][j + 1]
* grid[i - 2][j + 2]
* grid[i - 3][j + 3]
)
snake_case__ : Union[str, Any] = max(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
if max_product > largest:
snake_case__ : List[Any] = max_product
return largest
def _lowerCAmelCase ( ) -> Optional[Any]:
"""simple docstring"""
snake_case__ : Any = []
with open(os.path.dirname(__lowerCAmelCase ) + '''/grid.txt''' ) as file:
for line in file:
grid.append(line.strip('''\n''' ).split(''' ''' ) )
snake_case__ : Optional[Any] = [[int(__lowerCAmelCase ) for i in grid[j]] for j in range(len(__lowerCAmelCase ) )]
return largest_product(__lowerCAmelCase )
if __name__ == "__main__":
print(solution())
| 219
|
import argparse
import json
import os
import tensorstore as ts
import torch
from flax import serialization
from flax.traverse_util import flatten_dict, unflatten_dict
from tensorflow.io import gfile
from transformers.modeling_utils import dtype_byte_size
from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import (
rename_keys,
)
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
from transformers.utils.hub import convert_file_size_to_int
def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict:
"""simple docstring"""
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3:
# expert layer
snake_case__ : Any = flax_key_tuple[:-1] + ('''weight''',)
snake_case__ : Tuple = torch.permute(__lowerCAmelCase , (0, 2, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCAmelCase ):
# linear layer
snake_case__ : Optional[int] = flax_key_tuple[:-1] + ('''weight''',)
snake_case__ : Union[str, Any] = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
snake_case__ : Union[str, Any] = flax_key_tuple[:-1] + ('''weight''',)
return flax_key_tuple, flax_tensor
def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]:
"""simple docstring"""
if "metadata" in layer:
snake_case__ : Union[str, Any] = layer.split('''metadata''' )
snake_case__ : Dict = ''''''.join(split_layer[0] )[:-1]
snake_case__ : str = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )]
elif "kvstore" in layer:
snake_case__ : Tuple = layer.split('''kvstore''' )
snake_case__ : int = ''''''.join(split_layer[0] )[:-1]
snake_case__ : Union[str, Any] = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )]
else:
snake_case__ : Union[str, Any] = layer.split('''/''' )
snake_case__ : List[str] = '''/'''.join(split_layer[:-1] )
snake_case__ : Optional[Any] = (split_layer[-1],)
if "kvstore/path" in layer:
snake_case__ : Any = f"""{switch_checkpoint_path}/{checkpoint_info[layer]}"""
elif "kvstore/driver" in layer:
snake_case__ : Any = '''file'''
else:
snake_case__ : int = checkpoint_info[layer]
return curr_real_layer_name, split_layer, content
def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]:
"""simple docstring"""
snake_case__ : str = rename_keys(__lowerCAmelCase )
snake_case__ : List[str] = {}
for k, v in current_block.items():
snake_case__ : List[str] = v
snake_case__ : Any = new_current_block
torch.save(__lowerCAmelCase , __lowerCAmelCase )
def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = WEIGHTS_NAME ) -> Union[str, Any]:
"""simple docstring"""
snake_case__ : Tuple = convert_file_size_to_int(__lowerCAmelCase )
snake_case__ : Optional[int] = []
snake_case__ : Any = {}
snake_case__ : Any = 0
snake_case__ : List[str] = 0
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
with gfile.GFile(switch_checkpoint_path + '''/checkpoint''' , '''rb''' ) as fp:
snake_case__ : Optional[int] = serialization.msgpack_restore(fp.read() )['''optimizer''']['''target''']
snake_case__ : List[str] = flatten_dict(__lowerCAmelCase , sep='''/''' )
snake_case__ : Optional[Any] = {}
for layer in checkpoint_info.keys():
snake_case__ , snake_case__ , snake_case__ : Any = get_key_and_tensorstore_dict(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
if curr_real_layer_name in all_layers:
snake_case__ : List[Any] = content
else:
snake_case__ : Tuple = {split_layer[-1]: content}
for key in all_layers.keys():
# open tensorstore file
snake_case__ : Any = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result()
snake_case__ : str = torch.tensor(__lowerCAmelCase )
snake_case__ : List[Any] = raw_weights.numel() * dtype_byte_size(raw_weights.dtype )
# use the renaming pattern from the small conversion scripts
snake_case__ , snake_case__ : Optional[int] = rename_base_flax_keys(tuple(key.split('''/''' ) ) , __lowerCAmelCase )
snake_case__ : List[str] = '''/'''.join(__lowerCAmelCase )
# If this weight is going to tip up over the maximal size, we split.
if current_block_size + weight_size > max_shard_size:
snake_case__ : Optional[int] = os.path.join(
__lowerCAmelCase , weights_name.replace('''.bin''' , f"""-{len(__lowerCAmelCase )+1:05d}-of-???.bin""" ) )
rename_and_save_block(__lowerCAmelCase , __lowerCAmelCase )
sharded_state_dicts.append(current_block.keys() )
del current_block
snake_case__ : List[str] = {}
snake_case__ : str = 0
snake_case__ : int = raw_weights.to(getattr(__lowerCAmelCase , __lowerCAmelCase ) )
current_block_size += weight_size
total_size += weight_size
# Add the last block
snake_case__ : int = os.path.join(__lowerCAmelCase , weights_name.replace('''.bin''' , f"""-{len(__lowerCAmelCase )+1:05d}-of-???.bin""" ) )
rename_and_save_block(__lowerCAmelCase , __lowerCAmelCase )
sharded_state_dicts.append(current_block.keys() )
# If we only have one shard, we return it
if len(__lowerCAmelCase ) == 1:
return {weights_name: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
snake_case__ : Optional[Any] = {}
snake_case__ : List[Any] = {}
for idx, shard in enumerate(__lowerCAmelCase ):
snake_case__ : List[Any] = weights_name.replace(
'''.bin''' , f"""-{idx+1:05d}-of-{len(__lowerCAmelCase ):05d}.bin""" ) # len(sharded_state_dicts):05d}
snake_case__ : List[Any] = os.path.join(__lowerCAmelCase , weights_name.replace('''.bin''' , f"""-{idx+1:05d}-of-???.bin""" ) )
os.rename(__lowerCAmelCase , os.path.join(__lowerCAmelCase , __lowerCAmelCase ) )
snake_case__ : Optional[Any] = shard
for key in shard:
snake_case__ : int = shard_file
# Add the metadata
snake_case__ : int = {'''total_size''': total_size}
snake_case__ : Dict = {'''metadata''': metadata, '''weight_map''': weight_map}
with open(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , '''w''' , encoding='''utf-8''' ) as f:
snake_case__ : Optional[Any] = json.dumps(__lowerCAmelCase , indent=2 , sort_keys=__lowerCAmelCase ) + '''\n'''
f.write(__lowerCAmelCase )
return metadata, index
if __name__ == "__main__":
A__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--switch_t5x_checkpoint_path''',
default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600''',
type=str,
required=False,
help='''Path to a directory containing a folder per layer. Follows the original Google format.''',
)
parser.add_argument('''--max_shard_size''', default='''10GB''', required=False, help='''Max shard size''')
parser.add_argument('''--dtype''', default='''bfloat16''', type=str, required=False, help='''dtype of the saved model''')
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted''',
type=str,
required=False,
help='''Path to the output pytorch model.''',
)
A__ = parser.parse_args()
shard_on_the_fly(
args.switch_tax_checkpoint_path,
args.pytorch_dump_folder_path,
args.max_shard_size,
args.dtype,
)
def _lowerCAmelCase ( ) -> List[Any]:
"""simple docstring"""
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer
snake_case__ : Dict = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' )
config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' )
snake_case__ : Tuple = SwitchTransformersForConditionalGeneration.from_pretrained(
'''/home/arthur_huggingface_co/transformers/switch_converted''' , device_map='''auto''' )
snake_case__ : Any = TaTokenizer.from_pretrained('''t5-small''' )
snake_case__ : List[str] = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.'''
snake_case__ : Any = tokenizer(__lowerCAmelCase , return_tensors='''pt''' ).input_ids
snake_case__ : Dict = model.generate(__lowerCAmelCase , decoder_start_token_id=0 )
print(tokenizer.decode(out[0] ) )
| 219
| 1
|
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __init__(self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str]=7 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : int=18 , UpperCAmelCase_ : str=30 , UpperCAmelCase_ : Dict=400 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Union[str, Any]=True , ) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Any =size if size is not None else {"height": 18, "width": 18}
lowerCamelCase__: Tuple =parent
lowerCamelCase__: Dict =batch_size
lowerCamelCase__: Optional[Any] =num_channels
lowerCamelCase__: Union[str, Any] =image_size
lowerCamelCase__: Dict =min_resolution
lowerCamelCase__: int =max_resolution
lowerCamelCase__: Tuple =do_resize
lowerCamelCase__: Tuple =size
lowerCamelCase__: Dict =do_normalize
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Union[str, Any]:
'''simple docstring'''
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8866_4436_3403_3203, 0.6618_8293_6954_4983, 0.3891_7464_0178_6804],
[-0.6042_5591_4688_1104, -0.0_2295_0088_6052_8469, 0.5423_7973_6900_3296],
]),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = ImageGPTImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE_ (self : Dict) ->Any:
'''simple docstring'''
lowerCamelCase__: int =ImageGPTImageProcessingTester(self)
@property
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: List[str] =self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(UpperCAmelCase_ , "clusters"))
self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize"))
self.assertTrue(hasattr(UpperCAmelCase_ , "size"))
self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize"))
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: Any =self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {"height": 18, "width": 18})
lowerCamelCase__: Optional[Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=42)
self.assertEqual(image_processor.size , {"height": 42, "width": 42})
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Any:
'''simple docstring'''
lowerCamelCase__: List[Any] =self.image_processing_class(**self.image_processor_dict)
lowerCamelCase__: str =json.loads(image_processor.to_json_string())
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , obj[key]))
else:
self.assertEqual(obj[key] , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->str:
'''simple docstring'''
lowerCamelCase__: List[str] =self.image_processing_class(**self.image_processor_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCamelCase__: Any =os.path.join(UpperCAmelCase_ , "image_processor.json")
image_processor_first.to_json_file(UpperCAmelCase_)
lowerCamelCase__: Tuple =self.image_processing_class.from_json_file(UpperCAmelCase_).to_dict()
lowerCamelCase__: Optional[Any] =image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key]))
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Dict:
'''simple docstring'''
lowerCamelCase__: List[Any] =self.image_processing_class(**self.image_processor_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =self.image_processing_class.from_pretrained(UpperCAmelCase_).to_dict()
lowerCamelCase__: Tuple =image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key]))
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase_)
@unittest.skip("ImageGPT requires clusters at initialization")
def SCREAMING_SNAKE_CASE_ (self : int) ->int:
'''simple docstring'''
pass
def lowerCAmelCase_ ( ) -> Dict:
"""simple docstring"""
lowerCamelCase__: Optional[int] =load_dataset("hf-internal-testing/fixtures_image_utils" , split="test" )
lowerCamelCase__: Union[str, Any] =Image.open(dataset[4]["file"] )
lowerCamelCase__: int =Image.open(dataset[5]["file"] )
lowerCamelCase__: List[Any] =[imagea, imagea]
return images
@require_vision
@require_torch
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: List[str] =ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small")
lowerCamelCase__: List[str] =prepare_images()
# test non-batched
lowerCamelCase__: Optional[int] =image_processing(images[0] , return_tensors="pt")
self.assertIsInstance(encoding.input_ids , torch.LongTensor)
self.assertEqual(encoding.input_ids.shape , (1, 1_024))
lowerCamelCase__: Optional[int] =[306, 191, 191]
self.assertEqual(encoding.input_ids[0, :3].tolist() , UpperCAmelCase_)
# test batched
lowerCamelCase__: str =image_processing(UpperCAmelCase_ , return_tensors="pt")
self.assertIsInstance(encoding.input_ids , torch.LongTensor)
self.assertEqual(encoding.input_ids.shape , (2, 1_024))
lowerCamelCase__: Union[str, Any] =[303, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , UpperCAmelCase_)
| 59
|
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
snake_case_ : str = logging.getLogger(__name__)
def lowerCamelCase( a__ ,a__):
return (preds == labels).mean()
@dataclass
class A__ :
UpperCAmelCase = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
UpperCAmelCase = field(
default=UpperCamelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
UpperCAmelCase = field(
default=UpperCamelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
UpperCAmelCase = field(
default=UpperCamelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
@dataclass
class A__ :
UpperCAmelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} )
UpperCAmelCase = field(metadata={"help": "Should contain the data files for the task."} )
UpperCAmelCase = field(
default=128 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
UpperCAmelCase = field(
default=UpperCamelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} )
def lowerCamelCase( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_SCREAMING_SNAKE_CASE =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
''' --overwrite_output_dir to overcome.''')
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN ,)
logger.warning(
'''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' ,training_args.local_rank ,training_args.device ,training_args.n_gpu ,bool(training_args.local_rank != -1) ,training_args.fpaa ,)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' ,a__)
# Set seed
set_seed(training_args.seed)
try:
_SCREAMING_SNAKE_CASE =processors[data_args.task_name]()
_SCREAMING_SNAKE_CASE =processor.get_labels()
_SCREAMING_SNAKE_CASE =len(a__)
except KeyError:
raise ValueError('''Task not found: %s''' % (data_args.task_name))
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_SCREAMING_SNAKE_CASE =AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=a__ ,finetuning_task=data_args.task_name ,cache_dir=model_args.cache_dir ,)
_SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,)
_SCREAMING_SNAKE_CASE =AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path) ,config=a__ ,cache_dir=model_args.cache_dir ,)
# Get datasets
_SCREAMING_SNAKE_CASE =(
MultipleChoiceDataset(
data_dir=data_args.data_dir ,tokenizer=a__ ,task=data_args.task_name ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.train ,)
if training_args.do_train
else None
)
_SCREAMING_SNAKE_CASE =(
MultipleChoiceDataset(
data_dir=data_args.data_dir ,tokenizer=a__ ,task=data_args.task_name ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.dev ,)
if training_args.do_eval
else None
)
def compute_metrics(a__) -> Dict:
_SCREAMING_SNAKE_CASE =np.argmax(p.predictions ,axis=1)
return {"acc": simple_accuracy(a__ ,p.label_ids)}
# Data collator
_SCREAMING_SNAKE_CASE =DataCollatorWithPadding(a__ ,pad_to_multiple_of=8) if training_args.fpaa else None
# Initialize our Trainer
_SCREAMING_SNAKE_CASE =Trainer(
model=a__ ,args=a__ ,train_dataset=a__ ,eval_dataset=a__ ,compute_metrics=a__ ,data_collator=a__ ,)
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None)
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir)
# Evaluation
_SCREAMING_SNAKE_CASE ={}
if training_args.do_eval:
logger.info('''*** Evaluate ***''')
_SCREAMING_SNAKE_CASE =trainer.evaluate()
_SCREAMING_SNAKE_CASE =os.path.join(training_args.output_dir ,'''eval_results.txt''')
if trainer.is_world_master():
with open(a__ ,'''w''') as writer:
logger.info('''***** Eval results *****''')
for key, value in result.items():
logger.info(''' %s = %s''' ,a__ ,a__)
writer.write('''%s = %s\n''' % (key, value))
results.update(a__)
return results
def lowerCamelCase( a__):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 691
| 0
|
'''simple docstring'''
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available
from transformers.models.gpta.tokenization_gpta import GPTaTokenizer
from transformers.testing_utils import require_keras_nlp, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_keras_nlp_available():
from transformers.models.gpta import TFGPTaTokenizer
_SCREAMING_SNAKE_CASE = ["gpt2"]
_SCREAMING_SNAKE_CASE = "gpt2"
if is_tf_available():
class lowerCAmelCase_ ( tf.Module ):
def __init__( self , _lowerCAmelCase ) -> str:
super().__init__()
_lowerCAmelCase = tokenizer
_lowerCAmelCase = AutoConfig.from_pretrained(_lowerCAmelCase )
_lowerCAmelCase = TFGPTaLMHeadModel.from_config(_lowerCAmelCase )
@tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="text" ),) )
def _snake_case ( self , _lowerCAmelCase ) -> Tuple:
_lowerCAmelCase = self.tokenizer(_lowerCAmelCase )
_lowerCAmelCase = tokenized["input_ids"].to_tensor()
_lowerCAmelCase = tf.cast(input_ids_dense > 0 , tf.intaa )
# input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN])
_lowerCAmelCase = self.model(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase )["logits"]
return outputs
@require_tf
@require_keras_nlp
class lowerCAmelCase_ ( unittest.TestCase ):
def _snake_case ( self ) -> List[Any]:
super().setUp()
_lowerCAmelCase = [GPTaTokenizer.from_pretrained(_lowerCAmelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)]
_lowerCAmelCase = [TFGPTaTokenizer.from_pretrained(_lowerCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
_lowerCAmelCase = [
"This is a straightforward English test sentence.",
"This one has some weird characters\rto\nsee\r\nif those\u00E9break things.",
"Now we're going to add some Chinese: 一 二 三 一二三",
"And some much more rare Chinese: 齉 堃 齉堃",
"Je vais aussi écrire en français pour tester les accents",
"Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ",
]
_lowerCAmelCase = list(zip(self.test_sentences , self.test_sentences[::-1] ) )
def _snake_case ( self ) -> Dict:
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ):
for test_inputs in self.test_sentences:
_lowerCAmelCase = tokenizer([test_inputs] , return_tensors="tf" )
_lowerCAmelCase = tf_tokenizer([test_inputs] )
for key in python_outputs.keys():
# convert them to numpy to avoid messing with ragged tensors
_lowerCAmelCase = python_outputs[key].numpy()
_lowerCAmelCase = tf_outputs[key].numpy()
self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) )
self.assertTrue(tf.reduce_all(tf.cast(_lowerCAmelCase , tf.intaa ) == tf_outputs_values ) )
@slow
def _snake_case ( self ) -> Dict:
for tf_tokenizer in self.tf_tokenizers:
_lowerCAmelCase = tf.function(_lowerCAmelCase )
for test_inputs in self.test_sentences:
_lowerCAmelCase = tf.constant(_lowerCAmelCase )
_lowerCAmelCase = compiled_tokenizer(_lowerCAmelCase )
_lowerCAmelCase = tf_tokenizer(_lowerCAmelCase )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def _snake_case ( self ) -> Any:
for tf_tokenizer in self.tf_tokenizers:
_lowerCAmelCase = ModelToSave(tokenizer=_lowerCAmelCase )
_lowerCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] )
_lowerCAmelCase = model.serving(_lowerCAmelCase ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
_lowerCAmelCase = Path(_lowerCAmelCase ) / "saved.model"
tf.saved_model.save(_lowerCAmelCase , _lowerCAmelCase , signatures={"serving_default": model.serving} )
_lowerCAmelCase = tf.saved_model.load(_lowerCAmelCase )
_lowerCAmelCase = loaded_model.signatures["serving_default"](_lowerCAmelCase )["output_0"]
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertTrue(tf.reduce_all(out == loaded_output ) )
@slow
def _snake_case ( self ) -> Dict:
for tf_tokenizer in self.tf_tokenizers:
_lowerCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] )
_lowerCAmelCase = tf_tokenizer(_lowerCAmelCase ) # Build model with some sample inputs
_lowerCAmelCase = tf_tokenizer.get_config()
_lowerCAmelCase = TFGPTaTokenizer.from_config(_lowerCAmelCase )
_lowerCAmelCase = model_from_config(_lowerCAmelCase )
for key in from_config_output.keys():
self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) )
@slow
def _snake_case ( self ) -> str:
for tf_tokenizer in self.tf_tokenizers:
# for the test to run
_lowerCAmelCase = 123123
for max_length in [3, 5, 1024]:
_lowerCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] )
_lowerCAmelCase = tf_tokenizer(_lowerCAmelCase , max_length=_lowerCAmelCase )
_lowerCAmelCase = out["input_ids"].numpy().shape[1]
assert out_length == max_length
| 489
|
'''simple docstring'''
import math
def __a(SCREAMING_SNAKE_CASE_ : int = 100 ):
'''simple docstring'''
_lowerCAmelCase = sum(i * i for i in range(1 , n + 1 ) )
_lowerCAmelCase = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) )
return square_of_sum - sum_of_squares
if __name__ == "__main__":
print(f'''{solution() = }''')
| 489
| 1
|
"""simple docstring"""
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE_ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'}
# See all BART models at https://huggingface.co/models?filter=bart
SCREAMING_SNAKE_CASE_ = {
'vocab_file': {
'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json',
'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json',
'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json',
'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json',
'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json',
'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json',
},
'merges_file': {
'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt',
'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt',
'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt',
'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt',
'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt',
'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt',
},
}
SCREAMING_SNAKE_CASE_ = {
'facebook/bart-base': 1024,
'facebook/bart-large': 1024,
'facebook/bart-large-mnli': 1024,
'facebook/bart-large-cnn': 1024,
'facebook/bart-large-xsum': 1024,
'yjernite/bart_eli5': 1024,
}
@lru_cache()
def __snake_case ( ):
"""simple docstring"""
UpperCamelCase = (
list(range(ord('''!''' ) ,ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) ,ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) ,ord('''ÿ''' ) + 1 ) )
)
UpperCamelCase = bs[:]
UpperCamelCase = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_lowercase )
cs.append(2**8 + n )
n += 1
UpperCamelCase = [chr(_lowercase ) for n in cs]
return dict(zip(_lowercase ,_lowercase ) )
def __snake_case ( _lowercase ):
"""simple docstring"""
UpperCamelCase = set()
UpperCamelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
UpperCamelCase = char
return pairs
class snake_case_ ( lowerCamelCase_ ):
"""simple docstring"""
A_ = VOCAB_FILES_NAMES
A_ = PRETRAINED_VOCAB_FILES_MAP
A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A_ = ['''input_ids''', '''attention_mask''']
def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_="replace" , lowerCamelCase_="<s>" , lowerCamelCase_="</s>" , lowerCamelCase_="</s>" , lowerCamelCase_="<s>" , lowerCamelCase_="<unk>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<mask>" , lowerCamelCase_=False , **lowerCamelCase_ , ) -> Dict:
UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else bos_token
UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else eos_token
UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else sep_token
UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else cls_token
UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else unk_token
UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_) else mask_token
super().__init__(
errors=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , **lowerCamelCase_ , )
with open(lowerCamelCase_ , encoding='''utf-8''') as vocab_handle:
UpperCamelCase = json.load(lowerCamelCase_)
UpperCamelCase = {v: k for k, v in self.encoder.items()}
UpperCamelCase = errors # how to handle errors in decoding
UpperCamelCase = bytes_to_unicode()
UpperCamelCase = {v: k for k, v in self.byte_encoder.items()}
with open(lowerCamelCase_ , encoding='''utf-8''') as merges_handle:
UpperCamelCase = merges_handle.read().split('''\n''')[1:-1]
UpperCamelCase = [tuple(merge.split()) for merge in bpe_merges]
UpperCamelCase = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_))))
UpperCamelCase = {}
UpperCamelCase = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
UpperCamelCase = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''')
@property
def UpperCAmelCase__ ( self) -> str:
return len(self.encoder)
def UpperCAmelCase__ ( self) -> Optional[Any]:
return dict(self.encoder , **self.added_tokens_encoder)
def UpperCAmelCase__ ( self , lowerCamelCase_) -> str:
if token in self.cache:
return self.cache[token]
UpperCamelCase = tuple(lowerCamelCase_)
UpperCamelCase = get_pairs(lowerCamelCase_)
if not pairs:
return token
while True:
UpperCamelCase = min(lowerCamelCase_ , key=lambda lowerCamelCase_: self.bpe_ranks.get(lowerCamelCase_ , float('''inf''')))
if bigram not in self.bpe_ranks:
break
UpperCamelCase , UpperCamelCase = bigram
UpperCamelCase = []
UpperCamelCase = 0
while i < len(lowerCamelCase_):
try:
UpperCamelCase = word.index(lowerCamelCase_ , lowerCamelCase_)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
UpperCamelCase = j
if word[i] == first and i < len(lowerCamelCase_) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
UpperCamelCase = tuple(lowerCamelCase_)
UpperCamelCase = new_word
if len(lowerCamelCase_) == 1:
break
else:
UpperCamelCase = get_pairs(lowerCamelCase_)
UpperCamelCase = ''' '''.join(lowerCamelCase_)
UpperCamelCase = word
return word
def UpperCAmelCase__ ( self , lowerCamelCase_) -> Dict:
UpperCamelCase = []
for token in re.findall(self.pat , lowerCamelCase_):
UpperCamelCase = ''''''.join(
self.byte_encoder[b] for b in token.encode('''utf-8''')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase_).split(''' '''))
return bpe_tokens
def UpperCAmelCase__ ( self , lowerCamelCase_) -> Union[str, Any]:
return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token))
def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[Any]:
return self.decoder.get(lowerCamelCase_)
def UpperCAmelCase__ ( self , lowerCamelCase_) -> Any:
UpperCamelCase = ''''''.join(lowerCamelCase_)
UpperCamelCase = bytearray([self.byte_decoder[c] for c in text]).decode('''utf-8''' , errors=self.errors)
return text
def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]:
if not os.path.isdir(lowerCamelCase_):
logger.error(F'Vocabulary path ({save_directory}) should be a directory')
return
UpperCamelCase = os.path.join(
lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''])
UpperCamelCase = os.path.join(
lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''])
with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''') as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase_ , ensure_ascii=lowerCamelCase_) + '''\n''')
UpperCamelCase = 0
with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''') as writer:
writer.write('''#version: 0.2\n''')
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase_: kv[1]):
if index != token_index:
logger.warning(
F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'
''' Please check that the tokenizer is not corrupted!''')
UpperCamelCase = token_index
writer.write(''' '''.join(lowerCamelCase_) + '''\n''')
index += 1
return vocab_file, merge_file
def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCamelCase = [self.cls_token_id]
UpperCamelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_)
if token_ids_a is None:
return [1] + ([0] * len(lowerCamelCase_)) + [1]
return [1] + ([0] * len(lowerCamelCase_)) + [1, 1] + ([0] * len(lowerCamelCase_)) + [1]
def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> List[int]:
UpperCamelCase = [self.sep_token_id]
UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=False , **lowerCamelCase_) -> Dict:
UpperCamelCase = kwargs.pop('''add_prefix_space''' , self.add_prefix_space)
if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase_) > 0 and not text[0].isspace()):
UpperCamelCase = ''' ''' + text
return (text, kwargs)
| 34
|
'''simple docstring'''
import collections
import json
import os
import re
from typing import TYPE_CHECKING, List, Optional, Tuple
import numpy as np
from ...tokenization_utils_fast import PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
a = logging.get_logger(__name__)
a = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"}
a = {
"vocab_file": {
"abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt",
},
"emoji_file": {
"abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json",
},
}
a = {
"abeja/gpt-neox-japanese-2.7b": 2048,
}
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Any:
'''simple docstring'''
with open(__UpperCAmelCase , """r""" , encoding="""utf-8""" ) as f:
__SCREAMING_SNAKE_CASE = json.loads(f.read() )
__SCREAMING_SNAKE_CASE = collections.OrderedDict()
__SCREAMING_SNAKE_CASE = collections.OrderedDict()
__SCREAMING_SNAKE_CASE = collections.OrderedDict()
with open(__UpperCAmelCase , """r""" , encoding="""utf-8""" ) as f:
__SCREAMING_SNAKE_CASE = f.readlines()
__SCREAMING_SNAKE_CASE = [[t.rstrip("""\n""" )] if (t == """,""" or """,""" not in t) else t.rstrip("""\n""" ).split(""",""" ) for t in token]
for idx, b in enumerate(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = b
__SCREAMING_SNAKE_CASE = idx
for wd in b:
__SCREAMING_SNAKE_CASE = idx
return vocab, raw_vocab, ids_to_tokens, emoji
class __a ( _snake_case ):
__UpperCamelCase : Tuple = VOCAB_FILES_NAMES
__UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase : Union[str, Any] = ['input_ids', 'attention_mask']
def __init__( self : Dict ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : int ,lowerCamelCase : str="<|endoftext|>" ,lowerCamelCase : List[Any]="<|endoftext|>" ,lowerCamelCase : str="<|startoftext|>" ,lowerCamelCase : Dict="<|endoftext|>" ,lowerCamelCase : int=False ,**lowerCamelCase : str ,):
'''simple docstring'''
super().__init__(
unk_token=lowerCamelCase ,pad_token=lowerCamelCase ,bos_token=lowerCamelCase ,eos_token=lowerCamelCase ,do_clean_text=lowerCamelCase ,**lowerCamelCase ,)
if not os.path.isfile(lowerCamelCase ):
raise ValueError(
f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"""
""" model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" )
if not os.path.isfile(lowerCamelCase ):
raise ValueError(
f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google"""
""" pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" )
__SCREAMING_SNAKE_CASE = do_clean_text
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = load_vocab_and_emoji(lowerCamelCase ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = SubWordJapaneseTokenizer(
vocab=self.vocab ,ids_to_tokens=self.ids_to_tokens ,emoji=self.emoji )
@property
def UpperCAmelCase__ ( self : Optional[Any] ):
'''simple docstring'''
return len(self.raw_vocab )
def UpperCAmelCase__ ( self : List[str] ):
'''simple docstring'''
return dict(self.raw_vocab ,**self.added_tokens_encoder )
def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : str ):
'''simple docstring'''
return self.subword_tokenizer.tokenize(lowerCamelCase ,clean=self.do_clean_text )
def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
return self.vocab.get(lowerCamelCase ,self.vocab.get(self.unk_token ) )
def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : Optional[Any] ):
'''simple docstring'''
return self.subword_tokenizer.convert_id_to_token(lowerCamelCase )
def UpperCAmelCase__ ( self : List[str] ,lowerCamelCase : str ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """""".join(lowerCamelCase ).strip()
return out_string
def UpperCAmelCase__ ( self : List[str] ,lowerCamelCase : "Conversation" ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(lowerCamelCase ,add_special_tokens=lowerCamelCase ) + [self.eos_token_id] )
if len(lowerCamelCase ) > self.model_max_length:
__SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :]
return input_ids
def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : str ,lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = 0
if os.path.isdir(lowerCamelCase ):
__SCREAMING_SNAKE_CASE = os.path.join(
lowerCamelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
__SCREAMING_SNAKE_CASE = os.path.join(
lowerCamelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""emoji_file"""] )
else:
__SCREAMING_SNAKE_CASE = (
(filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""vocab_file"""]
)
__SCREAMING_SNAKE_CASE = (
(filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""emoji_file"""]
)
with open(lowerCamelCase ,"""w""" ,encoding="""utf-8""" ) as writer:
for token_index, token in self.ids_to_tokens.items():
if index != token_index:
logger.warning(
f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."""
""" Please check that the vocabulary is not corrupted!""" )
__SCREAMING_SNAKE_CASE = token_index
writer.write(""",""".join(lowerCamelCase ) + """\n""" )
index += 1
with open(lowerCamelCase ,"""w""" ,encoding="""utf-8""" ) as writer:
json.dump(self.emoji ,lowerCamelCase )
return vocab_file, emoji_file
class __a ( _snake_case ):
def __init__( self : Tuple ,lowerCamelCase : List[str] ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : Optional[int] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = vocab # same as swe
__SCREAMING_SNAKE_CASE = ids_to_tokens # same as bpe
__SCREAMING_SNAKE_CASE = emoji
__SCREAMING_SNAKE_CASE = np.max([len(lowerCamelCase ) for w in self.vocab.keys()] )
__SCREAMING_SNAKE_CASE = re.compile(r"""(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)""" )
__SCREAMING_SNAKE_CASE = re.compile(r"""[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*""" )
__SCREAMING_SNAKE_CASE = re.compile(r"""[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}""" )
__SCREAMING_SNAKE_CASE = re.compile(
r"""([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" )
__SCREAMING_SNAKE_CASE = re.compile(
r"""(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" )
__SCREAMING_SNAKE_CASE = re.compile(
r"""((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*""" )
__SCREAMING_SNAKE_CASE = """─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿"""
__SCREAMING_SNAKE_CASE = """▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟"""
__SCREAMING_SNAKE_CASE = str.maketrans({k: """<BLOCK>""" for k in keisen + blocks} )
def __len__( self : List[str] ):
'''simple docstring'''
return len(self.ids_to_tokens )
def UpperCAmelCase__ ( self : Optional[int] ,lowerCamelCase : Dict ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.content_repattera.sub("""<URL>""" ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = self.content_repattera.sub("""<EMAIL>""" ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = self.content_repattera.sub("""<TEL>""" ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = self.content_repattera.sub("""<DATE>""" ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = self.content_repattera.sub("""<DATE>""" ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = self.content_repattera.sub("""<PRICE>""" ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = content.translate(self.content_transa )
while "<BLOCK><BLOCK>" in content:
__SCREAMING_SNAKE_CASE = content.replace("""<BLOCK><BLOCK>""" ,"""<BLOCK>""" )
return content
def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : Optional[Any] ,lowerCamelCase : List[str]=False ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = text.replace(""" """ ,"""<SP>""" )
__SCREAMING_SNAKE_CASE = text.replace(""" """ ,"""<SP>""" )
__SCREAMING_SNAKE_CASE = text.replace("""\r\n""" ,"""<BR>""" )
__SCREAMING_SNAKE_CASE = text.replace("""\n""" ,"""<BR>""" )
__SCREAMING_SNAKE_CASE = text.replace("""\r""" ,"""<BR>""" )
__SCREAMING_SNAKE_CASE = text.replace("""\t""" ,"""<TAB>""" )
__SCREAMING_SNAKE_CASE = text.replace("""—""" ,"""ー""" )
__SCREAMING_SNAKE_CASE = text.replace("""−""" ,"""ー""" )
for k, v in self.emoji["emoji"].items():
if k in text:
__SCREAMING_SNAKE_CASE = text.replace(lowerCamelCase ,lowerCamelCase )
if clean:
__SCREAMING_SNAKE_CASE = self.clean_text(lowerCamelCase )
def check_simbol(lowerCamelCase : List[str] ):
__SCREAMING_SNAKE_CASE = x.encode()
if len(lowerCamelCase ) == 1 and len(lowerCamelCase ) == 2:
__SCREAMING_SNAKE_CASE = (int(e[0] ) << 8) + int(e[1] )
if (
(c >= 0xC_2A1 and c <= 0xC_2BF)
or (c >= 0xC_780 and c <= 0xC_783)
or (c >= 0xC_AB9 and c <= 0xC_BBF)
or (c >= 0xC_C80 and c <= 0xC_DA2)
):
return True
return False
def checkuae(lowerCamelCase : Union[str, Any] ):
__SCREAMING_SNAKE_CASE = x.encode()
if len(lowerCamelCase ) == 1 and len(lowerCamelCase ) == 3:
__SCREAMING_SNAKE_CASE = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] )
if c >= 0xE28_080 and c <= 0xE2B_07F:
return True
return False
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = []
while pos < len(lowerCamelCase ):
__SCREAMING_SNAKE_CASE = min(len(lowerCamelCase ) ,pos + self.maxlen + 1 ) if text[pos] == """<""" else pos + 3
__SCREAMING_SNAKE_CASE = [] # (token_id, token, pos)
for e in range(lowerCamelCase ,lowerCamelCase ,-1 ):
__SCREAMING_SNAKE_CASE = text[pos:e]
if wd in self.vocab:
if wd[0] == "<" and len(lowerCamelCase ) > 2:
__SCREAMING_SNAKE_CASE = [(self.vocab[wd], wd, e)]
break
else:
candidates.append((self.vocab[wd], wd, e) )
if len(lowerCamelCase ) > 0:
# the smallest token_id is adopted
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = sorted(lowerCamelCase ,key=lambda lowerCamelCase : x[0] )[0]
result.append(lowerCamelCase )
__SCREAMING_SNAKE_CASE = e
else:
__SCREAMING_SNAKE_CASE = pos + 1
__SCREAMING_SNAKE_CASE = text[pos:end]
if check_simbol(lowerCamelCase ):
result.append("""<KIGOU>""" )
elif checkuae(lowerCamelCase ):
result.append("""<U2000U2BFF>""" )
else:
for i in wd.encode("""utf-8""" ):
result.append("""<|byte%d|>""" % i )
__SCREAMING_SNAKE_CASE = end
return result
def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : Dict ,lowerCamelCase : Optional[Any]="\n" ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = self.ids_to_tokens[index][0]
if word[:6] == "<|byte" and word[-2:] == "|>":
byte_tokens.append(int(word[6:-2] ) )
else:
if len(lowerCamelCase ) > 0:
words.append(bytearray(lowerCamelCase ).decode("""utf-8""" ,errors="""replace""" ) )
__SCREAMING_SNAKE_CASE = []
if word[:7] == "<|emoji" and word[-2:] == "|>":
words.append(self.emoji["""emoji_inv"""][word] )
elif word == "<SP>":
words.append(""" """ )
elif word == "<BR>":
words.append(lowerCamelCase )
elif word == "<TAB>":
words.append("""\t""" )
elif word == "<BLOCK>":
words.append("""▀""" )
elif word == "<KIGOU>":
words.append("""ǀ""" )
elif word == "<U2000U2BFF>":
words.append("""‖""" )
else:
words.append(lowerCamelCase )
if len(lowerCamelCase ) > 0:
words.append(bytearray(lowerCamelCase ).decode("""utf-8""" ,errors="""replace""" ) )
__SCREAMING_SNAKE_CASE = """""".join(lowerCamelCase )
return text
| 109
| 0
|
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
UNetaDConditionModel,
VideoToVideoSDPipeline,
)
from diffusers.utils import floats_tensor, is_xformers_available, skip_mps
from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class a ( __lowerCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase :int = VideoToVideoSDPipeline
lowerCamelCase :Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'''video'''} ) - {'''image''', '''width''', '''height'''}
lowerCamelCase :Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''video'''} ) - {'''image'''}
lowerCamelCase :Union[str, Any] = PipelineTesterMixin.required_optional_params - {'''latents'''}
lowerCamelCase :int = False
# No `output_type`.
lowerCamelCase :Union[str, Any] = frozenset(
[
'''num_inference_steps''',
'''generator''',
'''latents''',
'''return_dict''',
'''callback''',
'''callback_steps''',
] )
def UpperCAmelCase ( self ) -> Optional[Any]:
torch.manual_seed(0 )
_A = UNetaDConditionModel(
block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , )
_A = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowerCAmelCase_ , set_alpha_to_one=lowerCAmelCase_ , )
torch.manual_seed(0 )
_A = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , )
torch.manual_seed(0 )
_A = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , )
_A = CLIPTextModel(lowerCAmelCase_ )
_A = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_A = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
}
return components
def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=0 ) -> Optional[Any]:
# 3 frames
_A = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ )
if str(lowerCAmelCase_ ).startswith("""mps""" ):
_A = torch.manual_seed(lowerCAmelCase_ )
else:
_A = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ )
_A = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""video""": video,
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """pt""",
}
return inputs
def UpperCAmelCase ( self ) -> Dict:
_A = """cpu""" # ensure determinism for the device-dependent torch.Generator
_A = self.get_dummy_components()
_A = VideoToVideoSDPipeline(**lowerCAmelCase_ )
_A = sd_pipe.to(lowerCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
_A = self.get_dummy_inputs(lowerCAmelCase_ )
_A = """np"""
_A = sd_pipe(**lowerCAmelCase_ ).frames
_A = frames[0][-3:, -3:, -1]
assert frames[0].shape == (32, 32, 3)
_A = np.array([1_06, 1_17, 1_13, 1_74, 1_37, 1_12, 1_48, 1_51, 1_31] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def UpperCAmelCase ( self ) -> List[str]:
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCAmelCase_ , expected_max_diff=5E-3 )
@unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" )
def UpperCAmelCase ( self ) -> Tuple:
pass
@unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" )
def UpperCAmelCase ( self ) -> Optional[Any]:
pass
@unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" )
def UpperCAmelCase ( self ) -> int:
pass
def UpperCAmelCase ( self ) -> int:
return super().test_progress_bar()
@slow
@skip_mps
class a ( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase ( self ) -> List[Any]:
_A = VideoToVideoSDPipeline.from_pretrained("""cerspense/zeroscope_v2_XL""" , torch_dtype=torch.floataa )
pipe.enable_model_cpu_offload()
# 10 frames
_A = torch.Generator(device="""cpu""" ).manual_seed(0 )
_A = torch.randn((1, 10, 3, 10_24, 5_76) , generator=lowerCAmelCase_ )
_A = video.to("""cuda""" )
_A = """Spiderman is surfing"""
_A = pipe(lowerCAmelCase_ , video=lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=3 , output_type="""pt""" ).frames
_A = np.array([-1.045_8984, -1.127_9297, -0.966_3086, -0.9150_3906, -0.7509_7656] )
assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
| 83
|
import numpy as np
import qiskit
def snake_case ( snake_case__ :int = 8 , snake_case__ :int | None = None) -> str:
_A = np.random.default_rng(seed=snake_case__)
# Roughly 25% of the qubits will contribute to the key.
# So we take more than we need.
_A = 6 * key_len
# Measurement basis for Alice's qubits.
_A = rng.integers(2 , size=snake_case__)
# The set of states Alice will prepare.
_A = rng.integers(2 , size=snake_case__)
# Measurement basis for Bob's qubits.
_A = rng.integers(2 , size=snake_case__)
# Quantum Circuit to simulate BB84
_A = qiskit.QuantumCircuit(snake_case__ , name="""BB84""")
# Alice prepares her qubits according to rules above.
for index, _ in enumerate(snake_case__):
if alice_state[index] == 1:
bbaa_circ.x(snake_case__)
if alice_basis[index] == 1:
bbaa_circ.h(snake_case__)
bbaa_circ.barrier()
# Bob measures the received qubits according to rules above.
for index, _ in enumerate(snake_case__):
if bob_basis[index] == 1:
bbaa_circ.h(snake_case__)
bbaa_circ.barrier()
bbaa_circ.measure_all()
# Simulate the quantum circuit.
_A = qiskit.Aer.get_backend("""aer_simulator""")
# We only need to run one shot because the key is unique.
# Multiple shots will produce the same key.
_A = qiskit.execute(snake_case__ , snake_case__ , shots=1 , seed_simulator=snake_case__)
# Returns the result of measurement.
_A = job.result().get_counts(snake_case__).most_frequent()
# Extracting the generated key from the simulation results.
# Only keep measurement results where Alice and Bob chose the same basis.
_A = """""".join(
[
result_bit
for alice_basis_bit, bob_basis_bit, result_bit in zip(
snake_case__ , snake_case__ , snake_case__)
if alice_basis_bit == bob_basis_bit
])
# Get final key. Pad with 0 if too short, otherwise truncate.
_A = gen_key[:key_len] if len(snake_case__) >= key_len else gen_key.ljust(snake_case__ , """0""")
return key
if __name__ == "__main__":
print(F'''The generated key is : {bbaa(8, seed=0)}''')
from doctest import testmod
testmod()
| 83
| 1
|
def lowerCAmelCase__ ( a__ = 50 ) ->str:
'''simple docstring'''
_UpperCamelCase = [1] * (length + 1)
for row_length in range(length + 1 ):
for tile_length in range(2 , 5 ):
for tile_start in range(row_length - tile_length + 1 ):
ways_number[row_length] += ways_number[
row_length - tile_start - tile_length
]
return ways_number[length]
if __name__ == "__main__":
print(F"{solution() = }")
| 547
|
from __future__ import annotations
import unittest
from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel
@require_tf
class _SCREAMING_SNAKE_CASE :
__SCREAMING_SNAKE_CASE = BlenderbotConfig
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = '''gelu'''
def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=False , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_=0.1 , A_=0.1 , A_=20 , A_=2 , A_=1 , A_=0 , ):
_UpperCAmelCase : List[str] = parent
_UpperCAmelCase : Union[str, Any] = batch_size
_UpperCAmelCase : Optional[Any] = seq_length
_UpperCAmelCase : List[Any] = is_training
_UpperCAmelCase : Union[str, Any] = use_labels
_UpperCAmelCase : Tuple = vocab_size
_UpperCAmelCase : Optional[int] = hidden_size
_UpperCAmelCase : int = num_hidden_layers
_UpperCAmelCase : List[Any] = num_attention_heads
_UpperCAmelCase : List[Any] = intermediate_size
_UpperCAmelCase : Union[str, Any] = hidden_dropout_prob
_UpperCAmelCase : str = attention_probs_dropout_prob
_UpperCAmelCase : Optional[int] = max_position_embeddings
_UpperCAmelCase : Optional[Any] = eos_token_id
_UpperCAmelCase : Optional[Any] = pad_token_id
_UpperCAmelCase : Tuple = bos_token_id
def __snake_case( self ):
_UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_UpperCAmelCase : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_UpperCAmelCase : List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 )
_UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase : List[Any] = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
_UpperCAmelCase : Dict = prepare_blenderbot_inputs_dict(A_ , A_ , A_ )
return config, inputs_dict
def __snake_case( self , A_ , A_ ):
_UpperCAmelCase : Union[str, Any] = TFBlenderbotModel(config=A_ ).get_decoder()
_UpperCAmelCase : List[Any] = inputs_dict["""input_ids"""]
_UpperCAmelCase : Any = input_ids[:1, :]
_UpperCAmelCase : List[str] = inputs_dict["""attention_mask"""][:1, :]
_UpperCAmelCase : Tuple = inputs_dict["""head_mask"""]
_UpperCAmelCase : Union[str, Any] = 1
# first forward pass
_UpperCAmelCase : List[str] = model(A_ , attention_mask=A_ , head_mask=A_ , use_cache=A_ )
_UpperCAmelCase,_UpperCAmelCase : List[str] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
_UpperCAmelCase : List[str] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
_UpperCAmelCase : Dict = tf.concat([input_ids, next_tokens] , axis=-1 )
_UpperCAmelCase : Optional[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
_UpperCAmelCase : Tuple = model(A_ , attention_mask=A_ )[0]
_UpperCAmelCase : int = model(A_ , attention_mask=A_ , past_key_values=A_ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
_UpperCAmelCase : Tuple = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
_UpperCAmelCase : str = output_from_no_past[:, -3:, random_slice_idx]
_UpperCAmelCase : str = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(A_ , A_ , rtol=1e-3 )
def a__ ( snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : Dict , snake_case__ : str=None , snake_case__ : Optional[int]=None , snake_case__ : str=None , snake_case__ : List[str]=None , snake_case__ : List[str]=None , ):
if attention_mask is None:
_UpperCAmelCase : List[Any] = tf.cast(tf.math.not_equal(snake_case__ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
_UpperCAmelCase : str = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
_UpperCAmelCase : List[str] = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
_UpperCAmelCase : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class _SCREAMING_SNAKE_CASE ( A , A , unittest.TestCase ):
__SCREAMING_SNAKE_CASE = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else ()
__SCREAMING_SNAKE_CASE = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else ()
__SCREAMING_SNAKE_CASE = (
{
'''conversational''': TFBlenderbotForConditionalGeneration,
'''feature-extraction''': TFBlenderbotModel,
'''summarization''': TFBlenderbotForConditionalGeneration,
'''text2text-generation''': TFBlenderbotForConditionalGeneration,
'''translation''': TFBlenderbotForConditionalGeneration,
}
if is_tf_available()
else {}
)
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def __snake_case( self ):
_UpperCAmelCase : Union[str, Any] = TFBlenderbotModelTester(self )
_UpperCAmelCase : Any = ConfigTester(self , config_class=A_ )
def __snake_case( self ):
self.config_tester.run_common_tests()
def __snake_case( self ):
_UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*A_ )
@require_tokenizers
@require_tf
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
__SCREAMING_SNAKE_CASE = ['''My friends are cool but they eat too many carbs.''']
__SCREAMING_SNAKE_CASE = '''facebook/blenderbot-400M-distill'''
@cached_property
def __snake_case( self ):
return BlenderbotTokenizer.from_pretrained(self.model_name )
@cached_property
def __snake_case( self ):
_UpperCAmelCase : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def __snake_case( self ):
_UpperCAmelCase : Any = self.tokenizer(self.src_text , return_tensors="""tf""" )
_UpperCAmelCase : List[Any] = self.model.generate(
model_inputs.input_ids , )
_UpperCAmelCase : List[str] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=A_ )[0]
assert (
generated_words
== " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?"
)
| 643
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase__ = {
'''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''],
'''tokenization_convbert''': ['''ConvBertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ['''ConvBertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ConvBertForMaskedLM''',
'''ConvBertForMultipleChoice''',
'''ConvBertForQuestionAnswering''',
'''ConvBertForSequenceClassification''',
'''ConvBertForTokenClassification''',
'''ConvBertLayer''',
'''ConvBertModel''',
'''ConvBertPreTrainedModel''',
'''load_tf_weights_in_convbert''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFConvBertForMaskedLM''',
'''TFConvBertForMultipleChoice''',
'''TFConvBertForQuestionAnswering''',
'''TFConvBertForSequenceClassification''',
'''TFConvBertForTokenClassification''',
'''TFConvBertLayer''',
'''TFConvBertModel''',
'''TFConvBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig
from .tokenization_convbert import ConvBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_convbert_fast import ConvBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convbert import (
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertLayer,
ConvBertModel,
ConvBertPreTrainedModel,
load_tf_weights_in_convbert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convbert import (
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertLayer,
TFConvBertModel,
TFConvBertPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 544
|
"""simple docstring"""
import unittest
from parameterized import parameterized
from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
GPTNeoXModel,
)
class _lowerCamelCase :
def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=64 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> Optional[int]:
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = seq_length
UpperCamelCase = is_training
UpperCamelCase = use_input_mask
UpperCamelCase = use_token_type_ids
UpperCamelCase = use_labels
UpperCamelCase = vocab_size
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = max_position_embeddings
UpperCamelCase = type_vocab_size
UpperCamelCase = type_sequence_label_size
UpperCamelCase = initializer_range
UpperCamelCase = num_labels
UpperCamelCase = num_choices
UpperCamelCase = scope
UpperCamelCase = vocab_size - 1
def snake_case_ (self ) -> List[Any]:
UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase = None
if self.use_input_mask:
UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase = None
if self.use_labels:
UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase = self.get_config()
return config, input_ids, input_mask, token_labels
def snake_case_ (self ) -> int:
return GPTNeoXConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , )
def snake_case_ (self ) -> int:
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.prepare_config_and_inputs()
UpperCamelCase = True
return config, input_ids, input_mask, token_labels
def snake_case_ (self , __a , __a , __a ) -> Optional[int]:
UpperCamelCase = GPTNeoXModel(config=__a )
model.to(__a )
model.eval()
UpperCamelCase = model(__a , attention_mask=__a )
UpperCamelCase = model(__a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def snake_case_ (self , __a , __a , __a ) -> Optional[int]:
UpperCamelCase = True
UpperCamelCase = GPTNeoXModel(__a )
model.to(__a )
model.eval()
UpperCamelCase = model(__a , attention_mask=__a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def snake_case_ (self , __a , __a , __a , __a ) -> List[Any]:
UpperCamelCase = GPTNeoXForCausalLM(config=__a )
model.to(__a )
model.eval()
UpperCamelCase = model(__a , attention_mask=__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def snake_case_ (self , __a , __a , __a , __a ) -> Optional[int]:
UpperCamelCase = self.num_labels
UpperCamelCase = GPTNeoXForQuestionAnswering(__a )
model.to(__a )
model.eval()
UpperCamelCase = model(__a , attention_mask=__a )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def snake_case_ (self , __a , __a , __a , __a ) -> Optional[int]:
UpperCamelCase = self.num_labels
UpperCamelCase = GPTNeoXForSequenceClassification(__a )
model.to(__a )
model.eval()
UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase = model(__a , attention_mask=__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def snake_case_ (self , __a , __a , __a , __a ) -> str:
UpperCamelCase = self.num_labels
UpperCamelCase = GPTNeoXForTokenClassification(__a )
model.to(__a )
model.eval()
UpperCamelCase = model(__a , attention_mask=__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def snake_case_ (self , __a , __a , __a ) -> Any:
UpperCamelCase = True
UpperCamelCase = GPTNeoXForCausalLM(config=__a )
model.to(__a )
model.eval()
# first forward pass
UpperCamelCase = model(__a , attention_mask=__a , use_cache=__a )
UpperCamelCase = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCamelCase = torch.cat([input_mask, next_mask] , dim=-1 )
UpperCamelCase = model(__a , attention_mask=__a , output_hidden_states=__a )
UpperCamelCase = output_from_no_past["hidden_states"][0]
UpperCamelCase = model(
__a , attention_mask=__a , past_key_values=__a , output_hidden_states=__a , )["hidden_states"][0]
# select random slice
UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCamelCase = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__a , __a , atol=1e-3 ) )
def snake_case_ (self ) -> str:
UpperCamelCase = self.prepare_config_and_inputs()
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs
UpperCamelCase = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class _lowerCamelCase ( _lowercase , _lowercase , _lowercase , unittest.TestCase ):
UpperCAmelCase_ = (
(
GPTNeoXModel,
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
)
if is_torch_available()
else ()
)
UpperCAmelCase_ = (GPTNeoXForCausalLM,) if is_torch_available() else ()
UpperCAmelCase_ = (
{
"feature-extraction": GPTNeoXModel,
"question-answering": GPTNeoXForQuestionAnswering,
"text-classification": GPTNeoXForSequenceClassification,
"text-generation": GPTNeoXForCausalLM,
"token-classification": GPTNeoXForTokenClassification,
"zero-shot": GPTNeoXForSequenceClassification,
}
if is_torch_available()
else {}
)
UpperCAmelCase_ = False
UpperCAmelCase_ = False
UpperCAmelCase_ = False
UpperCAmelCase_ = False
def snake_case_ (self ) -> str:
UpperCamelCase = GPTNeoXModelTester(self )
UpperCamelCase = ConfigTester(self , config_class=__a , hidden_size=64 , num_attention_heads=8 )
def snake_case_ (self ) -> int:
self.config_tester.run_common_tests()
def snake_case_ (self ) -> Optional[int]:
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(__a , __a , __a )
def snake_case_ (self ) -> str:
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(__a , __a , __a )
def snake_case_ (self ) -> Optional[Any]:
# This regression test was failing with PyTorch < 1.3
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder()
UpperCamelCase = None
self.model_tester.create_and_check_model_as_decoder(__a , __a , __a )
def snake_case_ (self ) -> Union[str, Any]:
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(__a , __a , __a )
def snake_case_ (self ) -> Any:
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_causal_lm(*__a )
def snake_case_ (self ) -> Union[str, Any]:
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__a )
def snake_case_ (self ) -> Optional[int]:
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__a )
def snake_case_ (self ) -> Optional[int]:
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__a )
@unittest.skip(reason="Feed forward chunking is not implemented" )
def snake_case_ (self ) -> Any:
pass
@parameterized.expand([("linear",), ("dynamic",)] )
def snake_case_ (self , __a ) -> Dict:
UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase = ids_tensor([1, 10] , config.vocab_size )
UpperCamelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
UpperCamelCase = GPTNeoXModel(__a )
original_model.to(__a )
original_model.eval()
UpperCamelCase = original_model(__a ).last_hidden_state
UpperCamelCase = original_model(__a ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
UpperCamelCase = {"type": scaling_type, "factor": 10.0}
UpperCamelCase = GPTNeoXModel(__a )
scaled_model.to(__a )
scaled_model.eval()
UpperCamelCase = scaled_model(__a ).last_hidden_state
UpperCamelCase = scaled_model(__a ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(__a , __a , atol=1e-5 ) )
else:
self.assertFalse(torch.allclose(__a , __a , atol=1e-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(__a , __a , atol=1e-5 ) )
@require_torch
class _lowerCamelCase ( unittest.TestCase ):
@slow
def snake_case_ (self ) -> Optional[int]:
UpperCamelCase = AutoTokenizer.from_pretrained("EleutherAI/pythia-410m-deduped" )
for checkpointing in [True, False]:
UpperCamelCase = GPTNeoXForCausalLM.from_pretrained("EleutherAI/pythia-410m-deduped" )
if checkpointing:
model.gradient_checkpointing_enable()
else:
model.gradient_checkpointing_disable()
model.to(__a )
UpperCamelCase = tokenizer("My favorite food is" , return_tensors="pt" ).to(__a )
# The hub repo. is updated on 2023-04-04, resulting in poor outputs.
# See: https://github.com/huggingface/transformers/pull/24193
UpperCamelCase = "My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure"
UpperCamelCase = model.generate(**__a , do_sample=__a , max_new_tokens=20 )
UpperCamelCase = tokenizer.batch_decode(__a )[0]
self.assertEqual(__a , __a )
| 544
| 1
|
'''simple docstring'''
import importlib.util
import os
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import (
is_accelerate_available,
is_flax_available,
is_safetensors_available,
is_tf_available,
is_torch_available,
)
from . import BaseTransformersCLICommand
def lowercase__ ( __UpperCamelCase : int ):
'''simple docstring'''
return EnvironmentCommand()
def lowercase__ ( __UpperCamelCase : Tuple ):
'''simple docstring'''
return EnvironmentCommand(args.accelerate_config_file )
class lowerCamelCase__( snake_case_ ):
@staticmethod
def __magic_name__ ( __UpperCAmelCase ):
"""simple docstring"""
__lowercase = parser.add_parser("""env""" )
download_parser.set_defaults(func=__UpperCAmelCase )
download_parser.add_argument(
"""--accelerate-config_file""" , default=__UpperCAmelCase , help="""The accelerate config file to use for the default values in the launching script.""" , )
download_parser.set_defaults(func=__UpperCAmelCase )
def __init__( self , __UpperCAmelCase , *__UpperCAmelCase ):
"""simple docstring"""
__lowercase = accelerate_config_file
def __magic_name__ ( self ):
"""simple docstring"""
__lowercase = """not installed"""
if is_safetensors_available():
import safetensors
__lowercase = safetensors.__version__
elif importlib.util.find_spec("""safetensors""" ) is not None:
import safetensors
__lowercase = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.'''
__lowercase = """not installed"""
__lowercase = __lowercase = """not found"""
if is_accelerate_available():
import accelerate
from accelerate.commands.config import default_config_file, load_config_from_file
__lowercase = accelerate.__version__
# Get the default from the config file.
if self._accelerate_config_file is not None or os.path.isfile(__UpperCAmelCase ):
__lowercase = load_config_from_file(self._accelerate_config_file ).to_dict()
__lowercase = (
"""\n""".join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] )
if isinstance(__UpperCAmelCase , __UpperCAmelCase )
else F'''\t{accelerate_config}'''
)
__lowercase = """not installed"""
__lowercase = """NA"""
if is_torch_available():
import torch
__lowercase = torch.__version__
__lowercase = torch.cuda.is_available()
__lowercase = """not installed"""
__lowercase = """NA"""
if is_tf_available():
import tensorflow as tf
__lowercase = tf.__version__
try:
# deprecated in v2.1
__lowercase = tf.test.is_gpu_available()
except AttributeError:
# returns list of devices, convert to bool
__lowercase = bool(tf.config.list_physical_devices("""GPU""" ) )
__lowercase = """not installed"""
__lowercase = """not installed"""
__lowercase = """not installed"""
__lowercase = """NA"""
if is_flax_available():
import flax
import jax
import jaxlib
__lowercase = flax.__version__
__lowercase = jax.__version__
__lowercase = jaxlib.__version__
__lowercase = jax.lib.xla_bridge.get_backend().platform
__lowercase = {
"""`transformers` version""": version,
"""Platform""": platform.platform(),
"""Python version""": platform.python_version(),
"""Huggingface_hub version""": huggingface_hub.__version__,
"""Safetensors version""": F'''{safetensors_version}''',
"""Accelerate version""": F'''{accelerate_version}''',
"""Accelerate config""": F'''{accelerate_config_str}''',
"""PyTorch version (GPU?)""": F'''{pt_version} ({pt_cuda_available})''',
"""Tensorflow version (GPU?)""": F'''{tf_version} ({tf_cuda_available})''',
"""Flax version (CPU?/GPU?/TPU?)""": F'''{flax_version} ({jax_backend})''',
"""Jax version""": F'''{jax_version}''',
"""JaxLib version""": F'''{jaxlib_version}''',
"""Using GPU in script?""": """<fill in>""",
"""Using distributed or parallel set-up in script?""": """<fill in>""",
}
print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" )
print(self.format_dict(__UpperCAmelCase ) )
return info
@staticmethod
def __magic_name__ ( __UpperCAmelCase ):
"""simple docstring"""
return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
| 566
|
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case : int = logging.get_logger(__name__)
snake_case : Optional[Any] = {
'microsoft/git-base': 'https://huggingface.co/microsoft/git-base/resolve/main/config.json',
}
class lowerCamelCase__( snake_case_ ):
UpperCamelCase : str = "git_vision_model"
def __init__( self , __UpperCAmelCase=7_6_8 , __UpperCAmelCase=3_0_7_2 , __UpperCAmelCase=1_2 , __UpperCAmelCase=1_2 , __UpperCAmelCase=3 , __UpperCAmelCase=2_2_4 , __UpperCAmelCase=1_6 , __UpperCAmelCase="quick_gelu" , __UpperCAmelCase=1E-5 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , **__UpperCAmelCase , ):
"""simple docstring"""
super().__init__(**__UpperCAmelCase )
__lowercase = hidden_size
__lowercase = intermediate_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = num_channels
__lowercase = patch_size
__lowercase = image_size
__lowercase = initializer_range
__lowercase = attention_dropout
__lowercase = layer_norm_eps
__lowercase = hidden_act
@classmethod
def __magic_name__ ( cls , __UpperCAmelCase , **__UpperCAmelCase ):
"""simple docstring"""
cls._set_token_in_kwargs(__UpperCAmelCase )
__lowercase , __lowercase = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase )
# get the vision config dict if we are loading from GITConfig
if config_dict.get("""model_type""" ) == "git":
__lowercase = config_dict["""vision_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase )
class lowerCamelCase__( snake_case_ ):
UpperCamelCase : Any = "git"
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=3_0_5_2_2 , __UpperCAmelCase=7_6_8 , __UpperCAmelCase=6 , __UpperCAmelCase=1_2 , __UpperCAmelCase=3_0_7_2 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1_0_2_4 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=0 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=1_0_1 , __UpperCAmelCase=1_0_2 , __UpperCAmelCase=None , **__UpperCAmelCase , ):
"""simple docstring"""
super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , pad_token_id=__UpperCAmelCase , **__UpperCAmelCase )
if vision_config is None:
__lowercase = {}
logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" )
__lowercase = GitVisionConfig(**__UpperCAmelCase )
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = hidden_act
__lowercase = intermediate_size
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = initializer_range
__lowercase = layer_norm_eps
__lowercase = position_embedding_type
__lowercase = use_cache
__lowercase = tie_word_embeddings
__lowercase = num_image_with_embedding
__lowercase = bos_token_id
__lowercase = eos_token_id
def __magic_name__ ( self ):
"""simple docstring"""
__lowercase = copy.deepcopy(self.__dict__ )
__lowercase = self.vision_config.to_dict()
__lowercase = self.__class__.model_type
return output
| 566
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowercase_ : List[str] = {
'''configuration_albert''': ['''ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AlbertConfig''', '''AlbertOnnxConfig'''],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ : Union[str, Any] = ['''AlbertTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ : str = ['''AlbertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ : List[Any] = [
'''ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''AlbertForMaskedLM''',
'''AlbertForMultipleChoice''',
'''AlbertForPreTraining''',
'''AlbertForQuestionAnswering''',
'''AlbertForSequenceClassification''',
'''AlbertForTokenClassification''',
'''AlbertModel''',
'''AlbertPreTrainedModel''',
'''load_tf_weights_in_albert''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ : Any = [
'''TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFAlbertForMaskedLM''',
'''TFAlbertForMultipleChoice''',
'''TFAlbertForPreTraining''',
'''TFAlbertForQuestionAnswering''',
'''TFAlbertForSequenceClassification''',
'''TFAlbertForTokenClassification''',
'''TFAlbertMainLayer''',
'''TFAlbertModel''',
'''TFAlbertPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ : Union[str, Any] = [
'''FlaxAlbertForMaskedLM''',
'''FlaxAlbertForMultipleChoice''',
'''FlaxAlbertForPreTraining''',
'''FlaxAlbertForQuestionAnswering''',
'''FlaxAlbertForSequenceClassification''',
'''FlaxAlbertForTokenClassification''',
'''FlaxAlbertModel''',
'''FlaxAlbertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_albert import AlbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_albert_fast import AlbertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_albert import (
ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
AlbertPreTrainedModel,
load_tf_weights_in_albert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_albert import (
TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFAlbertForMaskedLM,
TFAlbertForMultipleChoice,
TFAlbertForPreTraining,
TFAlbertForQuestionAnswering,
TFAlbertForSequenceClassification,
TFAlbertForTokenClassification,
TFAlbertMainLayer,
TFAlbertModel,
TFAlbertPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
FlaxAlbertPreTrainedModel,
)
else:
import sys
lowercase_ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 716
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class UpperCamelCase ( unittest.TestCase ):
@slow
def __SCREAMING_SNAKE_CASE ( self ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : str = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" )
_SCREAMING_SNAKE_CASE : str = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
_SCREAMING_SNAKE_CASE : str = model(snake_case__ )["last_hidden_state"]
_SCREAMING_SNAKE_CASE : Union[str, Any] = tf.TensorShape((1, 10, 768) )
self.assertEqual(output.shape , snake_case__ )
# compare the actual values for a slice.
_SCREAMING_SNAKE_CASE : int = tf.convert_to_tensor(
[[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 295
| 0
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_lowercase: str = {
'''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''],
'''tokenization_roberta''': ['''RobertaTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase: Any = ['''RobertaTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase: int = [
'''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''RobertaForCausalLM''',
'''RobertaForMaskedLM''',
'''RobertaForMultipleChoice''',
'''RobertaForQuestionAnswering''',
'''RobertaForSequenceClassification''',
'''RobertaForTokenClassification''',
'''RobertaModel''',
'''RobertaPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase: Any = [
'''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFRobertaForCausalLM''',
'''TFRobertaForMaskedLM''',
'''TFRobertaForMultipleChoice''',
'''TFRobertaForQuestionAnswering''',
'''TFRobertaForSequenceClassification''',
'''TFRobertaForTokenClassification''',
'''TFRobertaMainLayer''',
'''TFRobertaModel''',
'''TFRobertaPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase: Optional[int] = [
'''FlaxRobertaForCausalLM''',
'''FlaxRobertaForMaskedLM''',
'''FlaxRobertaForMultipleChoice''',
'''FlaxRobertaForQuestionAnswering''',
'''FlaxRobertaForSequenceClassification''',
'''FlaxRobertaForTokenClassification''',
'''FlaxRobertaModel''',
'''FlaxRobertaPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig
from .tokenization_roberta import RobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roberta_fast import RobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaForCausalLM,
RobertaForMaskedLM,
RobertaForMultipleChoice,
RobertaForQuestionAnswering,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
RobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta import (
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForMultipleChoice,
TFRobertaForQuestionAnswering,
TFRobertaForSequenceClassification,
TFRobertaForTokenClassification,
TFRobertaMainLayer,
TFRobertaModel,
TFRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
FlaxRobertaPreTrainedModel,
)
else:
import sys
_lowercase: Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 192
|
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor
class lowerCamelCase__ ( unittest.TestCase ):
def __init__( self : List[str] , lowercase__ : Any , lowercase__ : List[Any]=7 , lowercase__ : List[str]=3 , lowercase__ : str=18 , lowercase__ : List[Any]=30 , lowercase__ : Optional[int]=4_00 , lowercase__ : Dict=True , lowercase__ : List[str]=None , lowercase__ : int=True , lowercase__ : Tuple=None , lowercase__ : int=True , lowercase__ : Tuple=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , lowercase__ : Optional[int]=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , lowercase__ : Any=True , ):
_lowerCAmelCase = size if size is not None else {'height': 2_24, 'width': 2_24}
_lowerCAmelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18}
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = image_size
_lowerCAmelCase = min_resolution
_lowerCAmelCase = max_resolution
_lowerCAmelCase = do_resize
_lowerCAmelCase = size
_lowerCAmelCase = do_center_crop
_lowerCAmelCase = crop_size
_lowerCAmelCase = do_normalize
_lowerCAmelCase = image_mean
_lowerCAmelCase = image_std
_lowerCAmelCase = do_convert_rgb
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_convert_rgb": self.do_convert_rgb,
}
def SCREAMING_SNAKE_CASE__ ( self : List[str] , lowercase__ : Tuple=False , lowercase__ : List[Any]=False , lowercase__ : str=False ):
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
if equal_resolution:
_lowerCAmelCase = []
for i in range(self.batch_size ):
image_inputs.append(
np.random.randint(
2_55 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) )
else:
_lowerCAmelCase = []
for i in range(self.batch_size ):
_lowerCAmelCase , _lowerCAmelCase = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 )
image_inputs.append(np.random.randint(2_55 , size=(self.num_channels, width, height) , dtype=np.uinta ) )
if not numpify and not torchify:
# PIL expects the channel dimension as last dimension
_lowerCAmelCase = [Image.fromarray(np.moveaxis(lowercase__ , 0 , -1 ) ) for x in image_inputs]
if torchify:
_lowerCAmelCase = [torch.from_numpy(lowercase__ ) for x in image_inputs]
return image_inputs
@require_torch
@require_vision
class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ):
UpperCamelCase__ =ChineseCLIPImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
_lowerCAmelCase = ChineseCLIPImageProcessingTester(self , do_center_crop=lowercase__ )
@property
def SCREAMING_SNAKE_CASE__ ( self : Any ):
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowercase__ , 'do_resize' ) )
self.assertTrue(hasattr(lowercase__ , 'size' ) )
self.assertTrue(hasattr(lowercase__ , 'do_center_crop' ) )
self.assertTrue(hasattr(lowercase__ , 'center_crop' ) )
self.assertTrue(hasattr(lowercase__ , 'do_normalize' ) )
self.assertTrue(hasattr(lowercase__ , 'image_mean' ) )
self.assertTrue(hasattr(lowercase__ , 'image_std' ) )
self.assertTrue(hasattr(lowercase__ , 'do_convert_rgb' ) )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
_lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 2_24, 'width': 2_24} )
self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} )
_lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
pass
def SCREAMING_SNAKE_CASE__ ( self : str ):
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_lowerCAmelCase = self.image_processor_tester.prepare_inputs(equal_resolution=lowercase__ )
for image in image_inputs:
self.assertIsInstance(lowercase__ , Image.Image )
# Test not batched input
_lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_lowerCAmelCase = image_processing(lowercase__ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_lowerCAmelCase = self.image_processor_tester.prepare_inputs(equal_resolution=lowercase__ , numpify=lowercase__ )
for image in image_inputs:
self.assertIsInstance(lowercase__ , np.ndarray )
# Test not batched input
_lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_lowerCAmelCase = image_processing(lowercase__ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def SCREAMING_SNAKE_CASE__ ( self : int ):
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_lowerCAmelCase = self.image_processor_tester.prepare_inputs(equal_resolution=lowercase__ , torchify=lowercase__ )
for image in image_inputs:
self.assertIsInstance(lowercase__ , torch.Tensor )
# Test not batched input
_lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_lowerCAmelCase = image_processing(lowercase__ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
@require_torch
@require_vision
class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ):
UpperCamelCase__ =ChineseCLIPImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
_lowerCAmelCase = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=lowercase__ )
_lowerCAmelCase = 3
@property
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowercase__ , 'do_resize' ) )
self.assertTrue(hasattr(lowercase__ , 'size' ) )
self.assertTrue(hasattr(lowercase__ , 'do_center_crop' ) )
self.assertTrue(hasattr(lowercase__ , 'center_crop' ) )
self.assertTrue(hasattr(lowercase__ , 'do_normalize' ) )
self.assertTrue(hasattr(lowercase__ , 'image_mean' ) )
self.assertTrue(hasattr(lowercase__ , 'image_std' ) )
self.assertTrue(hasattr(lowercase__ , 'do_convert_rgb' ) )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
pass
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_lowerCAmelCase = self.image_processor_tester.prepare_inputs(equal_resolution=lowercase__ )
for image in image_inputs:
self.assertIsInstance(lowercase__ , Image.Image )
# Test not batched input
_lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_lowerCAmelCase = image_processing(lowercase__ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
| 192
| 1
|
'''simple docstring'''
import unittest
from pathlib import Path
from tempfile import NamedTemporaryFile, TemporaryDirectory
from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import (
convert,
ensure_valid_input,
generate_identified_filename,
infer_shapes,
quantize,
)
from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow
class lowercase_ :
"""simple docstring"""
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Tuple ,lowercase__ : Any ,lowercase__ : Optional[Any] ):
return None
class lowercase_ :
"""simple docstring"""
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : int ,lowercase__ : Optional[Any] ):
return None
class lowercase_ (unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = [
# (model_name, model_kwargs)
('bert-base-cased', {}),
('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore
]
@require_tf
@slow
def SCREAMING_SNAKE_CASE ( self : str ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(lowercase__ ,'''tf''' ,1_2 ,**lowercase__ )
@require_torch
@slow
def SCREAMING_SNAKE_CASE ( self : int ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(lowercase__ ,'''pt''' ,1_2 ,**lowercase__ )
@require_torch
@slow
def SCREAMING_SNAKE_CASE ( self : Dict ):
from transformers import BertModel
__lowercase = ['''[UNK]''', '''[SEP]''', '''[CLS]''', '''[PAD]''', '''[MASK]''', '''some''', '''other''', '''words''']
with NamedTemporaryFile(mode='''w+t''' ) as vocab_file:
vocab_file.write('''\n'''.join(lowercase__ ) )
vocab_file.flush()
__lowercase = BertTokenizerFast(vocab_file.name )
with TemporaryDirectory() as bert_save_dir:
__lowercase = BertModel(BertConfig(vocab_size=len(lowercase__ ) ) )
model.save_pretrained(lowercase__ )
self._test_export(lowercase__ ,'''pt''' ,1_2 ,lowercase__ )
@require_tf
@slow
def SCREAMING_SNAKE_CASE ( self : Any ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
__lowercase = self._test_export(lowercase__ ,'''tf''' ,1_2 ,**lowercase__ )
__lowercase = quantize(Path(lowercase__ ) )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(lowercase__ ).stat().st_size:
self.fail('''Quantized model is bigger than initial ONNX model''' )
@require_torch
@slow
def SCREAMING_SNAKE_CASE ( self : str ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
__lowercase = self._test_export(lowercase__ ,'''pt''' ,1_2 ,**lowercase__ )
__lowercase = quantize(lowercase__ )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(lowercase__ ).stat().st_size:
self.fail('''Quantized model is bigger than initial ONNX model''' )
def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : Optional[int] ,lowercase__ : List[str]=None ,**lowercase__ : Union[str, Any] ):
try:
# Compute path
with TemporaryDirectory() as tempdir:
__lowercase = Path(lowercase__ ).joinpath('''model.onnx''' )
# Remove folder if exists
if path.parent.exists():
path.parent.rmdir()
# Export
convert(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,**lowercase__ )
return path
except Exception as e:
self.fail(lowercase__ )
@require_torch
@require_tokenizers
@slow
def SCREAMING_SNAKE_CASE ( self : Dict ):
from transformers import BertModel
__lowercase = BertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) )
__lowercase = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' )
self._test_infer_dynamic_axis(lowercase__ ,lowercase__ ,'''pt''' )
@require_tf
@require_tokenizers
@slow
def SCREAMING_SNAKE_CASE ( self : List[str] ):
from transformers import TFBertModel
__lowercase = TFBertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) )
__lowercase = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' )
self._test_infer_dynamic_axis(lowercase__ ,lowercase__ ,'''tf''' )
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Dict ,lowercase__ : List[str] ,lowercase__ : Optional[int] ):
__lowercase = FeatureExtractionPipeline(lowercase__ ,lowercase__ )
__lowercase = ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''output_0''', '''output_1''']
__lowercase , __lowercase , __lowercase , __lowercase = infer_shapes(lowercase__ ,lowercase__ )
# Assert all variables are present
self.assertEqual(len(lowercase__ ) ,len(lowercase__ ) )
self.assertTrue(all(var_name in shapes for var_name in variable_names ) )
self.assertSequenceEqual(variable_names[:3] ,lowercase__ )
self.assertSequenceEqual(variable_names[3:] ,lowercase__ )
# Assert inputs are {0: batch, 1: sequence}
for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
self.assertDictEqual(shapes[var_name] ,{0: '''batch''', 1: '''sequence'''} )
# Assert outputs are {0: batch, 1: sequence} and {0: batch}
self.assertDictEqual(shapes['''output_0'''] ,{0: '''batch''', 1: '''sequence'''} )
self.assertDictEqual(shapes['''output_1'''] ,{0: '''batch'''} )
def SCREAMING_SNAKE_CASE ( self : List[Any] ):
__lowercase = ['''input_ids''', '''attention_mask''', '''token_type_ids''']
__lowercase = {'''input_ids''': [1, 2, 3, 4], '''attention_mask''': [0, 0, 0, 0], '''token_type_ids''': [1, 1, 1, 1]}
__lowercase , __lowercase = ensure_valid_input(FuncContiguousArgs() ,lowercase__ ,lowercase__ )
# Should have exactly the same number of args (all are valid)
self.assertEqual(len(lowercase__ ) ,3 )
# Should have exactly the same input names
self.assertEqual(set(lowercase__ ) ,set(lowercase__ ) )
# Parameter should be reordered according to their respective place in the function:
# (input_ids, token_type_ids, attention_mask)
self.assertEqual(lowercase__ ,(tokens['''input_ids'''], tokens['''token_type_ids'''], tokens['''attention_mask''']) )
# Generated args are interleaved with another args (for instance parameter "past" in GPT2)
__lowercase , __lowercase = ensure_valid_input(FuncNonContiguousArgs() ,lowercase__ ,lowercase__ )
# Should have exactly the one arg (all before the one not provided "some_other_args")
self.assertEqual(len(lowercase__ ) ,1 )
self.assertEqual(len(lowercase__ ) ,1 )
# Should have only "input_ids"
self.assertEqual(inputs_args[0] ,tokens['''input_ids'''] )
self.assertEqual(ordered_input_names[0] ,'''input_ids''' )
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
__lowercase = generate_identified_filename(Path('''/home/something/my_fake_model.onnx''' ) ,'''-test''' )
self.assertEqual('''/home/something/my_fake_model-test.onnx''' ,generated.as_posix() )
| 624
|
'''simple docstring'''
def _A ( ):
"""simple docstring"""
for n in range(1 , 1000000 ):
yield n * (n + 1) // 2
def _A ( A__ ):
"""simple docstring"""
__lowercase = 1
__lowercase = 2
while i * i <= n:
__lowercase = 0
while n % i == 0:
n //= i
multiplicity += 1
divisors_count *= multiplicity + 1
i += 1
if n > 1:
divisors_count *= 2
return divisors_count
def _A ( ):
"""simple docstring"""
return next(i for i in triangle_number_generator() if count_divisors(A__ ) > 500 )
if __name__ == "__main__":
print(solution())
| 624
| 1
|
"""simple docstring"""
from __future__ import annotations
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import is_tf_available, is_vision_available
from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_tf_bert import TFBertModelTester
from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester
from ..deit.test_modeling_tf_deit import TFDeiTModelTester
from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester
from ..vit.test_modeling_tf_vit import TFViTModelTester
if is_tf_available():
from transformers import (
TFBertModel,
TFCLIPVisionModel,
TFDeiTModel,
TFRobertaModel,
TFVisionTextDualEncoderModel,
TFViTModel,
VisionTextDualEncoderConfig,
)
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor
def __lowerCamelCase ( __UpperCamelCase ) -> List[str]:
"""simple docstring"""
if isinstance(__UpperCamelCase , collections.abc.Iterable ):
return x
return (x, x)
@require_tf
class __lowerCamelCase :
'''simple docstring'''
def lowerCamelCase ( self : Any , a_ : Optional[Any] , a_ : Union[str, Any] ):
pass
def lowerCamelCase ( self : int ):
pass
def lowerCamelCase ( self : Any ):
pass
def lowerCamelCase ( self : Optional[Any] , a_ : Union[str, Any] , a_ : List[str] , a_ : Any , a_ : str , a_ : Optional[int]=None , **a_ : int ):
lowerCAmelCase_ : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(a_ , a_ )
lowerCAmelCase_ : List[str] = TFVisionTextDualEncoderModel(a_ )
lowerCAmelCase_ : int = model(input_ids=a_ , pixel_values=a_ , attention_mask=a_ )
self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) )
def lowerCamelCase ( self : str , a_ : List[Any] , a_ : Dict , a_ : Any , a_ : Union[str, Any] , a_ : Tuple=None , **a_ : Tuple ):
lowerCAmelCase_ , lowerCAmelCase_ : List[str] = self.get_vision_text_model(a_ , a_ )
lowerCAmelCase_ : List[str] = TFVisionTextDualEncoderModel(vision_model=a_ , text_model=a_ )
lowerCAmelCase_ : int = model(input_ids=a_ , pixel_values=a_ , attention_mask=a_ )
self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) )
def lowerCamelCase ( self : Dict , a_ : Optional[Any] , a_ : Optional[Any] , a_ : Dict , a_ : Union[str, Any] , a_ : str=None , **a_ : Optional[int] ):
lowerCAmelCase_ , lowerCAmelCase_ : str = self.get_vision_text_model(a_ , a_ )
lowerCAmelCase_ : List[Any] = {"vision_model": vision_model, "text_model": text_model}
lowerCAmelCase_ : str = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**a_ )
lowerCAmelCase_ : str = model(input_ids=a_ , pixel_values=a_ , attention_mask=a_ )
self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) )
def lowerCamelCase ( self : int , a_ : Tuple , a_ : Tuple , a_ : Tuple , a_ : Tuple , a_ : Optional[Any]=None , **a_ : List[str] ):
lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.get_vision_text_model(a_ , a_ )
lowerCAmelCase_ : Optional[Any] = TFVisionTextDualEncoderModel(vision_model=a_ , text_model=a_ )
lowerCAmelCase_ : Any = model(input_ids=a_ , pixel_values=a_ , attention_mask=a_ )
lowerCAmelCase_ : Dict = output[0].numpy()
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(a_ )
lowerCAmelCase_ : Dict = TFVisionTextDualEncoderModel.from_pretrained(a_ )
lowerCAmelCase_ : Any = model(input_ids=a_ , pixel_values=a_ , attention_mask=a_ )
lowerCAmelCase_ : Optional[Any] = after_output[0].numpy()
lowerCAmelCase_ : Optional[Any] = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(a_ , 1e-5 )
def lowerCamelCase ( self : List[Any] , a_ : str , a_ : str , a_ : Dict , a_ : Tuple , a_ : List[Any]=None , **a_ : List[str] ):
lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = self.get_vision_text_model(a_ , a_ )
lowerCAmelCase_ : Optional[Any] = TFVisionTextDualEncoderModel(vision_model=a_ , text_model=a_ )
lowerCAmelCase_ : int = model(
input_ids=a_ , pixel_values=a_ , attention_mask=a_ , output_attentions=a_ )
lowerCAmelCase_ : Any = output.vision_model_output.attentions
self.assertEqual(len(a_ ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
lowerCAmelCase_ : List[str] = to_atuple(vision_model.config.image_size )
lowerCAmelCase_ : int = to_atuple(vision_model.config.patch_size )
lowerCAmelCase_ : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
lowerCAmelCase_ : Tuple = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
lowerCAmelCase_ : Optional[Any] = output.text_model_output.attentions
self.assertEqual(len(a_ ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def lowerCamelCase ( self : List[Any] , a_ : np.ndarray , a_ : np.ndarray , a_ : float ):
lowerCAmelCase_ : Optional[int] = np.abs((a - b) ).max()
self.assertLessEqual(a_ , a_ , f'''Difference between torch and flax is {diff} (>= {tol}).''' )
def lowerCamelCase ( self : int ):
lowerCAmelCase_ : Dict = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_model(**a_ )
def lowerCamelCase ( self : Tuple ):
lowerCAmelCase_ : Dict = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**a_ )
def lowerCamelCase ( self : Optional[int] ):
lowerCAmelCase_ : List[str] = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**a_ )
def lowerCamelCase ( self : Dict ):
lowerCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs()
self.check_save_load(**a_ )
def lowerCamelCase ( self : Optional[Any] ):
lowerCAmelCase_ : Any = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**a_ )
@slow
def lowerCamelCase ( self : Any ):
lowerCAmelCase_ , lowerCAmelCase_ : Dict = self.get_pretrained_model_and_inputs()
lowerCAmelCase_ : Any = model_a(**a_ )
lowerCAmelCase_ : Dict = outputs[0].numpy()
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(a_ )
lowerCAmelCase_ : Dict = TFVisionTextDualEncoderModel.from_pretrained(a_ )
lowerCAmelCase_ : List[str] = model_a(**a_ )
lowerCAmelCase_ : List[Any] = after_outputs[0].numpy()
lowerCAmelCase_ : Optional[Any] = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(a_ , 1e-5 )
@require_tf
class __lowerCamelCase ( A__ , unittest.TestCase ):
'''simple docstring'''
def lowerCamelCase ( self : Dict ):
lowerCAmelCase_ : List[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
"hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-random-bert" )
lowerCAmelCase_ : Tuple = 13
lowerCAmelCase_ : int = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
lowerCAmelCase_ : Tuple = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
lowerCAmelCase_ : Dict = random_attention_mask([batch_size, 4] )
lowerCAmelCase_ : int = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask}
return model, inputs
def lowerCamelCase ( self : int , a_ : List[str] , a_ : Tuple ):
lowerCAmelCase_ : List[str] = TFViTModel(a_ , name="vision_model" )
lowerCAmelCase_ : List[Any] = TFBertModel(a_ , name="text_model" )
return vision_model, text_model
def lowerCamelCase ( self : List[Any] ):
lowerCAmelCase_ : List[str] = TFViTModelTester(self )
lowerCAmelCase_ : Optional[int] = TFBertModelTester(self )
lowerCAmelCase_ : List[str] = vit_model_tester.prepare_config_and_inputs()
lowerCAmelCase_ : Optional[int] = bert_model_tester.prepare_config_and_inputs()
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = vision_config_and_inputs
(
(
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) ,
) : Dict = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_tf
class __lowerCamelCase ( A__ , unittest.TestCase ):
'''simple docstring'''
def lowerCamelCase ( self : Tuple ):
# DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's
# just reinitialize it.
lowerCAmelCase_ : Optional[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
"Rocketknight1/tiny-random-deit-tf" , "hf-internal-testing/tiny-random-roberta" )
lowerCAmelCase_ : Tuple = 13
lowerCAmelCase_ : int = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
lowerCAmelCase_ : int = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
lowerCAmelCase_ : Union[str, Any] = random_attention_mask([batch_size, 4] )
lowerCAmelCase_ : int = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask}
return model, inputs
def lowerCamelCase ( self : Optional[Any] , a_ : int , a_ : Optional[int] , a_ : int , a_ : int , a_ : Dict=None , **a_ : int ):
lowerCAmelCase_ , lowerCAmelCase_ : str = self.get_vision_text_model(a_ , a_ )
lowerCAmelCase_ : Any = TFVisionTextDualEncoderModel(vision_model=a_ , text_model=a_ )
lowerCAmelCase_ : str = model(
input_ids=a_ , pixel_values=a_ , attention_mask=a_ , output_attentions=a_ )
lowerCAmelCase_ : Tuple = output.vision_model_output.attentions
self.assertEqual(len(a_ ) , vision_config.num_hidden_layers )
# in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
lowerCAmelCase_ : str = to_atuple(vision_model.config.image_size )
lowerCAmelCase_ : Optional[int] = to_atuple(vision_model.config.patch_size )
lowerCAmelCase_ : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
lowerCAmelCase_ : Optional[int] = num_patches + 2
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
lowerCAmelCase_ : List[Any] = output.text_model_output.attentions
self.assertEqual(len(a_ ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def lowerCamelCase ( self : List[str] , a_ : Optional[Any] , a_ : List[str] ):
lowerCAmelCase_ : int = TFDeiTModel(a_ , name="vision_model" )
lowerCAmelCase_ : Any = TFRobertaModel(a_ , name="text_model" )
return vision_model, text_model
def lowerCamelCase ( self : Optional[int] ):
lowerCAmelCase_ : Optional[Any] = TFDeiTModelTester(self )
lowerCAmelCase_ : List[Any] = TFRobertaModelTester(self )
lowerCAmelCase_ : List[str] = vit_model_tester.prepare_config_and_inputs()
lowerCAmelCase_ : Tuple = bert_model_tester.prepare_config_and_inputs()
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Dict = vision_config_and_inputs
(
(
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) ,
) : Tuple = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_tf
class __lowerCamelCase ( A__ , unittest.TestCase ):
'''simple docstring'''
def lowerCamelCase ( self : int ):
lowerCAmelCase_ : Dict = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
"Rocketknight1/tiny-random-clip-tf" , "hf-internal-testing/tiny-random-bert" )
lowerCAmelCase_ : int = 13
lowerCAmelCase_ : List[Any] = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
lowerCAmelCase_ : List[str] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
lowerCAmelCase_ : Tuple = random_attention_mask([batch_size, 4] )
lowerCAmelCase_ : int = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask}
return model, inputs
def lowerCamelCase ( self : str , a_ : Any , a_ : Dict ):
lowerCAmelCase_ : Union[str, Any] = TFCLIPVisionModel(a_ , name="vision_model" )
lowerCAmelCase_ : str = TFBertModel(a_ , name="text_model" )
return vision_model, text_model
def lowerCamelCase ( self : Tuple ):
lowerCAmelCase_ : str = TFCLIPVisionModelTester(self )
lowerCAmelCase_ : int = TFBertModelTester(self )
lowerCAmelCase_ : Optional[int] = clip_model_tester.prepare_config_and_inputs()
lowerCAmelCase_ : List[str] = bert_model_tester.prepare_config_and_inputs()
lowerCAmelCase_ , lowerCAmelCase_ : str = vision_config_and_inputs
(
(
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) ,
) : Optional[int] = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_vision
@require_tf
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def lowerCamelCase ( self : Optional[int] ):
lowerCAmelCase_ : Optional[Any] = TFVisionTextDualEncoderModel.from_pretrained(
"clip-italian/clip-italian" , logit_scale_init_value=1.0 , from_pt=a_ )
lowerCAmelCase_ : Tuple = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" )
lowerCAmelCase_ : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
lowerCAmelCase_ : str = processor(
text=["una foto di un gatto", "una foto di un cane"] , images=a_ , padding=a_ , return_tensors="np" )
lowerCAmelCase_ : Any = model(**a_ )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
lowerCAmelCase_ : Dict = np.array([[1.2284727, 0.3104122]] )
self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , a_ , atol=1e-3 ) )
| 610
|
"""simple docstring"""
lowercase__ = """
# Transformers 설치 방법
! pip install transformers datasets
# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
lowercase__ = [{"""type""": """code""", """content""": INSTALL_CONTENT}]
lowercase__ = {
"""{processor_class}""": """FakeProcessorClass""",
"""{model_class}""": """FakeModelClass""",
"""{object_class}""": """FakeObjectClass""",
}
| 610
| 1
|
import warnings
from ..trainer import Trainer
from ..utils import logging
__lowercase : Union[str, Any] =logging.get_logger(__name__)
class A ( __lowercase ):
def __init__( self: int , _lowerCAmelCase: Any=None , **_lowerCAmelCase: Optional[Any] ) -> str:
'''simple docstring'''
warnings.warn(
"`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` "
"instead." , __A , )
super().__init__(args=__A , **__A )
| 711
|
from typing import List, Optional, Union
import numpy as np
from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
from ....feature_extraction_sequence_utils import SequenceFeatureExtractor
from ....feature_extraction_utils import BatchFeature
from ....file_utils import PaddingStrategy, TensorType
from ....utils import logging
__lowercase : Union[str, Any] =logging.get_logger(__name__)
class A ( __lowercase ):
_snake_case =['''input_features''', '''attention_mask''']
def __init__( self: Dict , _lowerCAmelCase: List[str]=80 , _lowerCAmelCase: Optional[Any]=1_6000 , _lowerCAmelCase: Any=0.0 , _lowerCAmelCase: Optional[Any]=10 , _lowerCAmelCase: Optional[Any]=25 , _lowerCAmelCase: Union[str, Any]="hamming_window" , _lowerCAmelCase: Optional[int]=3_27_68.0 , _lowerCAmelCase: Optional[Any]=0.97 , _lowerCAmelCase: Any=1.0 , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: Dict=True , _lowerCAmelCase: Any=False , **_lowerCAmelCase: Any , ) -> Dict:
'''simple docstring'''
super().__init__(feature_size=_lowerCAmelCase , sampling_rate=_lowerCAmelCase , padding_value=_lowerCAmelCase , **_lowerCAmelCase )
UpperCAmelCase_ =feature_size
UpperCAmelCase_ =sampling_rate
UpperCAmelCase_ =padding_value
UpperCAmelCase_ =hop_length
UpperCAmelCase_ =win_length
UpperCAmelCase_ =frame_signal_scale
UpperCAmelCase_ =preemphasis_coeff
UpperCAmelCase_ =mel_floor
UpperCAmelCase_ =normalize_means
UpperCAmelCase_ =normalize_vars
UpperCAmelCase_ =win_function
UpperCAmelCase_ =return_attention_mask
UpperCAmelCase_ =win_length * sampling_rate // 1000
UpperCAmelCase_ =hop_length * sampling_rate // 1000
UpperCAmelCase_ =optimal_fft_length(self.sample_size )
UpperCAmelCase_ =(self.n_fft // 2) + 1
def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: np.array ) -> np.ndarray:
'''simple docstring'''
if self.win_function == "hamming_window":
UpperCAmelCase_ =window_function(window_length=self.sample_size , name=self.win_function , periodic=_lowerCAmelCase )
else:
UpperCAmelCase_ =window_function(window_length=self.sample_size , name=self.win_function )
UpperCAmelCase_ =mel_filter_bank(
num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , )
UpperCAmelCase_ =spectrogram(
one_waveform * self.frame_signal_scale , window=_lowerCAmelCase , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=_lowerCAmelCase , preemphasis=self.preemphasis_coeff , mel_filters=_lowerCAmelCase , mel_floor=self.mel_floor , log_mel="log" , )
return msfc_features.T
def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Dict , _lowerCAmelCase: Any ) -> Any:
'''simple docstring'''
if self.normalize_means:
UpperCAmelCase_ =x[:input_length].mean(axis=0 )
UpperCAmelCase_ =np.subtract(_lowerCAmelCase , _lowerCAmelCase )
if self.normalize_vars:
UpperCAmelCase_ =x[:input_length].std(axis=0 )
UpperCAmelCase_ =np.divide(_lowerCAmelCase , _lowerCAmelCase )
if input_length < x.shape[0]:
UpperCAmelCase_ =padding_value
# make sure array is in float32
UpperCAmelCase_ =x.astype(np.floataa )
return x
def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: List[np.ndarray] , _lowerCAmelCase: Optional[np.ndarray] = None ) -> List[np.ndarray]:
'''simple docstring'''
UpperCAmelCase_ =attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [self._normalize_one(_lowerCAmelCase , _lowerCAmelCase , self.padding_value ) for x, n in zip(_lowerCAmelCase , _lowerCAmelCase )]
def __call__( self: int , _lowerCAmelCase: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _lowerCAmelCase: Union[bool, str, PaddingStrategy] = False , _lowerCAmelCase: Optional[int] = None , _lowerCAmelCase: bool = False , _lowerCAmelCase: Optional[int] = None , _lowerCAmelCase: Optional[bool] = None , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: Optional[int] = None , **_lowerCAmelCase: List[Any] , ) -> BatchFeature:
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of'
F' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with'
F' {self.sampling_rate} and not {sampling_rate}.' )
else:
logger.warning(
"It is strongly recommended to pass the ``sampling_rate`` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug." )
UpperCAmelCase_ =isinstance(_lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'Only mono-channel audio is supported for input to {self}' )
UpperCAmelCase_ =is_batched_numpy or (
isinstance(_lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
UpperCAmelCase_ =[np.asarray(_lowerCAmelCase , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(_lowerCAmelCase , np.ndarray ):
UpperCAmelCase_ =np.asarray(_lowerCAmelCase , dtype=np.floataa )
elif isinstance(_lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
UpperCAmelCase_ =raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
UpperCAmelCase_ =[raw_speech]
# extract fbank features
UpperCAmelCase_ =[self._extract_mfsc_features(_lowerCAmelCase ) for one_waveform in raw_speech]
# convert into correct format for padding
UpperCAmelCase_ =BatchFeature({"input_features": features} )
UpperCAmelCase_ =self.pad(
_lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , **_lowerCAmelCase , )
# make sure list is in array format
UpperCAmelCase_ =padded_inputs.get("input_features" )
if isinstance(input_features[0] , _lowerCAmelCase ):
UpperCAmelCase_ =[np.asarray(_lowerCAmelCase , dtype=np.floataa ) for feature in input_features]
UpperCAmelCase_ =padded_inputs.get("attention_mask" )
if attention_mask is not None:
UpperCAmelCase_ =[np.asarray(_lowerCAmelCase , dtype=np.intaa ) for array in attention_mask]
if self.normalize_means or self.normalize_vars:
UpperCAmelCase_ =(
np.array(_lowerCAmelCase , dtype=np.intaa )
if self._get_padding_strategies(_lowerCAmelCase , max_length=_lowerCAmelCase ) is not PaddingStrategy.DO_NOT_PAD
and padding
else None
)
UpperCAmelCase_ =self.normalize(
padded_inputs["input_features"] , attention_mask=_lowerCAmelCase )
if return_tensors is not None:
UpperCAmelCase_ =padded_inputs.convert_to_tensors(_lowerCAmelCase )
return padded_inputs
| 550
| 0
|
import secrets
from random import shuffle
from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation
def UpperCamelCase_ ( lowerCAmelCase__ = 8 ):
"""simple docstring"""
_lowerCAmelCase : str = ascii_letters + digits + punctuation
return "".join(secrets.choice(UpperCAmelCase_ ) for _ in range(UpperCAmelCase_ ) )
def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ):
"""simple docstring"""
i -= len(UpperCAmelCase_ )
_lowerCAmelCase : Any = i // 3
_lowerCAmelCase : Optional[Any] = i % 3
# chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) +
# random_number(digits, i / 3) + random_characters(punctuation, i / 3)
_lowerCAmelCase : int = (
chars_incl
+ random(UpperCAmelCase_ , quotient + remainder )
+ random(UpperCAmelCase_ , UpperCAmelCase_ )
+ random(UpperCAmelCase_ , UpperCAmelCase_ )
)
_lowerCAmelCase : Optional[int] = list(UpperCAmelCase_ )
shuffle(UpperCAmelCase_ )
return "".join(UpperCAmelCase_ )
# random is a generalised function for letters, characters and numbers
def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ):
"""simple docstring"""
return "".join(secrets.choice(UpperCAmelCase_ ) for _ in range(UpperCAmelCase_ ) )
def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ):
"""simple docstring"""
pass # Put your code here...
def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ):
"""simple docstring"""
pass # Put your code here...
def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ):
"""simple docstring"""
pass # Put your code here...
def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ = 8 ):
"""simple docstring"""
if len(UpperCAmelCase_ ) < min_length:
# Your Password must be at least 8 characters long
return False
_lowerCAmelCase : List[str] = any(char in ascii_uppercase for char in password )
_lowerCAmelCase : Union[str, Any] = any(char in ascii_lowercase for char in password )
_lowerCAmelCase : List[Any] = any(char in digits for char in password )
_lowerCAmelCase : str = any(char in punctuation for char in password )
return upper and lower and num and spec_char
# Passwords should contain UPPERCASE, lowerase
# numbers, and special characters
def UpperCamelCase_ ( ):
"""simple docstring"""
_lowerCAmelCase : Any = int(input("Please indicate the max length of your password: " ).strip() )
_lowerCAmelCase : Any = input(
"Please indicate the characters that must be in your password: " ).strip()
print("Password generated:" , password_generator(UpperCAmelCase_ ) )
print(
"Alternative Password generated:" , alternative_password_generator(UpperCAmelCase_ , UpperCAmelCase_ ) , )
print("[If you are thinking of using this passsword, You better save it.]" )
if __name__ == "__main__":
main()
| 424
|
import absl # noqa: F401 # Here to have a nice missing dependency error message early on
import nltk # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import six # noqa: F401 # Here to have a nice missing dependency error message early on
from rouge_score import rouge_scorer, scoring
import datasets
_lowercase = """\
@inproceedings{lin-2004-rouge,
title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",
author = \"Lin, Chin-Yew\",
booktitle = \"Text Summarization Branches Out\",
month = jul,
year = \"2004\",
address = \"Barcelona, Spain\",
publisher = \"Association for Computational Linguistics\",
url = \"https://www.aclweb.org/anthology/W04-1013\",
pages = \"74--81\",
}
"""
_lowercase = """\
ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for
evaluating automatic summarization and machine translation software in natural language processing.
The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.
Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.
This metrics is a wrapper around Google Research reimplementation of ROUGE:
https://github.com/google-research/google-research/tree/master/rouge
"""
_lowercase = """
Calculates average rouge scores for a list of hypotheses and references
Args:
predictions: list of predictions to score. Each prediction
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
rouge_types: A list of rouge types to calculate.
Valid names:
`\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,
`\"rougeL\"`: Longest common subsequence based scoring.
`\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.
See details in https://github.com/huggingface/datasets/issues/617
use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.
use_aggregator: Return aggregates if this is set to True
Returns:
rouge1: rouge_1 (precision, recall, f1),
rouge2: rouge_2 (precision, recall, f1),
rougeL: rouge_l (precision, recall, f1),
rougeLsum: rouge_lsum (precision, recall, f1)
Examples:
>>> rouge = datasets.load_metric('rouge')
>>> predictions = [\"hello there\", \"general kenobi\"]
>>> references = [\"hello there\", \"general kenobi\"]
>>> results = rouge.compute(predictions=predictions, references=references)
>>> print(list(results.keys()))
['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
>>> print(results[\"rouge1\"])
AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))
>>> print(results[\"rouge1\"].mid.fmeasure)
1.0
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase_ ( datasets.Metric ):
def _snake_case ( self ) -> Union[str, Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[
'''https://en.wikipedia.org/wiki/ROUGE_(metric)''',
'''https://github.com/google-research/google-research/tree/master/rouge''',
] , )
def _snake_case ( self , __A , __A , __A=None , __A=True , __A=False ) -> List[str]:
if rouge_types is None:
SCREAMING_SNAKE_CASE_ : Union[str, Any] =['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum''']
SCREAMING_SNAKE_CASE_ : Tuple =rouge_scorer.RougeScorer(rouge_types=__A , use_stemmer=__A )
if use_aggregator:
SCREAMING_SNAKE_CASE_ : List[str] =scoring.BootstrapAggregator()
else:
SCREAMING_SNAKE_CASE_ : Tuple =[]
for ref, pred in zip(__A , __A ):
SCREAMING_SNAKE_CASE_ : int =scorer.score(__A , __A )
if use_aggregator:
aggregator.add_scores(__A )
else:
scores.append(__A )
if use_aggregator:
SCREAMING_SNAKE_CASE_ : Tuple =aggregator.aggregate()
else:
SCREAMING_SNAKE_CASE_ : Optional[int] ={}
for key in scores[0]:
SCREAMING_SNAKE_CASE_ : Tuple =[score[key] for score in scores]
return result
| 443
| 0
|
import unittest
from diffusers.models.unet_ad_blocks import * # noqa F403
from diffusers.utils import torch_device
from .test_unet_blocks_common import UNetBlockTesterMixin
class A__ ( __snake_case , unittest.TestCase ):
_UpperCAmelCase :List[str] = DownBlockaD # noqa F405
_UpperCAmelCase :Dict = 'down'
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Union[str, Any] = [-0.02_32, -0.98_69, 0.80_54, -0.06_37, -0.16_88, -1.42_64, 0.44_70, -1.33_94, 0.09_04]
super().test_output(A_ )
class A__ ( __snake_case , unittest.TestCase ):
_UpperCAmelCase :Any = ResnetDownsampleBlockaD # noqa F405
_UpperCAmelCase :Any = 'down'
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Union[str, Any] = [0.07_10, 0.24_10, -0.73_20, -1.07_57, -1.13_43, 0.35_40, -0.01_33, -0.25_76, 0.09_48]
super().test_output(A_ )
class A__ ( __snake_case , unittest.TestCase ):
_UpperCAmelCase :Optional[int] = AttnDownBlockaD # noqa F405
_UpperCAmelCase :Optional[int] = 'down'
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : List[Any] = [0.06_36, 0.89_64, -0.62_34, -1.01_31, 0.08_44, 0.49_35, 0.34_37, 0.09_11, -0.29_57]
super().test_output(A_ )
class A__ ( __snake_case , unittest.TestCase ):
_UpperCAmelCase :List[Any] = CrossAttnDownBlockaD # noqa F405
_UpperCAmelCase :List[Any] = 'down'
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Any = super().prepare_init_args_and_inputs_for_common()
UpperCamelCase : Optional[Any] = 32
return init_dict, inputs_dict
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : int = [0.22_38, -0.73_96, -0.22_55, -0.38_29, 0.19_25, 1.16_65, 0.06_03, -0.72_95, 0.19_83]
super().test_output(A_ )
class A__ ( __snake_case , unittest.TestCase ):
_UpperCAmelCase :Dict = SimpleCrossAttnDownBlockaD # noqa F405
_UpperCAmelCase :List[Any] = 'down'
@property
def __UpperCamelCase( self ):
'''simple docstring'''
return super().get_dummy_input(include_encoder_hidden_states=A_ )
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Dict = super().prepare_init_args_and_inputs_for_common()
UpperCamelCase : Union[str, Any] = 32
return init_dict, inputs_dict
@unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" )
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Any = [0.79_21, -0.09_92, -0.19_62, -0.76_95, -0.42_42, 0.78_04, 0.47_37, 0.27_65, 0.33_38]
super().test_output(A_ )
class A__ ( __snake_case , unittest.TestCase ):
_UpperCAmelCase :List[Any] = SkipDownBlockaD # noqa F405
_UpperCAmelCase :Dict = 'down'
@property
def __UpperCamelCase( self ):
'''simple docstring'''
return super().get_dummy_input(include_skip_sample=A_ )
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Tuple = [-0.08_45, -0.20_87, -0.24_65, 0.09_71, 0.19_00, -0.04_84, 0.26_64, 0.41_79, 0.50_69]
super().test_output(A_ )
class A__ ( __snake_case , unittest.TestCase ):
_UpperCAmelCase :Dict = AttnSkipDownBlockaD # noqa F405
_UpperCAmelCase :Any = 'down'
@property
def __UpperCamelCase( self ):
'''simple docstring'''
return super().get_dummy_input(include_skip_sample=A_ )
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : List[str] = [0.55_39, 0.16_09, 0.49_24, 0.05_37, -0.19_95, 0.40_50, 0.09_79, -0.27_21, -0.06_42]
super().test_output(A_ )
class A__ ( __snake_case , unittest.TestCase ):
_UpperCAmelCase :List[str] = DownEncoderBlockaD # noqa F405
_UpperCAmelCase :Optional[int] = 'down'
@property
def __UpperCamelCase( self ):
'''simple docstring'''
return super().get_dummy_input(include_temb=A_ )
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : List[str] = {
"in_channels": 32,
"out_channels": 32,
}
UpperCamelCase : Union[str, Any] = self.dummy_input
return init_dict, inputs_dict
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Union[str, Any] = [1.11_02, 0.53_02, 0.48_72, -0.00_23, -0.80_42, 0.04_83, -0.34_89, -0.56_32, 0.76_26]
super().test_output(A_ )
class A__ ( __snake_case , unittest.TestCase ):
_UpperCAmelCase :List[Any] = AttnDownEncoderBlockaD # noqa F405
_UpperCAmelCase :Optional[int] = 'down'
@property
def __UpperCamelCase( self ):
'''simple docstring'''
return super().get_dummy_input(include_temb=A_ )
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Optional[int] = {
"in_channels": 32,
"out_channels": 32,
}
UpperCamelCase : Optional[int] = self.dummy_input
return init_dict, inputs_dict
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Tuple = [0.89_66, -0.14_86, 0.85_68, 0.81_41, -0.90_46, -0.13_42, -0.09_72, -0.74_17, 0.15_38]
super().test_output(A_ )
class A__ ( __snake_case , unittest.TestCase ):
_UpperCAmelCase :Union[str, Any] = UNetMidBlockaD # noqa F405
_UpperCAmelCase :Optional[Any] = 'mid'
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Optional[int] = {
"in_channels": 32,
"temb_channels": 128,
}
UpperCamelCase : List[Any] = self.dummy_input
return init_dict, inputs_dict
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Dict = [-0.10_62, 1.72_48, 0.34_94, 1.45_69, -0.09_10, -1.24_21, -0.99_84, 0.67_36, 1.00_28]
super().test_output(A_ )
class A__ ( __snake_case , unittest.TestCase ):
_UpperCAmelCase :Optional[int] = UNetMidBlockaDCrossAttn # noqa F405
_UpperCAmelCase :Optional[Any] = 'mid'
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : str = super().prepare_init_args_and_inputs_for_common()
UpperCamelCase : Dict = 32
return init_dict, inputs_dict
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Dict = [0.01_87, 2.42_20, 0.44_84, 1.12_03, -0.61_21, -1.51_22, -0.82_70, 0.78_51, 1.83_35]
super().test_output(A_ )
class A__ ( __snake_case , unittest.TestCase ):
_UpperCAmelCase :int = UNetMidBlockaDSimpleCrossAttn # noqa F405
_UpperCAmelCase :Optional[Any] = 'mid'
@property
def __UpperCamelCase( self ):
'''simple docstring'''
return super().get_dummy_input(include_encoder_hidden_states=A_ )
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Dict = super().prepare_init_args_and_inputs_for_common()
UpperCamelCase : Tuple = 32
return init_dict, inputs_dict
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Optional[int] = [0.71_43, 1.99_74, 0.54_48, 1.39_77, 0.12_82, -1.12_37, -1.42_38, 0.55_30, 0.88_80]
super().test_output(A_ )
class A__ ( __snake_case , unittest.TestCase ):
_UpperCAmelCase :Union[str, Any] = UpBlockaD # noqa F405
_UpperCAmelCase :Dict = 'up'
@property
def __UpperCamelCase( self ):
'''simple docstring'''
return super().get_dummy_input(include_res_hidden_states_tuple=A_ )
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : str = [-0.20_41, -0.41_65, -0.30_22, 0.00_41, -0.66_28, -0.70_53, 0.19_28, -0.03_25, 0.05_23]
super().test_output(A_ )
class A__ ( __snake_case , unittest.TestCase ):
_UpperCAmelCase :str = ResnetUpsampleBlockaD # noqa F405
_UpperCAmelCase :Tuple = 'up'
@property
def __UpperCamelCase( self ):
'''simple docstring'''
return super().get_dummy_input(include_res_hidden_states_tuple=A_ )
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : List[str] = [0.22_87, 0.35_49, -0.13_46, 0.47_97, -0.17_15, -0.96_49, 0.73_05, -0.58_64, -0.62_44]
super().test_output(A_ )
class A__ ( __snake_case , unittest.TestCase ):
_UpperCAmelCase :Optional[int] = CrossAttnUpBlockaD # noqa F405
_UpperCAmelCase :Dict = 'up'
@property
def __UpperCamelCase( self ):
'''simple docstring'''
return super().get_dummy_input(include_res_hidden_states_tuple=A_ )
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Dict = super().prepare_init_args_and_inputs_for_common()
UpperCamelCase : int = 32
return init_dict, inputs_dict
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : List[Any] = [-0.14_03, -0.35_15, -0.04_20, -0.14_25, 0.31_67, 0.50_94, -0.21_81, 0.59_31, 0.55_82]
super().test_output(A_ )
class A__ ( __snake_case , unittest.TestCase ):
_UpperCAmelCase :List[Any] = SimpleCrossAttnUpBlockaD # noqa F405
_UpperCAmelCase :Optional[Any] = 'up'
@property
def __UpperCamelCase( self ):
'''simple docstring'''
return super().get_dummy_input(include_res_hidden_states_tuple=A_ , include_encoder_hidden_states=A_ )
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : List[Any] = super().prepare_init_args_and_inputs_for_common()
UpperCamelCase : Optional[Any] = 32
return init_dict, inputs_dict
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : str = [0.26_45, 0.14_80, 0.09_09, 0.80_44, -0.97_58, -0.90_83, 0.09_94, -1.14_53, -0.74_02]
super().test_output(A_ )
class A__ ( __snake_case , unittest.TestCase ):
_UpperCAmelCase :List[Any] = AttnUpBlockaD # noqa F405
_UpperCAmelCase :Any = 'up'
@property
def __UpperCamelCase( self ):
'''simple docstring'''
return super().get_dummy_input(include_res_hidden_states_tuple=A_ )
@unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" )
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Any = [0.09_79, 0.13_26, 0.00_21, 0.06_59, 0.22_49, 0.00_59, 0.11_32, 0.59_52, 0.10_33]
super().test_output(A_ )
class A__ ( __snake_case , unittest.TestCase ):
_UpperCAmelCase :Optional[int] = SkipUpBlockaD # noqa F405
_UpperCAmelCase :int = 'up'
@property
def __UpperCamelCase( self ):
'''simple docstring'''
return super().get_dummy_input(include_res_hidden_states_tuple=A_ )
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Union[str, Any] = [-0.08_93, -0.12_34, -0.15_06, -0.03_32, 0.01_23, -0.02_11, 0.05_66, 0.01_43, 0.03_62]
super().test_output(A_ )
class A__ ( __snake_case , unittest.TestCase ):
_UpperCAmelCase :int = AttnSkipUpBlockaD # noqa F405
_UpperCAmelCase :Any = 'up'
@property
def __UpperCamelCase( self ):
'''simple docstring'''
return super().get_dummy_input(include_res_hidden_states_tuple=A_ )
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : int = [0.03_61, 0.06_17, 0.27_87, -0.03_50, 0.03_42, 0.34_21, -0.08_43, 0.09_13, 0.30_15]
super().test_output(A_ )
class A__ ( __snake_case , unittest.TestCase ):
_UpperCAmelCase :Optional[Any] = UpDecoderBlockaD # noqa F405
_UpperCAmelCase :str = 'up'
@property
def __UpperCamelCase( self ):
'''simple docstring'''
return super().get_dummy_input(include_temb=A_ )
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Union[str, Any] = {"in_channels": 32, "out_channels": 32}
UpperCamelCase : Any = self.dummy_input
return init_dict, inputs_dict
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Optional[int] = [0.44_04, 0.19_98, -0.98_86, -0.33_20, -0.31_28, -0.70_34, -0.69_55, -0.23_38, -0.31_37]
super().test_output(A_ )
class A__ ( __snake_case , unittest.TestCase ):
_UpperCAmelCase :Union[str, Any] = AttnUpDecoderBlockaD # noqa F405
_UpperCAmelCase :Union[str, Any] = 'up'
@property
def __UpperCamelCase( self ):
'''simple docstring'''
return super().get_dummy_input(include_temb=A_ )
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Union[str, Any] = {"in_channels": 32, "out_channels": 32}
UpperCamelCase : List[Any] = self.dummy_input
return init_dict, inputs_dict
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Optional[int] = [0.67_38, 0.44_91, 0.10_55, 1.07_10, 0.73_16, 0.33_39, 0.33_52, 0.10_23, 0.35_68]
super().test_output(A_ )
| 720
|
import math
import tensorflow as tf
from packaging import version
def A_ ( _lowerCAmelCase ) -> Any:
UpperCamelCase : List[Any] = tf.convert_to_tensor(_lowerCAmelCase )
UpperCamelCase : Any = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) ))
return x * cdf
def A_ ( _lowerCAmelCase ) -> Dict:
UpperCamelCase : Union[str, Any] = tf.convert_to_tensor(_lowerCAmelCase )
UpperCamelCase : List[Any] = tf.cast(math.pi , x.dtype )
UpperCamelCase : Optional[Any] = tf.cast(0.044_715 , x.dtype )
UpperCamelCase : int = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(_lowerCAmelCase , 3 )) ))
return x * cdf
def A_ ( _lowerCAmelCase ) -> List[Any]:
UpperCamelCase : str = tf.convert_to_tensor(_lowerCAmelCase )
return x * tf.tanh(tf.math.softplus(_lowerCAmelCase ) )
def A_ ( _lowerCAmelCase ) -> List[Any]:
UpperCamelCase : Tuple = tf.convert_to_tensor(_lowerCAmelCase )
UpperCamelCase : List[Any] = tf.cast(0.044_715 , x.dtype )
UpperCamelCase : Optional[Any] = tf.cast(0.7_978_845_608 , x.dtype )
return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) ))
def A_ ( _lowerCAmelCase ) -> Optional[Any]:
UpperCamelCase : Any = tf.convert_to_tensor(_lowerCAmelCase )
UpperCamelCase : List[Any] = tf.cast(1.702 , x.dtype )
return x * tf.math.sigmoid(coeff * x )
def A_ ( _lowerCAmelCase ) -> List[Any]:
return tf.clip_by_value(_gelu(_lowerCAmelCase ) , -10 , 10 )
def A_ ( _lowerCAmelCase , _lowerCAmelCase=-1 ) -> str:
UpperCamelCase , UpperCamelCase : List[Any] = tf.split(_lowerCAmelCase , 2 , axis=_lowerCAmelCase )
return a * tf.math.sigmoid(_lowerCAmelCase )
if version.parse(tf.version.VERSION) >= version.parse("""2.4"""):
def A_ ( _lowerCAmelCase ) -> Any:
return tf.keras.activations.gelu(_lowerCAmelCase , approximate=_lowerCAmelCase )
__lowerCamelCase : Optional[int] = tf.keras.activations.gelu
__lowerCamelCase : int = approximate_gelu_wrap
else:
__lowerCamelCase : List[Any] = _gelu
__lowerCamelCase : Optional[Any] = _gelu_new
__lowerCamelCase : Any = {
"""gelu""": gelu,
"""gelu_10""": gelu_aa,
"""gelu_fast""": gelu_fast,
"""gelu_new""": gelu_new,
"""glu""": glu,
"""mish""": mish,
"""quick_gelu""": quick_gelu,
"""relu""": tf.keras.activations.relu,
"""sigmoid""": tf.keras.activations.sigmoid,
"""silu""": tf.keras.activations.swish,
"""swish""": tf.keras.activations.swish,
"""tanh""": tf.keras.activations.tanh,
}
def A_ ( _lowerCAmelCase ) -> Optional[Any]:
if activation_string in ACTaFN:
return ACTaFN[activation_string]
else:
raise KeyError(F"""function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}""" )
| 38
| 0
|
"""simple docstring"""
import re
from filelock import FileLock
try:
import nltk
UpperCAmelCase : Tuple = True
except (ImportError, ModuleNotFoundError):
UpperCAmelCase : Optional[int] = False
if NLTK_AVAILABLE:
with FileLock('.lock') as lock:
nltk.download('punkt', quiet=True)
def lowerCamelCase ( _UpperCamelCase : str ) -> str:
'''simple docstring'''
re.sub("""<n>""" , """""" , _UpperCamelCase ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(_UpperCamelCase ) )
| 139
|
"""simple docstring"""
def lowerCamelCase ( _UpperCamelCase : int = 1_0_0_0_0_0_0 ) -> int:
'''simple docstring'''
__UpperCAmelCase : List[str] = 1
__UpperCAmelCase : Union[str, Any] = 1
__UpperCAmelCase : Optional[Any] = {1: 1}
for inputa in range(2 , _UpperCamelCase ):
__UpperCAmelCase : Optional[int] = 0
__UpperCAmelCase : str = inputa
while True:
if number in counters:
counter += counters[number]
break
if number % 2 == 0:
number //= 2
counter += 1
else:
__UpperCAmelCase : Tuple = (3 * number) + 1
counter += 1
if inputa not in counters:
__UpperCAmelCase : Optional[Any] = counter
if counter > pre_counter:
__UpperCAmelCase : List[Any] = inputa
__UpperCAmelCase : List[Any] = counter
return largest_number
if __name__ == "__main__":
print(solution(int(input().strip())))
| 139
| 1
|
from __future__ import annotations
import typing
from collections import Counter
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> typing.Counter[int]:
UpperCAmelCase_ : typing.Counter[int] = Counter()
for base in range(1, max_perimeter + 1 ):
for perpendicular in range(a_, max_perimeter + 1 ):
UpperCAmelCase_ : Any = (base * base + perpendicular * perpendicular) ** 0.5
if hypotenuse == int(a_ ):
UpperCAmelCase_ : List[Any] = int(base + perpendicular + hypotenuse )
if perimeter > max_perimeter:
continue
triplets[perimeter] += 1
return triplets
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 1000 ) -> int:
UpperCAmelCase_ : Dict = pythagorean_triple(a_ )
return triplets.most_common(1 )[0][0]
if __name__ == "__main__":
print(f'''Perimeter {solution()} has maximum solutions''')
| 713
|
'''simple docstring'''
import sys
import turtle
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float] ) -> tuple[float, float]:
return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : int, ) -> None:
my_pen.up()
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.down()
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.goto(vertexa[0], vertexa[1] )
if depth == 0:
return
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
"Correct format for using this script: "
"python fractals.py <int:depth_for_fractal>"
)
snake_case_ : Any = turtle.Turtle()
my_pen.ht()
my_pen.speed(5)
my_pen.pencolor("red")
snake_case_ : Tuple = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
| 644
| 0
|
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
A : Any = logging.getLogger(__name__)
require_version('pytorch_lightning>=1.0.4')
A : List[Any] = {
"""base""": AutoModel,
"""sequence-classification""": AutoModelForSequenceClassification,
"""question-answering""": AutoModelForQuestionAnswering,
"""pretraining""": AutoModelForPreTraining,
"""token-classification""": AutoModelForTokenClassification,
"""language-modeling""": AutoModelWithLMHead,
"""summarization""": AutoModelForSeqaSeqLM,
"""translation""": AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
A : Union[str, Any] = {
"""linear""": get_linear_schedule_with_warmup,
"""cosine""": get_cosine_schedule_with_warmup,
"""cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup,
"""polynomial""": get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
A : Union[str, Any] = sorted(arg_to_scheduler.keys())
A : Tuple = """{""" + """, """.join(arg_to_scheduler_choices) + """}"""
class __A( pl.LightningModule ):
def __init__( self , _snake_case , _snake_case=None , _snake_case="base" , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case , ) -> str:
'''simple docstring'''
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(__lowerCamelCase )
__a = 0
__a = Path(self.hparams.output_dir )
__a = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
__a = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=__lowerCamelCase , **__lowerCamelCase , )
else:
__a = config
__a = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''')
for p in extra_model_params:
if getattr(self.hparams , __lowerCamelCase , __lowerCamelCase ):
assert hasattr(self.config , __lowerCamelCase ), F"""model config doesn't have a `{p}` attribute"""
setattr(self.config , __lowerCamelCase , getattr(self.hparams , __lowerCamelCase ) )
if tokenizer is None:
__a = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__lowerCamelCase , )
else:
__a = tokenizer
__a = MODEL_MODES[mode]
if model is None:
__a = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__lowerCamelCase , )
else:
__a = model
def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> Optional[int]:
'''simple docstring'''
__a = self.model_type.from_pretrained(*__lowerCamelCase , **__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self ) -> int:
'''simple docstring'''
__a = arg_to_scheduler[self.hparams.lr_scheduler]
__a = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
__a = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1}
return scheduler
def SCREAMING_SNAKE_CASE_ ( self ) -> str:
'''simple docstring'''
__a = self.model
__a = ['''bias''', '''LayerNorm.weight''']
__a = [
{
'''params''': [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
'''weight_decay''': self.hparams.weight_decay,
},
{
'''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
'''weight_decay''': 0.0,
},
]
if self.hparams.adafactor:
__a = Adafactor(
__lowerCamelCase , lr=self.hparams.learning_rate , scale_parameter=__lowerCamelCase , relative_step=__lowerCamelCase )
else:
__a = AdamW(
__lowerCamelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
__a = optimizer
__a = self.get_lr_scheduler()
return [optimizer], [scheduler]
def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Any:
'''simple docstring'''
return self.validation_step(__lowerCamelCase , __lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Union[str, Any]:
'''simple docstring'''
return self.validation_end(__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple:
'''simple docstring'''
__a = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
__a = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Union[str, Any]:
'''simple docstring'''
if stage == "test":
__a = len(self.test_dataloader().dataset )
else:
__a = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=__lowerCamelCase )
__a = len(self.train_dataloader().dataset )
def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = False ) -> str:
'''simple docstring'''
raise NotImplementedError('''You must implement this for your task''' )
def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]:
'''simple docstring'''
return self.train_loader
def SCREAMING_SNAKE_CASE_ ( self ) -> str:
'''simple docstring'''
return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]:
'''simple docstring'''
return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]:
'''simple docstring'''
return os.path.join(
self.hparams.data_dir , '''cached_{}_{}_{}'''.format(
__lowerCamelCase , list(filter(__lowerCamelCase , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[Any]:
'''simple docstring'''
__a = self.output_dir.joinpath('''best_tfmr''' )
__a = self.step_count
self.model.save_pretrained(__lowerCamelCase )
self.tokenizer.save_pretrained(__lowerCamelCase )
@staticmethod
def SCREAMING_SNAKE_CASE_ ( _snake_case , _snake_case ) -> List[str]:
'''simple docstring'''
parser.add_argument(
'''--model_name_or_path''' , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help='''Path to pretrained model or model identifier from huggingface.co/models''' , )
parser.add_argument(
'''--config_name''' , default='''''' , type=__lowerCamelCase , help='''Pretrained config name or path if not the same as model_name''' )
parser.add_argument(
'''--tokenizer_name''' , default=__lowerCamelCase , type=__lowerCamelCase , help='''Pretrained tokenizer name or path if not the same as model_name''' , )
parser.add_argument(
'''--cache_dir''' , default=str(Path(__lowerCamelCase ).parent / '''test_run''' / '''cache''' ) , type=__lowerCamelCase , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , )
parser.add_argument(
'''--encoder_layerdrop''' , type=__lowerCamelCase , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--decoder_layerdrop''' , type=__lowerCamelCase , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--dropout''' , type=__lowerCamelCase , help='''Dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--attention_dropout''' , type=__lowerCamelCase , help='''Attention dropout probability (Optional). Goes into model.config''' , )
parser.add_argument('''--learning_rate''' , default=5E-5 , type=__lowerCamelCase , help='''The initial learning rate for Adam.''' )
parser.add_argument(
'''--lr_scheduler''' , default='''linear''' , choices=__lowerCamelCase , metavar=__lowerCamelCase , type=__lowerCamelCase , help='''Learning rate scheduler''' , )
parser.add_argument('''--weight_decay''' , default=0.0 , type=__lowerCamelCase , help='''Weight decay if we apply some.''' )
parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=__lowerCamelCase , help='''Epsilon for Adam optimizer.''' )
parser.add_argument('''--warmup_steps''' , default=0 , type=__lowerCamelCase , help='''Linear warmup over warmup_steps.''' )
parser.add_argument('''--num_workers''' , default=4 , type=__lowerCamelCase , help='''kwarg passed to DataLoader''' )
parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=__lowerCamelCase )
parser.add_argument('''--train_batch_size''' , default=32 , type=__lowerCamelCase )
parser.add_argument('''--eval_batch_size''' , default=32 , type=__lowerCamelCase )
parser.add_argument('''--adafactor''' , action='''store_true''' )
class __A( pl.Callback ):
def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]:
'''simple docstring'''
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class __A( pl.Callback ):
def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]:
'''simple docstring'''
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(__lowerCamelCase )
class __A( pl.Callback ):
def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> List[str]:
'''simple docstring'''
__a = trainer.lr_schedulers[0]['''scheduler''']
__a = {F"""lr_group_{i}""": lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> List[Any]:
'''simple docstring'''
rank_zero_info('''***** Validation results *****''' )
__a = trainer.callback_metrics
# Log results
for key in sorted(__lowerCamelCase ):
if key not in ["log", "progress_bar"]:
rank_zero_info('''{} = {}\n'''.format(__lowerCamelCase , str(metrics[key] ) ) )
def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Any:
'''simple docstring'''
rank_zero_info('''***** Test results *****''' )
__a = trainer.callback_metrics
# Log and save results to file
__a = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' )
with open(__lowerCamelCase , '''w''' ) as writer:
for key in sorted(__lowerCamelCase ):
if key not in ["log", "progress_bar"]:
rank_zero_info('''{} = {}\n'''.format(__lowerCamelCase , str(metrics[key] ) ) )
writer.write('''{} = {}\n'''.format(__lowerCamelCase , str(metrics[key] ) ) )
def __lowerCAmelCase ( a__ , a__ ) -> Union[str, Any]:
# To allow all pl args uncomment the following line
# parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument(
'''--output_dir''' , default=str(Path(__lowerCAmelCase ).parent / '''test_run''' / '''model_checkpoints''' ) , type=__lowerCAmelCase , help='''The output directory where the model predictions and checkpoints will be written.''' , )
parser.add_argument(
'''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , )
parser.add_argument(
'''--fp16_opt_level''' , type=__lowerCAmelCase , default='''O2''' , help=(
'''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'''
'''See details at https://nvidia.github.io/apex/amp.html'''
) , )
parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=__lowerCAmelCase )
parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=__lowerCAmelCase , help='''Max gradient norm''' )
parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' )
parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' )
parser.add_argument(
'''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=__lowerCAmelCase , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , )
parser.add_argument('''--seed''' , type=__lowerCAmelCase , default=42 , help='''random seed for initialization''' )
parser.add_argument(
'''--data_dir''' , default=str(Path(__lowerCAmelCase ).parent / '''test_run''' / '''dummy-train-data''' ) , type=__lowerCAmelCase , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , )
def __lowerCAmelCase ( a__ , a__ , a__=None , a__=True , a__=[] , a__=None , a__=None , **a__ , ) -> Optional[int]:
pl.seed_everything(args.seed )
# init model
__a = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=__lowerCAmelCase )
# add custom checkpoints
if checkpoint_callback is None:
__a = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(__lowerCAmelCase )
if logging_callback is None:
__a = LoggingCallback()
__a = {}
if args.fpaa:
__a = 16
if args.gpus > 1:
__a = '''auto'''
__a = '''ddp'''
__a = args.accumulate_grad_batches
__a = None
__a = '''auto'''
__a = pl.Trainer.from_argparse_args(
__lowerCAmelCase , weights_summary=__lowerCAmelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=__lowerCAmelCase , val_check_interval=1 , num_sanity_val_steps=2 , **__lowerCAmelCase , )
if args.do_train:
trainer.fit(__lowerCAmelCase )
else:
print('''RAG modeling tests with new set functions successfuly executed!''' )
return trainer
| 219
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__magic_name__ : Any = {
"""configuration_layoutlmv2""": ["""LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv2Config"""],
"""processing_layoutlmv2""": ["""LayoutLMv2Processor"""],
"""tokenization_layoutlmv2""": ["""LayoutLMv2Tokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__ : List[str] = ["""LayoutLMv2TokenizerFast"""]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__ : Any = ["""LayoutLMv2FeatureExtractor"""]
__magic_name__ : Any = ["""LayoutLMv2ImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__ : Any = [
"""LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""LayoutLMv2ForQuestionAnswering""",
"""LayoutLMv2ForSequenceClassification""",
"""LayoutLMv2ForTokenClassification""",
"""LayoutLMv2Layer""",
"""LayoutLMv2Model""",
"""LayoutLMv2PreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaLayer,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
else:
import sys
__magic_name__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 615
| 0
|
"""simple docstring"""
import argparse
import os
import re
import packaging.version
a_ = '''examples/'''
a_ = {
'''examples''': (re.compile(r'''^check_min_version\(\"[^\"]+\"\)\s*$''', re.MULTILINE), '''check_min_version(\"VERSION\")\n'''),
'''init''': (re.compile(r'''^__version__\s+=\s+\"([^\"]+)\"\s*$''', re.MULTILINE), '''__version__ = \"VERSION\"\n'''),
'''setup''': (re.compile(r'''^(\s*)version\s*=\s*\"[^\"]+\",''', re.MULTILINE), r'''\1version=\"VERSION\",'''),
'''doc''': (re.compile(r'''^(\s*)release\s*=\s*\"[^\"]+\"$''', re.MULTILINE), '''release = \"VERSION\"\n'''),
}
a_ = {
'''init''': '''src/transformers/__init__.py''',
'''setup''': '''setup.py''',
}
a_ = '''README.md'''
def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ):
"""simple docstring"""
with open(snake_case_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
snake_case_ : Optional[Any] = f.read()
snake_case_ : Tuple = REPLACE_PATTERNS[pattern]
snake_case_ : Union[str, Any] = replace.replace("""VERSION""" , snake_case_ )
snake_case_ : Dict = re_pattern.sub(snake_case_ , snake_case_ )
with open(snake_case_ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.write(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[int] ):
"""simple docstring"""
for folder, directories, fnames in os.walk(snake_case_ ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove("""research_projects""" )
if "legacy" in directories:
directories.remove("""legacy""" )
for fname in fnames:
if fname.endswith(""".py""" ):
update_version_in_file(os.path.join(snake_case_ , snake_case_ ) , snake_case_ , pattern="""examples""" )
def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int=False ):
"""simple docstring"""
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(snake_case_ , snake_case_ , snake_case_ )
if not patch:
update_version_in_examples(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( ):
"""simple docstring"""
snake_case_ : Any = """🤗 Transformers currently provides the following architectures"""
snake_case_ : int = """1. Want to contribute a new model?"""
with open(snake_case_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
snake_case_ : Union[str, Any] = f.readlines()
# Find the start of the list.
snake_case_ : Dict = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
snake_case_ : Any = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith("""1.""" ):
snake_case_ : Optional[int] = lines[index].replace(
"""https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , )
index += 1
with open(snake_case_ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( ):
"""simple docstring"""
with open(REPLACE_FILES["""init"""] , """r""" ) as f:
snake_case_ : Dict = f.read()
snake_case_ : str = REPLACE_PATTERNS["""init"""][0].search(snake_case_ ).groups()[0]
return packaging.version.parse(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Optional[Any]=False ):
"""simple docstring"""
snake_case_ : Dict = get_version()
if patch and default_version.is_devrelease:
raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" )
if default_version.is_devrelease:
snake_case_ : Optional[Any] = default_version.base_version
elif patch:
snake_case_ : Any = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}'
else:
snake_case_ : str = f'{default_version.major}.{default_version.minor + 1}.0'
# Now let's ask nicely if that's the right one.
snake_case_ : Dict = input(f'Which version are you releasing? [{default_version}]' )
if len(snake_case_ ) == 0:
snake_case_ : List[str] = default_version
print(f'Updating version to {version}.' )
global_version_update(snake_case_ , patch=snake_case_ )
if not patch:
print("""Cleaning main README, don't forget to run `make fix-copies`.""" )
clean_main_ref_in_model_list()
def SCREAMING_SNAKE_CASE__ ( ):
"""simple docstring"""
snake_case_ : List[str] = get_version()
snake_case_ : Union[str, Any] = f'{current_version.major}.{current_version.minor + 1}.0.dev0'
snake_case_ : List[str] = current_version.base_version
# Check with the user we got that right.
snake_case_ : Union[str, Any] = input(f'Which version are we developing now? [{dev_version}]' )
if len(snake_case_ ) == 0:
snake_case_ : Union[str, Any] = dev_version
print(f'Updating version to {version}.' )
global_version_update(snake_case_ )
print("""Cleaning main README, don't forget to run `make fix-copies`.""" )
clean_main_ref_in_model_list()
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''')
parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''')
a_ = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('''Nothing to do after a patch :-)''')
else:
post_release_work()
| 709
|
"""simple docstring"""
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto.configuration_auto import CONFIG_MAPPING
a_ = logging.get_logger(__name__)
class __lowercase ( _UpperCAmelCase):
"""simple docstring"""
_A : Optional[int] = """upernet"""
def __init__(self , lowercase__=None , lowercase__=5_12 , lowercase__=0.02 , lowercase__=[1, 2, 3, 6] , lowercase__=True , lowercase__=0.4 , lowercase__=3_84 , lowercase__=2_56 , lowercase__=1 , lowercase__=False , lowercase__=2_55 , **lowercase__ , ):
super().__init__(**lowercase__ )
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
snake_case_ : List[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] )
elif isinstance(lowercase__ , lowercase__ ):
snake_case_ : Tuple = backbone_config.get("""model_type""" )
snake_case_ : List[str] = CONFIG_MAPPING[backbone_model_type]
snake_case_ : List[Any] = config_class.from_dict(lowercase__ )
snake_case_ : List[Any] = backbone_config
snake_case_ : Optional[Any] = hidden_size
snake_case_ : Any = initializer_range
snake_case_ : str = pool_scales
snake_case_ : Dict = use_auxiliary_head
snake_case_ : str = auxiliary_loss_weight
snake_case_ : List[str] = auxiliary_in_channels
snake_case_ : Optional[Any] = auxiliary_channels
snake_case_ : Any = auxiliary_num_convs
snake_case_ : List[Any] = auxiliary_concat_input
snake_case_ : List[str] = loss_ignore_index
def __UpperCamelCase (self ):
snake_case_ : Dict = copy.deepcopy(self.__dict__ )
snake_case_ : Union[str, Any] = self.backbone_config.to_dict()
snake_case_ : Any = self.__class__.model_type
return output
| 48
| 0
|
"""simple docstring"""
from torch import nn
def _snake_case ( snake_case__ : Union[str, Any] ):
if act_fn in ["swish", "silu"]:
return nn.SiLU()
elif act_fn == "mish":
return nn.Mish()
elif act_fn == "gelu":
return nn.GELU()
else:
raise ValueError(F'Unsupported activation function: {act_fn}' )
| 91
|
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class _snake_case ( lowercase_ ):
lowerCAmelCase_ : torch.FloatTensor
class _snake_case ( nn.Module ):
def __init__( self , a__=3 , a__=3 , a__=("DownEncoderBlock2D",) , a__=(64,) , a__=2 , a__=32 , a__="silu" , a__=True , ) -> Union[str, Any]:
'''simple docstring'''
super().__init__()
snake_case_ = layers_per_block
snake_case_ = torch.nn.Convad(
a__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , )
snake_case_ = None
snake_case_ = nn.ModuleList([] )
# down
snake_case_ = block_out_channels[0]
for i, down_block_type in enumerate(a__ ):
snake_case_ = output_channel
snake_case_ = block_out_channels[i]
snake_case_ = i == len(a__ ) - 1
snake_case_ = get_down_block(
a__ , num_layers=self.layers_per_block , in_channels=a__ , out_channels=a__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=a__ , resnet_groups=a__ , attention_head_dim=a__ , temb_channels=a__ , )
self.down_blocks.append(a__ )
# mid
snake_case_ = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=a__ , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=a__ , temb_channels=a__ , )
# out
snake_case_ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=a__ , eps=1e-6 )
snake_case_ = nn.SiLU()
snake_case_ = 2 * out_channels if double_z else out_channels
snake_case_ = nn.Convad(block_out_channels[-1] , a__ , 3 , padding=1 )
snake_case_ = False
def lowerCAmelCase__ ( self , a__ ) -> Tuple:
'''simple docstring'''
snake_case_ = x
snake_case_ = self.conv_in(a__ )
if self.training and self.gradient_checkpointing:
def create_custom_forward(a__ ):
def custom_forward(*a__ ):
return module(*a__ )
return custom_forward
# down
if is_torch_version(">=" , "1.11.0" ):
for down_block in self.down_blocks:
snake_case_ = torch.utils.checkpoint.checkpoint(
create_custom_forward(a__ ) , a__ , use_reentrant=a__ )
# middle
snake_case_ = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , a__ , use_reentrant=a__ )
else:
for down_block in self.down_blocks:
snake_case_ = torch.utils.checkpoint.checkpoint(create_custom_forward(a__ ) , a__ )
# middle
snake_case_ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , a__ )
else:
# down
for down_block in self.down_blocks:
snake_case_ = down_block(a__ )
# middle
snake_case_ = self.mid_block(a__ )
# post-process
snake_case_ = self.conv_norm_out(a__ )
snake_case_ = self.conv_act(a__ )
snake_case_ = self.conv_out(a__ )
return sample
class _snake_case ( nn.Module ):
def __init__( self , a__=3 , a__=3 , a__=("UpDecoderBlock2D",) , a__=(64,) , a__=2 , a__=32 , a__="silu" , a__="group" , ) -> int:
'''simple docstring'''
super().__init__()
snake_case_ = layers_per_block
snake_case_ = nn.Convad(
a__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , )
snake_case_ = None
snake_case_ = nn.ModuleList([] )
snake_case_ = in_channels if norm_type == "spatial" else None
# mid
snake_case_ = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=a__ , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=a__ , temb_channels=a__ , )
# up
snake_case_ = list(reversed(a__ ) )
snake_case_ = reversed_block_out_channels[0]
for i, up_block_type in enumerate(a__ ):
snake_case_ = output_channel
snake_case_ = reversed_block_out_channels[i]
snake_case_ = i == len(a__ ) - 1
snake_case_ = get_up_block(
a__ , num_layers=self.layers_per_block + 1 , in_channels=a__ , out_channels=a__ , prev_output_channel=a__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=a__ , resnet_groups=a__ , attention_head_dim=a__ , temb_channels=a__ , resnet_time_scale_shift=a__ , )
self.up_blocks.append(a__ )
snake_case_ = output_channel
# out
if norm_type == "spatial":
snake_case_ = SpatialNorm(block_out_channels[0] , a__ )
else:
snake_case_ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=a__ , eps=1e-6 )
snake_case_ = nn.SiLU()
snake_case_ = nn.Convad(block_out_channels[0] , a__ , 3 , padding=1 )
snake_case_ = False
def lowerCAmelCase__ ( self , a__ , a__=None ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ = z
snake_case_ = self.conv_in(a__ )
snake_case_ = next(iter(self.up_blocks.parameters() ) ).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(a__ ):
def custom_forward(*a__ ):
return module(*a__ )
return custom_forward
if is_torch_version(">=" , "1.11.0" ):
# middle
snake_case_ = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , a__ , a__ , use_reentrant=a__ )
snake_case_ = sample.to(a__ )
# up
for up_block in self.up_blocks:
snake_case_ = torch.utils.checkpoint.checkpoint(
create_custom_forward(a__ ) , a__ , a__ , use_reentrant=a__ )
else:
# middle
snake_case_ = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , a__ , a__ )
snake_case_ = sample.to(a__ )
# up
for up_block in self.up_blocks:
snake_case_ = torch.utils.checkpoint.checkpoint(create_custom_forward(a__ ) , a__ , a__ )
else:
# middle
snake_case_ = self.mid_block(a__ , a__ )
snake_case_ = sample.to(a__ )
# up
for up_block in self.up_blocks:
snake_case_ = up_block(a__ , a__ )
# post-process
if latent_embeds is None:
snake_case_ = self.conv_norm_out(a__ )
else:
snake_case_ = self.conv_norm_out(a__ , a__ )
snake_case_ = self.conv_act(a__ )
snake_case_ = self.conv_out(a__ )
return sample
class _snake_case ( nn.Module ):
def __init__( self , a__ , a__ , a__ , a__=None , a__="random" , a__=False , a__=True ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
snake_case_ = n_e
snake_case_ = vq_embed_dim
snake_case_ = beta
snake_case_ = legacy
snake_case_ = nn.Embedding(self.n_e , self.vq_embed_dim )
self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e )
snake_case_ = remap
if self.remap is not None:
self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) )
snake_case_ = self.used.shape[0]
snake_case_ = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
snake_case_ = self.re_embed
snake_case_ = self.re_embed + 1
print(
F'Remapping {self.n_e} indices to {self.re_embed} indices. '
F'Using {self.unknown_index} for unknown indices.' )
else:
snake_case_ = n_e
snake_case_ = sane_index_shape
def lowerCAmelCase__ ( self , a__ ) -> Optional[int]:
'''simple docstring'''
snake_case_ = inds.shape
assert len(a__ ) > 1
snake_case_ = inds.reshape(ishape[0] , -1 )
snake_case_ = self.used.to(a__ )
snake_case_ = (inds[:, :, None] == used[None, None, ...]).long()
snake_case_ = match.argmax(-1 )
snake_case_ = match.sum(2 ) < 1
if self.unknown_index == "random":
snake_case_ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device )
else:
snake_case_ = self.unknown_index
return new.reshape(a__ )
def lowerCAmelCase__ ( self , a__ ) -> str:
'''simple docstring'''
snake_case_ = inds.shape
assert len(a__ ) > 1
snake_case_ = inds.reshape(ishape[0] , -1 )
snake_case_ = self.used.to(a__ )
if self.re_embed > self.used.shape[0]: # extra token
snake_case_ = 0 # simply set to zero
snake_case_ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , a__ )
return back.reshape(a__ )
def lowerCAmelCase__ ( self , a__ ) -> str:
'''simple docstring'''
snake_case_ = z.permute(0 , 2 , 3 , 1 ).contiguous()
snake_case_ = z.view(-1 , self.vq_embed_dim )
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
snake_case_ = torch.argmin(torch.cdist(a__ , self.embedding.weight ) , dim=1 )
snake_case_ = self.embedding(a__ ).view(z.shape )
snake_case_ = None
snake_case_ = None
# compute loss for embedding
if not self.legacy:
snake_case_ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 )
else:
snake_case_ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 )
# preserve gradients
snake_case_ = z + (z_q - z).detach()
# reshape back to match original input shape
snake_case_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
if self.remap is not None:
snake_case_ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis
snake_case_ = self.remap_to_used(a__ )
snake_case_ = min_encoding_indices.reshape(-1 , 1 ) # flatten
if self.sane_index_shape:
snake_case_ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] )
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def lowerCAmelCase__ ( self , a__ , a__ ) -> List[str]:
'''simple docstring'''
if self.remap is not None:
snake_case_ = indices.reshape(shape[0] , -1 ) # add batch axis
snake_case_ = self.unmap_to_all(a__ )
snake_case_ = indices.reshape(-1 ) # flatten again
# get quantized latent vectors
snake_case_ = self.embedding(a__ )
if shape is not None:
snake_case_ = z_q.view(a__ )
# reshape back to match original input shape
snake_case_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
return z_q
class _snake_case ( lowercase_ ):
def __init__( self , a__ , a__=False ) -> Optional[int]:
'''simple docstring'''
snake_case_ = parameters
snake_case_ , snake_case_ = torch.chunk(a__ , 2 , dim=1 )
snake_case_ = torch.clamp(self.logvar , -3_0.0 , 2_0.0 )
snake_case_ = deterministic
snake_case_ = torch.exp(0.5 * self.logvar )
snake_case_ = torch.exp(self.logvar )
if self.deterministic:
snake_case_ = snake_case_ = torch.zeros_like(
self.mean , device=self.parameters.device , dtype=self.parameters.dtype )
def lowerCAmelCase__ ( self , a__ = None ) -> torch.FloatTensor:
'''simple docstring'''
snake_case_ = randn_tensor(
self.mean.shape , generator=a__ , device=self.parameters.device , dtype=self.parameters.dtype )
snake_case_ = self.mean + self.std * sample
return x
def lowerCAmelCase__ ( self , a__=None ) -> List[str]:
'''simple docstring'''
if self.deterministic:
return torch.Tensor([0.0] )
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] )
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean , 2 ) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar , dim=[1, 2, 3] , )
def lowerCAmelCase__ ( self , a__ , a__=[1, 2, 3] ) -> Optional[int]:
'''simple docstring'''
if self.deterministic:
return torch.Tensor([0.0] )
snake_case_ = np.log(2.0 * np.pi )
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=a__ )
def lowerCAmelCase__ ( self ) -> Any:
'''simple docstring'''
return self.mean
| 400
| 0
|
# Usage:
# ./gen-card-allenai-wmt16.py
import os
from pathlib import Path
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]:
"""simple docstring"""
A__ = {
'''en''': '''Machine learning is great, isn\'t it?''',
'''ru''': '''Машинное обучение - это здорово, не так ли?''',
'''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''',
}
# BLUE scores as follows:
# "pair": [fairseq, transformers]
A__ = {
'''wmt16-en-de-dist-12-1''': [28.3, 27.52],
'''wmt16-en-de-dist-6-1''': [27.4, 27.11],
'''wmt16-en-de-12-1''': [26.9, 25.75],
}
A__ = f"""{src_lang}-{tgt_lang}"""
A__ = f"""
---
language:
- {src_lang}
- {tgt_lang}
thumbnail:
tags:
- translation
- wmt16
- allenai
license: apache-2.0
datasets:
- wmt16
metrics:
- bleu
---
# FSMT
## Model description
This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.
For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).
All 3 models are available:
* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)
* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)
* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)
## Intended uses & limitations
#### How to use
```python
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
mname = \"allenai/{model_name}\"
tokenizer = FSMTTokenizer.from_pretrained(mname)
model = FSMTForConditionalGeneration.from_pretrained(mname)
input = \"{texts[src_lang]}\"
input_ids = tokenizer.encode(input, return_tensors=\"pt\")
outputs = model.generate(input_ids)
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(decoded) # {texts[tgt_lang]}
```
#### Limitations and bias
## Training data
Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).
## Eval results
Here are the BLEU scores:
model | fairseq | transformers
-------|---------|----------
{model_name} | {scores[model_name][0]} | {scores[model_name][1]}
The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.
The score was calculated using this code:
```bash
git clone https://github.com/huggingface/transformers
cd transformers
export PAIR={pair}
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=5
mkdir -p $DATA_DIR
sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
```
## Data Sources
- [training, etc.](http://www.statmt.org/wmt16/)
- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)
### BibTeX entry and citation info
```
@misc{{kasai2020deep,
title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},
author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},
year={{2020}},
eprint={{2006.10369}},
archivePrefix={{arXiv}},
primaryClass={{cs.CL}}
}}
```
"""
model_card_dir.mkdir(parents=lowercase_ , exist_ok=lowercase_ )
A__ = os.path.join(lowercase_ , '''README.md''' )
print(f"""Generating {path}""" )
with open(lowercase_ , '''w''' , encoding='''utf-8''' ) as f:
f.write(lowercase_ )
# make sure we are under the root of the project
_lowerCamelCase : Tuple = Path(__file__).resolve().parent.parent.parent
_lowerCamelCase : int = repo_dir / """model_cards"""
for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]:
_lowerCamelCase : str = model_cards_dir / """allenai""" / model_name
write_model_card(model_card_dir, src_lang="""en""", tgt_lang="""de""", model_name=model_name)
| 177
|
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict:
'''simple docstring'''
A__ = 1
A__ = 3
A__ = (32, 32)
A__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(UpperCAmelCase__)
return image
@property
def SCREAMING_SNAKE_CASE ( self : Any) ->str:
'''simple docstring'''
torch.manual_seed(0)
A__ = UNetaDConditionModel(
block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=UpperCAmelCase__ , only_cross_attention=(True, True, False) , num_class_embeds=100 , )
return model
@property
def SCREAMING_SNAKE_CASE ( self : str) ->Dict:
'''simple docstring'''
torch.manual_seed(0)
A__ = AutoencoderKL(
block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
return model
@property
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict:
'''simple docstring'''
torch.manual_seed(0)
A__ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , )
return CLIPTextModel(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Tuple:
'''simple docstring'''
A__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator
A__ = self.dummy_cond_unet_upscale
A__ = DDPMScheduler()
A__ = DDIMScheduler(prediction_type='''v_prediction''')
A__ = self.dummy_vae
A__ = self.dummy_text_encoder
A__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''')
A__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1)[0]
A__ = Image.fromarray(np.uinta(UpperCAmelCase__)).convert('''RGB''').resize((64, 64))
# make sure here that pndm scheduler skips prk
A__ = StableDiffusionUpscalePipeline(
unet=UpperCAmelCase__ , low_res_scheduler=UpperCAmelCase__ , scheduler=UpperCAmelCase__ , vae=UpperCAmelCase__ , text_encoder=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , max_noise_level=350 , )
A__ = sd_pipe.to(UpperCAmelCase__)
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__)
A__ = '''A painting of a squirrel eating a burger'''
A__ = torch.Generator(device=UpperCAmelCase__).manual_seed(0)
A__ = sd_pipe(
[prompt] , image=UpperCAmelCase__ , generator=UpperCAmelCase__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , )
A__ = output.images
A__ = torch.Generator(device=UpperCAmelCase__).manual_seed(0)
A__ = sd_pipe(
[prompt] , image=UpperCAmelCase__ , generator=UpperCAmelCase__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , return_dict=UpperCAmelCase__ , )[0]
A__ = image[0, -3:, -3:, -1]
A__ = image_from_tuple[0, -3:, -3:, -1]
A__ = low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
A__ = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int:
'''simple docstring'''
A__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator
A__ = self.dummy_cond_unet_upscale
A__ = DDPMScheduler()
A__ = DDIMScheduler(prediction_type='''v_prediction''')
A__ = self.dummy_vae
A__ = self.dummy_text_encoder
A__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''')
A__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1)[0]
A__ = Image.fromarray(np.uinta(UpperCAmelCase__)).convert('''RGB''').resize((64, 64))
# make sure here that pndm scheduler skips prk
A__ = StableDiffusionUpscalePipeline(
unet=UpperCAmelCase__ , low_res_scheduler=UpperCAmelCase__ , scheduler=UpperCAmelCase__ , vae=UpperCAmelCase__ , text_encoder=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , max_noise_level=350 , )
A__ = sd_pipe.to(UpperCAmelCase__)
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__)
A__ = '''A painting of a squirrel eating a burger'''
A__ = sd_pipe(
2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , )
A__ = output.images
assert image.shape[0] == 2
A__ = torch.Generator(device=UpperCAmelCase__).manual_seed(0)
A__ = sd_pipe(
[prompt] , image=UpperCAmelCase__ , generator=UpperCAmelCase__ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , )
A__ = output.images
assert image.shape[0] == 2
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''')
def SCREAMING_SNAKE_CASE ( self : Any) ->str:
'''simple docstring'''
A__ = self.dummy_cond_unet_upscale
A__ = DDPMScheduler()
A__ = DDIMScheduler(prediction_type='''v_prediction''')
A__ = self.dummy_vae
A__ = self.dummy_text_encoder
A__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''')
A__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1)[0]
A__ = Image.fromarray(np.uinta(UpperCAmelCase__)).convert('''RGB''').resize((64, 64))
# put models in fp16, except vae as it overflows in fp16
A__ = unet.half()
A__ = text_encoder.half()
# make sure here that pndm scheduler skips prk
A__ = StableDiffusionUpscalePipeline(
unet=UpperCAmelCase__ , low_res_scheduler=UpperCAmelCase__ , scheduler=UpperCAmelCase__ , vae=UpperCAmelCase__ , text_encoder=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , max_noise_level=350 , )
A__ = sd_pipe.to(UpperCAmelCase__)
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__)
A__ = '''A painting of a squirrel eating a burger'''
A__ = torch.manual_seed(0)
A__ = sd_pipe(
[prompt] , image=UpperCAmelCase__ , generator=UpperCAmelCase__ , num_inference_steps=2 , output_type='''np''' , ).images
A__ = low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
@slow
@require_torch_gpu
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : Dict) ->str:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE ( self : str) ->Any:
'''simple docstring'''
A__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-upscale/low_res_cat.png''')
A__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale'''
'''/upsampled_cat.npy''')
A__ = '''stabilityai/stable-diffusion-x4-upscaler'''
A__ = StableDiffusionUpscalePipeline.from_pretrained(UpperCAmelCase__)
pipe.to(UpperCAmelCase__)
pipe.set_progress_bar_config(disable=UpperCAmelCase__)
pipe.enable_attention_slicing()
A__ = '''a cat sitting on a park bench'''
A__ = torch.manual_seed(0)
A__ = pipe(
prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , generator=UpperCAmelCase__ , output_type='''np''' , )
A__ = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 1e-3
def SCREAMING_SNAKE_CASE ( self : int) ->str:
'''simple docstring'''
A__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-upscale/low_res_cat.png''')
A__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale'''
'''/upsampled_cat_fp16.npy''')
A__ = '''stabilityai/stable-diffusion-x4-upscaler'''
A__ = StableDiffusionUpscalePipeline.from_pretrained(
UpperCAmelCase__ , torch_dtype=torch.floataa , )
pipe.to(UpperCAmelCase__)
pipe.set_progress_bar_config(disable=UpperCAmelCase__)
pipe.enable_attention_slicing()
A__ = '''a cat sitting on a park bench'''
A__ = torch.manual_seed(0)
A__ = pipe(
prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , generator=UpperCAmelCase__ , output_type='''np''' , )
A__ = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 5e-1
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[Any]:
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
A__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-upscale/low_res_cat.png''')
A__ = '''stabilityai/stable-diffusion-x4-upscaler'''
A__ = StableDiffusionUpscalePipeline.from_pretrained(
UpperCAmelCase__ , torch_dtype=torch.floataa , )
pipe.to(UpperCAmelCase__)
pipe.set_progress_bar_config(disable=UpperCAmelCase__)
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
A__ = '''a cat sitting on a park bench'''
A__ = torch.manual_seed(0)
A__ = pipe(
prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , generator=UpperCAmelCase__ , num_inference_steps=5 , output_type='''np''' , )
A__ = torch.cuda.max_memory_allocated()
# make sure that less than 2.9 GB is allocated
assert mem_bytes < 2.9 * 10**9
| 177
| 1
|
"""simple docstring"""
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ASTConfig
from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_torchaudio_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ASTForAudioClassification, ASTModel
from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_torchaudio_available():
import torchaudio
from transformers import ASTFeatureExtractor
class UpperCamelCase_ :
"""simple docstring"""
def __init__( self : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str=1_3 , UpperCAmelCase__ : List[str]=2 , UpperCAmelCase__ : Dict=2_4 , UpperCAmelCase__ : Optional[int]=1_6 , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Optional[Any]=3_2 , UpperCAmelCase__ : str=5 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : str=3_7 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : List[Any]=1_0 , UpperCAmelCase__ : str=0.02 , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : List[Any]=2 , UpperCAmelCase__ : Optional[Any]=2 , ) -> str:
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = patch_size
__SCREAMING_SNAKE_CASE = max_length
__SCREAMING_SNAKE_CASE = num_mel_bins
__SCREAMING_SNAKE_CASE = is_training
__SCREAMING_SNAKE_CASE = use_labels
__SCREAMING_SNAKE_CASE = hidden_size
__SCREAMING_SNAKE_CASE = num_hidden_layers
__SCREAMING_SNAKE_CASE = num_attention_heads
__SCREAMING_SNAKE_CASE = intermediate_size
__SCREAMING_SNAKE_CASE = hidden_act
__SCREAMING_SNAKE_CASE = hidden_dropout_prob
__SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE = type_sequence_label_size
__SCREAMING_SNAKE_CASE = initializer_range
__SCREAMING_SNAKE_CASE = scope
__SCREAMING_SNAKE_CASE = frequency_stride
__SCREAMING_SNAKE_CASE = time_stride
# in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
__SCREAMING_SNAKE_CASE = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1
__SCREAMING_SNAKE_CASE = (self.max_length - self.patch_size) // self.time_stride + 1
__SCREAMING_SNAKE_CASE = frequency_out_dimension * time_out_dimension
__SCREAMING_SNAKE_CASE = num_patches + 2
def UpperCAmelCase_ ( self : Dict ) -> Dict:
__SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] )
__SCREAMING_SNAKE_CASE = None
if self.use_labels:
__SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__SCREAMING_SNAKE_CASE = self.get_config()
return config, input_values, labels
def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]:
return ASTConfig(
patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , )
def UpperCAmelCase_ ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple ) -> Any:
__SCREAMING_SNAKE_CASE = ASTModel(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]:
__SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
(
(
__SCREAMING_SNAKE_CASE
) , (
__SCREAMING_SNAKE_CASE
) , (
__SCREAMING_SNAKE_CASE
) ,
) = config_and_inputs
__SCREAMING_SNAKE_CASE = {"input_values": input_values}
return config, inputs_dict
@require_torch
class UpperCamelCase_ ( UpperCamelCase , UpperCamelCase , unittest.TestCase):
"""simple docstring"""
snake_case__ : Union[str, Any] = (
(
ASTModel,
ASTForAudioClassification,
)
if is_torch_available()
else ()
)
snake_case__ : List[Any] = (
{"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel}
if is_torch_available()
else {}
)
snake_case__ : Optional[int] = False
snake_case__ : List[str] = False
snake_case__ : str = False
snake_case__ : List[str] = False
def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] ) -> Optional[int]:
if pipeline_test_casse_name == "AudioClassificationPipelineTests":
return True
return False
def UpperCAmelCase_ ( self : Any ) -> int:
__SCREAMING_SNAKE_CASE = ASTModelTester(self )
__SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=3_7 )
def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]:
self.config_tester.run_common_tests()
@unittest.skip(reason="AST does not use inputs_embeds" )
def UpperCAmelCase_ ( self : List[str] ) -> int:
pass
def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__SCREAMING_SNAKE_CASE = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCAmelCase__ , nn.Linear ) )
def UpperCAmelCase_ ( self : str ) -> List[str]:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
__SCREAMING_SNAKE_CASE = ["input_values"]
self.assertListEqual(arg_names[:1] , UpperCAmelCase__ )
def UpperCAmelCase_ ( self : Tuple ) -> List[Any]:
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__ )
@slow
def UpperCAmelCase_ ( self : Dict ) -> str:
for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__SCREAMING_SNAKE_CASE = ASTModel.from_pretrained(UpperCAmelCase__ )
self.assertIsNotNone(UpperCAmelCase__ )
def UpperCAmelCase__ ():
'''simple docstring'''
__SCREAMING_SNAKE_CASE = hf_hub_download(
repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = torchaudio.load(lowerCAmelCase_ )
return audio, sampling_rate
@require_torch
@require_torchaudio
class UpperCamelCase_ ( unittest.TestCase):
"""simple docstring"""
@cached_property
def UpperCAmelCase_ ( self : List[str] ) -> int:
return (
ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" )
if is_torchaudio_available()
else None
)
@slow
def UpperCAmelCase_ ( self : str ) -> Tuple:
__SCREAMING_SNAKE_CASE = self.default_feature_extractor
__SCREAMING_SNAKE_CASE = ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ).to(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = self.default_feature_extractor
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = prepare_audio()
__SCREAMING_SNAKE_CASE = audio.squeeze().numpy()
__SCREAMING_SNAKE_CASE = feature_extractor(UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , return_tensors="pt" ).to(UpperCAmelCase__ )
# forward pass
with torch.no_grad():
__SCREAMING_SNAKE_CASE = model(**UpperCAmelCase__ )
# verify the logits
__SCREAMING_SNAKE_CASE = torch.Size((1, 5_2_7) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ).to(UpperCAmelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1E-4 ) )
| 682
|
"""simple docstring"""
import json
import os
import unittest
from transformers.models.roc_bert.tokenization_roc_bert import (
VOCAB_FILES_NAMES,
RoCBertBasicTokenizer,
RoCBertTokenizer,
RoCBertWordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class UpperCamelCase_ ( UpperCamelCase , unittest.TestCase):
"""simple docstring"""
snake_case__ : int = RoCBertTokenizer
snake_case__ : int = None
snake_case__ : Optional[Any] = False
snake_case__ : int = True
snake_case__ : Any = filter_non_english
def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]:
super().setUp()
__SCREAMING_SNAKE_CASE = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"]
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = {}
for i, value in enumerate(UpperCAmelCase__ ):
__SCREAMING_SNAKE_CASE = i
__SCREAMING_SNAKE_CASE = i
__SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
__SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_shape_file"] )
__SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_pronunciation_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
with open(self.word_shape_file , "w" , encoding="utf-8" ) as word_shape_writer:
json.dump(UpperCAmelCase__ , UpperCAmelCase__ , ensure_ascii=UpperCAmelCase__ )
with open(self.word_pronunciation_file , "w" , encoding="utf-8" ) as word_pronunciation_writer:
json.dump(UpperCAmelCase__ , UpperCAmelCase__ , ensure_ascii=UpperCAmelCase__ )
def UpperCAmelCase_ ( self : Any ) -> List[str]:
__SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
__SCREAMING_SNAKE_CASE = tokenizer.tokenize("你好[SEP]你是谁" )
self.assertListEqual(UpperCAmelCase__ , ["你", "好", "[SEP]", "你", "是", "谁"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase__ ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase__ ) , [5, 6, 2, 5, 7, 8] )
def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]:
__SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer()
self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] )
def UpperCAmelCase_ ( self : int ) -> Union[str, Any]:
__SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] )
def UpperCAmelCase_ ( self : Dict ) -> Dict:
__SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] )
def UpperCAmelCase_ ( self : int ) -> Dict:
__SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] )
def UpperCAmelCase_ ( self : Any ) -> Optional[int]:
__SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] )
def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]:
__SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] )
def UpperCAmelCase_ ( self : int ) -> Optional[Any]:
__SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] )
def UpperCAmelCase_ ( self : int ) -> List[Any]:
__SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] )
def UpperCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]:
__SCREAMING_SNAKE_CASE = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ , never_split=["[UNK]"] )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] )
def UpperCAmelCase_ ( self : str ) -> List[str]:
__SCREAMING_SNAKE_CASE = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"]
__SCREAMING_SNAKE_CASE = {}
for i, token in enumerate(UpperCAmelCase__ ):
__SCREAMING_SNAKE_CASE = i
__SCREAMING_SNAKE_CASE = RoCBertWordpieceTokenizer(vocab=UpperCAmelCase__ , unk_token="[UNK]" )
self.assertListEqual(tokenizer.tokenize("" ) , [] )
self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] )
self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] )
def UpperCAmelCase_ ( self : List[Any] ) -> str:
self.assertTrue(_is_whitespace(" " ) )
self.assertTrue(_is_whitespace("\t" ) )
self.assertTrue(_is_whitespace("\r" ) )
self.assertTrue(_is_whitespace("\n" ) )
self.assertTrue(_is_whitespace("\u00A0" ) )
self.assertFalse(_is_whitespace("A" ) )
self.assertFalse(_is_whitespace("-" ) )
def UpperCAmelCase_ ( self : List[Any] ) -> List[str]:
self.assertTrue(_is_control("\u0005" ) )
self.assertFalse(_is_control("A" ) )
self.assertFalse(_is_control(" " ) )
self.assertFalse(_is_control("\t" ) )
self.assertFalse(_is_control("\r" ) )
def UpperCAmelCase_ ( self : List[str] ) -> Tuple:
self.assertTrue(_is_punctuation("-" ) )
self.assertTrue(_is_punctuation("$" ) )
self.assertTrue(_is_punctuation("`" ) )
self.assertTrue(_is_punctuation("." ) )
self.assertFalse(_is_punctuation("A" ) )
self.assertFalse(_is_punctuation(" " ) )
def UpperCAmelCase_ ( self : int ) -> int:
__SCREAMING_SNAKE_CASE = self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(UpperCAmelCase__ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] )
if self.test_rust_tokenizer:
__SCREAMING_SNAKE_CASE = self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(UpperCAmelCase__ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] )
def UpperCAmelCase_ ( self : Tuple ) -> List[Any]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence."""
__SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus(
UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , )
__SCREAMING_SNAKE_CASE = tokenizer_r.do_lower_case if hasattr(UpperCAmelCase__ , "do_lower_case" ) else False
__SCREAMING_SNAKE_CASE = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), "A"),
((1, 2), ","),
((3, 5), "na"),
((5, 6), "##ï"),
((6, 8), "##ve"),
((9, 1_5), tokenizer_r.mask_token),
((1_6, 2_1), "Allen"),
((2_1, 2_3), "##NL"),
((2_3, 2_4), "##P"),
((2_5, 3_3), "sentence"),
((3_3, 3_4), "."),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), "a"),
((1, 2), ","),
((3, 8), "naive"),
((9, 1_5), tokenizer_r.mask_token),
((1_6, 2_1), "allen"),
((2_1, 2_3), "##nl"),
((2_3, 2_4), "##p"),
((2_5, 3_3), "sentence"),
((3_3, 3_4), "."),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) )
self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] )
def UpperCAmelCase_ ( self : Tuple ) -> Dict:
__SCREAMING_SNAKE_CASE = ["的", "人", "有"]
__SCREAMING_SNAKE_CASE = "".join(UpperCAmelCase__ )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = tokenizer_p.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = tokenizer_r.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase__ )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = tokenizer_r.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = tokenizer_p.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase__ )
# it is expected that only the first Chinese character is not preceded by "##".
__SCREAMING_SNAKE_CASE = [
F"""##{token}""" if idx != 0 else token for idx, token in enumerate(UpperCAmelCase__ )
]
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
@slow
def UpperCAmelCase_ ( self : List[Any] ) -> Tuple:
__SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
__SCREAMING_SNAKE_CASE = tokenizer.encode("你好" , add_special_tokens=UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = tokenizer.encode("你是谁" , add_special_tokens=UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ , UpperCAmelCase__ )
assert encoded_sentence == [1] + text + [2]
assert encoded_pair == [1] + text + [2] + text_a + [2]
def UpperCAmelCase_ ( self : str ) -> Optional[Any]:
__SCREAMING_SNAKE_CASE = self.get_tokenizers(do_lower_case=UpperCAmelCase__ )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
__SCREAMING_SNAKE_CASE = "你好,你是谁"
__SCREAMING_SNAKE_CASE = tokenizer.tokenize(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = tokenizer.prepare_for_model(
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = tokenizer.encode_plus(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ )
| 682
| 1
|
"""simple docstring"""
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class __a (UpperCamelCase_):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Optional[Any] = (EulerDiscreteScheduler,)
_SCREAMING_SNAKE_CASE :Tuple = 10
def _a ( self , **_a ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = {
"""num_train_timesteps""": 1_100,
"""beta_start""": 0.0_001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
}
config.update(**_a )
return config
def _a ( self ) -> Optional[int]:
"""simple docstring"""
for timesteps in [10, 50, 100, 1_000]:
self.check_over_configs(num_train_timesteps=_a )
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ):
self.check_over_configs(beta_start=_a , beta_end=_a )
def _a ( self ) -> List[Any]:
"""simple docstring"""
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=_a )
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_a )
def _a ( self ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ : str = scheduler_class(**_a )
scheduler.set_timesteps(self.num_inference_steps )
SCREAMING_SNAKE_CASE__ : str = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ : int = self.dummy_model()
SCREAMING_SNAKE_CASE__ : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma
SCREAMING_SNAKE_CASE__ : Optional[Any] = sample.to(_a )
for i, t in enumerate(scheduler.timesteps ):
SCREAMING_SNAKE_CASE__ : List[str] = scheduler.scale_model_input(_a , _a )
SCREAMING_SNAKE_CASE__ : int = model(_a , _a )
SCREAMING_SNAKE_CASE__ : Dict = scheduler.step(_a , _a , _a , generator=_a )
SCREAMING_SNAKE_CASE__ : str = output.prev_sample
SCREAMING_SNAKE_CASE__ : List[str] = torch.sum(torch.abs(_a ) )
SCREAMING_SNAKE_CASE__ : Any = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 10.0_807 ) < 1E-2
assert abs(result_mean.item() - 0.0_131 ) < 1E-3
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""" )
SCREAMING_SNAKE_CASE__ : int = scheduler_class(**_a )
scheduler.set_timesteps(self.num_inference_steps )
SCREAMING_SNAKE_CASE__ : int = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ : List[str] = self.dummy_model()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
SCREAMING_SNAKE_CASE__ : Tuple = sample.to(_a )
for i, t in enumerate(scheduler.timesteps ):
SCREAMING_SNAKE_CASE__ : Tuple = scheduler.scale_model_input(_a , _a )
SCREAMING_SNAKE_CASE__ : int = model(_a , _a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = scheduler.step(_a , _a , _a , generator=_a )
SCREAMING_SNAKE_CASE__ : List[Any] = output.prev_sample
SCREAMING_SNAKE_CASE__ : Optional[int] = torch.sum(torch.abs(_a ) )
SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 0.0_002 ) < 1E-2
assert abs(result_mean.item() - 2.2_6_7_6E-0_6 ) < 1E-3
def _a ( self ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ : Tuple = scheduler_class(**_a )
scheduler.set_timesteps(self.num_inference_steps , device=_a )
SCREAMING_SNAKE_CASE__ : Dict = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ : Dict = self.dummy_model()
SCREAMING_SNAKE_CASE__ : int = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
SCREAMING_SNAKE_CASE__ : Dict = sample.to(_a )
for t in scheduler.timesteps:
SCREAMING_SNAKE_CASE__ : str = scheduler.scale_model_input(_a , _a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_a , _a )
SCREAMING_SNAKE_CASE__ : List[str] = scheduler.step(_a , _a , _a , generator=_a )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = output.prev_sample
SCREAMING_SNAKE_CASE__ : Dict = torch.sum(torch.abs(_a ) )
SCREAMING_SNAKE_CASE__ : Tuple = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 10.0_807 ) < 1E-2
assert abs(result_mean.item() - 0.0_131 ) < 1E-3
def _a ( self ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : int = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ : List[Any] = scheduler_class(**_a , use_karras_sigmas=_a )
scheduler.set_timesteps(self.num_inference_steps , device=_a )
SCREAMING_SNAKE_CASE__ : str = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ : Optional[int] = self.dummy_model()
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
SCREAMING_SNAKE_CASE__ : Optional[int] = sample.to(_a )
for t in scheduler.timesteps:
SCREAMING_SNAKE_CASE__ : List[Any] = scheduler.scale_model_input(_a , _a )
SCREAMING_SNAKE_CASE__ : int = model(_a , _a )
SCREAMING_SNAKE_CASE__ : int = scheduler.step(_a , _a , _a , generator=_a )
SCREAMING_SNAKE_CASE__ : List[str] = output.prev_sample
SCREAMING_SNAKE_CASE__ : Optional[int] = torch.sum(torch.abs(_a ) )
SCREAMING_SNAKE_CASE__ : Dict = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1E-2
assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1E-3
| 711
|
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_xlnet import XLNetTokenizer
else:
a :List[Any] = None
a :Optional[int] = logging.get_logger(__name__)
a :Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
a :Optional[int] = {
"vocab_file": {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model",
},
"tokenizer_file": {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json",
},
}
a :Dict = {
"xlnet-base-cased": None,
"xlnet-large-cased": None,
}
a :int = "▁"
# Segments (not really needed)
a :Dict = 0
a :Optional[int] = 1
a :Tuple = 2
a :List[str] = 3
a :Optional[Any] = 4
class __a (UpperCamelCase_):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Tuple = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE :Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE :str = """left"""
_SCREAMING_SNAKE_CASE :Optional[Any] = XLNetTokenizer
def __init__( self , _a=None , _a=None , _a=False , _a=True , _a=False , _a="<s>" , _a="</s>" , _a="<unk>" , _a="<sep>" , _a="<pad>" , _a="<cls>" , _a="<mask>" , _a=["<eop>", "<eod>"] , **_a , ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token
super().__init__(
vocab_file=_a , tokenizer_file=_a , do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , additional_special_tokens=_a , **_a , )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = 3
SCREAMING_SNAKE_CASE__ : Optional[int] = do_lower_case
SCREAMING_SNAKE_CASE__ : List[str] = remove_space
SCREAMING_SNAKE_CASE__ : int = keep_accents
SCREAMING_SNAKE_CASE__ : Optional[Any] = vocab_file
SCREAMING_SNAKE_CASE__ : Tuple = False if not self.vocab_file else True
def _a ( self , _a , _a = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ : Tuple = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _a ( self , _a , _a = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ : Optional[Any] = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _a ( self , _a , _a = None ) -> Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(_a ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(
_a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ):
copyfile(self.vocab_file , _a )
return (out_vocab_file,)
| 12
| 0
|
import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class UpperCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
@property
def _lowercase ( self : Tuple ) -> List[str]:
"""simple docstring"""
torch.manual_seed(0 )
__magic_name__ = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , )
return model
def _lowercase ( self : int ) -> List[Any]:
"""simple docstring"""
__magic_name__ = self.dummy_uncond_unet
__magic_name__ = KarrasVeScheduler()
__magic_name__ = KarrasVePipeline(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ )
pipe.to(UpperCamelCase__ )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
__magic_name__ = torch.manual_seed(0 )
__magic_name__ = pipe(num_inference_steps=2 , generator=UpperCamelCase__ , output_type="""numpy""" ).images
__magic_name__ = torch.manual_seed(0 )
__magic_name__ = pipe(num_inference_steps=2 , generator=UpperCamelCase__ , output_type="""numpy""" , return_dict=UpperCamelCase__ )[0]
__magic_name__ = image[0, -3:, -3:, -1]
__magic_name__ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__magic_name__ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class UpperCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self : Optional[Any] ) -> Any:
"""simple docstring"""
__magic_name__ = """google/ncsnpp-celebahq-256"""
__magic_name__ = UNetaDModel.from_pretrained(UpperCamelCase__ )
__magic_name__ = KarrasVeScheduler()
__magic_name__ = KarrasVePipeline(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ )
pipe.to(UpperCamelCase__ )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
__magic_name__ = torch.manual_seed(0 )
__magic_name__ = pipe(num_inference_steps=20 , generator=UpperCamelCase__ , output_type="""numpy""" ).images
__magic_name__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
__magic_name__ = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 529
|
import logging
import os
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional, Union
from filelock import FileLock
from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available
__lowerCAmelCase : Dict = logging.getLogger(__name__)
@dataclass
class UpperCAmelCase_ :
'''simple docstring'''
a__ = 42
a__ = 42
a__ = 42
@dataclass
class UpperCAmelCase_ :
'''simple docstring'''
a__ = 42
a__ = 42
a__ = None
a__ = None
class UpperCAmelCase_ ( _A ):
'''simple docstring'''
a__ = """train"""
a__ = """dev"""
a__ = """test"""
class UpperCAmelCase_ :
'''simple docstring'''
@staticmethod
def _lowercase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[Split, str] ) -> List[InputExample]:
"""simple docstring"""
raise NotImplementedError
@staticmethod
def _lowercase ( UpperCamelCase__ : str ) -> List[str]:
"""simple docstring"""
raise NotImplementedError
@staticmethod
def _lowercase ( UpperCamelCase__ : List[InputExample] , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : Tuple="[CLS]" , UpperCamelCase__ : List[str]=1 , UpperCamelCase__ : str="[SEP]" , UpperCamelCase__ : int=False , UpperCamelCase__ : Dict=False , UpperCamelCase__ : List[str]=0 , UpperCamelCase__ : str=0 , UpperCamelCase__ : Optional[Any]=-100 , UpperCamelCase__ : Union[str, Any]=0 , UpperCamelCase__ : Optional[int]=True , ) -> List[InputFeatures]:
"""simple docstring"""
__magic_name__ = {label: i for i, label in enumerate(UpperCamelCase__ )}
__magic_name__ = []
for ex_index, example in enumerate(UpperCamelCase__ ):
if ex_index % 1_0000 == 0:
logger.info("""Writing example %d of %d""" , UpperCamelCase__ , len(UpperCamelCase__ ) )
__magic_name__ = []
__magic_name__ = []
for word, label in zip(example.words , example.labels ):
__magic_name__ = tokenizer.tokenize(UpperCamelCase__ )
# bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space.
if len(UpperCamelCase__ ) > 0:
tokens.extend(UpperCamelCase__ )
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(UpperCamelCase__ ) - 1) )
# Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa.
__magic_name__ = tokenizer.num_special_tokens_to_add()
if len(UpperCamelCase__ ) > max_seq_length - special_tokens_count:
__magic_name__ = tokens[: (max_seq_length - special_tokens_count)]
__magic_name__ = label_ids[: (max_seq_length - special_tokens_count)]
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambiguously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens += [sep_token]
label_ids += [pad_token_label_id]
if sep_token_extra:
# roberta uses an extra separator b/w pairs of sentences
tokens += [sep_token]
label_ids += [pad_token_label_id]
__magic_name__ = [sequence_a_segment_id] * len(UpperCamelCase__ )
if cls_token_at_end:
tokens += [cls_token]
label_ids += [pad_token_label_id]
segment_ids += [cls_token_segment_id]
else:
__magic_name__ = [cls_token] + tokens
__magic_name__ = [pad_token_label_id] + label_ids
__magic_name__ = [cls_token_segment_id] + segment_ids
__magic_name__ = tokenizer.convert_tokens_to_ids(UpperCamelCase__ )
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
__magic_name__ = [1 if mask_padding_with_zero else 0] * len(UpperCamelCase__ )
# Zero-pad up to the sequence length.
__magic_name__ = max_seq_length - len(UpperCamelCase__ )
if pad_on_left:
__magic_name__ = ([pad_token] * padding_length) + input_ids
__magic_name__ = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask
__magic_name__ = ([pad_token_segment_id] * padding_length) + segment_ids
__magic_name__ = ([pad_token_label_id] * padding_length) + label_ids
else:
input_ids += [pad_token] * padding_length
input_mask += [0 if mask_padding_with_zero else 1] * padding_length
segment_ids += [pad_token_segment_id] * padding_length
label_ids += [pad_token_label_id] * padding_length
assert len(UpperCamelCase__ ) == max_seq_length
assert len(UpperCamelCase__ ) == max_seq_length
assert len(UpperCamelCase__ ) == max_seq_length
assert len(UpperCamelCase__ ) == max_seq_length
if ex_index < 5:
logger.info("""*** Example ***""" )
logger.info("""guid: %s""" , example.guid )
logger.info("""tokens: %s""" , """ """.join([str(UpperCamelCase__ ) for x in tokens] ) )
logger.info("""input_ids: %s""" , """ """.join([str(UpperCamelCase__ ) for x in input_ids] ) )
logger.info("""input_mask: %s""" , """ """.join([str(UpperCamelCase__ ) for x in input_mask] ) )
logger.info("""segment_ids: %s""" , """ """.join([str(UpperCamelCase__ ) for x in segment_ids] ) )
logger.info("""label_ids: %s""" , """ """.join([str(UpperCamelCase__ ) for x in label_ids] ) )
if "token_type_ids" not in tokenizer.model_input_names:
__magic_name__ = None
features.append(
InputFeatures(
input_ids=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , label_ids=UpperCamelCase__ ) )
return features
if is_torch_available():
import torch
from torch import nn
from torch.utils.data import Dataset
class UpperCAmelCase_ ( _A ):
'''simple docstring'''
a__ = 42
a__ = nn.CrossEntropyLoss().ignore_index
def __init__( self : Optional[Any] , UpperCamelCase__ : TokenClassificationTask , UpperCamelCase__ : str , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : Split = Split.train , ) -> str:
"""simple docstring"""
__magic_name__ = os.path.join(
UpperCamelCase__ , """cached_{}_{}_{}""".format(mode.value , tokenizer.__class__.__name__ , str(UpperCamelCase__ ) ) , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
__magic_name__ = cached_features_file + """.lock"""
with FileLock(UpperCamelCase__ ):
if os.path.exists(UpperCamelCase__ ) and not overwrite_cache:
logger.info(F'''Loading features from cached file {cached_features_file}''' )
__magic_name__ = torch.load(UpperCamelCase__ )
else:
logger.info(F'''Creating features from dataset file at {data_dir}''' )
__magic_name__ = token_classification_task.read_examples_from_file(UpperCamelCase__ , UpperCamelCase__ )
# TODO clean up all this to leverage built-in features of tokenizers
__magic_name__ = token_classification_task.convert_examples_to_features(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=UpperCamelCase__ , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
logger.info(F'''Saving features into cached file {cached_features_file}''' )
torch.save(self.features , UpperCamelCase__ )
def __len__( self : List[str] ) -> Any:
"""simple docstring"""
return len(self.features )
def __getitem__( self : Tuple , UpperCamelCase__ : Union[str, Any] ) -> InputFeatures:
"""simple docstring"""
return self.features[i]
if is_tf_available():
import tensorflow as tf
class UpperCAmelCase_ :
'''simple docstring'''
a__ = 42
a__ = -1_00
def __init__( self : List[str] , UpperCamelCase__ : TokenClassificationTask , UpperCamelCase__ : str , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : Split = Split.train , ) -> List[Any]:
"""simple docstring"""
__magic_name__ = token_classification_task.read_examples_from_file(UpperCamelCase__ , UpperCamelCase__ )
# TODO clean up all this to leverage built-in features of tokenizers
__magic_name__ = token_classification_task.convert_examples_to_features(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=UpperCamelCase__ , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
def gen():
for ex in self.features:
if ex.token_type_ids is None:
yield (
{"input_ids": ex.input_ids, "attention_mask": ex.attention_mask},
ex.label_ids,
)
else:
yield (
{
"input_ids": ex.input_ids,
"attention_mask": ex.attention_mask,
"token_type_ids": ex.token_type_ids,
},
ex.label_ids,
)
if "token_type_ids" not in tokenizer.model_input_names:
__magic_name__ = tf.data.Dataset.from_generator(
UpperCamelCase__ , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa}, tf.intaa) , (
{"""input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] )},
tf.TensorShape([None] ),
) , )
else:
__magic_name__ = tf.data.Dataset.from_generator(
UpperCamelCase__ , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa}, tf.intaa) , (
{
"""input_ids""": tf.TensorShape([None] ),
"""attention_mask""": tf.TensorShape([None] ),
"""token_type_ids""": tf.TensorShape([None] ),
},
tf.TensorShape([None] ),
) , )
def _lowercase ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
__magic_name__ = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) )
return self.dataset
def __len__( self : Tuple ) -> Tuple:
"""simple docstring"""
return len(self.features )
def __getitem__( self : Optional[Any] , UpperCamelCase__ : Union[str, Any] ) -> InputFeatures:
"""simple docstring"""
return self.features[i]
| 529
| 1
|
'''simple docstring'''
from __future__ import annotations
from math import pi, sqrt
def lowerCamelCase__ ( A : Union[str, Any] , A : Any ):
'''simple docstring'''
if inductance <= 0:
raise ValueError('''Inductance cannot be 0 or negative''' )
elif capacitance <= 0:
raise ValueError('''Capacitance cannot be 0 or negative''' )
else:
return (
"Resonant frequency",
float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ),
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 700
|
'''simple docstring'''
import inspect
import unittest
from transformers import RegNetConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from transformers.utils import cached_property, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCamelCase__( unittest.TestCase ):
def __init__( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Tuple=32 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Optional[Any]=10 , lowerCAmelCase : Optional[Any]=[10, 20, 30, 40] , lowerCAmelCase : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Tuple=True , lowerCAmelCase : List[Any]="relu" , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Union[str, Any]=None , )-> Optional[int]:
"""simple docstring"""
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = image_size
UpperCAmelCase = num_channels
UpperCAmelCase = embeddings_size
UpperCAmelCase = hidden_sizes
UpperCAmelCase = depths
UpperCAmelCase = is_training
UpperCAmelCase = use_labels
UpperCAmelCase = hidden_act
UpperCAmelCase = num_labels
UpperCAmelCase = scope
UpperCAmelCase = len(lowerCAmelCase )
def a__( self : Optional[Any] )-> Tuple:
"""simple docstring"""
UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase = self.get_config()
return config, pixel_values
def a__( self : str )-> Optional[Any]:
"""simple docstring"""
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def a__( self : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any )-> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase = FlaxRegNetModel(config=lowerCAmelCase )
UpperCAmelCase = model(lowerCAmelCase )
# Output shape (b, c, h, w)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def a__( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] )-> List[str]:
"""simple docstring"""
UpperCAmelCase = self.num_labels
UpperCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase )
UpperCAmelCase = model(lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__( self : List[str] )-> Any:
"""simple docstring"""
UpperCAmelCase = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase = config_and_inputs
UpperCAmelCase = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_flax
class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ):
__magic_name__ : Optional[int] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else ()
__magic_name__ : Optional[int] = False
__magic_name__ : List[str] = False
__magic_name__ : Dict = False
def a__( self : Union[str, Any] )-> None:
"""simple docstring"""
UpperCAmelCase = FlaxRegNetModelTester(self )
UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase )
def a__( self : List[str] )-> List[str]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def a__( self : Tuple )-> Tuple:
"""simple docstring"""
return
def a__( self : Optional[Any] )-> Tuple:
"""simple docstring"""
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase )
def a__( self : Any )-> Optional[int]:
"""simple docstring"""
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase )
@unittest.skip(reason='''RegNet does not use inputs_embeds''' )
def a__( self : str )-> Optional[Any]:
"""simple docstring"""
pass
@unittest.skip(reason='''RegNet does not support input and output embeddings''' )
def a__( self : Any )-> List[str]:
"""simple docstring"""
pass
def a__( self : Any )-> Optional[Any]:
"""simple docstring"""
UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase = model_class(lowerCAmelCase )
UpperCAmelCase = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase = [*signature.parameters.keys()]
UpperCAmelCase = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , lowerCAmelCase )
def a__( self : Tuple )-> int:
"""simple docstring"""
def check_hidden_states_output(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ):
UpperCAmelCase = model_class(lowerCAmelCase )
UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) )
UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCAmelCase = self.model_tester.num_stages
self.assertEqual(len(lowerCAmelCase ) , expected_num_stages + 1 )
UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase = True
check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase = True
check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
def a__( self : Union[str, Any] )-> List[str]:
"""simple docstring"""
UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase )
UpperCAmelCase = model_class(lowerCAmelCase )
@jax.jit
def model_jitted(lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple ):
return model(pixel_values=lowerCAmelCase , **lowerCAmelCase )
with self.subTest('''JIT Enabled''' ):
UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple()
self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) )
for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def lowerCamelCase__ ( ):
'''simple docstring'''
UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_flax
class UpperCamelCase__( unittest.TestCase ):
@cached_property
def a__( self : Dict )-> int:
"""simple docstring"""
return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None
@slow
def a__( self : Union[str, Any] )-> Optional[Any]:
"""simple docstring"""
UpperCAmelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' )
UpperCAmelCase = self.default_image_processor
UpperCAmelCase = prepare_img()
UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''np''' )
UpperCAmelCase = model(**lowerCAmelCase )
# verify the logits
UpperCAmelCase = (1, 1000)
self.assertEqual(outputs.logits.shape , lowerCAmelCase )
UpperCAmelCase = jnp.array([-0.4180, -1.5051, -3.4836] )
self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
| 50
| 0
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
a = logging.get_logger(__name__)
def _snake_case ( _snake_case : str ) -> YolosConfig:
'''simple docstring'''
_A = YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
_A = 1_92
_A = 7_68
_A = 12
_A = 3
_A = [8_00, 13_33]
_A = False
elif yolos_name == "yolos_s_dWr":
_A = 3_30
_A = 14
_A = 6
_A = 13_20
elif "yolos_s" in yolos_name:
_A = 3_84
_A = 15_36
_A = 12
_A = 6
elif "yolos_b" in yolos_name:
_A = [8_00, 13_44]
_A = 91
_A = 'huggingface/label-files'
_A = 'coco-detection-id2label.json'
_A = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='dataset' ) , 'r' ) )
_A = {int(_snake_case ): v for k, v in idalabel.items()}
_A = idalabel
_A = {v: k for k, v in idalabel.items()}
return config
def _snake_case ( _snake_case : dict , _snake_case : YolosConfig , _snake_case : bool = False ) -> List[Any]:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
_A = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' )
_A = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
_A = in_proj_weight[: config.hidden_size, :]
_A = in_proj_bias[: config.hidden_size]
_A = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
_A = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
_A = in_proj_weight[-config.hidden_size :, :]
_A = in_proj_bias[-config.hidden_size :]
def _snake_case ( _snake_case : str ) -> str:
'''simple docstring'''
if "backbone" in name:
_A = name.replace('backbone' , 'vit' )
if "cls_token" in name:
_A = name.replace('cls_token' , 'embeddings.cls_token' )
if "det_token" in name:
_A = name.replace('det_token' , 'embeddings.detection_tokens' )
if "mid_pos_embed" in name:
_A = name.replace('mid_pos_embed' , 'encoder.mid_position_embeddings' )
if "pos_embed" in name:
_A = name.replace('pos_embed' , 'embeddings.position_embeddings' )
if "patch_embed.proj" in name:
_A = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "blocks" in name:
_A = name.replace('blocks' , 'encoder.layer' )
if "attn.proj" in name:
_A = name.replace('attn.proj' , 'attention.output.dense' )
if "attn" in name:
_A = name.replace('attn' , 'attention.self' )
if "norm1" in name:
_A = name.replace('norm1' , 'layernorm_before' )
if "norm2" in name:
_A = name.replace('norm2' , 'layernorm_after' )
if "mlp.fc1" in name:
_A = name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
_A = name.replace('mlp.fc2' , 'output.dense' )
if "class_embed" in name:
_A = name.replace('class_embed' , 'class_labels_classifier' )
if "bbox_embed" in name:
_A = name.replace('bbox_embed' , 'bbox_predictor' )
if "vit.norm" in name:
_A = name.replace('vit.norm' , 'vit.layernorm' )
return name
def _snake_case ( _snake_case : dict , _snake_case : YolosForObjectDetection ) -> dict:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
_A = orig_state_dict.pop(_snake_case )
if "qkv" in key:
_A = key.split('.' )
_A = int(key_split[2] )
_A = model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
_A = val[:dim, :]
_A = val[
dim : dim * 2, :
]
_A = val[-dim:, :]
else:
_A = val[:dim]
_A = val[dim : dim * 2]
_A = val[-dim:]
else:
_A = val
return orig_state_dict
def _snake_case ( ) -> torch.Tensor:
'''simple docstring'''
_A = 'http://images.cocodataset.org/val2017/000000039769.jpg'
_A = Image.open(requests.get(_snake_case , stream=_snake_case ).raw )
return im
@torch.no_grad()
def _snake_case ( _snake_case : str , _snake_case : str , _snake_case : str , _snake_case : bool = False ) -> Union[str, Any]:
'''simple docstring'''
_A = get_yolos_config(_snake_case )
# load original state_dict
_A = torch.load(_snake_case , map_location='cpu' )['model']
# load 🤗 model
_A = YolosForObjectDetection(_snake_case )
model.eval()
_A = convert_state_dict(_snake_case , _snake_case )
model.load_state_dict(_snake_case )
# Check outputs on an image, prepared by YolosImageProcessor
_A = 8_00 if yolos_name != 'yolos_ti' else 5_12
_A = YolosImageProcessor(format='coco_detection' , size=_snake_case )
_A = image_processor(images=prepare_img() , return_tensors='pt' )
_A = model(**_snake_case )
_A , _A = outputs.logits, outputs.pred_boxes
_A , _A = None, None
if yolos_name == "yolos_ti":
_A = torch.tensor(
[[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] )
_A = torch.tensor(
[[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] )
elif yolos_name == "yolos_s_200_pre":
_A = torch.tensor(
[[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] )
_A = torch.tensor(
[[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] )
elif yolos_name == "yolos_s_300_pre":
_A = torch.tensor(
[[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] )
_A = torch.tensor(
[[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] )
elif yolos_name == "yolos_s_dWr":
_A = torch.tensor(
[[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] )
_A = torch.tensor(
[[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] )
elif yolos_name == "yolos_base":
_A = torch.tensor(
[[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] )
_A = torch.tensor(
[[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] )
else:
raise ValueError(F'''Unknown yolos_name: {yolos_name}''' )
assert torch.allclose(logits[0, :3, :3] , _snake_case , atol=1E-4 )
assert torch.allclose(pred_boxes[0, :3, :3] , _snake_case , atol=1E-4 )
Path(_snake_case ).mkdir(exist_ok=_snake_case )
print(F'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(_snake_case )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(_snake_case )
if push_to_hub:
_A = {
'yolos_ti': 'yolos-tiny',
'yolos_s_200_pre': 'yolos-small',
'yolos_s_300_pre': 'yolos-small-300',
'yolos_s_dWr': 'yolos-small-dwr',
'yolos_base': 'yolos-base',
}
print('Pushing to the hub...' )
_A = model_mapping[yolos_name]
image_processor.push_to_hub(_snake_case , organization='hustvl' )
model.push_to_hub(_snake_case , organization='hustvl' )
if __name__ == "__main__":
a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--yolos_name''',
default='''yolos_s_200_pre''',
type=str,
help=(
'''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\','''
''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.'''
),
)
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
a = parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 7
|
"""simple docstring"""
from __future__ import annotations
from collections.abc import Generator
def snake_case ( ) -> Generator[int, None, None]:
lowerCamelCase : dict[int, int] = {}
lowerCamelCase : str = 2
while True:
lowerCamelCase : int = factor_map.pop(UpperCamelCase__ , UpperCamelCase__ )
if factor:
lowerCamelCase : List[Any] = factor + prime
while x in factor_map:
x += factor
lowerCamelCase : int = factor
else:
lowerCamelCase : Optional[int] = prime
yield prime
prime += 1
def snake_case ( UpperCamelCase__ : float = 1E10 ) -> int:
lowerCamelCase : Optional[int] = sieve()
lowerCamelCase : List[str] = 1
while True:
lowerCamelCase : Tuple = next(UpperCamelCase__ )
if (2 * prime * n) > limit:
return n
# Ignore the next prime as the reminder will be 2.
next(UpperCamelCase__ )
n += 2
if __name__ == "__main__":
print(solution())
| 222
| 0
|
from datetime import datetime
import requests
from bsa import BeautifulSoup
if __name__ == "__main__":
lowercase_ = input("Enter image url: ").strip()
print(F'''Downloading image from {url} ...''')
lowercase_ = BeautifulSoup(requests.get(url).content, "html.parser")
# The image URL is in the content field of the first meta tag with property og:image
lowercase_ = soup.find("meta", {"property": "og:image"})["content"]
lowercase_ = requests.get(image_url).content
lowercase_ = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg'''
with open(file_name, "wb") as fp:
fp.write(image_data)
print(F'''Done. Image saved to disk as {file_name}.''')
| 390
|
import json
import os
import sys
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from huggingface_hub import HfFolder, Repository, create_repo, delete_repo
from requests.exceptions import HTTPError
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
PROCESSOR_MAPPING,
TOKENIZER_MAPPING,
AutoConfig,
AutoFeatureExtractor,
AutoProcessor,
AutoTokenizer,
BertTokenizer,
ProcessorMixin,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
)
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
from test_module.custom_processing import CustomProcessor # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
lowercase_ = get_tests_dir("fixtures/dummy_feature_extractor_config.json")
lowercase_ = get_tests_dir("fixtures/vocab.json")
lowercase_ = get_tests_dir("fixtures")
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
A : str = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
def snake_case__ ( self : Union[str, Any] ):
__snake_case : int = 0
def snake_case__ ( self : int ):
__snake_case : List[Any] = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Optional[Any] ):
with tempfile.TemporaryDirectory() as tmpdirname:
__snake_case : Union[str, Any] = WavaVecaConfig()
__snake_case : Union[str, Any] = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" )
# save in new folder
model_config.save_pretrained(_lowerCAmelCase )
processor.save_pretrained(_lowerCAmelCase )
__snake_case : Optional[Any] = AutoProcessor.from_pretrained(_lowerCAmelCase )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Optional[Any] ):
with tempfile.TemporaryDirectory() as tmpdirname:
# copy relevant files
copyfile(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) )
copyfile(_lowerCAmelCase , os.path.join(_lowerCAmelCase , """vocab.json""" ) )
__snake_case : str = AutoProcessor.from_pretrained(_lowerCAmelCase )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Dict ):
with tempfile.TemporaryDirectory() as tmpdirname:
__snake_case : Tuple = WavaVecaFeatureExtractor()
__snake_case : Optional[int] = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" )
__snake_case : int = WavaVecaProcessor(_lowerCAmelCase , _lowerCAmelCase )
# save in new folder
processor.save_pretrained(_lowerCAmelCase )
# drop `processor_class` in tokenizer
with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , """r""" ) as f:
__snake_case : Any = json.load(_lowerCAmelCase )
config_dict.pop("""processor_class""" )
with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , """w""" ) as f:
f.write(json.dumps(_lowerCAmelCase ) )
__snake_case : Optional[Any] = AutoProcessor.from_pretrained(_lowerCAmelCase )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Union[str, Any] ):
with tempfile.TemporaryDirectory() as tmpdirname:
__snake_case : List[Any] = WavaVecaFeatureExtractor()
__snake_case : Dict = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" )
__snake_case : Any = WavaVecaProcessor(_lowerCAmelCase , _lowerCAmelCase )
# save in new folder
processor.save_pretrained(_lowerCAmelCase )
# drop `processor_class` in feature extractor
with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , """r""" ) as f:
__snake_case : List[Any] = json.load(_lowerCAmelCase )
config_dict.pop("""processor_class""" )
with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , """w""" ) as f:
f.write(json.dumps(_lowerCAmelCase ) )
__snake_case : List[Any] = AutoProcessor.from_pretrained(_lowerCAmelCase )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Any ):
with tempfile.TemporaryDirectory() as tmpdirname:
__snake_case : List[Any] = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" )
model_config.save_pretrained(_lowerCAmelCase )
# copy relevant files
copyfile(_lowerCAmelCase , os.path.join(_lowerCAmelCase , """vocab.json""" ) )
# create emtpy sample processor
with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , """w""" ) as f:
f.write("""{}""" )
__snake_case : int = AutoProcessor.from_pretrained(_lowerCAmelCase )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
def snake_case__ ( self : Tuple ):
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(_lowerCAmelCase ):
__snake_case : List[Any] = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(_lowerCAmelCase ):
__snake_case : Any = AutoProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=_lowerCAmelCase )
__snake_case : int = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=_lowerCAmelCase )
self.assertTrue(processor.special_attribute_present )
self.assertEqual(processor.__class__.__name__ , """NewProcessor""" )
__snake_case : List[str] = processor.feature_extractor
self.assertTrue(feature_extractor.special_attribute_present )
self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" )
__snake_case : Dict = processor.tokenizer
self.assertTrue(tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" )
# Test we can also load the slow version
__snake_case : str = AutoProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=_lowerCAmelCase , use_fast=_lowerCAmelCase )
__snake_case : Optional[Any] = new_processor.tokenizer
self.assertTrue(new_tokenizer.special_attribute_present )
self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" )
else:
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
def snake_case__ ( self : Union[str, Any] ):
try:
AutoConfig.register("""custom""" , _lowerCAmelCase )
AutoFeatureExtractor.register(_lowerCAmelCase , _lowerCAmelCase )
AutoTokenizer.register(_lowerCAmelCase , slow_tokenizer_class=_lowerCAmelCase )
AutoProcessor.register(_lowerCAmelCase , _lowerCAmelCase )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(_lowerCAmelCase ):
AutoProcessor.register(_lowerCAmelCase , _lowerCAmelCase )
# Now that the config is registered, it can be used as any other config with the auto-API
__snake_case : List[str] = CustomFeatureExtractor.from_pretrained(_lowerCAmelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
__snake_case : Dict = os.path.join(_lowerCAmelCase , """vocab.txt""" )
with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) )
__snake_case : Optional[int] = CustomTokenizer(_lowerCAmelCase )
__snake_case : Any = CustomProcessor(_lowerCAmelCase , _lowerCAmelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(_lowerCAmelCase )
__snake_case : Dict = AutoProcessor.from_pretrained(_lowerCAmelCase )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def snake_case__ ( self : Dict ):
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Optional[Any] = False
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[Any] = False
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Optional[int] = "AutoFeatureExtractor"
A : List[Any] = "AutoTokenizer"
A : Union[str, Any] = False
try:
AutoConfig.register("""custom""" , _lowerCAmelCase )
AutoFeatureExtractor.register(_lowerCAmelCase , _lowerCAmelCase )
AutoTokenizer.register(_lowerCAmelCase , slow_tokenizer_class=_lowerCAmelCase )
AutoProcessor.register(_lowerCAmelCase , _lowerCAmelCase )
# If remote code is not set, the default is to use local classes.
__snake_case : Any = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" )
self.assertEqual(processor.__class__.__name__ , """NewProcessor""" )
self.assertFalse(processor.special_attribute_present )
self.assertFalse(processor.feature_extractor.special_attribute_present )
self.assertFalse(processor.tokenizer.special_attribute_present )
# If remote code is disabled, we load the local ones.
__snake_case : List[Any] = AutoProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=_lowerCAmelCase )
self.assertEqual(processor.__class__.__name__ , """NewProcessor""" )
self.assertFalse(processor.special_attribute_present )
self.assertFalse(processor.feature_extractor.special_attribute_present )
self.assertFalse(processor.tokenizer.special_attribute_present )
# If remote is enabled, we load from the Hub.
__snake_case : Dict = AutoProcessor.from_pretrained(
"""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=_lowerCAmelCase )
self.assertEqual(processor.__class__.__name__ , """NewProcessor""" )
self.assertTrue(processor.special_attribute_present )
self.assertTrue(processor.feature_extractor.special_attribute_present )
self.assertTrue(processor.tokenizer.special_attribute_present )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def snake_case__ ( self : str ):
__snake_case : str = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" )
def snake_case__ ( self : List[Any] ):
__snake_case : Optional[Any] = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" )
self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" )
@is_staging_test
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
A : Union[str, Any] = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
@classmethod
def snake_case__ ( cls : Optional[Any] ):
__snake_case : List[Any] = TOKEN
HfFolder.save_token(_lowerCAmelCase )
@classmethod
def snake_case__ ( cls : Optional[int] ):
try:
delete_repo(token=cls._token , repo_id="""test-processor""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" )
except HTTPError:
pass
def snake_case__ ( self : Dict ):
__snake_case : str = WavaVecaProcessor.from_pretrained(_lowerCAmelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(_lowerCAmelCase , """test-processor""" ) , push_to_hub=_lowerCAmelCase , use_auth_token=self._token )
__snake_case : Optional[Any] = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''' )
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(_lowerCAmelCase , getattr(new_processor.feature_extractor , _lowerCAmelCase ) )
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() )
def snake_case__ ( self : List[str] ):
__snake_case : Dict = WavaVecaProcessor.from_pretrained(_lowerCAmelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(_lowerCAmelCase , """test-processor-org""" ) , push_to_hub=_lowerCAmelCase , use_auth_token=self._token , organization="""valid_org""" , )
__snake_case : List[str] = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" )
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(_lowerCAmelCase , getattr(new_processor.feature_extractor , _lowerCAmelCase ) )
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() )
def snake_case__ ( self : List[str] ):
CustomFeatureExtractor.register_for_auto_class()
CustomTokenizer.register_for_auto_class()
CustomProcessor.register_for_auto_class()
__snake_case : Optional[Any] = CustomFeatureExtractor.from_pretrained(_lowerCAmelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
__snake_case : List[Any] = os.path.join(_lowerCAmelCase , """vocab.txt""" )
with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) )
__snake_case : Dict = CustomTokenizer(_lowerCAmelCase )
__snake_case : List[Any] = CustomProcessor(_lowerCAmelCase , _lowerCAmelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
create_repo(f'''{USER}/test-dynamic-processor''' , token=self._token )
__snake_case : str = Repository(_lowerCAmelCase , clone_from=f'''{USER}/test-dynamic-processor''' , token=self._token )
processor.save_pretrained(_lowerCAmelCase )
# This has added the proper auto_map field to the feature extractor config
self.assertDictEqual(
processor.feature_extractor.auto_map , {
"""AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""",
"""AutoProcessor""": """custom_processing.CustomProcessor""",
} , )
# This has added the proper auto_map field to the tokenizer config
with open(os.path.join(_lowerCAmelCase , """tokenizer_config.json""" ) ) as f:
__snake_case : int = json.load(_lowerCAmelCase )
self.assertDictEqual(
tokenizer_config["""auto_map"""] , {
"""AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None],
"""AutoProcessor""": """custom_processing.CustomProcessor""",
} , )
# The code has been copied from fixtures
self.assertTrue(os.path.isfile(os.path.join(_lowerCAmelCase , """custom_feature_extraction.py""" ) ) )
self.assertTrue(os.path.isfile(os.path.join(_lowerCAmelCase , """custom_tokenization.py""" ) ) )
self.assertTrue(os.path.isfile(os.path.join(_lowerCAmelCase , """custom_processing.py""" ) ) )
repo.push_to_hub()
__snake_case : Any = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''' , trust_remote_code=_lowerCAmelCase )
# Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module
self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
| 390
| 1
|
"""simple docstring"""
import warnings
from diffusers import StableDiffusionImgaImgPipeline # noqa F401
warnings.warn(
"The `image_to_image.py` script is outdated. Please use directly `from diffusers import"
" StableDiffusionImg2ImgPipeline` instead."
)
| 391
|
"""simple docstring"""
import argparse
import os
import torch
from transformers import (
XLNetConfig,
XLNetForQuestionAnswering,
XLNetForSequenceClassification,
XLNetLMHeadModel,
load_tf_weights_in_xlnet,
)
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
__A : Tuple = {
'''cola''': 2,
'''mnli''': 3,
'''mrpc''': 2,
'''sst-2''': 2,
'''sts-b''': 1,
'''qqp''': 2,
'''qnli''': 2,
'''rte''': 2,
'''wnli''': 2,
}
logging.set_verbosity_info()
def lowercase ( __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : str=None ):
# Initialise PyTorch model
lowercase_ : List[Any] = XLNetConfig.from_json_file(__snake_case )
lowercase_ : Any = finetuning_task.lower() if finetuning_task is not None else ''''''
if finetuning_task in GLUE_TASKS_NUM_LABELS:
print(F'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' )
lowercase_ : Optional[Any] = finetuning_task
lowercase_ : Optional[int] = GLUE_TASKS_NUM_LABELS[finetuning_task]
lowercase_ : List[str] = XLNetForSequenceClassification(__snake_case )
elif "squad" in finetuning_task:
lowercase_ : Dict = finetuning_task
lowercase_ : List[str] = XLNetForQuestionAnswering(__snake_case )
else:
lowercase_ : Union[str, Any] = XLNetLMHeadModel(__snake_case )
# Load weights from tf checkpoint
load_tf_weights_in_xlnet(__snake_case , __snake_case , __snake_case )
# Save pytorch-model
lowercase_ : Tuple = os.path.join(__snake_case , __snake_case )
lowercase_ : Tuple = os.path.join(__snake_case , __snake_case )
print(F'''Save PyTorch model to {os.path.abspath(__snake_case )}''' )
torch.save(model.state_dict() , __snake_case )
print(F'''Save configuration file to {os.path.abspath(__snake_case )}''' )
with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
__A : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--xlnet_config_file''',
default=None,
type=str,
required=True,
help=(
'''The config json file corresponding to the pre-trained XLNet model. \n'''
'''This specifies the model architecture.'''
),
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=str,
required=True,
help='''Path to the folder to store the PyTorch model or dataset/vocab.''',
)
parser.add_argument(
'''--finetuning_task''',
default=None,
type=str,
help='''Name of a task on which the XLNet TensorFlow model was fine-tuned''',
)
__A : int = parser.parse_args()
print(args)
convert_xlnet_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task
)
| 231
| 0
|
"""simple docstring"""
import html
from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from ...utils import is_bsa_available, logging, requires_backends
if is_bsa_available():
import bsa
from bsa import BeautifulSoup
_UpperCamelCase : Tuple = logging.get_logger(__name__)
class snake_case ( UpperCAmelCase ):
def __init__( self : Optional[int] , **A : str ):
'''simple docstring'''
requires_backends(self , ['bs4'] )
super().__init__(**A )
def lowerCamelCase__ ( self : Optional[int] , A : Optional[Any] ):
'''simple docstring'''
a : Union[str, Any] = []
a : str = []
a : List[Any] = element if element.name else element.parent
for parent in child.parents: # type: bs4.element.Tag
a : Optional[Any] = parent.find_all(child.name , recursive=A )
xpath_tags.append(child.name )
xpath_subscripts.append(
0 if 1 == len(A ) else next(i for i, s in enumerate(A , 1 ) if s is child ) )
a : str = parent
xpath_tags.reverse()
xpath_subscripts.reverse()
return xpath_tags, xpath_subscripts
def lowerCamelCase__ ( self : str , A : int ):
'''simple docstring'''
a : Optional[int] = BeautifulSoup(A , 'html.parser' )
a : Dict = []
a : Tuple = []
a : Dict = []
for element in html_code.descendants:
if type(A ) == bsa.element.NavigableString:
if type(element.parent ) != bsa.element.Tag:
continue
a : Union[str, Any] = html.unescape(A ).strip()
if not text_in_this_tag:
continue
all_doc_strings.append(A )
a, a : Any = self.xpath_soup(A )
stringaxtag_seq.append(A )
stringaxsubs_seq.append(A )
if len(A ) != len(A ):
raise ValueError('Number of doc strings and xtags does not correspond' )
if len(A ) != len(A ):
raise ValueError('Number of doc strings and xsubs does not correspond' )
return all_doc_strings, stringaxtag_seq, stringaxsubs_seq
def lowerCamelCase__ ( self : List[Any] , A : str , A : Any ):
'''simple docstring'''
a : List[str] = ''
for tagname, subs in zip(A , A ):
xpath += F'''/{tagname}'''
if subs != 0:
xpath += F'''[{subs}]'''
return xpath
def __call__( self : Any , A : Optional[Any] ):
'''simple docstring'''
a : List[str] = False
# Check that strings has a valid type
if isinstance(A , A ):
a : List[str] = True
elif isinstance(A , (list, tuple) ):
if len(A ) == 0 or isinstance(html_strings[0] , A ):
a : int = True
if not valid_strings:
raise ValueError(
'HTML strings must of type `str`, `List[str]` (batch of examples), '
F'''but is of type {type(A )}.''' )
a : List[str] = bool(isinstance(A , (list, tuple) ) and (isinstance(html_strings[0] , A )) )
if not is_batched:
a : List[Any] = [html_strings]
# Get nodes + xpaths
a : int = []
a : Dict = []
for html_string in html_strings:
a, a, a : List[Any] = self.get_three_from_single(A )
nodes.append(A )
a : str = []
for node, tag_list, sub_list in zip(A , A , A ):
a : int = self.construct_xpath(A , A )
xpath_strings.append(A )
xpaths.append(A )
# return as Dict
a : Optional[int] = {'nodes': nodes, 'xpaths': xpaths}
a : Tuple = BatchFeature(data=A , tensor_type=A )
return encoded_inputs
| 118
|
"""simple docstring"""
import unittest
from transformers import AlbertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class snake_case :
def __init__( self : Optional[int] , A : Optional[Any] , A : Tuple=1_3 , A : Optional[int]=7 , A : Tuple=True , A : Any=True , A : Union[str, Any]=True , A : Any=True , A : List[Any]=9_9 , A : Optional[int]=1_6 , A : Tuple=3_6 , A : str=6 , A : Tuple=6 , A : Optional[Any]=6 , A : Any=3_7 , A : int="gelu" , A : Optional[int]=0.1 , A : Dict=0.1 , A : Union[str, Any]=5_1_2 , A : int=1_6 , A : int=2 , A : Tuple=0.02 , A : Optional[Any]=3 , A : str=4 , A : Tuple=None , ):
'''simple docstring'''
a : int = parent
a : List[str] = batch_size
a : List[str] = seq_length
a : int = is_training
a : int = use_input_mask
a : List[str] = use_token_type_ids
a : int = use_labels
a : int = vocab_size
a : Any = embedding_size
a : Any = hidden_size
a : Any = num_hidden_layers
a : List[Any] = num_hidden_groups
a : Optional[int] = num_attention_heads
a : str = intermediate_size
a : str = hidden_act
a : Dict = hidden_dropout_prob
a : List[str] = attention_probs_dropout_prob
a : int = max_position_embeddings
a : Optional[int] = type_vocab_size
a : int = type_sequence_label_size
a : Tuple = initializer_range
a : str = num_labels
a : Union[str, Any] = num_choices
a : Dict = scope
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
a : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a : int = None
if self.use_input_mask:
a : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
a : Union[str, Any] = None
if self.use_token_type_ids:
a : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
a : List[str] = None
a : Dict = None
a : Dict = None
if self.use_labels:
a : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
a : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
a : int = ids_tensor([self.batch_size] , self.num_choices )
a : int = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
return AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , )
def lowerCamelCase__ ( self : Optional[int] , A : Tuple , A : Optional[Any] , A : Optional[int] , A : Dict , A : List[str] , A : Optional[Any] , A : str ):
'''simple docstring'''
a : Dict = AlbertModel(config=A )
model.to(A )
model.eval()
a : List[str] = model(A , attention_mask=A , token_type_ids=A )
a : str = model(A , token_type_ids=A )
a : int = model(A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCamelCase__ ( self : List[Any] , A : int , A : Any , A : List[str] , A : List[str] , A : Optional[int] , A : Tuple , A : Optional[int] ):
'''simple docstring'''
a : int = AlbertForPreTraining(config=A )
model.to(A )
model.eval()
a : Dict = model(
A , attention_mask=A , token_type_ids=A , labels=A , sentence_order_label=A , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) )
def lowerCamelCase__ ( self : int , A : Tuple , A : Any , A : Dict , A : Optional[int] , A : Dict , A : int , A : str ):
'''simple docstring'''
a : Optional[int] = AlbertForMaskedLM(config=A )
model.to(A )
model.eval()
a : Optional[Any] = model(A , attention_mask=A , token_type_ids=A , labels=A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCamelCase__ ( self : int , A : Union[str, Any] , A : int , A : Dict , A : Tuple , A : str , A : List[Any] , A : str ):
'''simple docstring'''
a : Optional[int] = AlbertForQuestionAnswering(config=A )
model.to(A )
model.eval()
a : List[str] = model(
A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase__ ( self : Tuple , A : List[Any] , A : List[str] , A : List[str] , A : Any , A : List[Any] , A : Dict , A : str ):
'''simple docstring'''
a : Optional[int] = self.num_labels
a : Optional[Any] = AlbertForSequenceClassification(A )
model.to(A )
model.eval()
a : str = model(A , attention_mask=A , token_type_ids=A , labels=A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase__ ( self : Optional[Any] , A : List[Any] , A : Optional[int] , A : List[Any] , A : str , A : Dict , A : Optional[Any] , A : Any ):
'''simple docstring'''
a : Optional[int] = self.num_labels
a : str = AlbertForTokenClassification(config=A )
model.to(A )
model.eval()
a : List[str] = model(A , attention_mask=A , token_type_ids=A , labels=A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCamelCase__ ( self : Dict , A : Optional[int] , A : int , A : int , A : List[Any] , A : List[str] , A : Optional[Any] , A : str ):
'''simple docstring'''
a : List[str] = self.num_choices
a : str = AlbertForMultipleChoice(config=A )
model.to(A )
model.eval()
a : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
a : str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
a : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
a : Union[str, Any] = model(
A , attention_mask=A , token_type_ids=A , labels=A , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCamelCase__ ( self : str ):
'''simple docstring'''
a : Tuple = self.prepare_config_and_inputs()
(
(
a
), (
a
), (
a
), (
a
), (
a
), (
a
), (
a
),
) : Dict = config_and_inputs
a : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class snake_case ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ):
__magic_name__ = (
(
AlbertModel,
AlbertForPreTraining,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertForQuestionAnswering,
)
if is_torch_available()
else ()
)
__magic_name__ = (
{
'''feature-extraction''': AlbertModel,
'''fill-mask''': AlbertForMaskedLM,
'''question-answering''': AlbertForQuestionAnswering,
'''text-classification''': AlbertForSequenceClassification,
'''token-classification''': AlbertForTokenClassification,
'''zero-shot''': AlbertForSequenceClassification,
}
if is_torch_available()
else {}
)
__magic_name__ = True
def lowerCamelCase__ ( self : Union[str, Any] , A : List[str] , A : Tuple , A : Tuple=False ):
'''simple docstring'''
a : List[Any] = super()._prepare_for_class(A , A , return_labels=A )
if return_labels:
if model_class in get_values(A ):
a : Union[str, Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=A )
a : Any = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=A )
return inputs_dict
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
a : int = AlbertModelTester(self )
a : List[Any] = ConfigTester(self , config_class=A , hidden_size=3_7 )
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
a : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
a : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*A )
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
a : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*A )
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
a : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*A )
def lowerCamelCase__ ( self : Tuple ):
'''simple docstring'''
a : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*A )
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
a : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*A )
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
a : Optional[int] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
a : Optional[Any] = type
self.model_tester.create_and_check_model(*A )
@slow
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a : Tuple = AlbertModel.from_pretrained(A )
self.assertIsNotNone(A )
@require_torch
class snake_case ( unittest.TestCase ):
@slow
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
a : List[Any] = AlbertModel.from_pretrained('albert-base-v2' )
a : Union[str, Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] )
a : str = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
a : Optional[Any] = model(A , attention_mask=A )[0]
a : List[Any] = torch.Size((1, 1_1, 7_6_8) )
self.assertEqual(output.shape , A )
a : int = torch.tensor(
[[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , A , atol=1E-4 ) )
| 118
| 1
|
'''simple docstring'''
import sys
from collections import defaultdict
class a__ :
def __init__( self : Optional[Any] ):
"""simple docstring"""
__lowerCamelCase = []
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , a : List[str] ):
"""simple docstring"""
return self.node_position[vertex]
def SCREAMING_SNAKE_CASE__ ( self : int , a : Dict , a : Any ):
"""simple docstring"""
__lowerCamelCase = pos
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : Tuple , a : str , a : Dict , a : Tuple ):
"""simple docstring"""
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
__lowerCamelCase = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
__lowerCamelCase = 2 * start + 1
else:
__lowerCamelCase = 2 * start + 2
if heap[smallest_child] < heap[start]:
__lowerCamelCase , __lowerCamelCase = heap[smallest_child], positions[smallest_child]
__lowerCamelCase , __lowerCamelCase = (
heap[start],
positions[start],
)
__lowerCamelCase , __lowerCamelCase = temp, tempa
__lowerCamelCase = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , a )
self.top_to_bottom(a , a , a , a )
def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : Union[str, Any] , a : Any , a : str , a : Tuple ):
"""simple docstring"""
__lowerCamelCase = position[index]
while index != 0:
__lowerCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
__lowerCamelCase = heap[parent]
__lowerCamelCase = position[parent]
self.set_position(position[parent] , a )
else:
__lowerCamelCase = val
__lowerCamelCase = temp
self.set_position(a , a )
break
__lowerCamelCase = parent
else:
__lowerCamelCase = val
__lowerCamelCase = temp
self.set_position(a , 0 )
def SCREAMING_SNAKE_CASE__ ( self : str , a : List[Any] , a : Union[str, Any] ):
"""simple docstring"""
__lowerCamelCase = len(a ) // 2 - 1
for i in range(a , -1 , -1 ):
self.top_to_bottom(a , a , len(a ) , a )
def SCREAMING_SNAKE_CASE__ ( self : Dict , a : List[str] , a : Union[str, Any] ):
"""simple docstring"""
__lowerCamelCase = positions[0]
__lowerCamelCase = sys.maxsize
self.top_to_bottom(a , 0 , len(a ) , a )
return temp
def __lowerCAmelCase ( UpperCamelCase__ ) -> Optional[int]:
__lowerCamelCase = Heap()
__lowerCamelCase = [0] * len(UpperCamelCase__ )
__lowerCamelCase = [-1] * len(UpperCamelCase__ ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
__lowerCamelCase = [] # Heap of Distance of vertices from their neighboring vertex
__lowerCamelCase = []
for vertex in range(len(UpperCamelCase__ ) ):
distance_tv.append(sys.maxsize )
positions.append(UpperCamelCase__ )
heap.node_position.append(UpperCamelCase__ )
__lowerCamelCase = []
__lowerCamelCase = 1
__lowerCamelCase = sys.maxsize
for neighbor, distance in adjacency_list[0]:
__lowerCamelCase = 0
__lowerCamelCase = distance
heap.heapify(UpperCamelCase__ , UpperCamelCase__ )
for _ in range(1 , len(UpperCamelCase__ ) ):
__lowerCamelCase = heap.delete_minimum(UpperCamelCase__ , UpperCamelCase__ )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
__lowerCamelCase = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(UpperCamelCase__ )]
):
__lowerCamelCase = distance
heap.bottom_to_top(
UpperCamelCase__ , heap.get_position(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ )
__lowerCamelCase = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
__UpperCAmelCase =int(input("Enter number of edges: ").strip())
__UpperCAmelCase =defaultdict(list)
for _ in range(edges_number):
__UpperCAmelCase =[int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 546
|
'''simple docstring'''
import numpy as np
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str:
__lowerCamelCase = int(np.ceil((x_end - xa) / h ) )
__lowerCamelCase = np.zeros((n + 1,) )
__lowerCamelCase = ya
__lowerCamelCase = xa
for k in range(UpperCamelCase__ ):
__lowerCamelCase = f(UpperCamelCase__ , y[k] )
__lowerCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka )
__lowerCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka )
__lowerCamelCase = f(x + h , y[k] + h * ka )
__lowerCamelCase = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka)
x += h
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 546
| 1
|
'''simple docstring'''
from queue import PriorityQueue
from typing import Any
import numpy as np
def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) ->float | int:
for nxt, d in graph[v]:
if nxt in visited_forward:
continue
UpperCAmelCase = cst_fwd.get(lowerCAmelCase_ , np.inf )
UpperCAmelCase = cst_fwd[v] + d
if new_cost_f < old_cost_f:
queue.put((new_cost_f, nxt) )
UpperCAmelCase = new_cost_f
UpperCAmelCase = v
if nxt in visited_backward:
if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance:
UpperCAmelCase = cst_fwd[v] + d + cst_bwd[nxt]
return shortest_distance
def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ->int:
UpperCAmelCase = -1
UpperCAmelCase = set()
UpperCAmelCase = set()
UpperCAmelCase = {source: 0}
UpperCAmelCase = {destination: 0}
UpperCAmelCase = {source: None}
UpperCAmelCase = {destination: None}
UpperCAmelCase = PriorityQueue()
UpperCAmelCase = PriorityQueue()
UpperCAmelCase = np.inf
queue_forward.put((0, source) )
queue_backward.put((0, destination) )
if source == destination:
return 0
while not queue_forward.empty() and not queue_backward.empty():
UpperCAmelCase , UpperCAmelCase = queue_forward.get()
visited_forward.add(lowerCAmelCase_ )
UpperCAmelCase , UpperCAmelCase = queue_backward.get()
visited_backward.add(lowerCAmelCase_ )
UpperCAmelCase = pass_and_relaxation(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , )
UpperCAmelCase = pass_and_relaxation(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , )
if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance:
break
if shortest_distance != np.inf:
UpperCAmelCase = shortest_distance
return shortest_path_distance
__a = {
"""B""": [["""C""", 1]],
"""C""": [["""D""", 1]],
"""D""": [["""F""", 1]],
"""E""": [["""B""", 1], ["""G""", 2]],
"""F""": [],
"""G""": [["""F""", 1]],
}
__a = {
"""B""": [["""E""", 1]],
"""C""": [["""B""", 1]],
"""D""": [["""C""", 1]],
"""F""": [["""D""", 1], ["""G""", 1]],
"""E""": [[None, np.inf]],
"""G""": [["""E""", 2]],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
| 719
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a = logging.get_logger(__name__)
__a = {
"""facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""",
}
class __lowercase ( __snake_case ):
UpperCamelCase = '''nllb-moe'''
UpperCamelCase = ['''past_key_values''']
UpperCamelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self : Optional[int] , __lowerCamelCase : Optional[Any]=1_2_8_1_1_2 , __lowerCamelCase : Dict=1_0_2_4 , __lowerCamelCase : Optional[int]=1_2 , __lowerCamelCase : Union[str, Any]=4_0_9_6 , __lowerCamelCase : List[str]=1_6 , __lowerCamelCase : List[str]=1_2 , __lowerCamelCase : int=4_0_9_6 , __lowerCamelCase : Tuple=1_6 , __lowerCamelCase : str=0.05 , __lowerCamelCase : List[str]=0.05 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : str="relu" , __lowerCamelCase : Dict=1_0_2_4 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Any=False , __lowerCamelCase : Tuple="float32" , __lowerCamelCase : Any=False , __lowerCamelCase : Optional[int]=1_2_8 , __lowerCamelCase : List[str]=6_4 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : str=0.001 , __lowerCamelCase : Optional[int]=0.001 , __lowerCamelCase : Tuple="all" , __lowerCamelCase : Any=False , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : List[str]=1.0 , __lowerCamelCase : Dict=0.2 , __lowerCamelCase : Union[str, Any]=1 , __lowerCamelCase : int=0 , __lowerCamelCase : Dict=2 , __lowerCamelCase : int=False , **__lowerCamelCase : str , ) -> int:
"""simple docstring"""
UpperCAmelCase = vocab_size
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = d_model
UpperCAmelCase = encoder_ffn_dim
UpperCAmelCase = encoder_layers
UpperCAmelCase = encoder_attention_heads
UpperCAmelCase = decoder_ffn_dim
UpperCAmelCase = decoder_layers
UpperCAmelCase = decoder_attention_heads
UpperCAmelCase = dropout
UpperCAmelCase = attention_dropout
UpperCAmelCase = activation_dropout
UpperCAmelCase = activation_function
UpperCAmelCase = init_std
UpperCAmelCase = encoder_layerdrop
UpperCAmelCase = decoder_layerdrop
UpperCAmelCase = use_cache
UpperCAmelCase = encoder_layers
UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True
UpperCAmelCase = router_z_loss_coef
UpperCAmelCase = router_aux_loss_coef
UpperCAmelCase = decoder_sparse_step
UpperCAmelCase = encoder_sparse_step
UpperCAmelCase = num_experts
UpperCAmelCase = expert_capacity
UpperCAmelCase = router_bias
if router_dtype not in ["float32", "float16", "bfloat16"]:
raise ValueError(F"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" )
UpperCAmelCase = router_dtype
UpperCAmelCase = router_ignore_padding_tokens
UpperCAmelCase = batch_prioritized_routing
UpperCAmelCase = second_expert_policy
UpperCAmelCase = normalize_router_prob_before_dropping
UpperCAmelCase = moe_eval_capacity_token_fraction
UpperCAmelCase = moe_token_dropout
UpperCAmelCase = output_router_logits
super().__init__(
pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , **__lowerCamelCase , )
| 627
| 0
|
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class A ( _a ,unittest.TestCase ):
lowercase_ = KandinskyImgaImgPipeline
lowercase_ = ['prompt', 'image_embeds', 'negative_image_embeds', 'image']
lowercase_ = [
'prompt',
'negative_prompt',
'image_embeds',
'negative_image_embeds',
'image',
]
lowercase_ = [
'generator',
'height',
'width',
'strength',
'guidance_scale',
'negative_prompt',
'num_inference_steps',
'return_dict',
'guidance_scale',
'num_images_per_prompt',
'output_type',
'return_dict',
]
lowercase_ = False
@property
def __lowerCAmelCase ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Optional[Any] ) -> str:
"""simple docstring"""
return 32
@property
def __lowerCAmelCase ( self : Dict ) -> Optional[int]:
"""simple docstring"""
return self.time_input_dim
@property
def __lowerCAmelCase ( self : Optional[Any] ) -> str:
"""simple docstring"""
return self.time_input_dim * 4
@property
def __lowerCAmelCase ( self : int ) -> Optional[Any]:
"""simple docstring"""
return 1_00
@property
def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
_a = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' )
return tokenizer
@property
def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
torch.manual_seed(0 )
_a = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , )
_a = MultilingualCLIP(lowerCAmelCase_ )
_a = text_encoder.eval()
return text_encoder
@property
def __lowerCAmelCase ( self : List[str] ) -> Tuple:
"""simple docstring"""
torch.manual_seed(0 )
_a = {
'''in_channels''': 4,
# Out channels is double in channels because predicts mean and variance
'''out_channels''': 8,
'''addition_embed_type''': '''text_image''',
'''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''),
'''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''),
'''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''',
'''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2),
'''layers_per_block''': 1,
'''encoder_hid_dim''': self.text_embedder_hidden_size,
'''encoder_hid_dim_type''': '''text_image_proj''',
'''cross_attention_dim''': self.cross_attention_dim,
'''attention_head_dim''': 4,
'''resnet_time_scale_shift''': '''scale_shift''',
'''class_embed_type''': None,
}
_a = UNetaDConditionModel(**lowerCAmelCase_ )
return model
@property
def __lowerCAmelCase ( self : Optional[Any] ) -> int:
"""simple docstring"""
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def __lowerCAmelCase ( self : Any ) -> str:
"""simple docstring"""
torch.manual_seed(0 )
_a = VQModel(**self.dummy_movq_kwargs )
return model
def __lowerCAmelCase ( self : int ) -> str:
"""simple docstring"""
_a = self.dummy_text_encoder
_a = self.dummy_tokenizer
_a = self.dummy_unet
_a = self.dummy_movq
_a = {
'''num_train_timesteps''': 10_00,
'''beta_schedule''': '''linear''',
'''beta_start''': 0.0_0_0_8_5,
'''beta_end''': 0.0_1_2,
'''clip_sample''': False,
'''set_alpha_to_one''': False,
'''steps_offset''': 0,
'''prediction_type''': '''epsilon''',
'''thresholding''': False,
}
_a = DDIMScheduler(**lowerCAmelCase_ )
_a = {
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''unet''': unet,
'''scheduler''': scheduler,
'''movq''': movq,
}
return components
def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]=0 ) -> List[str]:
"""simple docstring"""
_a = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ )
_a = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowerCAmelCase_ )
# create init_image
_a = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ )
_a = image.cpu().permute(0 , 2 , 3 , 1 )[0]
_a = Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert('''RGB''' ).resize((2_56, 2_56) )
if str(lowerCAmelCase_ ).startswith('''mps''' ):
_a = torch.manual_seed(lowerCAmelCase_ )
else:
_a = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ )
_a = {
'''prompt''': '''horse''',
'''image''': init_image,
'''image_embeds''': image_embeds,
'''negative_image_embeds''': negative_image_embeds,
'''generator''': generator,
'''height''': 64,
'''width''': 64,
'''num_inference_steps''': 10,
'''guidance_scale''': 7.0,
'''strength''': 0.2,
'''output_type''': '''np''',
}
return inputs
def __lowerCAmelCase ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
_a = '''cpu'''
_a = self.get_dummy_components()
_a = self.pipeline_class(**lowerCAmelCase_ )
_a = pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
_a = pipe(**self.get_dummy_inputs(lowerCAmelCase_ ) )
_a = output.images
_a = pipe(
**self.get_dummy_inputs(lowerCAmelCase_ ) , return_dict=lowerCAmelCase_ , )[0]
_a = image[0, -3:, -3:, -1]
_a = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_a = np.array(
[0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), F' expected_slice {expected_slice}, but got {image_slice.flatten()}'
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'
@slow
@require_torch_gpu
class A ( unittest.TestCase ):
def __lowerCAmelCase ( self : Optional[Any] ) -> Any:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
_a = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/kandinsky/kandinsky_img2img_frog.npy''' )
_a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' )
_a = '''A red cartoon frog, 4k'''
_a = KandinskyPriorPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa )
pipe_prior.to(lowerCAmelCase_ )
_a = KandinskyImgaImgPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa )
_a = pipeline.to(lowerCAmelCase_ )
pipeline.set_progress_bar_config(disable=lowerCAmelCase_ )
_a = torch.Generator(device='''cpu''' ).manual_seed(0 )
_a , _a = pipe_prior(
lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple()
_a = pipeline(
lowerCAmelCase_ , image=lowerCAmelCase_ , image_embeds=lowerCAmelCase_ , negative_image_embeds=lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type='''np''' , )
_a = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(lowerCAmelCase_ , lowerCAmelCase_ )
| 22
|
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class a_ ( unittest.TestCase ):
def lowerCAmelCase( self : int ):
"""simple docstring"""
snake_case : str = tempfile.mkdtemp()
# fmt: off
snake_case : str = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''']
# fmt: on
snake_case : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
snake_case : str = {
'''do_resize''': True,
'''size''': {'''height''': 18, '''width''': 18},
'''do_normalize''': True,
'''image_mean''': [0.5, 0.5, 0.5],
'''image_std''': [0.5, 0.5, 0.5],
}
snake_case : Optional[Any] = os.path.join(self.tmpdirname , UpperCAmelCase__ )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(UpperCAmelCase__ , UpperCAmelCase__ )
def lowerCAmelCase( self : Optional[Any] , **UpperCAmelCase__ : Any ):
"""simple docstring"""
return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase__ )
def lowerCAmelCase( self : Dict , **UpperCAmelCase__ : str ):
"""simple docstring"""
return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase__ )
def lowerCAmelCase( self : Union[str, Any] ):
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def lowerCAmelCase( self : str ):
"""simple docstring"""
snake_case : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
snake_case : Tuple = [Image.fromarray(np.moveaxis(UpperCAmelCase__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowerCAmelCase( self : Optional[int] ):
"""simple docstring"""
snake_case : str = self.get_tokenizer()
snake_case : List[str] = self.get_image_processor()
snake_case : Tuple = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ )
processor.save_pretrained(self.tmpdirname )
snake_case : Dict = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase__ )
def lowerCAmelCase( self : Optional[Any] ):
"""simple docstring"""
snake_case : Optional[Any] = VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
snake_case : List[str] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
snake_case : Any = self.get_image_processor(do_normalize=UpperCAmelCase__ , padding_value=1.0 )
snake_case : Tuple = VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase__ )
def lowerCAmelCase( self : List[Any] ):
"""simple docstring"""
snake_case : Optional[Any] = self.get_image_processor()
snake_case : Any = self.get_tokenizer()
snake_case : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ )
snake_case : Optional[Any] = self.prepare_image_inputs()
snake_case : List[Any] = image_processor(UpperCAmelCase__ , return_tensors='''np''' )
snake_case : Union[str, Any] = processor(images=UpperCAmelCase__ , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def lowerCAmelCase( self : List[Any] ):
"""simple docstring"""
snake_case : Any = self.get_image_processor()
snake_case : str = self.get_tokenizer()
snake_case : str = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ )
snake_case : Dict = '''lower newer'''
snake_case : List[str] = processor(text=UpperCAmelCase__ )
snake_case : Dict = tokenizer(UpperCAmelCase__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowerCAmelCase( self : Union[str, Any] ):
"""simple docstring"""
snake_case : Union[str, Any] = self.get_image_processor()
snake_case : Tuple = self.get_tokenizer()
snake_case : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ )
snake_case : Optional[Any] = '''lower newer'''
snake_case : List[Any] = self.prepare_image_inputs()
snake_case : List[str] = processor(text=UpperCAmelCase__ , images=UpperCAmelCase__ )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with self.assertRaises(UpperCAmelCase__ ):
processor()
def lowerCAmelCase( self : List[Any] ):
"""simple docstring"""
snake_case : int = self.get_image_processor()
snake_case : Dict = self.get_tokenizer()
snake_case : List[Any] = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ )
snake_case : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
snake_case : Optional[int] = processor.batch_decode(UpperCAmelCase__ )
snake_case : str = tokenizer.batch_decode(UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
def lowerCAmelCase( self : Any ):
"""simple docstring"""
snake_case : Tuple = self.get_image_processor()
snake_case : Tuple = self.get_tokenizer()
snake_case : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase__ , image_processor=UpperCAmelCase__ )
snake_case : str = '''lower newer'''
snake_case : Optional[Any] = self.prepare_image_inputs()
snake_case : Union[str, Any] = processor(text=UpperCAmelCase__ , images=UpperCAmelCase__ )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 598
| 0
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
lowercase_ = {
"Acehnese Arabic": "ace_Arab",
"Acehnese Latin": "ace_Latn",
"Mesopotamian Arabic": "acm_Arab",
"Ta\'izzi-Adeni Arabic": "acq_Arab",
"Tunisian Arabic": "aeb_Arab",
"Afrikaans": "afr_Latn",
"South Levantine Arabic": "ajp_Arab",
"Akan": "aka_Latn",
"Amharic": "amh_Ethi",
"North Levantine Arabic": "apc_Arab",
"Modern Standard Arabic": "arb_Arab",
"Modern Standard Arabic Romanized": "arb_Latn",
"Najdi Arabic": "ars_Arab",
"Moroccan Arabic": "ary_Arab",
"Egyptian Arabic": "arz_Arab",
"Assamese": "asm_Beng",
"Asturian": "ast_Latn",
"Awadhi": "awa_Deva",
"Central Aymara": "ayr_Latn",
"South Azerbaijani": "azb_Arab",
"North Azerbaijani": "azj_Latn",
"Bashkir": "bak_Cyrl",
"Bambara": "bam_Latn",
"Balinese": "ban_Latn",
"Belarusian": "bel_Cyrl",
"Bemba": "bem_Latn",
"Bengali": "ben_Beng",
"Bhojpuri": "bho_Deva",
"Banjar Arabic": "bjn_Arab",
"Banjar Latin": "bjn_Latn",
"Standard Tibetan": "bod_Tibt",
"Bosnian": "bos_Latn",
"Buginese": "bug_Latn",
"Bulgarian": "bul_Cyrl",
"Catalan": "cat_Latn",
"Cebuano": "ceb_Latn",
"Czech": "ces_Latn",
"Chokwe": "cjk_Latn",
"Central Kurdish": "ckb_Arab",
"Crimean Tatar": "crh_Latn",
"Welsh": "cym_Latn",
"Danish": "dan_Latn",
"German": "deu_Latn",
"Southwestern Dinka": "dik_Latn",
"Dyula": "dyu_Latn",
"Dzongkha": "dzo_Tibt",
"Greek": "ell_Grek",
"English": "eng_Latn",
"Esperanto": "epo_Latn",
"Estonian": "est_Latn",
"Basque": "eus_Latn",
"Ewe": "ewe_Latn",
"Faroese": "fao_Latn",
"Fijian": "fij_Latn",
"Finnish": "fin_Latn",
"Fon": "fon_Latn",
"French": "fra_Latn",
"Friulian": "fur_Latn",
"Nigerian Fulfulde": "fuv_Latn",
"Scottish Gaelic": "gla_Latn",
"Irish": "gle_Latn",
"Galician": "glg_Latn",
"Guarani": "grn_Latn",
"Gujarati": "guj_Gujr",
"Haitian Creole": "hat_Latn",
"Hausa": "hau_Latn",
"Hebrew": "heb_Hebr",
"Hindi": "hin_Deva",
"Chhattisgarhi": "hne_Deva",
"Croatian": "hrv_Latn",
"Hungarian": "hun_Latn",
"Armenian": "hye_Armn",
"Igbo": "ibo_Latn",
"Ilocano": "ilo_Latn",
"Indonesian": "ind_Latn",
"Icelandic": "isl_Latn",
"Italian": "ita_Latn",
"Javanese": "jav_Latn",
"Japanese": "jpn_Jpan",
"Kabyle": "kab_Latn",
"Jingpho": "kac_Latn",
"Kamba": "kam_Latn",
"Kannada": "kan_Knda",
"Kashmiri Arabic": "kas_Arab",
"Kashmiri Devanagari": "kas_Deva",
"Georgian": "kat_Geor",
"Central Kanuri Arabic": "knc_Arab",
"Central Kanuri Latin": "knc_Latn",
"Kazakh": "kaz_Cyrl",
"Kabiyè": "kbp_Latn",
"Kabuverdianu": "kea_Latn",
"Khmer": "khm_Khmr",
"Kikuyu": "kik_Latn",
"Kinyarwanda": "kin_Latn",
"Kyrgyz": "kir_Cyrl",
"Kimbundu": "kmb_Latn",
"Northern Kurdish": "kmr_Latn",
"Kikongo": "kon_Latn",
"Korean": "kor_Hang",
"Lao": "lao_Laoo",
"Ligurian": "lij_Latn",
"Limburgish": "lim_Latn",
"Lingala": "lin_Latn",
"Lithuanian": "lit_Latn",
"Lombard": "lmo_Latn",
"Latgalian": "ltg_Latn",
"Luxembourgish": "ltz_Latn",
"Luba-Kasai": "lua_Latn",
"Ganda": "lug_Latn",
"Luo": "luo_Latn",
"Mizo": "lus_Latn",
"Standard Latvian": "lvs_Latn",
"Magahi": "mag_Deva",
"Maithili": "mai_Deva",
"Malayalam": "mal_Mlym",
"Marathi": "mar_Deva",
"Minangkabau Arabic ": "min_Arab",
"Minangkabau Latin": "min_Latn",
"Macedonian": "mkd_Cyrl",
"Plateau Malagasy": "plt_Latn",
"Maltese": "mlt_Latn",
"Meitei Bengali": "mni_Beng",
"Halh Mongolian": "khk_Cyrl",
"Mossi": "mos_Latn",
"Maori": "mri_Latn",
"Burmese": "mya_Mymr",
"Dutch": "nld_Latn",
"Norwegian Nynorsk": "nno_Latn",
"Norwegian Bokmål": "nob_Latn",
"Nepali": "npi_Deva",
"Northern Sotho": "nso_Latn",
"Nuer": "nus_Latn",
"Nyanja": "nya_Latn",
"Occitan": "oci_Latn",
"West Central Oromo": "gaz_Latn",
"Odia": "ory_Orya",
"Pangasinan": "pag_Latn",
"Eastern Panjabi": "pan_Guru",
"Papiamento": "pap_Latn",
"Western Persian": "pes_Arab",
"Polish": "pol_Latn",
"Portuguese": "por_Latn",
"Dari": "prs_Arab",
"Southern Pashto": "pbt_Arab",
"Ayacucho Quechua": "quy_Latn",
"Romanian": "ron_Latn",
"Rundi": "run_Latn",
"Russian": "rus_Cyrl",
"Sango": "sag_Latn",
"Sanskrit": "san_Deva",
"Santali": "sat_Olck",
"Sicilian": "scn_Latn",
"Shan": "shn_Mymr",
"Sinhala": "sin_Sinh",
"Slovak": "slk_Latn",
"Slovenian": "slv_Latn",
"Samoan": "smo_Latn",
"Shona": "sna_Latn",
"Sindhi": "snd_Arab",
"Somali": "som_Latn",
"Southern Sotho": "sot_Latn",
"Spanish": "spa_Latn",
"Tosk Albanian": "als_Latn",
"Sardinian": "srd_Latn",
"Serbian": "srp_Cyrl",
"Swati": "ssw_Latn",
"Sundanese": "sun_Latn",
"Swedish": "swe_Latn",
"Swahili": "swh_Latn",
"Silesian": "szl_Latn",
"Tamil": "tam_Taml",
"Tatar": "tat_Cyrl",
"Telugu": "tel_Telu",
"Tajik": "tgk_Cyrl",
"Tagalog": "tgl_Latn",
"Thai": "tha_Thai",
"Tigrinya": "tir_Ethi",
"Tamasheq Latin": "taq_Latn",
"Tamasheq Tifinagh": "taq_Tfng",
"Tok Pisin": "tpi_Latn",
"Tswana": "tsn_Latn",
"Tsonga": "tso_Latn",
"Turkmen": "tuk_Latn",
"Tumbuka": "tum_Latn",
"Turkish": "tur_Latn",
"Twi": "twi_Latn",
"Central Atlas Tamazight": "tzm_Tfng",
"Uyghur": "uig_Arab",
"Ukrainian": "ukr_Cyrl",
"Umbundu": "umb_Latn",
"Urdu": "urd_Arab",
"Northern Uzbek": "uzn_Latn",
"Venetian": "vec_Latn",
"Vietnamese": "vie_Latn",
"Waray": "war_Latn",
"Wolof": "wol_Latn",
"Xhosa": "xho_Latn",
"Eastern Yiddish": "ydd_Hebr",
"Yoruba": "yor_Latn",
"Yue Chinese": "yue_Hant",
"Chinese Simplified": "zho_Hans",
"Chinese Traditional": "zho_Hant",
"Standard Malay": "zsm_Latn",
"Zulu": "zul_Latn",
}
class __A ( _a ):
'''simple docstring'''
__lowerCamelCase : Any = 'facebook/nllb-200-distilled-600M'
__lowerCamelCase : Any = (
'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should '
'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, '
'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in '
'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.'
)
__lowerCamelCase : Dict = 'translator'
__lowerCamelCase : Dict = AutoTokenizer
__lowerCamelCase : Any = AutoModelForSeqaSeqLM
__lowerCamelCase : Dict = LANGUAGE_CODES
__lowerCamelCase : List[Any] = ['text', 'text', 'text']
__lowerCamelCase : Optional[Any] = ['text']
def a__ (self , A , A , A ) -> List[Any]:
"""simple docstring"""
if src_lang not in self.lang_to_code:
raise ValueError(f'''{src_lang} is not a supported language.''' )
if tgt_lang not in self.lang_to_code:
raise ValueError(f'''{tgt_lang} is not a supported language.''' )
_a = self.lang_to_code[src_lang]
_a = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
_A , return_tensors='''pt''' , src_lang=_A , tgt_lang=_A )
def a__ (self , A ) -> Optional[int]:
"""simple docstring"""
return self.model.generate(**_A )
def a__ (self , A ) -> Optional[Any]:
"""simple docstring"""
return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=_A )
| 714
|
'''simple docstring'''
# This is the module that test_patching.py uses to test patch_submodule()
import os # noqa: this is just for tests
import os as renamed_os # noqa: this is just for tests
from os import path # noqa: this is just for tests
from os import path as renamed_path # noqa: this is just for tests
from os.path import join # noqa: this is just for tests
from os.path import join as renamed_join # noqa: this is just for tests
lowercase_ = open # noqa: we just need to have a builtin inside this module to test it properly
| 352
| 0
|
"""simple docstring"""
import os
import unittest
from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class _lowerCAmelCase ( snake_case_ , unittest.TestCase ):
__UpperCAmelCase : Union[str, Any] = PhobertTokenizer
__UpperCAmelCase : Any = False
def lowerCamelCase ( self ) -> int:
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
snake_case : Optional[int] = ["T@@", "i", "I", "R@@", "r", "e@@"]
snake_case : List[Any] = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) )
snake_case : Tuple = ["#version: 0.2", "l à</w>"]
snake_case : Union[str, Any] = {"unk_token": "<unk>"}
snake_case : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
snake_case : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
for token in vocab_tokens:
fp.write(F'{token} {vocab_tokens[token]}\n' )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(UpperCamelCase__ ) )
def lowerCamelCase ( self , **UpperCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return PhobertTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ )
def lowerCamelCase ( self , UpperCamelCase__ ) -> List[Any]:
'''simple docstring'''
snake_case : Union[str, Any] = "Tôi là VinAI Research"
snake_case : List[str] = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>"
return input_text, output_text
def lowerCamelCase ( self ) -> Any:
'''simple docstring'''
snake_case : Any = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
snake_case : List[str] = "Tôi là VinAI Research"
snake_case : Tuple = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split()
snake_case : str = tokenizer.tokenize(UpperCamelCase__ )
print(UpperCamelCase__ )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
snake_case : Any = tokens + [tokenizer.unk_token]
snake_case : Tuple = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ )
| 178
|
"""simple docstring"""
__snake_case = """ABCDEFGHIJKLMNOPQRSTUVWXYZ"""
def __lowerCAmelCase ( ) -> None:
"""simple docstring"""
snake_case : str = input("Enter message: " )
snake_case : Tuple = input("Enter key [alphanumeric]: " )
snake_case : Union[str, Any] = input("Encrypt/Decrypt [e/d]: " )
if mode.lower().startswith("e" ):
snake_case : str = "encrypt"
snake_case : Optional[int] = encrypt_message(lowercase , lowercase )
elif mode.lower().startswith("d" ):
snake_case : List[Any] = "decrypt"
snake_case : Tuple = decrypt_message(lowercase , lowercase )
print(F'\n{mode.title()}ed message:' )
print(lowercase )
def __lowerCAmelCase ( lowercase : str , lowercase : str ) -> str:
"""simple docstring"""
return translate_message(lowercase , lowercase , "encrypt" )
def __lowerCAmelCase ( lowercase : str , lowercase : str ) -> str:
"""simple docstring"""
return translate_message(lowercase , lowercase , "decrypt" )
def __lowerCAmelCase ( lowercase : str , lowercase : str , lowercase : str ) -> str:
"""simple docstring"""
snake_case : List[Any] = []
snake_case : List[str] = 0
snake_case : List[Any] = key.upper()
for symbol in message:
snake_case : Optional[int] = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(lowercase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(lowercase ):
snake_case : List[str] = 0
else:
translated.append(lowercase )
return "".join(lowercase )
if __name__ == "__main__":
main()
| 178
| 1
|
from typing import List, Optional, Tuple, Union
import torch
from ...schedulers import DDIMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class lowerCAmelCase_ ( _a):
def __init__( self : List[Any] , __A : int , __A : Any ) ->Optional[Any]:
"""simple docstring"""
super().__init__()
# make sure scheduler can always be converted to DDIM
a__ :List[str] = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=__A , scheduler=__A )
@torch.no_grad()
def __call__( self : Optional[Any] , __A : int = 1 , __A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __A : float = 0.0 , __A : int = 50 , __A : Optional[bool] = None , __A : Optional[str] = "pil" , __A : bool = True , ) ->Union[ImagePipelineOutput, Tuple]:
"""simple docstring"""
if isinstance(self.unet.config.sample_size , __A ):
a__ :str = (
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size,
self.unet.config.sample_size,
)
else:
a__ :str = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size)
if isinstance(__A , __A ) and len(__A ) != batch_size:
raise ValueError(
F'''You have passed a list of generators of length {len(__A )}, but requested an effective batch'''
F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
a__ :Optional[int] = randn_tensor(__A , generator=__A , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(__A )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
a__ :Optional[Any] = self.unet(__A , __A ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
a__ :Union[str, Any] = self.scheduler.step(
__A , __A , __A , eta=__A , use_clipped_model_output=__A , generator=__A ).prev_sample
a__ :List[str] = (image / 2 + 0.5).clamp(0 , 1 )
a__ :Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
a__ :List[Any] = self.numpy_to_pil(__A )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__A )
| 373
|
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
snake_case__ = {
'''configuration_mgp_str''': ['''MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MgpstrConfig'''],
'''processing_mgp_str''': ['''MgpstrProcessor'''],
'''tokenization_mgp_str''': ['''MgpstrTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ = [
'''MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MgpstrModel''',
'''MgpstrPreTrainedModel''',
'''MgpstrForSceneTextRecognition''',
]
if TYPE_CHECKING:
from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig
from .processing_mgp_str import MgpstrProcessor
from .tokenization_mgp_str import MgpstrTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mgp_str import (
MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST,
MgpstrForSceneTextRecognition,
MgpstrModel,
MgpstrPreTrainedModel,
)
else:
import sys
snake_case__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 373
| 1
|
from __future__ import annotations
def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Dict:
if (direction == 1 and array[indexa] > array[indexa]) or (
direction == 0 and array[indexa] < array[indexa]
):
UpperCamelCase__ : List[Any] = array[indexa], array[indexa]
def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple:
if length > 1:
UpperCamelCase__ : Any = int(length / 2 )
for i in range(__SCREAMING_SNAKE_CASE , low + middle ):
comp_and_swap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i + middle , __SCREAMING_SNAKE_CASE )
bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
bitonic_merge(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Dict:
if length > 1:
UpperCamelCase__ : Optional[int] = int(length / 2 )
bitonic_sort(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1 )
bitonic_sort(__SCREAMING_SNAKE_CASE , low + middle , __SCREAMING_SNAKE_CASE , 0 )
bitonic_merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
UpperCAmelCase__ : Optional[Any] = input('''Enter numbers separated by a comma:\n''').strip()
UpperCAmelCase__ : str = [int(item.strip()) for item in user_input.split(''',''')]
bitonic_sort(unsorted, 0, len(unsorted), 1)
print('''\nSorted array in ascending order is: ''', end='''''')
print(*unsorted, sep=''', ''')
bitonic_merge(unsorted, 0, len(unsorted), 0)
print('''Sorted array in descending order is: ''', end='''''')
print(*unsorted, sep=''', ''')
| 410
|
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase : Optional[int] = logging.get_logger(__name__)
lowerCAmelCase : List[Any] = {
'xlm-mlm-en-2048': 'https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json',
'xlm-mlm-ende-1024': 'https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json',
'xlm-mlm-enfr-1024': 'https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json',
'xlm-mlm-enro-1024': 'https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json',
'xlm-mlm-tlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json',
'xlm-mlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json',
'xlm-clm-enfr-1024': 'https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json',
'xlm-clm-ende-1024': 'https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json',
'xlm-mlm-17-1280': 'https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json',
'xlm-mlm-100-1280': 'https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json',
}
class _A ( __magic_name__):
SCREAMING_SNAKE_CASE : Any = '''xlm'''
SCREAMING_SNAKE_CASE : Union[str, Any] = {
'''hidden_size''': '''emb_dim''',
'''num_attention_heads''': '''n_heads''',
'''num_hidden_layers''': '''n_layers''',
'''n_words''': '''vocab_size''', # For backward compatibility
}
def __init__( self , _SCREAMING_SNAKE_CASE=3_0145 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=2048**-0.5 , _SCREAMING_SNAKE_CASE=1e-12 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="first" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0 , **_SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[int] = vocab_size
SCREAMING_SNAKE_CASE_ : Tuple = emb_dim
SCREAMING_SNAKE_CASE_ : Optional[int] = n_layers
SCREAMING_SNAKE_CASE_ : List[str] = n_heads
SCREAMING_SNAKE_CASE_ : Tuple = dropout
SCREAMING_SNAKE_CASE_ : List[Any] = attention_dropout
SCREAMING_SNAKE_CASE_ : int = gelu_activation
SCREAMING_SNAKE_CASE_ : Tuple = sinusoidal_embeddings
SCREAMING_SNAKE_CASE_ : List[Any] = causal
SCREAMING_SNAKE_CASE_ : Tuple = asm
SCREAMING_SNAKE_CASE_ : Dict = n_langs
SCREAMING_SNAKE_CASE_ : str = use_lang_emb
SCREAMING_SNAKE_CASE_ : Union[str, Any] = layer_norm_eps
SCREAMING_SNAKE_CASE_ : Optional[int] = bos_index
SCREAMING_SNAKE_CASE_ : List[str] = eos_index
SCREAMING_SNAKE_CASE_ : List[str] = pad_index
SCREAMING_SNAKE_CASE_ : Dict = unk_index
SCREAMING_SNAKE_CASE_ : str = mask_index
SCREAMING_SNAKE_CASE_ : List[Any] = is_encoder
SCREAMING_SNAKE_CASE_ : Optional[int] = max_position_embeddings
SCREAMING_SNAKE_CASE_ : Any = embed_init_std
SCREAMING_SNAKE_CASE_ : int = init_std
SCREAMING_SNAKE_CASE_ : Dict = summary_type
SCREAMING_SNAKE_CASE_ : Any = summary_use_proj
SCREAMING_SNAKE_CASE_ : Union[str, Any] = summary_activation
SCREAMING_SNAKE_CASE_ : Any = summary_proj_to_labels
SCREAMING_SNAKE_CASE_ : Optional[Any] = summary_first_dropout
SCREAMING_SNAKE_CASE_ : List[Any] = start_n_top
SCREAMING_SNAKE_CASE_ : Optional[int] = end_n_top
SCREAMING_SNAKE_CASE_ : Optional[int] = mask_token_id
SCREAMING_SNAKE_CASE_ : int = lang_id
if "n_words" in kwargs:
SCREAMING_SNAKE_CASE_ : List[str] = kwargs['n_words']
super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
class _A ( __magic_name__):
@property
def UpperCAmelCase ( self ):
"""simple docstring"""
if self.task == "multiple-choice":
SCREAMING_SNAKE_CASE_ : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
SCREAMING_SNAKE_CASE_ : int = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('token_type_ids', dynamic_axis),
] )
| 511
| 0
|
import requests
from bsa import BeautifulSoup
def _UpperCAmelCase (UpperCamelCase_ : str = "https://www.worldometers.info/coronavirus" ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = BeautifulSoup(requests.get(UpperCamelCase_ ).text , """html.parser""" )
_lowerCAmelCase : Optional[Any] = soup.findAll("""h1""" )
_lowerCAmelCase : List[Any] = soup.findAll("""div""" , {"""class""": """maincounter-number"""} )
keys += soup.findAll("""span""" , {"""class""": """panel-title"""} )
values += soup.findAll("""div""" , {"""class""": """number-table-main"""} )
return {key.text.strip(): value.text.strip() for key, value in zip(UpperCamelCase_ , UpperCamelCase_ )}
if __name__ == "__main__":
print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n")
for key, value in world_covidaa_stats().items():
print(F'''{key}\n{value}\n''')
| 710
|
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import ResNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFResNetForImageClassification, TFResNetModel
from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __snake_case :
def __init__( self : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Tuple=10 , _UpperCAmelCase : Optional[Any]=[10, 20, 30, 40] , _UpperCAmelCase : int=[1, 1, 2, 1] , _UpperCAmelCase : str=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : str="relu" , _UpperCAmelCase : int=3 , _UpperCAmelCase : int=None , ) -> Optional[Any]:
'''simple docstring'''
_lowerCAmelCase : Dict = parent
_lowerCAmelCase : int = batch_size
_lowerCAmelCase : List[str] = image_size
_lowerCAmelCase : Optional[int] = num_channels
_lowerCAmelCase : List[str] = embeddings_size
_lowerCAmelCase : int = hidden_sizes
_lowerCAmelCase : str = depths
_lowerCAmelCase : int = is_training
_lowerCAmelCase : Dict = use_labels
_lowerCAmelCase : Dict = hidden_act
_lowerCAmelCase : Dict = num_labels
_lowerCAmelCase : List[Any] = scope
_lowerCAmelCase : Optional[int] = len(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE ( self : Dict ) -> int:
'''simple docstring'''
_lowerCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCAmelCase : Tuple = None
if self.use_labels:
_lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels )
_lowerCAmelCase : Dict = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int:
'''simple docstring'''
return ResNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = TFResNetModel(config=_UpperCAmelCase )
_lowerCAmelCase : Union[str, Any] = model(_UpperCAmelCase )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
_lowerCAmelCase : Optional[int] = self.num_labels
_lowerCAmelCase : Any = TFResNetForImageClassification(_UpperCAmelCase )
_lowerCAmelCase : str = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]:
'''simple docstring'''
_lowerCAmelCase : Any = self.prepare_config_and_inputs()
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[str] = config_and_inputs
_lowerCAmelCase : Tuple = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class __snake_case (_a , _a , unittest.TestCase ):
lowerCAmelCase__ = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else ()
lowerCAmelCase__ = (
{"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification}
if is_tf_available()
else {}
)
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = False
def SCREAMING_SNAKE_CASE ( self : int ) -> int:
'''simple docstring'''
_lowerCAmelCase : Optional[int] = TFResNetModelTester(self )
_lowerCAmelCase : Union[str, Any] = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str:
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
return
@unittest.skip(reason="""ResNet does not use inputs_embeds""" )
def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]:
'''simple docstring'''
pass
@unittest.skip(reason="""ResNet does not support input and output embeddings""" )
def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any:
'''simple docstring'''
_lowerCAmelCase , _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase : Any = model_class(_UpperCAmelCase )
_lowerCAmelCase : Optional[Any] = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCAmelCase : Tuple = [*signature.parameters.keys()]
_lowerCAmelCase : Optional[Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
_lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str:
'''simple docstring'''
def check_hidden_states_output(_UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple ):
_lowerCAmelCase : Dict = model_class(_UpperCAmelCase )
_lowerCAmelCase : Optional[int] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
_lowerCAmelCase : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_lowerCAmelCase : Dict = self.model_tester.num_stages
self.assertEqual(len(_UpperCAmelCase ) , expected_num_stages + 1 )
# ResNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase : str = ["""basic""", """bottleneck"""]
for model_class in self.all_model_classes:
for layer_type in layers_type:
_lowerCAmelCase : Tuple = layer_type
_lowerCAmelCase : Any = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCAmelCase : Any = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE ( self : Any ) -> Any:
'''simple docstring'''
_lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase )
@slow
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str:
'''simple docstring'''
for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase : Dict = TFResNetModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def _UpperCAmelCase ():
'''simple docstring'''
_lowerCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class __snake_case (unittest.TestCase ):
@cached_property
def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str:
'''simple docstring'''
return (
AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]:
'''simple docstring'''
_lowerCAmelCase : Dict = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
_lowerCAmelCase : Optional[int] = self.default_image_processor
_lowerCAmelCase : int = prepare_img()
_lowerCAmelCase : int = image_processor(images=_UpperCAmelCase , return_tensors="""tf""" )
# forward pass
_lowerCAmelCase : int = model(**_UpperCAmelCase )
# verify the logits
_lowerCAmelCase : Union[str, Any] = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , _UpperCAmelCase )
_lowerCAmelCase : Any = tf.constant([-11.1069, -9.7877, -8.3777] )
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _UpperCAmelCase , atol=1E-4 ) )
| 196
| 0
|
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowerCAmelCase : Tuple = logging.get_logger(__name__)
_lowerCAmelCase : Optional[Any] = {
'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json',
'distilbert-base-uncased-distilled-squad': (
'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json'
),
'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json',
'distilbert-base-cased-distilled-squad': (
'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json'
),
'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json',
'distilbert-base-multilingual-cased': (
'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json'
),
'distilbert-base-uncased-finetuned-sst-2-english': (
'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json'
),
}
class lowerCAmelCase ( __UpperCamelCase ):
'''simple docstring'''
snake_case = 'distilbert'
snake_case = {
'hidden_size': 'dim',
'num_attention_heads': 'n_heads',
'num_hidden_layers': 'n_layers',
}
def __init__( self : int , __snake_case : Optional[int]=30522 , __snake_case : Tuple=512 , __snake_case : Optional[Any]=False , __snake_case : Any=6 , __snake_case : int=12 , __snake_case : List[Any]=768 , __snake_case : Optional[int]=4 * 768 , __snake_case : Optional[Any]=0.1 , __snake_case : List[Any]=0.1 , __snake_case : Tuple="gelu" , __snake_case : List[Any]=0.02 , __snake_case : Optional[Any]=0.1 , __snake_case : str=0.2 , __snake_case : Optional[Any]=0 , **__snake_case : List[str] , ) -> Optional[Any]:
'''simple docstring'''
lowerCamelCase = vocab_size
lowerCamelCase = max_position_embeddings
lowerCamelCase = sinusoidal_pos_embds
lowerCamelCase = n_layers
lowerCamelCase = n_heads
lowerCamelCase = dim
lowerCamelCase = hidden_dim
lowerCamelCase = dropout
lowerCamelCase = attention_dropout
lowerCamelCase = activation
lowerCamelCase = initializer_range
lowerCamelCase = qa_dropout
lowerCamelCase = seq_classif_dropout
super().__init__(**__snake_case , pad_token_id=__snake_case )
class lowerCAmelCase ( __UpperCamelCase ):
'''simple docstring'''
@property
def lowerCamelCase__ ( self : Any ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
lowerCamelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 246
|
from collections import deque
def a_ ( UpperCamelCase_ : List[str] ) -> Optional[Any]:
"""simple docstring"""
lowerCamelCase = len(UpperCamelCase_ )
lowerCamelCase = deque()
lowerCamelCase = [False for _ in range(UpperCamelCase_ )]
lowerCamelCase = [-1 for _ in range(UpperCamelCase_ )]
lowerCamelCase = index_of[:]
def strong_connect(UpperCamelCase_ : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] ):
lowerCamelCase = index # the number when this node is seen
lowerCamelCase = index # lowest rank node reachable from here
index += 1
stack.append(UpperCamelCase_ )
lowerCamelCase = True
for w in g[v]:
if index_of[w] == -1:
lowerCamelCase = strong_connect(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
lowerCamelCase = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
elif on_stack[w]:
lowerCamelCase = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
if lowlink_of[v] == index_of[v]:
lowerCamelCase = []
lowerCamelCase = stack.pop()
lowerCamelCase = False
component.append(UpperCamelCase_ )
while w != v:
lowerCamelCase = stack.pop()
lowerCamelCase = False
component.append(UpperCamelCase_ )
components.append(UpperCamelCase_ )
return index
lowerCamelCase = []
for v in range(UpperCamelCase_ ):
if index_of[v] == -1:
strong_connect(UpperCamelCase_ , 0 , UpperCamelCase_ )
return components
def a_ ( UpperCamelCase_ : Dict , UpperCamelCase_ : List[str] ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase = [[] for _ in range(UpperCamelCase_ )]
for u, v in edges:
g[u].append(UpperCamelCase_ )
return g
if __name__ == "__main__":
# Test
_lowerCAmelCase : Any = 7
_lowerCAmelCase : Optional[int] = [0, 0, 1, 2, 3, 3, 4, 4, 6]
_lowerCAmelCase : Dict = [1, 3, 2, 0, 1, 4, 5, 6, 5]
_lowerCAmelCase : Union[str, Any] = [(u, v) for u, v in zip(source, target)]
_lowerCAmelCase : Tuple = create_graph(n_vertices, edges)
assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
| 246
| 1
|
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import PIL.Image
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
PILImageResampling,
get_image_size,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
A = logging.get_logger(__name__)
class __snake_case ( a__):
_lowerCAmelCase = ['''pixel_values''']
def __init__( self, A = True, A = 32, A=PILImageResampling.BILINEAR, A = True, **A, ):
"""simple docstring"""
lowerCamelCase : Tuple = do_resize
lowerCamelCase : int = do_rescale
lowerCamelCase : str = size_divisor
lowerCamelCase : Tuple = resample
super().__init__(**A )
def UpperCAmelCase_ ( self, A, A, A, A = None, **A ):
"""simple docstring"""
lowerCamelCase : Optional[Any] = get_image_size(A )
# Rounds the height and width down to the closest multiple of size_divisor
lowerCamelCase : List[str] = height // size_divisor * size_divisor
lowerCamelCase : List[Any] = width // size_divisor * size_divisor
lowerCamelCase : str = resize(A, (new_h, new_w), resample=A, data_format=A, **A )
return image
def UpperCAmelCase_ ( self, A, A, A = None, **A ):
"""simple docstring"""
return rescale(image=A, scale=A, data_format=A, **A )
def UpperCAmelCase_ ( self, A, A = None, A = None, A=None, A = None, A = None, A = ChannelDimension.FIRST, **A, ):
"""simple docstring"""
lowerCamelCase : Union[str, Any] = do_resize if do_resize is not None else self.do_resize
lowerCamelCase : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale
lowerCamelCase : Optional[Any] = size_divisor if size_divisor is not None else self.size_divisor
lowerCamelCase : Tuple = resample if resample is not None else self.resample
if do_resize and size_divisor is None:
raise ValueError('size_divisor is required for resizing' )
lowerCamelCase : Union[str, Any] = make_list_of_images(A )
if not valid_images(A ):
raise ValueError('Invalid image(s)' )
# All transformations expect numpy arrays.
lowerCamelCase : Dict = [to_numpy_array(A ) for img in images]
if do_resize:
lowerCamelCase : Optional[int] = [self.resize(A, size_divisor=A, resample=A ) for image in images]
if do_rescale:
lowerCamelCase : Optional[int] = [self.rescale(A, scale=1 / 255 ) for image in images]
lowerCamelCase : Optional[int] = [to_channel_dimension_format(A, A ) for image in images]
lowerCamelCase : List[str] = {'pixel_values': images}
return BatchFeature(data=A, tensor_type=A )
| 712
|
'''simple docstring'''
def UpperCAmelCase ( UpperCAmelCase__ : int = 10_00):
lowerCamelCase : Optional[Any] = 2**power
lowerCamelCase : str = str(UpperCAmelCase__)
lowerCamelCase : Union[str, Any] = list(UpperCAmelCase__)
lowerCamelCase : Optional[Any] = 0
for i in list_num:
sum_of_num += int(UpperCAmelCase__)
return sum_of_num
if __name__ == "__main__":
A = int(input('Enter the power of 2: ').strip())
print('2 ^ ', power, ' = ', 2**power)
A = solution(power)
print('Sum of the digits is: ', result)
| 449
| 0
|
'''simple docstring'''
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
__A =2
class _snake_case :
def __init__( self , *, # begin keyword-only arguments
_lowerCamelCase="<s>" , _lowerCamelCase="<pad>" , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase=None , ):
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = bos, unk, pad, eos
UpperCAmelCase__ : Any = []
UpperCAmelCase__ : List[str] = []
UpperCAmelCase__ : Union[str, Any] = {}
UpperCAmelCase__ : Union[str, Any] = self.add_symbol(_lowerCamelCase)
UpperCAmelCase__ : Any = self.add_symbol(_lowerCamelCase)
UpperCAmelCase__ : List[str] = self.add_symbol(_lowerCamelCase)
UpperCAmelCase__ : str = self.add_symbol(_lowerCamelCase)
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(_lowerCamelCase)
UpperCAmelCase__ : Optional[Any] = len(self.symbols)
def __eq__( self , _lowerCamelCase):
return self.indices == other.indices
def __getitem__( self , _lowerCamelCase):
if idx < len(self.symbols):
return self.symbols[idx]
return self.unk_word
def __len__( self):
return len(self.symbols)
def __contains__( self , _lowerCamelCase):
return sym in self.indices
@classmethod
def snake_case__ ( cls , _lowerCamelCase):
UpperCAmelCase__ : Dict = cls()
d.add_from_file(_lowerCamelCase)
return d
def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase=1 , _lowerCamelCase=False):
if word in self.indices and not overwrite:
UpperCAmelCase__ : Tuple = self.indices[word]
UpperCAmelCase__ : Optional[int] = self.count[idx] + n
return idx
else:
UpperCAmelCase__ : Union[str, Any] = len(self.symbols)
UpperCAmelCase__ : Optional[int] = idx
self.symbols.append(_lowerCamelCase)
self.count.append(_lowerCamelCase)
return idx
def snake_case__ ( self , _lowerCamelCase):
return 0
def snake_case__ ( self , _lowerCamelCase):
if isinstance(_lowerCamelCase , _lowerCamelCase):
try:
with open(_lowerCamelCase , """r""" , encoding="""utf-8""") as fd:
self.add_from_file(_lowerCamelCase)
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(_lowerCamelCase))
return
UpperCAmelCase__ : Optional[int] = f.readlines()
UpperCAmelCase__ : List[Any] = self._load_meta(_lowerCamelCase)
for line in lines[indices_start_line:]:
try:
UpperCAmelCase__ , UpperCAmelCase__ : int = line.rstrip().rsplit(""" """ , 1)
if field == "#fairseq:overwrite":
UpperCAmelCase__ : Optional[Any] = True
UpperCAmelCase__ , UpperCAmelCase__ : int = line.rsplit(""" """ , 1)
else:
UpperCAmelCase__ : List[Any] = False
UpperCAmelCase__ : int = int(_lowerCamelCase)
UpperCAmelCase__ : Any = line
if word in self and not overwrite:
raise RuntimeError(
"""Duplicate word found when loading Dictionary: '{}'. """
"""Duplicate words can overwrite earlier ones by adding the """
"""#fairseq:overwrite flag at the end of the corresponding row """
"""in the dictionary file. If using the Camembert model, please """
"""download an updated copy of the model file.""".format(_lowerCamelCase))
self.add_symbol(_lowerCamelCase , n=_lowerCamelCase , overwrite=_lowerCamelCase)
except ValueError:
raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""")
def _UpperCamelCase ( UpperCamelCase__ ):
# (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up,
# e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7}
UpperCAmelCase__ : Optional[Any] = dict((re.sub(R"""@@$""" , """""" , UpperCamelCase__ ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" , """</w>""" , UpperCamelCase__ ), v) for k, v in d.items() )
UpperCAmelCase__ : int = """<s> <pad> </s> <unk>""".split()
# restore the special tokens
for k in keep_keys:
del da[f'''{k}</w>''']
UpperCAmelCase__ : str = d[k] # restore
return da
def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ):
# prep
if not os.path.exists(UpperCamelCase__ ):
raise ValueError(f'''path {biogpt_checkpoint_path} does not exist!''' )
os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ )
print(f'''Writing results to {pytorch_dump_folder_path}''' )
# handle various types of models
UpperCAmelCase__ : str = os.path.join(UpperCamelCase__ , """checkpoint.pt""" )
if not os.path.isfile(UpperCamelCase__ ):
raise ValueError(f'''path to the file {checkpoint_file} does not exist!''' )
UpperCAmelCase__ : Any = torch.load(UpperCamelCase__ , map_location="""cpu""" )
UpperCAmelCase__ : Union[str, Any] = chkpt["""cfg"""]["""model"""]
# dicts
UpperCAmelCase__ : str = os.path.join(UpperCamelCase__ , """dict.txt""" )
if not os.path.isfile(UpperCamelCase__ ):
raise ValueError(f'''path to the file {dict_file} does not exist!''' )
UpperCAmelCase__ : Tuple = Dictionary.load(UpperCamelCase__ )
UpperCAmelCase__ : Union[str, Any] = rewrite_dict_keys(src_dict.indices )
UpperCAmelCase__ : Union[str, Any] = len(UpperCamelCase__ )
UpperCAmelCase__ : int = os.path.join(UpperCamelCase__ , VOCAB_FILES_NAMES["""vocab_file"""] )
print(f'''Generating {src_vocab_file} of {src_vocab_size} records''' )
with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(UpperCamelCase__ , ensure_ascii=UpperCamelCase__ , indent=UpperCamelCase__ ) )
# merges_file (bpecodes)
UpperCAmelCase__ : Optional[int] = os.path.join(UpperCamelCase__ , """bpecodes""" )
if not os.path.isfile(UpperCamelCase__ ):
raise ValueError(f'''path to the file {bpecodes_file} does not exist!''' )
UpperCAmelCase__ : Dict = os.path.join(UpperCamelCase__ , VOCAB_FILES_NAMES["""merges_file"""] )
shutil.copyfile(UpperCamelCase__ , UpperCamelCase__ )
# model config
UpperCAmelCase__ : str = os.path.join(UpperCamelCase__ , """config.json""" )
UpperCAmelCase__ : Any = {
"""activation_dropout""": args["""activation_dropout"""],
"""architectures""": ["""BioGptForCausalLM"""],
"""attention_probs_dropout_prob""": args["""attention_dropout"""],
"""bos_token_id""": 0,
"""eos_token_id""": 2,
"""hidden_act""": args["""activation_fn"""],
"""hidden_dropout_prob""": args["""dropout"""],
"""hidden_size""": args["""decoder_embed_dim"""],
"""initializer_range""": 0.02,
"""intermediate_size""": args["""decoder_ffn_embed_dim"""],
"""layer_norm_eps""": 1e-12,
"""layerdrop""": args["""decoder_layerdrop"""],
"""max_position_embeddings""": args["""max_target_positions"""],
"""model_type""": """biogpt""",
"""num_attention_heads""": args["""decoder_attention_heads"""],
"""num_hidden_layers""": args["""decoder_layers"""],
"""pad_token_id""": 1,
"""scale_embedding""": not args["""no_scale_embedding"""],
"""tie_word_embeddings""": args["""share_decoder_input_output_embed"""],
"""vocab_size""": src_vocab_size,
}
# good hparam defaults to start with
print(f'''Generating {biogpt_model_config_file}''' )
with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(UpperCamelCase__ , ensure_ascii=UpperCamelCase__ , indent=UpperCamelCase__ ) )
# tokenizer config
UpperCAmelCase__ : Any = os.path.join(UpperCamelCase__ , UpperCamelCase__ )
UpperCAmelCase__ : str = {
"""bos_token""": """<s>""",
"""eos_token""": """</s>""",
"""model_max_length""": 1_0_2_4,
"""pad_token""": """<pad>""",
"""special_tokens_map_file""": None,
"""tokenizer_class""": """BioGptTokenizer""",
"""unk_token""": """<unk>""",
}
print(f'''Generating {biogpt_tokenizer_config_file}''' )
with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(UpperCamelCase__ , ensure_ascii=UpperCamelCase__ , indent=UpperCamelCase__ ) )
# model
UpperCAmelCase__ : List[str] = chkpt["""model"""]
# remove unneeded keys
UpperCAmelCase__ : Dict = [
"""decoder.version""",
]
for k in ignore_keys:
model_state_dict.pop(UpperCamelCase__ , UpperCamelCase__ )
UpperCAmelCase__ : Tuple = list(model_state_dict.keys() )
for layer_name in layer_names:
if layer_name.endswith("""output_projection.weight""" ):
UpperCAmelCase__ : Union[str, Any] = model_state_dict.pop(UpperCamelCase__ )
else:
UpperCAmelCase__ : List[Any] = model_state_dict.pop(UpperCamelCase__ )
UpperCAmelCase__ : str = BioGptConfig.from_pretrained(UpperCamelCase__ )
UpperCAmelCase__ : Tuple = BioGptForCausalLM(UpperCamelCase__ )
# check that it loads ok
model_new.load_state_dict(UpperCamelCase__ )
# save
UpperCAmelCase__ : Any = os.path.join(UpperCamelCase__ , UpperCamelCase__ )
print(f'''Generating {pytorch_weights_dump_path}''' )
torch.save(UpperCamelCase__ , UpperCamelCase__ )
print("""Conversion is done!""" )
if __name__ == "__main__":
__A =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--biogpt_checkpoint_path',
default=None,
type=str,
required=True,
help=(
'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,'
' bpecodes, etc.'
),
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__A =parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
| 407
|
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import ScoreSdeVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class _snake_case ( a__ ):
lowerCAmelCase :UNetaDModel
lowerCAmelCase :ScoreSdeVeScheduler
def __init__( self , _lowerCamelCase , _lowerCamelCase):
super().__init__()
self.register_modules(unet=_lowerCamelCase , scheduler=_lowerCamelCase)
@torch.no_grad()
def __call__( self , _lowerCamelCase = 1 , _lowerCamelCase = 2000 , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , **_lowerCamelCase , ):
UpperCAmelCase__ : Union[str, Any] = self.unet.config.sample_size
UpperCAmelCase__ : Any = (batch_size, 3, img_size, img_size)
UpperCAmelCase__ : Optional[int] = self.unet
UpperCAmelCase__ : Any = randn_tensor(_lowerCamelCase , generator=_lowerCamelCase) * self.scheduler.init_noise_sigma
UpperCAmelCase__ : Optional[int] = sample.to(self.device)
self.scheduler.set_timesteps(_lowerCamelCase)
self.scheduler.set_sigmas(_lowerCamelCase)
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
UpperCAmelCase__ : List[str] = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device)
# correction step
for _ in range(self.scheduler.config.correct_steps):
UpperCAmelCase__ : List[str] = self.unet(_lowerCamelCase , _lowerCamelCase).sample
UpperCAmelCase__ : List[Any] = self.scheduler.step_correct(_lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase).prev_sample
# prediction step
UpperCAmelCase__ : Any = model(_lowerCamelCase , _lowerCamelCase).sample
UpperCAmelCase__ : Union[str, Any] = self.scheduler.step_pred(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase)
UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = output.prev_sample, output.prev_sample_mean
UpperCAmelCase__ : Optional[Any] = sample_mean.clamp(0 , 1)
UpperCAmelCase__ : List[str] = sample.cpu().permute(0 , 2 , 3 , 1).numpy()
if output_type == "pil":
UpperCAmelCase__ : str = self.numpy_to_pil(_lowerCamelCase)
if not return_dict:
return (sample,)
return ImagePipelineOutput(images=_lowerCamelCase)
| 407
| 1
|
'''simple docstring'''
def __snake_case ( _UpperCAmelCase : int = 100):
UpperCamelCase = n * (n + 1) * (2 * n + 1) / 6
UpperCamelCase = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares)
if __name__ == "__main__":
print(F'''{solution() = }''')
| 721
|
'''simple docstring'''
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def __snake_case ( ):
UpperCamelCase = ArgumentParser(
description=(
'''PyTorch TPU distributed training launch '''
'''helper utility that will spawn up '''
'''multiple distributed processes'''
))
# Optional arguments for the launch helper
parser.add_argument('''--num_cores''', type=_UpperCAmelCase, default=1, help='''Number of TPU cores to use (1 or 8).''')
# positional
parser.add_argument(
'''training_script''', type=_UpperCAmelCase, help=(
'''The full path to the single TPU training '''
'''program/script to be launched in parallel, '''
'''followed by all the arguments for the '''
'''training script'''
), )
# rest from the training program
parser.add_argument('''training_script_args''', nargs=_UpperCAmelCase)
return parser.parse_args()
def __snake_case ( ):
UpperCamelCase = parse_args()
# Import training_script as a module.
UpperCamelCase = Path(args.training_script)
sys.path.append(str(script_fpath.parent.resolve()))
UpperCamelCase = script_fpath.stem
UpperCamelCase = importlib.import_module(_UpperCAmelCase)
# Patch sys.argv
UpperCamelCase = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores)]
xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores)
if __name__ == "__main__":
main()
| 350
| 0
|
import argparse
import json
import os
import pickle
import shutil
import numpy as np
import torch
from distiller import Distiller
from lm_seqs_dataset import LmSeqsDataset
from transformers import (
BertConfig,
BertForMaskedLM,
BertTokenizer,
DistilBertConfig,
DistilBertForMaskedLM,
DistilBertTokenizer,
GPTaConfig,
GPTaLMHeadModel,
GPTaTokenizer,
RobertaConfig,
RobertaForMaskedLM,
RobertaTokenizer,
)
from utils import git_log, init_gpu_params, logger, set_seed
_SCREAMING_SNAKE_CASE : Union[str, Any] = {
'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
'bert': (BertConfig, BertForMaskedLM, BertTokenizer),
'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer),
}
def __lowerCAmelCase ( __magic_name__ ):
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
if args.mlm:
assert os.path.isfile(args.token_counts )
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
else:
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
assert args.teacher_type == args.student_type or (
args.student_type == "distilbert" and args.teacher_type == "bert"
)
assert os.path.isfile(args.student_config )
if args.student_pretrained_weights is not None:
assert os.path.isfile(args.student_pretrained_weights )
if args.freeze_token_type_embds:
assert args.student_type in ["roberta"]
assert args.alpha_ce >= 0.0
assert args.alpha_mlm >= 0.0
assert args.alpha_clm >= 0.0
assert args.alpha_mse >= 0.0
assert args.alpha_cos >= 0.0
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
def __lowerCAmelCase ( __magic_name__ , __magic_name__ ):
if args.student_type == "roberta":
_lowercase: Union[str, Any] = False
elif args.student_type == "gpt2":
_lowercase: List[str] = False
def __lowerCAmelCase ( __magic_name__ , __magic_name__ ):
if args.student_type == "roberta":
_lowercase: Dict = False
def __lowerCAmelCase ( ):
_lowercase: Any = argparse.ArgumentParser(description="Training" )
parser.add_argument("--force" , action="store_true" , help="Overwrite dump_path if it already exists." )
parser.add_argument(
"--dump_path" , type=__magic_name__ , required=__magic_name__ , help="The output directory (log, checkpoints, parameters, etc.)" )
parser.add_argument(
"--data_file" , type=__magic_name__ , required=__magic_name__ , help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence." , )
parser.add_argument(
"--student_type" , type=__magic_name__ , choices=["distilbert", "roberta", "gpt2"] , required=__magic_name__ , help="The student type (DistilBERT, RoBERTa)." , )
parser.add_argument("--student_config" , type=__magic_name__ , required=__magic_name__ , help="Path to the student configuration." )
parser.add_argument(
"--student_pretrained_weights" , default=__magic_name__ , type=__magic_name__ , help="Load student initialization checkpoint." )
parser.add_argument(
"--teacher_type" , choices=["bert", "roberta", "gpt2"] , required=__magic_name__ , help="Teacher type (BERT, RoBERTa)." )
parser.add_argument("--teacher_name" , type=__magic_name__ , required=__magic_name__ , help="The teacher model." )
parser.add_argument("--temperature" , default=2.0 , type=__magic_name__ , help="Temperature for the softmax temperature." )
parser.add_argument(
"--alpha_ce" , default=0.5 , type=__magic_name__ , help="Linear weight for the distillation loss. Must be >=0." )
parser.add_argument(
"--alpha_mlm" , default=0.0 , type=__magic_name__ , help="Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag." , )
parser.add_argument("--alpha_clm" , default=0.5 , type=__magic_name__ , help="Linear weight for the CLM loss. Must be >=0." )
parser.add_argument("--alpha_mse" , default=0.0 , type=__magic_name__ , help="Linear weight of the MSE loss. Must be >=0." )
parser.add_argument(
"--alpha_cos" , default=0.0 , type=__magic_name__ , help="Linear weight of the cosine embedding loss. Must be >=0." )
parser.add_argument(
"--mlm" , action="store_true" , help="The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM." )
parser.add_argument(
"--mlm_mask_prop" , default=0.15 , type=__magic_name__ , help="Proportion of tokens for which we need to make a prediction." , )
parser.add_argument("--word_mask" , default=0.8 , type=__magic_name__ , help="Proportion of tokens to mask out." )
parser.add_argument("--word_keep" , default=0.1 , type=__magic_name__ , help="Proportion of tokens to keep." )
parser.add_argument("--word_rand" , default=0.1 , type=__magic_name__ , help="Proportion of tokens to randomly replace." )
parser.add_argument(
"--mlm_smoothing" , default=0.7 , type=__magic_name__ , help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec)." , )
parser.add_argument("--token_counts" , type=__magic_name__ , help="The token counts in the data_file for MLM." )
parser.add_argument(
"--restrict_ce_to_mask" , action="store_true" , help="If true, compute the distillation loss only the [MLM] prediction distribution." , )
parser.add_argument(
"--freeze_pos_embs" , action="store_true" , help="Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only." , )
parser.add_argument(
"--freeze_token_type_embds" , action="store_true" , help="Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only." , )
parser.add_argument("--n_epoch" , type=__magic_name__ , default=3 , help="Number of pass on the whole dataset." )
parser.add_argument("--batch_size" , type=__magic_name__ , default=5 , help="Batch size (for each process)." )
parser.add_argument(
"--group_by_size" , action="store_false" , help="If true, group sequences that have similar length into the same batch. Default is true." , )
parser.add_argument(
"--gradient_accumulation_steps" , type=__magic_name__ , default=5_0 , help="Gradient accumulation for larger training batches." , )
parser.add_argument("--warmup_prop" , default=0.05 , type=__magic_name__ , help="Linear warmup proportion." )
parser.add_argument("--weight_decay" , default=0.0 , type=__magic_name__ , help="Weight decay if we apply some." )
parser.add_argument("--learning_rate" , default=5e-4 , type=__magic_name__ , help="The initial learning rate for Adam." )
parser.add_argument("--adam_epsilon" , default=1e-6 , type=__magic_name__ , help="Epsilon for Adam optimizer." )
parser.add_argument("--max_grad_norm" , default=5.0 , type=__magic_name__ , help="Max gradient norm." )
parser.add_argument("--initializer_range" , default=0.02 , type=__magic_name__ , help="Random initialization range." )
parser.add_argument(
"--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , )
parser.add_argument(
"--fp16_opt_level" , type=__magic_name__ , default="O1" , help=(
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html"
) , )
parser.add_argument("--n_gpu" , type=__magic_name__ , default=1 , help="Number of GPUs in the node." )
parser.add_argument("--local_rank" , type=__magic_name__ , default=-1 , help="Distributed training - Local rank" )
parser.add_argument("--seed" , type=__magic_name__ , default=5_6 , help="Random seed" )
parser.add_argument("--log_interval" , type=__magic_name__ , default=5_0_0 , help="Tensorboard logging interval." )
parser.add_argument("--checkpoint_interval" , type=__magic_name__ , default=4_0_0_0 , help="Checkpoint interval." )
_lowercase: str = parser.parse_args()
sanity_checks(__magic_name__ )
# ARGS #
init_gpu_params(__magic_name__ )
set_seed(__magic_name__ )
if args.is_master:
if os.path.exists(args.dump_path ):
if not args.force:
raise ValueError(
f"Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite"
" itUse `--force` if you want to overwrite it" )
else:
shutil.rmtree(args.dump_path )
if not os.path.exists(args.dump_path ):
os.makedirs(args.dump_path )
logger.info(f"Experiment will be dumped and logged in {args.dump_path}" )
# SAVE PARAMS #
logger.info(f"Param: {args}" )
with open(os.path.join(args.dump_path , "parameters.json" ) , "w" ) as f:
json.dump(vars(__magic_name__ ) , __magic_name__ , indent=4 )
git_log(args.dump_path )
_lowercase , _lowercase , _lowercase: List[Any] = MODEL_CLASSES[args.student_type]
_lowercase , _lowercase , _lowercase: str = MODEL_CLASSES[args.teacher_type]
# TOKENIZER #
_lowercase: Optional[int] = teacher_tokenizer_class.from_pretrained(args.teacher_name )
_lowercase: Optional[int] = {}
for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
_lowercase: Optional[Any] = tokenizer.all_special_tokens.index(__magic_name__ )
_lowercase: List[Any] = tokenizer.all_special_ids[idx]
logger.info(f"Special tokens {special_tok_ids}" )
_lowercase: int = special_tok_ids
_lowercase: Optional[Any] = tokenizer.max_model_input_sizes[args.teacher_name]
# DATA LOADER #
logger.info(f"Loading data from {args.data_file}" )
with open(args.data_file , "rb" ) as fp:
_lowercase: List[str] = pickle.load(__magic_name__ )
if args.mlm:
logger.info(f"Loading token counts from {args.token_counts} (already pre-computed)" )
with open(args.token_counts , "rb" ) as fp:
_lowercase: Optional[Any] = pickle.load(__magic_name__ )
_lowercase: int = np.maximum(__magic_name__ , 1 ) ** -args.mlm_smoothing
for idx in special_tok_ids.values():
_lowercase: str = 0.0 # do not predict special tokens
_lowercase: int = torch.from_numpy(__magic_name__ )
else:
_lowercase: Dict = None
_lowercase: List[str] = LmSeqsDataset(params=__magic_name__ , data=__magic_name__ )
logger.info("Data loader created." )
# STUDENT #
logger.info(f"Loading student config from {args.student_config}" )
_lowercase: Dict = student_config_class.from_pretrained(args.student_config )
_lowercase: List[Any] = True
if args.student_pretrained_weights is not None:
logger.info(f"Loading pretrained weights from {args.student_pretrained_weights}" )
_lowercase: List[Any] = student_model_class.from_pretrained(args.student_pretrained_weights , config=__magic_name__ )
else:
_lowercase: Union[str, Any] = student_model_class(__magic_name__ )
if args.n_gpu > 0:
student.to(f"cuda:{args.local_rank}" )
logger.info("Student loaded." )
# TEACHER #
_lowercase: Dict = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__magic_name__ )
if args.n_gpu > 0:
teacher.to(f"cuda:{args.local_rank}" )
logger.info(f"Teacher loaded from {args.teacher_name}." )
# FREEZING #
if args.freeze_pos_embs:
freeze_pos_embeddings(__magic_name__ , __magic_name__ )
if args.freeze_token_type_embds:
freeze_token_type_embeddings(__magic_name__ , __magic_name__ )
# SANITY CHECKS #
assert student.config.vocab_size == teacher.config.vocab_size
assert student.config.hidden_size == teacher.config.hidden_size
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
if args.mlm:
assert token_probs.size(0 ) == stu_architecture_config.vocab_size
# DISTILLER #
torch.cuda.empty_cache()
_lowercase: List[str] = Distiller(
params=__magic_name__ , dataset=__magic_name__ , token_probs=__magic_name__ , student=__magic_name__ , teacher=__magic_name__ )
distiller.train()
logger.info("Let's go get some drinks." )
if __name__ == "__main__":
main()
| 226
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_SCREAMING_SNAKE_CASE : Union[str, Any] = {
'configuration_vision_text_dual_encoder': ['VisionTextDualEncoderConfig'],
'processing_vision_text_dual_encoder': ['VisionTextDualEncoderProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE : Union[str, Any] = ['VisionTextDualEncoderModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE : Tuple = ['FlaxVisionTextDualEncoderModel']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE : List[Any] = ['TFVisionTextDualEncoderModel']
if TYPE_CHECKING:
from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig
from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel
else:
import sys
_SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 226
| 1
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {
'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json',
# See all Donut models at https://huggingface.co/models?filter=donut-swin
}
class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ):
a_ : Union[str, Any] = '''donut-swin'''
a_ : int = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__(self , UpperCAmelCase=2_2_4 , UpperCAmelCase=4 , UpperCAmelCase=3 , UpperCAmelCase=9_6 , UpperCAmelCase=[2, 2, 6, 2] , UpperCAmelCase=[3, 6, 1_2, 2_4] , UpperCAmelCase=7 , UpperCAmelCase=4.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=False , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , **UpperCAmelCase , ):
'''simple docstring'''
super().__init__(**UpperCAmelCase)
__UpperCAmelCase =image_size
__UpperCAmelCase =patch_size
__UpperCAmelCase =num_channels
__UpperCAmelCase =embed_dim
__UpperCAmelCase =depths
__UpperCAmelCase =len(UpperCAmelCase)
__UpperCAmelCase =num_heads
__UpperCAmelCase =window_size
__UpperCAmelCase =mlp_ratio
__UpperCAmelCase =qkv_bias
__UpperCAmelCase =hidden_dropout_prob
__UpperCAmelCase =attention_probs_dropout_prob
__UpperCAmelCase =drop_path_rate
__UpperCAmelCase =hidden_act
__UpperCAmelCase =use_absolute_embeddings
__UpperCAmelCase =layer_norm_eps
__UpperCAmelCase =initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
__UpperCAmelCase =int(embed_dim * 2 ** (len(UpperCAmelCase) - 1))
| 142
|
import itertools
import os
from collections import Counter, defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import datasets
from .execute import check_correctness
UpperCamelCase_ = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n'
UpperCamelCase_ = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n'
UpperCamelCase_ = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n'
UpperCamelCase_ = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n'
UpperCamelCase_ = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _SCREAMING_SNAKE_CASE ( datasets.Metric ):
def A__ (self):
'''simple docstring'''
return datasets.MetricInfo(
# This is the description that will appear on the metrics page.
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Sequence(datasets.Value('''string''')),
'''references''': datasets.Value('''string'''),
}) , homepage='''https://github.com/openai/human-eval''' , codebase_urls=['''https://github.com/openai/human-eval'''] , reference_urls=['''https://github.com/openai/human-eval'''] , license=_LICENSE , )
def A__ (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=[1, 1_0, 1_0_0] , UpperCAmelCase=4 , UpperCAmelCase=3.0):
'''simple docstring'''
if os.getenv('''HF_ALLOW_CODE_EVAL''' , 0) != "1":
raise ValueError(_WARNING)
if os.name == "nt":
raise NotImplementedError('''This metric is currently not supported on Windows.''')
with ThreadPoolExecutor(max_workers=UpperCAmelCase) as executor:
__UpperCAmelCase =[]
__UpperCAmelCase =Counter()
__UpperCAmelCase =0
__UpperCAmelCase =defaultdict(UpperCAmelCase)
for task_id, (candidates, test_case) in enumerate(zip(UpperCAmelCase , UpperCAmelCase)):
for candidate in candidates:
__UpperCAmelCase =candidate + '''\n''' + test_case
__UpperCAmelCase =(test_program, timeout, task_id, completion_id[task_id])
__UpperCAmelCase =executor.submit(UpperCAmelCase , *UpperCAmelCase)
futures.append(UpperCAmelCase)
completion_id[task_id] += 1
n_samples += 1
for future in as_completed(UpperCAmelCase):
__UpperCAmelCase =future.result()
results[result["task_id"]].append((result['''completion_id'''], result))
__UpperCAmelCase , __UpperCAmelCase =[], []
for result in results.values():
result.sort()
__UpperCAmelCase =[r[1]['''passed'''] for r in result]
total.append(len(UpperCAmelCase))
correct.append(sum(UpperCAmelCase))
__UpperCAmelCase =np.array(UpperCAmelCase)
__UpperCAmelCase =np.array(UpperCAmelCase)
__UpperCAmelCase =k
__UpperCAmelCase ={f"""pass@{k}""": estimate_pass_at_k(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase).mean() for k in ks if (total >= k).all()}
return pass_at_k, results
def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ , snake_case__ ) -> str:
def estimator(snake_case__ , snake_case__ , snake_case__ ) -> float:
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) )
if isinstance(snake_case__ , snake_case__ ):
__UpperCAmelCase =itertools.repeat(snake_case__ , len(snake_case__ ) )
else:
assert len(snake_case__ ) == len(snake_case__ )
__UpperCAmelCase =iter(snake_case__ )
return np.array([estimator(int(snake_case__ ) , int(snake_case__ ) , snake_case__ ) for n, c in zip(snake_case__ , snake_case__ )] )
| 142
| 1
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.